ORACLE

Oracle® GoldenGate Adapters
Administrator’s Guide for Java
119 Release 2 (11.2.1.0.0)
E28384-01

December 2012

Oracle GoldenGate Adapters Administrator’s Guide for Java 11g Release 2 (11.2.1.0.0)
E28384-01
Copyright © 2009, 2012., Oracle and/or its affiliates. All rights reserved.

This software and related documentation are provided under a license agreement containing restrictions on use and disclosure and
are protected by intellectual property laws. Except as expressly permitted in your license agreement or allowed by law, you may not
use, copy, reproduce, translate, broadcast, modify, license, transmit, distribute, exhibit, perform, publish, or display any part, in any
form, or by any means. Reverse engineering, disassembly, or decompilation of this software, unless required by law for
interoperability, is prohibited.

The information contained herein is subject to change without notice and is not warranted to be error-free. If you find any errors,
please report them to us in writing.

If this software or related documentation is delivered to the U.S. Government or anyone licensing it on behalf of the U.S. Government,
the following notice is applicable:

U.S. GOVERNMENT RIGHTS Programs, software, databases, and related documentation and technical data delivered to U.S.
Government customers are "commercial computer software" or "commercial technical data" pursuant to the applicable Federal
Acquisition Regulation and agency-specific supplemental regulations. As such, the use, duplication, disclosure, modification, and
adaptation shall be subject to the restrictions and license terms set forth in the applicable Government contract, and, to the extent
applicable by the terms of the Government contract, the additional rights set forth in FAR 52.227-19, Commercial Computer Software
License (December 2007). Oracle USA, Inc., 500 Oracle Parkway, Redwood City, CA 94065.

This software is developed for general use in a variety of information management applications. It is not developed or intended for
use in any inherently dangerous applications, including applications which may create a risk of personal injury. If you use this
software in dangerous applications, then you shall be responsible to take all appropriate fail-safe, backup, redundancy, and other
measures to ensure the safe use of this software. Oracle Corporation and its affiliates disclaim any liability for any damages caused by
use of this software in dangerous applications.

Oracle and Java are registered trademarks of Oracle and/or its affiliates. Other names may be trademarks of their respective owners.

Intel and Intel Xeon are trademarks or registered trademarks of Intel Corporation. All SPARC trademarks are used under license and
are trademarks or registered trademarks of SPARC International, Inc. AMD, Opteron, the AMD logo, and the AMD Opteron logo are
trademarks or registered trademarks of Advanced Micro Devices. UNIX is a registered trademark of The Open Group.

This software and documentation may provide access to or information on content, products, and services from third parties. Oracle
Corporation and its affiliates are not responsible for and expressly disclaim all warranties of any kind with respect to third-party
content, products, and services. Oracle Corporation and its affiliates will not be responsible for any loss, costs, or damages incurred
due to your access to or use of third-party content, products, or services.

Contents

Chapter 1 INtrOdUCTION ... 6
Oracle GOIAENGALEo 6
Adapterintegration OptioNns. ... 6

Capturing transactionstoatrail............. ... 6
Applying transactions fromatrail..................coo 7
Oracle GoldenGate VAM mMessage Captureuvvururiiiiieiiee i 7
Message capture configuration options 7
Oracle GoldenGate Java USer @XItot 8
Delivery configuration Options. ... 9
Oracle GoldenGate documentation. ... 10

Chapter 2 Installing Oracle GoldenGateforJava ... 11

Preparing forinstallation 11
Installing Java 11
Setting up Environmental Variables......................... 11

Installing the Oracle GoldenGate Java Adapter.....................ooooiiiiii, 12
Installation OVErVIEW oo 12
Installation StePS.o 13
Directory STrUCTUIE oo 13

Upgrading the Oracle GoldenGate Java Adapter...................oooooiiiiii .. 15
Source Database Capture. ... 15
JMS CaPUI . . 16

Chapter 3 VAM: Configuring Message Caplurecooiiiiiiii e 18

Configuringthe VAM EXEraCt ... e 18
AddiNg the EXTraCt. 18
Configuring the Extract parameters. ... 18
Configuring the message Capture. ..ottt 19

Connecting and retrieving the MeSSageS.\ v\t 19
ConNeCtiNg tO JMS . .. o 19
REEVING MESSAGESottt e 20
Completing the transactionoo i i 20

Chapter4 VAM: Parsingthemessage ... 21
ParSING OVEIVIBW. . ..ottt e 21

P Sl LY DS .ot 21

Oracle GoldenGate Adapters Administrator’s Guide for Java 3

Source and target data definitions..................... o 21

Required Data.ooooiiiiii 22
Optional datao 23
Fixed Width Parsing.coooiiii 24
Header. .. 24
Header and record data type translation............................... . 26
Keyidentification 26
Delimited Parsing.ooooiiiiii i 27
Metadata ColUMNSo 27
ParSINg PrOPEITIES ..o 27
ParSING SO PS oo 28
XML PAISING. . . oo 28
StYlES Of XML . .o 28
XML ParSINg FUIES . ..o 29
XPath eXPreSSIONS. 30
Other value eXPresSiONSoooii e 31
Transaction TUIES oo 32
Operation rUlESo 32
Columnrules.o 33
Overall rules example. ... 34
Source definitions generation utility...................cco 35
Chapter5 VAM: Message Capture Properties............oouiiiii 36
Logging and conNection Propertiesottt 36
LOgQing PrOPerties ..o 36
JMS CONNECtioN ProOPertieS 37

JN DL PrO OIS .\ 40
RIS PrOPEITIES. . .ttt 40
Settingthe type of parser...........ooo 40
Fixed parser Propertiesoooiviiiiii i 40
Delimited Parser Properties ..o 45
XML Parser PrOPErtiES ...t 52
Chapter 6 UE: Configuring for Message Delivery 62
Configure the JRE in the user exit propertiesfile ..., 62
Configureadatapumptoruntheuserexit ... 62
Configurethe Javahandlers 64
Chapter 7 UE:Runningthe UserEXit e 65
Starting the application 65
Restarting the application at the beginning ofatrailc00i. 65

Oracle GoldenGate Adapters Administrator’s Guide for Java 4

Chapter 8 UE: Configuring EventHandlers................. i 67

Specifying event handlers. 67
IMS NANAIET . . 68
File handlero 69
Custom handlers. ... 69
Formatting the OULPUL. o 69
REPOITTING 69
Chapter9 UE: Message Delivery Propertieso 70
User eXit PrOPeItiES.o 70
LOggINg PrOPEITIES ..o 70
GeNeral PrOPEIIES . . 72
JVM D00t OPtiONS ... 72
Statistics and rePorting 73
Java application ProPerti€s.u 74
Propertiesforallhandlers 74
Properties for formatted output............... i 75
Properties for CSV and fixed-format output ... 76

File Writer Properti€s.oooooii i 78
JMS handler Properties 79
Standard IMS SEttINGS 79

JN DL PrO OIS .\ 81
General PrOPEItIES . .. o 81
Chapter 10 UE: Developing Custom Filters, Formattersand Handlers............................. 82
FIEriNg EVENTS .o oo 82
Custom fOrmatting ... 82
Coding a custom formatterindava...............cooooiiii i 82
Using aVelocity template. ... 84
Coding acustom handlerinJava. 85
AdAItIONAl FESOUICES. 87
Chapter 11 TroubleshOotingo 89
ChecKing fOr EFTOrS ..o oo 89
Recoveryafteranabend. ... 90
REPOIEING ISSUES . ..ottt e e 90

Oracle GoldenGate Adapters Administrator’s Guide for Java 5

CHAPTER 1
Introduction

This guide covers:

e Installing, configuring and running the Oracle GoldenGate for Java
e Using the prebuilt Java Message Service (JMS) and file handlers
e Developing custom filters, formatters or event handlers

Oracle GoldenGate

The core Oracle GoldenGate product:

Captures transactional changes from a source database

Sends and queues these changes as a set of database-independent files called the
Oracle GoldenGate trail

Optionally alters the source data using mapping parameters and functions
Applies the transactions in the trail to a target system database

Oracle GoldenGate performs this capture and apply in near real-time across heterogeneous
databases, platforms, and operating systems.

Adapter integration options

The Oracle GoldenGate adapters integrate with installations of the Oracle GoldenGate
core product to do one of the following:
Read JMS messages and deliver them as an Oracle GoldenGate trail

Read an Oracle GoldenGate trail and deliver transactions to a JMS provider or other
messaging system or custom application

e Read an Oracle GoldenGate trail and write transactions to a flat file that can be used
by other applications

Capturing transactions to a trail

The Oracle GoldenGate message capture adapter can be used to read messages from a
queue and communicate with an Oracle GoldenGate Extract process to generate a trail
containing the processed data.

The message capture adapter is implemented as a Vendor Access Module (VAM) plug-in to
a generic Extract process. A set of properties, rules and external files provide messaging
connectivity information and define how messages are parsed and mapped to records in the

Oracle GoldenGate Adapters Administrator’s Guide for Java 6

Introduction
Oracle GoldenGate VAM message capture

target GoldenGate trail.

Currently this adapter supports capture from JMS text messages.

Applying transactions from a trail

The Oracle GoldenGate delivery adapters can be used to apply transactional changes to
targets other than a relational database: for example, ETL tools (DataStage, Ab Initio,
Informatica), JMS messaging, or custom APIs. There are a variety of options for
integration with Oracle GoldenGate:

e Flatfile integration: predominantly for ETL, proprietary or legacy applications, Oracle
GoldenGate for Flat File can write micro batches to disk to be consumed by tools that
expect batch file input. The data is formatted to the specifications of the target
application such as delimiter separated values, length delimited values, or binary.
Near real-time feeds to these systems are accomplished by decreasing the time window
for batch file rollover to minutes or even seconds.

e Messaging: transactions or operations can be published as messages (e.g. in XML) to
JMS. The JMS provider is configurable; examples include ActiveMQ, JBoss Messaging,
TIBCO, WebLogic JMS, WebSphere MQ and others.

e Java API: custom event handlers can be written in Java to process the transaction,
operation and metadata changes captured by Oracle GoldenGate on the source system.
These custom Java handlers can apply these changes to a third-party Java API
exposed by the target system.

Oracle GoldenGate VAM message capture

The Oracle GoldenGate messaging capture adapter connects to JIMS messaging to parse
messages and send them through a VAM interface to an Oracle GoldenGate Extract that
builds an Oracle GoldenGate trail of message data. This allows JMS messages to be
delivered to an Oracle GoldenGate system running for a target database.

Using Oracle GoldenGate JMS message capture requires two components:
e The dynamically linked shared VAM library that is attached to the Oracle GoldenGate

Extract process.

e A separate utility, Gendef, that uses the message capture properties file and parser-
specific data definitions to create an Oracle GoldenGate source definitions file.

Message capture configuration options
The options for configuring the three parts of message capture are:

e Message connectivity: Values in the property file set connection properties such as the
Java classpath for the JMS client, the JMS source destination name, JNDI connection
properties, and security information.

e Parsing: Values in the property file set parsing rules for fixed width, comma delimited,
or XML messages. This includes settings such as the delimiter to be used, values for
the beginning and end of transactions and the date format.

e VAM interface: Parameters that identify the VAM .dll or .so library and a property file
are set for the Oracle GoldenGate core Extract process.

Oracle GoldenGate Adapters Administrator’s Guide for Java 7

Introduction
Oracle GoldenGate Java user exit

Figure 1 Configuration for JMS message capture

Target Database Server

Database

‘.
Source . re
definitions Spical

L]

Source Integration Server

Properties

JMS

Data
Handler Purnp Extract

Oracle GoldenGate Java user exit

Through the Oracle GoldenGate Java API, transactional data captured by Oracle
GoldenGate can be delivered to targets other than a relational database, such as JIMS
(Java Message Service), writing files to disk, or integrating with a custom application’s
Java API.

Oracle GoldenGate for Java provides the ability to execute code written in Java from the
Oracle GoldenGate Extract process. Using Oracle GoldenGate for Java requires two
components:

e A dynamically linked or shared library, implemented in C/C++, integrating as a user
exit (UE) with the Oracle GoldenGate Extract process through a C API.

e Asetof Java libraries (jars), which comprise the Oracle GoldenGate Java API. This
Java framework communicates with the user exit through the Java Native Interface
(IND).

Oracle GoldenGate Adapters Administrator’s Guide for Java 8

Introduction
Oracle GoldenGate Java user exit

Figure 2 Configuration using the JMS Handler

Source Database Server

Database

Target Integration Server 1,

Sourca
definitions

{- 1
|
Data Ty -_I-B'u'ﬂ IJMS
1
Pump Extract Extract User ' Handler

Exit 1

Delivery configuration options

The dynamically linked library is configurable using a simple properties file. The Java
framework is loaded by this user exit and is also initialized by a properties file. Application
behavior can be customized by:
e Editing the property files; for example to:

O Set host names, port numbers, output file names, JMS connection settings;

o Add/remove targets (such as IMS or files) by listing any number of active handlers
to which the transactions should be sent;

o Turn on/off debug-level logging, etc.
o ldentify which message format should be used.

Oracle GoldenGate Adapters Administrator’s Guide for Java 9

Introduction
Oracle GoldenGate documentation

e Customizing the format of messages sent to JMS or files. Message formats can be
custom tailored by:

O Setting properties for the pre-existing formatters (for fixed-length or field-
delimited message formats);

o Customizing message templates, using the Velocity template macro language;
O (Optional) Writing custom Java code.

e (Optional) Writing custom Java code to provide custom handling of transactions and
operations, do filtering, or implementing custom message formats.

There are existing implementations (handlers) for sending messages via JMS and for
writing out files to disk. There are several predefined message formats for sending the
messages (e.g. XML or field-delimited); or custom formats can be implemented using
templates. Each handler has documentation that describes its configuration properties; for
example, a file name can be specified for a file writer, and a JIMS queue name can be
specified for the JMS handler. Some properties apply to more than one handler; for
example, the same message format can be used for JMS and files.

Oracle GoldenGate documentation

For information on installing and configuring the core Oracle GoldenGate software for use
with the Oracle GoldenGate Flat File or Java adapters, see the Oracle GoldenGate
documentation:

e Installation and Setup guides: There is one such guide for each database that is
supported by Oracle GoldenGate. It contains system requirements, pre-installation
and post-installation procedures, installation instructions, and other system-specific
information for installing the Oracle GoldenGate replication solution.

e Oracle GoldenGate Windows and UNIX Administrator’s Guide: Explains how to plan
for, configure, and implement the Oracle GoldenGate replication solution on the
Windows and UNIX platforms.

e Oracle GoldenGate Windows and UNIX Reference Guide: Contains detailed
information about Oracle GoldenGate parameters, commands, and functions for the
Windows and UNIX platforms.

e Oracle GoldenGate Windows and UNIX Troubleshooting and Tuning Guide: Contains
suggestions for improving the performance of the Oracle GoldenGate replication
solution and provides solutions to common problems.

Oracle GoldenGate Adapters Administrator’s Guide for Java 10

CHAPTER 2

Installing Oracle GoldenGate for Java

This chapter provides information on how to install a new instance of the Oracle
GoldenGate Java Adapter and how to upgrade an existing one.

Preparing for installation

Prepare your Java environment by ensuring that you have the correct version of Java
installed, and that the environmental variables have been set up and configured correctly.

Installing Java

Before installing and running Oracle GoldenGate for Java, you must install Java (JDK or
JRE) version 1.6 or later. Either the Java Runtime Environment (JRE) or the full Java
Development Kit (which includes the JRE) may be used.

Setting up Environmental Variables
To configure your Java environment for Oracle GoldenGate for Java:

e The PATH environmental variable should be configured to find your Java Runtime

e The shared (dynamically linked) Java virtual machine (JVM) library must also be
found.

On Windows, these environmental variables should be set as system variables; on
Linux/UNIX, they should be set globally or for the user running the Oracle GoldenGate
processes. Examples of setting these environmental variables for Windows and
UNIX/Linux are listed below.

NOTE There may be two versions of the JVM installed when installing Java; one in
JAVA HOME/ .. ./client, and another in JAVA_HOME/ . . ./server. For
improved performance, use the server version, if itis available. On Windows, it may
be that only the client JVM is there if only the JRE was installed (and not the JDK).

Java on Windows

After Java is installed, configure the PATH to find the JRE and JVM DLL (jvm.dl1):

set JAVA HOME=C:\Program Files\Java\jdkl1.6.0
set PATH=%JAVA_HOME%\bin;%PATH%
set PATH=%JAVA_HOME%\jre\bin\server ; %PATH%

In the example above, the directory %JAVA_HOME%\ j re\bin\server should contain the file

Oracle GoldenGate Adapters Administrator’s Guide for Java 11

Installing Oracle GoldenGate for Java
Installing the Oracle GoldenGate Java Adapter

Jvm.dll.

Verify the environment settings by opening a command prompt and checking the java
version:

C:\> java -version
jJava version "1.6.0_30" Java(TM) SE Runtime Environment (build 1.6.0_30-b13)

Java on Linux/UNIX

Configure the environment to find the JRE in the PATH, and the JVM shared library, using
the appropriate environmental variable for your system. For example, on Linux (and
Solaris, etc.), set LD_LIBRARY_PATH to include the directory containing the JVM shared
library as follows (for sh/ksh/bash):

export JAVA HOME=/opt/jdkl.6
export PATH=${JAVA_HOME}/bin:${PATH}
export LD_LIBRARY_PATH=${JAVA_HOME}/jre/lib/i386/server:${LD_LIBRARY_PATH}

In the example above, the directory $JAVA_HOME/jre/lib/i386/server should contain the
file libjvm_so. The actual directory containing the JVM library depends on the OS and if
the 32-bit or 64-bit JVM is being used.

Verify the environment settings by opening a command prompt and checking the java
version:

$ java -version
java version "1.6.0_30"
Java(TM) SE Runtime Environment (build 1.6.0_30-b02)

Installing the Oracle GoldenGate Java Adapter

Oracle GoldenGate adapters are available for Windows, Linux, and UNIX (32 and 64 bit).
Visit http://edelivery.oracle.com to see if a build of Oracle GoldenGate for Java is available
for your operating systemn and architecture.

Installation Overview
The Oracle GoldenGate Adapters installation zip file contains:

Oracle GoldenGate Java Adapter

Oracle GoldenGate Flat File Adapter. For information on this adapter see the Oracle
GoldenGate for Flat File Administrator’'s Guide for Java.

e A version of Oracle GoldenGate designed to run the adapters. This version is
sometimes labeled generic because it is not specific to any database, but it is platform
dependent.

For JMS capture, the Java Adapter must run in the generic build of Oracle GoldenGate.
However, the generic build is not required when using the adapter for delivery of trail data
to a target; in this case the Oracle GoldenGate Flat File or Java Adapters can be used with
any database version of Oracle GoldenGate. If you want to install to a non-generic instance
of Oracle GoldenGate, unzip to a temporary location first and then copy the adapter files
to your Oracle GoldenGate installation location.

