2 Day Developer's Guide
11g Release 2 (11.2)
E10766-04
June 2010
Oracle Database 2 Day Developer's Guide, 11g Release 2 (11.2)
E10766-04
Copyright © 2008, 2010, Oracle and/or its affiliates. All rights reserved.
Primary Author: Sheila Moore
Contributors: Pat Huey, Sharon Kennedy, Simon Law, Roza Leyderman, Bryn Llewellen, Chuck Murray, Mark Townsend
This software and related documentation are provided under a license agreement containing restrictions on use and disclosure and are protected by intellectual property laws. Except as expressly permitted in your license agreement or allowed by law, you may not use, copy, reproduce, translate, broadcast, modify, license, transmit, distribute, exhibit, perform, publish, or display any part, in any form, or by any means. Reverse engineering, disassembly, or decompilation of this software, unless required by law for interoperability, is prohibited.
The information contained herein is subject to change without notice and is not warranted to be error-free. If you find any errors, please report them to us in writing.
If this software or related documentation is delivered to the U.S. Government or anyone licensing it on behalf of the U.S. Government, the following notice is applicable:
U.S. GOVERNMENT RIGHTS Programs, software, databases, and related documentation and technical data delivered to U.S. Government customers are "commercial computer software" or "commercial technical data" pursuant to the applicable Federal Acquisition Regulation and agency-specific supplemental regulations. As such, the use, duplication, disclosure, modification, and adaptation shall be subject to the restrictions and license terms set forth in the applicable Government contract, and, to the extent applicable by the terms of the Government contract, the additional rights set forth in FAR 52.227-19, Commercial Computer Software License (December 2007). Oracle USA, Inc., 500 Oracle Parkway, Redwood City, CA 94065.
This software is developed for general use in a variety of information management applications. It is not developed or intended for use in any inherently dangerous applications, including applications which may create a risk of personal injury. If you use this software in dangerous applications, then you shall be responsible to take all appropriate fail-safe, backup, redundancy, and other measures to ensure the safe use of this software. Oracle Corporation and its affiliates disclaim any liability for any damages caused by use of this software in dangerous applications.
Oracle is a registered trademark of Oracle Corporation and/or its affiliates. Other names may be trademarks of their respective owners.
This software and documentation may provide access to or information on content, products, and services from third parties. Oracle Corporation and its affiliates are not responsible for and expressly disclaim all warranties of any kind with respect to third-party content, products, and services. Oracle Corporation and its affiliates will not be responsible for any loss, costs, or damages incurred due to your access to or use of third-party content, products, or services.
This document explains basic concepts behind application development with Oracle Database. It provides instructions for using the basic features of topics through Structured Query Language (SQL), and the Oracle server-based procedural extension to the SQL database language, Procedural Language/Structured Query Language (PL/SQL).
Preface topics:
This document is intended for anyone who is interested in learning about Oracle Database application development, and is primarily an introduction to application development for developers who are new to Oracle Database.
This document assumes that you have a general understanding of relational database concepts and an understanding of the operating system environment that you will use to develop applications with Oracle Database.
Our goal is to make Oracle products, services, and supporting documentation accessible to all users, including users that are disabled. To that end, our documentation includes features that make information available to users of assistive technology. This documentation is available in HTML format, and contains markup to facilitate access by the disabled community. Accessibility standards will continue to evolve over time, and Oracle is actively engaged with other market-leading technology vendors to address technical obstacles so that our documentation can be accessible to all of our customers. For more information, visit the Oracle Accessibility Program Web site at http://www.oracle.com/accessibility/
.
Accessibility of Code Examples in Documentation
Screen readers may not always correctly read the code examples in this document. The conventions for writing code require that closing braces should appear on an otherwise empty line; however, some screen readers may not always read a line of text that consists solely of a bracket or brace.
Accessibility of Links to External Web Sites in Documentation
This documentation may contain links to Web sites of other companies or organizations that Oracle does not own or control. Oracle neither evaluates nor makes any representations regarding the accessibility of these Web sites.
Access to Oracle Support
Oracle customers have access to electronic support through My Oracle Support. For information, visit http://www.oracle.com/support/contact.html
or visit http://www.oracle.com/accessibility/support.html
if you are hearing impaired.
As you become comfortable with the concepts and tasks in this document, Oracle recommends that you consult other Oracle Database development documents, especially:
For more information, see:
This document uses these text conventions:
Convention	Meaning
boldface	Boldface type indicates graphical user interface elements associated with an action, or terms defined in text or the glossary.
italic	Italic type indicates book titles, emphasis, or placeholder variables for which you supply particular values.
monospace	Monospace type indicates commands within a paragraph, URLs, code in examples, text that appears on the screen, or text that you enter.
This chapter contains the following topics:	
An Oracle Database developer is responsible for creating or maintaining the database components of an application that uses the Oracle technology stack. Oracle Database developers either develop applications or convert existing applications to run in the Oracle Database environment.	
See Also: Oracle Database Concepts for more information about the duties of Oracle Database developers	
This document is the entry into the Oracle Database documentation set for application developers. It does the following:	
Chapter 1, "Introduction," describes the reader for whom this document is intended, outlines the organization of this document, introduces important Oracle Database concepts, and describes the sample schema used in the tutorials and examples in this document.	
Chapter 2, "Connecting to Oracle Database," explains how to connect to Oracle Database.	
Chapter 3, "Exploring Oracle Database with SQL Developer," shows how to view schema objects and the properties and data of Oracle Database tables.	
Chapter 4, "Selecting Table Data," shows how to use queries to retrieve data from an Oracle Database table.	
Chapter 5, "About DML Statements and Transactions," introduces data manipulation language (DML) statements and transactions. DML statements add, change, and delete Oracle Database table data. A transaction is a sequence of one or more SQL statements that Oracle Database treats as a unit: either all of the statements are performed, or none of them are.	
Chapter 6, "Creating and Managing Schema Objects," introduces data definition language (DDL) statements, which create, change, and drop schema objects. The tutorials and examples show how to create the objects for the sample application.	
Chapter 7, "Developing Stored Subprograms and Packages," introduces stored subprograms and packages, which can be used as building blocks for many different database applications. The tutorials and examples show how to create the package of subprograms for the sample application.	
Chapter 8, "Using Triggers," introduces triggers, which are stored PL/SQL units that automatically execute ("fire") in response to specified events. The tutorials and examples show how to create the triggers for the sample application.	
Chapter 9, "Working in a Global Environment," introduces globalization support—National Language Support (NLS) parameters and Unicode-related features of SQL and PL/SQL.	
Chapter 10, "Deploying an Oracle Database Application," explains how to deploy a database application—that is, how to install it in one or more environments where other users can run it—using the sample application as an example.	
Oracle Database groups related information into logical structures called schemas. The logical structures are called schema objects. When you connect to the database by providing your user name and password, you specify the schema and indicate that you are its owner. In Oracle Database, the user name and the name of the schema to which the user connects are the same.	
Topics:	
Every object in an Oracle Database belongs to only one schema, and has a unique name with that schema.	
Some of the objects that schemas can contain are:	
Tables are the basic units of data storage in Oracle Database. Tables hold all user-accessible data. Each table contains rows that represent individual data records. Rows are composed of columns that represent the fields of the records. For more information, see "Creating and Managing Tables".	
Indexes are optional objects that can improve the performance of data retrieval from tables. Indexes are created on one or more columns of a table, and are automatically maintained in the database. For more information, see "Managing Indexes".	
You can create a view that combines information from several different tables into a single presentation. A view can rely on information from both tables and other views. For more information, see "Creating and Managing Views".	
When all records of a table must be distinct, you can use a sequence to generate a serial list of unique integers for numeric columns, each of which represents the ID of one record. For more information, see "Creating and Managing Sequences".	
Synonyms are aliases for schema objects. You can use synonyms for security and convenience; for example, to hide the ownership of an object or to simplify SQL statements. For more information, see "Creating and Managing Synonyms".	
Stored subprograms (also called schema-level subprograms) are procedures and functions that are stored in the database. They can be invoked from client applications that access the database. For more information, see "Developing Stored Subprograms and Packages".	
Triggers are stored subprograms that are automatically run by the database when specified events occur in a particular table or view. Triggers can restrict access to specific data and perform logging. For more information, see "Using Triggers".	
A package is a group of related subprograms, along with the explicit cursors and variables they use, stored in the database as a unit, for continued use. Like stored subprograms, package subprograms can be invoked from client applications that access the database. For more information, see "Developing Stored Subprograms and Packages".	
Typically, the objects that an application uses belong to the same schema.	
You can access Oracle Database only through a client program, such as SQL*Plus or SQL Developer. The client program's interface to Oracle Database is Structured Query Language (SQL). Oracle provides an extension to SQL called Procedural Language/SQL (PL/SQL).	
Topics:	
SQL*Plus (pronounced sequel plus) is an interactive and batch query tool that is installed with every Oracle Database installation. It has a command-line user interface that acts as the client when connecting to the database.	
SQL*Plus has its own commands and environment. In the SQL*Plus environment, you can enter and run SQL*Plus commands, SQL statements, PL/SQL statements, and operating system commands to perform tasks such as:	
You can use SQL*Plus to generate reports interactively, to generate reports as batch processes, and to output the results to text file, to screen, or to HTML file for browsing on the Internet. You can generate reports dynamically using the HTML output facility.	
You can use SQL*Plus in SQL Developer. For details, see Oracle Database SQL Developer User's Guide.	
See Also:	
SQL Developer (pronounced sequel developer) is a graphic version of SQL*Plus, written in Java, that is available in the default installation of Oracle Database and by free download.	
The SQL Developer user interface includes a navigation frame, tools (with menus), and a SQL Worksheet. From the SQL Worksheet, you can enter and run SQL statements, PL/SQL statements, and SQL*Plus commands. You can do some tasks—for example, creating a table—either in the SQL Worksheet or with the navigation frame and tools.	
To see the name and keyboard equivalent of any SQL Developer icon, position your cursor over the icon.	
See Also:	
Structured Query Language (SQL) (pronounced sequel) is the set-based, high-level computer language with which all programs and users access data in Oracle Database.	
SQL is a declarative, or nonprocedural, language; that is, it describes what to do, but not how. You specify the desired result set (for example, the names of current employees), but not how to get it.	
See Also:	
Procedural Language/SQL (PL/SQL) (pronounced P L sequel) is a native Oracle Database extension to SQL. It bridges the gap between declarative and imperative program control by adding procedural elements, such as conditional control and loops.	
In PL/SQL, you can declare constants and variables, procedures and functions, types and variables of those types, and triggers. You can handle exceptions (run-time errors). You can create PL/SQL units—procedures, functions, packages, types, and triggers—that are stored in the database for reuse by applications that use any of the Oracle Database programmatic interfaces.	
The basic unit of a PL/SQL source program is the block, which groups related declarations and statements. A block has an optional declarative part, a required executable part, and an optional exception-handling part.	
See Also:	
Some other database access clients, languages, and tools that you can use to develop applications are:	
Topics:	
See Also:	
Oracle Application Express (APEX) is an application development and deployment tool that enables you to quickly create secure and scalable Web applications even if you have limited previous programming experience. The embedded Application Builder tool assembles an HTML interface or a complete application that uses schema objects, such as tables or stored procedures, into a collection of pages that are linked through tabs, buttons, or hypertext links.	
See Also: Oracle Database 2 Day + Application Express Developer's Guide for more information about APEX	
Oracle Java Database Connectivity (JDBC) is an API that enables Java to send SQL statements to an object-relational database, such as Oracle Database. Oracle Database JDBC provides complete support for the JDBC 3.0 and JDBC RowSet (JSR-114) standards, advanced connection caching for both XA and non-XA connections, exposure of SQL and PL/SQL data types to Java, and fast SQL data access.	
See Also: For more information about JDBC:	
The Hypertext Preprocessor (PHP) is a powerful interpreted server-side scripting language for quick Web application development. PHP is an open source language that is distributed under a BSD-style license. PHP is designed for embedding database access requests directly into HTML pages.	
Oracle Call Interface (OCI) is the native C language API for accessing Oracle Database directly from C applications.	
The OCI Software Development Kit is also installed as part of the Oracle Instant Client, which enables you to run applications without installing the standard Oracle client or having an ORACLE_HOME	
. Your applications work without change, using significantly less disk space.	
See Also:	
Oracle C++ Call Interface (OCCI) is the native C++ language API for accessing Oracle Database directly from C++ applications. Very similar to the OCI, OCCI supports both relational and object-oriented programming paradigms.	
The OCCI Software Development Kit is also installed as part of the Oracle Instant Client, which enables you to run applications without installing the standard Oracle client or having an ORACLE_HOME	
. Your applications work without change, using significantly less disk space.	
See Also:	
Open Database Connectivity (ODBC) is a set of database access APIs that connect to the database, prepare, and then run SQL statements on the database. An application that uses an ODBC driver can access non-uniform data sources, such as spreadsheets and comma-delimited files.	
The Oracle ODBC driver conforms to ODBC 3.51 specifications. It supports all core APIs and a subset of Level 1 and Level 2 functions. Microsoft supplies the Driver manager component for the Windows platform.	
Like OCI, OCCI, and JDBC, ODBC is part of the Oracle Instant Client installation.	
See Also:	
The Pro*C/C++ precompiler enables you to embed SQL statements in a C or C++ source file. The precompiler accepts the source program as input, translates the embedded SQL statements into standard Oracle run-time library calls, and generates a modified source program that you can compile, link, and run.	
See Also:	
The Pro*COBOL precompiler enables you to embed SQL statements in a COBOL source file. The precompiler accepts the source program as input, translates the embedded SQL statements into standard Oracle run-time library calls, and generates a modified source program that you can compile, link, and run.	
See Also:	
The Microsoft .NET Framework is a multilanguage environment for building, deploying, and running applications and XML Web services. Its main components are:	
The Common Language Runtime (CLR) is a language-neutral development and run-time environment that provides services that help manage running applications.	
The Framework Class Libraries (FCL) provide a consistent, object-oriented library of prepackaged functionality.	
Oracle Data Provider for .NET (ODP.NET)	
Oracle Data Provider for .NET (ODP.NET) provides fast and efficient ADO.NET data access from .NET client applications to Oracle Database and access to other Oracle Database features.	
ODP.NET allows developers to take advantage of advanced Oracle Database functionality, including Real Application Clusters, XML DB, and advanced security.	
Oracle Developer Tools for Visual Studio (ODT)	
Oracle Developer Tools for Visual Studio (ODT) is a set of application tools that integrate with the Visual Studio environment. These tools provide graphic user interface access to Oracle functionality, enable the user to perform a wide range of application development tasks, and improve development productivity and ease of use. Oracle Developer Tools supports the programming and implementation of .NET stored procedures using Visual Basic, C#, and other .NET languages.	
.NET Stored Procedures	
Oracle Database Extensions for .NET is a database option for Oracle Database on Windows. It makes it possible to build and run .NET stored procedures or functions with Oracle Database for Microsoft Windows using Visual Basic .NET or Visual C#.	
After building .NET procedures and functions into a .NET assembly, you can deploy them in Oracle Database using the Oracle Deployment Wizard for .NET, a component of the Oracle Developer Tools for Visual Studio.	
Oracle Providers for ASP.NET offer ASP.NET developers an easy way to store state common to Web applications within Oracle Database. These providers are modeled on existing Microsoft ASP.NET providers, sharing similar schema and programming interfaces to provide .NET developers a familiar interface. Oracle supports the Membership, Profile, Role, and other providers.	
Oracle Provider for OLE DB (OraOLEDB) is an open standard data access methodology that uses a set of Component Object Model (COM) interfaces for accessing and manipulating different types of data. These interfaces are available from various database providers.	
Oracle Objects for OLE (OO4O) provides easy access to data stored in Oracle Database with any programming or scripting language that supports the Microsoft COM Automation and ActiveX technology, including Visual Basic, Visual C++, Visual Basic For Applications (VBA), IIS Active Server Pages (VBScript and JavaScript).	
See Also:	
The HR	
schema is a sample schema that can be installed as part of Oracle Database. This schema contains information about employees—their departments, locations, work histories, and related information. Like all schemas, the HR	
schema has tables, views, indexes, procedures, functions, and other attributes of a database schema.	
The examples and tutorials in this document use the HR	
schema.	
See Also:	
You can connect to Oracle Database only through a client program, such as SQL*Plus or SQL Developer.	
This chapter contains the following sections:	
SQL*Plus is a client program with which you can access Oracle Database. This section shows how to start SQL*Plus and connect to Oracle Database.	
To connect to Oracle Database from SQL*Plus:	
If you are on a Windows system, display a Windows command prompt.	
At the command prompt, type sqlplus	
and press the key Enter.	
SQL*Plus starts and prompts you for your user name.	
Type your user name and press the key Enter.	
SQL*Plus prompts you for your password.	
Type your password and press the key Enter.	
Note: For security, your password is not visible on your screen.	
The system connects you to an Oracle Database instance.	
You are in the SQL*Plus environment. At the SQL>	
prompt, you can enter and run SQL*Plus commands, SQL statements, PL/SQL statements, and operating system commands.	
To exit SQL*Plus, type exit	
and press the key Enter.	
Note: Exiting SQL*Plus ends the SQL*Plus session, but does not shut down the Oracle Database instance.	
Example 2-1 starts SQL*Plus, connects to Oracle Database, runs a SQL SELECT	
statement, and exits SQL*Plus. User input is bold.	
Example 2-1 Connecting to Oracle Database from SQL*Plus	
your_user_name	
your_password	
See Also:	
SQL Developer is a client program with which you can access Oracle Database. This section assumes that SQL Developer is installed on your system, and shows how to start it and connect to Oracle Database. If SQL Developer is not installed on your system, see Oracle Database SQL Developer User's Guide for installation instructions.	
To connect to Oracle Database from SQL Developer:	
Select SQL Developer.	
If this is the first time you have started SQL Developer on your system, you are prompted to enter the full path to java	
.exe	
(for example, C:\jdk1.5.0\bin\java.exe	
). Either type the full path after the prompt or browse to it, and then press the key Enter.	
The Oracle SQL Developer window opens.	
The Connections pane appears.	
The New/Select Database Connection window opens.	
In the New/Select Database Connection window, type the appropriate values in the fields Connection Name, Username, and Password.	
For security, the password characters that you type appear as asterisks.	
Near the Password field is the check box Save Password. By default, it is deselected. Oracle recommends accepting the default.	
The Oracle pane appears.	
In the Oracle pane:	
The connection is tested. If the connection succeeds, the Status indicator changes from blank to Success	
.	
If the test succeeded, click the button Connect.	
The New/Select Database Connection window closes. The Connections pane shows the connection whose name you entered in the Connection Name field in step 7.	
You are in the SQL Developer environment.	
To exit SQL Developer, select Exit from the File menu.	
Note: Exiting SQL Developer ends the SQL Developer session, but does not shut down the Oracle Database instance. The next time you start SQL Developer, the connection you created using the preceding procedure still exists. SQL Developer prompts you for the password that you supplied in step 7 (unless you selected the check box Save Password).	
See Also:	
This section shows how to unlock the HR	
account and connect to Oracle Database as the user HR	
, who owns the HR	
sample schema that the examples and tutorials in this document use.	
To do the tutorials and examples in this document, and create the sample application, you must connect to Oracle Database as the user HR	
from SQL Developer. The HR	
sample schema is the development environment for the sample application.	
Topics:	
By default, when the HR	
schema is installed, the HR	
account is locked and its password is expired. You can connect to Oracle Database as the user HR	
only if the HR	
account is unlocked.	
Note: For the following procedure, you need the name and password of a user who has theALTER USER system privilege (for example, SYSTEM).	
To unlock the HR account and reset its password:	
ALTER	
USER	
system privilege. For instructions, see "Connecting to Oracle Database from SQL*Plus".	
SQL>	
prompt, unlock the HR	
account and reset its password: Caution: Choose a secure password. For guidelines for securing passwords, see Oracle Database Security Guide.	
The system responds:	
The HR	
account is unlocked and its password is password	
.	
Now you can connect to Oracle Database as user HR	
with the password password	
. For instructions, see either "Connecting to Oracle Database from SQL*Plus" or "Connecting to Oracle Database from SQL Developer".	
See Also:	
This section shows how to connect to Oracle Database as the user HR	
from SQL*Plus, if the HR	
account is unlocked.	
To connect to Oracle Database as user HR from SQL*Plus:	
Note: For this task, you need the password for theHR account.	
HR	
at step 3 and the password for the HR	
account at step 4. You are now connected to Oracle Database as the user HR	
.	
See Also: SQL*Plus User's Guide and Reference for an example of using SQL*Plus to create anHR connection	
This section shows how to connect to Oracle Database as the user HR	
from SQL Developer, if the HR	
account is unlocked.	
Note: For the following procedure, you need the password for theHR account.	
To connect to Oracle Database as user HR from SQL Developer:	
At step 7:	
hr_conn	
. (You can enter a different name, but the tutorials in this document assume that you named the connection hr_conn	
.)	
