API Reference
Release 3.2
E12510-01
July 2009
Oracle Application Express API Reference, Release 3.2
E12510-01
Copyright © 2003, 2009, Oracle and/or its affiliates. All rights reserved.
Primary Author: Drue Baker
Contributors: Marco Adelfio, Drue Baker, Carl Backstrom, Christina Cho, Steve Fogel, Michael Hichwa, Terri Jennings, Christopher Jones, Joel Kallman, Sharon Kennedy, Syme Kutz, Sergio Leunissen, Anne Romano, Kris Rice, Marc Sewtz, Scott Spadafore, Scott Spendolini, Jason Straub, and Simon Watt.
This software and related documentation are provided under a license agreement containing restrictions on use and disclosure and are protected by intellectual property laws. Except as expressly permitted in your license agreement or allowed by law, you may not use, copy, reproduce, translate, broadcast, modify, license, transmit, distribute, exhibit, perform, publish, or display any part, in any form, or by any means. Reverse engineering, disassembly, or decompilation of this software, unless required by law for interoperability, is prohibited.
The information contained herein is subject to change without notice and is not warranted to be error-free. If you find any errors, please report them to us in writing.
If this software or related documentation is delivered to the U.S. Government or anyone licensing it on behalf of the U.S. Government, the following notice is applicable:
U.S. GOVERNMENT RIGHTS Programs, software, databases, and related documentation and technical data delivered to U.S. Government customers are "commercial computer software" or "commercial technical data" pursuant to the applicable Federal Acquisition Regulation and agency-specific supplemental regulations. As such, the use, duplication, disclosure, modification, and adaptation shall be subject to the restrictions and license terms set forth in the applicable Government contract, and, to the extent applicable by the terms of the Government contract, the additional rights set forth in FAR 52.227-19, Commercial Computer Software License (December 2007). Oracle USA, Inc., 500 Oracle Parkway, Redwood City, CA 94065.
This software is developed for general use in a variety of information management applications. It is not developed or intended for use in any inherently dangerous applications, including applications which may create a risk of personal injury. If you use this software in dangerous applications, then you shall be responsible to take all appropriate fail-safe, backup, redundancy, and other measures to ensure the safe use of this software. Oracle Corporation and its affiliates disclaim any liability for any damages caused by use of this software in dangerous applications.
Oracle is a registered trademark of Oracle Corporation and/or its affiliates. Other names may be trademarks of their respective owners.
This software and documentation may provide access to or information on content, products, and services from third parties. Oracle Corporation and its affiliates are not responsible for and expressly disclaim all warranties of any kind with respect to third-party content, products, and services. Oracle Corporation and its affiliates will not be responsible for any loss, costs, or damages incurred due to your access to or use of third-party content, products, or services.
Oracle Application Express API Reference describes the Application Programming Interfaces, referred to as APIs, available when programming in the Oracle Application Express environment.
This preface contains these topics:
This document contains the following chapters:
Title	Description
APEX_UTIL	Use the APEX_UTIL package to get and set session state, get files, check authorizations for users, reset different states for users, and also to get and set preferences for users.
APEX_MAIL	Use the APEX_MAIL package to send an email from an Oracle Application Express application.
APEX_ITEM	Use the APEX_ITEM package to create form elements dynamically based on a SQL query instead of creating individual items page by page.
APEX_APPLICATION	Use the APEX_APPLICATION package to take advantage of a number of global variables.
APEX_CUSTOM_AUTH	Use the APEX_CUSTOM_AUTH package to perform various operations related to authentication and session management.
APEX_LDAP	Use APEX_LDAP to perform various operations related to Lightweight Directory Access Protocol (LDAP) authentication.
APEX_INSTANCE_ADMIN	Use the APEX_INSTANCE_ADMIN package to get and set email settings, wallet settings, report printing settings and to manage schema to workspace mappings.
APEX_UI_DEFAULT_UPDATE	You can use the APEX_UI_DEFAULT_UPDATE package to set the user interface defaults associated with a table within a schema. The package must be called from within the schema that owns the table you are updating.
JavaScript APIs	Use these JavaScript functions and objects to provide client-side functionality, such as showing and hiding page elements, or making XML HTTP Asynchronous JavaScript and XML (AJAX) requests.
APEX_PLSQL_JOB	Use APEX_PLSQL_JOB package to run PL/SQL code in the background of your application. This is an effective approach for managing long running operations that do not need to complete for a user to continue working with your application.
APEX_LANG	Use APEX_LANG API to translate messages.
Note: In release 2.2, Oracle Application Express APIs were renamed using the prefixAPEX_ . Note that API's using the previous prefix HTMLDB_ are still supported to provide backward compatibility. As a best practice, however, use the new API names for new applications unless you plan to run them in an earlier version of Oracle Application Express.	
Oracle Application Express API Reference is intended for application developers who are building database-centric Web applications using Oracle Application Express. The guide describes the APIs available when programming in the Oracle Application Express environment.	
To use this guide, you need to have a general understanding of relational database concepts as well as an understanding of the operating system environment under which you are running Oracle Application Express.	
Our goal is to make Oracle products, services, and supporting documentation accessible to all users, including users that are disabled. To that end, our documentation includes features that make information available to users of assistive technology. This documentation is available in HTML format, and contains markup to facilitate access by the disabled community. Accessibility standards will continue to evolve over time, and Oracle is actively engaged with other market-leading technology vendors to address technical obstacles so that our documentation can be accessible to all of our customers. For more information, visit the Oracle Accessibility Program Web site at http://www.oracle.com/accessibility/	
.	
Accessibility of Code Examples in Documentation	
Screen readers may not always correctly read the code examples in this document. The conventions for writing code require that closing braces should appear on an otherwise empty line; however, some screen readers may not always read a line of text that consists solely of a bracket or brace.	
Accessibility of Links to External Web Sites in Documentation	
This documentation may contain links to Web sites of other companies or organizations that Oracle does not own or control. Oracle neither evaluates nor makes any representations regarding the accessibility of these Web sites.	
Deaf/Hard of Hearing Access to Oracle Support Services	
To reach Oracle Support Services, use a telecommunications relay service (TRS) to call Oracle Support at 1.800.223.1711. An Oracle Support Services engineer will handle technical issues and provide customer support according to the Oracle service request process. Information about TRS is available at http://www.fcc.gov/cgb/consumerfacts/trs.html	
, and a list of phone numbers is available at http://www.fcc.gov/cgb/dro/trsphonebk.html	
.	
For more information, see these Oracle resources:	
For information about Oracle error messages, see Oracle Database Error Messages. Oracle error message documentation is available only in HTML. If you have access to the Oracle Database Documentation Library, you can browse the error messages by range. Once you find the specific range, use your browser's "find in page" feature to locate the specific message. When connected to the Internet, you can search for a specific error message using the error message search feature of the Oracle online documentation.	
Many books in the documentation set use the sample schemas of the seed database, which is installed by default when you install Oracle. Refer to Oracle Database Sample Schemas for information on how these schemas were created and how you can use them yourself.	
For additional documentation available on Oracle's Technology Network, please visit the Oracle Application Express web site located at	
http://www.oracle.com/technology/products/database/application_express/	
For additional application examples, please visit the Oracle by Examples (OBEs) Application Express page, located on Oracle's Technology Network. The OBEs provide step-by-step examples with screenshots on how to perform various tasks within Application Express.	
http://www.oracle.com/technology/products/database/application_express/html/obes.html	
Printed documentation is available for sale in the Oracle Store at	
http://oraclestore.oracle.com/	
To download free release notes, installation documentation, white papers, or other collateral, please visit the Oracle Technology Network (OTN). You must register online before using OTN; registration is free and can be done at	
http://www.oracle.com/technology/membership/	
If you already have a user name and password for OTN, then you can go directly to the documentation section of the OTN Web site at	
http://www.oracle.com/technology/documentation/	
For a description of PL/SQL subprogram conventions, refer to the Oracle Database PL/SQL Language Reference. This document contains the following information:	
The following text conventions are used in this document:	
Convention	Meaning
---	---
boldface	Boldface type indicates graphical user interface elements associated with an action, or terms defined in text or the glossary.
italic	Italic type indicates book titles, emphasis, or placeholder variables for which you supply particular values.
monospace	Monospace type indicates commands within a paragraph, URLs, code in examples, text that appears on the screen, or text that you enter.
The APEX_UTIL	
package provides utilities you can use when programming in the Oracle Application Express environment. You can use the APEX_UTIL	
package to get and set session state, get files, check authorizations for users, reset different states for users, get and purge cache information and also to get and set preferences for users.	
Topics in this section include:	
This function returns the date and time a specified application page was cached either for the user issuing the call, or for all users if the page was not set to be cached by user.	
Syntax	
Parameters	
Table 1-1 describes the parameters available in the CACHE_GET_DATE_OF_PAGE_CACHE	
procedure.	
Table 1-1 CACHE_GET_DATE_OF_PAGE_CACHE Parameters	
Parameter	Description
---	---
The identification number (ID) of the application.	
The page number (ID).	
Example	
The following example demonstrates how to use the CACHE_GET_DATE_OF_PAGE_CACHE	
function to retrieve the cache date and time for page 9 of the currently executing application. If page 9 has been cached, the cache date and time is output using the HTP package. The page could have been cached either by the user issuing the call, or for all users if the page was not to be cached by the user.	
This function returns the date and time a specified region was cached either for the user issuing the call, or for all users if the page was not set to be cached by user.	
Syntax	
Parameters	
Table 1-2 describes the parameters available in the CACHE_GET_DATE_OF_REGION_CACHE	
function.	
Table 1-2 CACHE_GET_DATE_OF_REGION_CACHE Parameters	
Parameter	Description
---	---
The identification number (ID) of the application	
The page number (ID)	
The region name	
Example	
The following example demonstrates how to use the CACHE_GET_DATE_OF_REGION_CACHE	
function to retrieve the cache date and time for the region named Cached Region on page 13 of the currently executing application. If the region has been cached, the cache date and time is output using the HTP package. The region could have been cached either by the user issuing the call, or for all users if the page was not to be cached by user.	
This procedure purges all cached pages and regions for a given application.	
Syntax	
Parameters	
Table 1-3 describes the parameters available in the CACHE_PURGE_BY_APPLICATION	
procedure.	
Table 1-3 CACHE_PURGE_BY_APPLICATION Parameters	
Parameter	Description
---	---
The identification number (ID) of the application.	
Example	
The following example demonstrates how to use the CACHE_PURGE_BY_APPLICATION	
procedure to purge all the cached pages and regions for the application currently executing.	
This procedure purges the cache for a given application and page. If the page itself is not cached but contains one or more cached regions, then the cache for these will also be purged.	
Syntax	
Parameters	
Table 1-4 describes the parameters available in the CACHE_PURGE_BY_PAGE	
procedure.	
Table 1-4 CACHE_PURGE_BY_PAGE Parameters	
Parameter	Description
---	---
The identification number (ID) of the application.	
The page number (ID).	
The user associated with cached pages and regions.	
Example	
The following example demonstrates how to use the CACHE_PURGE_BY_PAGE	
procedure to purge the cache for page 9 of the application currently executing. Additionally, if the p_user_name	
parameter is supplied, this procedure would be further restricted by a specific users cache (only relevant if the cache is set to be by user).	
This procedure deletes all cached pages and regions for a specified application that have passed the defined active time period. When you cache a page or region, you specify an active time period (or Cache Timeout). Once that period has passed, the cache will no longer be used, thus removing those unusable pages or regions from the cache.	
Syntax	
Parameters	
Table 1-5 describes the parameters available in the CACHE_PURGE_STALE	
procedure.	
Table 1-5 CACHE_PURGE_STALE Parameters	
Parameter	Description
---	---
The identification number (ID) of the application.	
Example	
The following example demonstrates how to use the CACHE_PURGE_STALE procedure to purge all the stale pages and regions in the application currently executing.	
This procedure changes the password of the currently authenticated user, assuming Application Express user accounts are in use.	
Syntax	
Parameters	
Table 1-6 describes the parameters available in the CHANGE_CURRENT_USER_PW	
procedure.	
Table 1-6 CHANGE_CURRENT_USER_PW Parameters	
Parameter	Description
---	---
The new password value in clear text	
Example	
The following example demonstrates how to use the CHANGE_CURRENT_USER_PW	
procedure to change the password for the user who is currently authenticated, assuming Application Express accounts are in use.	
Enables a developer to check whether this property is enabled or disabled for an end user account. This function returns true if the account password must be changed upon first use (after successful authentication) after the password is initially set and after it is changed on the Administration Service, Edit User page. This function returns false if the account does not have this property.	
This function may be run in a page request context by any authenticated user.	
Syntax	
Parameters	
Table 1-7 describes the parameters available in the CHANGE_PASSWORD_ON_FIRST_USE	
function.	
Table 1-7 CHANGE_PASSWORD_ON_FIRST_USE Parameters	
Parameter	Description
---	---
The user name of the user account	
Example	
The following example demonstrates how to use the CHANGE_PASSWORD_ON_FIRST_USE	
function. Use this function to check if the password of an Application Express user account (workspace administrator, developer, or end user) in the current workspace must be changed by the user the first time it is used.	
This procedure removes session state for a given application for the current session.	
Syntax	
Parameters	
Table 1-8 describes the parameters available in the CLEAR_APP_CACHE	
procedure.	
Table 1-8 CLEAR_APP_CACHE Parameters	
Parameter	Description
---	---
The ID of the application for which session state will be cleared for current session	
Example	
The following example demonstrates how to use the CLEAR_APP_CACHE procedure to clear all the current sessions state for the application with an ID of 100.	
This procedure removes session state for a given page for the current session.	
Syntax	
Parameters	
Table 1-9 describes the parameters available in the CLEAR_PAGE_CACHE	
procedure.	
Table 1-9 CLEAR_PAGE_CACHE Parameters	
Parameter	Description
---	---
The ID of the page in the current application for which session state will be cleared for current session.	
Example	
The following example demonstrates how to use the CLEAR_PAGE_CACHE procedure to clear the current session s state for the page with an ID of 10.	
This procedure removes session state and application system preferences for the current user's session. Run this procedure if you reuse session IDs and want to run applications without the benefit of existing session state.	
Syntax	
Parameters	
None.	
Example	
The following example demonstrates how to use the CLEAR_USER_CACHE procedure to clear all session state and application system preferences for the current user's session.	
This procedure counts clicks from an application built in Application Builder to an external site. You can also use the shorthand version, procedure Z	
, in place of APEX_UTIL	
.COUNT_CLICK	
.	
Syntax	
Parameters	
Table 1-10 describes the parameters available in the COUNT_CLICK	
procedure.	
Table 1-10 COUNT_CLICK Parameters	
Parameter	Description
---	---
The URL to which to redirect	
A category to classify the click	
Secondary ID to associate with the click (optional)	
The application user ID (optional)	
The workspace associated with the application (optional)	
Example	
The following example demonstrates how to use the COUNT_CLICK procedure to log how many user's click on the http://yahoo.com	
link specified. Note that once this information is logged, you can view it via the APEX_WORKSPACE_CLICKS view and in the reports on this view available to workspace and site administrators.	
See Also: "FIND_SECURITY_GROUP_ID Function" in this document and "Purging the External Click Count Log" in Oracle Application Express Administration Guide	
This procedure creates a new account record in the Application Express user account table. To execute this procedure, the current user must have administrative privileges.	
Syntax	
Parameters	
Table 1-11 describes the parameters available in the CREATE_USER	
procedure.	
Table 1-11 CREATE_USER Procedure Parameters	
Parameter	Description
---	---
Numeric primary key of user account	
Alphanumeric name used for login	
Informational	
Informational	
Informational	
Email address	
Clear text password	
If the value your passing for the	
Colon separated list of numeric group IDs	
Colon separated list of developer privileges. The following are acceptable values for this parameter: null - To create an end user (a user who can only authenticate to developed applications). CREATE:DATA_LOADER:EDIT:HELP:MONITOR:SQL - To create a user with developer privilege. ADMIN:CREATE:DATA_LOADER:EDIT:HELP:MONITOR:SQL - To create a user with full workspace administrator and developer privilege. Note: Currently this parameter is named inconsistently between the	
A database schema assigned to the user's workspace, used by default for browsing.	
Colon separated list of schemas assigned to the user's workspace to which the user is restricted (leave null for all).	
Date password was last updated, which will default to today's date on creation.	
'Y' or 'N' indicating if account is locked or unlocked.	
Number of consecutive login failures that have occurred, defaults to 0 on creation.	
'Y' or 'N' to indicate whether password must be changed on first use, defaults to 'Y' on creation.	
'Y' or 'N' to indicate whether login has occurred since password change, defaults to 'N' on creation.	
Arbitrary text accessible with an API	
Example 1	
The following simple example creates an 'End User' called 'NEWUSER1' with a password of 'secret99'. Note an 'End User' can only authenticate to developed applications.	
Example 2	
The following example creates a 'Workspace Administrator' called 'NEWUSER2'. Where the user 'NEWUSER2':	
p_developer_privs	
parameter set to 'ADMIN:CREATE:DATA_LOADER:EDIT:HELP:MONITOR:SQL	
'). MY_SCHEMA	
' (p_default_schema	
parameter set to 'MY_SCHEMA	
') and also 'MY_SCHEMA2	
' (p_allow_access_to_schemas	
parameter set to 'MY_SCHEMA2	
'). p_change_password_on_first_use	
parameter set to 'N'). p_attribute_01	
parameter set to '123 456 7890'). Assuming you are using Application Express authentication, this procedure creates a user group. To execute this procedure, the current user must have administrative privileges in the workspace.	
Syntax	
Parameter	
Table 1-12 describes the parameters available in the CREATE_USER_GROUP	
procedure.	
Table 1-12 CREATE_USER_GROUP Parameters	
Parameter	Description
---	---
Primary key of group	
Name of group	
Workspace ID	
Descriptive text	
Example	
The following example demonstrates how to use the CREATE_USER_GROUP	
procedure to create a new group called 'Managers' with a description of 'text'. Pass null for the p_id	
parameter to allow the database trigger to assign the new primary key value. Pass null for the p_security_group_id	
parameter to default to the current workspace ID.	