Oracle GoldenGate Adapters Administrator’s Guide for Java 12

Installing Oracle GoldenGate for Java
Installing the Oracle GoldenGate Java Adapter

Installation Steps
Perform the following steps to install the Oracle GoldenGate Adapters:

1. Create an installation directory that has no spaces in its name. Then extract the zip
file into this new installation directory. For example:

Shell> mkdir {installation_directory}

Shell> cp path/to/{installation_zip} {installation_directory}
Shell> cd {installation_directory}

Shell> unzip {installation_zip}

If you are on Linux or UNIX also:

Shell> tar -xf {installation_tar}

This will download the files into several of the subdirectories shown the table “Sample
installation directory structure” on page 14.

2. Still on the installation directory, bring up GGSCI to create the remaining
subdirectories in the installation location.

Shell> ggsci
GGSCI> CREATE SUBDIRS

3. Create a Manager parameter file:

GGSCI> EDIT PARAM MGR

4. Specify a port for the Manager to listen on by using the editor to add a line to the
Manager parameter file. For example:

PORT 7801

5. Go to GGSCI, start the Manager, and check to see that it is running:

GGSCI>START MGR
GGSCI>INFO MGR

6. Ifyou are on Windows and running Manager as a service, set the system variable PATH
to include jvm.dl1, then delete the Manager service and re-add it.

Directory Structure

The following table is a sample that includes the subdirectories and files that result from
unzipping the installation file and creating the subdirectories. The following conventions
have been used:

Subdirectories are enclosed in square brackets []

Levels are indicated by a pipe and hyphen | -

The Internal notation indicates a read-only directory that should not be modified

Text files (*.txt) are not included in the list

Oracle GoldenGate utilities, such as Defgen, Logdump, and Keygen, are not included
in the list

Oracle GoldenGate Adapters Administrator’s Guide for Java 13

Installing Oracle GoldenGate for Java
Installing the Oracle GoldenGate Java Adapter

Tablel Sample installation directory structure

Directory Explanation

[gg_install_dir] Oracle GoldenGate installation directory, such as C:/ggs on Windows or
/home/user/ggs on UNIX.

|-ggsci Command line interface used to start, stop, and manage processes.
|-mgr Manager process.
| -extract Extract process that will start the Java application or flat file writer.

| -[AdapterExamples] Sample configuration files for Java user exit, Java API, flat file writer,
and JMS capture adapters.

|-[UserExitExamples] Sample C programming language user exit code examples.

|-[dirprm] Subdirectory that holds all the parameter and property files created by
the user, for example:
¢ jJavaue.prm

Javaue._proprties

Jmsvam.prm

Jmsvam.properties

ffwriter.prm

* ¢ o o

|-[dirdef] Subdirectory that holds source definitions files (*.def) defining the
metadata of the trail:

+ Created by the Defgen core utility for the user exit trail data.
+ Created by the Gendef adapter utility for VAM message capture.

|-[dirdat] Subdirectory that holds the trail files produced by the VAM Extract or
read by the user exit Extract.
|-[dirchk] Internal: Subdirectory that holds checkpoint files.
|-[dirpcs] Internal: Subdirectory that holds process status files.
|-[dirjar] Internal: Subdirectory that holds Oracle GoldenGate Monitor jar files.
I-[ggjava] Internal: Installation directory for Java jars.
|-ggjava.jar The main Java application jar that defines classpath and dependencies.
|-[resources] Subdirectory that contains all ggjava.jar dependencies. Includes

subdirectories for:
¢ [class] - properties and resources
o [lib] - application jars required by ggjava. jar

|-ggjava_ue.dll The user exit shared library. This is libggjava_ue.so on UNIX.

Oracle GoldenGate Adapters Administrator’s Guide for Java 14

Installing Oracle GoldenGate for Java
Upgrading the Oracle GoldenGate Java Adapter

Tablel Sample installation directory structure

Directory Explanation
|-ggjava vam.dll The VAM shared library. This is libggjava vam.so on UNIX.
| -gendef Utility to generate the adapter source definitions files containing

metadata of the IMS message input. Note that this is different from the
Oracle GoldenGate Defgen utility that creates source definitions
containing the input metadata for the trail.

|-flatfilewriter.dll The Windows .dIl or the UNIX .so library for the Oracle GoldenGate

Flat File Adapter.

Other subdirectories and files included in the installation or created
later.

Upgrading the Oracle GoldenGate Java Adapter

There are two types of upgrades for the Oracle GoldenGate Java Adapters:

An adapter that is receiving changes captured from a source database and written to
an Oracle GoldenGate trail.

An adapter that is receiving changes from a JMS source

The upgrade steps are different for each of these.

Source Database Capture

If the adapter is receiving trail data from a source database, use the following upgrade

steps:

1. Create an installation directory that has no spaces in its name.

2. Extract the zip file into this new installation directory. This will download the files into
several subdirectories.

3. Still on the installation directory, bring up GGSCI to create the remaining
subdirectories in the installation location.
Shell> ggsci
GGSCI1> CREATE SUBDIRS

4. Copy all of the dirprm files from your existing installation into the dirprm directory in
the new installation location.

NOTE All of your configuration files must be in the di rprm directory. If you have property
files, velocity templates, or other configuration files in a location other than dirprm
in your old installation, copy them to the di rprm directory in the new installation.

5. Copy all of the dirdef files from your existing installation into the dirdef directory in
the new installation location.
6. If you have additional jar files or other custom files in your old installation, copy them

to the new installation directory.

Oracle GoldenGate Adapters Administrator’s Guide for Java 15

Installing Oracle GoldenGate for Java
Upgrading the Oracle GoldenGate Java Adapter

7. If the source database capture is writing trails in the new 11.2.1 format, run Defgen on
the source database to create the source definitions files in the new format. Then
install them to dirdef.

If the source database capture is writing trails in a previous format, the existing source

definitions files can be used for both:

o Format Release 9.5, the trail format supported in Oracle GoldenGate Adapters
prior to 11.2.1.

o Format 10.1 and later trail formats, which are supported as of 11.2.1 release of the
Oracle GoldenGate Adapters.

8. Configure the Extract pump processes in the new installation directory by bringing up
GGSCI and adding the Extracts and naming the trails.

GGSCI> ADD EXTRACT group_name, EXTTRAILSOURCE trail_name,

9. Start the Extract processes and verify that they are running:
GGSCI> START EXTRACT group_name
GGSCI> INFO EXTRACT group_name
GGSCI> VIEW REPORT group_name

10. Modify the source system to write to the new Oracle GoldenGate Adapter installation
directory:

o (Optional) Upgrade the source database Oracle GoldenGate capture following the
upgrade procedure for your database platform.

o Configure the source database capture to write to the new Oracle GoldenGate
Adapter installation location dirdat directory.

o When the old Oracle GoldenGate Adapter installation has processed all its data,
switch over to the process that will send data to the new location.

JMS Capture

If your adapter is capturing changes from a JIMS source, use the following steps to upgrade
the installation.

1.
2.

Create an installation directory that has no spaces in its name.

Extract the zip file into this new installation directory. This will download the files into
several subdirectories.

Still on the installation directory, bring up GGSCI to create the remaining
subdirectories in the installation location.

Shell> ggsci

GGSCI1> CREATE SUBDIRS

Copy all of the dirprm files from your existing installation into the dirprm directory in
the new installation location.

Copy all of the dirdef files from your existing installation into the dirdef directory in
the new installation location.

If you have additional jar files or other custom files in your old installation, copy them
to the new installation directory.

Oracle GoldenGate Adapters Administrator’s Guide for Java 16

Installing Oracle GoldenGate for Java
Upgrading the Oracle GoldenGate Java Adapter

7. Configure the Extract processes in the new installation directory to write to a new trail
by bringing up GGSCI and adding the Extracts and naming the trails.

GGSCI> ADD EXTRACT group_name, EXTTRAILSOURCE trail_name,

8. Stop the old Extract from the previous version.
GGSCI> STOP EXTRACT old_name

9. Start the new Extract processes and verify that they are running:

GGSCI> START EXTRACT group_name
GGSCI> INFO EXTRACT group_name
GGSCI> VIEW REPORT group_name

10. When the old Oracle GoldenGate Adapter installation has processed all its data,
configure the downstream processes to read from the new trails generated by the
upgraded JMS capture process.

Oracle GoldenGate Adapters Administrator’s Guide for Java 17

CHAPTER 3

VAM: Configuring Message Capture

This chapter explains how to configure the VAM Extract to capture JMS messages.

Configuring the VAM Extract

To run the Java message capture application you need the following:

Oracle GoldenGate for Java adapter

Extract process

Extract parameter file configured for message capture

Description of the incoming data format, such as a source definitions file.

Adding the Extract

To add the message capture VAM to the Oracle GoldenGate installation, add an Extract
and the trail that it will create using GGSCI commands:

ADD EXTRACT jmsvam, VAM

ADD EXTTRAIL dirdat/id, EXTRACT jmsvam, MEGABYTES 100
The process name (jmsvam) can be replaced with any process name that is no more than 8
characters. The trail identifier (id) can be any two characters.

NOTE Commands to position the Extract, such as BEGIN or EXTRBA, are not supported
for message capture. The Extract will always resume by reading messages from
the end of the message queue.

Configuring the Extract parameters

The Extract parameter file contains the parameters needed to define and invoke the VAM.
Sample Extract parameters for communicating with the VAM are shown in the table.

Parameter Description

EXTRACT jmsvam The name of the Extract process.

Oracle GoldenGate Adapters Administrator’s Guide for Java 18

VAM: Configuring Message Capture
Connecting and retrieving the messages

Parameter Description
VAM ggjava_vam.dll, Specifies the name of the VAM library and
PARAMS dirprm/jmsvam.properties the location of the properties file. The VAM

properties should be in the dirprm
directory of the Oracle GoldenGate
installation location.

TRANLOGOPTIONS VAMCOMPATIBILITY 1 Specifies the original (1) implementation of
the VAM is to be used.

TRANLOGOPTIONS GETMETADATAFROMVAM Specifies that metadata will be sent by the
VAM.

EXTTRAIL dirdat/id Specifies the identifier of the target trail

Extract creates.

TABLE 0GG.* A list of tables to process. Wildcards may be
used in the table name.

Configuring the message capture

Message capture is configured by the properties in the VAM properties file. This file is
identified by the PARAMS option of the Extract VAM parameter and used to determine logging
characteristics, parser mappings and JMS connection settings.

Connecting and retrieving the messages

To process JMS messages you must configure the connection to the JIMS interface, retrieve
and parse the messages in a transaction, write each messages to a trail, commit the
transaction, and remove its messags from the queue.

Connecting to JMS

Connectivity to JMS is through a generic IMS interface. Properties can be set to configure
the following characteristics of the connection:
Java classpath for the JMS client
Name of the JMS queue or topic source destination
Java Naming and Directory Interface (JNDI) connection properties
o Connection properties for Initial Context
o Connection factory name
o Destination name
e Security information
o JNDI authentication credentials
o JMS user name and password

The Extract process that is configured to work with the VAM (such as the jmsvam in the
example) will connect to the message system. when it starts up.

Oracle GoldenGate Adapters Administrator’s Guide for Java 19

VAM: Configuring Message Capture
Connecting and retrieving the messages

NOTE The Extract may be included in the Manger’'s AUTORESTART list so it will
automatically be restarted if there are connection problems during processing.

Currently the Oracle GoldenGate for Java message capture adapter supports only JIMS
text messages.

Retrieving messages

The connection processing performs the following steps when asked for the next message:
Start a local JMS transaction if one is not already started.

Read a message from the message queue.

If the read fails because no message exists, return an end-of-file message.

Otherwise return the contents of the message.

Completing the transaction

Once all of the messages that make up a transaction have been successfully retrieved,
parsed, and written to the Oracle GoldenGate trail, the local JMS transaction is committed
and the messages removed from the queue or topic. If there is an error the local transaction
is rolled back leaving the messages in the JMS queue.

Oracle GoldenGate Adapters Administrator’s Guide for Java 20

CHAPTER 4

VAM: Parsing the message

This chapter explains the types of parsers included with the Oracle GoldenGate Java
Adapter and how each parser translates JMS text messages.

Parsing overview

The role of the parser is to translate IMS text message data and header properties into an
appropriate set of transactions and operations to pass into the VAM interface. To do this,
the parser always must find certain data:

Transaction identifier

Sequence identifier

Timestamp

Table name

Operation type

Column data specific to a particular table name and operation type

Other data will be used if the configuration requires it:

e Transaction indicator
e Transaction name
e Transaction owner

The parser can obtain this data from JMS header properties, system generated values,
static values, or in some parser-specific way. This depends on the nature of the piece of
information.

Parser types
The Oracle GoldenGate message capture adapter supports three types of parsers:

e Fixed — Messages contain data presented as fixed width fields in contiguous text.
e Delimited — Messages contain data delimited by field and end of record characters.
XML — Messages contain XML data accessed through XPath expressions.

Source and target data definitions

There are several ways source data definitions can be defined using a combination of
properties and external files. The Oracle GoldenGate Gendef utility generates a standard

Oracle GoldenGate Adapters Administrator’s Guide for Java 21

VAM: Parsing the message
Parsing overview

source definitions file based on these data definitions and parser properties. The options
vary based on parser type:

e Fixed — COBOL copybook, source definitions or user defined
e Delimited — source definitions or user defined
e XML - source definitions or user defined

There are several properties that configure how the selected parser gets data and how the
source definitions are converted to target definitions.

Required Data

The following information is required for the parsers to translate the messages:

Transaction identifier

The transaction identifier (txid) groups operations into transactions as they are written to
the Oracle GoldenGate trail file. The Oracle GoldenGate message capture adapter
supports only contiguous, non-interleaved transactions. The transaction identifier can be
any unique value that increases for each transaction. A system generated value can
generally be used.

Sequence identifier

The sequence identifier (seqid) identifies each operation internally. This can be used
during recovery processing to identify operations that have already been written to the
Oracle GoldenGate trail. The sequence identifier can be any unique value that increases
for each operation. The length should be fixed.

The JMS Message ID can be used as a sequence identifier if the message identifier for that
provider increases and is unique. However, there are cases (e.g. using clustering, failed
transactions) where JMS does not guarantee message order or when the ID may be unique
but not be increasing. The system generated Sequence ID can be used, but it can cause
duplicate messages under some recovery situations. The recommended approach is to have
the JMS client that adds messages to the queue set the Message ID, a header property, or
some data element to an application-generated unique value that is increasing.

Timestamp

The timestamp (timestamp) is used as the commit timestamp of operations within the
Oracle GoldenGate trail. It should be increasing but this is not required, and it does not
have to be unique between transactions or operations. It can be any date format that can
be parsed.

Table name

The table name is used to identify the logical table to which the column data belongs. The
adapter requires a two part table name in the form SCHEMA_NAME.TABLE_NAME. This can
either be defined separately (schema and table) or as a combination of schema and table
(schemaandtable).

A single field may contain both schema and table name, they may be in separate fields, or
the schema may be included in the software code so only the table name is required. How
the schema and table names can be specified depends on the parser. In any case the two
part logical table name is used to write records in the Oracle GoldenGate trail and to

Oracle GoldenGate Adapters Administrator’s Guide for Java 22

VAM: Parsing the message
Parsing overview

generate the source definitions file that describes the trail.

Operation type

The operation type (optype) is used to determine whether an operation is an insert, update
or delete when written to the Oracle GoldenGate trail. The operation type value for any
specific operation is matched against the values defined for each operation type.

The data written to the Oracle GoldenGate trail for each operation type depends on the
Extract configuration:

e Inserts
o The after values of all columns are written to the trail.
e Updates

o Default — The after values of keys are written. The after values of columns that
have changed are written if the before values are present and can be compared. If
before values are not present then all columns are written.

O NOCOMPRESSUPDATES — The after values of all columns are written to the trail.

O GETUPDATEBEFORES — The before and after values of columns that have changed are
written to the trail if the before values are present and can be compared. If before
values are not present only after values are written.

o If both NOCOMPRESSUPDATES and GETUPDATEBEFORES are included, the before and
after values of all columns are written to the trail if before values are present

e Deletes
o Default — The before values of all keys are written to the trail.
O NOCOMPRESSDELETES — The before values of all columns are written to the trail.

Primary key update operations may also be generated if the before values of keys are
present and do not match the after values.

Column data

All parsers retrieve column data from the message text and write it to the Oracle
GoldenGate trail. In some cases the columns are read in index order as defined by the
source definitions, in other cases they are accessed by name.

Depending on the configuration and original message text, both before and after or only
after images of the column data may be available. For updates, the data for non-updated
columns may or may not be available.

All column data is retrieved as text. It is converted internally into the correct data type for
that column based on the source definitions. Any conversion problem will result in an error
and the process will abend.

Optional data

The following data may be included, but is not required.

Transaction indicator
The relationship of transactions to messages can be:

e One transaction per message

Oracle GoldenGate Adapters Administrator’s Guide for Java 23

VAM: Parsing the message
Fixed width parsing

This is determined automatically by the scope of the message.

e Multiple transactions per message

This is determined by the transaction indicator (txind). If there is no transaction
indicator, the XML parser can create transactions based on a matching transaction
rule.

e Multiple messages per transaction

The transaction indicator (txind) is required to specify whether the operation is the
beginning, middle, end or the whole transaction. The transaction indicator value for
any specific operation is matched against the values defined for each transaction
indicator type. A transaction is started if the indicator value is beginning or whole,
continued if it is middle, and ended if it is end or whole.

Transaction name

The transaction name (txname) is optional data that can be used to associate an arbitrary
name to a transaction. This can be added to the trail as a token using a GETENV function.

Transaction owner

The transaction owner (txowner) is optional data that can be used to associate an arbitrary
user name to a transaction. This can be added to the trail as a token using a GETENV
function, or used to exclude certain transactions from processing using the EXCLUDEUSER
Extract parameter.

Fixed width parsing

Fixed width parsing is based on a data definition that defines the position and the length
of each field. This is in the format of a Cobol copybook. A set of properties define rules for
mapping the copybook to logical records in the Oracle GoldenGate trail and in the source
definitions file.

The incoming data should consist of a standard format header followed by a data segment.
Both should contain fixed width fields. The data is parsed based on the PIC definition in

the copybook. It is written to the trail translated as explained in “Header and record data
type translation” on page 26.

Header
The header must be defined by a copybook 01 level record that includes the following:

e A commit timestamp or a change time for the record
e A code to indicate the type of operation: insert, update, or delete
e The copybook record name to use when parsing the data segment

Any fields in the header record that are not mapped to Oracle GoldenGate header fields are
output as columns.

Oracle GoldenGate Adapters Administrator’s Guide for Java 24

VAM: Parsing the message
Fixed width parsing

Specifying a header
The following example shows a copybook definition containing the required header values:
01 HEADER.
20 Hdr-Timestamp PIC X(23)

20 Hdr-Source-DB-Function PIC X
20 Hdr-Source-DB-Rec-1D PIC X(8)
You would set the following properties for this example:

fixed.header=HEADER
fixed.timestamp=Hdr-Timestamp
fixed.optype=Hdr-Source-DB-Function
fixed.table=Hdr-Source-DB-Rec-Id

The logical name table output in this case will be the value of Hdr-Source-DB-Rec-1d.

Specifying compound table names

More than one field can be used for a table name. For example, you can define the logical
schema name through a static property such as:

Ffixed.schema=MYSCHEMA

Then you can add a property that defines the data record as multiple fields from the
copybook header definition.