HR	
. HR	
account. At step 9:	
localhost	
. 1521	
. orcl	
. At step 11, the name of the connection, hr_conn	
, appears in the Connections pane of the Oracle SQL Developer window.	
You are now connected to Oracle Database as the user HR	
.	
This chapter contains the following topics:	
Note: To do the tutorials in this document, you must be connected to Oracle Database as the userHR from SQL Developer. For instructions, see "Connecting to Oracle Database as User HR from SQL Developer".	
This tutorial shows how to use SQL Developer to view the objects that belong to the HR	
schema. This is called browsing the HR	
schema.	
To browse the HR schema:	
The Connections pane shows the hr_conn	
icon. To the left of the icon is a plus sign (+).	
If you are not connected to the database, the Connection Information window opens. If you are connected to the database, the hr_conn	
information expands (see the information that follows "Click OK" in step 3).	
If the Connection Information window opens:	
hr	
. hr	
. The hr_conn	
information expands: The plus sign becomes a minus sign, and under the hr_conn	
icon, a list of schema object types appears—Tables, Views, Indexes, and so on. (If you click the minus sign, the hr_conn information collapses: The minus sign becomes a plus sign, and the list disappears.)	
See Also:	
This tutorial shows how to use SQL Developer to view the properties and data of the EMPLOYEES	
table in the HR	
schema, if you are browsing the HR	
schema.	
If you are not browsing the HR	
schema, follow the instructions in "Tutorial: Viewing HR Schema Objects" and then return to this topic.	
To view the properties and data of the EMPLOYEES table:	
Under Tables, a list of the tables in the HR	
schema appears.	
In the right frame of the Oracle SQL Developer window, in the Columns pane, a list of all columns of this table appears. To the right of each column are its properties—name, data type, and so on. (To see all column properties, move the horizontal scroll bar to the right.)	
In the right frame, click the tab Data.	
The Data pane appears, showing a numbered list of all records in this table. (To see more records, move the vertical scroll bar down. To see more columns of the records, move the horizontal scroll bar to the right.)	
The Constraints pane appears, showing a list of all constraints on this table. To the right of each constraint are its properties—name, type, search condition, and so on. (To see all constraint properties, move the horizontal scroll bar to the right.)	
See Also:	
This chapter contains the following topics:	
Note: To do the tutorials in this document, you must be connected to Oracle Database as the userHR from SQL Developer. For instructions, see "Connecting to Oracle Database as User HR from SQL Developer".	
A query, or SQL SELECT	
statement, selects data from one or more tables or views.	
The simplest form of query has this syntax:	
The select_list	
specifies the columns from which the data is to be selected, and the source_list	
specifies the tables or views that have these columns.	
A query nested within another SQL statement is called a subquery.	
In the SQL*Plus environment, you can enter a query after the SQL>	
prompt.	
In the SQL Developer environment, you can enter a query in the SQL Worksheet. For instructions, see "Running Queries in SQL Developer".	
Note: When the result of a query is displayed, records can be in any order, unless you specify their order with theORDER BY clause. For more information, see "Sorting Selected Data".	
See Also:	
This topic explains how to run queries or other SQL statements in SQL Developer, if you are connected to Oracle Database as user HR	
from SQL Developer (for instructions, see "Connecting to Oracle Database as User HR from SQL Developer").	
To run queries in SQL Developer:	
Either the Connection Information window opens or the SQL Worksheet pane appears.	
hr_conn	
, select that value from the drop-down list. The SQL Worksheet pane appears. Under "Enter SQL Statement:" is a field where you can enter a SQL statement.	
In the SQL Worksheet pane, type a query (a SELECT	
statement).	
The query runs.	
The Results pane appears, showing the result of the query.	
The query and its results disappear, and you can enter another SQL statement in the SQL Worksheet.	
See Also: Oracle Database SQL Developer User's Guide for information about using the SQL Worksheet in SQL Developer	
This tutorial shows how to select all columns of the EMPLOYEES	
table.	
To select all columns of the EMPLOYEES Table:	
The SQL Worksheet pane appears.	
The query runs.	
The Results pane appears, showing the result of the query.	
See Also: "Tutorial: Viewing EMPLOYEES Table Properties and Data" for information about another way to view table data with SQL Developer	
This tutorial shows how to select only the columns FIRST_NAME	
, LAST_NAME	
, and DEPARTMENT_ID	
of the EMPLOYEES	
table.	
To select only FIRST_NAME, LAST_NAME, and DEPARTMENT_ID:	
The SQL Worksheet pane appears.	
The query runs.	
The Results pane appears, showing the results of the query, which are similar to:	
When query results are displayed, the default column heading is the column name. To display a column under a new heading, specify the new heading (alias) immediately after the name of the column. The alias renames the column for the duration of the query, but does not change its name in the database.	
The query in Example 4-1 selects the same columns as the query in Tutorial: Selecting Specific Columns of a Table, but it also specifies aliases for them. Because the aliases are not enclosed in double quotation marks, they are displayed in uppercase letters.	
Example 4-1 Displaying Selected Columns Under New Headings	
Result is similar to:	
If you enclose column aliases in double quotation marks, case is preserved, and the aliases can include spaces, as in Example 4-2.	
Example 4-2 Preserving Case and Including Spaces in Column Aliases	
Result is similar to:	
See Also: Oracle Database SQL Language Reference for more information about theSELECT statement, including the column alias (c_alias)	
To select only data that matches a specified condition, include the WHERE	
clause in the SELECT	
statement. The condition in the WHERE	
clause can be any SQL condition (for information about SQL conditions, see Oracle Database SQL Language Reference).	
The query in Example 4-3 selects data only for employees in department 90.	
Example 4-3 Selecting Data from One Department	
Result is similar to:	
The query in Example 4-4 selects data only for employees in departments 100, 110, and 120.	
Example 4-4 Selecting Data from Specified Departments	
Result is similar to:	
There are no employees in department 120.	
The query in Example 4-5 selects data only for employees whose last names start with "Ma".	
Example 4-5 Selecting Data for Last Names that Start with the Same Substring	
Result is similar to:	
The query in Example 4-6 selects data only for employees whose last names include "ma".	
Example 4-6 Selecting Data for Last Names that Include the Same Substring	
Result is similar to:	
The query in Example 4-7 tests for two conditions—whether the salary is at least 11000, and whether the commission percentage is not null.	
Example 4-7 Selecting Data that Satisfies Two Conditions	
Result is similar to:	
See Also:	
As stated in "Selecting Data that Satisfies Specified Conditions", the condition in the WHERE	
clause can be any SQL condition. This topic shows how to specify conditions with SQL functions that accept regular expressions. A regular expression defines a search pattern, using metacharacters to specify search algorithms and literals to specify characters.	
Suppose that you want to select all managers in the EMPLOYEES	
table. The JOB_ID	
of a manager ends with either '_MGR'	
or '_MAN'	
, depending on the department. Therefore, the search pattern must be a regular expression, and you must use the REGEXP_LIKE	
function, as in Example 4-8.	
In the regular expression (_m[an	gr])
, the metacharacter	
indicates the OR	
condition. The third function parameter, 'i'	
, specifies that the match is case-insensitive.	
Example 4-8 Selecting All Managers in the EMPLOYEES Table	
Result is similar to:	
Suppose that you want to select every employee whose last name has a double vowel (two adjacent occurrences of the same vowel). Example 4-9 shows how you can do this.	
The regular expression ([AEIOU])	
represents any vowel. The metacharacter \1	
represents the first (and in this case, only) regular expression. The third function parameter, 'i'	
, specifies that the match is case-insensitive.	
Example 4-9 Selecting All Employees Whose Last Names Have Double Vowels	
Result is similar to:	
Suppose that, in the displayed query results, you want to replace phone numbers that are stored in the format nnn	
.nnn	
.nnnn	
with their equivalents in the format (
nnn	
)	
nnn-nnnn	
. You can use the REGEXP_REPLACE	
function, with regular expressions in the search pattern (the stored format) and references to those regular expressions in the replace string (the display format), as in Example 4-10.	
The search pattern has three regular expressions, each of which is enclosed in parentheses. The metacharacter [[:digit:]]	
represents a digit, the metacharacter {	
n	
}	
specifies n occurrences, and the metacharacter \	
is an escape character. The character immediately after an escape character is interpreted as a literal. Without the escape character, the metacharacter .	
represents any character.	
The replace string uses \1	
, \2	
, and \3	
to represent the first, second, and third regular expressions in the search pattern, respectively. (In the replace string, \	
is not an escape character.)	
Example 4-10 Displaying Phone Numbers in a Different Format	
Result is similar to:	
Suppose that you want to extract the street number from each STREET_ADDRESS	
in the LOCATIONS	
table. Some street numbers include hyphens, so the search pattern must use a regular expression, and you must use the REGEXP_SUBSTR	
function, as in Example 4-11.	
Example 4-11 Extracting the Street Number from Each STREET_ADDRESS	
Result is similar to:	
To count the number of spaces in each STREET_ADDRESS	
, you can use the REGEXP_COUNT	
function, as in Example 4-12.	
Example 4-12 Counting the Number of Spaces in Each STREET_ADDRESS	
Result is similar to:	
To report the position of the first space in each STREET_ADDRESS	
, you can use the REGEXP_INSTR	
function, as in Example 4-13.	
Example 4-13 Reporting the Position of the First Space in Each STREET_ADDRESS	
Result is similar to:	
See Also:	
When the results of a query are displayed, records can be in any order, unless you specify their order with the ORDER	
BY	
clause.	
The results of the query in Example 4-14 are sorted by LAST_NAME	
, in ascending order (the default).	
Alternatively, in SQL Developer, you can omit the ORDER	
BY	
clause and double-click the name of the column to sort.	
Example 4-14 Sorting Selected Data by LAST_NAME	
Result:	
The sort criterion need not be included in the select list, as Example 4-15 shows.	
Example 4-15 Sorting Selected Data by an Unselected Column	
Result:	
See Also: Oracle Database SQL Language Reference for more information about theSELECT statement, including the ORDER BY clause	
Suppose that you want to select the FIRST_NAME	
, LAST_NAME	
, and DEPARTMENT_NAME	
of every employee. FIRST_NAME	
and LAST_NAME	
are in the EMPLOYEES	
table, and DEPARTMENT_NAME	
is in the DEPARTMENTS	
table. Both tables have DEPARTMENT_ID	
. You can use the query in Example 4-16. Such a query is called a join.	
Example 4-16 Selecting Data from Two Tables (Joining Two Tables)	
Result:	
Table-name qualifiers are optional for column names that appear in only one table of a join, but are required for column names that appear in both tables. The following query is equivalent to the query in Example 4-16:	
To make queries that use qualified column names more readable, use table aliases, as in the following example:	
Although you create the aliases in the FROM	
clause, you can use them earlier in the query, as in the following example:	
The select_list	
of a query can include SQL expressions, which can include SQL operators and SQL functions. These operators and functions can have table data as operands and arguments. The SQL expressions are evaluated, and their values appear in the results of the query.	
Topics:	
See Also:	
SQL supports the basic arithmetic operators: +	
(addition), -	
(subtraction), *	
(multiplication), and /	
(division).	
The query in Example 4-17 displays LAST_NAME	
, SALARY	
(monthly pay), and annual pay for each employee in department 90, in descending order of SALARY	
.	
Example 4-17 Using an Arithmetic Expression in a Query	
Result:	
Numeric functions accept numeric input and return numeric values. Each numeric function returns a single value for each row that is evaluated. The numeric functions that SQL supports are listed and described in Oracle Database SQL Language Reference.	
The query in Example 4-18 uses the numeric function ROUND	
to display the daily pay of each employee in department 100, rounded to the nearest cent.	
Example 4-18 Rounding Numeric Data	
Result:	
The query in Example 4-19 uses the numeric function TRUNC	
to display the daily pay of each employee in department 100, truncated to the nearest dollar.	
Example 4-19 Truncating Numeric Data	
Result:	
The concatenation operator (
. You can use this operator to combine information from two columns or expressions in the same column of the report, as in the query in Example 4-20.	
Character functions accept character input. Most return character values, but some return numeric values. Each character function returns a single value for each row that is evaluated. The character functions that SQL supports are listed and described in Oracle Database SQL Language Reference.	
The functions UPPER	
, INITCAP	
, and LOWER	
display their character arguments in uppercase, initial capital, and lowercase, respectively.	
The query in Example 4-21 displays LAST_NAME	
in uppercase, FIRST_NAME	
with the first character in uppercase and all others in lowercase, and EMAIL	
in lowercase.	
Example 4-21 Changing the Case of Character Data	
Result:	
The functions LTRIM	
and RTRIM	
trim characters from the left and right ends of their character arguments, respectively. The function TRIM	
trims leading zeros, trailing zeros, or both.	
The query in Example 4-22 finds every clerk in the EMPLOYEES	
table and trims '_CLERK'	
from the JOB_ID	
, displaying only the characters that identify the type of clerk.	
Example 4-22 Trimming Character Data	
Result:	
The functions LPAD	
and RPAD	
pad their character arguments on the left and right, respectively, with a specified character (the default character is a space).	
The query in Example 4-23 displays FIRST_NAME	
and LAST_NAME	
in 15-character columns, blank-padding FIRST_NAME	
on the left and LAST_NAME	
on the right.	
Example 4-23 Padding Character Data	
Result:	
The SUBSTR	
function accepts as arguments a string, a character position, and a length, and returns the substring that starts at the specified position in the string and has the specified length.	
The query in Example 4-24 uses SUBSTR	
to abbreviate FIRST_NAME	
to first initial and to strip the area code from PHONE_NUMBER	
.	
Example 4-24 Extracting Substrings from Character Data	
Result:	
The REPLACE	
function replaces one substring with another.	
The query in Example 4-25 uses the SUBSTR	
function in the WHERE	
clause to select the employees whose JOB_ID	
starts with 'SH'	
, and uses the REPLACE	
function to replace 'SH'	
with 'SHIPPING'	
in each such JOB_ID	
.	
Example 4-25 Replacing Substrings in Character Data	
Result:	
Datetime functions operate on date, timestamp, and interval values. Each datetime function returns a single value for each row that is evaluated. The datetime functions that SQL supports are listed and described in Oracle Database SQL Language Reference.	
To understand Example 4-26, you must understand the JOB_HISTORY	
table.	
When an employee changes jobs, the START_DATE	
and END_DATE	
of his or her previous job are recorded in the JOB_HISTORY	
table. Employees who have changed jobs more than once have multiple rows in the JOB_HISTORY	
table, as the following query and its results show:	
Result:	
The query in Example 4-26 uses the MONTHS_BETWEEN	
function to show how many months each employee held each of his or her previous jobs. For information about the MONTHS_BETWEEN	
function, see Oracle Database SQL Language Reference.	
Example 4-26 Displaying the Number of Months Between Dates	
Result:	
The query in Example 4-27 uses the EXTRACT	
and SYSDATE	
functions to show how many years each employee in department 100 has been employed. The SYSDATE	
function returns the current date of the system clock. For more information about the SYSDATE	
function, see Oracle Database SQL Language Reference. For information about the EXTRACT	
function, see Oracle Database SQL Language Reference.	
Example 4-27 Displaying the Number of Years Between Dates	
Result:	
Suppose that an employee receives his or her first check on the last day of the month in which he or she was hired. The query in Example 4-28 uses the LAST_DAY	
function to show the first pay day for each employee in department 100. For information about the LAST_DAY	
function, see Oracle Database SQL Language Reference.	
Example 4-28 Displaying the Last Day of a Selected Month	
Result:	
Suppose that an employee receives his or her first evaluation six months after being hired. The query in Example 4-29 uses the ADD_MONTHS	
function to show the first evaluation day for each employee in department 100. For information about the ADD_MONTHS	
function, see Oracle Database SQL Language Reference.	
Example 4-29 Displaying a Date Six Months from a Selected Date	
Result:	
The query in Example 4-30 uses the SYSTIMESTAMP	
function to display the current system time and date. SYSTIMESTAMP	
is similar to SYSDATE	
, but it returns more information. For information about the SYSTIMESTAMP	
function, see Oracle Database SQL Language Reference.	
The table in the FROM	
clause of the query, DUAL	
, is a one-row table that Oracle Database creates automatically along with the data dictionary. Select from DUAL	
when you want to compute a constant expression with the SELECT	
statement. Because DUAL	
has only one row, the constant is returned only once. For more information about selecting from DUAL	
, see Oracle Database SQL Language Reference.	
Example 4-30 Displaying System Date and Time	
Results depend on current SYSTIMESTAMP	
value, but have this format:	
Conversion functions convert one data type to another. The conversion functions that SQL supports are listed and described in Oracle Database SQL Language Reference.	
The query in Example 4-31 uses the TO_CHAR	
function to convert HIRE_DATE	
values (which are of type DATE	
) to character values that have the format FMMonth	
DD	
YYYY	
. FM	
removes leading and trailing blanks from the month name. FMMonth	
DD	
YYYY	
is an example of a datetime format model.	
Example 4-31 Converting Dates to Characters Using a Format Template	
Result:	
The query in Example 4-32 uses the TO_CHAR	
function to convert HIRE_DATE	
values to character values that have the two standard formats DS	
(Date Short) and DL	
(Date Long).	
Example 4-32 Converting Dates to Characters Using Standard Formats	
Result:	
The query in Example 4-33 uses the TO_CHAR	
function to convert SALARY	
values (which are of type NUMBER	
) to character values that have the format $99,999.99	
.	
Example 4-33 Converting Numbers to Characters Using a Format Template	
Result:	
The query in Example 4-34 uses the TO_NUMBER	
function to convert POSTAL_CODE	
values (which are of type VARCHAR2	
) to values of type NUMBER	
, which it uses in calculations.	
Example 4-34 Converting Characters to Numbers	
Result:	
The query in Example 4-35 uses the TO_DATE	
function to convert a string of characters whose format is Month	
dd,	
YYYY,	
HH:MI	
A.M.	
to a DATE	
value.	
Example 4-35 Converting a Character String to a Date	
Result:	
The query in Example 4-36 uses the TO_TIMESTAMP	
function to convert a string of characters whose format is DD-Mon-RR	
HH24:MI:SS.FF	
to a TIMESTAMP	
value.	
Example 4-36 Converting a Character String to a Time Stamp	
Result:	
See Also:	
An aggregate function returns a single result row, based on a group of rows. The group of rows can be an entire table or view. The aggregate functions that SQL supports are listed and described in Oracle Database SQL Language Reference.	
Aggregate functions are especially powerful when used with the GROUP	
BY	
clause, which groups query results by one or more columns, with a result for each group.	
The query in Example 4-37 uses the COUNT	
function and the GROUP	
BY	
clause to show how many people report to each manager. The wildcard character, *	
, represents an entire record.	
Example 4-37 Counting the Number of Rows in Each Group	
Result:	
Example 4-37 shows that one employee does not report to a manager. The following query selects the first name, last name, and job title of that employee:	
Result:	
When used with the DISTINCT	
option, the COUNT	
function shows how many distinct values are in a data set.	
The two queries in Example 4-38 show the total number of departments and the number of departments that have employees.	
Example 4-38 Counting the Number of Distinct Values in a Set	
Result:	
Result:	
The query in Example 4-39 uses several aggregate functions to show statistics for the salaries of each JOB_ID	
.	
Example 4-39 Using Aggregate Functions for Statistical Information	
Result:	
To have the query return only rows where aggregate values meet specified conditions, use the HAVING	
clause.	
The query in Example 4-40 shows how much each department spends annually on salaries, but only for departments for which that amount exceeds $1,000,000.	
Example 4-40 Limiting Aggregate Functions to Rows that Satisfy a Condition	
Result:	
The RANK	
function returns the relative ordered rank of a number, and the PERCENT_RANK	
function returns the percentile position of a number.	
The query in Example 4-41 shows that a salary of $3,000 is the 20th highest, and is in the 42nd percentile, among all clerks.	
Example 4-41 Showing the Rank and Percentile of a Number Within a Group	
Result:	
The DENSE_RANK	
function is like the RANK	
function, except that the identical values have the same rank, and there are no gaps in the ranking. Using the DENSE_RANK	
function, $3,000 is the 12th highest salary for clerks, as Example 4-42 shows.	
Example 4-42 Showing the Dense Rank of a Number Within a Group	
Result:	
The NULL	
-related functions facilitate the handling of NULL	
values. The NULL	
-related functions that SQL supports are listed and described in Oracle Database SQL Language Reference.	
The query in Example 4-43 returns the last name and commission of the employees whose last names begin with 'B'	
. If an employee receives no commission (that is, if COMMISSION_PCT	
is NULL	
), the NVL	
function substitutes "Not Applicable" for NULL	
.	
Example 4-43 Substituting a String for a NULL Value	
Result:	
The query in Example 4-44 returns the last name, salary, and income of the employees whose last names begin with 'B'	
, using the NVL2	
function: If COMMISSION_PCT	
is not NULL	
, the income is the salary plus the commission; if COMMISSION_PCT	
is NULL	
, income is only the salary.	
Example 4-44 Specifying Different Expressions for NULL and Not NULL Values	
Result:	
See Also:	
A CASE	
expression lets you use IF	
... THEN	
... ELSE	
logic in SQL statements without invoking procedures.	