This function returns a Boolean result based on whether or not the current user is a member of the specified group. You can use the group name or group ID to identify the group.	
Syntax	
Parameters	
Table 1-13 describes the parameters available in the CURRENT_USER_IN_GROUP	
function.	
Table 1-13 CURRENT_USER_IN_GROUP Parameters	
Parameter	Description
---	---
Identifies the name of an existing group in the workspace	
Identifies the numeric ID of an existing group in the workspace	
Example	
The following example demonstrates how to use the CURRENT_USER_IN_GROUP	
function to check if the user currently authenticated belongs to the group 'Managers'.	
This procedure initiates the download of a print document using XML based report data (as a BLOB) and RTF or XSL-FO based report layout.	
Syntax	
Parameters	
Table 1-14 describes the parameters available in the DOWNLOAD_PRINT_DOCUMENT	
procedure for Signature 1.	
Table 1-14 DOWNLOAD_PRINT_DOCUMENT Parameters	
Parameter	Description
---	---
Defines the filename of the print document	
Specifies whether to download the print document or display inline ("attachment", "inline")	
XML based report data	
Report layout in XSL-FO or RTF format	
Defines the report layout type, that is "xsl-fo" or "rtf"	
Defines the document format, that is "pdf", "rtf", "xls", "htm", or "xml"	
URL of the print server. If not specified, the print server will be derived from preferences.	
This procedure initiates the download of a print document using pre-defined report query and RTF and XSL-FO based report layout.	
Syntax	
Parameters	
Table 1-15 describes the parameters available in the DOWNLOAD_PRINT_DOCUMENT	
function.	
Table 1-15 DOWNLOAD_PRINT_DOCUMENT Parameters	
Parameter	Description
---	---
Defines the filename of the print document	
Specifies whether to download the print document or display inline ("attachment", "inline")	
Defines the application ID of the report query	
Name of the report query (stored under application's Shared Components)	
Report layout in XSL-FO or RTF format	
Defines the report layout type, that is "xsl-fo" or "rtf"	
Defines the document format, that is "pdf", "rtf", "xls", "htm", or "xml"	
URL of the print server. If not specified, the print server will be derived from preferences.	
Example for Signature 2	
The following example shows how to use the DOWNLOAD_PRINT_DOCUMENT	
using Signature 2 (Pre-defined report query and RTF or XSL-FO based report layout.). In this example, the data for the report is taken from a Report Query called 'ReportQueryAndXSL	
' stored in the current application's Shared Components > Report Queries. The report layout is taken from a value stored in a page item (P1_XSL	
).	
This procedure initiates the download of a print document using pre-defined report query and pre-defined report layout.	
Syntax	
Parameters	
Table 1-16 describes the parameters available in the DOWNLOAD_PRINT_DOCUMENT	
procedure for Signature 3.	
Table 1-16 DOWNLOAD_PRINT_DOCUMENT Parameters	
Parameter	Description
---	---
Defines the filename of the print document	
Specifies whether to download the print document or display inline ("attachment", "inline")	
Defines the application ID of the report query	
Name of the report query (stored under application's Shared Components)	
Name of the report layout (stored under application's Shared Components)	
Defines the report layout type, that is "xsl-fo" or "rtf"	
Defines the document format, that is "pdf", "rtf", "xls", "htm", or "xml"	
URL of the print server. If not specified, the print server will be derived from preferences.	
Example for Signature 3	
The following example shows how to use the DOWNLOAD_PRINT_DOCUMENT	
using Signature 3 (Pre-defined report query and pre-defined report layout). In this example, the data for the report is taken from a Report Query called 'ReportQuery	
' stored in the current application's Shared Components > Report Queries. The report layout is taken from a Report Layout called 'ReportLayout	
' stored in the current application's Shared Components > Report Layouts. Note that if you wish to provision dynamic layouts, instead of specifying 'ReportLayout	
' for the p_report_layout_name	
parameter, you could reference a page item that allowed the user to select one of multiple saved Report Layouts. This example also provides a way for the user to specify how they wish to receive the document (as an attachment or inline), through passing the value of P1_CONTENT_DISP	
to the p_content_disposition	
parameter. P1_CONTENT_DISP	
is a page item of type 'Select	
List	
' with the following List of Values Definition:	
This procedure initiates the download of a print document using XML based report data (as a CLOB) and RTF or XSL-FO based report layout.	
Syntax	
Parameters	
Table 1-16 describes the parameters available in the DOWNLOAD_PRINT_DOCUMENT	
procedure for Signature 4.	
Table 1-17 DOWNLOAD_PRINT_DOCUMENT Parameters	
Parameter	Description
---	---
Defines the filename of the print document	
Specifies whether to download the print document or display inline ("attachment", "inline")	
XML based report data, must be encoded in UTF-8	
Report layout in XSL-FO or RTF format	
Defines the report layout type, that is "xsl-fo" or "rtf"	
Defines the document format, that is "pdf", "rtf", "xls", "htm", or "xml"	
URL of the print server. If not specified, the print server will be derived from preferences.	
Example for Signature 4	
The following example shows how to use the DOWNLOAD_PRINT_DOCUMENT using Signature 4 (XML based report data (as a CLOB) and RTF or XSL-FO based report layout). In this example both the report data (XML) and report layout (XSL-FO) are taken from values stored in page items.	
This procedure enables a user account record to be altered. To execute this procedure, the current user must have administrative privileges in the workspace.	
Syntax	
Parameters	
Table 1-18 describes the parameters available in the EDIT_USER	
procedure.	
Table 1-18 EDIT_USER Parameters	
Parameter	Description
---	---
Numeric primary key of the user account	
Alphanumeric name used for login. See Also: "SET_USERNAME Procedure"	
Informational. See Also: "SET_FIRST_NAME Procedure"	
Informational. See Also: "SET_LAST_NAME Procedure"	
Clear text password. If using this procedure to update the password for the user, values for both	
Clear text new password. If using this procedure to update the password for the user, values for both	
Informational. See Also: "SET_EMAIL Procedure"	
Unused	
Unused	
Unused	
A list of schemas assigned to the user's workspace to which the user is restricted	
Unused	
A database schema assigned to the user's workspace, used by default for browsing	
Colon-separated list of numeric group IDs	
Colon-separated list of developer privileges. The following are acceptable values for this parameter: · null - To update the user to be an end user (a user who can only authenticate to developed applications) · CREATE:DATA_LOADER:EDIT:HELP:MONITOR:SQL - To update the user to have developer privilege · ADMIN:CREATE:DATA_LOADER:EDIT:HELP:MONITOR:SQL - To update the user to have full workspace administrator and developer privilege Note: Currently this parameter is named inconsistently between the CREATE_USER, EDIT_USER and FETCH_USER APIs, although they all relate to the DEVELOPER_ROLE field stored in the named user account record. CREATE_USER uses p_developer_privs, EDIT_USER uses p_developer_roles and FETCH_USER uses p_developer_role. See Also: "GET_USER_ROLES Function"	
Informational	
Date password was last updated. See Also: "EXPIRE_END_USER_ACCOUNT Procedure", "EXPIRE_WORKSPACE_ACCOUNT Procedure", "UNEXPIRE_END_USER_ACCOUNT Procedure", "UNEXPIRE_WORKSPACE_ACCOUNT Procedure"	
'Y' or 'N' indicating if account is locked or unlocked. See Also: "LOCK_ACCOUNT Procedure", "UNLOCK_ACCOUNT Procedure"	
Number of consecutive login failures that have occurred.	
'Y' or 'N' to indicate whether password must be changed on first use. See Also: "CHANGE_PASSWORD_ON_FIRST_USE Function"	
'Y' or 'N' to indicate whether login has occurred since password change. See Also: "PASSWORD_FIRST_USE_OCCURRED Function"	
Example	
The following example shows how to use the EDIT_USER	
procedure to update a user account. This example shows how you can use the EDIT_USER	
procedure to change the user 'FRANK' from a user with just developer privilege to a user with workspace administrator and developer privilege. Firstly, the FETCH_USER	
procedure is called to assign account details for the user 'FRANK' to local variables. These variables are then used in the call to EDIT_USER	
to preserve the details of the account, with the exception of the value for the p_developer_roles	
parameter, which is set to 'ADMIN:CREATE:DATA_LOADER:EDIT:HELP:MONITOR:SQL	
'.	
Returns the number of days remaining before a end user account password expires. This function may be run in a page request context by any authenticated user.	
Syntax	
Parameters	
Table 1-19 describes the parameters available in the END_USER_ACCOUNT_DAYS_LEFT	
function.	
Table 1-19 END_USER_ACCOUNT_DAYS_LEFT Parameters	
Parameter	Description
---	---
The user name of the user account	
Example	
The following example shows how to use the END_USER_ACCOUNT_DAYS_LEFT	
function. Use this function to determine the number of days remaining before an Application Express end user account in the current workspace will expire.	
Expires the login account for use as a workspace end user. Must be run by an authenticated workspace administrator in a page request context.	
Syntax	
Parameters	
Table 1-21 describes the parameters available in the EXPIRE_END_USER_ACCOUNT	
procedure.	
Table 1-20 EXPIRE_END_USER_ACCOUNT Parameters	
Parameter	Description
---	---
The user name of the user account	
Example	
The following example shows how to use the EXPIRE_END_USER_ACCOUNT	
procedure. Use this procedure to expire an Oracle Application Express account (workspace administrator, developer, or end user) in the current workspace. This action specifically expires the account with respect to its use by end users to authenticate to developed applications, but it may also expire the account with respect to its use by developers or administrators to log in to a workspace.	
Note that this procedure must be run by a user having administration privileges in the current workspace.	
Expires developer or workspace administrator login accounts. Must be run by an authenticated workspace administrator in a page request context.	
Syntax	
Parameters	
Table 1-21 describes the parameters available in the EXPIRE_WORKSPACE_ACCOUNT	
procedure.	
Table 1-21 EXPIRE_WORKSPACE_ACCOUNT Parameters	
Parameter	Description
---	---
The user name of the user account	
Example	
The following example shows how to use the EXPIRE_WORKSPACE_ACCOUNT	
procedure. Use this procedure to expire an Application Express account (workspace administrator, developer, or end user) in the current workspace. This action specifically expires the account with respect to its use by developers or administrators to log in to a workspace, but it may also expire the account with respect to its use by end users to authenticate to developed applications.	
When called from a page, this procedure produces an export file of the current workspace definition, workspace users, and workspace groups. To execute this procedure, the current user must have administrative privilege in the workspace.	
Syntax	
Parameters	
Table 1-22 describes the parameters available in the EXPORT_USERS	
procedure.	
Table 1-22 EXPORT_USERS Parameters	
Parameter	Description
---	---
Indicates how rows in the export file will be formatted. Specify	
Example	
The following example shows how to use the EXPORT_USERS	
procedure. Call this procedure from a page to produce an export file containing the current workspace definition, list of workspace users and list of workspace groups. The file will be formatted with rows delimited by line feeds.	
This function fetches session state for the current or specified application in the current or specified session.	
Syntax	
Parameters	
Table 1-23 describes the parameters available in the FETCH_APP_ITEM	
function.	
Table 1-23 FETCH_APP_ITEM Parameters	
Parameter	Description
---	---
The name of an application-level item (not a page item) whose current value is to be fetched	
The ID of the application that owns the item (leave null for the current application)	
The session ID from which to obtain the value (leave null for the current session)	
Example	
The following example shows how to use the FETCH_APP_ITEM	
function to obtain the value of the application item 'F300_NAME	
' in application 300. As no value is passed for p_session	
, this defaults to the current session state value.	
This procedure fetches a user account record. To execute this procedure, the current user must have administrative privileges in the workspace. Three overloaded versions of this procedure exist, each with a distinct set of allowed parameters or signatures.	
Syntax for Signature 1	
Parameters for Signature 1	
Table 1-24 describes the parameters available in the FETCH_USER	
procedure for signature 1.	
Table 1-24 Fetch_User Parameters Signature 1	
Parameter	Description
---	---
Numeric primary key of the user account	
The name of the workspace	
Alphanumeric name used for login. See Also: "GET_USERNAME Function"	
Informational. See Also: "GET_FIRST_NAME Function"	
Informational. See Also: "GET_LAST_NAME Function"	
Obfuscated account password	
Email address. See Also: "GET_EMAIL Function"	
Unused	
Unused	
Unused	
A list of schemas assigned to the user's workspace to which user is restricted	
Unused	
A database schema assigned to the user's workspace, used by default for browsing. See Also: "GET_DEFAULT_SCHEMA Function"	
List of groups of which user is a member. See Also: "GET_GROUPS_USER_BELONGS_TO Function" and "CURRENT_USER_IN_GROUP Function"	
Colon-separated list of developer roles. The following are acceptable values for this parameter:	
Note: Currently this parameter is named inconsistently between the See Also: "GET_USER_ROLES Function"	
Informational	
Example for Signature 1	
The following example shows how to use the FETCH_USER	
procedure with Signature 1. This procedure is passed the ID of the currently authenticated user for the only IN	
parameter p_user_id	
. The code then stores all the other OUT	
parameter values in local variables.	
This procedure fetches a user account record. To execute this procedure, the current user must have administrative privileges in the workspace. Three overloaded versions of this procedure exist, each with a distinct set of allowed parameters or signatures.	
Syntax for Signature 2	
Parameters for Signature 2	
Table 1-25 describes the parameters available in the FETCH_USER	
procedure for signature 2.	
Table 1-25 Fetch_User Parameters Signature 2	
Parameter	Description
---	---
Numeric primary key of the user account	
Alphanumeric name used for login. See Also: "GET_USERNAME Function"	
Informational. See Also: "GET_FIRST_NAME Function"	
Informational. See Also: "GET_LAST_NAME Function"	
Email address. See Also: "GET_EMAIL Function"	
List of groups of which user is a member. See Also: "GET_GROUPS_USER_BELONGS_TO Function" and "CURRENT_USER_IN_GROUP Function"	
Colon-separated list of developer roles. The following are acceptable values for this parameter:	
Note: Currently this parameter is named inconsistently between the See Also: "GET_USER_ROLES Function"	
Informational	
Example for Signature 2	
The following example shows how to use the FETCH_USER	
procedure with Signature 2. This procedure is passed the ID of the currently authenticated user for the only IN	
parameter p_user_id	
. The code then stores all the other OUT	
parameter values in local variables.	
This procedure fetches a user account record. To execute this procedure, the current user must have administrative privileges in the workspace. Three overloaded versions of this procedure exist, each with a distinct set of allowed parameters or signatures.	
Syntax for Signature 3	
Parameters for Signature 3	
Table 1-26 describes the parameters available in the FETCH_USER	
procedure.	
Table 1-26 Fetch_User Parameters Signature 3	
Parameter	Description
---	---
Numeric primary key of the user account	
The name of the workspace	
Alphanumeric name used for login. See Also: "GET_USERNAME Function"	
Informational. See Also: "GET_FIRST_NAME Function"	
Informational. See Also: "GET_LAST_NAME Function"	
Obfuscated account password	
Email address. See Also: "GET_EMAIL Function"	
Unused	
Unused	
Unused	
A list of schemas assigned to the user's workspace to which user is restricted	
Unused	
A database schema assigned to the user's workspace, used by default for browsing. See Also: "GET_DEFAULT_SCHEMA Function"	
List of groups of which user is a member. See Also: "GET_GROUPS_USER_BELONGS_TO Function" and "CURRENT_USER_IN_GROUP Function"	
Colon-separated list of developer roles. The following are acceptable values for this parameter:	
Note: Currently this parameter is named inconsistently between the See Also: "GET_USER_ROLES Function"	
Informational	
Date account password was last reset. See Also: "END_USER_ACCOUNT_DAYS_LEFT Function" and "WORKSPACE_ACCOUNT_DAYS_LEFT Function"	
Locked/Unlocked indicator See Also: "GET_ACCOUNT_LOCKED_STATUS Function"	
Counter for consecutive login failures	
Setting to force password change on first use	
Indicates whether login with password occurred	
Example for Signature 3	
The following example shows how to use the FETCH_USER	
procedure with Signature 3. This procedure is passed the ID of the currently authenticated user for the only IN	
parameter p_user_id	
. The code then stores all the other OUT	
parameter values in local variables.	
This function returns the numeric security group ID of the named workspace.	
Syntax	
Parameters	
Table 1-27 describes the parameters available in the FIND_SECURITY_GROUP_ID	
function.	
Table 1-27 FIND_SECURITY_GROUP_ID Parameters	
Parameter	Description
---	---
The name of the workspace	
Example	
The following example demonstrates how to use the FIND_SECURITY_GROUP_ID	
function to return the security group ID for the workspace called 'DEMOS'.	
This function returns the workspace name associated with a security group ID.	
Syntax	
Parameters	
Table 1-28 describes the parameters available in the FIND_WORKSPACE	
function.	
Table 1-28 FIND_WORKSPACE Parameters	
Parameter	Description
---	---
The security group ID of a workspace	
Example	
The following example demonstrates how to use the FIND_WORKSPACE	
function to return the workspace name for the workspace with a security group ID of 20.	
Returns TRUE	
if the account is locked and FALSE	
if the account is unlocked. Must be run by an authenticated workspace administrator in a page request context.	
Syntax	
Parameters	
Table 1-29 describes the parameters available in the GET_ACCOUNT_LOCKED_STATUS	
function.	
Table 1-29 GET_ACCOUNT_LOCKED_STATUS Parameters	
Parameter	Description
---	---
The user name of the user account	
Example	
The following example shows how to use the GET_ACCOUNT_LOCKED_STATUS	
function. Use this function to check if an Application Express user account (workspace administrator, developer, or end user) in the current workspace is locked.	
This function returns the value of one of the attribute values (1 through 10) of a named user in the Application Express accounts table. Please note these are only accessible via the APIs.	
