2 Day + Security Guide
11g Release 2 (11.2)
E10575-07
June 2011
Oracle Database 2 Day + Security Guide, 11g Release 2 (11.2)
E10575-07
Copyright © 2006, 2011, Oracle and/or its affiliates. All rights reserved.
Primary Author: Patricia Huey
Contributors: Naveen Gopal, Rahil Mir, Gopal Mulagund, Nina Lewis, Paul Needham, Deborah Owens, Sachin Sonawane, Ashwini Surpur, Kamal Tbeileh, Mark Townsend, Peter Wahl, Xiaofang Wang, Peter M. Wong
This software and related documentation are provided under a license agreement containing restrictions on use and disclosure and are protected by intellectual property laws. Except as expressly permitted in your license agreement or allowed by law, you may not use, copy, reproduce, translate, broadcast, modify, license, transmit, distribute, exhibit, perform, publish, or display any part, in any form, or by any means. Reverse engineering, disassembly, or decompilation of this software, unless required by law for interoperability, is prohibited.
The information contained herein is subject to change without notice and is not warranted to be error-free. If you find any errors, please report them to us in writing.
If this is software or related documentation that is delivered to the U.S. Government or anyone licensing it on behalf of the U.S. Government, the following notice is applicable:
U.S. GOVERNMENT RIGHTS Programs, software, databases, and related documentation and technical data delivered to U.S. Government customers are "commercial computer software" or "commercial technical data" pursuant to the applicable Federal Acquisition Regulation and agency-specific supplemental regulations. As such, the use, duplication, disclosure, modification, and adaptation shall be subject to the restrictions and license terms set forth in the applicable Government contract, and, to the extent applicable by the terms of the Government contract, the additional rights set forth in FAR 52.227-19, Commercial Computer Software License (December 2007). Oracle America, Inc., 500 Oracle Parkway, Redwood City, CA 94065.
This software or hardware is developed for general use in a variety of information management applications. It is not developed or intended for use in any inherently dangerous applications, including applications that may create a risk of personal injury. If you use this software or hardware in dangerous applications, then you shall be responsible to take all appropriate fail-safe, backup, redundancy, and other measures to ensure its safe use. Oracle Corporation and its affiliates disclaim any liability for any damages caused by use of this software or hardware in dangerous applications.
Oracle and Java are registered trademarks of Oracle and/or its affiliates. Other names may be trademarks of their respective owners.
Intel and Intel Xeon are trademarks or registered trademarks of Intel Corporation. All SPARC trademarks are used under license and are trademarks or registered trademarks of SPARC International, Inc. AMD, Opteron, the AMD logo, and the AMD Opteron logo are trademarks or registered trademarks of Advanced Micro Devices. UNIX is a registered trademark of The Open Group.
This software or hardware and documentation may provide access to or information on content, products, and services from third parties. Oracle Corporation and its affiliates are not responsible for and expressly disclaim all warranties of any kind with respect to third-party content, products, and services. Oracle Corporation and its affiliates will not be responsible for any loss, costs, or damages incurred due to your access to or use of third-party content, products, or services.
Welcome to Oracle Database 2 Day + Security Guide. This guide is for anyone who wants to perform common day-to-day security tasks with Oracle Database.
This preface contains:
Oracle Database 2 Day + Security Guide expands on the security knowledge that you learned in Oracle Database 2 Day DBA to manage security in Oracle Database. The information in this guide applies to all platforms. For platform-specific information, see the installation guide, configuration guide, and platform guide for your platform.
This guide is intended for the following users:
This guide is not an exhaustive discussion about security. For detailed information about security, see the Oracle Database Security documentation set. This guide does not provide information about security for Oracle E-Business Suite applications. For information about security in the Oracle E-Business Suite applications, see the documentation for those products.
For information about Oracle's commitment to accessibility, visit the Oracle Accessibility Program website at http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc
.
Access to Oracle Support
Oracle customers have access to electronic support through My Oracle Support. For information, visit http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info
or visit http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs
if you are hearing impaired.
For more information, use the following resources:
Oracle Database Documentation
For more security-related information, see the following documents in the Oracle Database documentation set:
Many of the examples in this guide use the sample schemas of the seed database, which is installed by default when you install Oracle. See Oracle Database Sample Schemas for information about how these schemas were created and how you can use them.