01 HEADER.
20 Hdr-Source-DB PIC X(8).
20 Hdr-Source-DB-Rec-Id PIC X(8).
20 Hdr-Source-DB-Rec-Version PIC 9(4).
20 Hdr-Source-DB-Function PIC X.
20 Hdr-Timestamp PIC X(22).

fixed.header=HEADER
fixed.table=Hdr-Source-DB-Rec-1d,Hdr-Source-DB-Rec-Version
fixed.schema=MYSCHEMA

The fields will be concantenated to result in logical schema and table names of the form:

MYSCHEMA .Hdr-Source-DB-Rec-1d+Hdr-Source-DB-Rec-Version

Specifying timestamp formats

A timestamp is parsed using the default format YYYY-MM-DD HH:MM:SS.FFF, with FFF
depending on the size of the field.

Specify different incoming formats by entering a comment before the datetime field as
shown in the next example.

01 HEADER.
* DATEFORMAT YYYY-MM-DD-HH_MM.SS.FF
20 Hdr-Timestamp PIC X(23)

Oracle GoldenGate Adapters Administrator’s Guide for Java 25

VAM: Parsing the message
Fixed width parsing

Specifying the function

Use properties to map the standard Oracle GoldenGate operation types to the optype
values. The following example specifies that the operation type is in the Hdr-Source-DB-
Function field and that the value for insert is A, update is U and delete is D.

fixed.optype=Hdr-Source-DB-Function
fixed.optype.insert=A
fixed.optype.update=U
fixed.optype.delete=D

Header and record data type translation

The data in the header and the record data are written to the trail based on the translated
data type.

e Afield definition preceded by a date format comment is translated to an Oracle
GoldenGate datetime field of the specified size. If there is no date format comment, the
field will be defined by its underlying datatype.

A PIC X field is translated to the CHAR datatype of the indicated size.

A PIC 9 field is translated to a NUMBER datatype with the defined precision and scale.
Numbers that are signed or unsigned and those with or without decimals are
supported.

The following examples show the translation for various P1C definitions.

Input Output

PIC XX CHAR(2)

PIC X(16) CHAR(16)
PIC 9(4) NUMBER(4)

* YYMMDD DATE(10)
PIC 9(6) YYYY-MM-DD
PIC 99.99 NUMBER(4,2)
PIC 9(5)V99 NUMBER(7,2)

In the example an input YYMMDD date of 100522 is translated to 2010-05-22. The number
1234567 with the specified format PIC 9(5)V99 is translated to a seven digit number with
two decimal places, or 12345.67.

Key identification

A comment is used to identify key columns within the data record. The Gendef utility that
generates the source definitions uses the comment to locate a key column.

In the following example Account has been marked as a key column for TABLEL.

01 TABLE1l

* KEY

20 Account PIC X(19)
20 PAN_Seqg_Num PIC 9(3)

Oracle GoldenGate Adapters Administrator’s Guide for Java 26

VAM: Parsing the message
Delimited parsing

Delimited parsing

Delimited parsing is based a preexisting source definitions files and a set of properties. The
properties specify the delimiters to use and other rules, such as whether there are column
names and before values. The source definitions file determines the valid tables to be
processed and the order and datatype of the columns in the tables.

The format of the delimited message is:
{METACOLS}"[,{COLNAMES}]"[, {COLBEFOREVALS}]™, {COLVALUES}™\n

Where: There can be n metadata columns each followed by a field delimiter such as the
comma shown in the format statement.

There can be m column values. Each of these are preceded by a field delimiter
such as a comma.

The column name and before value are optional.

Each record is terminated by an end of line delimiter, such as \n.

Metadata columns

The metadata columns correspond to the header and contain fields that have special
meaning. Metadata columns should include the following information.

e optype contains values indicating if the record is an insert, update, or delete. The
default values are I, U, and D.

e timestamp indicates type of value to use for the commit timestamp of the record. The
format of the timestamp defaults to YYYY-DD-MM HH:MM:SS.FFF.

schemaandtable is the full table name for the record in the format SCHEMA_TABLE.
schema is the record’s schema name.
table is the record’s table name.

txind is a value that indicates whether the record is the beginning, middle, end or the
only record in the transaction. The default values are 0, 1, 2, 3.

e idis the value used as the sequence number (RSN or CSN) of the record. The id of the
first record (operation) in the transaction is used for the sequence number of the
transaction.

Parsing properties

Properties can be set to describe delimiters, values, and date and time formats.

Properties to describe delimiters

The following properties determine the parsing rules for delimiting the record.

e fielddelim specifies one or more ASCII or hexadecimal characters as the value for the
field delimiter

e recorddelim specifies one or more ASCII or hexadecimal characters as the value for
the record delimiter

quote specifies one or more ASCII or hexadecimal characters to use for quoted values

nullindicator specifies one or more ASCII or hexadecimal characters to use for NULL
values

Oracle GoldenGate Adapters Administrator’s Guide for Java 27

VAM: Parsing the message
XML parsing

You can define escape characters for the delimiters so they will be replaced if the
characters are found in the text. For example if a backslash and apostrophe (\') are
specified, then the input "They used Mike\'s truck" is translated to "They used Mike's
truck”. Or if two quotes (") are specified, "They call him "'Big AlI""™ is translated to "They
call him "Big AI"™".

Data values may be present in the record without quotes, but the system only removes
escape characters within quoted values. A non-quoted string that matches a null indicator
is treated as null.

Properties to describe values
The following properties provide more information:

hasbefores indicates before values are present for each record
hasnames indicates column names are present for each record
afterfirst indicates column after values come before column before values

isgrouped indicates all column names, before values and after values are grouped
together in three blocks, rather than alternately per column

Properties to describe date and time

The default format YYYY-DD-MM HH:MM:SS.FFF is used to parse dates. The user can use
properties to override this on a global, table or column level. Examples of changing the
format are shown below.

delim.dateformat.default=MM/DD/YYYY-HH:MM:SS
delim.dateformat.MY.TABLE=DD/MMM/YYYY
delim.dateformat.MY.TABLE.COL1=MMYYYY

Parsing steps
The steps in delimited parsing are:
1. The parser first reads and validates the metadata columns for each record.

2. This provides the table name, which can then be used to look up column definitions for
that table in the source definitions file.

3. If a definition cannot be found for a table, the processing will stop.

4. Otherwise the columns are parsed and output to the trail in the order and format
defined by the source definitions.

XML parsing

XML parsing is based on a preexisting source definitions file and a set of properties. The
properties specify rules to determine XML elements and attributes that correspond to
transactions, operations and columns. The source definitions file determines the valid
tables to be processed and the ordering and data types of columns in those tables.

Styles of XML

The XML message is formatted in either dynamic or static XML. At runtime the contents
of dynamic XML are data values that cannot be predetermined using a sample XML or

Oracle GoldenGate Adapters Administrator’s Guide for Java 28

VAM: Parsing the message
XML parsing

XSD document. The contents of static XML that determine tables and column element or
attribute names can be predetermined using those sample documents.

The following two examples contain the same data.

An example of static XML

<NewMyTableEntries>
<NewMyTableEntry>
<CreateTime>2010-02-05:10:11:21</CreateTime>
<KeyCol>keyval</KeyCol>
<Col1l>collval</Col1>
</NewMyTableEntry>
</NewMyTableEntries>

The NewMyTableEntries element marks the transaction boundaries. The NewMyTableEntry
indicates an insert to MY.TABLE. The timestamp is present in an element text value, and
the column names are indicated by element names.

You can define rules in the properties file to parse either of these two styles of XML through
a set of XPath-like properties. The goal of the properties is to map the XML to a predefined
source definitions file through XPath matches.

An example of dynamic XML

<transaction id="1234" ts="2010-02-05:10:11:21">
<operation table="MY_TABLE"™ optype="1">
<column name="keycol" index="0">
<aftervalue><![CDATA[keyval]]></aftervalue>
</column>
<column name="coll" index="1">
<aftervalue><![CDATA[collval]]></aftervalue>
</column>
</operation>
</transaction>

Every operation to every table has the same basic message structure consisting of
transaction, operation and column elements. The table name, operation type, timestamp,
column names, column values, etc. are obtained from attribute or element text values.

XML parsing rules
Independent of the style of XML, the parsing process needs to determine:

e Transaction boundaries

e Operation entries and metadata including:
o Table name
o Operation type
o Timestamp

e Column entries and metadata including:

o Either the column name or index; if both are specified the system will check to see
if the column with the specified data has the specified name.

o Column before or after values, sometimes both.

Oracle GoldenGate Adapters Administrator’s Guide for Java 29

VAM: Parsing the message
XML parsing

This is done through a set of interrelated rules. For each type of XML message that is to be
processed you name a rule that will be used to obtain the required data. For each of these
named rules you add properties to:

e Specify the rule as a transaction, operation, or column rule type. Rules of any type are
required to have a specified name and type.

e Specify the XPath expression to match to see if the rule is active for the document being
processed. This is optional; if not defined the parser will match the node of the parent
rule or the whole document if this is the first rule.

e List detailed rules (subrules) that are to be processed in the order listed. Which
subrules are valid is determined by the rule type. Subrules are optional.

In the following example the top-level rule is defined as genericrule. It is a transaction
type rule. Its subrules are defined in oprule and they are of the type operation.

xmlparser._rules=genericrule
xmlparser._rules.genericrule.type=tx
xmlparser._rules.genericrule._subrules=oprule
xmlparser._rules.oprule.type=op

XPath expressions

The XML parser supports a subset of XPath expressions necessary to match elements and
extract data. An expression can be used to match a particular element or to extract data.

When doing data extraction most of the path is used to match. The tail of the expression is
used for extraction.

Supported constructs:

/e Use the absolute path from the root of the document to match e.

./e or e Use the relative path from current node being processed to match e.

../e Use a path based on the parent of the current node (can be repeated) to
match e.

//e Match e wherever it occurs in a document.

* Match any element. Note: Partially wild-carded names are not supported.

[n1 Match the nth occurrence of an expression.

[x=v] Match when x is equal to some value v where x can be:

¢+ (@att - some attribute value

¢ text() —some text value

+ name() — the element name

+ position() — the element position

Supported expressions

Match root element /My/Element

Oracle GoldenGate Adapters Administrator’s Guide for Java 30

VAM: Parsing the message

XML parsing
Match sub element to current node ./Sub/Element
Match nth element /My/*[n]
Match nth Some element /My/Some[n]
Match any text value /My/*[text() ="value™]
Match the text in Some element /My/Some[text() = "value™]
Match any attribute /My/*[@att = “value™]
Match the attribute in Some element /My/Some[@att = "value"]

Obtaining data values

In addition to matching paths, the XPath expressions can also be used to obtain data
values, either absolutely or relative to the current node being processed. Data value
expressions can contain any of the path elements above, but must end with one of the value
accessors listed below.

@att Some attribute value.

text() The text content (value) of an element.

content() The full content of an element, including any child XML nodes.
name() The name of an element.

position() The position of an element in its parent.

Some examples:
To extract the relative element text value:

/My/Element/text()

To extract the absolute attribute value:
/My/Element/@att

To extract element text value with a match:
/My/Some[@att = "value"]/Sub/text()

NOTE Path accessors, such as ancestor/descendent/self, are not supported.

Other value expressions

The values extracted by the XML parser are either column values or properties of the
transaction or operation, such as table or timestamp. These values are either obtained from
XML using XPath or through properties of the IMS message, system values, or hard coded
values. The XML parser properties specify which of these options are valid for obtaining
the values for that property.

The following example specifies that timestamp can be an XPath expression, a JMS
property, or the system generated timestamp.

{txrule}. timestamp={xpath-expression}|${jms-property}|*ts

Oracle GoldenGate Adapters Administrator’s Guide for Java 31

VAM: Parsing the message
XML parsing

The next example specifies that table can be an XPath expression, a JMS property, or hard
coded value.

{oprule}.table={xpath-expression}|${jms-property}|”value”

The last example specifies that name can be a XPath expression or hard coded value.

{colrule}.timestamp={xpath-expression}|”’value”

Transaction rules

The rule that specifies the boundary for a transaction is at the highest level. Messages may
contain a single transaction, multiple transactions, or a part of a transaction that spans
messages. These are specified as follows:

single - The transaction rule match is not defined.

multiple - Each transaction rule match defines new transaction.

span — No transaction rule is defined; instead a transaction indicator is specified in an
operation rule.

For a transaction rule, the following properties of the rule may also be defined through
XPath or other expressions:

e timestamp — The time at which the transaction occurred.

e txid - The identifier for the transaction.

Transaction rules can have multiple subrules, but each must be of type operation.

Examples

The following example specifies a transaction that is the whole message and includes a
timestamp that comes from the JMS property.

singletxrule.timestamp=$JMSTimeStamp

The following example matches the root element transaction and obtains the timestamp
from the ts attribute.

dyntxrule.match=/Transaction
dyntxrule.timestamp=0ts

Operation rules

An operation rule can either be a subrule of a transaction rule, or a highest level rule (if
the transaction is a property of the operation).

In addition to the standard rule properties, an operation rule should also define the
following through XPath or other expressions:

e timestamp — The timestamp of the operation. This is optional if the transaction rule
is defined.
table — The name of the table on which this is an operation. Use this with schema.
schema — The name of schema for the table.

schemaandtable — Both schema and table name together in the form SCHEMA. TABLE.
This can be used in place of the individual table and schema properties.

Oracle GoldenGate Adapters Administrator’s Guide for Java 32

VAM: Parsing the message
XML parsing

e optype — Specifies whether this is an insert, update or delete operation based on
optype values:

o optype.insertval — The value indicating an insert. The default is I.
o optype.updateval — The value indicating an update. The default is U.
o optype.deleteval — The value indicating a delete. The default is D.

e seqid — The identifier for the operation. This will be the transaction identifier if txid
has not already been defined at the transaction level.

e txind — Specifies whether this operation is the beginning of a transaction, in the
middle or at the end; or if it is the whole operation. This property is optional and not
valid if the operation rule is a subrule of a transaction rule.

Operation rules can have multiple subrules of type operation or column.

Examples

The following example dynamically obtains operation information from the /Operation
element of a /Transaction.

dynoprule.match=./0peration
dynoprule.schemaandtable=@table
dynoprule.optype=0@type

The following example statically matches /NewMyTableEntry element to an insert
operation on the MY _TABLE table.

statoprule._match=_/NewMyTableEntry
statoprule.schemaandtable=""MY_.TABLE”
statoprule.optype=""1"
statoprule.timestamp=./CreateTime/text()

Column rules

A column rule must be a subrule of an operation rule. In addition to the standard rule
properties, a column rule should also define the following through XPath or other
expressions.

e name — The name of the column within the table definition.

e index — The index of the column within the table definition.

NOTE If only one of name and index is defined, the other will be determined.

e before.value — The before value of the column. This is required for deletes, but is
optional for updates.

before.isnull — Indicates whether the before value of the column is null.
before.ismissing — Indicates whether the before value of the column is missing.

after.value — The before value of the column. This is required for deletes, but is
optional for updates.

after.isnull — Indicates whether the before value of the column is null.
after.ismissing — Indicates whether the before value of the column is missing.

value — An expression to use for both before.value and after .value unless
overridden by specific before or after values. Note that this does not support different
before values for updates.

Oracle GoldenGate Adapters Administrator’s Guide for Java 33

VAM: Parsing the message
XML parsing

e isnull — An expression to use for both before.isnull and after.isnull unless overridden.

e ismissing — An expression to use for both before.ismissing and after.ismissing unless
overridden.

Examples

The following example dynamically obtains column information from the /Column element
of an /Operation.

dyncolrule.match=./Column
dyncolrule.name=@name
dyncolrule.before.value=./beforevalue/text()
dyncolrule.after.value=./aftervalue/text()

The following example statically matches the /KeyCol and /Coll elements to columns in
MY _TABLE.

statkeycolrule._match=/KeyCol
statkeycolrule.name="keycol”
statkeycolrule.value=_/text()
statcollrule._match=/Coll
statcollrule._name="coll”
statcollrule.value=./text()

Overall rules example

The following example uses the XML samples shown earlier with appropriate rules to
generate the same resulting operation on the MY .TABLE table.

Dynamic XML Static XML
<transaction id="1234" NewMyTableEntries>
ts="2010-02-05:10:11:21""> <NewMyTableEntry>
<operation table="MY_TABLE"™ optype=""1"> <CreateTime>
<column name="keycol" index="0"> 2010-02-05:10:11:21
<aftervalue> </CreateTime>
<I[CDATA[keyval]]> <KeyCol>keyval</KeyCol>
</aftervalue> <Coll>collval</Col1>
</column> </NewMyTableEntry>
<column name="coll” index="1"> </NewMyTableEntries>
<aftervalue>
<I[CDATA[collval]]>
</aftervalue>
</column>
</operation>
</transaction>

dyntxrule_match=/Transaction
dyntxrule.timestamp=Q@ts
dyntxrule.subrules=dynoprule
dynoprule.match=./0peration
dynoprule.schemaandtable=@table
dynoprule._optype=@type
dynoprule._subrules=dyncolrule
dyncolrule._match=_/Column
dyncolrule.name=@name

Oracle GoldenGate Adapters Administrator’s Guide for Java

stattxrule_match=/NewMyTableEntries
stattxrule._subrules= statoprule
statoprule._match=./NewMyTableEntry
statoprule.schemaandtable="MY.TABLE”
statoprule.optype="1"
statoprule._timestamp=./CreateTime/text()
statoprule._subrules= statkeycolrule,
statcollrule
statkeycolrule._match=/KeyCol

VAM: Parsing the message
Source definitions generation utility

dyncolrule.before.value=./beforevalue/text() statkeycolrule.name="keycol”

dyncolrule.after.value=./aftervalue/text() statkeycolrule.value=_/text()
statcollrule.match=/Col1l
statcollrule.name="coll”
statcollrule.value=_/text()

INSERT INTO MY.TABLE (KEYCOL, COL1)
VALUES (“keyval”, “collval”)

Source definitions generation utility

Oracle GoldenGate for Java includes a Gendef utility that generates an Oracle GoldenGate
source definitions file from the properties defined in a properties file. It creates a
normalized definition of tables based on the property settings and other parser-specific
data definition values.

The syntax to run this utility is:

gendef —prop {property_ file} [-out {output_Tfile}]
This defaults to sending the source definitions to standard out, but it can be directed to a
file using the —out parameter. For example:

gendef —prop dirprm/jmsvam.properties -out dirdef/msgdefs.def

The output source definitions file can then be used in a pump or delivery process to
interpret the trail data created through the VAM.

Oracle GoldenGate Adapters Administrator’s Guide for Java 35

CHAPTER 5

VAM: Message Capture Properties

This section explains the options available for configuration of the property file for the
Oracle GoldenGate for Java VAM.

Place this property file in the dirprm directory of your Oracle GoldenGate installation
location. The name of the VAM properties file is set with the Extract VAM parameter.

All properties in the property file are of the form: ful ly.qualified.name=value. The value
may be integer, boolean, single string, or comma delimited strings.

Comments can be entered in the properties file with the # prefix at the beginning of the
line. For example:

This 1s a property comment

some.property=value

Properties themselves can also be commented out. However you cannot place a comment
at the end of a line; either the whole line is a comment or it is a property.