Syntax	
Parameters	
Table 1-30 describes the parameters available in the GET_ATTRIBUTE	
function.	
Table 1-30 GET_ATTRIBUTE Parameters	
Parameter	Description
---	---
User name in the account.	
Number of attributes in the user record (1 through 10)	
Example	
The following example shows how to use the GET_ATTTIBUTE	
function to return the value for the 1st attribute for the user 'FRANK'.	
Use this function to retrieve the authentication result of the current session. Any authenticated user can call this function in a page request context.	
Syntax	
Parameters	
None.	
Example	
The following example demonstrates how to use the post-authentication process of an application's authentication scheme to retrieve the authentication result code set during authentication.	
As an alternative to using the built-in methods of providing a download link, you can use the APEX_UTIL.GET_BLOB_FILE_SRC	
function. One advantage of this approach, is the ability to more specifically format the display of the image (with height and width tags). Please note that this approach is only valid if called from a valid Oracle Application Express session. Also, this method requires that the parameters that describe the BLOB to be listed as the format of a valid item within the application. That item is then referenced by the function.	
Syntax	
Parameters	
Table 1-31 describes the parameters available in GET_BLOB_FILE_SRC	
function.	
Table 1-31 GET_BLOB_FILE_SRC Parameters	
Parameter	Description
---	---
Name of valid application page ITEM that with type FILE that contains the source type of DB column.	
Value of primary key column 1.	
Value of primary key column 2.	
Specify	
Example	
As a PLSQL Function Body:	
As a Region Source of type SQL:	
The previous example illustrates how to display the BLOB	
within the report, if it can be displayed, and provide a download link, if it cannot be displayed.	
This function returns the numeric user ID of the current user.	
Syntax	
Parameters	
None.	
Example	
This following example shows how to use the GET_CURRENT_USER_ID	
function. It returns the numeric user ID of the current user into a local variable.	
This function returns the default schema name associated with the current user.	
Syntax	
Parameters	
None.	
Example	
The following example shows how to use the GET_DEFAULT_SCHEMA	
function. It returns the default schema name associated with the current user into a local variable.	
This function returns the email address associated with the named user.	
Syntax	
Parameters	
Table 1-32 describes the parameters available in GET_EMAIL	
function.	
Example	
The following example shows how to use the GET_EMAIL	
function to return the email address of the user 'FRANK'.	
This procedure downloads files from the Oracle Application Express file repository. Please note if you are invoking this procedure during page processing, you must ensure that no page branch will be invoked under the same condition, as it will interfere with the file retrieval. This means that branches with any of the following conditions should not be set to fire:	
Syntax	
Parameters	
Table 1-33 describes the parameters available in GET_FILE	
procedure.	
Table 1-33 GET_FILE Parameters	
Parameter	Description
---	---
ID in DECLARE l_file_id NUMBER; BEGIN SELECT id INTO l_file_id FROM APEX_APPLICATION_FILES WHERE filename = 'myxml'; -- APEX_UTIL.GET_FILE(p_file_id => l_file_id, p_inline => 'YES'); END;	
Valid values include	
Example	
The following example shows how to use the GET_FILE	
function to return the file identified by the ID 8675309. This will be displayed inline in the browser.	
This function obtains the primary key of a file in the Oracle Application Express file repository.	
Syntax	
Parameters	
Table 1-34 describes the parameters available in GET_FILE_ID	
function.	
Table 1-34 GET_FILE_ID Parameters	
Parameter	Description
---	---
The NAME in	
Example	
The following example shows how to use the GET_FILE_ID	
function to retrieve the database ID of the file with a filename of 'F125.sql'.	
This function returns the FIRST_NAME	
field stored in the named user account record.	
Syntax	
Parameters	
Table 1-35 describes the parameters available in GET_FIRST_NAME	
function.	
Table 1-35 GET_FIRST_NAME Parameters	
Parameter	Description
---	---
Identifies the user name in the account	
Example	
The following example shows how to use the GET_FIRST_NAME	
function to return the FIRST_NAME	
of the user 'FRANK'.	
This function returns a comma then a space separated list of group names to which the named user is a member.	
Syntax	
Parameters	
Table 1-36 describes the parameters available in GET_GROUPS_USER_BELONGS_TO	
function.	
Table 1-36 GET_GROUPS_USER_BELONGS_TO Parameters	
Parameter	Description
---	---
Identifies the user name in the account	
Example	
The following example shows how to use the GET_GROUPS_USER_BELONGS_TO	
to return the list of groups to which the user 'FRANK' is a member.	
This function returns the numeric ID of a named group in the workspace.	
Syntax	
Parameters	
Table 1-37 describes the parameters available in GET_GROUP_ID	
function.	
Table 1-37 GET_GROUP_ID Parameters	
Parameter	Description
---	---
Identifies the user name in the account	
Example	
The following example shows how to use the GET_GROUP_ID	
function to return the ID for the group named 'Managers'.	
This function returns the name of a group identified by a numeric ID.	
Syntax	
Parameters	
Table 1-38 describes the parameters available in GET_GROUP_NAME	
function.	
Table 1-38 GET_GROUP_NAME Parameters	
Parameter	Description
---	---
Identifies a numeric ID of a group in the workspace	
Example	
The following example shows how to use the GET_GROUP_NAME	
function to return the name of the group with the ID 8922003.	
This function returns the LAST_NAME	
field stored in the named user account record.	
Syntax	
Parameters	
Table 1-39 describes the parameters available in GET_LAST_NAME	
function.	
Table 1-39 GET_LAST_NAME Parameters	
Parameter	Description
---	---
The user name in the user account record	
Example	
The following example shows how to use the function to return the LAST_NAME	
for the user 'FRANK'.	
This function returns a numeric value for a numeric item. You can use this function in Oracle Application Express applications wherever you can use PL/SQL or SQL. You can also use the shorthand, function NV	
, in place of APEX_UTIL	
.GET_NUMERIC_SESSION_STATE	
.	
Syntax	
Parameters	
Table 1-40 describes the parameters available in GET_NUMERIC_SESSION_STATE	
function.	
Table 1-40 GET_NUMERIC_SESSION_STATE Parameters	
Parameter	Description
---	---
The case insensitive name of the item for which you want to have the session state fetched	
Example	
The following example shows how to use the function to return the numeric value stored in session state for the item 'my_item	
'.	
This function retrieves the value of a previously saved preference for a given user.	
Syntax	
Parameters	
Table 1-41 describes the parameters available in the GET_PREFERENCE	
function.	
Table 1-41 GET_PREFERENCE Parameters	
Parameter	Description
---	---
Name of the preference to retrieve the value	
Value of the preference	
User for whom the preference is being retrieved	
Example	
The following example shows how to use the GET_PREFERENCE	
function to return the value for the currently authenticated user's preference named 'default_view	
'.	
This function returns a document as BLOB using XML based report data and RTF or XSL-FO based report layout.	
Syntax	
Parameters	
Table 1-42 describes the parameters available in the GET_PRINT_DOCUMENT	
function.	
Table 1-42 GET_PRINT_DOCUMENT Parameters	
Parameter	Description
---	---
XML based report data	
Report layout in XSL-FO or RTF format	
Defines the report layout type, that is "xsl-fo" or "rtf"	
Defines the document format, that is "pdf", "rtf", "xls", "htm", or "xml"	
URL of the print server. If not specified, the print server will be derived from preferences.	
For a GET_PRINT_DOCUMENT	
example see "GET_PRINT_DOCUMENT Function Signature 4".	
This function returns a document as BLOB using pre-defined report query and pre-defined report layout.	
Syntax	
Parameters	
Table 1-43 describes the parameters available in the GET_PRINT_DOCUMENT	
function.	
Table 1-43 GET_PRINT_DOCUMENT Parameters	
Parameter	Description
---	---
Defines the application ID of the report query	
Name of the report query (stored under application's shared components)	
Name of the report layout (stored under application's Shared Components)	
Defines the report layout type, that is "xsl-fo" or "rtf"	
Defines the document format, that is "pdf", "rtf", "xls", "htm", or "xml"	
URL of the print server. If not specified, the print server will be derived from preferences.	
For a GET_PRINT_DOCUMENT	
example see "GET_PRINT_DOCUMENT Function Signature 4".	
This function returns a document as BLOB using a pre-defined report query and RTF or XSL-FO based report layout.	
Syntax	
Parameters	
Table 1-44 describes the parameters available in the GET_PRINT_DOCUMENT	
function.	
Table 1-44 GET_PRINT_DOCUMENT Parameters	
Parameter	Description
---	---
Defines the application ID of the report query	
Name of the report query (stored under application's shared components)	
Defines the report layout in XSL-FO or RTF format	
Defines the report layout type, that is "xsl-fo" or "rtf"	
Defines the document format, that is "pdf", "rtf", "xls", "htm", or "xml"	
URL of the print server. If not specified, the print server will be derived from preferences.	
For a GET_PRINT_DOCUMENT	
example see "GET_PRINT_DOCUMENT Function Signature 4".	
This function returns a document as BLOB	
using XML based report data and RTF or XSL-FO based report layout.	
Syntax	
Parameters	
Table 1-45 describes the parameters available in the GET_PRINT_DOCUMENT	
function. for Signature 4	
Table 1-45 GET_PRINT_DOCUMENT Parameters	
Parameter	Description
---	---
XML based report data, must be encoded in UTF-8	
Report layout in XSL-FO or RTF format	
Defines the report layout type, that is "xsl-fo" or "rtf"	
Defines the document format, that is "pdf", "rtf", "xls", "htm", or "xml"	
URL of the print server. If not specified, the print server will be derived from preferences	
Example for Signature 4	
The following example shows how to use the GET_PRINT_DOCUMENT	
using Signature 4 (Document returns as a BLOB using XML based report data and RTF or XSL-FO based report layout). In this example, GET_PRINT_DOCUMENT	
is used in conjunction with APEX_MAIL	
.SEND	
and APEX_MAIL.ADD_ATTACHMENT	
to send an email with an attachment of the file returned by GET_PRINT_DOCUMENT	
. Both the report data and layout are taken from values stored in page items (P1_XML	
and P1_XSL	
).	
This function returns the value for an item. You can use this function in your Oracle Application Express applications wherever you can use PL/SQL or SQL. You can also use the shorthand, function V	
, in place of APEX_UTIL.GET_SESSION_STATE	
.	
Syntax	
Parameters	
Table 1-46 describes the parameters available in GET_SESSION_STATE	
function.	
Table 1-46 GET_SESSION_STATE Parameters	
Parameter	Description
---	---
The case insensitive name of the item for which you want to have the session state fetched	
Example	
The following example shows how to use the GET_SESSION_STATE	
function to return the value stored in session state for the item 'my_item'.	
This function returns the numeric ID of a named user in the workspace.	
Syntax	
Parameters	
Table 1-47 describes the parameters available in GET_USER_ID	
function.	
Table 1-47 GET_USER_ID Parameters	
Parameter	Description
---	---
Identifies the name of a user in the workspace	
Example	
The following example shows how to use the GET_USER_ID	
function to return the ID for the user named 'FRANK'.	
This function returns the DEVELOPER_ROLE	
field stored in the named user account record. Please note that currently this parameter is named inconsistently between the CREATE_USER	
, EDIT_USER	
and FETCH_USER	
APIs, although they all relate to the DEVELOPER_ROLE	
field. CREATE_USER	
uses p_developer_privs	
, EDIT_USER	
uses p_developer_roles	
and FETCH_USER	
uses p_developer_role	
.	
Syntax	
Parameters	
Table 1-48 describes the parameters available in GET_USER_ROLES	
function.	
Table 1-48 GET_USER_ROLES Parameters	
Parameter	Description
---	---
Identifies a user name in the account	
Example	
The following example shows how to use the GET_USER_ROLES	
function to return colon separated list of roles stored in the DEVELOPER_ROLE	
field for the user 'FRANK'.	
This function returns the user name of a user account identified by a numeric ID.	
Syntax	
Parameters	
Table 1-49 describes the parameters available in GET_USERNAME	
function.	
Table 1-49 GET_USERNAME Parameters	
Parameter	Description
---	---
Identifies the numeric ID of a user account in the workspace	
Example	
The following example shows how to use the GET_USERNAME	
function to return the user name for the user with an ID of 228922003.	
This function returns a Boolean result based on the validity of the password for a named user account in the current workspace. This function returns true if the password matches and it returns false if the password does not match.	
Syntax	
Parameters	
Table 1-50 describes the parameters available in the IS_LOGIN_PASSWORD_VALID	
function.	
Table 1-50 IS_LOGIN_PASSWORD_VALID Parameters	
Parameter	Description
---	---
User name in account	
Password to be compared with password stored in the account	
Example	
The following example shows how to use the IS_LOGIN_PASSWORD_VALID	
function to check if the user 'FRANK' has the password 'tiger'. TRUE	
will be returned if this is a valid password for 'FRANK', FALSE	
if not.	
This function returns a Boolean result based on whether the named user account is unique in the workspace.	
Syntax	
Parameters	
Table 1-51 describes the parameters available in IS_USERNAME_UNIQUE	
function.	
Table 1-51 IS_USERNAME_UNIQUE Parameters	
Parameter	Description
---	---
Identifies the user name to be tested	
Example	
The following example shows how to use the IS_USERNAME_UNIQUE	
function. If the user 'FRANK' already exists in the current workspace, FALSE	
will be returned, otherwise TRUE	
is returned.	
This function gets the value of the package variable (wwv_flow_utilities.g_val_num	
) set by APEX_UTIL.SAVEKEY_NUM	
.	
Syntax	
Parameters	
None	
Example	
The following example shows how to use the KEYVAL_NUM	
function to return the current value of the package variable wwv_flow_utilities.g_val_num	
.	
This function gets the value of the package variable (wwv_flow_utilities.g_val_vc2	
) set by APEX_UTIL.SAVEKEY_VC2	
.	
Syntax	
Parameters	
None.	
Example	
The following example shows how to use the KEYVAL_VC2	
function to return the current value of the package variable wwv_flow_utilities.g_val_vc2	
.	
Sets a user account status to locked. Must be run by an authenticated workspace administrator in the context of a page request.	
Syntax	
Parameters	
Table 1-52 describes the parameters available in the LOCK_ACCOUNT	
procedure.	
Table 1-52 LOCK_ACCOUNT Parameters	
Parameter	Description
---	---
The user name of the user account	
Example	
The following example shows how to use the LOCK_ACCOUNT	
procedure. Use this procedure to lock an Application Express account (workspace administrator, developer, or end user) in the current workspace. This action locks the account for use by administrators, developers, and end users.	
Returns true if the account's password has changed since the account was created, an Oracle Application Express administrator performs a password reset operation that results in a new password being emailed to the account holder, or a user has initiated password reset operation. This function returns false if the account's password has not been changed since either of the events just described.	
This function may be run in a page request context by any authenticated user.	
Syntax	
RETURN BOOLEAN	
;Parameters	
Table 1-53 describes the parameters available in the PASSWORD_FIRST_USE_OCCURRED	
procedure.	
Table 1-53 PASSWORD_FIRST_USE_OCCURRED Parameters	
Parameter	Description
---	---
The user name of the user account	
Example	
The following example shows how to use the PASSWORD_FIRST_USE_OCCURRED	
function. Use this function to check if the password for an Application Express user account (workspace administrator, developer, or end user) in the current workspace has been changed by the user the first time the user logged in after the password was initially set during account creation, or was changed by one of the password reset operations described above.This is meaningful only with accounts for which the CHANGE_PASSWORD_ON_FIRST_USE	
attribute is set to Yes.	
The PREPARE_URL function serves two purposes:	
Note: ThePREPARE_URL functions returns the f?p URL with &cs=<large hex value> appended. If you use this returned value, for example in JavaScript, it may be necessary to escape the ampersand in the URL in order to conform with syntax rules of the particular context. One place you may encounter this is in SVG chart SQL queries which might include PREPARE_URL calls.	
Syntax	
Parameters	
Table 1-54 describes the parameters available in the PREPARE_URL function.	
Table 1-54 PREPARE_URL Parameters	
Parameter	Description
---	---
p_url	An f?p relative URL with all substitutions resolved
p_url_charset	The character set name (for example,
p_checksum type	Null or any of the following six values,
Example 1	
The following example shows how to use the PREPARE_URL	
function to return a URL with a valid 'SESSION' level checksum argument. This URL sets the value of P1_ITEM	
page item to xyz	
.	
Example 2	
The following example shows how to use the PREPARE_URL	
function to return a URL with a zero session ID. In a PL/SQL Dynamic Content region that generates f?p	
URLs (anchors), call PREPARE_URL	
to ensure that the session ID will set to zero when the zero session ID feature is in use, when the user is a public user (not authenticated), and when the target page is a public page in the current application:	
When using PREPARE_URL	
for this purpose, the p_url_charset	
and p_checksum_type	
arguments can be omitted. However, it is permissible to use them when both the Session State Protection and Zero Session ID features are applicable.	
Given the name of a security scheme, this function determines if the current user passes the security check.	
Syntax	
Parameters	
Table 1-55 describes the parameters available in PUBLIC_CHECK_AUTHORIZATION	
function.	
Table 1-55 PUBLIC_CHECK_AUTHORIZATION Parameters	
Parameter	Description
---	---
The name of the security scheme that determines if the user passes the security check	
Example	
The following example shows how to use the PUBLIC_CHECK_AUTHORIZATION	
function to check if the current user passes the check defined in the my_auth_scheme	
authorization scheme.	
Deletes all cached regions for an application.	
Syntax	
Parameters	
Table 1-56 describes the parameters available in PURGE_REGIONS_BY_APP	
.	
Table 1-56 PURGE_REGIONS_BY_APP Parameters	
Parameter	Description
---	---
The identification number (ID) of the application.	
Example	
The following example show how to use APEX_UTIL.PURGE_REGIONS_BY_APP	
to delete all cached regions for application #123.	
Deletes all cached values for a region identified by the application ID, page number and region name.	
Syntax	
Parameters	
Table 1-57 describes the parameters available in PURGE_REGIONS_BY_NAME	
.	