Oracle Technology Network (OTN)
You can download free release notes, installation documentation, updated versions of this guide, white papers, or other collateral from the Oracle Technology Network (OTN). Visit
http://www.oracle.com/technetwork/index.html
For security-specific information on OTN, visit
http://www.oracle.com/technetwork/topics/security/whatsnew/index.html
For the latest version of the Oracle documentation, including this guide, visit
http://www.oracle.com/technetwork/documentation/index.html
Oracle Documentation Search Engine
To access the database documentation search engine directly, visit:
My Oracle Support (formerly OracleMetaLink)
You can find information about security patches, certifications, and the support knowledge base by visiting My Oracle Support at:
The following text conventions are used in this document:
Convention	Meaning
boldface	Boldface type indicates graphical user interface elements associated with an action, or terms defined in text or the glossary.
italic	Italic type indicates book titles, emphasis, or placeholder variables for which you supply particular values.
monospace	Monospace type indicates commands within a paragraph, URLs, code in examples, text that appears on the screen, or text that you enter.
This chapter contains:	
Oracle Database 2 Day + Security Guide teaches you how to perform day-to-day database security tasks. Its goal is to help you understand the concepts behind Oracle Database security. You will learn how to perform common security tasks needed to secure your database. The knowledge you gain from completing the tasks in Oracle Database 2 Day + Security Guide helps you to better secure your data and to meet common regulatory compliance requirements, such as the Sarbanes-Oxley Act.	
The primary administrative interface used in this guide is Oracle Enterprise Manager in Database Console mode, featuring all the self-management capabilities introduced in Oracle Database.	
This section contains the following topics:	
Before using this guide:	
Oracle Database 2 Day + Security Guide is task oriented. The objective of this guide is to describe why and when you must perform security tasks.	
Where appropriate, this guide describes the concepts and steps necessary to understand and complete a task. This guide is not an exhaustive discussion of all Oracle Database concepts. For this type of information, see Oracle Database Concepts.	
Where appropriate, this guide describes the necessary Oracle Database administrative steps to complete security tasks. This guide does not describe basic Oracle Database administrative tasks. For this type of information, see Oracle Database 2 Day DBA. Additionally, for a complete discussion of administrative tasks, see Oracle Database Administrator's Guide.	
In addition, this guide is not an exhaustive discussion of all Oracle Database security features and does not describe available APIs that provide equivalent command line functionality to the tools used in this guide. For this type of information, see Oracle Database Security Guide.	
As a database administrator for Oracle Database, you should be involved in the following security-related tasks:	
In a small to midsize database environment, you might perform these tasks as well and all database administrator-related tasks, such as installing Oracle software, creating databases, monitoring performance, and so on. In large, enterprise environments, the job is often divided among several database administrators—each with their own specialty—such as database security or database tuning.	
To achieve the goals of securing your database, you need the following products, tools, and utilities:	
Oracle Database 11g Release 2 (11.2) Enterprise Edition provides enterprise-class performance, scalability, and reliability on clustered and single-server configurations. It includes many security features that are used in this guide.	
Oracle Enterprise Manager is a Web application that you can use to perform database administrative tasks for a single database instance or a clustered database.	
SQL*Plus is a development environment that you can use to create and run SQL and PL/SQL code. It is part of the Oracle Database 11g Release 2 (11.2) installation.	
Database Configuration Assistant enables you to perform general database tasks, such as creating, configuring, or deleting databases. In this guide, you use DBCA to enable default auditing.	
Oracle Net Manager enables you to perform network-related tasks for Oracle Database. In this guide, you use Oracle Net Manager to configure network encryption.	
To learn the fundamentals of securing an Oracle database, follow these steps:	
Complete the tasks in Chapter 2, "Securing the Database Installation and Configuration" to secure access to an Oracle Database installation.	
Complete the tasks in Chapter 3, "Securing Oracle Database User Accounts", which builds on Oracle Database 2 Day DBA, where you learned how to create user accounts. You learn the following:	
Complete the tasks in Chapter 4, "Managing User Privileges". You learn about the following:	
Complete the tasks in Chapter 5, "Securing the Network" to learn how to secure client connections and to configure network encryption.	