Logging and connection properties

The following properties control the conenction to JMS and the log file names, error
handling, and message output.

Logging properties

Logging is controlled by the following properties.

log.logname

Specifies the prefix to the log file name. This must be a valid ASCII string. The log file name
has the current date appended to it, in yyyymmdd format, together with the . log extension.

The following example will create a log file of name writer_20100803. log on August 3,
2010. The log file will roll over each day, independent of the stopping and starting of the
process.

log file prefix
log. loghame=writer
The following example will create a log file of name msgv_20100803. 1og on August 3, 2010.

log file prefix
log. loghame=msgv

Oracle GoldenGate Adapters Administrator’s Guide for Java 36

VAM: Message Capture Properties
Logging and connection properties

log.level
Specifies the overall log level for all modules. The syntax is:
log. leve I=ERROR |WARN | INFO | DEBUG

The log levels are defined as follows:
ERROR — Only write messages if errors occur
WARN — Write error and warning messages
INFO — Write error, warning and informational messages
DEBUG — Write all messages, including debug ones.

The default logging level is INFO. The messages in this case will be produced on startup,
shutdown and periodically during operation. If the level is switched to DEBUG, large
volumes of messages may occur which could impact performance. For example, the
following sets the global logging level to INFO:

global logging level
log.level=INFO

log.tostdout

Controls whether or not log information is written to standard out. This setting is useful if
the Extract process is running with a VAM started from the command line or on an
operating system where stdout is piped into the report file. Generally Oracle GoldenGate
processes run as background processes however.

The syntax is:

goldengate. log.tostdout=true|false

The default is false.

log.tofile
Controls whether or not log information is written to the specified log file.The syntax is:

log.-tofile=true]false

The default is false. Log output is written to the specified log file when set to true.

log.modules, log.level.{module}

Specifies the log level of the individual source modules that comprise the user exit. This is
typically used only for advanced debugging. It is possible to increase the logging level to
DEBUG on a per module basis to help troubleshoot issues. The default levels should not be
changed unless asked to do so by Oracle GoldenGate support.

JMS connection properties
The JMS connection properties set up the connection, such as how to start up the JVM for
JMS integration.

jvm.boot options
Specifies the classpath and boot options that will be applied when the user exit starts up

Oracle GoldenGate Adapters Administrator’s Guide for Java 37

VAM: Message Capture Properties
Logging and connection properties

the JVM. The path needs colon (:) separators for UNIX/Linux and semicolons (;) for
Windows.

The syntax is:

Jvm_bootoptions={option}[, - - -]
The options are the same as those passed to Java executed from the command line. They
may include classpath, system properties, and JVM memory options (such as max memory

or initial memory) that are valid for the version of Java being used. Valid options may vary
based on the JVM version and provider.

For example (all on a single line):
Jvm.bootoptions= -Djava.class.path=ggjava/ggjava.jar
-Dlog4j -configuration=my-log4j .properties

The log4j -configuration property could be a fully qualified URL to a log4j properties file;
by default this file is searched for in the classpath. You may use your own log4j
configuration, or one of the pre-configured log4j settings: log4j -properties (default level
of logging), debug_log4j -properties (debug logging) or trace_log4j -properties (very
verbose logging).
jms.report.output
Specifies where the JMS report is written. The syntax is:
Jms.report.output=report]log|both
Where: report sends the JMS report to the Oracle GoldenGate report file. This is the
default.
log will write to the Java log file (if one is configured)

both will send to both locations.

jms.report.time
Specifies the frequency of report generation based on time.

Jms.report._time={time-specification}

The following examples write a report every 30 seconds, 45 minutes and eight hours.
Jms.report.time=30sec
Jms.report.time=45min
Jms.report.time=8hr

jms.report.records

Specifies the frequency of report generation based on number of records.

jJms.report.records={number}

The following example writes a report every 1000 records.

Jms.report.records=1000

Oracle GoldenGate Adapters Administrator’s Guide for Java 38

VAM: Message Capture Properties
Logging and connection properties

jms.id
Specifies that a unique identifier with the indicated format is passed back from the JMS

integration to the message capture VAM. This may be used by the VAM as a unique
sequence ID for records.

Jms.id=ogg| time]wmqg]activemqg|{message-header}|{custom-java-class}

Where: ogg - returns the message header property GG_ID which is set by Oracle
GoldenGate JMS delivery.

time - uses a system timestamp as a starting point for the message 1D
wmg - reformats a WebSphere MQ Message ID for use with the VAM
activemqg - reformats an ActiveMQ Message ID for use with the VAM

{message-header} - specifies the user customized JMS message header to be
included, such as IMSMessagelD, JMSCorrelationID, or IMSTimestamp.

{custom-java-class} - specifies a custom Java class that creates a string to
be used as an ID.
For example:
Jms.id=time

Jms. id=JMSMessagelD

The ID returned must be unique, incrementing, and fixed-width. If there are duplicate
numbers, the duplicates are skipped. If the message ID changes length, the Extract process
will abend.

jms.destination

Specifies the queue or topic name to be looked up via JNDI.

Jms.destination={jndi-name}

For example:

Jms.destination=sampleQ

jms.connectionFactory
Specifies the connection factory name to be looked up via JNDI.

Jms.connectionFactory={jndi-name}

For example

Jms.connectionFactory=ConnectionFactory

jms.user, jms.password
Sets the user name and password of the JIMS connection, as specified by the IMS provider.
Jms.user={user-name}

Jms.password={password}

This is not used for INDI security. To set INDI authentication, see the JNDI
jJava.naming.security properties.

Oracle GoldenGate Adapters Administrator’s Guide for Java 39

VAM: Message Capture Properties
Parser properties

For example:

Jms.user=myuser
Jms.password=mypasswd

JNDI properties

In addition to specific properties for the message capture VAM, the JMS integration also
supports setting JNDI properties required for connection to an Initial Context to look up
the connection factory and destination. The following properties must be set:

Java.naming.provider._url={url}
Java._naming.factory.initial={java-class-name}

If INDI security is enabled, the following properties may be set:
Java.naming.security.principal={user-name}
Java.naming.security.credentials={password-or-other-authenticator}

For example:

Java._naming.provider._url= t3://localhost:7001
Java._naming.factory.initial=weblogic.jndi_WLInitialContextFactory
Java._naming.security._principal=jndiuser
Java._naming.security.credentials=jndipw

Parser properties

Properties specify the formats of the message and the translation rules for each type of
parser: fixed, delimited, or XML. Set the parser.type property to specify which parser to
use. The remaining properties are parser specific.

Setting the type of parser
The following property sets the parser type.

parser.type
Specifies the parser to use.

parser .type=fixed|delim|xml

Where: Ffixed invokes the fixed width parser
delim invokes the delimited parser

xml invokes the XML parser

For example:

parser.type=delim

Fixed parser properties

The following properties are required for the fixed parser.

Oracle GoldenGate Adapters Administrator’s Guide for Java 40

VAM: Message Capture Properties
Parser properties

fixed.schema

Specifies the type of file used as metadata for message capture. The two valid options are
sourcedefs and copybook.

Tixed.schematyype=sourcedefs|copybook

For example:

fixed.schematype=copybook
The value of this property determines the other properties that must be set in order to
successfully parse the incoming data.

fixed.sourcedefs

If the fixed.schematype=sourcedefs, this property specifies the location of the source
definitions file that is to be used.

fixed.sourcedefs={file-location}

For example:

Ffixed.sourcedefs=dirdef/hrdemo.def

fixed.copybook

If the Fixed.schematype=copybook, this property specifies the location of the copybook file
to be used by the message capture process.

Tixed.copybook={file-location}

For example:

fixed.copybook=test_copy_book.cpy

fixed.header

Specifies the name of the sourcedefs entry or copybook record that contains header
information used to determine the data block structure:

fixed.header={record-name}

For example:
Fixed.header=HEADER

fixed.seqid

Specifies the name of the header field, IMS property, or system value that contains the
seqid used to uniquely identify individual records. This value must be continually
incrementing and the last character must be the least significant.

fixed.seqid={field-name}|${Jms-property}|*seqid

Where: field-name indicates the name of a header field containing the seqid

Jms-property uses the value of the specified JIMS header property. A special
value of this is $jmsid which uses the value returned by the mechanism chosen
by the jms.id property

Oracle GoldenGate Adapters Administrator’s Guide for Java 41

VAM: Message Capture Properties
Parser properties

seqid indicates a simple incrementing 64-bit integer generated by the system

For example:

fixed.seqid=$jmsid

fixed.timestamp
Specifies the name of the field, IMS property, or system value that contains the timestamp.

fixed. timestamp={field-name}|${jms-property}|*ts

For example:
fixed.timestamp=TIMESTAMP
fixed. timestamp=$JIMSTimeStamp
fixed.timestamp=*ts
fixed.timestamp.format
Specifies the format of the timestamp field.

fixed.timestamp.format={format}

Where the format can include punctuation characters plus:
YYYY — four digit year
YY — two digit year
M[M] - one or two digit month
D[D] - one or two digit day
HH — hours in twenty four hour notation
MI — minutes
SS — seconds
Fn — n number of fractions
The default format is "YYYY-MM-DD:HH:MI - SS_FFF"
For example:
fixed.timestamp.format=YYYY-MM-DD-HH_MI1_SS

fixed.txid

Specifies the name of the field, JMS property, or system value that contains the txid used
to uniquely identify transactions. This value must increment for each transaction.

fixed.txid={field-name}|${ms-property}|*txid

For most cases using the system value of *txid is preferred.
For example:

fixed.txid=$IMSTxId
fixed.txid=*txid

Oracle GoldenGate Adapters Administrator’s Guide for Java 42

VAM: Message Capture Properties
Parser properties

fixed.txowner

Specifies the name of the field, IMS property, or static value that contains a user name
associated with a transaction. This value may be used to exclude certain transactions from
processing. This is an optional property.

fixed.txowner={field-name}|${jms-property}|”’{value}”

For example:
fixed. txowner=$MessageOwner
fixed.txowner="jsmith”
fixed.txname

Specifies the name of the field, IMS property, or static value that contains an arbitrary
name to be associated with a transaction. This is an optional property.

fixed. txname={field-name}|${jms-property}|’{value}”

For example:

Fixed.txname="Ffixedtx”

fixed.optype

Specifies the name of the field, or IMS property that contains the operation type, which is
validated against the fixed.optype values specified in the next sections.

fixed.header.optype={field-name}|${jms-property}

For example:

fixed.header.optype=FUNCTION

fixed.optype.insertval
This value identifies an insert operation. The default is I.

fixed.optype. insertval={value}|\x{hex-value}

For example:

fixed.optype.insertval=A

fixed.optype.updateval
This value identifies an update operation. The default is U.

Tixed.optype.updateval={value}|\x{hex-value}

For example:

fixed.optype.updateval=M

fixed.optype.deleteval
This value identifies a delete operation.The default is D.

fixed.optype.deleteval={value}|\x{hex-value}

Oracle GoldenGate Adapters Administrator’s Guide for Java 43

VAM: Message Capture Properties
Parser properties

For example:

fixed.optype.deleteval=R

fixed.table

Specifies the name of the table. This enables the parser to find the data record definition
needed to translate the non-header data portion.

fixed.table={field-name}|${gms-property}[, - - -]
More than one comma delimited field name may be used to determine the name of the table
Each field name corresponds to a field in the header record defined by the fixed.header

property or IMS property. The values of these fields are concatenated to identify the data
record.

For example:

fixed.table=$JMSTableName
fixed.table=SOURCE_Db,SOURCE_Db_Rec_Version

fixed.schema
Specifies the static name of the schema when generating SCHEMA.TABLE table names.

fixed.schema="{value}”

For example:

Ffixed.schema="0GG”

fixed.txind

Specifies the name of the field or IMS property that contains a transaction indicator that
is validated against the transaction indicator values. If this is not defined,j all operations
within a single message will be seen to have occurred within a whole transaction. If
defined, then it determines the beginning, middle and end of transactions. Transactions
defined in this way can span messages. This is an optional property.

fixed.txind={field-name}|${Jms-property}

For example:

fixed. txind=$TX_IND

fixed.txind.beginval
This value identifies an operation as the beginning of a transaction. The defaults is B.

fixed.txind.beginval={value}|\x{hex-value}

For example:

fixed.txind.beginval=0

fixed.txind.middleval
This value identifies an operation as the middle of a transaction. The default is M.

fixed.txind.middleval={value}|\x{hex-value}

Oracle GoldenGate Adapters Administrator’s Guide for Java 44

VAM: Message Capture Properties
Parser properties

For example:

Ffixed.txind.middleval=1

fixed.txind.endval
This value identifies an operation as the end of a transaction. The default is E.

fixed.txind.endval={value}|\x{hex-value}

For example:

fixed.txind.endval=2

fixed.txind.wholeval
This value identifies an operation as a whole transaction. The default is W.

fixed.txind.wholeval={value}|\x{hex-value}

For example:

Ffixed.txind.wholeval=3

Delimited Parser Properties

The following properties are required for the delimited parser except where otherwise
noted.

delim.sourcedefs
Specifies the location of the source definitions file to use.

delim.sourcedefs={file-location}

For example:

delim.sourcedefs=dirdef/hrdemo.def

delim.header

Specifies the list of values that come before the data and assigns names to each.
delim_header={name},[- . .1

The names must be unique. They can be referenced in other delim properties or wherever

header fields can be used.

For example:

delim_header=optype, tablename, ts
delim.timestamp=ts

delim.seqid

Specifies the name of the header field, IMS property, or system value that contains the
seqid used to uniquely identify individual records. This value must increment and the last
character must be the least significant.

delim.seqid={field-name}|${jms-property}|*seqid

Oracle GoldenGate Adapters Administrator’s Guide for Java 45

VAM: Message Capture Properties
Parser properties

Where: Ffield-name indicates the name of a header field containing the seqid

Jms-property uses the value of the specified JMS header property, a special
value of this is $jmsid which uses the value returned by the mechanism chosen
by the jms.id property

seqid indicates a simple continually incrementing 64-bit integer generated by
the system
For example:

delim.seqid=$jmsid

delim.timestamp

Specifies the name of the JMS property, header field, or system value that contains the
timestamp.

delim.timestamp={Field-name}|${jms-property}|*ts

For example:
delim.timestamp=TIMESTAMP
delim.timestamp=$JIMSTimeStamp
delim.timestamp=*ts

delim.timestamp.format

Specifies the format of the timestamp field.

delim_timestamp.format={format}

Where the format can include punctuation characters plus:
YYYY — four digit year
YY — two digit year
M[M] - one or two digit month
D[D] — one or two digit day
HH — hours in twenty four hour notation
MI — minutes
SS — seconds

Fn — n number of fractions

The default format is "YYYY-MM-DD:HH:MI : SS_FFF"
For example:
delim_timestamp.format=YYYY-MM-DD-HH_MI _SS

delim.txid

Specifies the name of the JMS property, header field, or system value that contains the txid
used to uniquely identify transactions. This value must increment for each transaction.

delim_txid={field-name}|${jms-property}|*txid

Oracle GoldenGate Adapters Administrator’s Guide for Java 46

VAM: Message Capture Properties
Parser properties

For most cases using the system value of *txid is preferred.
For example:

delim.txid=$IMSTxId

delim_txid=*txid
delim.txowner

Specifies the name of the JMS property, header field, or static value that contains an
arbitrary user name associated with a transaction. This value may be used to exclude
certain transactions from processing. This is an optional property.

delim.txowner={Ffield-name}|${jms-property}|”’{value}”

For example:
delim.txowner=$MessageOwner
delim.txowner="jsmith”

delim.txname

Specifies the name of the JMS property, header field, or static value that contains an
arbitrary name to be associated with a transaction. This is an optional property.

delim.txname={field-name}|${jms-property}|’{value}”

For example:

delim.txname="fixedtx”

delim.optype

Specifies the name of the JMS property or header field that contains the operation type.
This is compared to the values for delim.optype.insertval, delim.optype.updateval
and delim.optype.deleteval to determine the operation.

delim.optype={field-name}|${jms-property}

For example:

delim.optype=optype

delim.optype.insertval
This value identifies an insert operation. The default is I.

delim.optype. insertval={value}|\x{hex-value}

For example:

delim.optype.insertval=A

delim.optype.updateval
This value identifies an update operation. The default is U.

delim.optype.updateval={value}|\x{hex-value}

Oracle GoldenGate Adapters Administrator’s Guide for Java 47

VAM: Message Capture Properties
Parser properties

For example:

delim._optype.updateval=M

delim.optype.deleteval
This value identifies a delete operation. The default is D.

delim.optype.deleteval={value}|\x{hex-value}

For example:

delim.optype.deleteval=R

delim.schemaandtable

Specifies the name of the JMS property or header field that contains the schema and table
name in the form SCHEMA. TABLE.

delim.schemaandtable={field-name}|${jms-property}

For example:

delim.schemaandtable=$Ful ITableName

delim.schema

Specifies the name of the IMS property, header field, or hard-coded value that contains the
schema name.

delim.schema={field-name}|${jms-property}|”{value}”

For example:

delim.schema="0GG”

delim.table
Specifies the name of the JMS property or header field that contains the table name.

delim.table={field-name}|${jms-property}

For example:
delim_table=TABLE_NAME

delim.txind

Specifies the name of the JMS property or header field that contains the transaction
indicator to be validated against beginval, middleval, endval or wholeval. All operations
within a single message will be seen as within one transaction if this property is not set. If
it is set it determines the beginning, middle and end of transactions. Transactions defined
in this way can span messages . This is an optional property.

delim.txind={Ffield-name}|${jms-property}

For example:

delim.txind=txind

Oracle GoldenGate Adapters Administrator’s Guide for Java 48

VAM: Message Capture Properties
Parser properties

delim.txind.beginval
The value that identifies an operation as the beginning of a transaction. The default is B.

delim.txind.beginval={value}|\x{hex-value}

For example:

delim.txind.beginval=0

delim.txind.middleval
The value that identifies an operation as the middle of a transaction. The default is M.

delim_txind._middleval={value}|\x{hex-value}

For example:

delim.txind.middleval=1

delim.txind.endval
The value that identifies an operation as the end of a transaction. The default is E.

delim.txind.endval={value}|\x{hex-value}

For example:

delim.txind.endval=2

delim.txind.wholeval
The value that identifies an operation as a whole transaction. The default is W.

delim._txind.wholeval={value}|\x{hex-value}

For example:

delim.txind.wholeval=3

delim.fielddelim

Specifies the delimiter value used to separate fields (columns) in the data. This value is
defined through characters or hexadecimal values:

delim.fielddelim={value}|\x{hex-value}

For example:

delim.fielddelim=,
delim.fielddelim=\xc7

delim.linedelim

Specifies the delimiter value used to separate lines (records) in the data. This value is
defined using characters or hexadecimal values.

delim.linedelim={value}|\x{hex-value}

Oracle GoldenGate Adapters Administrator’s Guide for Java 49

VAM: Message Capture Properties
Parser properties

For example:

delim_linedelim=]|
delim.linedel im=\x0a

delim.quote

Specifies the value used to identify quoted data. This value is defined using characters or
hexadecimal values.

delim.quote={value}|\x{hex-value}

For example:

delim.quote="

delim.nullindicator

Specifies the value used to identify NULL data. This value is defined using characters or
hexadecimal values.

delim_nullindicator={value}|\x{hex-value}

For example:

delim_nullindicator=NULL

delim.fielddelim.escaped

Specifies the value that indicates a true field delimiter is present in data. This field
delimiter is replaced with the fielddelim.escaped value.

delim_fielddelim.escaped={value}|\x{hex-value}
The following example specifies the comma as the field delimiter surrounded by the $
escape characters.

delim.fielddelim.escaped=$,$

delim.linedelim.escaped

Specifies the value that indicates a true line delimiter is present in data. This line delimiter
is replaced with the Iinedelim.escaped value.

delim._linedelim.escaped={value}|\x{hex-value}

For example:

delim_linedelim.escaped=\x0affa0

delim.quote.escaped

Specifies the value that indicates a true quote is present in data. This quote value is
replaced with the quote.escaped value.

delim_quote.escaped={value}|\x{hex-value}

For example:

delim.quote.escaped=""

Oracle GoldenGate Adapters Administrator’s Guide for Java 50

VAM: Message Capture Properties
Parser properties

delim.nullindicator.escaped

Specifies the value that indicates a true null indicator is present in data. This indicator is
replaced with the nullindicator.escaped value.

delim_nullindicator.escaped={value}|\x{hex-value}

For example:

delim.nullindicator.escaped={NULL}

delim.hasbefores

Specifies whether before values are present in the data.
delim._hasbefores=true]false

The default is false. The parser expects to find before and after values of columns for all

records if delim.hasbefores is set to true. The before values are used for updates and

deletes, the after values for updates and inserts. The afterfirst property specifies

whether the before images are before the after images or after them. If delim.hasbefores
is false, then no before values are expected.