Table 1-57 PURGE_REGIONS_BY_NAME Parameters	
Parameter	Description
---	---
The identification number (ID) of the application.	
The number of the page containing the region to be deleted.	
The region name to be deleted.	
Example	
The following example shows how to use the PURGE_REGIONS_BY_NAME	
procedure to delete all the cached values for the region 'my_cached_region	
' on page 1 of the current application.	
Deletes all cached regions by application and page.	
Syntax	
Parameters	
Table 1-58 describes the parameters available in PURGE_REGIONS_BY_PAGE	
.	
Table 1-58 PURGE_REGIONS_BY_PAGE Parameters	
Parameter	Description
---	---
The identification number (ID) of the application.	
The identification number of page containing the region.	
Example	
The following example shows how to use the PURGE_REGIONS_BY_PAGE	
procedure to delete all the cached values for regions on page 1 of the current application.	
This procedure removes the preference for the supplied user.	
Syntax	
Parameters	
Table 1-59 describes the parameters available in the REMOVE_PREFERENCE	
procedure.	
Table 1-59 REMOVE_PREFERENCE Parameters	
Parameter	Description
---	---
Name of the preference to remove	
User for whom the preference is defined	
Example	
The following example shows how to use the REMOVE_PREFERENCE	
procedure to remove the preference default_view	
for the currently authenticated user.	
This procedure removes the user's column heading sorting preference value.	
Syntax	
Parameters	
Table 1-60 describes the parameters available in REMOVE_SORT_PREFERENCES	
function.	
Table 1-60 REMOVE_SORT_PREFERENCES Parameters	
Parameter	Description
---	---
Identifies the user for whom sorting preferences will be removed	
Example	
The following example shows how to use the REMOVE_SORT_PREFERENCES	
procedure to remove the currently authenticated user's column heading sorting preferences.	
This procedure removes the user account identified by the primary key or a user name. To execute this procedure, the current user must have administrative privilege in the workspace.	
Syntax	
Parameters	
Table 1-61 describes the parameters available in the REMOVE_USER	
procedure.	
Table 1-61 REMOVE_USER Parameters	
Parameter	Description
---	---
The numeric primary key of the user account record	
The user name of the user account	
Example	
The following examples show how to use the REMOVE_USER	
procedure to remove a user account. Firstly, by the primary key (using the p_user_id	
parameter) and secondly by user name (using the p_user_name	
parameter).	
To increase performance, Oracle Application Express caches the results of authorization schemes after they have been evaluated. You can use this procedure to undo caching, requiring each authorization scheme be revalidated when it is next encountered during page show or accept processing. You can use this procedure if you want users to have the ability to change their responsibilities (their authorization profile) within your application.	
Syntax	
Parameters	
None.	
Example	
The following example shows how to use the RESET_AUTHORIZATIONS	
procedure to clear the authorization scheme cache.	
This procedure resets the password for a named user and emails it in a message to the email address located for the named account in the current workspace. To execute this procedure, the current user must have administrative privilege in the workspace.	
Syntax	
Parameters	
Table 1-62 describes the parameters available in the RESET_PW	
procedure.	
Table 1-62 RESET_PW Parameters	
Parameter	Description
---	---
The user name of the user account	
Message text to be mailed to a user	
Example	
The following example shows how to use the RESET_PW	
procedure to reset the password for the user 'FRANK'.	
This function sets a package variable (wwv_flow_utilities.g_val_num	
) so that it can be retrieved using the function KEYVAL_NUM	
.	
Syntax	
Parameters	
Table 1-63 describes the parameters available in the SAVEKEY_NUM	
procedure.	
Example	
The following example shows how to use the SAVEKEY_NUM	
function to set the wwv_flow_utilities.g_val_num	
package variable to the value of 10	
.	
This function sets a package variable (wwv_flow_utilities.g_val_vc2	
) so that it can be retrieved using the function KEYVAL_VC2	
.	
Syntax	
Parameters	
Table 1-64 describes the parameters available in the SAVEKEY_VC2	
function.	
Example	
The following example shows how to use the SAVEKEY_VC2	
function to set the wwv_flow_utilities.g_val_vc2	
package variable to the value of 'XXX'.	
This procedure sets the value of one of the attribute values (1 through 10) of a user in the Application Express accounts table.	
Syntax	
Parameters	
Table 1-65 describes the parameters available in the SET_ATTRIBUTE	
procedure.	
Table 1-65 SET_ATTRIBUTE Parameters	
Parameter	Description
---	---
The numeric ID of the user account	
Attribute number in the user record (1 through 10)	
Value of the attribute located by	
Example	
The following example shows how to use the SET_ATTRIBUTE	
procedure to set the number 1 attribute for user 'FRANK' with the value 'foo'.	
This procedure can be called from an application's custom authentication function (that is, credentials verification function). The status passed to this procedure is logged in the Login Access Log.	
Syntax	
Parameters	
Table 1-21 describes the parameters available in the SET_AUTHENTICATION_RESULT	
procedure.	
Table 1-66 SET_AUTHENTICATION_RESULT Parameters	
Parameter	Description
---	---
Any numeric value the developer chooses. After this value is set in the session using this procedure, it can be retrieved using the	
Example	
One way to use this procedure is to include it in the application authentication scheme. This example demonstrates how text and numeric status values can be registered for logging. In this example, no credentials verification is performed, it just demonstrates how text and numeric status values can be registered for logging.Note that the status set using this procedure is visible in the apex_user_access_log	
view and in the reports on this view available to workspace and site administrators.	
This procedure can be called from an application's custom authentication function (that is, credentials verification function). The status passed to this procedure is logged in the Login Access Log.	
Syntax	
Parameters	
Table 1-67 describes the parameters available in the SET_CUSTOM_AUTH_STATUS	
procedure.	
Table 1-67 SET_CUSTOM_AUTH_STATUS Parameters	
Parameter	Description
---	---
Any text the developer chooses to denote the result of the authentication attempt (up to 4000 characters).	
Example	
One way to use the SET_CUSTOM_AUTH_STATUS	
procedure is to include it in the application authentication scheme. This example demonstrates how text and numeric status values can be registered for logging. Note that no credentials verification is performed. The status set using this procedure is visible in the apex_user_access_log	
view and in the reports on this view available to workspace and site administrators.	
This procedure updates a user account with a new email address. To execute this procedure, the current user must have administrative privileges in the workspace.	
Syntax	
Parameters	
Table 1-68 describes the parameters available in the SET_EMAIL	
procedure.	
Table 1-68 SET_EMAIL Parameters	
Parameter	Description
---	---
The numeric ID of the user account	
The email address to be saved in user account	
Example	
The following example shows how to use the SET_EMAIL	
procedure to set the value of EMAIL	
to 'frank.scott@somewhere.com' for the user 'FRANK'.	
This procedure updates a user account with a new FIRST_NAME	
value. To execute this procedure, the current user must have administrative privileges in the workspace.	
Syntax	
Parameters	
Table 1-69 describes the parameters available in the SET_FIRST_NAME	
procedure.	
Table 1-69 SET_FIRST_NAME Parameters	
Parameter	Description
---	---
The numeric ID of the user account	
Example	
The following example shows how to use the SET_FIRST_NAME	
procedure to set the value of FIRST_NAME	
to 'FRANK' for the user 'FRANK'.	
This procedure updates a user account with a new LAST_NAME	
value. To execute this procedure, the current user must have administrative privileges in the workspace.	
Syntax	
Parameters	
Table 1-70 describes the parameters available in the SET_LAST_NAME	
procedure.	
Table 1-70 SET_LAST_NAME Parameters	
Parameter	Description
---	---
The numeric ID of the user account	
Example	
The following example shows how to use the SET_LAST_NAME	
procedure to set the value of LAST_NAME	
to 'SMITH' for the user 'FRANK'.	
This procedure sets a preference that will persist beyond the user's current session.	
Syntax	
Parameters	
Table 1-71 describes the parameters available in the SET_PREFERENCE	
procedure.	
Table 1-71 SET_PREFERENCE Parameters	
Parameter	Description
---	---
Name of the preference (case-sensitive)	
Value of the preference	
User for whom the preference is being set	
Example	
The following example shows how to use the SET_PREFERENCE	
procedure to set a preference called 'default_view	
' to the value 'WEEKLY' that will persist beyond session for the currently authenticated user.	
This procedure sets the current application's Maximum Session Length in Seconds value for the current session, overriding the corresponding application attribute. This allows developers to dynamically shorten or lengthen the session life based on criteria determined after the user authenticates.	
Note: In order for this procedure to have any effect, the application's Maximum Session Length in Seconds attribute must have been set to a non-zero value in the application definition. This procedure will have no effect if that attribute was not set by the developer.	
Syntax	
Parameters	
Table 1-72 describes the parameters available in the SET_SESSION_LIFETIME_SECONDS	
procedure.	
Table 1-72 SET_SESSION_LIFETIME_SECONDS Parameters	
Parameter	Description
---	---
A positive integer indicating the number of seconds the session used by this application is allowed to exist.	
Defaults to 'SESSION' and may also be set to 'APPLICATION'. If 'SESSION', all applications using this session are affected. If 'APPLICATION', only the current application using the current session is affected.	
Example 1	
The following example shows how to use the SET_SESSION_LIFETIME_SECONDS procedure to set the current application's Maximum Session Length in Seconds attribute to 7200 seconds (two hours). This API call will have no effect if the application's Maximum Session Length in Seconds attribute was not set by the developer to a non-zero value in the application definition.By allowing the p_scope input parameter to use the default value of 'SESSION', the following example would actually apply to all applications using the current session. This would be the most common use case when multiple Application Express applications use a common authentication scheme and are designed to operate as a suite in a common session.	
Example 2	
The following example shows how to use the SET_SESSION_LIFETIME_SECONDS procedure to set the current application's Maximum Session Length in Seconds attribute to 3600 seconds (one hour). This API call will have no effect if the application's Maximum Session Length in Seconds attribute was not set by the developer to a non-zero value in the application definition.By overriding the p_scope input parameter's default value and setting it to 'APPLICATION', the following example would actually apply to only to the current application using the current session even if other applications are using the same session.	
Sets the current application's Maximum Session Idle Time in Seconds value for the current session, overriding the corresponding application attribute. This allows developers to dynamically shorten or lengthen the maximum idle time allowed between page requests based on criteria determined after the user authenticates.	
Note: In order for this procedure to have any effect, the application's Maximum Session Idle Time in Seconds attribute must have been set to a non-zero value in the application definition. This procedure will have no effect if that attribute was not set by the developer.	
Syntax	
Parameters	
Table 1-73 describes the parameters available in the SET_SESSION_MAX_IDLE_SECONDS	
procedure.	
Table 1-73 SET_SESSION_MAX_IDLE_SECONDS Parameters	
Parameter	Description
---	---
A positive integer indicating the number of seconds allowed between page requests.	
Defaults to 'SESSION' and may also be set to 'APPLICATION'. If 'SESSION', this idle time applies to all applications using this session. If 'APPLICATION', this idle time only applies to the current application using the current session.	
Example 1	
The following example shows how to use the SET_SESSION_MAX_IDLE_SECONDS	
procedure to set the current application's Maximum Session Idle Time in Seconds attribute to 1200 seconds (twenty minutes). This API call will have no effect if the application's Maximum Session Idle Time in Seconds attribute was not set by the developer to a non-zero value in the application definition.By allowing the p_scope	
input parameter to use the default value of 'SESSION	
', the following example would actually apply to all applications using the current session. This would be the most common use case when multiple Application Express applications use a common authentication scheme and are designed to operate as a suite in a common session.	
Example 2	
The following example shows how to use the SET_SESSION_MAX_IDLE_SECONDS	
procedure to set the current application's Maximum Session Idle Time in Seconds attribute to 600 seconds (ten minutes). This API call will have no effect if the application's Maximum Session Idle Time in Seconds attribute was not set by the developer to a non-zero value in the application definition.By overriding the p_scope	
input parameter's default value and setting it to 'APPLICATION	
', the following example would actually apply to only to the current application using the current session even if other applications are using the same session.	
This procedure sets session state for a current Oracle Application Express session.	
Syntax	
Parameters	
Table 1-74 describes the parameters available in the SET_SESSION_STATE	
procedure.	
Table 1-74 SET_SESSION_STATE Parameters	
Parameter	Description
---	---
Name of the application-level or page-level item for which you are setting sessions state	
Value of session state to set	
Example	
The following example shows how to use the SET_SESSION_STATE	
procedure to set the value of the item 'my_item	
' to 'myvalue	
' in the current session.	
This procedure updates a user account with a new USER_NAME	
value. To execute this procedure, the current user must have administrative privileges in the workspace.	
Syntax	
Parameters	
Table 1-75 describes the parameters available in the SET_USERNAME	
procedure.	
Table 1-75 SET_USERNAME Parameters	
Parameter	Description
---	---
The numeric ID of the user account	
Example	
The following example shows how to use the SET_USERNAME	
procedure to set the value of USERNAME	
to 'USER-XRAY' for the user 'FRANK'.	
This procedure returns Boolean OUT	
values based on whether or not a proposed password meets the password strength requirements as defined by the Oracle Application Express site administrator.	
Syntax	
Parameters	
Table 1-76 describes the parameters available in the STRONG_PASSWORD_CHECK	
procedure.	
Table 1-76 STRONG_PASSWORD_CHECK Parameters	
Parameter	Description
---	---
Username that identifies the account in the current workspace	
Password to be checked against password strength rules	
Current password for the account. Used only to enforce "new password must differ from old" rule	
Current workspace name, used only to enforce "password must not contain workspace name" rule	
Pass	
Result returns	
Result returns	
Result returns	
Result returns	
Result returns	
Result returns	
Result returns	
Result returns	
Result returns	
Result returns	
Result returns	
Example	
The following example shows how to use the STRONG_PASSWORD_CHECK	
procedure. It checks the new password 'foo	
' for the user 'SOMEBODY	
' meets all the password strength requirements defined by the Oracle Application Express site administrator. If any of the checks fail (the associated OUT parameter returns TRUE	
), then the example outputs a relevant message. For example, if the Oracle Application Express site administrator has defined that passwords must have at least one numeric character and the password 'foo	
' was checked, then the p_one_numeric_err	
OUT parameter would return TRUE	
and the message 'Password must contain at least one numeric character' would be output.	
This function returns formatted HTML in a VARCHAR2 result based on whether or not a proposed password meets the password strength requirements as defined by the Oracle Application Express site administrator.	
Syntax	
Parameters	
Table 1-77 describes the parameters available in the STRONG_PASSWORD_VALIDATION	
function.	
Table 1-77 STRONG_PASSWORD_VALIDATION Parameters	
Parameter	Description
---	---
Username that identifies the account in the current workspace	
Password to be checked against password strength rules	
Current password for the account. Used only to enforce "new password must differ from old" rule	
Current workspace name, used only to enforce "password must not contain workspace name" rule	
Example	
The following example shows how to use the STRONG_PASSWORD_VALIDATION	
procedure. It checks the new password 'foo	
' for the user 'SOMEBODY	
' meets all the password strength requirements defined by the Oracle Application Express site administrator. If any of the checks fail, then the example outputs formatted HTML showing details of where the new password fails to meet requirements.	
Given a string, this function returns a PL/SQL array of type APEX_APPLICATION_GLOBAL	
.VC_ARR2	
. This array is a VARCHAR2(32767)	
table.	
Syntax	
Parameters	
Table 1-78 describes the parameters available in the STRING_TO_TABLE	
function.	
Table 1-78 STRING_TO_TABLE Parameters	
Parameter	Description
---	---
String to be converted into a PL/SQL table of type	
String separator. The default is a colon	
Example	
The following example shows how to use the STRING_TO_TABLE function. The function is passed the string 'One:Two:Three' in the p_string parameter and it returns a PL/SQL array of type APEX_APPLICATION_GLOBAL.VC_ARR2 containing 3 elements, the element at position 1 contains the value 'One', position 2 contains the value 'Two' and position 3 contains the value 'Three'. This is then output using the HTP.P function call.	
Given a a PL/SQL table of type APEX_APPLICATION_GLOBAL	
.VC_ARR2	
, this function returns a delimited string separated by the supplied separator, or by the default separator, a colon (:).	
Syntax	
Parameters	
Table 1-79 describes the parameters available in the TABLE_TO_STRING	
function.	
Table 1-79 TABLE_TO_STRING Parameters	
Parameter	Description
---	---
String separator. Default separator is a colon (:)	
PL/SQL table that is to be converted into a delimited string	
Example	
The following example shows how to use the TABLE_TO_STRING	
function. The example first calls STRING_TO_TABLE	
which is passed the string 'One:Two:Three' in the p_string	
parameter, and returns a PL/SQL array of type APEX_APPLICATION_GLOBAL.VC_ARR2	
containing 3 elements, the element at position 1 contains the value 'One', position 2 contains the value 'Two' and position 3 contains the value 'Three'. This array is then passed in to the TABLE_TO_STRING	
function in the p_string	
parameter, which then returns back the original string 'One:Two:Three'.	
Makes expired end users accounts and the associated passwords usable, enabling a end user to log in to developed applications.	
Syntax	
Parameters	
Table 1-80 describes the parameters available in the UNEXPIRE_END_USER_ACCOUNT	
procedure.	
Table 1-80 UNEXPIRE_END_USER_ACCOUNT Parameters	
Parameter	Description
---	---
The user name of the user account	
Example	
The following example shows how to use the UNEXPIRE_END_USER_ACCOUNT	
procedure. Use this procedure to renew (unexpire) an Application Express end user account in the current workspace. This action specifically renews the account for use by end users to authenticate to developed applications and may also renew the account for use by developers or administrators to log in to a workspace.	
This procedure must be run by a user having administration privileges in the current workspace.	
Unexpires developer and workspace administrator accounts and the associated passwords, enabling the developer or administrator to log in to a workspace.	
Syntax	
Parameters	
Table 1-81 describes the parameters available in the UNEXPIRE_WORKSPACE_ACCOUNT	
procedure.	