Complete the tasks in Chapter 6, "Securing Data", in which you learn about the following:	
Complete the tasks in Chapter 7, "Auditing Database Activity" to learn about standard auditing.	
This chapter contains:	
After you install Oracle Database, you should secure the database installation and configuration. The methods in this chapter describe commonly used ways to do this, all of which involve restricting permissions to specific areas of the database files.	
Oracle Database is available on several operating systems. Consult the following guides for detailed platform-specific information about Oracle Database:	
When you create a new database, Oracle Database provides the following default security settings:	
CREATE EXTERNAL JOB	
privilege only to SYS	
, database administrators, and those trusted users who need it. Table 2-1 Default Security Settings for Initialization and Profile Parameters	
Setting	10g Default
---	---
Note: If your applications use the default password security settings from Oracle Database 10g Release 2 (10.2), then you can revert to these settings until you modify them to use the Release 11g password security settings. To do so, run theundopwd.sql script. After you have modified your applications to conform to the Release 11g password security settings, you can manually update your database to use the password security configuration that suits your business needs, or you can run the The	
This section describes how you can secure the data dictionary. The data dictionary is a set of database tables that provide information about the database, such as schema definitions or default values.	
This section contains:	
The Oracle data dictionary is a set of database tables that provides information about the database. A data dictionary has the following contents:	
The data dictionary tables and views for a given database are stored in the SYSTEM	
tablespace for that database. All the data dictionary tables and views for a given database are owned by the user SYS	
. Connecting to the database with the SYSDBA	
privilege gives full access to the data dictionary. Oracle strongly recommends limiting access to the SYSDBA	
privilege to only those operations necessary such as patching and other administrative operations. The data dictionary is central to every Oracle database.	
You can view the contents of the data dictionary by querying data dictionary views, which are described in Oracle Database Reference. Be aware that not all objects in the data dictionary are exposed to users. A subset of data dictionary objects, such as those beginning with USER_%	
are exposed as read only to all database users.	
Example 2-1 shows how you can find a list of database views specific to the data dictionary by querying the DICTIONARY	
view.	
You can protect the data dictionary by setting the O7_DICTIONARY_ACCESSIBILITY	
initialization parameter to FALSE	
. This parameter prevents users who have the ANY	
system privilege from using those privileges on the data dictionary, that is, on objects in the SYS	
schema.	
Oracle Database provides highly granular privileges. One such privilege, commonly referred to as the ANY	
privilege, is typically granted to only application owners and individual database administrators. For example, you could grant the DROP ANY TABLE	
privilege to an application owner. You can protect the Oracle data dictionary from accidental or malicious use of the ANY	
privilege by turning on or off the 07_DICTIONARY_ACCESSIBILITY	
initialization parameter.	
To enable data dictionary protection:	
See Oracle Database 2 Day DBA for instructions about how to start Database Control.	
SYS	
and connect with the SYSDBA	
privilege. SYS	
. SYS	
user's password. The Oracle Enterprise Manager Database Home page (Database Home page) appears.	
The Initialization Parameters page appears.	
O7_DICTIONARY_ACCESSIBILITY	
. In the Name field, enter O7_	
(the letter O	
), and then click Go. You can enter the first few characters of a parameter name. In this case, O7_	
displays the O7_DICTIONARY_ACCESSIBILTY	
parameter.	
Depending on the parameter, you may have to modify the value from the SPFile subpage. Click the SPFile tab to display the SPFile subpage.	
O7_DICTIONARY_ACCESSIBILTY	
to FALSE	
. See Oracle Database 2 Day DBA for more information.	
Note:	
You can secure access to Oracle Database on the operating system level by following these guidelines:	
This recommendation applies to all types of files: data files, log files, trace files, external tables, BFILEs, and so on.	
Many Oracle Database products use run-time facilities such as Oracle Java Virtual Machine (OJVM). Do not assign all permissions to a database run-time facility. Instead, grant specific permissions to the explicit document root file paths for facilities that might run files and packages outside the database.	
Here is an example of a vulnerable run-time call, in which an individual file (in bold typeface) is specified:	
The following example is a better (more secure) run-time call, because by specifying a directory path (in bold typeface), it protects all files within the directory.	
Table 2-2 lists initialization parameters that you can set to better secure your Oracle Database installation and configuration.	