The query in Example 4-45 uses a CASE	
expression to show proposed salary increases, based on length of service.	
Example 4-45 Using a CASE Expression in a Query	
Result:	
See Also:	
The DECODE	
function compares a value or expression to search values, and returns a result when it finds a match. If a match is not found, then DECODE	
returns the default value, or NULL	
(if a default value is not specified).	
The query in Example 4-46 uses the DECODE	
function to show proposed salary increases for three different jobs.	
Example 4-46 Using the DECODE Function in a Query	
Result:	
This chapter contains the following topics:	
Data manipulation language (DML) statements access and manipulate data in existing tables.	
In the SQL*Plus environment, you can enter a DML statement after the SQL>	
prompt.	
In the SQL Developer environment, you can enter a DML statement in the SQL Worksheet. Alternatively, you can use the SQL Developer navigation frame and tools to access and manipulate data.	
To see the effect of a DML statement in SQL Developer, you might have to click the Refresh icon.	
The effect of a DML statement is not permanent until you commit the transaction that includes it. A transaction is a sequence of SQL statements that Oracle Database treats as a unit (it can be a single DML statement). Until a transaction is committed, it can be rolled back (undone). For more information about transactions, see "About Transaction Control Statements".	
Topics:	
The INSERT	
statement inserts rows into an existing table.	
The simplest recommended form of the INSERT	
statement has this syntax:	
Every column in list_of_columns	
must have a valid value in the corresponding position in list_of_values	
. Therefore, before you insert a row into a table, you must know what columns the table has, and what their valid values are. To get this information using SQL Developer, see "Tutorial: Viewing EMPLOYEES Table Properties and Data". To get this information using SQL*Plus, use the DESCRIBE	
statement. For example:	
Result:	
The INSERT	
statement in Example 5-1 inserts a row into the EMPLOYEES	
table for an employee for which all column values are known.	
Example 5-1 Using the INSERT Statement When All Information Is Available	
Result:	
You do not need to know all column values to insert a row into a table, but you must know the values of all NOT	
NULL	
columns. If you do not know the value of a column that can be NULL	
, you can omit that column from list_of_columns	
. Its value defaults to NULL	
.	
The INSERT	
statement in Example 5-2 inserts a row into the EMPLOYEES	
table for an employee for which all column values are known except SALARY	
. For now, SALARY	
can have the value NULL	
. When you know the salary, you can change it with the UPDATE	
statement (see Example 5-4).	
Example 5-2 Using the INSERT Statement When Not All Information Is Available	
Result:	
The INSERT	
statement in Example 5-3 tries to insert a row into the EMPLOYEES	
table for an employee for which LAST_NAME	
is not known.	
Example 5-3 Using the INSERT Statement Incorrectly	
Result:	
See Also:	
The UPDATE	
statement updates (changes the values of) a set of existing table rows.	
A simple form of the UPDATE	
statement has this syntax:	
Each value	
must be valid for its column_name	
. If you include the WHERE	
clause, the statement updates column values only in rows that satisfy condition	
.	
The UPDATE	
statement in Example 5-4 updates the value of the SALARY	
column in the row that was inserted into the EMPLOYEES	
table in Example 5-2, before the salary of the employee was known.	
Example 5-4 Using the UPDATE Statement to Add Data	
Result:	
The UPDATE	
statement in Example 5-5 updates the commission percentage for every employee in department 80.	
Example 5-5 Using the UPDATE Statement to Update Multiple Rows	
Result:	
See Also:	
The DELETE	
statement deletes rows from a table.	
A simple form of the DELETE	
statement has this syntax:	
If you include the WHERE	
clause, the statement deletes only rows that satisfy condition	
. If you omit the WHERE	
clause, the statement deletes all rows from the table, but the empty table still exists. To delete a table, use the DROP	
TABLE	
statement.	
The DELETE	
statement in Example 5-6 deletes the rows inserted in Example 5-1 and Example 5-2.	
Example 5-6 Using the DELETE Statement	
Result:	
See Also:	
A transaction is a sequence of one or more SQL statements that Oracle Database treats as a unit: either all of the statements are performed, or none of them are.	
You need transactions to model business processes that require that several operations be performed as a unit. For example, when a manager leaves the company, a row must be inserted into the JOB_HISTORY	
table to show when the manager left, and for every employee who reports to that manager, the value of MANAGER_ID	
must be updated in the EMPLOYEES	
table. To model this process in an application, you must group the INSERT	
and UPDATE	
statements into a single transaction.	
The basic transaction control statements are:	
SAVEPOINT	
, which marks a savepoint in a transaction—a point to which you can later roll back. Savepoints are optional, and a transaction can have multiple savepoints. COMMIT	
, which ends the current transaction, makes its changes permanent, erases its savepoints, and releases its locks. ROLLBACK	
, which rolls back (undoes) either the entire current transaction or only the changes made after the specified savepoint. In the SQL*Plus environment, you can enter a transaction control statement after the SQL>	
prompt.	
In the SQL Developer environment, you can enter a transaction control statement in the SQL Worksheet. SQL Developer also has Commit Changes and Rollback Changes icons, which are explained in "Committing Transactions" and "Rolling Back Transactions".	
Caution: If you do not explicitly commit a transaction, and the program terminates abnormally, then the database automatically rolls back the last uncommitted transaction.Oracle recommends that you explicitly end transactions in application programs, by either committing them or rolling them back.	
See Also:	
Committing a transaction makes its changes permanent, erases its savepoints, and releases its locks.	
To explicitly commit a transaction, use either the COMMIT	
statement or (in the SQL Developer environment) the Commit Changes icon.	
Note: Oracle Database issues an implicitCOMMIT statement before and after any data definition language (DDL) statement. For information about DDL statements, see "About Data Definition Language (DDL) Statements".	
Before you commit a transaction:	
ROLLBACK	
statement. After you commit a transaction:	
ROLLBACK	
statement. Example 5-7 adds one row to the REGIONS	
table (a very simple transaction), checks the result, and then commits the transaction.	
Example 5-7 Committing a Transaction	
Before transaction:	
Result:	
Transaction (add row to table):	
Result:	
Check that row was added:	
Result:	
Commit transaction:	
Result:	
Rolling back a transaction undoes its changes. You can roll back the entire current transaction, or you can roll it back only to a specified savepoint.	
To roll back the current transaction only to a specified savepoint, you must use the ROLLBACK	
statement with the TO	
SAVEPOINT	
clause.	
To roll back the entire current transaction, use either the ROLLBACK	
statement without the TO	
SAVEPOINT	
clause, or (in the SQL Developer environment) the Rollback Changes icon.	
Rolling back the entire current transaction:	
Rolling back the current transaction only to the specified savepoint:	
Other transactions that have requested access to rows locked after the specified savepoint must continue to wait until the transaction is either committed or rolled back. Other transactions that have not requested the rows can request and access the rows immediately.	
To see the effect of a rollback in SQL Developer, you might have to click the Refresh icon.	
As a result of Example 5-7, the REGIONS	
table has a region called 'Middle East and Africa' and a region called 'Africa'. Example 5-8 corrects this problem (a very simple transaction) and checks the change, but then rolls back the transaction and checks the rollback.	
Example 5-8 Rolling Back an Entire Transaction	
Before transaction:	
Result:	
Transaction (change table):	
Result:	
Check change:	
Result:	
Roll back transaction:	
Result:	
Check rollback:	
Result:	
The SAVEPOINT	
statement marks a savepoint in a transaction—a point to which you can later roll back. Savepoints are optional, and a transaction can have multiple savepoints.	
Example 5-9 does a transaction that includes several DML statements and several savepoints, and then rolls back the transaction to one savepoint, undoing only the changes made after that savepoint.	
Example 5-9 Rolling Back a Transaction to a Savepoint	
Check REGIONS	
table before transaction:	
Result:	
Check countries in region 4 before transaction:	
Result:	
Check countries in region 5 before transaction:	
Result:	
Transaction, with several savepoints:	
Check REGIONS	
table after transaction:	
Result:	
Check countries in region 4 after transaction:	
Result:	
Check countries in region 5 after transaction:	
Result:	
Check REGIONS	
table after rollback:	
Result:	
Check countries in region 4 after rollback:	
Result:	
Check countries in region 5 after rollback:	
Result:	
This chapter contains the following topics:	
The statements that create, change, and drop schema objects are data definition language (DDL) statements. Before and after a DDL statement, Oracle Database issues an implicit COMMIT	
statement; therefore, you cannot roll back a DDL statement.	
In the SQL*Plus environment, you can enter a DDL statement after the SQL>	
prompt.	
In the SQL Developer environment, you can enter a DDL statement in the SQL Worksheet. Alternatively, you can use SQL Developer tools to create, change, and drop objects.	
Some DDL statements that create schema objects have an optional OR	
REPLACE	
clause, which allows a statement to replace an existing schema object with another that has the same name and type. When SQL Developer generates code for one of these statements, it always includes the OR	
REPLACE	
clause.	
To see the effect of a DDL statement in SQL Developer, you might have to click the Refresh icon.	
See Also:	
When creating schema objects, you must observe the schema object naming rules in Oracle Database SQL Language Reference.	
Tip: Use the same prefix for names of objects of the same type. For example,t_ for tables, v_ for views, seq_ for sequences, and syn_ for synonyms. This practice makes your objects easy to identify, and groups them in the SQL Developer Connections navigator display, SQL Developer reports, and queries whose results are ordered by object name.	
Tables are the basic units of data storage in Oracle Database. Tables hold all user-accessible data. Each table contains rows that represent individual data records. Rows are composed of columns that represent the fields of the records.	
Topics:	
Note: To do the tutorials in this document, you must be connected to Oracle Database as the userHR from SQL Developer. For instructions, see "Connecting to Oracle Database as User HR from SQL Developer".	
See Also:	
When you create a table, you must specify the SQL data type for each column. The data type of a column determines what values the column can contain. For example, a column of type DATE	
can contain the value '01-MAY-05'	
, but it cannot contain the numeric value 2 or the character value 'shoe'	
. SQL data types fall into two categories: built-in and user-defined. (PL/SQL has additional data types—see "About PL/SQL Data Types".)	
See Also:	
To create tables, use either the SQL Developer tool Create Table or the DDL statement CREATE	
TABLE	
. This topic shows how to use both of these ways to create these tables, which will contain data about employee evaluations:	
PERFORMANCE_PARTS	
, which contains the categories of employee performance that are evaluated and their relative weights EVALUATIONS	
, which contains employee information, evaluation date, job, manager, and department SCORES	
, which contains the scores assigned to each performance category for each evaluation These tables are part of the sample application that the tutorials and examples in this document show how to develop and deploy.	
Topics:	
This tutorial shows how to create the PERFORMANCE_PARTS	
table using the Create Table tool.	
To create the PERFORMANCE_PARTS table using the Create Table tool:	
Under the hr_conn	
icon, a list of schema object types appears.	
A list of choices appears.	
The Create Table window opens, with default values for a new table, which has only one row.	
HR	
. PERFORMANCE_PARTS	
. PERFORMANCE_ID	
. VARCHAR2	
. 2	
. NAME	
. VARCHAR2	
. 80	
. WEIGHT	
. NUMBER	
. The table PERFORMANCE_PARTS	
is created. To see it, expand Tables in the navigation frame.	
See Also: Oracle Database SQL Developer User's Guide for more information about using SQL Developer to create tables	
This topic shows how to use the CREATE	
TABLE	
statement to create the EVALUATIONS	
and SCORES	
tables.	
The CREATE	
TABLE	
statement in Example 6-1 creates the EVALUATIONS	
table.	
Example 6-1 Creating the EVALUATIONS Table with CREATE TABLE	
Result:	
The CREATE	
TABLE	
statement in Example 6-2 creates the SCORES	
table.	
Example 6-2 Creating the SCORES Table with CREATE TABLE	
Result:	
In SQL Developer, in the navigation frame, if you expand Tables, you can see the tables EVALUATIONS	
and SCORES	
.	
If you select a table in the navigation frame, and then click the tab SQL in the right frame, the SQL pane shows the SQL statement that created the table.	
To ensure that the data in your tables satisfies the business rules that your application models, you can use constraints, application logic, or both.	
Constraints restrict the values that columns can have. Trying to change the data in a way that violates a constraint causes an error and rolls back the change. Trying to add a constraint to a populated table causes an error if existing data violates the constraint.	
Tip: Wherever possible, use constraints instead of application logic. Oracle Database checks that all data obeys constraints much faster than application logic can.	
Constraints can be enabled and disabled. By default, they are created in the enabled state.	
Topics:	
See Also:	
In the EMPLOYEES
table, the column LAST_NAME
has the NOT
NULL
constraint, which enforces the business rule that every employee must have a last name.
In the EMPLOYEES
table, the column EMAIL
has the UNIQUE
constraint, which enforces the business rule that an employee can have no email address, but cannot have the same email address as another employee.
NOT
NULL
and UNIQUE
In the EMPLOYEES
table, the column EMPLOYEE_ID
has the PRIMARY
KEY
constraint, which enforces the business rule that every employee must have a unique employee identification number.
In the EMPLOYEES
table, the column JOB_ID
has a FOREIGN
KEY
constraint that references the JOBS
table, which enforces the business rule that an employee cannot have a JOB_ID
that is not in the JOBS
table.
The EMPLOYEES
table does not have CHECK
constraints. However, suppose that EMPLOYEES
needs a new column, EMPLOYEE_AGE
, and that every employee must be at least 18. The constraint CHECK
(EMPLOYEE_AGE
>=
18)
enforces the business rule.
Tip: Use check constraints only when other constraint types cannot provide the necessary checking. |
For information about REF constraints, see Oracle Database Concepts.
See Also:
|
To add constraints to existing tables, use either SQL Developer tools or the DDL statement ALTER
TABLE
. This topic shows how to use both of these ways to add constraints to the tables created in "Creating Tables".
This tutorial has several procedures. The first procedure (immediately after this paragraph) uses the Edit Table tool to add a Not Null constraint to the NAMES
column of the PERFORMANCE_PARTS
table. The remaining procedures show how to use other tools to add constraints; however, you could add the same constraints using the Edit Table tool.
Note: After any step of the tutorial, you can view the constraints that a table has:
For more information about viewing table properties and data, see "Tutorial: Viewing EMPLOYEES Table Properties and Data". |
To add a Not Null constraint using the Edit Table tool:
Under the hr_conn
icon, a list of schema object types appears.
A list of tables appears.
A list of choices appears.
The Edit Table window opens. By default, Columns is selected, the columns of the PERFORMANCE_PARTS
table are listed, the column PERFORMANCE_ID
is selected, and its properties are listed.
The properties of the column NAME
appear. The property "Cannot be NULL" is deselected.
The Not Null constraint is added to the NAME
column of the PERFORMANCE_PARTS
table.
The following procedure uses the ALTER
TABLE
statement to add a Not Null constraint to the WEIGHT
column of the PERFORMANCE_PARTS
table.
To add a Not Null constraint using the ALTER TABLE statement:
The SQL Worksheet pane appears.
The statement runs, adding the Not Null constraint to the WEIGHT
column of the PERFORMANCE_PARTS
table.
The following procedure uses the Add Unique tool to add a Unique constraint to the SCORES
table.
To add a Unique constraint using the Add Unique tool:
Under the hr_conn
icon, a list of schema object types appears.
A list of tables appears.
A list of choices appears.
A list of choices appears.
The Add Unique window opens.
SCORES_EVAL_PERF_UNIQUE
. EVALUATION_ID
from the drop-down menu. PERFORMANCE_ID
from the drop-down menu. The Confirmation window opens.
A unique constraint named SCORES_EVAL_PERF_UNIQUE
is added to the SCORES
table.
The following procedure uses the Add Primary Key tool to add a Primary Key constraint to the PERFORMANCE_ID
column of the PERFORMANCE_PARTS
table.
To add a Primary Key constraint using the Add Primary Key tool:
Under the hr_conn
icon, a list of schema object types appears.
A list of tables appears.
A list of choices appears.
A list of choices appears.
The Add Primary Key window opens.
PERF_PERF_ID_PK
. PERFORMANCE_ID
from the drop-down menu. The Confirmation window opens.
A primary key constraint named PERF_PERF_ID_PK
is added to the PERFORMANCE_ID
column of the PERFORMANCE_PARTS
table.
The following procedure uses the ALTER
TABLE
statement to add a Primary Key constraint to the EVALUATION_ID
column of the EVALUATIONS
table.
To add a Primary Key constraint using the ALTER TABLE statement:
The SQL Worksheet pane appears. Under "Enter SQL Statement:" is a field where you can enter a SQL statement.
The statement runs, adding the Primary Key constraint to the EVALUATION_ID
column of the EVALUATIONS
table.
The following procedure uses the Add Foreign Key tool to add two Foreign Key constraints to the SCORES
table.
To add two Foreign Key constraints using the Add Foreign Key tool:
Under the hr_conn
icon, a list of schema object types appears.
A list of tables appears.
A list of choices appears.
A list of choices appears.
The Add Foreign Key window opens.
SCORES_EVAL_FK
. EVALUATION_ID
from the drop-down menu. EVALUATIONS
from the drop-down menu. EVALUATION_ID
from the drop-down menu. The Confirmation window opens.
A foreign key constraint named SCORES_EVAL_FK
is added to the EVALUTION_ID
column of the SCORES
table, referencing the EVALUTION_ID
column of the EVALUATIONS
table.
The following steps add another foreign key constraint to the SCORES
table.
A list of tables appears.
A list of choices appears.
The Add Foreign Key window opens.
SCORES_PERF_FK
. PERFORMANCE_ID
from the drop-down menu. PERFORMANCE_PARTS
from the drop-down menu. PERFORMANCE_ID
from the drop-down menu. The Confirmation window opens.
A foreign key constraint named SCORES_PERF_FK
is added to the EVALUTION_ID
column of the SCORES
table, referencing the EVALUTION_ID
column of the EVALUATIONS
table.
The following procedure uses the ALTER
TABLE
statement to add a Foreign Key constraint to the EMPLOYEE_ID
column of the EVALUATIONS
table, referencing the EMPLOYEE_ID
column of the EMPLOYEES
table.
To add a Foreign Key constraint using the ALTER TABLE statement:
The SQL Worksheet pane appears. Under "Enter SQL Statement:" is a field where you can enter a SQL statement.
The statement runs, adding the Foreign Key constraint to the EMPLOYEE_ID
column of the EVALUATIONS
table, referencing the EMPLOYEE_ID
column of the EMPLOYEES
table.
The following procedure uses the Add Check tool to add a Check constraint to the SCORES
table.
To add a Check constraint using the Add Check tool:
Under the hr_conn
icon, a list of schema object types appears.
A list of tables appears.
A list of choices appears.
A list of choices appears.
The Add Check window opens.
SCORE_VALID
. score
>=
0
and
score
<=
9
. ENABLE
. The Confirmation window opens.
A Check constraint named SCORE_VALID
is added to the SCORES
table.
See Also:
|
This tutorial shows how to use the Insert Row tool to add six populated rows to the PERFORMANCE_PARTS
table (created in "Tutorial: Creating a Table with the Create Table Tool").
To add rows to the PERFORMANCE_PARTS table using the Insert Row tool:
Under the hr_conn
icon, a list of schema object types appears.
A list of tables appears.
The Data pane appears, showing the names of the columns of the PERFORMANCE_PARTS
table and no rows.
In the Data pane, click the icon Insert Row.
A new row appears, with empty columns.
PERFORMANCE_ID
. Type WM
.
The value of PERFORMANCE_ID
is now WM
.
NAME
. Type Workload
Management
.
The value of NAME
is now Workload
Management
.
WEIGHT
. Type 0.2
.
Press the key Enter.
The value of WEIGHT
is now 0.2
.
PERFORMANCE_ID
, type BR
. NAME
, type Building Relationships
. WEIGHT
, type 0.2
. PERFORMANCE_ID
, type CF
. NAME
, type Customer Focus
. WEIGHT
, type 0.2
. PERFORMANCE_ID
, type CM
. NAME
, type Communication
. WEIGHT
, type 0.2
. PERFORMANCE_ID
, type TW
. NAME
, type Teamwork
. WEIGHT
, type 0.2
. PERFORMANCE_ID
, type RO
. NAME
, type Results Orientation
. WEIGHT
, type 0.2
. Under the Data pane is the Data Editor Log pane.
This tutorial shows how to change three of the WEIGHT
values in the PERFORMANCE_PARTS
table (populated in "Tutorial: Adding Rows to Tables with the Insert Row Tool") in the Data pane.
To change data in the PERFORMANCE_PARTS table using the Data pane:
Under the hr_conn
icon, a list of schema object types appears.
A list of tables appears.
The Data pane appears, showing the rows of the PERFORMANCE_PARTS
table.
NAME
is Workload
Management
: WEIGHT
value. 0.3
. NAME
is Building
Relationships
: WEIGHT
value. 0.15
. NAME
is Customer
Focus
: WEIGHT
value. 0.15
. This icon is a picture of a data drum with a green check mark in the lower right corner.
