Skip Headers
Oracle® Data Mining Application Developer's Guide
11
g
Release 2 (11.2)
Part Number E12218-06
Home
Book List
Contents
Master Index
Contact Us
Previous
PDF
·
Mobi
·
ePub
Index
A
B
C
D
E
F
G
I
J
K
L
M
N
O
P
R
S
T
U
A
ADD_COST_MATRIX,
6.4
ADP,
2.1.2
,
3.1.2
,
5.3.2
,
7.3.3
ALGO_NAME,
5.2.1
algorithms,
5.2.2
ALL_MINING_MODEL_ATTRIBUTES,
2.2
,
3.2.4.1
ALL_MINING_MODEL_SETTINGS,
2.2
,
5.2.6
ALL_MINING_MODELS,
2.2
anomaly detection,
1.1.3
,
5.2.2
,
5.3.1
,
5.3.1
,
6.5
apply,
2.1.1.2
,
7.3.9
batch,
6.5
real time,
6.2
See also
scoring
ApplySettings,
2.4.3.6
,
7.3.9
ApplySettings object,
2.4.3.6
,
2.4.3.6
Apriori,
5.2.2
,
5.2.2
association rules,
5.2.2
,
5.3.1
,
5.4
asynchronous execution of mining tasks,
7.2.4.4
,
7.3.4
attribute importance,
3.2.6
,
5.2.2
,
5.3.1
,
5.4
attribute name,
3.2.5
attribute subname,
3.2.5
attributes,
3
,
3.2
,
7.3.1
Automatic Data Preparation
See
ADP
B
binning,
Preface
,
7.3.12.1
,
7.3.14.1
,
7.3.14.1
build data,
3.1.2
BuildSettings,
2.4.3.2
,
7.3.2
,
7.3.6
BuildSettings object,
2.4.3.2
,
2.4.3.4
BuildTask object,
7.3.6
,
7.3.7
C
case ID,
2.4.3.1
,
3.1
,
3.1
,
3.1.1
,
3.2.4
,
6.5.1
case table,
3
catalog views,
2.2
categorical,
3.2.3
centroid,
5.4
classes,
3.2.3
classification,
5.2.2
,
5.2.2
,
5.3.1
CLASSPATH,
7.1
clipping,
7.3.12.1
,
7.3.14.3
,
7.3.14.3
CLUSTER_ID,
1.1.1
,
2.3
,
6.3.2.1
CLUSTER_PROBABILITY,
2.3
,
6.3.2.2
CLUSTER_SET,
2.3
,
6.3.2.3
clustering,
2.3
,
5.2.2
,
6.3.2
collection types,
3.3.1
,
4.3
Connection,
7.2.4.2
Connection object,
2.4.3
,
2.4.3.3
ConnectionSpec,
7.2.3
constants,
5.3.1
cost matrix,
6.4
,
7.3.10
costs,
6.3.1.3
,
6.4
CREATE_MODEL,
2.1.1.1
,
5.3
CTXSYS.DRVODM,
4.1
D
data
dimensioned,
3.3.2
market basket,
Preface
missing values,
3.4
multi-record case,
3.3.2
nested,
3.3
preparing,
2.1.2
sparse,
3.4
transactional,
3.3.2
,
3.3.4
transformations,
5.3.2
,
7.3.12
,
7.3.14
data dictionary views,
2.2
Data Mining Engine,
2.4.1
,
2.4.3.4
,
2.4.3.4
,
7.2
data preparation,
2.1.2
,
7.3.14
data types,
3.1.1
DBMS_DATA_MINING,
2.1
,
5.3
DBMS_DATA_MINING_TRANSFORM,
2.1
,
2.1.2
,
5.3.2
DBMS_PREDICTIVE_ANALYTICS,
1.3
,
2.1
,
2.1.3
DBMS_SCHEDULER,
2.4.3.3
,
7.2.4.4
,
7.3.4
Decision Tree,
2.3
,
5.2.2
,
5.3.1
,
5.4
,
6.3
,
6.3.1.4
demo programs,
5.5.3
dimensioned data,
3.3.2
discretization,
7.3.14.1
DM_NESTED_CATEGORICALS,
3.2.3
,
3.3.1.2
DM_NESTED_NUMERICALS,
3.2.3
,
3.3.1.1
,
3.3.3
,
4.3
,
4.3
,
4.4.6
DME
See
Data Mining Engine
dmsh.sql,
4.2
DMSYS schema
See
desupported features
dmtxtfe.sql,
4.2
E
embedded transformations,
2.1.2
,
3.1.2
,
5.3.2
,
7.3.12
Execute method,
2.4.3.3
EXPLAIN,
2.1.3
F
feature extraction,
2.3
,
5.2.2
,
5.3.1
,
6.3.3
,
6.3.3
FEATURE_EXPLAIN table function,
4.1
,
4.4.1
,
4.4.5.1
FEATURE_ID,
2.3
,
6.3.3.1
FEATURE_PREP table function,
4.1
,
4.4.1
,
4.4.4.1
FEATURE_SET,
2.3
,
6.3.3.3
FEATURE_VALUE,
2.3
,
6.3.3.2
G
Generalized Linear Models
See
GLM
GET_MODEL_DETAILS,
2.1.1.1
,
5.4
GET_MODEL_DETAILS_XML,
6.3.1.4
GLM,
5.2.2
,
5.4
I
index preference,
4.1
J
Java API,
1
,
1
,
2.4
,
7
connecting to the Data Mining Engine,
7.2
connecting using JDBC,
7.2.2
data,
2.4.3.1
,
7.3.1
data transformations,
7.3.12
,
7.3.14
Database Scheduler,
7.2.4.4
design overview,
7.3
setting up the development environment,
7.1