Table 2-2 Initialization Parameters Used for Installation and Configuration Security	
Initialization Parameter	Default Setting
---	---
Controls the display of the product version information, such as the release number, in a client connection. An intruder could use the database release number to find information about security vulnerabilities that may be present in the database software. You can enable or disable the detailed product version display by setting this parameter. See Oracle Database Security Guide for more information about this and similar parameters. Oracle Database Reference describes this parameter in detail.	
Controls restrictions on	
This section explains how to use Database Control to modify the value of an initialization parameter. To find detailed information about the initialization parameters available, see Oracle Database Reference.	
To modify the value of an initialization parameter:	
SYS	
with the SYSDBA	
privilege. SYS	
SYSDBA	
The Initialization Parameters page appears.	
You can enter the first few letters of the parameter, for example, SEC_RETURN	
if you are searching for the SEC_RETURN_SERVER_RELEASE_NUMBER	
parameter. Alternatively, you can scroll down the list of parameters to find the parameter you want to change.	
Depending on the parameter, you might have to modify the value from the SPFile subpage. Click the SPFile tab to display the SPFile subpage.	
To find out if an initialization parameter is static, check its description in Oracle Database Reference. If the Modifiable setting in its summary table shows No, then you must restart the database instance.	
See Oracle Database 2 Day DBA for more information.	
You can use many methods to secure database user accounts. For example, Oracle Database has a set of built-in protections for passwords. This chapter explains how you can safeguard default database accounts and passwords, and describes ways to manage database accounts.	
Oracle Database 2 Day DBA describes the fundamentals of creating and administering user accounts, including how to manage user roles, what the administrative accounts are, and how to use profiles to establish a password policy.	
After you create user accounts, you can use the procedures in this section to further secure these accounts by following these methods:	
See Also:	
When you install Oracle Database, the installation process creates a set of predefined accounts. These accounts are in the following categories:	
A default Oracle Database installation provides a set of predefined administrative accounts. These are accounts that have special privileges required to administer areas of the database, such as the CREATE ANY TABLE	
or ALTER SESSION	
privilege, or EXECUTE	
privileges on packages owned by the SYS	
schema. The default tablespace for administrative accounts is either SYSTEM	
or SYSAUX	
.	
To protect these accounts from unauthorized access, the installation process expires and locks most of these accounts, except where noted in Table 3-1. As the database administrator, you are responsible for unlocking and resetting these accounts, as described in "Expiring and Locking Database Accounts".	
Table 3-1 lists the administrative user accounts provided by Oracle Database.	
Table 3-1 Predefined Oracle Database Administrative User Accounts	
User Account	Description
---	---
Account that allows HTTP access to Oracle XML DB. It is used in place of the EPG is a Web server that can be used with Oracle Database. It provides the necessary infrastructure to create dynamic applications.	Expired and locked
The account used to administer Oracle Text. Oracle Text enables you to build text query applications and document classification applications. It provides indexing, word and theme searching, and viewing capabilities for text.	Expired and locked
The account used by the Management Agent component of Oracle Enterprise Manager to monitor and manage the database. See Oracle Enterprise Manager Grid Control Installation and Basic Configuration.	Open Password is created at installation or database creation time.
The account used internally to access the See Oracle Database Rules Manager and Expression Filter Developer's Guide.	Expired and locked
The account used to administer Oracle Label Security (OLS). It is created only when you install the Label Security custom option. See "Enforcing Row-Level Security with Oracle Label Security" and Oracle Label Security Administrator's Guide.	Expired and locked
The Oracle Spatial and Oracle Multimedia Locator administrator account.	Expired and locked
An account used by Oracle Enterprise Manager Database Control.	Open Password is randomly generated at installation or database creation time. Users do not need to know this password.