Under the Data pane is the Data Editor Log pane.
This tutorial shows how to use the Delete Selected Row(s) tool to delete a row from the PERFORMANCE_PARTS
table (populated in "Tutorial: Adding Rows to Tables with the Insert Row Tool").
To delete row from PERFORMANCE_PARTS using Delete Selected Row(s) tool:
Under the hr_conn
icon, a list of schema object types appears.
A list of tables appears.
The Data pane appears, showing the rows of the PERFORMANCE_PARTS
table.
NAME
is Results
Orientation
. The row is deleted.
Under the Data pane is the Data Editor - Log pane.
Note: If you delete every row of a table, the empty table still exists. To delete a table, see "Dropping Tables". |
You can create indexes on one or more columns of a table to speed SQL statement execution on that table. When properly used, indexes are the primary means of reducing disk I/O.
When you define a primary key on a table, Oracle Database creates a Unique index on the primary key. For example, in "Tutorial: Adding Constraints to Existing Tables", you added a Primary Key constraint to the EVALUATION_ID
column of the EVALUATIONS
table. Therefore, if you select the EVALUATIONS
table in the SQL Developer navigation frame and click the Indexes tab, the Indexes pane shows a Unique index on the EVALUATION_ID
column.
Topics:
See Also: For more information about indexes: |
To create an index, use either the SQL Developer tool Create Index or the DDL statement CREATE
INDEX
.
This tutorial shows how to use the Create Index tool to add an index to the EVALUATIONS
table (created in "Creating Tables with the CREATE TABLE Statement"). The equivalent DDL statement is:
To add an index to the EVALUATIONS table using the Create Index tool:
Under the hr_conn
icon, a list of schema object types appears.
A list of tables appears, including EVALUATIONS
.
A list of choices appears.
A list of choices appears.
The Create Index window opens.
HR
. EVAL_JOB_IX
. The Definition pane shows the default values for index properties.
JOB_ID
. (For all other properties, accept the default values.)
Now the EVALUATIONS
table has an index named EVAL_JOB_IX
on the column JOB_ID
.
To change an index, use either the SQL Developer tool Edit Index or the DDL statements DROP
INDEX
and CREATE
INDEX
.
This tutorial shows how to use the Edit Index tool to reverse the sort order of the index EVAL_JOB_IX
(created in "Tutorial: Adding an Index with the Create Index Tool"). The equivalent DDL statements are:
To reverse the sort order of the index EVAL_JOB_IX using the Edit Index tool:
Under the hr_conn
icon, a list of schema object types appears.
A list of indexes appears, including EVAL_JOB_IX
.
A list of choices appears.
A list of choices appears.
The Edit Index window opens.
DESC
. To drop an index, use either the SQL Developer tool Drop or the DDL statement DROP
INDEX
.
This tutorial shows how to use the navigation frame and Drop tool to drop the index EVAL_JOB_IX
(created in "Tutorial: Adding an Index with the Create Index Tool"). The equivalent DDL statement is:
To drop the index EVAL_JOB_IX:
Under the hr_conn
icon, a list of schema object types appears.
A list of indexes appears, including EVAL_JOB_IX
.
A list of choices appears.
The Drop window opens.
The Confirmation window opens.
To drop a table, use either the SQL Developer navigation frame and Drop tool, or the DDL statement DROP
TABLE
.
Caution: Do not drop any of the tables that you created in "Creating Tables"—you need them for later tutorials. If you want to practice dropping tables, create simple ones and then drop them. |
To drop a table using the Drop tool:
Under the hr_conn
icon, a list of schema object types appears.
A list of tables appears.
A list of choices appears.
A list of choices appears.
The Drop window opens.
The Confirmation window opens.
A view presents the output of a query as a table. In most places that you can use a table, you can use a view. Views are useful when you need frequent access to information that is stored in several different tables.
Topics:
See Also:
|
To create views, use either the SQL Developer tool Create View or the DDL statement CREATE
VIEW
. This topic shows how to use both of these ways to create these views:
SALESFORCE
, which contains the names and salaries of the employees in the Sales department EMP_LOCATIONS
, which contains the names and locations of all employees These view are part of the sample application that the tutorials and examples in this document show how to develop and deploy.
Topics:
See Also:
|
This tutorial shows how to create the SALESFORCE
view using the Create View tool.
To create the SALESFORCE view using the Create View tool:
Under the hr_conn
icon, a list of schema object types appears.
A list of choices appears.
The Create View window opens, with default values for a new view.
HR
. SALESFORCE
. The SQL Query pane appears.
In the SQL Query field:
SELECT
, type: FROM
, type: A message appears in the field SQL Parse Results.
The view SALESFORCE
is created. To see it, expand Views in the navigation frame.
See Also: Oracle Database SQL Developer User's Guide for more information about using SQL Developer to create views |
The CREATE
VIEW
statement in Example 6-3 creates the EMP_LOCATIONS
view, which joins four tables. (For information about joins, see Selecting Data from Multiple Tables.)
Example 6-3 Creating the EMP_LOCATIONS View with CREATE VIEW
Result:
To change the query in a view, use either the SQL Developer tool Edit View or the DDL statement CREATE
VIEW
with the OR
REPLACE
clause. To change the name of a view, use either the Rename tool or the RENAME
statement.
This tutorial shows how to use the Edit View tool to add the employees of the Marketing department to the SALESFORCE
view (created in "Tutorial: Creating a View with the Create View Tool") and the and Rename tool to change its name to SALES_MARKETING
. The equivalent DDL statements are:
To change the SALESFORCE view using the Edit View and Rename tools:
Under the hr_conn
icon, a list of schema object types appears.
A list of views appears.
A list of choices appears.
The Edit View window opens. Its SQL Query field contains the query to be changed.
Add this to the end of the query:
A message appears in the field SQL Parse Results.
The employees of the Marketing department are added to the SALESFORCE
view. Now change the name of the view to SALES_MARKETING
.
A list of choices appears.
The Rename window opens. It has a New View Name field.
SALES_MARKETING
. The Confirmation window opens.
See Also:
|
To drop a view, use either the SQL Developer navigation frame and Drop tool or the DDL statement DROP
VIEW
.
This tutorial shows how to use the navigation frame and Drop tool to drop the view SALES_MARKETING
(changed in "Tutorial: Changing Views with the Edit View and Rename Tools"). The equivalent DDL statement is:
To drop the view SALES_MARKETING using the Drop tool:
Under the hr_conn
icon, a list of schema object types appears.
A list of views appears.
A list of choices appears.
The Drop window opens.
The Confirmation window opens.
Sequences are schema objects that generate unique sequential values, which are very useful when you need unique primary keys. The HR
schema has three sequences: DEPARTMENTS_SEQ
, EMPLOYEES_SEQ
, and LOCATIONS_SEQ
.
Sequences are used through the pseudocolumns CURRVAL
and NEXTVAL
, which return the current and next values of the sequence, respectively. After creating a sequence, you must initialize it by using NEXTVAL
to get its first value. Only after the sequence is initialized does CURRVAL
return its current value.
Topics:
See Also:
|
To create a sequence, use either the SQL Developer tool Create Sequence or the DDL statement CREATE
SEQUENCE
.
This tutorial shows how to use the Create Database Sequence tool to create a sequence to use to generate primary keys for the EVALUATIONS
table (created in "Creating Tables with the CREATE TABLE Statement"). The equivalent DDL statement is:
This sequence is part of the sample application that the tutorials and examples in this document show how to develop and deploy.
To create EVALUATIONS_SEQ using the Create Database Sequence tool:
Under the hr_conn
icon, a list of schema object types appears.
A list of choices appears.
The Create Database Sequence window opens. The field Schema has the value HR
, and the field Name has the default value, SEQUENCE1
.
EVALUATIONS_SEQ
over the default value. The Properties pane appears.
The sequence EVALUATIONS_SEQ
is created. To see it, expand Sequences in the navigation frame.
See Also:
|
To drop a sequence, use either the SQL Developer navigation frame and Drop tool, or the DDL statement DROP
SEQUENCE
.
Caution: Do not drop the sequence that you created in "Tutorial: Creating a Sequence"—you need it for later tutorials. If you want to practice dropping sequences, create new ones and then drop them. |
To drop a sequence using the Drop tool:
Under the hr_conn
icon, a list of schema object types appears.
A list of sequences appears.
A list of choices appears.
The Drop window opens.
The Confirmation window opens.
A synonym is an alias for another schema object. Some reasons to use synonyms are security (for example, to hide the owner and location of an object) and convenience. Examples of convenience are:
SALES
, for a long object name, such as ACME_CO
.SALES_DATA
For example, if your application uses a table named DEPARTMENTS
, and its name changes to DIVISIONS
, you can create a DEPARTMENTS
synonym for that table and continue to reference it by its original name.
Topics:
To create a synonym, use either the SQL Developer tool Create Database Synonym or the DDL statement CREATE
SYNONYM
.
This tutorial shows how to use the Create Database Synonym tool to create the synonym EMP
for the EMPLOYEES
table. The equivalent DDL statement is:
This synonym is part of the sample application that the tutorials and examples in this document show how to develop and deploy.
To create a synonym using the Create Databse Synonym tool:
Under the hr_conn
icon, a list of schema object types appears.
A list of choices appears.
The Create Database Synonym window opens. The check box Public is deselected, the field Schema has the value HR
, and the field Name has the default value SYNONYM1
.
EMP
over the default value. The Properties pane appears. The Referenced Schema field has the value HR
, the option Object based is deselected, and the option Name based is selected.
The option Name based is now deselected.
EMPLOYEES
from the drop-down list. Object based means that the synonym refers to a specific schema object; in this case, the table EMPLOYEES
.
The synonym EMP
is created. To see it, expand Synonyms in the navigation frame. You can now use EMP
instead of EMPLOYEES
.
To drop a synonym, use either the SQL Developer navigation frame and Drop tool, or the DDL statement DROP
SYNONYM
.
Caution: Do not drop the synonym that you created in "Creating Synonyms"—you need it for later tutorials. If you want to practice dropping synonyms, create new ones and then drop them. |
To drop a synonym using the Drop tool:
Under the hr_conn
icon, a list of schema object types appears.
A list of synonyms appears.
A list of choices appears.
The Drop window opens.
The Confirmation window opens.
This chapter contains the following topics:
Tip: If you have problems creating or running PL/SQL code, check the Oracle Database trace files. TheUSER_DUMP_DEST initialization parameter specifies the current location of the trace files. You can find the value of this parameter by issuing SHOW PARAMETER USER_DUMP_DEST in the SQL Worksheet of SQL Developer or in SQL*Plus. For more information about trace files, see Oracle Database Performance Tuning Guide. |
A subprogram is a PL/SQL unit that consists of SQL and PL/SQL statements that solve a specific problem or perform a set of related tasks. A subprogram can have parameters, whose values are supplied by the invoker. A subprogram can be either a procedure or a function. Typically, you use a procedure to perform an action and a function to compute and return a value.
A stored subprogram is a subprogram that is stored in the database. Because they are stored in the database, stored programs can be used as building blocks for many different database applications. (A subprogram that is declared within another subprogram, or within an anonymous block, is called a nested subprogram or local subprogram. It cannot be invoked from outside the subprogram or block in which it is declared. An anonymous block is a block that is not stored in the database.)
There are two kinds of stored subprograms:
Standalone stored subprograms are useful for testing pieces of program logic, but when you are sure that they work as intended, Oracle recommends that you put them into packages.
See Also:
|
A package is a PL/SQL unit that consists of related subprograms and the explicit cursors and variables that they use.
Oracle recommends that you put your subprograms into packages. Some of the reasons are:
Hiding implementation details from client programs is a widely accepted best practice. Many Oracle customers follow this practice strictly, allowing client programs to access the database only by invoking PL/SQL subprograms. Some customers allow client programs to use SELECT
statements to retrieve information from database tables, but require them to invoke PL/SQL subprograms for all business functions that change the database.
For example, suppose that you developed a schema-level procedure named CONTINUE
before Oracle Database 11g Release 1 (11.1). Release 11.1 introduced the CONTINUE
statement. Therefore, if you ported your code to 11.1, it would no longer compile. However, if you had developed your procedure inside a package, your code would refer to the procedure as package_name
.CONTINUE
, so the code would still compile.
Standalone stored subprograms can send and receive only scalar parameters—single values with no internal components, such as VARCHAR2
, NUMBER
, and DATE
.
Note: Oracle Database supplies many PL/SQL packages to extend database functionality and provide PL/SQL access to SQL features. You can use the supplied packages when creating your applications or for ideas in creating your own stored procedures. For information about these packages, see Oracle Database PL/SQL Packages and Types Reference. |
See Also:
|
Every PL/SQL subprogram, package, parameter, variable, constant, exception, and explicit cursor has a name, which is a PL/SQL identifier.
The minimum length of an identifier is one character; the maximum length is 30 characters. The first character must be a letter, but each later character can be either a letter, numeral, dollar sign ($), underscore (_), or number sign (#). For example, these are acceptable identifiers:
PL/SQL is not case-sensitive for identifiers. For example, PL/SQL considers these to be the same:
You cannot use a PL/SQL reserved word as an identifier. You can use a PL/SQL keyword as an identifier, but it is not recommended. For lists of PL/SQL reserved words and keywords, see Oracle Database PL/SQL Language Reference.
See Also:
|
Every PL/SQL constant, variable, subprogram parameter, and function return value has a data type that determines its storage format, constraints, valid range of values, and operations that can be performed on it.
A PL/SQL data type is either a SQL data type (such as VARCHAR2
, NUMBER
, and DATE
) or a PL/SQL-only data type. The latter include BOOLEAN
, RECORD
, REF
CURSOR
, and many predefined subtypes. PL/SQL also lets you define your own subtypes.
A subtype is a subset of another data type, which is called its base type. A subtype has the same valid operations as its base type, but only a subset of its valid values. Subtypes can increase reliability, provide compatibility with ANSI/ISO types, and improve readability by indicating the intended use of constants and variables.
The predefined numeric subtype PLS_INTEGER
is especially useful, because its operations use hardware arithmetic, rather than the library arithmetic that its base type uses.
You cannot use PL/SQL-only data types at schema level (that is, in tables or standalone stored subprograms). Therefore, to use them in a stored subprogram, you must put the subprogram in a package.
See Also:
|
Topics:
Note: To do the tutorials in this document, you must be connected to Oracle Database as the userHR from SQL Developer. For instructions, see "Connecting to Oracle Database as User HR from SQL Developer". |
A subprogram follows PL/SQL block structure; that is, it has:
The declarative part contains declarations of types, constants, variables, exceptions, explicit cursors, and nested subprograms. These items are local to the subprogram and cease to exist when the subprogram completes execution.
The executable part contains statements that assign values, control execution, and manipulate data.
The exception-handling part contains code that handles exceptions (run-time errors).
Comments can appear anywhere in PL/SQL code. The PL/SQL compiler ignores them. Adding comments to your program promotes readability and aids understanding. A single-line comment starts with a double hyphen (--
) and extends to the end of the line. A multiline comment starts with a slash and asterisk (/*
) and ends with an asterisk and a slash (*/
).
The structure of a procedure is:
The structure of a function is like that of a procedure, except that it includes a RETURN
clause and at least one RETURN
statement (and some optional clauses that are beyond the scope of this document):
data_type
[clauses]The code that begins with PROCEDURE
or FUNCTION
and ends before IS
or AS
is the subprogram signature. The declarative, executable, and exception-handling parts comprise the subprogram body. The syntax of exception-handler
is in "About Exceptions and Exception Handlers".
To create a standalone stored procedure, use either the SQL Developer tool Create PL/SQL Procedure or the DDL statement CREATE
PROCEDURE
.
This tutorial shows how to use the Create PL/SQL Procedure tool to create a standalone stored procedure named ADD_EVALUATION
that adds a row to the EVALUATIONS
table (created in "Creating Tables with the CREATE TABLE Statement").
To create a standalone stored procedure using Create PL/SQL Procedure tool:
Under the hr_conn
icon, a list of schema object types appears.
A list of choices appears.
The Create PL/SQL Procedure window opens.
HR
. PROCEDURE1
to ADD_EVALUATION
. Click the icon Add Column.
A row appears under the column headings. Its fields have these default values: Name, param1
; Type, VARCHAR2
; Mode, IN
; Default Value, empty.
param1
to evaluation_id
. NUMBER
from the drop-down list. IN
. Leave Default Value empty.
employee_id
and the Type NUMBER
. evaluation_date
and the Type DATE
. job_id
and the Type VARCHAR2
. manager_id
and the Type NUMBER
. department_id
and the Type NUMBER
. total_score
and the Type NUMBER
. The ADD_EVALUATION
pane opens, showing the CREATE
PROCEDURE
statement that created the procedure:
Because the only statement in the execution part of the procedure is NULL
, the procedure does nothing.
NULL
with this statement: (Qualifying the parameter names with the procedure name ensures that they are not confused with the columns that have the same names.)
The title of the ADD_EVALUATION
pane is in italic font, indicating that the procedure is not yet saved in the database.
Oracle Database compiles the procedure and saves it. The title of the ADD_EVALUATION
pane is no longer in italic font.
See Also:
|
To create a standalone stored function, use either the SQL Developer tool Create PL/SQL Function or the DDL statement CREATE
FUNCTION
.
This tutorial shows how to use the Create PL/SQL Function tool to create a standalone stored function named calculate_score
that has three parameters and returns a value of type NUMBER
.
To create a standalone stored function using Create PL/SQL Function tool:
Under the hr_conn
icon, a list of schema object types appears.
A list of choices appears.
The Create PL/SQL Function window opens. It looks like the Create PL/SQL Procedure window (see "Tutorial: Creating a Standalone Stored Procedure") except that its Parameters pane has a row for the value that the function returns. In that row, the value of Name is <Return>
and the default value of Type is VARCHAR2
.
HR
. FUNCTION1
to calculate_score
. NUMBER
from the drop-down list. Click the icon Add Column.
A row appears under the column headings. Its fields have these default values: Name, param1
; Type, VARCHAR2
; Mode, IN
; Default Value, empty.
param1
to cat
. VARCHAR2
. IN
. Leave Default Value empty.
score
and the Type NUMBER
. weight
and the Type NUMBER
. The calculate_score
pane opens, showing the CREATE
FUNCTION
statement that created the function:
Because the only statement in the execution part of the function is RETURN
NULL
, the function does nothing.
NULL
with score
*
weight
. The title of the calculate_score
pane is in italic font, indicating that the function is not yet saved in the database.
Oracle Database compiles the function and saves it. The title of the calculate_score
pane is no longer in italic font.
See Also:
|
To change a standalone stored subprogram, use either the SQL Developer tool Edit or the DDL statement ALTER
PROCEDURE
or ALTER
FUNCTION
.
To change a standalone stored subprogram using the Edit tool:
Under the hr_conn
icon, a list of schema object types appears.
A list of functions or procedures appears.
To the right of the Connections pane, a frame appears. Its top tab has the name of the subprogram to change. Under the top tab are subtabs.
The Code pane appears, showing the code that created the subprogram to change.
Another pane appears, also with the name of the subprogram to change.
The title of the pane changes to italic font, indicating that the change is not yet saved in the database.
Oracle Database compiles the subprogram and saves it. The title of the pane is no longer in italic font.
See Also:
|
This tutorial shows how to use the SQL Developer tool Run to test the standalone stored function calculate_score
(created in "Tutorial: Creating a Standalone Stored Function").
To test the calculate_score function using the Run tool:
Under the hr_conn
icon, a list of schema object types appears.
A list of functions appears.
A list of choices appears.
The Run PL/SQL window opens. Its PL/SQL Block frame includes this code:
SCORE
and WEIGHT
to 8 and 0.2, respectively: The Running - Log window opens, showing this result:
See Also: Oracle Database SQL Developer User's Guide for information about using SQL Developer to run and debug procedures and functions |
To drop a standalone stored subprogram, use either the SQL Developer navigation frame and Drop tool, or the DDL statement DROP
PROCEDURE
or DROP
FUNCTION
.
To drop a standalone stored subprogram using the Drop tool:
Under the hr_conn
icon, a list of schema object types appears.
A list of functions or procedures appears.
A list of choices appears.
The Drop window opens.
The Confirmation window opens.
See Also:
|
Topics:
See Also: "Tutorial: Declaring Variables and Constants in a Subprogram", which shows how to change a package body |
A package always has a specification, and it usually has a body.
The package specification defines the package, declaring the types, variables, constants, exceptions, explicit cursors, and subprograms that can be referenced from outside the package. A package specification is an application program interface (API): It has all the information that client programs need to invoke its subprograms, but no information about their implementation.
The package body defines the queries for the explicit cursors, and the code for the subprograms, that are declared in the package specification (therefore, a package with neither explicit cursors nor subprograms does not need a body). The package body can also define local subprograms, which are not declared in the specification and can be invoked only by other subprograms in the package. Package body contents are hidden from client programs. You can change the package body without invalidating the applications that call the package.
See Also:
|
To create a package specification, use either the SQL Developer tool Create PL/SQL Package or the DDL statement CREATE
PACKAGE
.