For example:

delim_hasbefores=true

delim.hasnames
Specifies whether column names are present in the data.
delim_hasnames=true|false
The default is false. If true, the parser expects to find column names for all records. The

parser validates the column names against the expected column names. If false, no column
names are expected.

For example:

delim.hasnames=true

delim.afterfirst

Specifies whether after values are positioned before or after the before values.
delim._afterfirst=true|false

The default is false. If true, the parser expects to find the after values before the before

values. If false, the after values are before the before values.

For example:

delim.afterfirst=true

delim.isgrouped

Specifies whether the column names and before and after images should be expected
grouped together for all columns or interleaved for each column.

delim.isgrouped=true|false

Oracle GoldenGate Adapters Administrator’s Guide for Java 51

VAM: Message Capture Properties
Parser properties

The default is false. If true, the parser expects find a group of column names (if hasnames
is true), followed by a group of before values (if hasbefores), followed by a group of after
values (the afterfirst setting will reverse the before and after value order). If false, the
parser will expect to find a column name (if hasnames), before value (if hasbefores) and
after value for each column.

For example:

delim.isgrouped=true

delim.dateformat

Specifies the date format for column data. The format used to parse the date is a subset of
the formats used for parser.timestamp.format. This is specified at a global level, a table
level or column level.

delim.dateformat={format}

delim.dateformat.{TABLE}={format}

delim.dateformat.{TABLE}.{COLUMN}={format}

Where: format is the format defined for parser.timestamp.format
TABLE is a fully qualified table name

COLUMN is a column of the specified table.

For example:

delim.dateformat=YYYY-MM-DD HH:MI:SS
delim.dateformat.MY.TABLE=DD/MM/YY-HH_.MI .SS
delim.dateformat.MY.TABLE.EXP_DATE=YYMM

XML parser properties
The following properties are used by the XML parser.

xml.sourcedefs
Specifies the location of the source definitions file.

xml .sourcedefs={file-location}

For example:

xml .sourcedefs=dirdef/hrdemo.def

xml.rules

Specifies the list of XML rules for parsing a message and converting to transactions,
operations and columns:

xml_rules={xml-rule-name}[, - . -]
The specified XML rules are processed in the order listed. All rules matching a particular

XML document may result in the creation of transactions, operations and columns. The
specified XML rules should be transaction or operation type rules.

Oracle GoldenGate Adapters Administrator’s Guide for Java 52

VAM: Message Capture Properties
Parser properties

For example:

xml . rules=dyntxrule, statoprule

{rulename}.type
Specifies the type of XML rule.
{rulename}.type=tx|op|col

Where: tx indicates a transaction rule
op indicates an operation rule

col indicates a column rule

For example:

dyntxrule.type=tx
statoprule.type=op

{rulename}.match

Specifies an XPath expression used to determine whether the rule is activated for a
particular document or not.

{rulename}.match={xpath-expression}
If the XPath expression returns any nodes from the document, the rule matches and

further processing occurs. If it does not return any nodes, the rule is ignored for that
document.

The following example activates the dyntxrule if the document has a root element of
Transaction

dyntxrule._match=/Transaction
Where statoprule is a subrule of stattxtule, the following example activates the
statoprule if the parent rule’s matching nodes have child elements of NewMyTableEntry.

statoprule_match=./NewMyTableEntry

{rulename}.subrules

Specifies a list of rule names to check for matches if the parent rule is activated by its
match.

{rulename}.subrules={xml-rule-name}[, - . -]
The specified XML rules are processed in the order listed. All matching rules may resultin
the creation of transactions, operations and columns.

Valid subrules are determined by the parent type. Transaction rules can only have
operation subrules. Operation rules can have operation or column subrules. Column rules
cannot have subrules.

For example:

dyntxrule.subrules=dynoprule
statoprule.subrules=statkeycolrule, statcollrule

Oracle GoldenGate Adapters Administrator’s Guide for Java 53

VAM: Message Capture Properties
Parser properties

{txrule}.timestamp

Controls the transaction timestamp by instructing the adapter to 1) use the transaction
commit timestamp contained in a specified XPath expression or JMS property or 2) use the
current system time. This is an optional property.

{txrule}. timestamp={xpath-expression}|${jms-property}|*ts
The timestamp for the transaction may be overridden at the operation level, or may only

be present at the operation level. Any XPath expression must end with a value accessor
such as @att or text().

For example:

dyntxrule.timestamp=0ts

{txrule}.timestamp.format
Specifies the format of the timestamp field.

{txrule}. timestamp.format={format}

Where the format can include punctuation characters plus:
YYYY — four digit year
YY — two digit year
M[M] - one or two digit month
D[D] - one or two digit day
HH — hours in twenty four hour notation
MI — minutes
SS — seconds

Fn — n number of fractions

The default format is "YYYY-MM-DD:HH:MI - SS.FFF"
For example:

dyntxrule_timestamp.format=YYYY-MM-DD-HH_MI _SS

{txrule}.seqid

Specifies the seqid for a particular transaction. This can be used when there are multiple
transactions per message. Determines the XPath expression, JMS property, or system
value that contains the transactions seqid. Any XPath expression must end with a value
accessor such as @att or text().

{txrule}.seqid={xpath-expression}|${jms-property}|*seqid
For example:

dyntxrule.seqid=@seqid

{txrule}.txid

Specifies the XPath expression, JMS property, or system value that contains the txid used

Oracle GoldenGate Adapters Administrator’s Guide for Java 54

VAM: Message Capture Properties
Parser properties

to unique identify transactions. This value must increment for each transaction.

{txrule}.txid={xpath-expression}|${jms-property}|*txid

For most cases using the system value of *txid is preferred.
For example:

dyntxrule.txid=$JMSTxId
dyntxrule.txid=*txid

{txrule}.txowner

Specifies the XPath expression, JMS property, or static value that contains an arbitrary
user name associated with a transaction. This value may be used to exclude certain
transactions from processing.

{txrule}. txowner={xpath-expression}|${jms-property}|”’{value}”

For example:
dyntxrule.txowner=$MessageOwner
dyntxrule.txowner="jsmith”

{txrule}.txname

Specifies the XPath expression, JMS property, or static value that contains an arbitrary
name to be associated with a transaction. This is an optional property.

{txrule}.txname={xpath-expression}|${jms-property}]’value”

For example:

dyntxrule.txname="fixedtx”

{oprule}.timestamp

Controls the operation timestamp by instructing the adapter to 1) use the transaction
commit timestamp contained in a specified XPath expression or JIMS property or 2) use the
current system time. This is an optional property.

{oprule}.timestamp={xpath-expression}|${jms-property}|*ts

The timestamp for the operation will override a timestamp at the transaction level.
Any XPath expression must end with a value accessor such as @att or text().
For example:

statoprule.timestamp=./CreateTime/text()

{oprule}.timestamp.format
Specifies the format of the timestamp field.

{oprule}._timestamp.format={format}

Where the format can include punctuation characters plus:
YYYY — four digit year
YY — two digit year

Oracle GoldenGate Adapters Administrator’s Guide for Java 55

VAM: Message Capture Properties
Parser properties

M[M] - one or two digit month

D[D] - one or two digit day

HH — hours in twenty four hour notation
MI — minutes

SS — seconds

Fn — n number of fractions

The default format is "YYYY-MM-DD:HH:MI - SS.FFF"
For example:

statoprule.timestamp.format=YYYY-MM-DD-HH_MI_SS

{oprule}.seqid

Specifies the seqid for a particular operation. Use the XPath expression, JMS property, or
system value that contains the operation seqid. This overrides any seqid defined in parent
transaction rules. Must be present if there is no parent transaction rule. This is an optional
property.

Any XPath expression must end with a value accessor such as @att or text().

{oprule}.seqid={xpath-expression}|${jms-property}|*seqid

For example:

dynoprule.seqid=@seqid

{oprule}.txid

Specifies the XPath expression, IMS property, or system value that contains the txid used
to uniquely identify transactions. This overrides any txid defined in parent transaction
rules and is required if there is no parent transaction rule. The value must be incremented
for each transaction. This is an optional property.

{oprule}.txid={xpath-expression}|${jms-property}|*txid

For most cases using the system value of *txid is preferred.
For example:

dynoprule.txid=$IMSTxId

dynoprule._txid=*txid
{oprule}.txowner

Specifies the XPath expression, JMS property, or static value that contains an arbitrary
user name associated with a transaction. This value may be used to exclude certain
transactions from processing. This is an optional property.

{oprule}.txowner={xpath-expression}|${jms-property}|”’{value}”

For example:

dynoprule.txowner=$MessageOwner
dynoprule.txowner="jsmith”

Oracle GoldenGate Adapters Administrator’s Guide for Java 56

VAM: Message Capture Properties
Parser properties

{oprule}.txname

Specifies the XPath expression, JMS property, or static value that contains an arbitrary
name to be associated with a transaction. This is an optional property.

{oprule}. txname={xpath-expression}|${jms-property}|”{value}”

For example:

dynoprule.txname="fixedtx”

{oprule}.schemandtable

Specifies the XPath expression JMS property or hard-coded value that contains the schema
and table name in the form SCHEMA_.TABLE. Any XPath expression must end with a value
accessor such as @att or text(). The value is verified to ensure the table exists in the
source definitions.

{oprule}.schemaandtable={xpath-expression}|${jms-property}]”’{value}”

For example:

statoprule.schemaandtable=""MY_TABLE”

{oprule}.schema

Specifies the XPath expression, JMS property or hard-coded value that contains the
schema name. Any XPath expression must end with a value accessor such as @att or
text().

{oprule}.schema={xpath-expression}|${jms-property}|’value”

For example:

statoprule.schema=@schema

{oprule}.table

Specifies the XPath expression, JMS property or hard-coded value that contains the table
name. Any XPath expression must end with a value accessor such as @att or text().

{oprule}.table={xpath-expression}|${jms-property}|’value”

For example:

statoprule.table=$TableName

{oprule}.optype

Specifies the XPath expression, JMS property or literal value that contains the optype to
be validated against an optype insertval, etc. Any XPath expression must end with a
value accessor such as @att or text().

{oprule}.optype={xpath-expression}|${jms-property}|’value”

For example:

dynoprule.optype=0@type
statoprule.optype="1"

Oracle GoldenGate Adapters Administrator’s Guide for Java 57

VAM: Message Capture Properties
Parser properties

{oprule}.optype.insertval
Specifies the value that identifies an insert operation. The default is 1.

{oprule}._optype. insertval={value}|\x{hex-value}

For example:

dynoprule.optype.insertval=A

{oprule}.optype.updateval
Specifies the value that identifies an update operation. The default is U.

{oprule}.optype.updateval={value}|\x{hex-value}

For example:

dynoprule_optype.updateval=M

{oprule}.optype.deleteval
Specifies the value that identifies a delete operation. The default is D.

{oprule}._optype.deleteval={value}|\x{hex-value}

For example:

dynoprule.optype.deleteval=R

{oprule}.txind

Specifies the XPath expression or JMS property that contains the transaction indicator to
be validated against beginval or other value that identifies the position within the
transaction. All operations within a single message are regarded as occurring within a
whole transaction if this property is not defined. Specifies the begin, middle and end of
transactions. Any XPath expression must end with a value accessor such as @att or
text(). Transactions defined in this way can span messages. This is an optional property.

{oprule}.txind={xpath-expression}|${jms-property}

For example:

dynoprule_txind=@txind

{oprule}.txind.beginval

Specifies the value that identifies an operation as the beginning of a transaction. The
default is B.

{oprule}.txind.beginval={value}|\x{hex-value}

For example:

dynoprule.txind.beginval=0

{oprule}.txind.middleval
Specifies the value that identifies an operation as the middle of a transaction. The default

Oracle GoldenGate Adapters Administrator’s Guide for Java 58

VAM: Message Capture Properties
Parser properties

is M.

{oprule}_txind.middleval={value}|\x{hex-value}

For example:

dynoprule._txind.middleval=1

{oprule}.txind.endval
Specifies the value that identifies an operation as the end of a transaction. The default is E.

{oprule}.txind.endval={value}|\x{hex-value}

For example:

dynoprule_txind.endval=2

{oprule}.txind.wholeval
Specifies the value that identifies an operation as a whole transaction. The default is W.

{oprule}._txind.wholeval={value}|\x{hex-value}

For example:

dynoprule.txind.wholeval=3

{colrule}.name

Specifies the XPath expression or hard-coded value that contains a column name. The
column index must be specified if this is not and the column name will be resolved from
that. If specified the column name will be verified against the source definitions file. Any
XPath expression must end with a value accessor such as @att or text().

{colrule}.name={xpath-expression}|”value”

For example:

dyncolrule.name=@name
statkeycolrule._name="keycol”

{colrule}.index

Specifies the XPath expression or hard-coded value that contains a column index. If not
specified then the column name must be specified and the column index will be resolved
from that. If specified the column index will be verified against the source definitions file.
Any XPath expression must end with a value accessor such as @att or text().

{colrule}. index={xpath-expression}|”’value”

For example:

dyncolrule.index=@index
statkeycolrule. index=1

{colrule}.value

Specifies the XPath expression or hard-coded value that contains a column value. Any
XPath expression must end with a value accessor such as @att or text(). If the XPath

Oracle GoldenGate Adapters Administrator’s Guide for Java 59

VAM: Message Capture Properties
Parser properties

expression fails to return any data because a node or attribute does not exist, the column
value will be deemed as null. To differentiate between null and missing values (for
updates) the isnull and ismissing properties should be set. The value returned is used
for delete before values, and update/insert after values.

{colrule}.value={xpath-expression}|”’value”

For example:

statkeycolrule.value=_/text()

{colrule}.isnull

Specifies the XPath expression used to discover if a column value is null. The XPath
expression must end with a value accessor such as @att or text(). If the XPath expression
returns any value, the column value is null. This is an optional property.

{colrule}.isnullI={xpath-expression}

For example:

dyncolrule.isnull=@isnull

{colrule}.ismissing

Specifies the XPath expression used to discover if a column value is missing. The XPath
expression must end with a value accessor such as @att or text(). If the XPath expression
returns any value, then the column value is missing. This is an optional property.

{colrule}.ismissing={xpath-expression}

For example:

dyncolrule.ismissing=./missing

{colrule}.before.value

Overrides {colrule}.value to specifically say how to obtain before values used for updates
or deletes. This has the same format as {colrule}.value. This is an optional property.

For example:

dyncolrule.before.value=./beforevalue/text()

{colrule}.before.isnull

Overrides {colrule}.isnull to specifically say how to determine if a before value is null
for updates or deletes. This has the same format as {colrule}.isnull. This is an optional

property.
For example:

dyncolrule._before.isnull=_/beforevalue/@isnull

{colrule}.before.ismissing

Overrides {colrule}.ismissing to specifically say how to determine if a before value is
missing for updates or deletes. This has the same format as {colrule}.ismissing. Thisis
an optional property.

Oracle GoldenGate Adapters Administrator’s Guide for Java 60

VAM: Message Capture Properties
Parser properties

For example:

dyncolrule._before.ismissing=./beforevalue/missing

{colrule}.after.value

Overrides {colrule}.value to specifically say how to obtain after values used for updates
or deletes. This has the same format as {colrule}.value. This is an optional property.

For example:

dyncolrule.after.value=_./aftervalue/text()

{colrule}.after.isnull

Overrides {colrule}.isnull to specifically say how to determine if an after value is null
for updates or deletes. This has the same format as {colrule}.isnull. This is an optional
property.

For example:

dyncolrule.after.isnull=_/aftervalue/@isnull

{colrule}.after.ismissing

Overrides {colrule}.ismissing to specifically say how to determine if an after value is
missing for updates or deletes. This has the same format as {colrule}.ismissing. Thisis
an optional property.

For example:

dyncolrule.after.ismissing=./aftervalue/missing

Oracle GoldenGate Adapters Administrator’s Guide for Java 61

CHAPTER 6

UE: Configuring for Message Delivery

To configure the adapter for delivering messages, you must set up the properties in the user
exit properties file, configure an Extract as a data pump to run the user exit, and identify
the built-in or custom event handlers you will use.

Configure the JRE in the user exit properties file

Modify the user exit properties file to point to the location of the Oracle GoldenGate for
Java main jar (ggjava.jar) and set any additional JVM runtime boot options as required
(these are passed directly to the JVM at startup):

Javawriter._bootoptions=-Djava.class.path=ggjava/ggjava.jar
-Dlog4j .configuration=log4j .properties -Xmx512m

Note the following options in particular:

e java.class.path can include any custom jars in addition to the core application
(ggjava.jar). The current directory (.) is included by default in the classpath. You can
reference files relative to the Oracle GoldenGate install directory, to allow storing Java
property files, Velocity templates and other classpath resources in the dirprm
directory. It is also possible to append to the classpath in the Java application
properties file.

e The log4j.configuration option specifies a log4j properties file, found in the classpath.
There are pre-configured default log4j settings for basic logging (log4j.properties),
debug logging (debug-log4j.properties), and detailed trace-level logging (trace-
log4j.properties), found in the resources/classes directory.

Once the user exit properties file is correctly configured for your system, it usually remains
unchanged. See “User exit properties” on page 70 for additional configuration options.

Configure a data pump to run the user exit

The user exit Extract is configured as a data pump. The data pump consumes a local trail
(for example dirdat/aa) and sends the data to the user exit. The user exit is responsible
for processing all the data.