The account that owns the OLAP Catalog (CWMLite). This account has been deprecated, but is retained for backward compatibility.	Expired and locked
This account contains the Oracle Multimedia DICOM data model. See Oracle Multimedia DICOM Developer's Guide for more information.	Expired and locked
The account for administrating the Oracle Warehouse Builder repository. Access this account during the installation process to define the base language of the repository and to define Warehouse Builder workspaces and users. A data warehouse is a relational or multidimensional database that is designed for query and analysis. See Oracle Warehouse Builder Installation and Administration Guide.	Expired and locked
The Oracle Multimedia user. Plug-ins supplied by Oracle and third-party, format plug-ins are installed in this schema. Oracle Multimedia enables Oracle Database to store, manage, and retrieve images, audio, video, DICOM format medical images and other objects, or other heterogeneous media data integrated with other enterprise information. See Oracle Multimedia User's Guide and Oracle Multimedia Reference.	Expired and locked
The Oracle Multimedia administrator account. See Oracle Multimedia User's Guide, Oracle Multimedia Reference, and Oracle Multimedia DICOM Developer's Guide.	Expired and locked
The account that supports plan stability. Plan stability prevents certain database environment changes from affecting the performance characteristics of applications by preserving execution plans in stored outlines.	Expired and locked
The account that stores the information views for the SQL/MM Still Image Standard. See Oracle Multimedia User's Guide and Oracle Multimedia Reference.	Expired and locked
An account used to perform database administration tasks.	Open Password is created at installation or database creation time.
The account used to perform Oracle Enterprise Manager database administration tasks. The See Oracle Enterprise Manager Grid Control Installation and Basic Configuration.	Open Password is created at installation or database creation time.
A default generic database administrator account for Oracle databases. For production systems, Oracle recommends creating individual database administrator accounts and not using the generic	Open Password is created at installation or database creation time.
The instance administrator for the default instance, Ultra Search provides uniform search-and-location capabilities over multiple repositories, such as Oracle databases, other ODBC compliant databases, IMAP mail servers, HTML documents managed by a Web server, files on disk, and more.	Expired and locked
An Ultra Search database super-user.	Expired and locked
An administrative account of Oracle9i Application Server Ultra Search.	Expired and locked
The account used to store the metadata information for Oracle Workspace Manager.	Expired and locked
The account used for storing Oracle XML DB data and metadata. Oracle XML DB provides high-performance XML storage and retrieval for Oracle Database data.	Expired and locked
Note: If you create an Oracle Automatic Storage Management (Oracle ASM) instance, then theASMSNMP account is created. Oracle Enterprise Manager uses this account to monitor ASM instances to retrieve data from ASM-related data dictionary views. The ASMSNMP account status is set to OPEN upon creation, and it is granted the SYSDBA privilege. For more information, see Oracle Automatic Storage Management Administrator's Guide.	
Table 3-2 lists default non-administrative user accounts that are created when you install Oracle Database. Non-administrative user accounts only have the minimum privileges needed to perform their jobs. Their default tablespace is USERS	
.	
To protect these accounts from unauthorized access, the installation process locks and expires these accounts immediately after installation, except where noted in Table 3-2. As the database administrator, you are responsible for unlocking and resetting these accounts, as described in "Expiring and Locking Database Accounts".	
Table 3-2 Predefined Oracle Database Non-Administrative User Accounts	
User Account	Description
---	---
The Oracle Database Application Express account. Use this account to specify the Oracle schema used to connect to the database through the database access descriptor (DAD). Oracle Application Express is a rapid, Web application development tool for Oracle Database. See Oracle Application Express Application Builder User's Guide.	Expired and locked
The Oracle Directory Integration and Provisioning (DIP) account that is installed with Oracle Label Security. This profile is created automatically as part of the installation process for Oracle Internet Directory-enabled Oracle Label Security.	Expired and locked
The account that owns most of the database objects created during the installation of Oracle Database Application Express. These objects include tables, views, triggers, indexes, packages, and so on. See Oracle Application Express Application Builder User's Guide.	Expired and locked
The account that owns the database objects created during the installation of Oracle Database Application Express related to modplsql document conveyance, for example, file uploads and downloads. These objects include tables, views, triggers, indexes, packages, and so on. See Oracle Application Express Application Builder User's Guide.	Expired and locked
The schema used by Oracle Spatial for storing Geocoder and router data. Oracle Spatial provides a SQL schema and functions that enable you to store, retrieve, update, and query collections of spatial features in an Oracle database.	Expired and locked
The account used with Oracle Configuration Manager. This feature enables you to associate the configuration information for the current Oracle Database instance with My Oracle Support. Then when you log a service request, it is associated with the database instance configuration information. See Oracle Database Installation Guide for your platform.	Expired and locked
The Catalog Services for the Web (CSW) account. It is used by Oracle Spatial CSW Cache Manager to load all record-type metadata and record instances from the database into the main memory for the record types that are cached.	Expired and locked
The Web Feature Service (WFS) account. It is used by Oracle Spatial WFS Cache Manager to load all feature type metadata and feature instances from the database into main memory for the feature types that are cached.	Expired and locked
An internal account that represents the absence of a user in a session. Because	Expired and locked
If you install the sample schemas, which you must do to complete the examples in this guide, Oracle Database creates a set of sample user accounts. The sample schema user accounts are all non-administrative accounts, and their tablespace is USERS	
.	