This tutorial shows how to use the Create PL/SQL Package tool to create a specification for a package named EMP_EVAL
.
This package specification is the API for the sample application that the tutorials and examples in this document show how to develop and deploy.
To create a package specification using Create PL/SQL Package tool:
Under the hr_conn
icon, a list of schema object types appears.
A list of choices appears.
The Create PL/SQL Package window opens. The field Schema has the value HR
, the field Name has the default value PACKAGE1
, and the check box Add New Source In Lowercase is deselected.
HR
. PACKAGE1
to EMP_EVAL
. The EMP_EVAL
pane opens, showing the CREATE
PACKAGE
statement that created the package:
The title of the pane is in italic font, which indicates that the package is not saved to the database.
CREATE
PACKAGE
statement, replace the comment with declarations. If you do not do this step now, you can do it later, as shown in "Tutorial: Changing a Package Specification".
Oracle Database compiles the package and saves it. The title of the EMP_EVAL
pane is no longer in italic font.
See Also: Oracle Database PL/SQL Language Reference for information about theCREATE PACKAGE statement (for the package specification) |
To change a package specification, use either the SQL Developer tool Edit or the DDL statement CREATE
PACKAGE
with the OR
REPLACE
clause.
This tutorial shows how to use the Edit tool to change the specification for the EMP_EVAL
package (created in "Tutorial: Creating a Package Specification"). Specifically, the tutorial shows how to add declarations for a procedure, eval_department
, and a function, calculate_score
.
To change EMP_EVAL package specification using the Edit tool:
Under the hr_conn
icon, a list of schema object types appears.
A list of packages appears.
A list of choices appears.
The EMP_EVAL
pane opens, showing the CREATE
PACKAGE
statement that created the package:
The title of the pane is not in italic font, which indicates that the package is saved in the database.
EMP_EVAL
pane, replace the comment with this code: A new EMP_EVAL
pane opens, showing the changed CREATE
PACKAGE
statement. The title of the pane is in italic font, which indicates that the changes have not been saved to the database.
The changed package specification compiles and is saved to the database. The title of the EMP_EVAL
pane is no longer in italic font.
See Also: Oracle Database PL/SQL Language Reference for information about theCREATE PACKAGE statement with the OR REPLACE clause |
To create a package body, use either the SQL Developer tool Create Body or the DDL statement CREATE
PACKAGE
BODY
.
This tutorial shows how to use the Create Body tool to create a body for the EMP_EVAL
package (created in "Tutorial: Creating a Package Specification" and changed in "Tutorial: Changing a Package Specification").
This package body will contain the implementation details of the sample application that the tutorials and examples in this document show how to develop and deploy.
To create a body for the package EMP_EVAL using the Create Body tool:
Under the hr_conn
icon, a list of schema object types appears.
A list of packages appears.
A list of choices appears.
The EMP_EVAL
Body pane appears, showing the automatically generated code for the package body:
The title of the pane is in italic font, which indicates that the code is not saved in the database.
CREATE
PACKAGE
BODY
statement: NULL
or replace it with an executable statement. NULL
with another expression. If you do not do this step now, you can do it later, as shown in "Tutorial: Declaring Variables and Constants in a Subprogram".
The changed package body compiles and is saved to the database. The title of the EMP_EVAL
Body pane is no longer in italic font.
See Also: Oracle Database PL/SQL Language Reference for information about theCREATE PACKAGE BODY statement (for the package body) |
To drop a package (specification and body), use either the SQL Developer navigation frame and Drop tool, or the DDL statement DROP
PACKAGE
.
To drop a package using the Drop tool:
hr_conn
information by clicking the plus sign (+) to the left of the hr_conn
icon. Under the hr_conn
icon, a list of schema object types appears.
A list of packages appears.
A list of choices appears.
The Drop window opens.
The Confirmation window opens.
See Also: Oracle Database PL/SQL Language Reference for information about theDROP PACKAGE statement |
One significant advantage that PL/SQL has over SQL is that PL/SQL lets you declare and use variables and constants.
A variable or constant declared in a package specification can be used by any program that has access to the package. A variable or constant declared in a package body or subprogram is local to that package or subprogram.
A variable holds a value of a particular data type. Your program can change the value at run time. A constant holds a value that cannot be changed.
A variable or constant can have any PL/SQL data type. When declaring a variable, you can assign it an initial value; if you do not, its initial value is NULL
. When declaring a constant, you must assign it an initial value. To assign an initial value to a variable or constant, use the assignment operator (:=
).
Tip: Declare all values that do not change as constants. This practice optimizes your compiled code and makes your source code easier to maintain. |
Topics:
See Also: Oracle Database PL/SQL Language Reference for general information about variables and constants |
This tutorial shows how to use the SQL Developer tool Edit to declare variables and constants in the EMP_EVAL
.calculate_score
function (specified in "Tutorial: Creating a Package Specification"). (This tutorial is also an example of changing a package body.)
To declare variables and constants in calculate_score function:
hr_conn
information by clicking the plus sign (+) to the left of the hr_conn
icon. Under the hr_conn
icon, a list of schema object types appears.
A list of packages appears.
A list appears.
A list of choices appears.
The EMP_EVAL
Body pane appears, showing the code for the package body:
RETURN
NUMBER
AS
and BEGIN
, add these variable and constant declarations: Oracle Database saves the changed package body.
See Also:
|
After "Tutorial: Declaring Variables and Constants in a Subprogram", the code for the calculate_score
function, in the body of the package EMP_EVAL
, is:
The variables, constants, and parameters of the function represent values from the tables SCORES
(created in "Creating Tables with the CREATE TABLE Statement") and PERFORMANCE_PARTS
(created in "Tutorial: Creating a Table with the Create Table Tool"):
n_score
will hold a value from the SCORE
column of the SCORES
table, and constant max_score
will be compared to such values. n_weight
will hold a value from the WEIGHT
column of the PERFORMANCE_PARTS
table, and constant max_weight
will be compared to such values. evaluation_id
will hold a value from the EVALUATION_ID
column of the SCORES
table. performance_id
will hold a value from the PERFORMANCE_ID
column of the SCORES
table. Therefore, each variable, constant, and parameter has the same data type as its corresponding column.
If the data types of the columns change, you want the data types of the variables, constants, and parameters to change to the same data types; otherwise, the calculate_score
function will be invalidated.
To ensure that the data types of the variables, constants, and parameters will always match those of the columns, declare them with the %TYPE
attribute. The %TYPE
attribute supplies the data type of a table column or another variable, ensuring the correct data type assignment.
See Also:
|
This tutorial shows how to use the SQL Developer tool Edit to change the declarations of the variables, constants, and formal parameters of the EMP_EVAL
.calculate_score
function (shown in "Tutorial: Declaring Variables and Constants in a Subprogram") to declarations that use the %TYPE
attribute.
To change the declarations in calculate_score to use %TYPE:
hr_conn
information by clicking the plus sign (+) to the left of the hr_conn
icon. Under the hr_conn
icon, a list of schema object types appears.
A list of packages appears.
A list appears.
A list of choices appears.
The EMP_EVAL
Body pane appears, showing the code for the package body:
A list of choices appears.
The EMP_EVAL
pane opens, showing the CREATE
PACKAGE
statement that created the package:
A list of choices appears.
You can assign a value to a variable in these ways:
SELECT
INTO
or FETCH
statement to assign it a value from a table. OUT
or IN
OUT
parameter, and then assign the value inside the subprogram Topics:
See Also:
|
With the assignment operator (:=
), you can assign the value of an expression to a variable in either the declarative or executable part of a subprogram.
In the declarative part of a subprogram, you can assign an initial value to a variable when you declare it. The syntax is:
In the executable part of a subprogram, you can assign a value to a variable with an assignment statement. The syntax is:
Example 7-1 shows, in bold font, the changes to make to the EMP_EVAL
.calculate_score
function to add a variable, running_total
, and use it as the return value of the function. The assignment operator appears in both the declarative and executable parts of the function. (The data type of running_total
must be NUMBER
, rather than SCORES
.SCORE%TYPE
or PERFORMANCE_PARTS
.WEIGHT%TYPE
, because it holds the product of two NUMBER
values with different precisions and scales.)
Example 7-1 Assigning Values to a Variable with Assignment Operator
See Also:
|
To use table values in subprograms or packages, you must assign them to variables with SELECT
INTO
statements.
Example 7-2 shows, in bold font, the changes to make to the EMP_EVAL
.calculate_score
function to have it calculate running_total
from table values.
Example 7-2 Assigning Table Values to Variables with SELECT INTO
The add_eval
procedure in Example 7-3 inserts a row into the EVALUATIONS
table, using values from the corresponding row in the EMPLOYEES
table. Add the add_eval
procedure to the body of the EMP_EVAL
package, but not to the specification. Because it is not in the specification, add_eval
is local to the package—it can be invoked only by other subprograms in the package, not from outside the package.
Example 7-3 Inserting a Table Row with Values from Another Table
See Also: Oracle Database PL/SQL Language Reference for more information about theSELECT INTO statement |
Unlike SQL, which runs statements in the order in which you enter them, PL/SQL has control statements that let you control the flow of your program.
Topics:
PL/SQL has three categories of control statements:
The conditional selection statements are IF
and and CASE
.
The loop statements are FOR
LOOP
, WHILE
LOOP
and basic LOOP
.
The EXIT
statement transfers control to the end of a loop. The CONTINUE
statement exits the current iteration of a loop and transfers control to the next iteration. Both EXIT
and CONTINUE
have an optional WHEN
clause, in which you can specify a condition.
The sequential control statements are GOTO
and and NULL
.
The IF
statement either executes or skips a sequence of statements, depending on the value of a Boolean expression.
The IF
statement has this syntax:
Suppose that your company evaluates employees twice a year in the first 10 years of employment, but only once a year afterward. You want a function that returns the evaluation frequency for an employee. You can use an IF
statement to determine the return value of the function, as in Example 7-4.
Add the eval_frequency
function to the body of the EMP_EVAL
package, but not to the specification. Because it is not in the specification, eval_frequency
is local to the package—it can be invoked only by other subprograms in the package, not from outside the package.
Example 7-4 IF Statement that Determines Return Value of Function
See Also:
|
The CASE
statement chooses from a sequence of conditions, and executes the corresponding statement.
The simple CASE
statement evaluates a single expression and compares it to several potential values. It has this syntax:
The searched CASE
statement evaluates multiple Boolean expressions and chooses the first one whose value is TRUE
. For information about the searched CASE
statement, see Oracle Database PL/SQL Language Reference.
Tip: When you can use either aCASE statement or nested IF statements, use a CASE statement—it is both more readable and more efficient. |
Suppose that, if an employee is evaluated only once a year, you want the eval_frequency
function to suggest a salary increase, which depends on the JOB_ID
.
Add the CASE
statement shown in Example 7-5 to the eval_frequency
function. (For information about the procedure that prints the strings, DBMS_OUTPUT.PUT_LINE
, see Oracle Database PL/SQL Packages and Types Reference.)
Example 7-5 CASE Statement that Determines Which String to Print
See Also:
|
The FOR
LOOP
statement repeats a sequence of statements once for each integer in the range lower_bound
through upper_bound
. Its syntax is:
The statements between LOOP
and END
LOOP
can use counter
, but cannot change its value.
Suppose that, instead of only suggesting a salary increase, you want the eval_frequency
function to report what the salary would be if it increased by the suggested amount every year for five years.
Change the eval_frequency
function as shown in bold font in Example 7-6. (For information about the procedures that prints the strings, DBMS_OUTPUT.PUT_LINE
, see Oracle Database PL/SQL Packages and Types Reference.)
Example 7-6 FOR LOOP Statement that Computes Salary After Five Years
See Also:
|
The WHILE
LOOP
statement repeats a sequence of statements while a condition is TRUE
. Its syntax is:
Note: If the statements betweenLOOP and END LOOP never cause condition to become FALSE , the WHILE LOOP statement runs indefinitely. |
Suppose that the eval_frequency
function uses the WHILE
LOOP
statement instead of the FOR
LOOP
statement, and ends after the proposed salary exceeds the maximum salary for the JOB_ID
.
Change the eval_frequency
function as shown in bold font in Example 7-7. (For information about the procedures that prints the strings, DBMS_OUTPUT.PUT_LINE
, see Oracle Database PL/SQL Packages and Types Reference.)
Example 7-7 WHILE LOOP Statement that Computes Salary to Maximum
See Also:
|
The basic LOOP
statement repeats a sequence of statements. Its syntax is:
At least one statement
must be an EXIT
statement; otherwise, the LOOP
statement runs indefinitely.
The EXIT
WHEN
statement (the EXIT
statement with its optional WHEN
clause) exits a loop when a condition is TRUE
and transfers control to the end of the loop.
In the eval_frequency
function, in the last iteration of the WHILE
LOOP
statement, the last computed value usually exceeds the maximum salary.
Change the WHILE
LOOP
statement to a basic LOOP
statement that includes an EXIT
WHEN
statement, as shown in Example 7-8.
WHILE
LOOP
Example 7-8 Using the EXIT WHEN Statement
See Also:
|
Topics:
A record is a PL/SQL composite variable that can store data values of different types, similar to a struct
type in C, C++, or Java. The internal components of a record are called fields. To access a record field, you use dot notation: record_name
.field_name
.
You can treat record fields like scalar variables. You can also pass entire records as subprogram parameters (if neither the sending nor receiving subprogram is a standalone stored subprogram).
Records are useful for holding data from table rows, or from certain columns of table rows. Each record field corresponds to a table column.
There are three ways to create a record:
RECORD
type, and then declare a variable of that type. The syntax is:
table_name
%ROWTYPE
. The fields of the record have the same names and data types as the columns of the table.
cursor_name
%ROWTYPE
. The fields of the record have the same names and data types as the columns of the table in the FROM
clause of the cursor SELECT
statement.
See Also:
|
This tutorial shows how to use the SQL Developer tool Edit to declare a RECORD
type, sal_info
, whose fields can hold salary information for an employee—job ID, minimum and maximum salary for that job ID, current salary, and suggested raise.
To declare RECORD type sal_info:
hr_conn
information by clicking the plus sign (+) to the left of the hr_conn
icon. Under the hr_conn
icon, a list of schema object types appears.
A list of packages appears.
A list of choices appears.
The EMP_EVAL
pane opens, showing the CREATE
PACKAGE
statement that created the package:
EMP_EVAL
pane, immediately before END emp_eval
, add this code: A new EMP_EVAL
pane opens, showing the changed CREATE
PACKAGE
statement. The title of the pane is in italic font, which indicates that the changes have not been saved to the database.
The changed package specification compiles and is saved to the database. The title of the EMP_EVAL
pane is no longer in italic font.
Now you can declare records of the type sal_info
, as in "Tutorial: Creating and Invoking a Subprogram with a Record Parameter".
If you declared the RECORD
type sal_info
in "Tutorial: Declaring a RECORD Type", this tutorial shows how to use the SQL Developer tool Edit to do the following:
salary_schedule
, which has a parameter of type sal_info
. eval_frequency
function so that it declares a record, emp_sal
, of the type sal_info
, populates its fields, and passes it to the salary_schedule
procedure. Because eval_frequency
will invoke salary_schedule
, the declaration of salary_schedule
must precede the declaration of eval_frequency
(otherwise, the package will not compile). However, the definition of salary_schedule
can be anywhere in the package body.
To create salary_schedule and change eval_frequency:
hr_conn
information by clicking the plus sign (+) to the left of the hr_conn
icon. Under the hr_conn
icon, a list of schema object types appears.
A list of packages appears.
A list appears.
A list of choices appears.
The EMP_EVAL
Body pane appears, showing the code for the package body.
EMP_EVAL
Body pane, immediately before END emp_eval
, add this definition of the salary_schedule
procedure: A new EMP_EVAL
Body pane opens, showing the changed CREATE
PACKAGE
BODY
statement. The title of the pane is in italic font, which indicates that the changes have not been saved to the database.
EMP_EVAL
Body pane, enter the code shown in bold font, in this position: eval_frequency
function, making the changes shown in bold font: When Oracle Database executes a SQL statement, it stores the result set and processing information in an unnamed private SQL area. A pointer to this unnamed area, called a cursor, lets you retrieve the rows of the result set one at a time. Cursor attributes return information about the state of the cursor.
Every time you run either a SQL DML statement or a PL/SQL SELECT
INTO
statement, PL/SQL opens an implicit cursor. You can get information about this cursor from its attributes, but you cannot control it. After the statement runs, the database closes the cursor; however, its attribute values remain available until another DML or SELECT
INTO
statement runs.
PL/SQL also lets you declare explicit cursors. An explicit cursor has a name and is associated with a query (SQL SELECT
statement)—usually one that returns multiple rows. After declaring an explicit cursor, you must open it (with the OPEN
statement), fetch rows one at a time from the result set (with the FETCH
statement), and close the cursor (with the CLOSE
statement). After closing the cursor, you can neither fetch records from the result set nor see the cursor attribute values.
The syntax for the value of an implicit cursor attribute is SQL
attribute
(for example, SQL%FOUND
). SQL
attribute
always refers to the most recently run DML or SELECT
INTO
statement.
The syntax for the value of an explicit cursor attribute is cursor_name
immediately followed by attribute
(for example, c1%FOUND
).
Table 7-1 lists the cursor attributes and the values that they can return. (Implicit cursors have additional attributes that are beyond the scope of this book.)
Table 7-1 Cursor Attribute Values
Attribute	Values for Explicit Cursor	Values for Implicit Cursor
If cursor is not open, If cursor is open but no fetch was attempted, If the most recent fetch returned a row, If the most recent fetch did not return a row,	If no DML or If the most recent DML or If the most recent DML or	
If cursor is not open, If cursor is open but no fetch was attempted, If the most recent fetch returned a row, If the most recent fetch did not return a row,	If no DML or If the most recent DML or If the most recent DML or	
If cursor is not open,		
If cursor is open,	Always	
See Also:		
The following procedure uses each necessary statement in its simplest form, but provides references to its complete syntax.		
To use an explicit cursor to retrieve result set rows one at a time:		
For complete explicit cursor declaration syntax, see Oracle Database PL/SQL Language Reference.		
For complete %ROWTYPE		
syntax, see Oracle Database PL/SQL Language Reference.		
For complete OPEN		
statement syntax, see Oracle Database PL/SQL Language Reference.		
LOOP		
statement that has syntax similar to this: For complete FETCH		
statement syntax, see Oracle Database PL/SQL Language Reference.		
For complete CLOSE		
statement syntax, see Oracle Database PL/SQL Language Reference.		
This tutorial shows how to implement the procedure EMP_EVAL		
.eval_department		
, which uses an explicit cursor, emp_cursor		
.		
To implement the EMP_EVAL.eval_department procedure:		
EMP_EVAL		
package specification, change the declaration of the eval_department		
procedure as shown in bold font: (For instructions for changing a package specification, see "Tutorial: Changing a Package Specification".)		
EMP_EVAL		
package body, change the definition of the eval_department		
procedure as shown in bold font: (For a step-by-step example of changing a package body, see "Tutorial: Declaring Variables and Constants in a Subprogram".)		
EMP_EVAL		
package specification. EMP_EVAL		
package body. A cursor variable is like a cursor (see "About Cursors"), except that it is not limited to one query. You can open a cursor variable for a query, process the result set, and then use the cursor variable for another query. Cursor variables are useful for passing query results between subprograms.		
To declare a cursor variable, you declare a REF		
CURSOR		
type, and then declare a variable of that type (therefore, a cursor variable is often called a REF		
CURSOR		
). A REF		
CURSOR		
type can be either strong or weak.		
A strong REF		
CURSOR		
type specifies a return type, which is the RECORD		
type of its cursor variables. The PL/SQL compiler does not allow you to use these strongly typed cursor variables for queries that return rows that are not of the return type. Strong REF		
CURSOR		
types are less error-prone than weak ones, but weak ones are more flexible.		
A weak REF		
CURSOR		
type does not specify a return type. The PL/SQL compiler accepts weakly typed cursor variables in any queries. Weak REF		
CURSOR		
types are interchangeable; therefore, instead of creating weak REF		
CURSOR		
types, you can use the predefined type weak cursor type SYS_REFCURSOR		
.		
After declaring a cursor variable, you must open it for a specific query (with the OPEN		
FOR		
statement), fetch rows one at a time from the result set (with the FETCH		
statement), and then either close the cursor (with the CLOSE		
statement) or open it for another specific query (with the OPEN		
FOR		
statement). Opening the cursor variable for another query closes it for the previous query. After closing a cursor variable for a specific query, you can neither fetch records from the result set of that query nor see the cursor attribute values for that query.		
See Also:		
The following procedure uses each of the necessary statements in its simplest form, but provides references to their complete syntax.		
To use a cursor variable to retrieve result set rows one at a time:		
REF		
CURSOR		
type: return_type		
];For complete REF		
CURSOR		
type declaration syntax, see Oracle Database PL/SQL Language Reference.		
For complete cursor variable declaration syntax, see Oracle Database PL/SQL Language Reference.		
return_type		
;For complete information about record declaration syntax, see Oracle Database PL/SQL Language Reference.		