Table 1-81 UNEXPIRE_WORKSPACE_ACCOUNT Parameters	
Parameter	Description
---	---
The user name of the user account	
Example	
The following example shows how to use the UNEXPIRE_WORKSPACE_ACCOUNT	
procedure. Use this procedure to renew (unexpire) an Application Express workspace administrator account in the current workspace. This action specifically renews the account for use by developers or administrators to login to a workspace and may also renew the account with respect to its use by end users to authenticate to developed applications.	
This procedure must be run by a user having administration privileges in the current workspace.	
Sets a user account status to unlocked. Must be run by an authenticated workspace administrator in a page request context.	
Syntax	
Parameters	
Table 1-82 describes the parameters available in the UNLOCK_ACCOUNT	
procedure.	
Table 1-82 UNLOCK_ACCOUNT Parameters	
Parameter	Description
---	---
The user name of the user account	
Example
The following example shows how to use the UNLOCK_ACCOUNT
procedure. Use this procedure to unlock an Application Express account in the current workspace. This action unlocks the account for use by administrators, developers, and end users.This procedure must be run by a user who has administration privileges in the current workspace
The following special characters are encoded as follows:
%
%25
+
%2BSyntax
Parameters
Table 1-83 describes the parameters available in the URL_ENCODE
function.
Example
The following example shows how to use the URL_ENCODE
function.
In this example, the following URL:
Would be returned as:
Returns the number of days remaining before the developer or workspace administrator account password expires. This function may be run in a page request context by any authenticated user.
Syntax
Parameters
Table 1-84 describes the parameters available in the WORKSPACE_ACCOUNT_DAYS_LEFT
procedure.
Table 1-84 WORKSPACE_ACCOUNT_DAYS_LEFT Parameters
Parameter	Description
The user name of the user account	
Example	
The following example shows how to use the WORKSPACE_ACCOUNT_DAYS_LEFT	
function. It can be used in to find the number of days remaining before an Application Express administrator or developer account in the current workspace expires.	
You can use the APEX_MAIL	
package to send an email from an Oracle Application Express application. This package is built on top of the Oracle supplied UTL_SMTP	
package. Because of this dependence, the UTL_SMTP	
package must be installed and functioning in order to use APEX_MAIL.	
See Also: Oracle Database PL/SQL Packages and Types Reference for more information about the UTL_SMTP package	
APEX_MAIL	
contains three procedures. Use APEX_MAIL.SEND	
to send an outbound email message from your application. Use APEX_MAIL.PUSH_QUEUE	
to deliver mail messages stored in APEX_MAIL_QUEUE	
. Use APEX_MAIL.ADD_ATTACHMENT	
to send an outbound email message from your application as an attachment.	
This section contains the following topics:	
Note: The most efficient approach to sending email is to create a background job (using a DBMS_JOB package) to periodically send all mail messages stored in the active mail queue.	
This procedure sends an outbound email message from an application as an attachment. To add multiple attachments to a single email, APEX_MAIL.ADD_ATTACHMENT	
can be called repeatedly for a single email message.	
Syntax	
Parameters	
Table 2-1 describes the parameters available in the ADD_ATTACHMENT	
procedure.	
Table 2-1 ADD_ATTACHMENT Parameters	
Parameter	Description
---	---
The numeric ID associated with the email. This is the numeric identifier returned from the call to	
A	
The filename associated with the email attachment.	
A valid MIME type (or Internet media type) to associate with the email attachment.	
Examples	
The following example demonstrates how to access files stored in APEX_APPLICATION_FILES	
and add them to an outbound email message	
Oracle Application Express stores unsent email messages in a table named APEX_MAIL_QUEUE	
. You can manually deliver mail messages stored in this queue to the specified SMTP gateway by invoking the APEX_MAIL.PUSH_QUEUE	
procedure.	
Oracle Application Express logs successfully submitted message in the table APEX_MAIL_LOG	
with the timestamp reflecting your server's local time. Keep in mind, the most efficient approach to sending email is to create a background job (using a DBMS_JOB	
package) to periodically send all mail messages stored in the active mail queue.	
Syntax	
Parameters	
Table 2-2 describes the parameters available in the PUSH_QUEUE	
procedure.	
Table 2-2 PUSH_QUEUE Parameters	
Parameters	Description
---	---
SMTP gateway host name	
SMTP gateway port number	
Note that these parameter values are provided for backward compatibility, but their respective values are ignored. The SMTP gateway hostname and SMTP gateway port number are exclusively derived from values entered on the Manage Environment Settings when sending email.	
Example	
The following example demonstrates the use of the APEX_MAIL.PUSH_QUEUE	
procedure using a shell script. This example only applies to UNIX/LINUX installations.	
This procedure sends an outbound email message from an application. Although you can use this procedure to pass in either a VARCHAR2	
or a CLOB	
to p_body	
and p_body_html	
, the data types must be the same. In other words, you cannot pass a CLOB	
to P_BODY	
and a VARCHAR2	
to p_body_html	
.	
When using APEX_MAIL.SEND	
, remember the following:	
p_body	
or p_body_html	
parameters into chunks of 1000 characters or less. Failing to do so will result in erroneous email messages, including partial messages or messages with extraneous exclamation points. p_body,	
but not p_body_html	
results in a plain text message. Passing a value to p_body	
and p_body_html	
yields a multi-part message that includes both plain text and HTML content. The settings and capabilities of the recipient's email client determine what displays. Although most modern email clients can read an HTML formatted email, remember that some users disable this functionality to address security issues. p_body_html	
using the 	
tag, remember that the images must be accessible to the recipient's email client in order for them to see the image. For example, suppose you reference an image on your network called hello.gif	
as follows:	
In this example, the image is not attached to the email, but is referenced by the email. For the recipient to see it, they must be able to access the image using a Web browser. If the image is inside a firewall and the recipient is outside of the firewall, the image will not display. For this reason, avoid using images. If you must include images, be sure to include the ALT attribute to provide a textual description in the event the image is not accessible.	
Syntax	
Parameters	
Table 2-3 describes the parameters available in the SEND	
procedure.	
Table 2-3 SEND Parameters	
Parameter	Description
---	---
Valid email address to which the email will be sent (required). For multiple email addresses, use a comma-separated list	
Email address from which the email will be sent (required). This email address must be a valid address. Otherwise, the message will not be sent	
Body of the email in plain text, not HTML (required). If a value is passed to	
Body of the email in HTML format. This must be a full HTML document including the	
Subject of the email	
Valid email addresses to which the email is copied. For multiple email addresses, use a comma-separated list	
Valid email addresses to which the email is blind copied. For multiple email addresses, use a comma-separated list	
Address of the Reply-To mail header. You can use this parameter as follows:	
Examples	
The following example demonstrates how to use APEX_MAIL.SEND	
to send a plain text email message from an application.	
The following example demonstrates how to use APEX_MAIL.SEND	
to send an HTML email message from an application. Remember, you must include a carriage return or line feed (CRLF) every 1000 characters. The example that follows uses utl_tcp.crlf	
.	
You can use the APEX_ITEM	
package to create form elements dynamically based on a SQL query instead of creating individual items page by page.	
This section contains the following topics:	
This function creates check boxes.	
Syntax	
Parameters	
Table 3-1 describes the parameters available in the CHECKBOX	
function.	
Table 3-1 CHECKBOX Parameters	
Parameter	Description
---	---
Number that determines which	
Value of a check box, hidden field, or input form item	
Controls HTML tag attributes (such as disabled)	
Values to be checked by default	
Delimits the values in the previous parameter,	
HTML attribute ID for the	
Invisible label created for the item	
Examples of Default Check Box Behavior	
The following example demonstrates how to create a selected check box for each employee in the emp	
table.	
The following example demonstrates how to have all check boxes for employees display without being selected.	
The following example demonstrates how to select the check boxes for employees who work in department 10.	
The next example demonstrates how to select the check boxes for employees who work in department 10 or department 20.	
Creating an On-Submit Process	
If you are using check boxes in your application, you might need to create an On Submit process to perform a specific type of action on the selected rows. For example, you could have a Delete button that utilizes the following logic:	
Consider the following sample on-submit process:	
The following example demonstrates how to create unselected checkboxes for each employee in the emp table, with a unique ID. This is useful for referencing records from within JavaScript code:	
Use this function with forms that include date fields. The DATE_POPUP	
function dynamically generates a date field that has a popup calendar button.	
Syntax	
Parameters	
Table 3-2 describes the parameters available in the DATE_POPUP	
function.	
Table 3-2 DATE_POPUP Parameters	
Parameter	Description
---	---
Number that determines which	
This parameter is deprecated. Anything specified for this value will be ignored	
Value of a field item	
Valid database date format	
Controls HTML tag attributes (such as disabled)	
Determines the maximum number of enterable characters. Becomes the maxlength attribute of the	
Extra HTML parameters you want to add	
HTML attribute ID for the	
Invisible label created for the item	
See Also: Oracle Database SQL Language Reference for information about theTO_CHAR or TO_DATE functions	
Example	
The following example demonstrates how to use APEX_ITEM.DATE_POPUP	
to create popup calendar buttons for the hiredate	
column.	
Use this function to display an item as text, but save its value to session state.	
Syntax	
Parameters	
Table 3-3 describes the parameters available in the DISPLAY_AND_SAVE	
function.	
Table 3-3 DISPLAY_AND_SAVE Parameters	
Parameter	Description
---	---
Number that determines which	
Current value	
HTML attribute ID for the	
Invisible label created for the item	
Example	
The following example demonstrates how to use the APEX_ITEM.DISPLAY_AND_SAVE	
function.	
This function dynamically generates hidden form items.	
Syntax	
Parameters	
Table 3-4 describes the parameters available in the HIDDEN	
function.	
Table 3-4 HIDDEN Parameters	
Parameter	Description
---	---
Number to identify the item you want to generate. The number will determine which See Also: "APEX_APPLICATION"	
Value of the hidden input form item	
Extra HTML parameters you want to add	
HTML attribute ID for the	
Invisible label created for the item	
Example	
Typically, the primary key of a table is stored as a hidden column and used for subsequent update processing, for example:	
The previous query could use the following page process to process the results:	
Note that the G_F01	
column (which corresponds to the hidden EMPNO	
) is used as the key to update each row.	
This function is used for lost update detection. Lost update detection ensures data integrity in applications where data can be accessed concurrently.	
This function produces hidden form field(s) with a name attribute equal to 'fcs' and includes 50 inputs. APEX_ITEM.MD5_CHECKSUM also produces an MD5 checksum using the Oracle database DBMS_OBFUSCATION_TOOLKIT:	
An MD5 checksum provides data integrity through hashing and sequencing to ensure that data is not altered or stolen as it is transmitted over a network.	
Syntax	
Parameters	
Table 3-5 describes the parameters available in the MD5_CHECKSUM	
function.	
Table 3-5 MD5_CHECKSUM Parameters	
Parameter	Description
---	---
...	
Fifty available inputs. If no parameters are supplied, the default to NULL	
String used to separate	
Example	
This function generates hidden form elements with the name 'fcs	
'. The values can subsequently be accessed via the APEX_APPLICATION.G_FCS array	
.	
This function is used for lost update detection. Lost update detection ensures data integrity in applications where data can be accessed concurrently.	
This function produces a hidden form field and includes 50 inputs. APEX_ITEM	
.MD5_HIDDEN	
also produces an MD5 checksum using the Oracle database DBMS_OBFUSCATION_TOOLKIT	
:	
An MD5 checksum provides data integrity through hashing and sequencing to ensure that data is not altered or stolen as it is transmitted over a network	
Syntax	
Parameters	
Table 3-6 describes the parameters available in the MD5_HIDDEN	
function.	
Table 3-6 MD5_HIDDEN Parameters	
Parameter	Description
---	---
Indicates the form element to be generated. For example, 1 equals	
...	
Fifty available inputs. Parameters not supplied default to NULL	
String used to separate	
Example	
The p_idx	
parameter specifies the FXX form element to be generated. In the following example, 7 generates F07	
. Also note that an HTML hidden form element will be generated.	
This function generates an HTML popup select list from an application shared list of values (LOV). Like other available functions in the APEX_ITEM	
package, POPUP_FROM_LOV	
function is designed to generate forms with F01	
to F50	
form array elements.	
Syntax	
Parameters	
Table 3-7 describes the some parameters in the POPUP_FROM_LOV	
function.	
Table 3-7 POPUP_FROM_LOV Parameters	
Parameter	Description
---	---
Form element name. For example,	
Form element current value. This value should be one of the values in the	
Named LOV used for this popup	
Width of the text box	
Maximum number of characters that can be entered in the text box	
HTML form on the page in which an item is contained. Defaults to 0 and rarely used. Only use this parameter when it is necessary to embed a custom form in your page template (such as a search field that posts to a different Web site). If this form comes before the	
Replacements for special characters that require an escaped equivalent:	
Range of values is	
Limit on the number of rows that can be returned by your query. Limits the performance impact of user searches. By entering a value in this parameter, you force the user to search for a narrower set of results.	
Additional HTML attributes to use for the form item.	
Range of values is	
ID attribute of the form element.	
Invisible label created for the item.	
Example	
The following example demonstrates a sample query the generates a popup from an LOV named DEPT_LOV	
.	
This function generates an HTML popup select list from a query. Like other available functions in the APEX_ITEM	
package, the POPUP_FROM_QUERY	
function is designed to generate forms with F01	
to F50	
form array elements.	
Syntax	
Parameters	
Table 3-8 describes the parameters in the POPUP_FROM_QUERY	
function.	
Table 3-8 POPUP_FROM_QUERY Parameters	
Parameter	Description
---	---
Form element name. For example,	
Form element current value. This value should be one of the values in the	
SQL query that is expected to select two columns (a display column and a return column). For example: SELECT dname, deptno FROM dept	
Width of the text box.	
Maximum number of characters that can be entered in the text box.	
HTML form on the page in which an item is contained. Defaults to 0 and rarely used. Only use this parameter when it is necessary to embed a custom form in your page template (such as a search field that posts to a different Web site). If this form comes before the	
Replacements for special characters that require an escaped equivalent.	
Range of values is	
Limit on the number of rows that can be returned by your query. Limits the performance impact of user searches. By entering a value in this parameter, you force the user to search for a narrower set of results.	
Additional HTML attributes to use for the form item.	
Range of values is	
ID attribute of the form element.	
Invisible label created for the item.	
Example	
The following example demonstrates a sample query the generates a popup select list from the emp	
table.	
This function generates a popup key select list from a shared list of values (LOV). Similar to other available functions in the APEX_ITEM	
package, the POPUPKEY_FROM_LOV	
function is designed to generate forms with F01	
to F50	
form array elements.	
Syntax	
Although the text field associated with the popup displays in the first column in the LOV query, the actual value is specified in the second column in the query.	
Parameters	
Table 3-9 describes the some parameters in the POPUPKEY_FROM_LOV	
function.	
Table 3-9 POPUPKEY_FROM_LOV Parameters	
Parameter	Description
---	---
Identifies a form element name. For example, Because of the behavior of SELECT APEX_ITEM.POPUPKEY_FROM_LOV (1,deptno,'DEPT') dt, APEX_ITEM.HIDDEN(3,empno) eno	
Indicates the current value. This value should be one of the values in the	
Identifies a named LOV used for this popup.	
Width of the text box.	
Maximum number of characters that can be entered in the text box.	
HTML form on the page in which an item is contained. Defaults to 0 and rarely used. Only use this parameter when it is necessary to embed a custom form in your page template (such as a search field that posts to a different Web site). If this form comes before the	
Replacements for special characters that require an escaped equivalent.	
This parameter is useful if you know your query will return illegal HTML.	
Limit on the number of rows that can be returned by your query. Limits the performance impact of user searches. By entering a value in this parameter, you force the user to search for a narrower set of results.	
Additional HTML attributes to use for the form item.	
Range of values is	
HTML attribute ID for the <input> tag	
Invisible label created for the item	
Example	
The following example demonstrates how to generate a popup key select list from a shared list of values (LOV).	
This function generates a popup key select list from a SQL query. Similar to other available functions in the APEX_ITEM	
package, the POPUPKEY_FROM_QUERY	
function is designed to generate forms with F01	
to F50	
form array elements.	
Syntax	
Parameters	
Table 3-10 describes the some parameters in the POPUPKEY_FROM_QUERY	
function.	
Table 3-10 POPUPKEY_FROM_QUERY Parameters	
Parameter	Description
---	---
Form element name. For example, Because of the behavior of SELECT APEX_ITEM.POPUPKEY_FROM_QUERY (1,deptno,'SELECT dname, deptno FROM dept') dt, APEX_ITEM.HIDDEN(3,empno) eno	
Form element current value. This value should be one of the values in the	
LOV query used for this popup.	
Width of the text box.	
Maximum number of characters that can be entered in the text box.	
HTML form on the page in which an item is contained. Defaults to 0 and rarely used. Only use this parameter when it is necessary to embed a custom form in your page template (such as a search field that posts to a different Web site). If this form comes before the	
Replacements for special characters that require an escaped equivalent.	
This parameter is useful if you know your query will return illegal HTML.	
Limit on the number of rows that can be returned by your query. Limits the performance impact of user searches. By entering a value in this parameter, you force the user to search for a narrower set of results.	
Additional HTML attributes to use for the form item.	
Range of values is	
ID attribute of the form element.	
Invisible label created for the item.	
Example	
The following example demonstrates how to generate a popup select list from a SQL query.	
This function generates a radio group from a SQL query.	
Syntax	
Parameters	
Table 3-11 describes the parameters available in the RADIOGROUP	
function.	
Table 3-11 RADIOGROUP Parameters	
Parameter	Description
---	---
Number that determines which	
Value of the radio group.	
Value that should be selected.	
Text to display next to the radio option.	
Extra HTML parameters you want to add.	
JavaScript to execute in the	
JavaScript to execute in the	
JavaScript to execute in the	
HTML attribute ID for the <input> tag	
Invisible label created for the item	
Example	
The following example demonstrates how to select department 20 from the emp	
table as a default in a radio group.	