An example of adding a data pump Extract:

ADD EXTRACT javaue, EXTTRAILSOURCE ./dirdat/aa

The process names and trail names used above can be replaced with any valid name.

Oracle GoldenGate Adapters Administrator’s Guide for Java 62

UE: Configuring for Message Delivery
Configure a data pump to run the user exit

Process names must be 8 characters or less, trail names must to be two characters. In the
user exit Extract parameter file (javaue.prm) specify the location of the user exit library.

Table 2 User exit Extract parameters

Parameter

EXTRACT javaue

SOURCEDEFS ./dirdef/tcust.def

SETENV (GGS_USEREXIT_CONF =
“dirprm/javaue._properties’™)

SETENV (GGS_JAVAUSEREXIT_CONF =

“dirprm/javaue._properties’™)

CUSEREXIT ggjava_ue.dll
CUSEREXIT

PASSTHRU
INCLUDEUPDATEBEFORES

TABLE schema.*;

Explanation

All Extract parameter files start with the Extract name

The Extract process requires metadata describing the trail
data. This can come from a database or a source definitions
file. This metadata defines the column names and data
types in the trail being read (./dirdat/aa).

(Optional) An absolute or relative path (relative to the
Extract executable) to the properties file for the C user exit
library. The default value is javawriter.properties in the
same directory as Extract.

(Optional) The Java properties.This example places the
properties file in the dirpm directory.

The CUSEREXIT parameter includes the following:

+ The location of the user exit library. For UNIX, the
library would be suffixed .so

¢ CUSEREXIT - the callback function name that must be
uppercase.

PASSTHRU - avoids the need for a dummy target trail.

INCLUDEUPDATEBEFORES - needed for transaction
integrity.

The tables to pass to the User Exit; tables not included will
be skipped. No filtering may be done in the user exit
Extract; otherwise transaction markers will be missed. You
can filter in the primary Extract, or use another, upstream
data pump, or filter data directly in the Java application.

The two environment properties shown above are optional, but useful. For example, these
allow you to place all your properties files in the dirprm directory instead of the default

locations:

® SETENV (GGS_USEREXIT_CONF = *dirprm/javaue.properties’)

This changes the default configuration file used for the User Exit shared library. The
value given is either an absolute path, or a path relative to Extract (or Replicat). The
default file used is javawriter.properties, located in the same directory as Extract. The
example above uses a relative path to put this property file in the dirprm directory.

® SETENV (GGS_JAVAUSEREXIT_CONF = "dirprm/javaue.properties')

This changes the default properties file used for the Oracle GoldenGate for Java
framework. The value found is a path to a file found in the classpath or in a normal file

system path.

Oracle GoldenGate Adapters Administrator’s Guide for Java

UE: Configuring for Message Delivery
Configure the Java handlers

Configure the Java handlers

The Oracle GoldenGate Java API has a property file used to configure active event
handlers. To test the configuration, you may use the built-in file handler. Here are some
example properties, followed by explanations of the properties (comment lines start with
#):

the list of active handlers
gg-handlerlist=myhandler

set properties on "myhandler®
gg-handler._myhandler _type=Ffile
gg-handler._myhandler_format=tx2xml .vm
gg-handler._myhandler.file=output_xml

This property file declares the following:

e Active event handlers. In the example a single event handler is active, called
myhandler. Multiple handlers may be specified, separated by commas. For example:
gg-handlerlist=myhandler, yourhandler

e Configuration of the handlers. In the example myhandler is declared to be a file type
of handler: gg.handler._myhandler.type=Ffile

NOTE See the documentation for each type of handler (e.g. the JMS handler or the File
writer handler) for the list of valid properties that may be set.

e The format of the output is defined by the Velocity template tx2xml.vm. You may
specify your own custom template to define the message format; just specify the path
to your template relative to the Java classpath (this is discussed later).

This property file is actually a complete example that will write captured transactions to
the output file output.xml. Other handler types can be specified using the key words:
jms_text (or jms), jms_map, singlefile (a file that does not roll), and others. Custom
handlers can be implemented, in which case the type would be the fully qualified name of
the Java class for the handler.

Oracle GoldenGate Adapters Administrator’s Guide for Java 64

CHAPTER 7

UE: Running the User Exit

This section assumes that the primary Extract has already generated a trail to be
consumed by the user exit Extract.

Starting the application

To run the user exit and execute the Java application, you only need an existing trail file
and its corresponding source definitions file. For the examples that follow, a simple
TCUSTMER and TCUSTORD trail is used (matching the demo SQL provided with the Oracle
GoldenGate software download), along with a source definitions file defining the data types
used in the trail.

NOTE The user exit does not require access to a database in order to run. But the Extract
process does require metadata describing the trail data. Either the Extract must
login to a database for metadata, or a source definitions file can be provided. In
either case, the Extract cannot be in PASSTHRU mode when using a user exit.

To run the user exit, simply start the Extract process from GGSCI:
GGSCI> START EXTRACT javaue
GGSCI> INFO EXTRACT javaue

The INFO command will return information similar to the following:

EXTRACT JAVAUE Last Started 2011-08-25 18:41 Status RUNNING
Checkpoint Lag 00:00:00 (updated 00:00:00 ago)

Log Read Checkpoint File ./dirdat/bb000000

2011-09-24 12:52:58.000000 RBA 2702

If the Extract process is running and the file handler is being used (as in the example
above), then you should see the output file output.xml in the Oracle GoldenGate
installation directory (the same directory as the Extract executable).

If the process does not start or abends, see “Checking for Errors” on page 89:

Restarting the application at the beginning of a trail

There are two checkpoints for an Extract running the user exit: the user exit checkpoint
and the Extract checkpoint. Before rerunning the Extract, you must reset both
checkpoints:

1. Delete the user exit checkpoint file.

Oracle GoldenGate Adapters Administrator’s Guide for Java 65

UE: Running the User Exit
Restarting the application at the beginning of a trail

The sample properties file has goldengate.userexit.chkptprefix=JAVAUE in the
user exit properties file.

Windows: cmd> del JAVAUE_javawriter.chkpt
UNIX: $ rm JAVAUE_javawriter.chkpt

NOTE Do not modify checkpoints or delete the user exit checkpoint file on a production
system.
2. Reset the Extract to the beginning of the trail data:
GGSCI> ALTER EXTRACT JAVAUE, EXTSEQNO O, EXTRBA O

3. Restart the Extract:
GGSCI> START JAVAUE
GGSCI> INFO JAVAUE

EXTRACT JAVAUE Last Started 2011-08-25 18:41 Status RUNNING
Checkpoint Lag 00:00:00 (updated 00:00:00 ago)
Log Read Checkpoint File ./dirdat/ps000000

2011-09-24 12:52:58.000000 RBA 2702

It may take a few seconds for the Extract process status to report itself as running.
Check the report file to see if it abended or is still in the process of starting:

GGSCI> VIEW REPORT JAVAUE

Oracle GoldenGate Adapters Administrator’s Guide for Java 66

CHAPTER 8

UE: Configuring Event Handlers

Specifying event handlers

Processing transaction, operation and metadata events in Java works as follows:

e The Oracle GoldenGate Extract reads local trail data and passes the transactions, operations and
database metadata to the user exit. Metadata can come from either a source definitions file or
by querying the database.

Events are fired by the Java framework, optionally filtered by custom Event Filters.

Handlers (event listeners) process these events, and process the transactions, operations and
metadata. Custom formatters may be applied for certain types of targets.

There are several existing handlers:

e A message handler to send to a JMS provider using either a MapMessage, or using a
TextMessage with customizable formatters.

e A specialized message handler to send JMS messages to Oracle Advanced Queuing
(AQ).

e Afilewriter handler, for writing to a single file, or a rolling file.

NOTE The filewriter handler is particularly useful as development utility, since the filewriter
can take the exact same formatter as the JIMS TextMessage handler. Using the
filewriter provides a simple way to test and tune the formatters for IMS without
actually sending the messages to JMS.

Event handlers can be configured using the main Java property file or they may optionally
read in their own properties directly from yet another property file (depending on the
handler implementation). Handler properties are set using the following syntax:

gg-handler.{name}.someproperty=somevalue

This will cause the property someproperty to be set to the value somevalue for the handler
instance identified in the property file by {name}. This {name} is used in the property file
to define active handlers and set their properties; it is user-defined.

Implementation note (for Java developers): Following the above example: when the
handler is instantiated, the method void setSomeProperty(String value) will be called on
the handler instance, passing in the String value somevalue. A JavaBean PropertyEditor
may also be defined for the handler, in which case the string can be automatically
converted to the appropriate type for the setter method. For example, in the Java
application properties file, we may have the following:

Oracle GoldenGate Adapters Administrator’s Guide for Java 67

UE: Configuring Event Handlers
JMS handler

the list of active handlers: only two are active
gg-handlerlist=one, two

set properties on “one”
gg-handler.one.type=Ffile
gg-handler.one.format=com.mycompany .MyFormatter
gg-handler.one.file=output.xml

properties for handler "two*

gg-handler.two.type=jms_text
gg-handler.two.format=com.mycompany .MyFormatter
gg-handler.two.properties=jboss.properties

set properties for handler "foo"; this handler is ignored
gg-handler.foo.type=com.mycompany.MyHandler
gg-handler.foo.someproperty=somevalue

The type identifies the handler class; the other properties depend on the type of handler
created. If a separate properties file is used to initialize the handler (such as the JIMS
handlers), the properties file is found in the classpath. For example, if properties file is at:
{gg_install_dir}/dirprm/foo.properties, then specify in the properties file as follows:
gg-handler._.{name}.properties=foo.properties.

JMS handler

The main Java property file identifies active handlers. The JMS handler may optionally
use a separate property file for IMS-specific configuration. This allows more than one JMS
handler to be configured to run at the same time.

There are examples included for several JMS providers (JBoss, TIBCO, Solace, ActiveMQ,
WebLogic). For a specific JMS provider, you can choose the appropriate properties files as
a starting point for your environment. Each JMS provider has slightly different settings,
and your environment will have unique settings as well.

The installation directory for the Java jars (ggjava) contains the core application jars
(ggjava.jar) and its dependencies in resources/lib/*_jar. The resources directory
contains all dependencies and configuration, and is in the classpath.

If the IMS client jars already exist somewhere on the system, they can be referenced
directly and added to the classpath without copying them.

There are four types of JMS handlers which may be specified:

® jms—sends text messages to a topic or queue. The messages may be formatted using Velocity
templates or by writing a formatter in Java. The same formatters can be used for a
Jms_text message as for writing to files. (jms_text isasynonym for jms.)

e aq - sends text messages to Oracle Advanced Queuing (AQ). The ag handler is a jms
handler configured for delivery to AQ. The messages can be formatted using Velocity
temlates or a custom formatter.

e jms_map — sends a IMS MapMessage to a topic or queue. The IMSType of the message is set to
the name of the table. The body of the message consists of the following metadata,
followed by column name and column value pairs:

O GG_ID — position of the record, uniquely identifies this operation

O GG_OPTYPE — type of SQL (insert/update/delete),

Oracle GoldenGate Adapters Administrator’s Guide for Java 68

UE: Configuring Event Handlers
File handler

O GG_TABLE - table name on which the operation occurred
O GG_TIMESTAMP — timestamp of the operation

File handler

The file handler is often used to verify the message format when the actual target is IMS,
and the message format is being developed using custom Java or Velocity templates. Here
is a property file using a file handler:

one file handler active, using velocity template formatting
gg-handlerlist=myfile

gg-handler._myfile._type=Ffile
gg-handler._myfile_rollover._size=5M
gg-handler._myfile_format=sample2xml .vm
gg-handler._myfile_file=output.xml

This example uses a single handler (though, a JMS handler and the file handler could be
used at the same time), writing to a file called output.xml, using a velocity template called
sample2xml .vm. The template is found via the classpath.

Custom handlers

For information on coding a custom handler, see “Coding a custom handler in Java” on
page 85.

Formatting the output

As previously described, the existing JMS and file output handlers can be configured
through the properties file. Each handler has its own specific properties that can be set: for
example, the output file can be set for the file handler, and the JMS destination can be set
for the JIMS handler. Both of these handlers may also specify a custom formatter. The same
formatter may be used for both handlers. As an alternative to writing Java code for custom
formatting, a Velocity template may be specified. For further information, see “Custom
formatting” on page 82.

Reporting

Summary statistics about the throughput and amount of data processed are generated
when the Extract process stops. Additionally, statistics can be written periodically either
after a specified amount of time or after a specified number of records have been processed.
If both time and number of records are specified, then the report is generated for whichever
event happens first. These statistical summaries are written to the Oracle GoldenGate
report file and the user exit log files.

Oracle GoldenGate Adapters Administrator’s Guide for Java 69

CHAPTER 9

UE: Message Delivery Properties

This section explains the options available for configuration of the property files for:

e User exit properties
e Java application properties

Place the property file in the dirprm directory of your Oracle GoldenGate installation
location. The combined user exit and Java application properties file is set through the
environmental variable:

SETENV (GGS_USEREXIT_CONF = "dirprm/javaue.properties')
Optionally, the java application properties and native user exit library properties can be in

separate property files. To do this, set GGS_USEREXIT_CONF to the user exit property file and
GGS_JAVAUSEREXIT_CONF to the Java application properties file.

All properties in the property file are of the form: fully_qualified.name=value. The
value may be integer, boolean, single string, or comma delimited strings.

Comments can be entered in to the properties file with the # prefix at the beginning of the
line. For example:

This is a property comment
some .property=value

Properties themselves can also be commented out. However you cannot place a comment
at the end of a line; either the whole line is a comment or it is a property.

User exit properties

The following properties set the log files and the characteristics of the logging.

Logging properties
Logging is controlled by the following properties.

log.logname

Specifies the prefix to the log file name. This must be a valid ASCII string. The log file name
has the current date appended to it, in yyyymmdd format, together with the . log extension.

The following example will create a log file of name writer_20100803. 1og on August 3,
2010. The log file will roll over each day, independent of the stopping and starting of the

Oracle GoldenGate Adapters Administrator’s Guide for Java 70

UE: Message Delivery Properties
User exit properties

process.
log file prefix
log.loghame=writer
The following example will create a log file of name msgv_20100803. log on August 3, 2010.
log file prefix
log. logname=msgv
log.level
Specifies the overall log level for all modules. The syntax is:
log. leve I=ERROR | WARN | INFO | DEBUG

The log levels are defined as follows:
ERROR — Only write messages if errors occur
WARN — Write error and warning messages
INFO — Write error, warning and informational messages
DEBUG — Write all messages, including debug ones.

The default logging level is INFO. The messages in this case will be produced on startup,
shutdown and periodically during operation. If the level is switched to DEBUG, large
volumes of messages may occur which could impact performance. For example, the
following sets the global logging level to INFO:

global logging level
log.-level=INFO

log.tostdout

Controls whether or not log information is written to standard out. This setting is useful if
the Extract process is running with a VAM started from the command line or on an
operating system where stdout is piped into the report file. Oracle GoldenGate processes
generally run in the background, however.

The syntax is:

goldengate.log.tostdout=true]false

The default is false.

log.tofile
Controls whether or not log information is written to the specified log file.The syntax is:

log.tofile=true]false

The default is false. Log output is written to the specified log file when set to true.

log.modules, log.level.{module}

Specifies the log level of the individual source modules that comprise the user exit. This is
typically used only for advanced debugging. It is possible to increase the logging level to
DEBUG on a per module basis to help troubleshoot issues. The default levels should not be

Oracle GoldenGate Adapters Administrator’s Guide for Java 71

UE: Message Delivery Properties
User exit properties

changed unless asked to do so by Oracle support.

General properties

The following properties apply to all writer type user exits and are not specific to the user
exit.

goldengate.userexit.writers
Specifies the name of the writer. This is always javawriter and should not be modified.
For example:

goldengate.userexit.writers=javawriter

All other properties in the file should be prefixed by the writer name, javawriter.

goldengate.userexit.chkptprefix
Specifies a string value for the prefix added to the checkpoint file name. For example:

goldengate.userexit.chkptprefix=javaue_

goldengate.userexit.nochkpt

Disables or enables the user exit checkpoint file. The default is false, the checkpoint file
is enabled. Set this property to true if transactions are supported and enabled on the
target.

For example, if IMS is the target and JMS local transactions are enabled (the default), set
goldengate .userexit.nocheckpt=true to disable the user exit checkpoint file. If IMS
transactions are disabled by setting local Tx=false on the handler, the user exit
checkpoint file should be enabled by setting goldengate . userexit.nochkpt=Ffalse.

goldengate.userexit.nochkpt=true|false

goldengate.userexit.usetargetcols

Specifies whether or not mapping to target columns is allowed. The default is false, no
target mapping.

goldengate.userexit.usetargetcols=true|false

JVM boot options

The following options configure the Java Runtime Environment. In particular, this is
where the maximum memory the JVM can use is specified; if you see Java out-of-memory
errors, edit these settings.

javawriter.bootoptions

Specifies the classpath and boot options that will be applied when the user exit starts up
the JVM. The path needs colon (:) separators for UNIX/Linux and semicolons (;) for
Windows. This is where to specify various options for the JVM, such as heap size and
classpath; for example:

-Xms: initial java heap size

-Xmx: maximum java heap size

Oracle GoldenGate Adapters Administrator’s Guide for Java 72

UE: Message Delivery Properties
User exit properties

-Djava.class.path: classpath specifying location of at least the main application jar,
ggjava. jar. Other jars, such as JIMS provider jars, may also be specified here as well;
alternatively, these may be specified in the Java application properties file.

-verbose:jni: run in verbose mode (for INI)
For example (all on a single line):
Javawriter_bootoptions= -Djava.class.path=ggjava/ggjava.jar

-Dlog4j -configuration=my-log4j.properties -Xmx512m

The log4j.configuration property could be a fully qualified URL to a log4j properties file; by
default this file is searched for in the classpath. You may use your own log4j configuration,
or one of the preconfigured log4j settings: log4j .properties (default level of logging),
debug_log4j .properties (debug logging) or trace_log4j .properties (very verbose
logging).

Statistics and reporting

The use of the user exit causes Extract to assume that the records handled by the exit are
ignored. This causes the standard Oracle GoldenGate reporting to be incomplete. Oracle
GoldenGate for Java adds its own reporting to handle this issue.

Statistics can be reported every t seconds or every n records - or if both are specified,
whichever criteria is met first.

There are two sets of statistics recorded: those maintained by the User Exit shared library
(on the C side) and those obtained from the Java libraries. The reports received from the
Java side are formatted and returned by the individual handlers.

The User Exit statistics include the total number of operations, transactions and
corresponding rates.

javawriter.stats.display

Controls the output of statistics to the Oracle GoldenGate report file and to the user exit
log files.

The following example outputs these statistics.

jJavawriter.stats.display=true

javawriter.stats.full

Controls the output of statistics from the Java side, in addition to the statistics from the C
side.

Java side statistics are more detailed but also involve some additional overhead, so if
statistics are reported often and a less detailed summary is adequate, it is recommended
that stats.full property is set to false.

The following example will output Java statistics in addition to C.