For complete information about OPEN		
FOR		
statement syntax, see Oracle Database PL/SQL Language Reference.		
LOOP		
statement that has syntax similar to this: For complete information about FETCH		
statement syntax, see Oracle Database PL/SQL Language Reference.		
Alternatively, you can open the cursor variable for another query, which closes it for the current query.		
For complete information about CLOSE		
statement syntax, see Oracle Database PL/SQL Language Reference.		
This tutorial shows how to change the EMP_EVAL		
.eval_department		
procedure so that it uses a cursor variable instead of an explicit cursor, which lets it process multiple departments. The change includes adding a procedure that uses the cursor variable.		
This tutorial also shows how to make EMP_EVAL		
.eval_department		
and EMP_EVAL		
.add_eval		
more efficient: Instead of passing one field of a record to add_eval		
and having add_eval		
use three queries to extract three other fields of the same record, eval_department		
passes the entire record to add_eval		
, and add_eval		
uses dot notation to access the values of the other three fields.		
To change the EMP_EVAL.eval_department procedure to use a cursor variable:		
EMP_EVAL		
package specification, add the procedure declaration and the REF		
CURSOR		
type definition, as shown in bold font: (For instructions for changing a package specification, see "Tutorial: Changing a Package Specification".)		
EMP_EVAL		
package body, add a forward declaration for the procedure eval_loop_control		
and change the declaration of the procedure add_eval		
, as shown in bold font: (For a step-by-step example of changing a package body, see "Tutorial: Declaring Variables and Constants in a Subprogram".)		
Change the eval_department		
procedure to retrieve three separate result sets based on the department, and to invoke the eval_loop_control		
procedure, as shown in bold font:		
add_eval		
as shown in bold font: END		
EMP_EVAL		
, add the following procedure, which fetches the individual records from the result set and processes them: END		
EMP_EVAL		
, add the following procedure, which retrieves a result set that contains all employees in the company: EMP_EVAL		
package specification. EMP_EVAL		
package body. An associative array is a type of collection.		
Topics:		
See Also: For more information about collections:		
A collection is a PL/SQL composite variable that stores elements of the same type in a specified order, similar to a one-dimensional array. The internal components of a collection are called elements. Each element has a unique subscript that identifies its position in the collection. To access a collection element, you use subscript notation: collection_name		
(element_subscript		
).		
You can treat collection elements like scalar variables. You can also pass entire collections as subprogram parameters (if neither the sending nor receiving subprogram is a standalone stored subprogram).		
A collection method is a built-in PL/SQL subprogram that either returns information about a collection or operates on a collection. To invoke a collection method, you use dot notation: collection_name		
.method_name		
. For example, collection_name		
.COUNT		
returns the number of elements in the collection.		
PL/SQL has three types of collections:		
This document explains only associative arrays.		
See Also:		
An associative array is an unbounded set of key-value pairs. Each key is unique, and serves as the subscript of the element that holds the corresponding value. Therefore, you can access elements without knowing their positions in the array, and without traversing the array.		
The data type of the key can be either PLS_INTEGER		
or VARCHAR2		
(
length		
)		
.		
If the data type of the key is PLS_INTEGER		
, and the associative array is indexed by integer, and it is dense (that is, it has no gaps between elements), then every element between the first and last element is defined and has a value (which can be NULL		
).		
If the key type is VARCHAR2		
(
length		
)		
, the associative array is indexed by string (of length		
characters), and it is sparse; that is, it might have gaps between elements.		
When traversing a dense associative array, you do not need to beware of gaps between elements; when traversing a sparse associative array, you do.		
To assign a value to an associative array element, you can use an assignment operator:		
If key		
is not in the array, the assignment statement adds the key		
-value		
pair to the array. Otherwise, the statement changes the value of array_name		
(
key		
)		
to value		
.		
Associative arrays are useful for storing data temporarily. They do not use the disk space or network operations that tables require. However, because associative arrays are intended for temporary storage, you cannot manipulate them with DML statements or use SELECT		
INTO		
statements to assign their values to variables.		
If you declare an associative array in a package, and assign values to the variable in the package body, then the associative array exists for the life of the database session. Otherwise, it exists for the life of the subprogram in which you declare it.		
To declare an associative array, you declare an associative array type, and then declare a variable of that type. The simplest syntax is:		
An efficient way to declare an associative array is with a cursor, using the following procedure. The procedure uses each necessary statement in its simplest form, but provides references to its complete syntax.		
To use a cursor to declare an associative array:		
For complete explicit cursor declaration syntax, see Oracle Database PL/SQL Language Reference.		
length		
}For complete associative array type declaration syntax, see Oracle Database PL/SQL Language Reference.		
For complete variable declaration syntax, see Oracle Database PL/SQL Language Reference.		
Example 7-9 uses the preceding procedure to declare two associative arrays, employees_jobs		
and jobs_		
, and then declares a third associative array, job_titles_type		
, without using a cursor. The first two arrays are indexed by integer; the third is indexed by string.		
Note: TheORDER BY clause in the declaration of employees_jobs_cursor determines the storage order of the elements of the associative array employee_jobs .		
Example 7-9 Declaring Associative Arrays		
See Also:		
The most efficient way to populate a dense associative array is with a cursor and the FETCH		
statement with the BULK		
COLLECT		
INTO		
clause, using the following procedure. The procedure uses each necessary statement in its simplest form, but provides references to its complete syntax.		
You cannot use the following procedure to populate a sparse associative array. Instead, you must use an assignment statement inside a loop statement. For information about loop statements, see "Controlling Program Flow".		
To use a cursor to populate an associative array indexed by integer:		
For complete OPEN		
statement syntax, see Oracle Database PL/SQL Language Reference.		
FETCH		
statement with the BULK		
COLLECT		
INTO		
clause: For complete FETCH		
statement syntax, see Oracle Database PL/SQL Language Reference.		
For complete CLOSE		
statement syntax, see Oracle Database PL/SQL Language Reference.		
Example 7-10 uses the preceding procedure to populate the associative arrays employees_jobs		
and jobs_		
, which are indexed by integer. Then it uses an assignment statement inside a FOR		
LOOP		
statement to populate the associative array job_titles_type		
, which is indexed by string.		
FOR		
LOOP		
Example 7-10 Populating Associative Arrays		
A dense associative array (indexed by integer) has no gaps between elements—every element between the first and last element is defined and has a value (which can be NULL		
). You can traverse a dense array with a FOR		
LOOP		
statement, as in Example 7-11.		
When inserted in the executable part of Example 7-10, after the code that populates the employees_jobs		
array, the FOR		
LOOP		
statement in Example 7-11 prints the elements of the employees_jobs		
array in the order in which they were stored. Their storage order was determined by the ORDER		
BY		
clause in the declaration of employees_jobs_cursor		
, which was used to declare employees_jobs		
(see Example 7-9).		
FOR		
LOOP		
FOR		
LOOP		
The upper bound of the FOR		
LOOP		
statement, employees_jobs		
. COUNT		
, invokes a collection method that returns the number of elements in the array. For more information about COUNT		
, see Oracle Database PL/SQL Language Reference.		
Example 7-11 Traversing a Dense Associative Array		
Result:		
A sparse associative array (indexed by string) might have gaps between elements. You can traverse it with a WHILE		
LOOP		
statement, as in Example 7-12.		
To run the code in Example 7-12, which prints the elements of the job_titles		
array:		
job_titles		
array, insert the code from Example 7-12. Example 7-12 includes two collection method invocations, job_titles		
.FIRST		
and job_titles		
.NEXT(i)		
. job_titles		
.FIRST		
returns the first element of job_titles		
, and job_titles		
.NEXT(i)		
returns the subscript that succeeds i		
. For more information about FIRST		
, see Oracle Database PL/SQL Language Reference. For more information about NEXT		
, see Oracle Database PL/SQL Language Reference.		
WHILE		
LOOP		
Example 7-12 Traversing a Sparse Associative Array		
Result:		
Topics:		
See Also: Oracle Database PL/SQL Language Reference for more information about handling PL/SQL errors		
When a run-time error occurs in PL/SQL code, an exception is raised. If the subprogram (or block) in which the exception is raised has an exception-handling part, control transfers to it; otherwise, execution stops.		
Run-time errors can arise from design faults, coding mistakes, hardware failures, and many other sources. Because you cannot anticipate all possible errors, Oracle recommends including exception-handling parts in your subprograms ("About Subprogram Structure" shows where to put the exception-handling part).		
Oracle Database has many predefined exceptions, which it raises automatically when a program violates database rules or exceeds system-dependent limits. For example, if a SELECT		
INTO		
statement returns no rows, Oracle Database raises the predefined exception NO_DATA_FOUND		
. For a summary of predefined PL/SQL exceptions, see Oracle Database PL/SQL Language Reference.		
PL/SQL lets you define (declare) your own exceptions. An exception declaration has this syntax:		
Unlike a predefined exception, a user-defined exception must be raised explicitly, using either the RAISE		
statement or the DBMS_STANDARD		
.RAISE_APPLICATION_ERROR		
procedure. For example:		
For information about the DBMS_STANDARD		
.RAISE_APPLICATION_ERROR		
procedure, see Oracle Database PL/SQL Language Reference.		
The exception-handling part of a subprogram contains one or more exception handlers. An exception handler has this syntax:		
A WHEN		
OTHERS		
exception handler handles unexpected run-time errors. If used, it must be last. For example:		
An alternative to the WHEN		
OTHERS		
exception handler is the EXCEPTION_INIT		
pragma, which associates a user-defined exception name with an Oracle Database error number.		
See Also:		
Example 7-13 shows, in bold font, how to change the EMP_EVAL		
.eval_department		
procedure to handle the predefined exception NO_DATA_FOUND		
. Make this change and compile the changed procedure. (For an example of how to change a package body, see "Tutorial: Declaring Variables and Constants in a Subprogram".)		
Example 7-13 Handling Predefined Exception NO_DATA_FOUND		
See Also:		
Example 7-14 shows, in bold font, how to change the EMP_EVAL		
.calculate_score		
function to declare and handle two user-defined exceptions, wrong_weight		
and wrong_score		
. Make this change and compile the changed function. (For an example of how to change a package body, see "Tutorial: Declaring Variables and Constants in a Subprogram".)		
Example 7-14 Handling User-Defined Exceptions		
See Also:		
This chapter contains the following topics:		
A trigger is a PL/SQL unit that is stored in the database and (if it is in the enabled state) automatically executes ("fires") in response to a specified event.		
A trigger has this structure:		
The trigger_name		
must be unique for triggers in the schema. A trigger can have the same name as another kind of object in the schema (for example, a table); however, Oracle recommends using a naming convention that avoids confusion.		
If the trigger is in the enabled state, the triggering_event		
causes the database to execute the triggered_action		
if the trigger_restriction		
is either TRUE		
or omitted. The triggering_event		
is associated with either a table, a view, a schema, or the database, and it is one of these:		
SERVERERROR		
, LOGON		
, LOGOFF		
, STARTUP		
, or SHUTDOWN		
) If the trigger is in the disabled state, the triggering_event		
does not cause the database to execute the triggered_action		
, even if the trigger_restriction		
is TRUE		
or omitted.		
By default, a trigger is created in the enabled state. You can disable an enabled trigger, and enable a disabled trigger.		
Unlike a subprogram, a trigger cannot be invoked directly. A trigger is invoked only by its triggering event, which can be caused by any user or application. You might be unaware that a trigger is executing unless it causes an error that is not handled properly.		
A simple trigger can fire at exactly one of these timing points:		
BEFORE		
trigger) AFTER		
trigger) BEFORE		
trigger) AFTER		
trigger) A compound trigger can fire at multiple timing points. For information about compound triggers, see Oracle Database PL/SQL Language Reference.		
An INSTEAD		
OF		
trigger is defined on a view, and its triggering event is a DML statement. Instead of executing the DML statement, Oracle Database executes the INSTEAD		
OF		
trigger. For more information, see "Creating an INSTEAD OF Trigger".		
A system trigger is defined on a schema or the database. A trigger defined on a schema fires for each event associated with the owner of the schema (the current user). A trigger defined on a database fires for each event associated with all users.		
One use of triggers is to enforce business rules that apply to all client applications. For example, suppose that data added to the EMPLOYEES		
table must have a certain format, and that many client applications can add data to this table. A trigger on the table can ensure the proper format of all data added to it. Because the trigger executes whenever any client adds data to the table, no client can circumvent the rules, and the code that enforces the rules can be stored and maintained only in the trigger, rather than in every client application. For other uses of triggers, see Oracle Database PL/SQL Language Reference.		
To create triggers, use either the SQL Developer tool Create Trigger or the DDL statement CREATE		
TRIGGER		
. This topic shows how to use both of these ways to create triggers.		
By default, a trigger is created in the enabled state. To create a trigger in disabled state, use the CREATE		
TRIGGER		
statement with the DISABLE		
clause.		
Note: To create triggers, you must have appropriate privileges; however, for this discussion and simple application, you do not need this additional information.		
Topics:		
Note: To do the tutorials in this document, you must be connected to Oracle Database as the userHR from SQL Developer. For instructions, see "Connecting to Oracle Database as User HR from SQL Developer".		
See Also:		
When a row-level trigger fires, the PL/SQL run-time system creates and populates the two pseudorecords OLD		
and NEW		
. They are called pseudorecords because they have some, but not all, of the properties of records.		
For the row that the trigger is processing:		
INSERT		
trigger, OLD		
contains no values, and NEW		
contains the new values. UPDATE		
trigger, OLD		
contains the old values, and NEW		
contains the new values. DELETE		
trigger, OLD		
contains the old values, and NEW		
contains no values. To reference a pseudorecord, put a colon before its name—:OLD		
or :NEW		
—as in Example 8-1.		
See Also: Oracle Database PL/SQL Language Reference for more information aboutOLD and NEW pseudorecords		
This tutorial shows how to use the CREATE		
TRIGGER		
statement to create a trigger, EVAL_CHANGE_TRIGGER		
, which adds a row to the table EVALUATIONS_LOG		
whenever an INSERT		
, UPDATE		
, or DELETE		
statement changes the EVALUATIONS		
table.		
The trigger adds the row after the triggering statement executes, and uses the conditional predicates INSERTING		
, UPDATING		
, and DELETING		
to determine which of the three possible DML statements fired the trigger.		
EVAL_CHANGE_TRIGGER		
is a statement-level trigger and an AFTER trigger.		
This trigger is part of the sample application that the tutorials and examples in this document show how to develop and deploy.		
To create EVALUATIONS_LOG and EVAL_CHANGE_TRIGGER:		
EVALUATIONS_LOG		
table: EVAL_CHANGE_TRIGGER		
: The sequence EVALUATIONS_SEQ		
, created in "Creating and Managing Sequences", generates primary keys for the EVALUATIONS		
table. However, these primary keys are not inserted into the table automatically.		
This tutorial shows how to use the SQL Developer Create Trigger tool to create a trigger named NEW_EVALUATION_TRIGGER		
, which fires before a row is inserted into the EVALUATIONS		
table, and generates the unique number for the primary key of that row, using evaluations_seq		
. The trigger fires once for each row affected by the triggering INSERT		
statement.		
NEW_EVALUATION_TRIGGER		
is a row-level trigger and a BEFORE trigger.		
This trigger is part of the sample application that the tutorials and examples in this document show how to develop and deploy.		
To create the NEW_EVALUATION trigger:		
Under the hr_conn		
icon, a list of schema object types appears.		
A list of choices appears.		
The Create Trigger window opens. The field Schema has the value HR		
and the field Name has the default value TRIGGER1		
.		
NEW_EVALUATION_TRIGGER		
over the default value. The Trigger pane appears. By default, the field Trigger Type has the value TABLE		
, the check box Enabled is selected, the field Table Owner has the value HR		
, the field Table Name has the value COUNTRIES		
, the options Before and Statement Level are selected, the options After and Row Level are deselected, and the check boxes Insert, Update, and Delete are deselected.		
EVALUATIONS		
. The option Statement Level is now deselected.		
The NEW_EVALUATION_TRIGGER		
pane opens, showing the CREATE		
TRIGGER		
statement that created the trigger:		
CREATE		
TRIGGER		
statement, replace NULL		
with this: The title of the NEW_EVALUATION_TRIGGER		
pane is in italic font, indicating that the trigger is not yet saved in the database.		
Oracle Database compiles the procedure and saves it. The title of the NEW_EVALUATION_TRIGGER		
pane is no longer in italic font.		
A view presents the output of a query as a table. If you want to change a view as you would change a table, you must create INSTEAD		
OF		
triggers. Instead of changing the view, they change the underlying tables.		
For example, consider the view EMP_LOCATIONS		
, whose NAME		
column is created from the LAST_NAME		
and FIRST_NAME		
columns of the EMPLOYEES		
table:		
To update EMP_LOCATIONS		
.NAME		
, you must update EMPLOYEES		
.LAST_NAME		
and EMPLOYEES		
.FIRST_NAME		
. This is what the INSTEAD		
OF		
trigger in Example 8-1 does.		
This trigger is part of the sample application that the tutorials and examples in this document show how to develop and deploy.		
NEW		
and OLD		
are pseudorecords that the PL/SQL run-time engine creates and populates whenever a row-level trigger fires. OLD		
and NEW		
store the original and new values, respectively, of the record being processed by the trigger. They are called pseudorecords because they do not have all properties of PL/SQL records.		
Example 8-1 Creating an INSTEAD OF Trigger		
This tutorial shows how to use the CREATE		
TRIGGER		
statement to create two triggers, hr_logon_trigger		
and hr_logoff_trigger		
. After someone logs on as user HR		
, hr_logon_trigger		
adds a row to the table HR_USERS_LOG		
. Before someone logs off as user HR		
, hr_logoff_trigger		
adds a row to the table HR_USERS_LOG		
.		
hr_logon_trigger		
and hr_logoff_trigger		
are system triggers. hr_logon_trigger		
is a BEFORE trigger, and hr_logoff_trigger		
is an AFTER trigger.		
These triggers are not part of the sample application that the tutorials and examples in this document show how to develop and deploy.		
To create HR_USERS_LOG, HR_LOGON_TRIGGER, and HR_LOGOFF_TRIGGER:		
HR_USERS_LOG		
table: hr_logon_trigger		
: hr_logoff_trigger		
: To change a trigger, use either the SQL Developer tool Edit or the DDL statement CREATE		
TRIGGER		
with the OR		
REPLACE		
clause.		
To change a standalone stored subprogram using the Edit tool:		
Under the hr_conn		
icon, a list of schema object types appears.		
A list of triggers appears.		
To the right of the Connections pane, a frame with appears. Its top tab has the name of the trigger to change. Under the top tab are subtabs.		
The Code pane appears. It shows the code that created the trigger to change.		
Another pane appears, also with the name of the trigger to change.		
The title of the pane is in italic font, indicating that the change is not yet saved in the database.		
Oracle Database compiles the trigger and saves it. The title of the pane is no longer in italic font.		
See Also:		
You might need to temporarily disable triggers if they reference objects that are unavailable, or if you must upload a large amount of data without the delay that triggers cause (as in a recovery operation). After the referenced objects become available, or you have finished uploading the data, you can re-enable the triggers.		
To disable or enable a single trigger, use the ALTER		
TRIGGER		
statement with the DISABLE		
or ENABLE		
clause. For example:		
To disable or enable all triggers on a particular table, use the ALTER		
TABLE		
statement with the DISABLE		
ALL		
TRIGGERS		
or ENABLE		
ALL		
TRIGGERS		
clause. For example:		
See Also:		
Running a CREATE		
TRIGGER		
statement compiles the trigger being created. If this compilation causes an error, the CREATE		
TRIGGER		
statement fails. To see the compilation errors, run this statement:		
Compiled triggers depend on the schema objects on which they are defined. For example, NEW_EVALUATION_TRIGGER		
depends on the EVALUATIONS		
table:		
To see the schema objects on which triggers depend, run this statement:		
If an object on which a trigger depends is dropped, or changed such that there is a mismatch between the trigger and the object, then the trigger is invalidated. The next time the trigger is invoked, it is recompiled. To recompile a trigger immediately, run the ALTER		
TRIGGER		
statement with the COMPILE		
clause. For example:		
See Also:		
You must drop a trigger before dropping the objects on which it depends.		
To drop a trigger, use either the SQL Developer navigation frame and Drop tool, or the DDL statement DROP		
TRIGGER		
.		
To drop a trigger using the Drop tool:		
Under the hr_conn		
icon, a list of schema object types appears.		
A list of triggers appears.		
A list of choices appears.		
The Drop window opens.		
The Confirmation window opens.		
See Also:		
This chapter contains the following topics:		
Globalization support features enable you to develop multilingual applications that can be run simultaneously from anywhere in the world. An application can render the content of the user interface, and process data, using the native language and locale preferences of the user.		
Topics:		
See Also: Oracle Database Globalization Support Guide for more information about globalization support features		
Oracle Database enables you to store, process, and retrieve data in native languages. The languages that can be stored in a database are all languages written in scripts that are encoded by Oracle-supported character sets. Through the use of Unicode databases and datatypes, Oracle Database supports most contemporary languages.		