This function dynamically generates a static select list. Similar to other functions available in the APEX_ITEM	
package, these select list functions are designed to generate forms with F01	
to F50	
form array elements.	
Syntax	
Parameters	
Table 3-12 describes the parameters available in the SELECT_LIST	
function.	
Table 3-12 SELECT_LIST Parameters	
Parameter	Description
---	---
Form element name. For example,	
Current value. This value should be a value in the	
List of static values separated by commas. Displays values and returns values that are separated by semicolons. Note that this is only available in the	
Extra HTML parameters you want to add.	
Extra select option to enable the NULL selection. Range of values is	
Value to be returned when a user selects the NULL option. Only relevant when	
Value to be displayed when a user selects the NULL option. Only relevant when	
HTML attribute ID for the <	
Invisible lable created for the item.	
Shows the current value even if the value of p_value is not located in the select list.	
Example	
The following example demonstrates a static select list that displays Yes	
, returns Y	
, defaults to Y	
, and generates a F01	
form item.	
The following example demonstrates the use of APEX_ITEM.SELECT_LIST	
to generate a static select list where:	
F03	
will be generated (p_idx	
parameter). deptno	
for the row from emp	
(p_value	
parameter). p_list_values	
parameter). p_attributes	
parameter). p_show_null	
) and this option will display -Select-	
as the text (p_null_text	
parameter). #ROWNUM#	
will be substituted for the current row rownum	
(p_item_id	
parameter). (So an ID of 'f03_4	
' will be generated for row 4.) p_item_label	
parameter). deptno	
will be displayed, even if it is not contained with the list of values passed in the p_list_values	
parameter (p_show_extra	
parameter). This function dynamically generates select lists from a shared list of values (LOV). Similar to other functions available in the APEX_ITEM	
package, these select list functions are designed to generate forms with F01	
to F50	
form array elements.	
Syntax	
Parameters	
Table 3-13 describes the parameters available in the SELECT_LIST_FROM_LOV	
function.	
Table 3-13 SELECT_LIST_FROM_LOV Parameters	
Parameter	Description
---	---
Form element name. For example,	
Current value. This value should be a value in the	
Text name of an application list of values. This list of values must be defined in your application. This parameter is used only by the	
Extra HTML parameters you want to add.	
Extra select option to enable the NULL selection. Range of values is	
Value to be returned when a user selects the NULL option. Only relevant when	
Value to be displayed when a user selects the NULL option. Only relevant when	
HTML attribute ID for the	
Invisible label created for the item.	
Shows the current value even if the value of	
Example	
The following example demonstrates a select list based on an LOV defined in the application.	
This function dynamically generates very large select lists (greater than 32K) from a shared list of values (LOV). Similar to other functions available in the APEX_ITEM	
package, these select list functions are designed to generate forms with F01	
to F50	
form array elements. This function is the same as SELECT_LIST_FROM_LOV	
, but its return value is CLOB. This enables you to use it in SQL queries where you need to handle a column value longer than 4000 characters.	
Syntax	
Parameters	
Table 3-14 describes the parameters available in the SELECT_LIST_FROM_LOV_XL	
function.	
Table 3-14 SELECT_LIST_FROM_LOV_XL Parameters	
Parameter	Description
---	---
Form element name. For example,	
Current value. This value should be a value in the	
Text name of a list of values. This list of values must be defined in your application. This parameter is used only by the	
Extra HTML parameters you want to add.	
Extra select option to enable the NULL selection. Range of values is	
Value to be returned when a user selects the NULL option. Only relevant when	
Value to be displayed when a user selects the NULL option. Only relevant when	
HTML attribute ID for the	
Invisible label created for the item.	
Shows the current value even if the value of	
Example	
The following example demonstrates how to create a select list based on an LOV defined in the application.	
This function dynamically generates a select list from a query. Similar to other functions available in the APEX_ITEM	
package, these select list functions are designed to generate forms with F01	
to F50	
form array elements.	
Syntax	
Parameters	
Table 3-15 describes the parameters available in the SELECT_LIST_FROM_QUERY	
function.	
Table 3-15 SELECT_LIST_FROM_QUERY Parameters	
Parameter	Description
---	---
Form element name. For example,	
Current value. This value should be a value in the	
SQL query that is expected to select two columns, a display column, and a return column. For example: SELECT dname, deptno FROM dept Note that this is used only by the Also note, if only one column is specified in the select clause of this query, the value for this column will be used for both display and return purposes.	
Extra HTML parameters you want to add.	
Extra select option to enable the NULL selection. Range of values is	
Value to be returned when a user selects the NULL option. Only relevant when	
Value to be displayed when a user selects the NULL option. Only relevant when	
HTML attribute ID for the	
Invisible label created for the item.	
Show the current value even if the value of	
Example	
The following example demonstrates a select list based on a SQL query.	
This function is the same as SELECT_LIST_FROM_QUERY	
, but its return value is a CLOB. This allows its use in SQL queries where you need to handle a column value longer than 4000 characters. Similar to other functions available in the APEX_ITEM	
package, these select list functions are designed to generate forms with F01	
to F50	
form array elements.	
Syntax	
Parameters	
Table 3-16 describes the parameters available in the SELECT_LIST_FROM_QUERY_XL	
function.	
Table 3-16 SELECT_LIST_FROM_QUERY_XL Parameters	
Parameter	Description
---	---
Form element name. For example,	
Current value. This value should be a value in the	
SQL query that is expected to select two columns, a display column, and a return column. For example: SELECT dname, deptno FROM dept Note that this is used only by the Also note, if only one column is specified in the select clause of this query, the value for this column will be used for both display and return purposes.	
Extra HTML parameters you want to add.	
Extra select option to enable the NULL selection. Range of values is	
Value to be returned when a user selects the NULL option. Only relevant when	
Value to be displayed when a user selects the NULL option. Only relevant when	
HTML attribute ID for the	
Invisible label created for the item.	
Show the current value even if the value of	
Example	
The following example demonstrates a select list based on a SQL query.	
This function generates text fields (or text input form items) from a SQL query.	
Syntax	
Parameters	
Table 3-17 describes the parameters available in the TEXT	
function.	
Table 3-17 TEXT Parameters	
Parameter	Description
---	---
Number to identify the item you want to generate. The number will determine which See Also: "APEX_APPLICATION"	
Value of a text field item.	
Controls HTML tag attributes (such as disabled).	
Maximum number of characters that can be entered in the text box.	
Extra HTML parameters you want to add.	
HTML attribute ID for the	
Invisible label created for the item.	
Example	
The following sample query demonstrates how to generate one update field for each row. Note that the ename	
, sal	
, and comm	
columns use the APEX_ITEM	
.TEXT	
function to generate an HTML text field for each row. Also, notice that each item in the query is passed a unique p_idx	
parameter to ensure that each column is stored in its own array.	
This function creates text areas.	
Syntax	
Parameters	
Table 3-18 describes the parameters available in the TEXTAREA	
function.	
Table 3-18 TEXTAREA Parameters	
Parameter	Description
---	---
Number to identify the item you want to generate. The number will determine which See Also: "APEX_APPLICATION"	
Value of the text area item.	
Height of the text area (HTML rows attribute)	
Width of the text area (HTML column attribute).	
Extra HTML parameters you want to add.	
HTML attribute ID for the	
Invisible label created for the item.	
Example	
The following example demonstrates how to create a text area based on a SQL query.	
Use this function to display an item as text, deriving the display value of the named LOV.	
Syntax	
Parameters	
Table 3-19 describes the parameters available in the TEXT_FROM_LOV	
function.	
Table 3-19 TEXT_FROM_LOV Parameters	
Parameter	Description
---	---
Value of a field item. Note that if	
Text name of a shared list of values. This list of values must be defined in your application.	
Value displayed when the value of the field item is NULL.	
Example	
The following example demonstrates how to derive the display value from a named LOV (EMPNO_ENAME_LOV	
).	
Use this function to display an item as text, deriving the display value from a list of values query.	
Syntax	
IN	
VARCHAR2,Parameters	
Table 3-20 describes the parameters available in the TEXT_FROM_LOV_QUERY	
function.	
Table 3-20 TEXT_FROM_LOV_QUERY Parameters	
Parameter	Description
---	---
Value of a field item.	
SQL query that is expected to select two columns, a display column and a return column. For example: SELECT dname, deptno FROM dept Note if only one column is specified in the select clause of this query, the value for this column will be used for both display and return purposes.	
Value to be displayed when the value of the field item is NULL or a corresponding entry is not located for the value	
Example	
The following example demonstrates how to derive the display value from a query.	
The APEX_APPLICATION	
package is a PL/SQL package that implements the Oracle Application Express rendering engine. You can use this package to take advantage of a number of global variables. Table 4-1 describes the global variables available in the APEX_APPLICATION package	
.	
Table 4-1 Global Variables Available in APEX_APPLICATION	
Global Variable	Description
---	---
Specifies the currently logged in user.	
Specifies the ID of the currently running application.	
Specifies the ID of the currently running page.	
Specifies the schema to parse for the currently running application.	
Specifies the value of the request variable most recently passed to or set within the show or accept modules.	
Refers to the Web browser's current language preference.	
Refers to whether debugging is currently switched on or off. Valid values for the DEBUG flag are 'Yes' or 'No'. Turning debug on shows details about application processing.	
Refers to the home page of an application. The Application Express engine will redirect to this location if no page is given and if no alternative page is dictated by the authentication scheme's logic.	
Can be used to display a link to a login page for users that are not currently logged in.	
Refers to the virtual path the web server uses to point to the images directory distributed with Oracle Application Express.	
Refers to the owner of the Application Express schema.	
Refers to whether or not the Application Express engine is running in print view mode. This setting can be referenced in conditions to eliminate elements not desired in a printed document from a page.	
Refers to the application attribute 'Proxy Server'.	
Refers to the current date on the database server. this uses the DATE DATATYPE.	
Refers to the Oracle schema used to connect to the database through the database access descriptor (DAD).	
Specifies the application's global notification attribute.	
Topics in this section include:	
Items are typically HTML form elements such as text fields, select lists, and check boxes. When you create a new form item using a wizard, the wizard uses a standard naming format. The naming format provides a handle so you can retrieve the value of the item later on.	
If you need to create your own items, you can access them after a page is submitted by referencing APEX_APPLICATION.G_F01	
to APEX_APPLICATION.G_F50	
arrays. You can create your own HTML form fields by providing the input parameters using the format F01	
, F02	
, F03	
and so on. You can create up to 50 input parameters ranging from F01	
to F50	
, for example:	
Because the F01	
to F50	
input items are declared as PL/SQL arrays, you can have multiple items named the same value. For example:	
Note that following PL/SQL code produces the same HTML as show in the previous example.	
You can reference the values posted by an HTML form using the PL/SQL variable APEX_APPLICATION	
.G_F01	
to APEX_APPLICATION	
.G_F50	
. Because this element is an array, you can reference values directly, for example:	
Note that check boxes displayed using APEX_ITEM.CHECKBOX	
will only contain values in the APEX_APPLICATION	
arrays for those rows which are checked. Unlike other items (TEXT	
, TEXTAREA	
, and DATE_POPUP	
) which can contain an entry in the corresponding APEX_APPLICATION	
array for every row submitted, a check box will only have an entry in the APEX_APPLICATION	
array if it is selected.	
You can also use Oracle Application Express public utility functions to convert an array into a single value. The resulting string value is a colon-separated list of the array element values. For example:	
This function enables you to reference G_F01	
to G_F50	
values in an application process that performs actions on data. The following sample process demonstrates how values are inserted into a table:	
This function outputs page and item level help text as formatted HTML and can be used to customize how help information is displayed in your application.	
Syntax	
Parameters	
Table 4-2 describes the parameters available in the HELP procedure.	
Table 4-2 HELP Parameters	
Parameter	Description
---	---
p_request	Not used.
p_flow_id	The application ID that contains the page or item level help you want to output.
p_flow_step_id	The page ID that contains the page or item level help you want to display.
p_show_item_help	Flag to determine if item level help is output. If this parameter is supplied, the value must be either 'YES' or 'NO', if not the default value will be 'YES'.
p_show_regions	Flag to determine if region headers are output (for regions containing page items). If this parameter is supplied, the value must be either 'YES' or 'NO', if not the default value will be 'YES'.
p_before_page_html	Use this parameter to include HTML between the page level help text and item level help text.
p_after_page_html	Use this parameter to include HTML at the bottom of the output, after all other help.
p_before_region_html	Use this parameter to include HTML before every region section. Note this parameter is ignored if
p_after_region_html	Use this parameter to include HTML after every region section. Note this parameter is ignored if
p_before_prompt_html	Use this parameter to include HTML before every item label for item level help. Note this parameter is ignored if
p_after_prompt_html	Use this parameter to include HTML after every item label for item level help. Note this parameter is ignored if
p_before_item_html	Use this parameter to include HTML before every item help text for item level help. Note this parameter is ignored if
p_after_item_html	Use this parameter to include HTML after every item help text for item level help. Note this parameter is ignored if
Example	
The following example shows how to use the APEX_APPLICATION.HELP	
procedure to customize how help information is displayed.	
In this example, the p_flow_step_id	
parameter is set to :REQUEST	
, which means that a page ID specified in the REQUEST section of the URL will be used to control which page's help information to display (see note after example for full details on how this can be achieved).	
Also, the help display has been customized so that the region sub-header now has a different color (through the p_before_region_html	
parameter) and also the ':' has been removed that appeared by default after every item prompt (through the p_after_prompt_html	
parameter).	
In order to implement this type of call in your application, you can do the following:	
APEX_APPLICATION.HELP	
call as PL/SQL Source. &APP_PAGE_ID	
. You can use the APEX_CUSTOM_AUTH	
package to perform various operations related to authentication and session management.	
Topics in this section include:	
This function checks for the existence of page-level item within the current page of an application. This function requires the parameter p_item_name	
. This function returns a Boolean value (true or false).	
Syntax	
Parameters	
Table 5-1 describes the parameters available in the APPLICATION_PAGE_ITEM_EXISTS function.	
Table 5-1 APPLICATION_PAGE_ITEM_EXISTS Parameters	
Parameter	Description
---	---
The name of the page-level item.	
Example	
The following example checks for the existance of a page-level item, ITEM_NAME	
, within the current page of the application.	
This function checks whether the current page's authentication attribute is set to Page Is Public and returns a Boolean value (true or false)	
Syntax	
Example	
The following example checks whether the current page in an application is public.	
This procedure combines the SET_USER	
and SET_SESSION_ID	
procedures to create one call.	
Syntax	
Parameters	
Table 5-2 describes the parameters available in the DEFINE_USER_SESSION	
procedure.	
Table 5-2 DEFINE_USER_SESSION Parameters	
Parameter	Description
---	---
Login name of the user.	
The session ID.	
Example	
In the following example, a new session ID is generated and registered along with the current application user.	
This procedure obtains the properties of the session cookie used in the current authentication scheme for the specified application. These properties can be viewed directly in the Application Builder by viewing the authentication scheme cookie attributes.	
Syntax	
Parameters	
Table 5-3 describes the parameters available in the GET_COOKIE_PROPS	
procedure.	
Table 5-3 GET_COOKIE_PROPS Parameters	
Parameter	Description
---	---
An application ID in the current workspace.	
The cookie name.	
The cookie path.	
The cookie domain.	
Flag to set secure property of cookie.	
Example	
The following example retrieves the session cookie values used by the authentication scheme of the current application.	
This procedure obtains the LDAP attributes of the current authentication scheme for the current application. These properties can be viewed directly in Application Builder by viewing the authentication scheme attributes.	
Syntax	
Parameters	
Table 5-4 describes the parameters available in the GET_LDAP_PROPS	
procedure.	
Table 5-4 GET_LDAP_PROPS Parameters	
Parameter	Description
---	---
LDAP host name.	
LDAP port number.	
LDAP DN string.	
LDAP edit function name.	
Example	
The following example retrieves the LDAP attributes associated with the current application.	
This function generates the next session ID from the Oracle Application Express sequence generator. This function returns a number.	
Syntax	
Example	
The following example generates the next session ID and stores it into a variable.	
This function returns a number with the value of the security group ID that identifies the workspace of the current user.	
Syntax	
Example	
The following example retrieves the Security Group ID for the current user.	
This function returns APEX_APPLICATION	
.G_INSTANCE	
global variable. GET_SESSION_ID	
returns a number.	
Syntax	
Example	
The following example retrieves the session ID for the current user.	
This function returns the Oracle Application Express session ID located by the session cookie in the context of a page request in the current browser session.	
Syntax	
Example	
The following example retrieves the session ID from the current session cookie.	
This function returns the APEX_APPLICATION	
.G_USER	
global variable (VARCHAR2	
).	
Syntax	
Examples	
The following example retrieves the username associated with the current session.	
This function returns user name registered with the current Oracle Application Express session in the internal sessions table. This user name is usually the same as the authenticated user running the current page.	
Syntax	
Example	
The following example retrieves the username registered with the current application session.	
This function is a Boolean result obtained from executing the current application's authentication scheme to determine if a valid session exists. This function returns the Boolean result of the authentication scheme's page sentry.	
Syntax	
Example	
The following example verifies whether the current session is valid.	
Also referred to as the "Login API," this procedure performs authentication and session registration.	
Syntax	
Parameter	
Table 5-5 describes the parameters available in the LOGIN	
procedure.	
Table 5-5 LOGIN Parameters	
Parameter	Description
---	---
Login name of the user.	
Clear text user password.	
Current Oracle Application Express session ID.	
Current application ID. After login page separated by a colon (:).	
Internal use only.	
If true, do not upper	
Example	
The following example performs the user authentication and session registration.	
Note: Do not use bind variable notations forp_session_id argument.	
This procedure causes a logout from the current session by unsetting the session cookie and redirecting to a new location.	
Syntax	
Parameter	
Table 5-6 describes the parameters available in the LOGOUT	
procedure.	