text transformation,
7.3.14.4
JDBC,
7.2.2
JDM,
2.4
,
7
named objects,
2.4.3
,
7.3
Oracle extensions to,
2.4.2
K
k
-Means,
5.2.2
,
5.3.1
,
5.4
,
7.3.14.2
L
linear regression,
2.3
,
5.3.1
logistic regression,
2.3
,
5.3.1
M
market basket data,
3.3.4
,
3.3.4
MDL,
5.2.2
Minimum Description Length
See
MDL
mining model schema objects,
2.2
,
5.5
missing value treatment,
Preface
,
3.4.3
missing values,
3.4
Model,
2.4.3.4
model details,
3.2.6
,
5.1
,
5.4
,
7.3.7
,
7.3.7
model signature,
3.2.4
models
algorithms,
5.2.2
building,
7.3.6
,
7.3.6
deploying,
6.2
privileges for,
5.5.2
scoring,
6
,
7.3.9
,
7.3.9
settings,
5.2.6
,
7.3.2
steps in creating,
5.1
testing,
7.3.8
,
7.3.8
N
Naive Bayes,
5.2.2
,
5.3.1
,
5.4
nested data,
3.3
,
4.3
,
4.4.6
,
7.3.14.4
NMF,
5.3.1
,
5.4
,
7.3.14.2
Non-Negative Matrix Factorization
See
NMF
normalization,
Preface
,
7.3.12.1
,
7.3.14.2
,
7.3.14.2
numerical,
3.2.3
O
O-Cluster,
5.2.2
,
5.3.1
ODMS_ITEM_ID_COLUMN_NAME,
3.3.4
ODMS_ITEM_VALUE_COLUMN_NAME,
3.3.4
One-Class SVM,
1.1.3
,
5.3.1
,
5.3.1
OraBinningTransformation,
7.3.14.1
Oracle Text,
4.1
OraClippingTransformation,
7.3.14.3
OraConnectionFactory,
7.2.1.1
OraExplainTask,
7.3.13
OraNormalizeTransformation,
7.3.14.2
OraPredictTask,
7.3.13
OraProfileTask,
7.3.13
OraTextTransformation,
7.3.14.4
OraTransformationFactory,
7.3.12.1
OraTransformationSequence,
7.3
,
7.3.12.2
outliers,
1.1.3.1
P
PhysicalDataSet,
2.4.3.1
,
7.3.1
,
7.3.6
PhysicalDataSet object,
2.4.3.1
PIPELINED,
3.2.6
PL/SQL API,
1
,
1
,
2.1
PREDICT,
2.1.3
PREDICTION,
1.1.2
,
1.1.3.3
,
2.3
,
6.3.1.1
,
6.4
PREDICTION_BOUNDS,
2.3
,
6.3.1.2
PREDICTION_COST,
2.3
,
6.3.1.3
PREDICTION_DETAILS,
1.2
,
2.3
PREDICTION_PROBABILITY,
1.1.1
,
1.1.2
,
1.1.3.1
,
2.3
,
6.3
,
6.3.1.5
PREDICTION_SET,
2.3
,
6.3.1.6
predictive analytics,
1.3
,
2.1.3
,
7.3.13
PREP_AUTO,
5.3.2
prior probabilities,
7.3.11
privileges,
5.5.2
PROFILE,
1.3
,
2.1.3
R
regression,
5.2.2
,
5.2.2
,
5.3.1
RegressionTestMetrics,
7.3.8
REMOVE_COST_MATRIX,
6.4
reverse transformations,
3.2.4.1
,
3.2.6
,
3.2.6
,
5.4
rules,
6.3.1.4
S
sample programs,
5.5.3
Scheduler,
7.2.4.4
,
7.3.4
scoping of attribute name,
3.2.5
scoring,
1.1.1
,
2.1.1.2
,
2.3
,
6
,
7.3.9
batch,
6.5
data,
3.1.2
Java API,
7.3.9
saving results,
6.3.4
See also
apply
settings table,
2.4.3.2
,
7.3.2
sparse data,
3.4
,
3.4
SQL AUDIT,
5.5
SQL COMMENT,
5.5
SQL data mining functions,
1
,
2.3
STACK,
2.1.2
,
5.3.2
supermodels,
3.1.2
supervised mining functions,
5.3.1
Support Vector Machines
See
SVM
SVM,
5.2.2
,
5.3.1
,
5.3.1
,
5.4
,
7.3.14.2
SVM_CLASSIFIER index preference,
4.1
,
4.4.1
,
4.4.3
synchronous execution of mining tasks,
7.2.4.4
,
7.3.4
T
target,
3.2.2
,
3.2.4
,
3.2.4.1
Task,
2.4.3.3
,
7.3.4
test data,
3.1.2
TestMetrics,
2.4.3.5
TestMetrics object,
2.4.3.5
TestTask,
7.3.8
text mining,
4
,
4
text transformation,
4
Java,
4.1
,
7.3.14.4
PL/SQL,
4.1
transactional data,
Preface
,
3.1
,
3.3.2
,
3.3.2
,
3.3.4
,
3.3.4
transformation list,
5.3.2
transformations,
2.1.2
,
3
,
3.2.4.1
,
3.2.6
,
3.2.6
,
5.3.2
,
7.3.12
TransformationSequence,
2.4.3.7
TransformationSequence object,
2.4.3.7
transparency,
3.2.6
,
5.4
U
unsupervised mining functions,
5.3.1
Scripting on this page enhances content navigation, but does not change the content in any way.