Javawriter._stats.full=true

javawriter.stats.{time, numrecs}

Specifies a time interval in seconds or a number of records, after which statistics will be
reported. The default is to report statistics every hour or every 10000 records (which ever

Oracle GoldenGate Adapters Administrator’s Guide for Java 73

UE: Message Delivery Properties
Java application properties

occurs first).

For example, to report ever 10 minutes or every 1000 records, specify:
Javawriter_stats.time=600
Javawriter_stats.numrecs=1000

The Java application statistics are handler-dependent:

e For the all handlers, there is at least the total elapsed time, processing time, number
of operations, transactions;

For the IMS handler, there is additionally the total number of bytes received and sent.
The report can be customized using a template.

Java application properties

The following defines the properties which may be set in the Java application property file.

Properties for all handlers
The following properties apply to all handlers.

gg.handlerlist

The handler list is a comma-separated list of active handlers. These values are used in the
rest of the property file to configure the individual handlers. For example:

gg-handlerlist=namel, name2

gg-handler._namel._propertyA=valuel
gg-handler._namel._propertyB=value2
gg-handler._namel._propertyC=value3
gg-handler._name2._propertyA=valuel
gg-handler._name2_propertyB=value2
gg-handler._name2_propertyC=value3

Using the handlerlist property, you may include completely configured handlers in the
property file and just disable them by removing them from the handlerlist.

gg.handler.{name}.type

The type of handler is either a predefined value for built-in handlers, or a fully qualified
Java class name. The syntax is:

gg-handler.{name}.type=jms|jms_map|ag|singlefile|rolling]
{com.foo.MyHandler}
Where: All but the last are pre-defined handlers:

jms — sends transactions, operations, and metadata as formatted messages to
a JMS provider

aq - sends transactions, operations, and metadata as formatted messages to
Oracle Advanced Queuing (AQ).

jms_map - sends JMS map messages

Oracle GoldenGate Adapters Administrator’s Guide for Java 74

UE: Message Delivery Properties
Java application properties

singlefile — writes to a single file on disk, but does not roll the file

rolling — writes transactions, operations, and metadata to a file on disk,
rolling the file over after a certain size or after a certain amount of time

custom Java class — any class extending the Oracle GoldenGate for Java
AbstractHandler class may handle transaction/operation/metadata events.

Properties for formatted output

The following properties apply to all handlers capable of producing formatted output; this
includes:

e The jms_text handler (but not the jms_map handler)

e The ag handler

e The singlefile and rolling handlers, for writing formatted output to files

gg.handler.{name}.format

Specifies the format used to transform operations and transactions into messages sent to
JMS or to a file. The format is specified uniquely for each handler. The value may be:
e Velocity template
e Java class name (fully qualified - the class specified must be a type of formatter)
e csv for delimited values (such as comma-separated values; the delimiter can be customized)
e fixed for fixed-length fields
e Built-in formatter, such as:
o xml —demo XML format (this format may change in future releases)
o xml2 - internal XML format (this format may change in future releases)

For example, to specify a custom Java class:
gg-handlerlist=abc
gg-handler.abc.format=com.mycompany .MyFormat

Or, for a Velocity template:
gg-handlerlist=xyz
gg-handler.xyz.format=path/to/sample.vm

If using templates, the file is found relative to some directory or jar that is in the classpath.
By default, the Oracle GoldenGate install directory is in the classpath, so the above
template could be placed in the dirprm directory of the Oracle GoldenGate installation
location.

The default format is to use the built-in XML formatter.

gg.handler.{name}.includeTables

Specifies a list of tables to include by this handler. If the schema (or owner) of the table is
specified, then only that schema matches the table name; otherwise, the table name
matches any schema. A list of tables may be specified, commaseparated.

Oracle GoldenGate Adapters Administrator’s Guide for Java 75

UE: Message Delivery Properties
Java application properties

For example, to have the handler only process tables foo.customer and bar.orders:

gg-handler._myhandler.includeTables=foo.customer, bar.orders

NOTE In order to selectively process operations on a table by table basis, the handler
must be processing in operation mode. If the handler is processing in transaction
mode, then when a single transaction contains several operations spanning
several tables, if any table matches the include list of tables, the transaction will be
included.

gg.handler.{name}.excludeTables

Specifies a list of tables to exclude by this handler. If the schema (or owner) of the table is
specified, then only that schema matches the table name; otherwise, the table name
matches any schema. A list of tables may be specified, comma-separated. For example, to
have the handler process all operations on all tables except table date _modified in all
schemas:

gg-handler._.myhandler_excludeTables=date_modified

gg.handler.{name}.mode, gg.handler .{name}.format.mode

Specifies whether to output one operation per message (op) or one transaction per message
(tx). The default is op. Use format.mode when you have a custom formatter.

Properties for CSV and fixed-format output

If the handler is set to use either CSV or fixed-format output, the following properties may
also be set. Many of the same properties apply for both formats; there is however no unique
prefix to the property settings. If there is more than one handler requiring unique settings,
these properties can be set in a separate properties file. For example, if there are two JMS
handlers, each using CSV or fixed-format:

gg-handler.my_jms_handlerl.type=jms_text
gg-handler.my_jms_handlerl. format=csv
gg-handler.my_jms_handlerl.properties=my-csv.properties

gg-handler.my_jms_handler2.type=jms_text
gg-handler.my_jms_handler2. format=Ffixed
gg-handler.my_jms_handler2.properties=my-fixed.properties

delim

Specifies the delimiter to use between fields (set to no value in order to have no delimiter
used). For example:

delim=,

Oracle GoldenGate Adapters Administrator’s Guide for Java 76

UE: Message Delivery Properties
Java application properties

quote
Specifies the quote character to be used if column values are quoted. For example:

quote="

metacols

Specifies the metadata column values to appear at the beginning of the record, before any
column data. Specify any of the following, in the order they should appear:
position — unique position indicator of records in a trail

opcode — 1, U, or D for insert, update, or delete records (see: insertChar, updateChar,
deleteChar)

e txind - transaction indicator — such as 0=begin, 1=middle, 2=end, 3=whole tx (see
beginTxChar, middleTxChar, endTxChar, wholeTxChar)

opcount — position of a record in a transaction, starting from 0
schema — schema/owner of the table for the record

tableonly — just table (no schema/owner)

table — full name of table, schema.table

timestamp — commit timestamp of record

For example:

metacols=opcode, table, txind, position

missingColumnChar, presentColumnChar, nullColumnChar
Specifies a special column prefix for columns values that are:

present — column value exists in the trail and is non-NULL
missing — column value not in trail; it is unknown if it has a value or is NULL. It was
not captured from the source database transaction log.

e null —column value is set to NULL

The character used to represent these special states can be customized. By default, they
are set to an empty string and do not show. For example:

missingColumnChar=M
presentColumnChar=P
nullColumnChar=N

beginTxChar, middleTxChar, endTxChar, wholeTxChar

Specifies the header metadata characters (see metacols) used to identify a record as the
begin, middle, or end of a transaction. If one operation consists of a complete Tx, then it's
a "whole" transaction. For example:

beginTxChar=B
middleTxChar=M
endTxChar=E
wholeTxChar=W

Oracle GoldenGate Adapters Administrator’s Guide for Java 77

UE: Message Delivery Properties
Java application properties

insertChar, updateChar, deleteChar

Specifies the characters to identify insert, update, and delete. By default, these are 1, U,
and D. For example, to use INS, UPD, and DEL instead of I, U and D for insert, update, and
delete operations:

insertChar=INS
updateChar=UPD
deleteChar=DEL

endOfLine
Specifies the end-of-line character as:

e Native platform: EOL
e Neutral (UNIX-style \n): CR
e Windows (\r\n): CRLF

For example:
endOfLine=CR

justify

Specifies the left or right justification of fixed fields. For example:
Justify=left

includeBefores

Controls whether before images should be included in the output. There must be before
images in the trail. For example:

includeBefores=false

File writer properties

The following properties only apply to handlers that write their output to files: the file
handler and the singlefile handler.

gg.handler.{name}.file

Specifies the name of the output file for the given handler. If the handler is a rolling file,
this name is used to derive the rolled file names. The default file name is output.xml.

gg.handler.{name}.append
Controls whether the file should be appended to (true) or overwritten upon restart (false).

gg.handler.{name}.rolloverSize

If using the file handler, this specifies the size of the file before a rollover should be
attempted. The file size will be at least this size, but will most likely be larger. Operations
and transactions are not broken across files. The size is specified in bytes, but a suffix may
be given to identify MB or KB. For example:

gg-handler._myfile._rolloverSize=5M

Oracle GoldenGate Adapters Administrator’s Guide for Java 78

UE: Message Delivery Properties
Java application properties

The default rollover size is 10 MB.

JMS handler properties

The following properties apply to the JMS handlers. Some of these values may be defined

in the Java application properties file using the name of the handler. Other properties may
be placed into a separate JMS properties file, which is useful if using more than one JMS

handler at a time. For example:

gg-handler._myjms.type=jms_text
gg-handler._myjms.format=xml
gg-handler._myjms.properties=weblogic.properties

Just as with Velocity templates and formatting property files, this additional IMS
properties file is found in the classpath. The above properties file weblogic.properties
would be found in {gg_install_dir}/dirprm/weblogic.properties, since the dirprm
directory is included by default in the classpath.

Settings that can be made in the Java application properties file will override the
corresponding value set in the supplemental JMS properties file (weblogic.properties in
the example above). In the following example, the destination property is specified in the
Java application properties file. This allows the same default connection information for the
two handlers myjms1 and myjms2, but customizes the target destination queue.

gg-handler.myjmsl.type=jms_text
gg-handler.myjmsl.destination=queue.sampleA
gg-handler.myjmsl.format=sample.vm
gg-handler._myjmsl.properties=tibco-default.properties
gg-handler.myjms2.type=jms_map
gg-handler.myjms2.destination=queue.sampleB
gg-handler.myjms2._properties=tibco-default.properties

To set a property, specify the handler name as a prefix; for example:

gg-handlerlist=sample,sample2
gg-handler.sample.type=jms_text
gg-handler.sample.format=my_template.vm
gg-handler.sample.destination=gg.myqueue
gg-handler.sample.queueortopic=queue
gg-handler.sample.connectionUrl=tcp://host:61616?jms.useAsyncSend=true
gg-handler.sample.useJdndi=false
gg-handler.sample.connectionFactory=ConnectionFactory
gg-handler.sample.connectionFactoryClass=\
org.apache.activemq.ActiveMQConnectionFactory
gg-handler.sample.connection.Url=
tcp://localhost:61616?Jms.useAsyncSend=true
gg-handler.sample.timeToLive=50000

Standard JMS settings

The following outlines the JMS properties which may be set, and the accepted values. These
apply for both JMS handler types: jms_text (TextMessage) and jms_map (MapMessage).

Oracle GoldenGate Adapters Administrator’s Guide for Java 79

UE: Message Delivery Properties
Java application properties

gg.handler.{name}.destination

The queue or topic to which the message is sent. This must be correctly configured on the
JMS server. Typical values may be: queue/A, queue.Test, example.MyTopic, etc.

gg.handler.{name}.user
User name required to send messages to the JMS server (optional)

gg.handler.{name}.password
Password required to send messages to the JIMS server (optional)

gg.handler.{name}.queueOrTopic

Whether the handler is sending to a queue (a single receiver) or a topic (publish / subscribe).
This must be correctly configured in the JMS provider. The syntax is:

gg-handler.{name}.queueOrTopic=queue]topic
Where: queue — a message is removed from the queue once it has been read.

topic — messages are published and may be delivered to multiple subscribers.

gg.handler.{name}.persistent

If the delivery mode is set to persistent or not. If the messages are to be persistent, the IMS
provider must be configured to log the message to stable storage as part of the client's send
operation. The syntax is:

gg-handler.{name}.persistent=true|false

gg.handler.{name}.priority

JMS defines a 10 level priority value, with 0 as the lowest and 9 as the highest. Clients
should consider 04 as gradients of normal priority and 59 as gradients of expedited priority.
Priority is set to 4, by default.

gg.handler.{name}.timeToLive

The default length of time in milliseconds from its dispatch time that a produced message
should be retained by the message system. Time to live is set to zero by default (zero is
unlimited).

gg.handler.{name}.connectionFactory
Name of the connection factory to lookup via JNDI

gg.handler.{name}.useJndi

If usejndi is false, then JNDI is not used to configure the JMS client. Instead, factories
and connections are explicitly constructed. The syntax is:

gg-handler.{name}.usedndi=true]false

gg.handler.{name}.connectionUrl
Connection Url used only when usejndi=false, to explicitly create the connection.

Oracle GoldenGate Adapters Administrator’s Guide for Java 80

UE: Message Delivery Properties
Java application properties

gg.handler.{name}.connection.FactoryClass

The ConnectionFactoryClass that is only used if usejndi=false. When not relying on
JNDI to access a factory, the value of this property is the Java classname to instantiate,
constructing a factory object explicitly.

gg.handler.{name}.localTX
If set to False, then local transactions are not used.

gg.handlerlist.nop

In addition to the other IMS properties, there is a debug “nop” property that can be globally
set to disable the sending of the IMS messages altogether. This is only used for testing
purposes. The events are still generated and handled and the message is constructed. This
can be used to test the performance of the message generation. It can be set to true or
false (the default is false). For example:

gg-handlerlist.nop=true

JNDI properties

These JNDI properties are required for connection to an Initial Context to look up the
connection factory and destination

jJava.naming.provider._.url={url}
jJava.naming.factory. initial={java-class-name}

If INDI security is enabled, the following properties may be set:
Java.naming.security.principal={user-name}
Java._naming.security.credentials={password-or-other-authenticator}

For example:

Java._naming.provider.url= t3://localhost:7001
Java.naming.factory.initial=weblogic. jndi._WLInitialContextFactory
Java.naming.security.principal=jndiuser
Java.naming.security.credentials=jndipw

General properties

The following are general properties that are used for the user exit Java framework.

gg.classpath
Specifies additional directories or jars to add to classpath.

gg.report.format
Specifies the template to use for customizing the report format.

Oracle GoldenGate Adapters Administrator’s Guide for Java 81

CHAPTER 10

UE: Developing Custom Filters, Formatters and
Handlers

You can write Java code to implement an event filter, a custom formatter for a built-in
handler, or a custom event handler. You can also specify custom formatting through a
Velocity template.

Filtering events

By default, all transactions, operations and metadata events are passed to the
DataSourcelListener event handlers. An event filter can be implemented to filter the
events sent to the handlers. The filter could select certain operations on certain tables
containing certain column values, for example

Filters are additive: if more than one filter is set for a handler, then all filters must return
true in order for the event to be passed to the handler.

You can configure filters using the Java application properties file:

handler “foo” only receives certain events
gg-handler.one.type=jms
gg-handler.one.format=mytemplate.vm
gg-handler.one.filter=com.mycompany.MyFilter

To activate the filter, you write the filter and set it on the handler; no additional logic needs
to be added to specific handlers.

Custom formatting

You can customize the output format of a built-in handler by:

e Writing a custom formatter in Java or
e Using a Velocity template

Coding a custom formatter in Java

The earlier examples show a JMS handler and a file output handler using the same
formatter (com.mycompany .MyFormatter). The following is an example of how this

Oracle GoldenGate Adapters Administrator’s Guide for Java 82

UE: Developing Custom Filters, Formatters and Handlers
Custom formatting

formatter may be implemented:

package com.mycompany.MyFormatter;

import com.goldengate.atg.datasource.DsOperation;

import com.goldengate.atg.datasource.DsTransaction;

import com.goldengate.atg.datasource.format.DsFormatterAdapter;
import com.goldengate.atg.datasource.meta.ColumnMetaData;
import com.goldengate.atg.datasource.meta.DsMetaData;

import com.goldengate.atg.datasource.meta.TableMetaData;

import java.io.PrintWriter;

public class MyFormatter extends DsFormatterAdapter {
public MyFormatter() { }

@Override

public void formatTx(DsTransaction tx,
DsMetaData meta,
PrintWriter out)

{
out_print('Transaction: ");
out.print('numOps=\"" + tx.getSize() + "\" ");
out_printIn(ts=\"" + tx.getStartTxTimeAsString() + "\""");
for(DsOperation op: tx.getOperations()) {
TableName currTable = op.getTableName();
TableMetaData tMeta = dbMeta.getTableMetaData(currTable);
String opType = op.getOperationType()-toString();
String table = tMeta.getTableName() .getFullName();
out.printIn(opType + ™ on table \'"" + table + "\":");
int colNum = 0;
for(DsColumn col: op.getColumns())
{
ColumnMetaData cMeta = tMeta.getColumnMetaData(colNum++);
out.printin(
cMeta.getColumnName() + " = " + col._getAfterValue());
}
}
@Override

public void formatOp(DsTransaction tx,
DsOperation op,
TableMetaData tMeta,
PrintWriter out)

// not used...

}

The formatter defines methods for either formatting complete transactions (after they are
committed) or individual operations (as they are received, before the commit). If the
formatter is in operation mode, then formatOp(...) is called; otherwise, formatTx(...) is
called at transaction commit.

Oracle GoldenGate Adapters Administrator’s Guide for Java 83

UE: Developing Custom Filters, Formatters and Handlers
Custom formatting

To compile and use this custom formatter, include the Oracle GoldenGate for Java jars in
the classpath and place the compiled .class files in {gg_install_dir}/dirprm:

jJavac -d {gg_install_dir}/dirprm
-classpath ggjava/ggjava.jar MyFormatter.java

The resulting class files are located in resources/classes (in correct package structure):

{gg_install_dir}/dirprm/com/mycompany/MyFormatter _class

Alternatively, the custom classes can be put into a jar; in this case, either include the jar
file in the JVM classpath via the user exit properties (using java.class.path in the
javawriter .bootoptions property), or by setting the Java application properties file to
include your custom jar:

set properties on "one
gg-handler.one.type=File
gg-handler.one.format=com.mycompany .MyFormatter
gg-handler.one.file=output.xml
gg-classpath=/path/to/my.jar,/path/to/directory/of/jars/*

Using a Velocity template

As an alternative to writing Java code for custom formatting, Velocity templates can be a
good alternative to quickly prototype formatters. For example, the following template could
be specified as the format of a IMS or file handler:

Transaction: numOps="$tx.size" ts="$tx.timestamp”
#for each($op in $tx)

operation: $op.sqlType, on table "$op.tableName':
#for each($col in $op)

$op.tableName, $col.meta.columnName = $col.value
#end

#end

If the template were named sample.vm, it could be placed in the classpath, for example:

{gg_install_dir}/dirprm/sample.vm

NOTE If using Velocity templates, the file name must end with the suffix .vm; otherwise
the formatter is presumed to be a Java class.