Table 5-6 LOGOUT Parameters	
Parameter	Description
---	---
Current application ID.	
Application and page number to redirect to. Separate multiple pages using a colon (:) and optionally followed by a colon (:) and the session ID (if control over the session ID is desired).	
URL to redirect to (use this instead of	
Example	
The following example causes a logout from the current session and redirects to page 99	
of application 1000	
.	
This procedure performs session registration, assuming the authentication step has been completed. It can be called only from within an Oracle Application Express application page context.	
Syntax	
Parameter	
Table 5-7 describes the parameters available in the POST_LOGIN	
procedure.	
Table 5-7 POST_LOGIN Parameters	
Parameter	Description
---	---
Login name of user.	
Current Oracle Application Express session ID.	
Current application ID and after login page separated by a colon (:).	
If true, do not include	
Example	
The following example performs the session registration following a successful authentication.	
This function returns a Boolean result based on the global package variable containing the current Oracle Application Express session ID. Returns true if the result is a positive number and returns false if the result is a negative number.	
Syntax	
Example	
The following example checks whether the current session ID is valid and exists.	
This procedure sets APEX_APPLICATION	
.G_INSTANCE	
global variable. This procedure requires the parameter P_SESSION_ID	
(NUMBER	
) which specifies a session ID.	
Syntax	
Parameters	
Table 5-8 describes the parameters available in the SET_SESSION_ID	
procedure.	
Table 5-8 SET_SESSION_ID Parameters	
Parameter	Description
---	---
The session ID to be registered.	
Example	
In the following example, the session ID value registered is retrieved from the browser cookie.	
This procedure combines the operation of GET_NEXT_SESSION_ID	
and SET_SESSION_ID	
in one call.	
Syntax	
Example	
In the following example, if the current session is not valid, a new session ID is generated and registered.	
This procedure sets the APEX_APPLICATION	
.G_USER	
global variable. SET_USER	
requires the parameter P_USER	
(VARCHAR2	
) which defines a user ID.	
Syntax	
Parameters	
Table 5-9 describes the parameters available in the SET_USER	
procedure.	
Example	
In the following example, if the current application user is NOBODY, then JOHN.DOE is registered as the application user.	
You can use APEX_LDAP	
to perform various operations related to Lightweight Directory Access Protocol (LDAP) authentication.	
Topics in this section include:	
The AUTHENTICATE	
function returns a boolean true if the user name and password can be used to perform a SIMPLE_BIND_S	
, call using the provided search base, host, and port.	
Syntax	
Parameters	
Table 6-1 describes the parameters available in the AUTHENTICATE	
function.	
Table 6-1 AUTHENTICATE Parameters	
Parameter	Description
---	---
Login name of the user.	
Password for	
LDAP search base, for example,	
LDAP server host name.	
LDAP server port number.	
Example	
The following example demostrates how to use the APEX_LDAP.AUTHENTICATE	
function to verify user credentials against an LDAP Server.	
The GET_ALL_USER_ATTRIBUTES	
procedure returns two OUT arrays of user_attribute	
names and values for the user name designated by p_username	
(with password if required) using the provided auth base, host, and port.	
Syntax	
Parameters	
Table 6-2 describes the parameters for the GET_ALL_USER_ATTRIBUTES	
procedure.	
Table 6-2 GET_ALL_USER_ATTRIBUTES Parameters	
Parameter	Description
---	---
Login name of the user.	
Password for	
LDAP search base, for example,	
LDAP server host name.	
LDAP server port number.	
An array of attribute names returned.	
An array of values returned for each corresponding attribute name returned in p_attributes.	
Example	
The following example demonstrates how to use the APEX_LDAP.GET_ALL_USER_ATTRIBUTES	
procedure to retrieve all attribute value's associated to a user.	
The GET_USER_ATTRIBUTES	
procedure returns an OUT array of user_attribute values for the user name designated by p_username	
(with password if required) corresponding to the attribute names passed in p_attributes	
using the provided auth base, host, and port.	
Syntax	
Parameters	
Table 6-3 describes the parameters available in the GET_USER_ATTRIBUTES	
procedure.	
Table 6-3 GET_USER_ATTRIBUTES Parameters	
Parameter	Description
---	---
Login name of the user.	
Password for	
LDAP search base, for example,	
LDAP server host name.	
LDAP server port number.	
An array of attribute names for which values are to be returned.	
An array of values returned for each corresponding attribute name in	
Example	
The following example demonstrates how to use the APEX_LDAP.GET_USER_ATTRIBUTES	
procedure to retrieve a specific attribute value associated to a user.	
The IS_MEMBER	
function returns a boolean true if the user named by p_username	
(with password if required) is a member of the group specified by the p_group	
and p_group_base	
parameters using the provided auth base, host, and port.	
Syntax	
Parameters	
Table 6-4 describes the parameters available in the IS_MEMBER	
function.	
Table 6-4 IS_MEMBER Parameters	
Parameter	Description
---	---
Login name of the user.	
Password for	
LDAP search base, for example,	
LDAP server host name.	
LDAP server port number.	
Name of the group to be search for membership.	
The base from which the search should be started.	
Example	
The following example demonstrates how to use the APEX_LDAP.IS_MEMBER	
function to verify whether a user is a member of a group against an LDAP server.	
The MEMBER_OF	
function returns an array of groups the user name designated by p_username	
(with password if required) belongs to, using the provided auth base, host, and port.	
Syntax	
Parameters	
Table 6-5 describes the parameters available in the MEMBER_OF	
function.	
Table 6-5 MEMBER_OF Parameters	
Parameter	Description
---	---
Login name of the user.	
Password for	
LDAP search base, for example,	
LDAP server host name.	
LDAP server port number.	
Example	
The following example demonstrates how to use the APEX_LDAP.MEMBER_OF	
function to retrieve all the groups designated by the specified username.	
The MEMBER_OF2	
function returns a VARCHAR2	
colon delimited list of groups the user name designated by p_username	
(with password if required) belongs to, using the provided auth base, host, and port.	
Syntax	
Parameters	
Table 6-6 describes the parameters available in the MEMBER_OF2	
function.	
Table 6-6 MEMBER_OF2 Parameters	
Parameter	Description
---	---
Login name of the user.	
Password for	
LDAP search base, for example,	
LDAP server host name.	
LDAP server port number.	
Example	
The following example demonstrates how to use the APEX_LDAP.MEMBER_OF2	
function to retreive all the groups designated by the specified username.	
The APEX_INSTANCE_ADMIN	
package provides utilities for managing an Oracle Application Express runtime environment. You use the APEX_INSTANCE_ADMIN	
package to get and set email settings, wallet settings, report printing settings and to manage scheme to workspace mappings. APEX_INSTANCE_ADMIN	
can be executed by the SYS	
, SYSTEM	
, and APEX_030200	
database users as well as any database user granted the role APEX_ADMINISTRATOR_ROLE	
.	
Topics in this section include:	
The ADD_SCHEMA	
procedure adds a schema to a workspace to schema mapping.	
Syntax	
Parameters	
Table 7-1 describes the parameters available in the ADD_SCHEMA	
procedure.	
Table 7-1 ADD_SCHEMA Parameters	
Parameter	Description
---	---
The name of the workspace to which the schema mapping will be added.	
The schema to add to the schema to workspace mapping.	
Example	
The following example demonstrates how to use the ADD_SCHEMA	
procedure to map a schema mapped to a workspace.	
MY_WORKSPACE	
','FRANK');The ADD_WORKSPACE	
procedure adds a workspace to an Application Express Instance.	
Syntax	
Parameters	
Table 7-2 describes the parameters available in the ADD_WORKSPACE	
procedure.	
Table 7-2 ADD_WORKSPACE Parameters	
Parameter	Description
---	---
The ID to uniquely identify the workspace in an Application Express instance. This may be left null and a new unique ID will be assigned.	
The name of the workspace to be added.	
The primary database schema to associate with the new workspace.	
A colon delimited list of additional schemas to associate with this workspace.	
Example	
The following example demonstrates how to use the ADD_WORKSPACE	
procedure to add a new workspace named MY_WORKSPACE	
using the primary schema, SCOTT	
, along with additional schema mappings for HR and OE.	
The GET_PARAMETER	
function retrieves the value of a parameter used in administering a runtime environment.	
Syntax	
Parameters	
Table 7-3 describes the parameters available in the GET_PARAMETER	
function.	
Table 7-3 GET_PARAMETER Parameters	
Parameter	Description
---	---
The instance parameter to be retrieved.	
Example	
The following example demonstrates how to use the GET_PARAMETER	
function to retrieve the SMTP_HOST_ADDRESS	
parameter currently defined for an Oracle Application Express instance.	
The GET_SCHEMAS	
function retrieves a comma-delimited list of schemas that are mapped to a given workspace.	
Syntax	
Parameters	
Table 7-4 describes the parameters available in the GET_SCHEMAS	
function.	
Table 7-4 GET_SCHEMAS Parameters	
Parameter	Description
---	---
The name of the workspace from which to retrieve the schema list.	
Example	
The following example demonstrates how to use the GET_SCHEMA	
function to retrieve the underlying schemas mapped to a workspace.	
The REMOVE_SAVED_REPORTS	
procedure removes all user saved interactive report settings for a particular application or for the entire instance.	
Syntax	
Parameters	
Table 7-5 describes the parameters available in the REMOVE_SAVED_REPORTS	
procedure.	
Table 7-5 REMOVE_SAVED_REPORTS Parameters	
Parameter	Description
---	---
The ID of the application for which to remove user saved interactive report information. If this parameter is left null, all user saved interactive reports for the entire instance will be removed.	
Example	
The following example demonstrates how to use the REMOVE_SAVED_REPORTS	
procedure to remove user saved interactive report information for the application with an ID of 100.	
This REMOVE_SCHEMA	
procedure removes a workspace to schema mapping.	
Syntax	
Parameters	
Table 7-6 describes the parameters available in the REMOVE_SCHEMA	
procedure.	
Table 7-6 REMOVE_SCHEMA Parameters	
Parameter	Description
---	---
The name of the workspace from which the schema mapping will be removed.	
The schema to remove from the schema to workspace mapping.	
Example	
The following example demonstrates how to use the REMOVE_SCHEMA	
procedure to remove the schema named Frank	
from the MY_WORKSPACE	
workspace to schema mapping.	
The REMOVE_WORKSPACE	
procedure removes a workspace from an Application Express instance.	
Syntax	
Parameters	
Table 7-7 describes the parameters available in the REMOVE_WORKSPACE	
procedure.	
Table 7-7 REMOVE_WORKSPACE Parameters	
Parameter	Description
---	---
The name of the workspace to be removed.	
'Y' to drop the tablespace associated with the database user associated with the workspace. The default is	
Example	
The following example demonstrates how to use the REMOVE_WORKSPACE	
procedure to remove an existing workspace named MY_WORKSPACE, along with the associated database users and tablespace.	
The SET_PARAMETER	
procedure sets a parameter used in administering a runtime environment.	
Syntax	
Parameters	
Table 7-8 describes the parameters available in the SET_PARAMETER	
procedure.	
Table 7-8 SET_PARAMETER Parameters	
Parameter	Description
---	---
The instance parameter to be set.	
The value of the parameter.	
Example	
The following example demonstrates how to use the SET_PARAMETER	
procedure to set the SMTP_HOST_ADDRESS	
parameter for an Oracle Application Express instance.	
Table 7-9 lists all the available parameter values you can set within the APEX_INSTANCE_ADMIN package	
, including parameters for email, wallet, and reporting printing.	
Table 7-9 Available Parameters	
Parameter Name	Description
---	---
Defines the "from" address for administrative tasks that generate email, such as approving a provision request or resetting a password. Enter a valid email address, for example:	
Defines the server address of the SMTP server. If you are using another server as an SMTP relay, change this parameter to that server's address. Default setting: localhost	
Defines the port the SMTP server listens to for mail requests. Default setting: 25	
The path to the wallet on the file system, for example: file:/home/<username>/wallets	
The password associated with the wallet.	
Specify either standard support or advanced support. Advanced support requires an Oracle BI Publisher license. Valid values include:	
Valid values include:	
Specifies the host address of the print server converting engine, for example,	
Defines the port of the print server engine, for example	
Defines the script that is the print server engine, for example: /xmlpserver/convert	
The APEX_UI_DEFAULT_UPDATE	
package provides procedures to access user interface defaults from within SQL Developer or SQL*Plus.	
You can use this package to set the user interface defaults associated with a table within a schema. The package must be called from within the schema that owns the table you are updating.	
User interface defaults enable you to assign default user interface properties to a table, column, or view within a specified schema. When you create a form or report using a wizard, the wizard uses this information to create default values for region and item properties. Utilizing user interface defaults can save valuable development time and has the added benefit of providing consistency across multiple pages in an application.	
Topics in this section include:	
The UPD_DISPLAY_IN_FORM	
procedure sets the display in form user interface defaults. This user interface default will be used by wizards when you select to create a form based upon the table. It controls whether the column will be included by default or not.	
Syntax	
Parameters	
Table 8-1 describes the parameters available in the UPD_DISPLAY_IN_FORM	
procedure.	
Table 8-1 UPD_DISPLAY_IN_FORM Parameters	
Parameter	Description
---	---
Table name	
Column name	
Determines whether or not to display in the form by default, valid values are	
Example	
In the following example, when creating a Form against the DEPT table, the display option on the DEPTNO column would default to 'No'.	
The UPD_DISPLAY_IN_REPORT	
procedure sets the display in report user interface default. This user interface default will be used by wizards when you select to create a report based upon the table and controls whether the column will be included by default or not.	
Syntax	
Parameters	
Table 8-2 describes the parameters available in the UPD_DISPLAY_IN_REPORT	
procedure.	
Table 8-2 UPD_DISPLAY_IN_REPORT Parameters	
Parameter	Description
---	---
Table name	
Column name	
Determines whether or not to display in the report by default, valid values are	
Example	
In the following example, when creating a Report against the DEPT table, the display option on the DEPTNO column would default to 'No'.	
The UPD_FORM_REGION_TITLE	
procedure updates the Form Region Title user interface default. User interface defaults are used in wizards when you create a form based upon the specified table.	
Syntax	
Parameters	
Table 8-3 describes the parameters available in the UPD_FORM_REGION_TITLE	
procedure.	
Table 8-3 APEX_UI_DEFAULT_UPDATE Parameters	
Parameter	Description
---	---
Table name	
Desired form region title	
Example	
This example demonstrates how to set the Forms Region Title user interface default on the DEPT table.	
The UPD_ITEM_DISPLAY_HEIGHT	
procedure sets the item display height user interface default. This user interface default will be used by wizards when you select to create a form based upon the table and include the specified column. Display height controls if the item will be a text box or a text area.	
Syntax	
Parameters	
Table 8-4 describes the parameters available in the UPD_ITEM_DISPLAY_HEIGHT	
procedure.	
Table 8-4 UPD_ITEM_DISPLAY_HEIGHT Parameters	
Parameter	Description
---	---
Table name	
Column name	
Display height of any items created based upon this column	
Example	
The following example sets a default item height of 3 when creating an item on the DNAME column against the DEPT table.	
The UPD_ITEM_DISPLAY_WIDTH	
procedure sets the item display width user interface default. This user interface default will be used by wizards when you select to create a form based upon the table and include the specified column.n.	
Syntax	
Parameters	
Table 8-5 describes the parameters available in the UPD_ITEM_DISPLAY_WIDTH	
procedure.	
Table 8-5 UPD_ITEM_DISPLAY_WIDTH Parameters	
Parameter	Description
---	---
Table name	
Column name	
Display width of any items created based upon this column	
Example	
The following example sets a default item width of 5 when creating an item on the DEPTNO column against the DEPT table.	
The UPD_ITEM_FORMAT_MASK	
procedure sets the item format mask user interface default. This user interface default will be used by wizards when you select to create a form based upon the table and include the specified column. Item format mask is typically used to format numbers and dates.	
Syntax	
Parameters	
Table 8-6 describes the parameters available in the UPD_ITEM_FORMAT_MASK	
procedure.	
Table 8-6 UPD_ITEM_FORMAT_MASK Parameters	
Parameter	Description
---	---
Table name	
Column name	
Format mask to be associated with the column	
Example	
In the following example, when creating a Form against the EMP table, the default item format mask on the HIREDATE column is set to 'DD-MON-YYYY'.	
The UPD_ITEM_HELP	
procedure updates the help text for the specified table and column. This user interface default will be used when you create a form based upon the table and select to include the specified column.	
Syntax	
Parameters	
Table 8-7 describes the parameters available in the UPD_ITEM_HELP	
procedure.	
Table 8-7 UPD_ITEM_HELP Parameters	
Parameter	Description
---	---
Table name	
Column name	
Desired help text	
Example	
This example demonstrates how to set the User Interface Item Help Text default for the DEPTNO column in the DEPT table.	
The UPD_LABEL	
procedure sets the label used for items. This user interface default will be used when you create a form or report based on the specified table and include a specific column.	
Syntax	
Parameters	
Table 8-8 describes the parameters available in the UPD_LABEL	
procedure.	
Table 8-8 UPD__LABEL Parameters	
Parameter	Description
---	---
Table name	
Column name	
Desired item label	
Example	
This example demonstrates how to set the User Interface Item Label default for the DEPTNO column in the DEPT table.	
The UPD_REPORT_ALIGNMENT procedure sets the report alignment user interface default. This user interface default will be used by wizards when you select to create a report based upon the table and include the specified column and determines if the report column should be left, center, or right justified.	
Syntax	
Parameters	
Table 8-9 describes the parameters available in the UPD_REPORT_ALIGNMENT	
procedure.	
Table 8-9 UPD_REPORT_ALIGNMENT Parameters	
Parameter	Description
---	---
Table name.	
Column name.	
Defines the alignment of the column in a report. Valid values are L (left), C (center) and R (right).	
Example	
In the following example, when creating a Report against the DEPT table, the default column alignment on the DEPTNO column is set to Right justified.	