Additional support is available for a subset of the languages. The database can, for example, display dates using translated month names, and can sort text data according to cultural conventions.		
In this document, the term language support refers to the additional language-dependent functionality, and not to the ability to store text of a specific language. For example, language support includes displaying dates or sorting text according to specific locales and cultural conventions. Additionally, for some supported languages, Oracle Database provides translated error messages and a translated user interface for the database utilities.		
See Also:		
Oracle Database supports cultural conventions that are specific to geographical locations. The default local time format, date format, and numeric and monetary conventions depend on the local territory setting. Setting different NLS parameters enables the database session to use different cultural settings. For example, you can set the euro (EUR		
) as the primary currency and the Japanese yen (JPY		
) as the secondary currency for a given database session, even when the territory is AMERICA		
.		
See Also:		
Different countries have different conventions for displaying the hour, day, month, and year. For example:		
Country	Date Format	Example
---	---	---
China	yyyy-mm-dd	2005-02-28
Estonia	dd.mm.yyyy	28.02.2005
Germany	dd.mm.rr	28.02.05
UK	dd/mm/yyyy	28/02/2005
U.S.	mm/dd/yyyy	02/28/2005
See Also:		
Oracle Database stores this calendar information for each territory:		
First day of the week		
Sunday in some cultures, Monday in others. Set by the NLS_TERRITORY		
parameter.		
First week of the calendar year		
Some countries use week numbers for scheduling, planning, and bookkeeping. In the ISO standard, this week number can differ from the week number of the calendar year. For example, 1st Jan 2005 is in ISO week number 53 of 2004. An ISO week starts on Monday and ends on Sunday. To support the ISO standard, Oracle Database provides the IW date format element, which returns the ISO week number. The first calendar week of the year is set by the NLS_TERRITORY		
parameter.		
Number of days and months in a year		
Oracle Database supports six calendar systems in addition to the Gregorian calendar, which is the default. These additional calendar systems are:		
Has the same number of months and days as the Gregorian calendar, but the year starts with the beginning of each Imperial Era.		
Has the same number of months and days as the Gregorian calendar, but the year starts with the founding of the Republic of China.		
The first six months have 31 days each, the next five months have 30 days each, and the last month has either 29 days or (in leap year) 30 days.		
The calendar system is specified by the NLS_CALENDAR		
parameter.		
First year of era		
The Islamic calendar starts from the year of the Hegira. The Japanese Imperial calendar starts from the beginning of an Emperor's reign (for example, 1998 is the tenth year of the Heisei era).		
See Also:		
Different countries have different numeric and monetary conventions. For example:		
Country	Numeric Format	Monetary Format
---	---	---
China	1,234,567.89	¥1,234.56
Estonia	1 234 567,89	1 234,56 kr
Germany	1.234.567,89	1.234,56€
UK	1,234,567.89	£1,234.56
U.S.	1,234,567.89	$1,234.56
See Also:		
Different languages have different sort orders (collating sequences). Also, different countries or cultures that use the same alphabets sort words differently. For example, in Danish, Æ is after Z, and Y and Ü are considered to be variants of the same letter.		
See Also:		
In single-byte character sets, the number of bytes and the number of characters in a string are the same. In multibyte character sets, a character or code point consists of one or more bytes. Calculating the number of characters based on byte length can be difficult in a variable-width character set. Calculating column length in bytes is called byte semantics, while measuring column length in characters is called character semantics.		
Character semantics is useful for specifying the storage requirements for multibyte strings of varying widths. For example, in a Unicode database (AL32UTF8), suppose that you must have a VARCHAR2		
column that can store up to five Chinese characters with five English characters. Using byte semantics, this column requires 15 bytes for the Chinese characters, which are 3 bytes long, and 5 bytes for the English characters, which are 1 byte long, for a total of 20 bytes. Using character semantics, the column requires 10 characters.		
See Also:		
Unicode is a character encoding system that defines every character in most of the spoken languages in the world. In Unicode, every character has a unique code, regardless of the platform, program, or language.		
You can store Unicode characters in an Oracle Database in two ways:		
CHAR		
, VARCHAR2		
, CLOB		
, and LONG		
). The SQL national character data types are NCHAR		
, NVARCHAR2		
, and NCLOB		
. They are also called Unicode data types, because they are used only for storing Unicode data.		
The national character set, which is used for all SQL national character data types, is specified when the database is created. The national character set can be either UTF8 or AL16UTF16 (default).		
When you declare a column or variable of the type NCHAR		
or NVARCHAR2		
, the length that you specify is the number of characters, not the number of bytes.		
See Also:		
Except in SQL Developer, the initial values of NLS parameters are set by database initialization parameters. The DBA can set the values of initialization parameters in the initialization parameter file, and they take effect the next time the database is started.		
In SQL Developer, the initial values of NLS parameters are as shown in Table 9-1.		
Table 9-1 Initial Values of NLS Parameters in SQL Developer		
Parameter	Initial Value	
---	---	
See Also: Oracle Database Administrator's Guide for information about initialization parameters and initialization parameter files		
To view the current values of NLS parameters, use the SQL Developer report National Language Support Parameters.		
Note: if you are connected to the database as the database administrator userSYS , you can use this query instead of the SQL Developer report: SELECT * FROM V$NLS_PARAMETERS;		
To view the National Language Support Parameters report:		
The Reports pane shows a list of reports.		
A list of data dictionary reports appears.		
A list of reports appears.		
The Select Connection window opens. It has a Connection field with a drop-down menu.		
The Select Connection window closes and the National Language Support Parameters pane appears, showing the names of the NLS parameters and their current values.		
See Also: Oracle Database SQL Developer User's Guide for more information about SQL Developer reports		
You can change the value of one or more NLS parameters in any of these ways:		
Only on the client, the new values of the NLS environment variables override the values of the corresponding NLS parameters.		
You can use environment variables to specify locale-dependent behavior for the client. For example, on a Linux system, this statement sets the value of the NLS_SORT		
environment variable to FRENCH		
, overriding the value of the NLS_SORT		
parameter:		
Note: Environment variables might be platform-dependent.		
ALTER		
SESSION		
statement with this syntax: Only in the current session, the new values override those set in all of the preceding ways.		
You can use the ALTER		
SESSION		
to test your application with the settings for different locales.		
Only for the current SQL function invocation, the new values override those set in all of the preceding ways.		
Topics:		
See Also:		
The following procedure shows how to change the values of NLS parameters for all SQL Developer connections, current and future.		
To change National Language Support Parameter values:		
A drop-down menu appears.		
The Preferences window opens.		
A list of database preferences appears.		
A list of NLS Parameters and their current values appears. The value fields are drop-down menus.		
The NLS parameters now have the values that you specified. To verify these values, see "Viewing NLS Parameter Values".		
See Also: Oracle Database SQL Developer User's Guide for more information about SQL Developer preferences		
SQL functions whose behavior depends on the values of NLS parameters are called locale-dependent. Some locale-dependent SQL functions have optional NLS parameters. These functions are:		
TO_CHAR		
TO_DATE		
TO_NUMBER		
NLS_UPPER		
NLS_LOWER		
NLS_INITCAP		
NLSSORT		
In all of the preceding functions, you can specify these NLS parameters:		
NLS_DATE_LANGUAGE		
NLS_DATE_LANGUAGE		
NLS_NUMERIC_CHARACTERS		
NLS_CURRENCY		
NLS_ISO_CURRENCY		
NLS_DUAL_CURRENCY		
NLS_CALENDAR		
NLS_SORT		
In the NLSSORT		
function, you can also specify these NLS parameters:		
NLS_LANGUAGE		
NLS_TERRITORY		
NLS_DATE_FORMAT		
To specify NLS parameters in a function, use this syntax:		
Suppose that you want NLS_DATE_LANGUAGE		
to be AMERICAN		
when this query is evaluated:		
You can set NLS_DATE_LANGUAGE		
to AMERICAN		
before running the query:		
Alternatively, you can set NLS_DATE_LANGUAGE		
to AMERICAN		
inside the query, using the locale-dependent SQL function TO_DATE		
with its optional NLS_DATE_LANGUAGE		
parameter:		
Tip: Specify optional NLS parameters in locale-dependent SQL functions only in SQL statements that must be independent of the session NLS parameter values. Using session default values for NLS parameters in SQL functions usually results in better performance.		
See Also: Oracle Database Globalization Support Guide for more information about locale-dependent SQL functions with optional NLS parameters		
Topics:		
See Also:		
A locale is a linguistic and cultural environment in which a system or application runs. The simplest way to specify a locale for Oracle Database software is to set the NLS_LANG		
parameter.		
The NLS_LANG		
parameter sets the default values of the parameters NLS_LANGUAGE		
and NLS_TERRITORY		
for both the server session (for example, SQL statement processing) and the client application (for example, display formatting in Oracle Database tools). The NLS_LANG		
parameter also sets the character set that the client application uses for data entered or displayed.		
The default value of NLS_LANG		
is set during database installation. You can use the ALTER		
SESSION		
statement to change the values of NLS parameters, including those set by NLS_LANG		
, for your session. However, only the client can change the NLS settings in the client environment.		
See Also:		
Specifies: Default language of the database. Default conventions for:		
TO_CHAR		
and TO_DATE		
ORDER		
BY		
clause is specified YES		
and NO		
) Acceptable Values: Any language name that Oracle supports. For a list, see Oracle Database Globalization Support Guide.		
Default Value: Set by NLS_LANG		
, described in "About Locale and the NLS_LANG Parameter".		
Sets default values of:		
NLS_DATE_LANGUAGE		
, described in "About the NLS_DATE_LANGUAGE Parameter". NLS_SORT		
, described in "About the NLS_SORT Parameter". Example 9-1 shows how setting NLS_LANGUAGE		
to ITALIAN		
and GERMAN		
affects server messages and month abbreviations.		
To try this example in SQL Developer, enter the statements and queries in the SQL Worksheet. For information about the SQL Worksheet, see "Running Queries in SQL Developer". The results shown here are from SQL*Plus; their format is slightly different in SQL Developer.		
Example 9-1 NLS_LANGUAGE Affects Server Message and Month Abbreviations		
Note the current value of NLS_LANGUAGE		
.		
For instructions, see "Viewing NLS Parameter Values".		
ITALIAN		
, change it: Query a nonexistent table:		
Result:		
Run this query:		
Result:		
NLS_LANGUAGE		
to GERMAN		
: Result:		
Result:		
NLS_LANGUAGE		
to the value that it had at step 1. See Also:		
Specifies: Default conventions for:		
Acceptable Values: Any territory name that Oracle supports. For a list, see Oracle Database Globalization Support Guide.		
Default Value: Set by NLS_LANG		
, described in "About Locale and the NLS_LANG Parameter".		
Sets default values of:		
NLS_DATE_FORMAT		
, described in "About the NLS_DATE_FORMAT Parameter". NLS_TIMESTAMP_FORMAT		
and NLS_TIMESTAMP_TZ_FORMAT		
, described in "About NLS_TIMESTAMP_FORMAT and NLS_TIMESTAMP_TZ_FORMAT Parameters". NLS_NUMERIC_CHARACTERS		
, described in "About the NLS_NUMERIC_CHARACTERS Parameter". NLS_CURRENCY		
, described in "About the NLS_CURRENCY Parameter". NLS_ISO_CURRENCY		
, described in "About the NLS_ISO_CURRENCY Parameter". NLS_DUAL_CURRENCY		
, described in "About the NLS_DUAL_CURRENCY Parameter". Example 9-2 shows how setting NLS_TERRITORY		
to JAPAN		
and AMERICA		
affects the currency symbol.		
To try this example in SQL Developer, enter the statements and queries in the SQL Worksheet. For information about the SQL Worksheet, see "Running Queries in SQL Developer". The results shown here are from SQL*Plus; their format is slightly different in SQL Developer.		
Example 9-2 NLS_TERRITORY Affects Currency Symbol		
Note the current value of NLS_TERRITORY		
.		
For instructions, see "Viewing NLS Parameter Values".		
JAPAN		
, change it: Run this query:		
Result:		
NLS_TERRITORY		
to AMERICA		
: Result:		
NLS_TERRITORY		
to the value that it had at step 1. See Also:		
Specifies: Default date format to use with the TO_CHAR		
and TO_DATE		
functions (which are introduced in "Using Conversion Functions in Queries").		
Acceptable Values: Any any valid datetime format model. For example:		
For information about datetime format models, see Oracle Database SQL Language Reference.		
Default Value: Set by NLS_TERRITORY		
, described in "About the NLS_TERRITORY Parameter".		
The default date format might not correspond to the convention used in a given territory. To get dates in localized formats, you can use the 'DS'		
(short date) and 'DL'		
(long date) formats.		
Example 9-3 shows how setting NLS_TERRITORY		
to AMERICA		
and FRANCE		
affects the default, short, and long date formats.		
To try this example in SQL Developer, enter the statements and queries in the SQL Worksheet. For information about the SQL Worksheet, see "Running Queries in SQL Developer". The results shown here are from SQL*Plus; their format is slightly different in SQL Developer.		
Example 9-3 NLS_TERRITORY Affects Date Formats		
Note the current value of NLS_TERRITORY		
.		
For instructions, see "Viewing NLS Parameter Values".		
AMERICA		
, change it: Run this query:		
Result:		
NLS_TERRITORY		
to FRANCE		
: Result:		
(To get the names of the days and months in French, you must set either NLS_LANGUAGE		
or NLS_DATE_LANGUAGE		
to FRENCH		
before running the query.)		
NLS_TERRITORY		
to the value that it had at step 1. Example 9-4 changes the value of NLS_DATE_FORMAT		
, overriding the default value set by NLS_TERRITORY		
.		
To try this example in SQL Developer, enter the statements and queries in the SQL Worksheet. For information about the SQL Worksheet, see "Running Queries in SQL Developer". The results shown here are from SQL*Plus; their format is slightly different in SQL Developer.		
Example 9-4 NLS_DATE_FORMAT Overrides NLS_TERRITORY		
Note the current values of NLS_TERRITORY		
and NLS_DATE_FORMAT		
.		
For instructions, see "Viewing NLS Parameter Values".		
NLS_TERRITORY		
in step 1 is not AMERICA		
, change it: NLS_DATE_FORMAT		
in step 1 is not 'Day Month ddth'		
, change it: Result:		
NLS_TERRITORY		
and NLS_DATE_FORMAT		
to the values that they had at step 1. See Also:		
Specifies: Language for names and abbreviations of days and months that are produced by:		
TO_CHAR		
and TO_DATE		
(which are introduced in "Using Conversion Functions in Queries") NLS_DATE_FORMAT		
, described in "About the NLS_DATE_FORMAT Parameter") Acceptable Values: Any language name that Oracle supports. For a list, see Oracle Database Globalization Support Guide.		
Default Value: Set by NLS_LANGUAGE		
, described in "About the NLS_LANGUAGE Parameter".		
Example 9-5 shows how setting NLS_DATE_LANGUAGE		
to FRENCH		
and SWEDISH		
affects the displayed system date.		
To try this example in SQL Developer, enter the statements and queries in the SQL Worksheet. For information about the SQL Worksheet, see "Running Queries in SQL Developer". The results shown here are from SQL*Plus; their format is slightly different in SQL Developer.		
Example 9-5 NLS_DATE_LANGUAGE Affects Displayed SYSDATE		
Note the current value of NLS_DATE_LANGUAGE		
.		
For instructions, see "Viewing NLS Parameter Values".		
NLS_DATE_LANGUAGE		
in step 1 is not FRENCH		
, change it: Run this query:		
Result:		
NLS_DATE_LANGUAGE		
to SWEDISH		
: Result:		
NLS_DATE_LANGUAGE		
to the value that it had at step 1. See Also:		
Specify: Default date format for:		
TIMESTAMP		
datatype TIMESTAMP		
WITH		
LOCAL		
TIME		
ZONE		
datatype Acceptable Values: Any any valid datetime format model. For example:		
For information about datetime format models, see Oracle Database SQL Language Reference.		
Default Value: Set by NLS_TERRITORY		
, described in "About the NLS_TERRITORY Parameter".		
See Also:		
Specifies: Calendar system for the database.		
Acceptable Values: Any calendar system that Oracle supports. For a list, see Oracle Database Globalization Support Guide.		
Default Value: Gregorian		
Example 9-6 shows how setting NLS_CALENDAR		
to 'English Hijrah'		
and Gregorian		
affects the displayed system date.		
To try this example in SQL Developer, enter the statements and queries in the SQL Worksheet. For information about the SQL Worksheet, see "Running Queries in SQL Developer". The results shown here are from SQL*Plus; their format is slightly different in SQL Developer.		
Example 9-6 NLS_CALENDAR Affects Displayed SYSDATE		
Note the current value of NLS_CALENDAR		
.		
For instructions, see "Viewing NLS Parameter Values".		
NLS_CALENDAR		
in step 1 is not 'English Hijrah'		
, change it: Result:		
NLS_CALENDAR		
to 'Gregorian'		
: Result:		
NLS_CALENDAR		
to the value that it had at step 1. See Also:		
Specifies: Decimal character (which separates the integer and decimal parts of a number) and group separator (which separates integer groups to show thousands and millions, for example). The group separator is the character returned by the numeric format element G		
.		
Acceptable Values: Any two different single-byte characters except:		
Default Value: Set by NLS_TERRITORY		
, described in "About the NLS_TERRITORY Parameter".		
In a SQL statement, you can represent a number as either:		
A numeric literal is not enclosed in quotation marks, always uses a period (.) as the decimal character, and never contains a group separator.		
A text literal is enclosed in single quotation marks. It is implicitly or explicitly converted to a number, if required, according to the current NLS settings.		
Example 9-7 shows how two different NLS_NUMERIC_CHARACTERS		
settings affect the displayed result of the same query.		
To try this example in SQL Developer, enter the statements and queries in the SQL Worksheet. For information about the SQL Worksheet, see "Running Queries in SQL Developer". The results shown here are from SQL*Plus; their format is slightly different in SQL Developer.		
Example 9-7 NLS_NUMERIC_CHARACTERS Affects Decimal Character and Group Separator		
Note the current value of NLS_NUMERIC_CHARACTERS		
.		
For instructions, see "Viewing NLS Parameter Values".		
NLS_NUMERIC_CHARACTERS		
in step 1 is not ",."		
(decimal character is comma and group separator is period), change it: Result:		
NLS_NUMERIC_CHARACTERS		
to ",."		
(decimal character is period and group separator is comma): Result:		
NLS_NUMERIC_CHARACTERS		
to the value that it had at step 1. See Also:		
Specifies: Local currency symbol (the character string returned by the numeric format element L		
).		
Acceptable Values: Any valid currency symbol string.		
Default Value: Set by NLS_TERRITORY		
, described in "About the NLS_TERRITORY Parameter".		
Example 9-8 changes the value of NLS_CURRENCY		
, overriding the default value set by NLS_TERRITORY		
.		
To try this example in SQL Developer, enter the statements and queries in the SQL Worksheet. For information about the SQL Worksheet, see "Running Queries in SQL Developer". The results shown here are from SQL*Plus; their format is slightly different in SQL Developer.		
Example 9-8 NLS_CURRENCY Overrides NLS_TERRITORY		
Note the current values of NLS_TERRITORY		
and NLS_CURRENCY		
.		
For instructions, see "Viewing NLS Parameter Values".		
NLS_TERRITORY		
in step 1 is not AMERICA		
, change it: Result:		
NLS_CURRENCY		
to '¥'		
: Result:		
NLS_TERRITORY		
and NLS_CURRENCY		
to the values that they had at step 1. See Also:		
Specifies: ISO currency symbol (the character string returned by the numeric format element C		
).		
Acceptable Values: Any valid currency symbol string.		
Default Value: Set by NLS_TERRITORY		
, described in "About the NLS_TERRITORY Parameter".		
Local currency symbols can be ambiguous, but ISO currency symbols are unique.		
Example 9-9 shows that the territories AUSTRALIA		
and AMERICA		
have the same local currency symbol, but different ISO currency symbols.		
To try this example in SQL Developer, enter the statements and queries in the SQL Worksheet. For information about the SQL Worksheet, see "Running Queries in SQL Developer". The results shown here are from SQL*Plus; their format is slightly different in SQL Developer.		
Example 9-9 NLS_ISO_CURRENCY		
Note the current values of NLS_TERRITORY		
and NLS_ISO_CURRENCY		
.		
For instructions, see "Viewing NLS Parameter Values".		
NLS_TERRITORY		
in step 1 is not AUSTRALIA		
, change it: Result:		
NLS_TERRITORY		
to AMERICA		
: Result:		
NLS_TERRITORY		
and NLS_ISO_CURRENCY		
to the values that they had at step 1. See Also:		
Specifies: Dual currency symbol (introduced to support the euro currency symbol during the euro transition period).		
Acceptable Values: Any valid currency symbol string.		
Default Value: Set by NLS_TERRITORY		
, described in "About the NLS_TERRITORY Parameter".		
See Also:		
Specifies: Linguistic sort order (collating sequence) for queries that have the ORDER		
BY		
clause.		