Update the Java application properties file to use the template:

set properties on “one*
gg-handler.one.type=Ffile
gg-handler.one.format=sample.vm
gg-handler.one.file=output.xml

When modifying templates, there is no need to recompile any Java source; simply save the
template and re-run the Java application. When the application is run, the following
output would be generated (assuming a table named SCHEMA . SOMETABLE, with columns
TESTCOLA and TESTCOLB):

Oracle GoldenGate Adapters Administrator’s Guide for Java 84

UE: Developing Custom Filters, Formatters and Handlers
Coding a custom handler in Java

Transaction: numOps="3" ts="2008-12-31 12:34:56.000"
operation: UPDATE, on table "SCHEMA._SOMETABLE':
SCHEMA.SOMETABLE, TESTCOLA = value 123
SCHEMA.SOMETABLE, TESTCOLB = value abc

operation: UPDATE, on table "SCHEMA._SOMETABLE':
SCHEMA.SOMETABLE, TESTCOLA = value 456
SCHEMA.SOMETABLE, TESTCOLB = value def

operation: UPDATE, on table "SCHEMA._SOMETABLE':
SCHEMA.SOMETABLE, TESTCOLA = value 789
SCHEMA_SOMETABLE, TESTCOLB = value ghi

Coding a custom handler in Java

A custom handler can be implemented by extending AbstractHandler:

import com.goldengate.atg.datasource.*;
import static com.goldengate.atg.datasource.GGDataSource.Status;

public class SampleHandler extends AbstractHandler {

@Override

public void init(DsConfiguration conf, DsMetaData metaData) {
super.init(conf, metaData);
// ... do additional config...

}

@0override
public Status operationAdded(DsEvent e, DsTransaction tx, DsOperation

op) { --- }

@Override
public Status transactionCommit(DsEvent e, DsTransaction tx) { ... }

@Override
public Status metaDataChanged(DsEvent e, DsMetaData meta) { }

@0override
public void destroy() { /* ... do cleanup ... */ }

@Override
public String reportStatus() { return *status report..."; }
}

When a transaction is processed from the Extract, the order of calls into the handler is as
follows:

1. Initialization:
o First, the handler is constructed.

o Next, all the "setters" are called on the instance with values from the property file.

o Finally, the handler is initialized; the init(...) method is called before any
transactions are received. It is important that the init(...) method call
super.init(...) to properly initialize the base class.

Oracle GoldenGate Adapters Administrator’s Guide for Java 85

UE: Developing Custom Filters, Formatters and Handlers
Coding a custom handler in Java

2. Metadata is received. If the user exit is processing an operation on a table not yet seen
during this run, a metadata event is fired, and the metadataChanged(. ..) method is
called. Typically, there is no need to implement this method. The DsMetaData is
automatically updated with new data source metadata as it is received.

3. A transaction is started. A transaction event is fired, causing the
transactionBegin(...) method on the handler to be invoked (not shown). This is
typically not used, since the transaction has zero operations at this point.

4. Operations are added to the transaction, one after another. This causes the
operationAdded(...) method to be called on the handler for each operation added.
The containing transaction is also passed into the method, along with the data source
metadata (containing all table metadata seen thus far). Note that the transaction has
not yet been committed, and could be aborted before the commit is received.

Each operation contains the column values from the transaction (possibly just the
changed values, if Extract is processing with compressed updates.) The column values
may contain both before and after values.

5. The transaction is committed. This causes the transactionCommit(...) method to be
called.

6. Periodically, reportStatus may be called; it is also called at process shutdown.
Typically, this displays the statistics from processing (number of
operations/transactions processed, etc).

Below is a complete example of a simple printer handler, which just prints out very basic
event information for transactions, operations and metadata. Note that the handler also
has a property myoutput for setting the output file name; this can be set in the Java
application properties file as follows:

gg-handlerlist=sample
set properties on “sample”
gg-handler.sample.type=sample.SampleHandler
gg-handler.sample._myoutput=out.txt
To use the custom handler,
1. Compile the class
2. Include the class in the application classpath,
3. Add the handler to the list of active handlers in the Java application properties file.
To compile the handler, include the Oracle GoldenGate for Java jars in the classpath and
place the compiled .class files in {gg_install_dir}/javaue/resources/classes:
jJavac -d {gg_install_dir}/dirprm
-classpath ggjava/ggjava.jar SampleHandler.java
The resulting class files would be located in resources/classes, in correct package
structure, such as:

{gg_install_dir}/dirprm/sample/SampleHandler.class

NOTE For any Java application development beyond “hello world” examples, either Ant
or Maven would be used to compile, test and package the application. The
examples showing javac are for illustration purposes only.

Oracle GoldenGate Adapters Administrator’s Guide for Java 86

UE: Developing Custom Filters, Formatters and Handlers
Additional resources

Alternatively, custom classes can be put into a jar and included in the classpath. Either
include the custom jar file(s) in the JVM classpath via the user exit properties (using
java.class.path in the javawriter.bootoptions property), or by setting the Java
application properties file to include your custom jar:

set properties on "one
gg-handler.one.type=sample.SampleHandler
gg-handler.one._myoutput=out.txt
gg-classpath=/path/to/my._jar,/path/to/directory/of/jars/*

The classpath property can be set on any handler to include additional individual jars, a
directory (which would contain resources or unjarred class files) or a whole directory of
jars. To include a whole directory of jars, use the Java 6 style syntax:

c:/path/to/directory/* (or on Unix: /path/to/directory/*)

Only the wildcard * can be specified; a file pattern cannot be used. This automatically
matches all files in the directory ending with the _jar suffix. To include multiple jars or
multiple directories, you can use the system-specific path separator (on Unix, the colon and
on Windows the semicolon) or you can use platform-independent commas, as shown above.

If the handler requires many properties to be set, just include the property in the
parameter file, and your handler's corresponding "setter” will be called. For example:

gg-handler.one.type=com.mycompany.MyHandler
gg-handler.one.myOutput=out.txt
gg-handler.one._myCustomProperty=12345

The above example would invoke the following methods in the custom handler:

public void setMyOutput(String s) {
// use the string...

} public void setMyCustomProperty(int j) {
// use the int...

}

Any standard Java type may be used, such as int, long, String, boolean, etc. For custom
types, you may create a custom property editor to convert the String to your custom type.

Additional resources

There is Javadoc available for the Java API. The Javadoc has been intentionally reduced
to a set of core packages, classes and interfaces in order to only distribute the relevant
interfaces and classes useful for customization and extension.

In each package, some classes have been intentionally omitted for clarity. The important
classes are:

e com.goldengate.atg-datasource.DsTransaction: represents a database transaction.
A transaction contains zero or more operations.

e com.goldengate.atg.datasource.DsOperation: represents a database operation
(insert, update, delete). An operation contains zero or more column values representing
the data-change event. Columns indexes are offset by zero in the Java API.

Oracle GoldenGate Adapters Administrator’s Guide for Java 87

UE: Developing Custom Filters, Formatters and Handlers
Additional resources

e com.goldengate.atg.datasource.DsColumn: represents a column value. A column
value is a composite of a before and an after value. A column value may be 'present’
(having a value or be null) or 'missing’ (is not included in the source trail).

O com.goldengate.atg.datasource.DsColumnComposite is the composite

O com.goldengate.atg.datasource.DsColumnBeforeValue is the column value
before the operation (this is optional, and may not be included in the operation)

O com.goldengate.atg.datasource.DsColumnAfterValue is the value after the
operation

e com.goldengate.atg.datasource.meta.DsMetaData: represents all database
metadata seen; initially, the object is empty. DsMetaData contains a hash map of zero
or more instances of TableMetaData, using the TableName as a key.

e com.goldengate.atg.datasource.meta.TableMetaData: represents all metadata for a
single table; contains zero or more ColumnMetaData.

e com.goldengate.atg.datasource.meta.ColumnMetaData: contains column names and
data types, as defined in the database and/or in the Oracle GoldenGate source
definitions file.

See the Javadoc for additional details.

Oracle GoldenGate Adapters Administrator’s Guide for Java 88

CHAPTER 11

Troubleshooting

Perform the error checks listed in this section. If you do not succeed in identifying the
problem, contact Oracle Support.

Checking for Errors

There are two types of errors that can occur in the operation of Oracle GoldenGate for Java:

The Extract process running the user exit or VAM does not start or abends
The process runs successfully, but the data is incorrect or nonexistent

If the Extract process does not start or abends, check the error messages in order from the
beginning of processing through to the end:

1.

Check the Oracle GoldenGate event log for errors, and view the Extract report file:
GGSCI1> VIEW GGSEVT

GGSCI> VIEW REPORT {extract name}

Check the applicable log file.

For the user exit:

o Look at the last messages reported in the log file for the user exit library. The file
name is the log file prefix (log.logname) set in the property file and the current
date.

shell> more {log.logname}_{yyyymmdd}.log
Note: This is only the log file for the shared library, not the Java application.

If the user exit or VAM was able to launch the Java runtime, then a log4j log file will
exist.

The name of the log file is defined in your log4j.properties file. By default, the log file
name is ggjava-{version}-log4j . log, where version is the version number of the jar
file being used. For example:

shell> more ggjava-*log4j.log

To set a more detailed level of logging for the Java application, either:

o Edit the current log4j properties file to log at a more verbose level or

Oracle GoldenGate Adapters Administrator’s Guide for Java 89

Troubleshooting
Reporting issues

o Re-use one of the existing log4j configurations by editing properties file:

{javawriter or jvm}.bootoptions=-Djava.class.path=ggjava/ggjava.jar
-Dlog4j .configuration=debug-log4j .properties —Xmx512m

These pre-configured log4j property files are found in the classpath, and are installed
in:

./ggjava/resources/classes/*log4j .properties

4. If one of these log files does not reveal the source of the problem, run the Extract
process directly from the shell (outside of GGSCI) so that stderr and stdout can more
easily be monitored and environmental variables can be verified. For example:

shel > EXTRACT PARAMFILE dirprm/javaue.prm

If the process runs successfully, but the data is incorrect or nonexistent, check for errors in
any custom filter, formatter or handler you have written for the user exit.

To restart the user exit Extract from the beginning of a trail, see page 65.

For further information on troubleshooting the core Oracle GoldenGate software, see the
Oracle GoldenGate Troubleshooting and Performance Tuning Guide.

Recovery after an abend

The Extract parameter RECOVERYOPT IONS defaults to APPENDMODE for release 10 and later
trails. In append mode, Extract writes a recovery marker to the trail when it abends . When
the Extract restarts and encounters the recovery marker, it requests a rollback of the
incomplete transaction if local transactions are enabled. If local transactions are not
enabled, a warning message is issued. Local transactions are enabled unless the property
gg-handler.{name}.localTX is explicitly set to false.

Reporting issues

If you have a support account for Oracle GoldenGate, submit a support ticket. Please
include:
e Operating system and Java versions

The version of the Java Runtime Environment can be displayed by:

$ java -version

e Configuration files:
o Parameter file for the Extract running the user exit
o All properties files used, including any JMS or JNDI properties files
o Velocity templates for the user exit

e Log files:

In the Oracle GoldenGate install directory, all .log files: the Java log4j log files and
the user exit or VAM log file.

Oracle GoldenGate Adapters Administrator’s Guide for Java 90

APPENDIX 1

Adapter Examples

Examples are included with the Oracle GoldenGate Adapter installation. The following
examples are located in the designated subdirectories of the installation location:

FlatFileWriter

e Using the Oracle GoldenGate Flat File Adapter to convert Oracle GoldenGate trail
data to text files.

MessageDelivery

e Using the Oracle GoldenGate Java Adapter to send JMS messages with a custom
message format.

e Using the Oracle GoldenGate Java Adapter to send JMS messages with custom
message header properties.

MessageCapture

e Using the Oracle GoldenGate Java Adapter to process JMS messages, creating an
Oracle GoldenGate trail.

JavaUserExitAPI

e Using the Oracle GoldenGate Java Adapter API to write a custom event handler.

Oracle GoldenGate Adapters Administrator’s Guide for Java 91

Index

A

abend 89
ActiveMQ 68
application
restart 65
start 14, 65
aq 68

B

boot options
JVM 37,72

C

checkpoint
user exit 65
columndata 21,22, 23
fixed width parsing 23
comma-separated values 76
comments
entering 36, 70
to identify key columns 26
to specify date format 25
configuration options 9
configure
data pump 62
event handlers 67
Java handlers 64
JRE 62
VAM Extract 18
connection factory 80
copybook
definition for fixed width parsing 24
for source and target definitions 22

Oracle GoldenGate Adapters Administrator’s Guide for Java

CSV format 76
CUSEREXIT 63
custom formatters 67
custom Java code 10

D

data definitions
how to specify 22
data pump
configure 62
Defgen 14
delimited message
basis for parsing 27
format 27
metadata columns 27
parsing properties 45
parsing rules 27
Djava.class.path 73
dil 9
dynamically linked library 9

E

errors 89

ETL tools 7

event filters 67

event handlers 67
configuring 67

EXCLUDEUSER parameter 24

Extract
adding the VAM Extract 18
configuring for the VAM 18
parameters for the user exit 63
parameters for the VAM 18
starting the Java application 14
user exit Extract 62

F

file handler 69
file writer
properties 78
filewriter handler 67
fixed width message
basis for parsing 24
defining the header 24
key identification 26
parsing properties 40
table name 25
timestamp formats 25
fixed-format 76
flat file integration 7
formatters
custom 67
formatting 69, 75

G

Gendef utility 21,35
general properties
Java framework 81
user exit 72
GETENV function 24
GoldenGate
installation directory 14

H

handler
event 67
file 69
filewriter 67
JMS 68
properties 74
handlers
configuring 67
header
defining for fixed width message 24

Oracle GoldenGate Adapters Administrator’s Guide for Java

Index

installation directory structure
GoldenGate 14
installing 11,18
Java 11
User Exit for Java 11, 62
issues

reporting 90

J

jars 8
Java APl 7,8
Java application
properties 74
Javacode 84
Java DevelopmentKit 11
Java handlers
configure 64
Javajars 14
Java libraries 8
Java Message Service (JMS) 8
Java Native Interface (JNI) 8
Java Runtime Environment (JRE) 11
Java User Exit
checkpoint 65
installing 11,18
running 65
javaversion 12
Java virtual machine (JVM) 11
JAVA_HOME 11
Java, installing 11
java.class.path 62
JBoss 68
JDK 11
JMS 8
connecting to 19
properties 37
standard settings 79
jms 68
JMS handler 10, 68
properties 79

JMS handler types
aq 68
jms 68
jms_text 68
JMS messages
retrieving 20
JMS provider 68
JMS queue or topic 80
jms_map 68
jms_text 68
JNDI 19, 39
properties 40, 81
JNI 8
JRE 11
configure 62
JVM 11
JVM boot options 72
jvm.dil 11

K

key identification

for fixth width messages 26

L

LD_LIBRARY_PATH 12
Linux 12
log4j.configuration 62
logging properties 36, 70

M

Manager parameter file 13
MapMessage 67
Message Capture

running 21
message format 10
metadata columns

delimited message 27

o)

operation type 21, 23,29
for XML parsing 29
mapping 26
optype
specifying for fixed width parsing 26
Oracle GoldenGate
documentation 10
Oracle GoldenGate for Java 8
output 69, 75

P

parameters
VAM Extract 18
PARAMS option 19
parser
required data 22
role of 21
types 21
PATH environmental variable 11
PIC
translations for fixth width messages 26
properties 36, 70
delimited message parsing 45
file writer 78
fixed width message parsing 40
handlers 74
Java application 74
Java framework 81
JMS handler 79
JNDI 40, 81
logging 36, 70
User Exit 36, 70
XML message parsing 52
property file 9

Q

queue 80

Index

Oracle GoldenGate Adapters Administrator’s Guide for Java

R
reporting 69, 73

issues 90
restart

application 65
running

Java User Exit 65

S

sequence identifier 21,22
SETENV 63
Solace 68
source definitions file 18,41, 45, 52

generating 21,35
sourcedefs

type of fixed schema 41
SOURCEDEFS parameter 63
standard JMS settings 79
start

application 14, 65
statistics 73

T

TABLE 63

table name 21,22, 27,28, 32
defining for fixed width message 25
for delimited parsing 27
for XML parsing 29

TextMessage 67

TIBCO 68

timestamp 21, 22, 24, 25, 27,29, 31, 32
formats for fixed width message 25

topic 80

trail 62

TRANLOGOPTIONS
GETMETADATAFROMVAM option 19
VAMCOMPATIBILITY option 19

Oracle GoldenGate Adapters Administrator’s Guide for Java

Index

transaction

specifying boundary for 23, 32
transaction identifier 21,22

for XML parsing 32
transaction indicator 21, 23, 27, 32
transaction name 21,24
transaction owner 21,24
troubleshooting 89

U

UNIX 12

unzip 12

User Exit
properties 36, 70
running 65

User Exit for Java
checkpoint 65

\Y

VAM parameter 19
Velocity template 10, 75, 84

W

WebLogic 68
Windows 11

X

XML 10

XML message
basis for parsing 28
columnrules 33
formatted in dynamic XML 28
formatted in static XML 29
operation rules 32
parsing properties 52
parsing rules 29
supported XPath expressions 30
transaction rules 32

	Contents
	Introduction
	Oracle GoldenGate
	Adapter integration options
	Capturing transactions to a trail
	Applying transactions from a trail

	Oracle GoldenGate VAM message capture
	Message capture configuration options

	Oracle GoldenGate Java user exit
	Delivery configuration options

	Oracle GoldenGate documentation

	Installing Oracle GoldenGate for Java
	Preparing for installation
	Installing Java
	Setting up Environmental Variables

	Installing the Oracle GoldenGate Java Adapter
	Installation Overview
	Installation Steps
	Directory Structure

	Upgrading the Oracle GoldenGate Java Adapter
	Source Database Capture
	JMS Capture

	VAM: Configuring Message Capture
	Configuring the VAM Extract
	Adding the Extract
	Configuring the Extract parameters
	Configuring the message capture

	Connecting and retrieving the messages
	Connecting to JMS
	Retrieving messages
	Completing the transaction

	VAM: Parsing the message
	Parsing overview
	Parser types
	Source and target data definitions
	Required Data
	Optional data

	Fixed width parsing
	Header
	Header and record data type translation
	Key identification

	Delimited parsing
	Metadata columns
	Parsing properties
	Parsing steps

	XML parsing
	Styles of XML
	XML parsing rules
	XPath expressions
	Other value expressions
	Transaction rules
	Operation rules
	Column rules
	Overall rules example

	Source definitions generation utility

	VAM: Message Capture Properties
	Logging and connection properties
	Logging properties
	JMS connection properties
	JNDI properties

	Parser properties
	Setting the type of parser
	Fixed parser properties
	Delimited Parser Properties
	XML parser properties

	UE: Configuring for Message Delivery
	Configure the JRE in the user exit properties file
	Configure a data pump to run the user exit
	Configure the Java handlers

	UE: Running the User Exit
	Starting the application
	Restarting the application at the beginning of a trail

	UE: Configuring Event Handlers
	Specifying event handlers
	JMS handler
	File handler
	Custom handlers
	Formatting the output
	Reporting

	UE: Message Delivery Properties
	User exit properties
	Logging properties
	General properties
	JVM boot options
	Statistics and reporting

	Java application properties
	Properties for all handlers
	Properties for formatted output
	Properties for CSV and fixed-format output
	File writer properties
	JMS handler properties
	Standard JMS settings
	JNDI properties
	General properties

	UE: Developing Custom Filters, Formatters and Handlers
	Filtering events
	Custom formatting
	Coding a custom formatter in Java
	Using a Velocity template

	Coding a custom handler in Java
	Additional resources

	Troubleshooting
	Checking for Errors
	Recovery after an abend

	Reporting issues

	Adapter Examples
	Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X