The UPD_REPORT_FORMAT_MASK	
procedure sets the report format mask user interface default. This user interface default will be used by wizards when you select to create a report based upon the table and include the specified column. Report format mask is typically used to format numbers and dates.	
Syntax	
Parameters	
Table 8-10 describes the parameters available in the UPD_REPORT_FORMAT_MASK	
procedure.	
Table 8-10 UPD_REPORT_FORMAT_MASK Parameters	
Parameter	Description
---	---
Table name	
Column name	
Format mask to be associated with the column whenever it is included in a report	
Example	
In the following example, when creating a Report against the EMP table, the default format mask on the HIREDATE column is set to 'DD-MON-YYYY'.	
The UPD_REPORT_REGION_TITLE	
procedure sets the Report Region Title. User interface defaults are used in wizards when a report is created on a table.	
Syntax	
Parameters	
Table 8-11 describes the parameters available in the UPD_REPORT_REGION_TITLE	
procedure.	
Table 8-11 UPD_REPORT_REGION_TITLE Parameters	
Parameter	Description
---	---
Table name	
Desired report region title	
Example	
This example demonstrates how to set the Reports Region Title user interface default on the DEPT table.	
This section describes JavaScript functions and objects included with Oracle Application Express and available on every page. You can use these functions and objects to provide client-side functionality, such as showing and hiding page elements, or making XML HTTP Asynchronous JavaScript and XML (AJAX) requests.	
Topics in this section include:	
Given a DOM node or string ID (pNd), this function returns a DOM node if the element is on the page, or returns false if it is not.	
Return Value	
Parameters	
Given a DOM node or string ID (pNd), this function returns the value of an Application Express item in the same format as it would be posted.	
Parameters	
Given a DOM node or string ID (pNd), this function sets the Application Express item value taking into account what type of item it is.	
Parameters	
Given a DOM node or string ID or an array (pNd), this function returns an array. Used for creating DOM based functionality that can accept a single or multiple DOM nodes.	
Return Value	
Parameters	
Given a DOM node or string ID or an array (pNd), this function returns a single value, if an pNd is an array but only has one element the value of that element will be returned otherwise the array will be returned. Used for creating DOM based functionality that can accept a single or multiple DOM nodes.	
Return Value	
Parameters	
If pTest	
is empty or false return pDefault	
otherwise return pTest	
.	
Return Value	
Parameters	
Submits the page setting the Application Express Request value (pRequest	
).	
Parameters	
Displays a confirmation showing a message (pMessage	
) and depending on user's choice, submits a page setting request value (pRequest	
) or cancels page submit.	
Parameters	
Sets a specific style property (pStyle	
) to given value (pString	
) of a DOM node or DOM node Array (pNd	
).	
Return Value	
Parameters	
Hides a DOM node or array of DOM nodes (pNd	
).	
Return Value	
Parameters	
Shows a DOM node or array of DOM nodes (pNd	
).	
Return Value	
Parameters	
Toggles a DOM node or array of DOM nodes (pNd).	
Return Value	
Parameters	
Removes a DOM node or array of DOM nodes.	
Return Value	
Parameters	
Sets the value (pValue	
) of a DOM node or array of DOM nodes (pNd	
).	
Return Value	
Parameters	
Starting from a DOM node (pNd	
), this function cascades up the DOM tree until the tag of node name (pToTag	
) is found.	
Return Value	
Parameters	
Given DOM node or array of DOM nodes, this function (shows, hides, or toggles) the entire row that contains the DOM node or array of DOM nodes. This is most useful when using Page Items.	
Return Value	
Parameters	
Given a page item name, this function hides the entire row that holds the item. In most cases, this will be the item and its label.	
Return Value	
Parameters	
Given a page item name, this function shows the entire row that holds the item. In most cases, this will be the item and its label.	
Return Value	
Parameters	
Given a page item name (pNd), this function toggles the entire row that holds the item. In most cases, this will be the item and its label.	
Return Value	
Parameters	
Hides all DOM nodes referenced in pNdArray	
and then shows the DOM node referenced by pNd	
. This is most useful when pNd	
is also a node in pNdArray	
.	
Return Value	
Parameters	
Hides all sibling nodes of given pNd	
.	
Return Value	
Parameters	
Shows all sibling DOM nodes of given DOM nodes (pNd	
).	
Return Value	
Parameters	
Sets a DOM node or array of DOM nodes to a single class name.	
Return Value	
Parameters	
Sets the class (pClass	
) of all DOM node siblings of a node (pNd	
). If pNdClass	
is not null the class of pNd	
is set to pNdClass	
.	
Return Value	
Parameters	
Returns an array of DOM nodes by a given class name (pClass	
). If the pNd	
parameter is provided, then the returned elements will be all be children of that DOM node. Including the pTag	
parameter further narrows the list to just return nodes of that tag type.	
Return Value	
Parameters	
Show all the DOM node children of a DOM node (pNd	
) that have a specific class (pClass	
) and tag (pTag	
).	
Return Value	
Parameters	
Show all DOM node children of a DOM node (pNd	
).	
Return Value	
Parameters	
Hide all DOM node children of a DOM node (pNd	
).	
Return Value	
Parameters	
Disables or enables an item or array of items based on (pTest	
).	
Return Value	
Parameters	
Checks an item or an array of items to see if any are empty, set the class of all items that are empty to pClassFail	
, set the class of all items that are not empty to pClass	
.	
Return Value	
Parameters	
Returns an item value as an array. Useful for multiselects and checkboxes.	
Return Value	
Parameters	
Returns an item value as an array. Useful for radio items and check boxes.	
Return Value	
Parameters	
Clears the content of an DOM node or array of DOM nodes and hides them.	
Return Value	
Parameters	
Returns the DOM nodes of the selected options of a select item (pNd	
).	
Return Value	
Parameters	
Returns the values of the selected options of a select item (pNd	
).	
Return Value	
Parameters	
Given an array (pArray	
) return a string with the values of the array delimited with a given delimiter character (pDelim	
).	
Return Value	
Parameters	
Checks an image (pId	
) source	
attribute for a substring (pSearch	
). The function returns true if a substring (pSearch	
) is found. It returns false if a substring (pSearch	
) is not found.	
Return Value	
Parameters	
Checks an page item's (pThis	
) value against a set of values (pValue	
). This function returns true if any value matches.	
Return Value	
Parameters	
Checks an page item's (pThis	
) value against a value (pValue	
). If it matches, a DOM node (pThat	
) is set to hidden. If it does not match, then the DOM node (pThat	
) is set to visible.	
Return Value	
Parameters	
Checks an page item's (pThis	
) value against a value (pValue	
). If it matches, a DOM node (pThat	
) is set to hidden. If it does not match, then the DOM node (pThat	
) is set to visible.	
Return Value	
Parameters	
Checks the value (pValue	
) of an item (pThis	
). If it matches, this function hides the table row that holds (pThat	
). If it does not match, then the table row is shown.	
Return Value	
Parameters	
Checks the value (pValue	
) of an item (pThis	
). If it matches, this function hides the table row that holds (pThat	
). If it does not match, then the table row is shown.	
Return Value	
Parameters	
Checks the value (pValue	
) of an item (pThis	
). If it matches, this function disables the item or array of items (pThat	
). If it does not match, then the item is enabled.	
Return Value	
Parameters	
Sets a class attribute of an array of nodes that are selected by class.	
Return Value	
Parameters	
Collects the values of form items contained within DOM node (pThis	
) of class attribute (pClass	
) and nodeName (pTag	
) and returns an array.	
Return Value	
Parameters	
Returns all form input items contained in a DOM node (pThis	
) of a certain type (pType	
).	
Return Value	
Parameters	
Check or uncheck (pCheck	
) all check boxes contained within a DOM node (pThis	
). If an array of checkboxes DOM nodes (pArray	
) is provided, use that array for affected check boxes.	
Return Value	
Parameters	
This function sets all checkboxes located in the first column of a table based on the checked state of the calling checkbox (pNd	
), useful for tabular forms.	
Return Value	
Parameters	
Sets the value of the item in the parent window (pThat	
), with (pValue	
) and then closes the popup window.	
Return Value	
Parameters	
Given an image element (pThis	
) and a DOM node (pNd	
), this function toggles the display of the DOM node (pNd	
). The src attribute of the image element (pThis	
) will be rewritten. The image src will have any plus substrings replaced with minus substrings or minus substrings will be replaced with plus substrings.	
Return Value	
Parameters	
Checks an image (pId	
) src attribute for a substring (pSearch	
). If a substring is found, this function replaces the image entire src attribute with (pReplace	
).	
Return Value	
Parameters	
Checks an image (pNd	
) source attribute for a substring (pSearch	
). The function returns true if a substring (pSearch	
) is found. It returns false if a substring (pSearch	
) is not found.	
Return Value	
Parameters	
Returns a true or false if a string (pText	
) contains a substring (pMatch	
).	
Return Value	
Parameters	
Use DOM methods to remove all DOM children of DOM node (pND	
).	
Return Value	
Parameters	
Returns true or false if a form element is empty, this will consider any whitespace including a space, a tab, a form-feed, as empty.	
Return Value	
Parameters	
Sets the value (pValue	
) of a select item (pId	
). If the value is not found, this functions selects the first option (usually the NULL	
selection).	
Return Value	
Parameters	
Adds an onload function (func	
) without overwriting any previously specified onload functions.	
Return Value	
Parameters	
Swaps the form values of two form elements (pThis	
,pThat	
).	
Return Value	
Parameters	
Submits a page when ENTER is pressed in a text field, setting the request value to the ID of a DOM node (pNd	
).	
Usage is onkeypress="submitEnter(this,event)"	
Return Value	
Parameters	
Sets array of form item (pArray	
) to sequential number in multiples of (pMultiple	
).	
Return Value	
Parameters	
Inserts the html element (pTag	
) as a child node of a DOM node (pThis	
) with the innerHTML set to (pText	
).	
Return Value	
Parameters	
Appends a table cell to a table row (pThis	
). And sets the content to (pText	
).	
Return Value	
Parameters	
Appends a table cell to a table row (pThis	
). And sets the content to (pText	
).	
Return Value	
Parameters	
Inserts the html form input element (pType	
) as a child node of a DOM node (pThis	
) with an id (pId	
) and name (pName	
) value set to pValue	
.	
Return Value	
Parameters	
Takes a DOM node (p_Node	
) and makes it a child of DOM node (p_Parent	
) and then returns the DOM node (pNode).	
Return Value	
Parameters	
Give an table row DOM element (pThis	
), this function sets the background of all table cells to a color (pColor	
). A global variable gCurrentRow	
is set to pThis	
.	
Return Value	
Parameters	
Give an table row Dom node (pThis	
), this function sets the background of all table cells to NULL	
.	
Return Value	
Parameters	
Sets the value of a form item (pNd) to uppercase.	
Return Value	
Parameters	
Hides child nodes of a Dom node (pThis	
) where the child node's inner HTML matches any instance of pString	
. To narrow the child nodes searched by specifying a tag name (pTag	
) or a class name (pClass	
). Note that the child node will be set to a block level element when set to visible.	
Return Value	
Parameters	
Sets DOM node in the global variables returnInput (p_R)	
and returnDisplay (p_D)	
for use in populating items from popups.	
Return Value	
Parameters	
Sets DOM items in the global variables returnInput	
(p_R	
) and returnDisplay	
(p_D	
) for use in populating items from popups.	
Return Value	
Parameters	
Places the user focus on the a form item (pNd). If pNd is not found then this function places focus on the first found user editable field.	
Return Value	
Parameters	
Returns the value of cookie name (pName	
).	
Return Value	
Parameters	
Sets a cookie (pName	
) to a specified value (pValue	
).	
Return Value	
Parameters	
You can use APEX_PLSQL_JOB	
package to run PL/SQL code in the background of your application. This is an effective approach for managing long running operations that do not need to complete for a user to continue working with your application.	
Topics in this section include:	
Call this function to determine whether or not the database is currently in a mode that supports submitting jobs to the APEX_PLSQL_JOB package.	
Syntax	
Parameters	
None.	
Example	
The following example shows how to use the JOBS_ARE_ENABLED	
function. In the example, if the function returns TRUE	
the message 'Jobs are enabled on this database instance' is displayed, otherwise the message 'Jobs are not enabled on this database instance' is displayed.	
Call this procedure to clean up submitted jobs. Submitted jobs stay in the APEX_PLSQL_JOBS	
view until either Oracle Application Express cleans out those records, or you call PURGE_PROCESS	
to manually remove them.	
Syntax	
Parameters	
Table 10-1 describes the parameters available in the PURGE_PROCESS	
procedure.	
Table 10-1 PURGE_PROCESS Parameters	
Parameter	Description
---	---
The job number that identifies the submitted job you wish to purge.	
Example	
The following example shows how to use the PURGE_PROCESS	
procedure to purge the submitted job identified by a job number of 161. You could also choose to purge all or some of the current submitted jobs by referencing the APEX_PLSQL_JOBS	
view.	
Use this procedure to submit background PL/SQL. This procedure returns a unique job number. Because you can use this job number as a reference point for other procedures and functions in this package, it may be useful to store it in your own schema.	
Syntax	
Parameters	
Table 10-2 describes the parameters available in the SUBMIT_PROCESS	
function.	
Table 10-2 SUBMIT_PROCESS Parameters	
Parameter	Description
---	---
The process you wish to run in your job. This can be any valid anonymous block, for example: 'BEGIN <your code> END;' or 'DECLARE <your declaration> BEGIN <your code> END;'	
p_when	When you want to run it. The default is SYSDATE which means the job will run as soon as possible. You can also set the job to run in the future, for example:
p_status	Plain text status information for this job.
Example	
The following example shows how to use the SUBMIT_PROCESS	
function to submit a background process that will start as soon as possible.	
Use this function to determine how much time has elapsed since the job was submitted.	
Syntax	
Parameters	
Table 10-3 describes the parameters available in the TIME_ELAPSED	
function.	
Table 10-3 TIME_ELAPSED Parameters	
Parameter	Description
---	---
The job ID for the job you wish to see how long since it was submitted.	
Example	
The following example shows how to use the TIME_ELAPSED	
function to get the time elapsed for the submitted job identified by the job number 161.	
Call this procedure to update the status of the currently running job. This procedure is most effective when called from the submitted PL/SQL.	
Syntax	
Parameters	
Table 10-4 describes the parameters available in the UPDATE_JOB_STATUS procedure.	
Table 10-4 UPDATE_JOB_STATUS Parameters	
Parameter	Description
---	---
Passed the reserved word JOB. When this code is executed it will have visibility to the job number via the reserved word JOB.	
p_status	Plain text that you want associated with
Example	
The following example shows how to use the UPDATE_JOB_STATUS procedure. In this example, note that:	
APP_JOB	
is referenced as a bind variable inside the VALUES	
clause of the INSERT	
, and specified as the p_job	
parameter value in the call to UPDATE_JOB_STATUS	
. APP_JOB	
represents the job number which will be assigned to this process as it is submitted to APEX_PLSQL_JOB	
. By specifying this reserved item inside your process code, it will be replaced for you at execution time with the actual job number. UPDATE_JOB_STATUS	
every ten records, inside the block of code. Normally, Oracle transaction rules dictate updates made inside code blocks will not be seen until the entire transaction is committed. The APEX_PLSQL_JOB.UPDATE_JOB_STATUS	
procedure, however, has been implemented in such a way that the update will happen regardless of whether or not the job succeeds or fails. This last point is important for two reasons: APEX_PLSQL_JOBS	
would not be affected because status updates are committed separately. You can use APEX_LANG	
API to translate messages.	
Topics in this section include:	
This function is used to return a translated text string for translations defined in dynamic translations.	
Syntax	
Parameters	
Table 11-1 describes the parameters available in the APEX_LANG.LANG	
function.	
Table 11-1 LANG Parameters	
Parameter	Description
---	---
Text string of the primary language. This will be the value of the Translate From Text in the dynamic translation.	
Dynamic substitution value: p0 corresponds to 0% in the translation string; p1 corresponds to 1% in the translation string; p2 corresponds to 2% in the translation string, and so on.	
Language code for the message to be retrieved. If not specified, Oracle Application Express uses the current language for the user as defined in the Application Language Derived From attribute. See also: Specifying the Primary Language for an Application in the Oracle Application Express Application Builder User's Guide.	
Example	
Suppose you have a table that defines all primary colors. You could define a dynamic message for each color and then apply the LANG function to the defined values in a query. For example:	
If you were running the application in German, RED was a value for the color column in the my_colors	
table, and you defined the German word for red, the previous example would return ROT.	
Use this function to translate text strings (or messages) generated from PL/SQL stored procedures, functions, triggers, packaged procedures, and functions.	
Syntax	
Parameters	
Table 11-2 describes the parameters available in the APEX_LANG.MESSAGE	
function.	
Table 11-2 MESSAGE Parameters	
Parameter	Description
---	---
Name of the message as defined in Shared Components > Text Messages of your application in Oracle Application Express.	
Dynamic substitution value: p0 corresponds to 0% in the translation string; p1 corresponds to 1% in the translation string; p2 corresponds to 2% in the translation string, and so on.	
Language code for the message to be retrieved. If not specified, Oracle Application Express uses the current language for the user as defined in the Application Language Derived From attribute. See also: Specifying the Primary Language for an Application in the Oracle Application Express Application Builder User's Guide.	
Example
The following example assumes you have defined a message called GREETING_MSG in your application in English as Good morning%0 and in German as Guten Tag%1. The following example demonstrates how you could invoke this message from PL/SQL:
How the p_lang
attribute is defined depends on how the Application Express engine derives the Application Primary Language. For example, if you are running the application in German and the previous call is made to the APEX_LANG.MESSAGE
API, the Application Express engine first looks for a message called GREETING_MSG
with a LANG_CODE
of de
. If it does not find anything, then it will revert to the Application Primary Language attribute. If it still does not find anything, the Application Express engine looks for a message by this name with a language code of en-us.
 Copyright © 2003, 2009, Oracle and/or its affiliates. All rights reserved. |