Acceptable Values:		
BINARY		
Sort order is based on the binary sequence order of either the database character set or the national character set, depending on the data type.		
Sort order is based on the order of the specified linguistic sort name. The linguistic sort name is usually the same as the language name, but not always. For a list of supported linguistic sort names, see Oracle Database Globalization Support Guide.		
Default Value: Set by NLS_LANGUAGE		
, described in "About the NLS_LANGUAGE Parameter".		
Example 9-10 shows how two different NLS_SORT		
settings affect the displayed result of the same query. The settings are BINARY		
and Traditional Spanish (SPANISH_M		
). Traditional Spanish treats ch, ll, and ñ as letters that follow c, l, and n, respectively.		
To try this example in SQL Developer, enter the statements and queries in the SQL Worksheet. For information about the SQL Worksheet, see "Running Queries in SQL Developer". The results shown here are from SQL*Plus; their format is slightly different in SQL Developer.		
Example 9-10 NLS_SORT Affects Linguistic Sort Order		
Note the current value of NLS_SORT		
.		
For instructions, see "Viewing NLS Parameter Values".		
NLS_SORT		
in step 3 is not BINARY		
, change it: Run this query:		
Result:		
NLS_SORT		
to SPANISH_M		
(Traditional Spanish): Result:		
NLS_SORT		
to the value that it had at step 3. Case-Insensitive and Accent-Insensitive Sorts		
Operations inside Oracle Database are sensitive to the case and the accents of the characters. To perform a case-insensitive sort, append _CI		
to the value of the NLS_SORT		
parameter (for example, BINARY_CI		
or XGERMAN_CI		
). To perform a sort that is both case-insensitive and accent-insensitive, append _AI		
to the value of the NLS_SORT		
parameter (for example, BINARY_AI		
or FRENCH_M_AI		
).		
See Also:		
Specifies: Character comparison behavior of SQL operations.		
Acceptable Values:		
BINARY		
SQL compares the binary codes of characters. One character is greater than another if it has a higher binary code.		
LINGUISTIC		
SQL performs a linguistic comparison based on the value of the NLS_SORT		
parameter, described in "About the NLS_SORT Parameter".		
ANSI		
This value is provided only for backward compatibility.		
Default Value: BINARY		
Example 9-11 shows that the result of a query can depend on the NLS_COMP		
setting.		
To try this example in SQL Developer, enter the statements and queries in the SQL Worksheet. For information about the SQL Worksheet, see "Running Queries in SQL Developer". The results shown here are from SQL*Plus; their format is slightly different in SQL Developer.		
Example 9-11 NLS_COMP Affects SQL Character Comparison		
Note the current values of NLS_SORT		
and NLS_COMP		
.		
For instructions, see "Viewing NLS Parameter Values".		
NLS_SORT		
and NLS_COMP		
in step 1 are not SPANISH_M		
(Traditional Spanish) and BINARY		
, respectively, change them: *Run this query:		
Result:		
NLS_COMP		
to LINGUISTIC		
: Result:		
This time, Chen and Chung are not returned because Traditional Spanish treats ch		
as a single character that follows c		
.		
NLS_SORT		
and NLS_COMP		
to the values that they had in step 1. See Also:		
Specifies: Length semantics for columns of the character data types CHAR		
, VARCHAR2		
, and LONG		
; that is, whether these columns are specified in bytes or in characters. (Applies only to columns that are declared after the parameter is set.)		
Acceptable Values:		
BYTE		
New CHAR		
, VARCHAR2		
, and LONG		
columns are specified in bytes.		
CHAR		
New CHAR		
, VARCHAR2		
, and LONG		
columns are specified in characters.		
Default Value: BYTE		
To try this example in SQL Developer, enter the statements and queries in the SQL Worksheet. For information about the SQL Worksheet, see "Running Queries in SQL Developer". The results shown here are from SQL*Plus; their format is slightly different in SQL Developer.		
Example 9-12 NLS_LENGTH_SEMANTICS Affects Storage of VARCHAR2 Column		
Note the current values of NLS_LENGTH_SEMANTICS		
.		
For instructions, see "Viewing NLS Parameter Values".		
NLS_LENGTH_SEMANTICS		
in step 1 is not BYTE		
, change it: VARCHAR2		
column: The Connections pane shows the connection hr_conn		
.		
A list of schema object types appears, including Tables.		
A list of tables appears, including SEMANTICS_BYTE		
.		
To the right of the Connections pane, the Columns pane shows that for Column Name SOME_DATA		
, the Data Type is VARCHAR2(20 BYTE)		
.		
NLS_LENGTH_SEMANTICS		
to CHAR		
: VARCHAR2		
column: The list of tables now includes SEMANTICS_CHAR		
.		
The Columns pane shows that for Column Name SOME_DATA		
, the Data Type is VARCHAR2(20 CHAR)		
.		
The Columns pane shows that for Column Name SOME_DATA		
, the Data Type is still VARCHAR2(20 BYTE)		
.		
NLS_LENGTH_SEMANTICS		
to the value that it had in step 1. See Also:		
You can insert and retrieve Unicode data. Data is transparently converted among the database and client programs, which ensures that client programs are independent of the database character set and national character set.		
Topics:		
See Also:		
There are three ways to represent a Unicode string literal in SQL or PL/SQL:		
N'		
string		
'		
Example: N'résumé'		
.		
Limitations: See "Avoiding Data Loss During Character-Set Conversion".		
NCHR(
number		
)		
The SQL function NCHR		
returns the character whose binary equivalent is number		
in the national character set. The character returned has data type NVARCHAR2		
.		
Example: NCHR(36)		
represents $		
in the default national character set, AL16UTF16.		
Limitations: Portability of the value of NCHR(
number		
)		
is limited to applications that use the same national character set.		
UNISTR('		
string		
')		
The SQL function UNISTR		
converts string		
to the national character set.		
For portability and data preservation, Oracle recommends that string		
contain only ASCII characters and Unicode encoding values. A Unicode encoding value has the form \xxxx		
, where xxxx		
is the hexadecimal value of a character code value in UCS-2 encoding format.		
Example: UNISTR('G\0061ry')		
represents 'Gary'		
ASCII characters are converted to the database character set and then to the national character set. Unicode encoding values are converted directly to the national character set.		
See Also:		
As part of a SQL or PL/SQL statement, a literal (with or without the prefix N		
) is encoded in the same character set as the rest of the statement. On the client side, the statement is encoded in the client character set, which is determined by the NLS_LANG		
parameter. On the server side, the statement is encoded in the database character set.		
When the SQL or PL/SQL statement is transferred from the client to the database, its character set is converted accordingly. If the database character set does not contain all characters that the client used in the text literals, then data is lost in this conversion. NCHAR		
string literals are more vulnerable than CHAR		
text literals, because they are designed to be independent of the database character set.		
To avoid data loss in conversion to an incompatible database character set, you can activate the NCHAR		
literal replacement functionality. For more information, see Oracle Database Globalization Support Guide.		
This chapter contains the following topics:		
Deployment is installing your application in one or more environments where other users can run it.		
The schema in which you develop your application is called the development environment. (The development environment for the sample application is the sample schema HR		
.) The other environments in which you deploy your application are called deployment environments. These environments might exist in your organization; if not, you can create them.		
The first deployment environment is the test environment. In the test environment, you can thoroughly test the functionality of the application, determine whether it is packaged correctly, and fix any problems before deploying it in the production environment.		
You might also deploy your application to an education environment, either before or after deploying it to the production environment. An education environment provides a place for users to practice running the application without affecting other environments.		
To deploy an application, you run one or more installation script files. If these files do not exist, you can create them, with SQL Developer or any text editor.		
An installation script file is an executable file (.sql		
file) that contains an installation script. An installation script is composed ot DDL statements, INSERT		
statements, or both. When you run your installation script files, the DDL statements create the schema objects of your application in the deployment environment, and the INSERT		
statements insert the data from the tables in your development environment (the source tables) into the corresponding tables in the deployment environment (the new tables).		
Topics:		
When you run your installation script files, their DDL statements create the schema objects of your application in the deployment environment. To create the installation script files correctly and run them in the correct order, you must understand the dependencies between the schema objects of your application.		
If the definition of object A references object B, then A depends on B. Therefore, you must create B before you create A. Otherwise, the statement that creates B either fails or creates B in an invalid state, depending on the object type.		
Typically, you install schema objects and data in the deployment environment in this order:		
However, for a complex application, the order for creating the objects is rarely obvious. Usually, you must consult the database designer or a diagram of the design.		
See Also:		
When you run your installation script files, their INSERT		
statements insert the data from the source tables into the corresponding new tables. For each source table in your application, you must determine whether any constraints could be violated when their data is inserted in the new table. If so, you must first disable those constraints, then insert the data, and then try to re-enable the constraints. If a data item violates a constraint, you cannot re-enable that constraint until you correct the data item.		
If you are simply inserting lookup data in correct order, constraints are not violated. Therefore, you do not need to disable them first.		
If you are inserting data from an outside source (such as a file, spreadsheet, or older application), or from many tables that have much dependent data, disable the constraints before inserting the data.		
Some possible ways to disable and re-enable the constraints are:		
To find and enable the constraints used in the EVALUATIONS		
, PERFORMANCE_PARTS		
, and SCORES		
tables, enter these statements into a SQL Worksheet window:		
This topic explains how to use SQL Developer to create an installation script file, when and how to edit installation script files that create sequences and triggers, and how to create installation script files for the schema objects and data of the sample application.		
The tutorials in this topic assume that you created the objects in the sample schema HR		
, using the instructions in this document, and are deploying the sample application in another standard HR		
schema.		
Note: To do the tutorials in this document, you must be connected to Oracle Database as the userHR from SQL Developer. For instructions, see "Connecting to Oracle Database as User HR from SQL Developer".		
Topics:		
To create an installation script file with SQL Developer, use the Database Export tool. You specify the name of the installation script file and the objects and data to export, and SQL Developer generates DDL statements for creating the objects and INSERT		
statements for inserting the data into new tables, and writes these statements to the installation script file.		
Note: In the following procedure, you might have to enlarge the SQL Developer windows to see all fields and options.		
To create an installation script file with the Database Export tool:		
C:\my_exports		
). A drop-down menu appears.		
The Source/Destination window opens.		
In the Source/Destination window:		
C:\my_exports\hr_export.sql		
). The file name must end with .sql		
.		
hr_conn		
). By default, Terminator and Pretty Print are selected and all other options are deselected. If you deselect Terminator, the installation script file fails.		
For descriptions of the DDL Options, see Oracle Database SQL Developer User's Guide.		
Click Next.		
The Types to Export window appears, listing the types of objects, and data, that you can export. To the left of each object is a check box. By default, every check box is selected.		
In the Types to Export window:		
Selecting or deselecting Toggle All selects or deselects all check boxes.		
The Specify Objects window appears.		
HR		
, accept that value. A list appears, showing all objects in schema HR		
whose types you specified in step 5, and, if you specified Data in step 5, names of tables in schema HR		
.		
The items to be exported move from the original column to the other column. (To move all of them back to the original column, click <<; to move individual items back, select them and click <.)		
The Export Summary window appears.		
In the Export Summary window, click Finish.		
The Exporting window opens, showing that exporting is occurring. When exporting is complete, the Exporting window closes, and the SQL Worksheet shows the contents of the installation script file that you specified in step 4.		
If necessary, edit the file in the SQL Worksheet or any text editor.		
See Also:		
For a sequence, SQL Developer generates a CREATE		
SEQUENCE		
statement whose START		
WITH		
value is relative to the current value of the sequence in the development environment.		
If your application uses the sequence to generate unique keys, and you will not insert the data from the source tables into the corresponding new tables, then you might want to edit the START		
WITH		
value in the installation script file. You can edit the installation script file in the SQL Worksheet or any text editor.		
If your application has a BEFORE		
INSERT		
trigger on a source table, and you will insert the data from that source table into the corresponding new table, then you must decide if you want the trigger to fire before each INSERT		
statement in the installation script file inserts data into the new table.		
For example, in the sample application, NEW_EVALUATION_TRIGGER		
fires before a row is inserted into the EVALUATIONS		
table, and generates the unique number for the primary key of that row, using EVALUATIONS_SEQ		
. The trigger fires once for each row affected by the triggering INSERT		
statement. (NEW_EVALUATION_TRIGGER		
is created in "Tutorial: Creating a Trigger that Generates a Primary Key for a Row Before It Is Inserted".)		
The source EVALUATIONS		
table is populated with primary keys. If you do not want the installation script to put new primary key values in the new EVALUATIONS		
table, then you must edit the CREATE		
TRIGGER		
statement in the installation script file as shown in bold:		
Also, check the current value of the sequence. If it not is greater than the maximum value in the primary key column, make it greater.		
You can edit the installation script file in the SQL Worksheet or any text editor.		
Two alternatives to editing the installation script file are:		
For information about changing triggers, see "Changing Triggers".		
For information about disabling and enabling triggers, see "Disabling and Enabling Triggers".		
This tutorial shows how to use the SQL Developer tool Database Export to create an installation script file for the tables and sequence of the sample application, including the constraints, indexes, and triggers associated with the tables.		
Note: In the following procedure, you might have to enlarge the SQL Developer windows to see all fields and options.		
To create an installation script file for the tables and sequence:		
C:\my_exports		
. A drop-down menu appears.		
The Source/Destination window opens.		
In the Source/Destination window:		
C:\my_exports\2day_tables.sql		
. The Types to Export window appears.		
The Specify Objects window appears.		
HR		
, accept that value. All		
, select the value TABLE. A list of the tables in schema HR		
appears.		
The selected tables move from the original column to the other column.		
TABLE		
, select the value SEQUENCE. A list of the sequences in schema HR		
appears.		
HR		
.EVALUATIONS_SEQ		
moves from the original column to the other column.		
SEQUENCE		
, select the value All. HR		
.PERFORMANCE_PARTS		
, HR		
.EVALUATIONS		
, HR		
.SCORES		
, HR		
.EVALUATIONS_LOG		
and HR		
.EVALUATIONS_SEQ		
show.		
The Export Summary window appears.		
The Exporting window opens, showing that exporting is occurring. When exporting is complete, the Exporting window closes, and the SQL Worksheet shows the contents of the file C:\my_exports\2day_tables.sql		
.		
C:\my_exports\2day_tables.sql		
, check that referenced objects are created before their dependent objects: EVALUATIONS_SEQ		
must be created before the table EVALUATIONS		
, because EVALUATIONS		
has a trigger, NEW_EVALUATION_TRIGGER		
, that uses EVALUATIONS_SEQ		
. EVALUATIONS_LOG		
must be created before the table EVALUATIONS		
, because EVALUATIONS		
has a trigger, EVAL_CHANGE_TRIGGER		
, that uses EVALUATIONS_LOG		
. EVALUATIONS		
and PERFORMANCE_PARTS		
must be created before the table SCORES		
, because SCORES		
has foreign keys to both EVALUATIONS		
and PERFORMANCE_PARTS		
. If necessary, edit the file in the SQL Worksheet or any text editor.		
This tutorial shows how to use the SQL Developer tool Database Export to create an installation script file for the package (specification and body) of the sample application.		
Note: In the following procedure, you might have to enlarge the SQL Developer windows to see all fields and options.		
To create an installation script file for the package:		
C:\my_exports		
. A drop-down menu appears.		
The Source/Destination window opens.		
In the Source/Destination window:		
C:\my_exports\2day_package.sql		
. The Types to Export window appears.		
The Specify Objects window appears.		
HR		
, accept that value. All		
, accept that value. A list of the packages and package bodies in schema HR		
appears.		
HR		
.EMP_EVAL		
and the package body HR		
.EMP_EVAL		
, click >>; otherwise, select those two items from the list and click >. The package HR		
.EMP_EVAL		
and the package body HR		
.EMP_EVAL		
move from the original column to the other column.		
The Export Summary window appears.		
The Exporting window opens, showing that exporting is occurring. When exporting is complete, the Exporting window closes, and the SQL Worksheet shows the contents of the installation script file that you specified in step 4.		
This tutorial shows how to use the SQL Developer tool Database Export to create an installation script file for the synonym and view of the sample application.		
Note: In the following procedure, you might have to enlarge the SQL Developer windows to see all fields and options.		
To create an installation script file for the synonym and view:		
C:\my_exports		
. A drop-down menu appears.		
The Source/Destination window opens.		
In the Source/Destination window:		
C:\my_exports\2day_other.sql		
. The Types to Export window appears.		
The Specify Objects window appears.		
HR		
, accept that value. All		
, select the value VIEW. A list of the views in schema HR		
appears.		
HR		
.EMP_LOCATIONS		
moves from the original column to the other column.		
VIEW		
, select the value SYNONYM. A list of the synonyms in schema HR		
appears.		
HR		
.EMP		
moves from the original column to the other column.		
SYNONYM		
, select the value All. HR		
.EMP_LOCATIONS		
and HR		
.EMP		
show.		
The Export Summary window appears.		
The Exporting window opens, showing that exporting is occurring. When exporting is complete, the Exporting window closes, and the SQL Worksheet shows the contents of the file C:\my_exports\2day_other.sql		
.		
This tutorial shows how to use the SQL Developer tool Database Export to create an installation script file for the data of the sample application. If you followed the instructions in this document, you added data only to the table PERFORMANCE_PARTS		
.		
Note: In the following procedure, you might have to enlarge the SQL Developer windows to see all fields and options.		
To create an installation script file for the data:		
C:\my_exports		
. A drop-down menu appears.		
The Source/Destination window opens.		
C:\my_exports\2day_data.sql		
. The Types to Export window appears.		
The Specify Data window appears.		
HR		
, accept that value. A list of the tables in schema HR		
appears.		
HR		
.PERFORMANCE_PARTS		
moves from the original column to the other column.		
The Export Summary window appears.		
The Exporting window opens, showing that exporting is occurring. When exporting is complete, the Exporting window closes, and the SQL Worksheet shows the contents of the file C:\my_exports\2day_data.sql		
.		
To install the sample application, you run the installation script files that you created in the tutorials in "Creating Installation Script Files", in this order:		
2day_tables.sql		
2day_package.sql		
2day_other.sql		
2day_data.sql		
You can either run the files one at a time, or you can create and run a master SQL script file that runs them in order.		
The following master SQL script runs the files in order, commits the changes, and writes server messages to a log file:		
The SQL*Plus command @		
file_name		
.sql		
runs a file.		
Typically, you run the master script file in SQL*Plus. However, if the master script specifies the full path names of the individual files (as in the preceding example), you can run it in SQL Developer.		
The following procedure uses SQL Developer to install the sample application by running the installation script files one at a time, in order.		
Note: The deployment environment must be different from the development environment, and is assumed to be another standardHR schema.		
To install the sample application using SQL Developer:		
Connect to Oracle Database as user HR		
in the deployment environment.		
For instructions, see "Connecting to Oracle Database as User HR from SQL Developer". For Connection Name, enter a name other than hr_conn		
(for example, hr_conn_2		
).		
The Files pane appears, showing the directories on your computer.		
C:\my_exports		
. The list of installation script files appears.		
Right-click 2day_tables.sql.		
A list of choices appears.		
In the SQL Worksheet, a new 2day_tables.sql		
pane appears, showing the content of the 2day_tables.sql		
file.		
The Select Connection window opens.		
For Connection, on the drop-down menu, select the connection to the deployment environment (created in step 1).		
The result of each statement in 2day_tables.sql		
is displayed in the Script Output pane.		
Click the icon Clear.		
The title of the 2day_tables.sql		
pane is now in italic font, indicating that the changes have not been committed, and the SQL Worksheet is blank.		
2day_package.sql		
. 2day_other.sql		
. 2day_data.sql		
. The changes are committed.		
When you are sure that the individual installation script files run without errors, you can create a master SQL script (.sql		
) file that runs them in order, commits the changes, and writes the results to a log file. For example:		
Typically, you run the master file in SQL*Plus. However, if the master file specifies the full path names of the individual files (as in the preceding example), you can open and run it in SQL Developer.		
See Also:		
After installing your application in a deployment environment, you can check its validity in the following ways in SQL Developer:
A list of data dictionary reports appears.
A list of objects reports appears.
The Enter Bind Values window appears.
The message "Executing Report" shows, followed by the report itself.
For each object, this report lists the Owner, Object Type, Object Name, Status (Valid or Invalid), Date Created, and Last DDL. Last DDL is the date of the last DDL operation that affected the object.
The Enter Bind Values window appears.
The message "Executing Report" shows, followed by the report itself.
For each object whose Status is Invalid, this report lists the Owner, Object Type, and Object Name.
See Also: Oracle Database SQL Developer User's Guide for more information about SQL Developer reports |
After verifying that the installation of your application is valid, you might want to archive your installation script files in a source code control system. Before doing so, add comments to each file, documenting its creation date and purpose. If you ever must deploy the same application to another environment, you can use these archived files.
See Also: Oracle Database Utilities for information about Oracle Data Pump, which enables very high-speed movement of data and metadata from one database to another |
 Copyright © 2008, 2010, Oracle and/or its affiliates. All rights reserved. |