To protect these accounts from unauthorized access, the installation process locks and expires these accounts immediately after installation. As the database administrator, you are responsible for unlocking and resetting these accounts, as described in "Expiring and Locking Database Accounts". For more information about the sample schema accounts, see Oracle Database Sample Schemas.	
Table 3-3 lists the sample schema user accounts, which represent different divisions of a fictional company that manufactures various products.	
Table 3-3 Default Sample Schema User Accounts	
User Account	Description
---	---
The account that owns the See also Oracle Warehouse Builder Sources and Targets Guide.	Expired and locked
The account used to manage the	Expired and locked
The account used to manage the	Expired and locked
The account used to manage the	Expired and locked
The account used to manage the	Expired and locked
The account used to manage the	Expired and locked
In addition to the sample schema accounts, Oracle Database provides another sample schema account, SCOTT	
. The SCOTT	
schema contains the tables EMP	
, DEPT	
, SALGRADE	
, and BONUS	
. The SCOTT	
account is used in examples throughout the Oracle Database documentation set. When you install Oracle Database, the SCOTT	
account is locked and expired.	
When you expire the password of a user, that password no longer exists. If you want to unexpire the password, you change the password of that account. Locking an account preserves the user password and other account information, but makes the account unavailable to anyone who tries to log in to the database using that account. Unlocking it makes the account available again.	
Oracle Database 2 Day DBA explains how you can use Database Control to unlock database accounts. You also can use Database Control to expire or lock database accounts.	
To expire and lock a database account:	
See Oracle Database 2 Day DBA for instructions about how to start Database Control.	
For example:	
The Database Home page appears.	
The Users page lists the user accounts created for the current database instance. The Account Status column indicates whether an account is expired, locked, or open.	
The Edit User page appears.	
To unexpire the password, enter a new password in the Enter Password and Confirm Password fields. See "Requirements for Creating Passwords" for password requirements.	
When you create a user account, Oracle Database assigns a default password policy for that user. The password policy defines rules for how the password should be created, such as a minimum number of characters, when it expires, and so on. You can strengthen passwords by using password policies.	
For greater security, follow these guidelines when you create passwords:	
Oracle Database Security Guide describes more ways that you can further secure passwords.	
See Also:	
When you install Oracle Database, the default database user accounts, including administrative accounts, are created without default passwords. Except for the administrative accounts whose passwords you create during installation (such as user SYS	
), the default user accounts arrive locked with their passwords expired. If you have upgraded from a previous release of Oracle Database, you may have database accounts that still have default passwords. These are default accounts that are created when you create a database, such as the HR	
, OE	
, and SCOTT	
accounts.	
Security is most easily compromised when a default database user account still has a default password after installation. This is particularly true for the user account SCOTT	
, which is a well known account that may be vulnerable to intruders. Find accounts that use default passwords and then change their passwords.	
To find and change default passwords:	
DBA_USERS_WITH_DEFPWD	
data dictionary view. The DBA_USERS_WITH_DEFPWD	
lists the accounts that still have user default passwords. For example:	
DBA_USERS_WITH_DEFPWD	
data dictionary view lists. For example, to change the password for user SCOTT	
, enter the following:	
Replace password	
with a password that is secure, according to the guidelines listed in "Requirements for Creating Passwords". For greater security, do not reuse the same password that was used in previous releases of Oracle Database.	
Alternatively, you can use the ALTER USER	
SQL statement to change the password:	
You can use Database Control to change a user account passwords (not just the default user account passwords) if you have administrative privileges. Individual users can also use Database Control to change their own passwords.	
To use Database Control to change the password of a database account:	
See Oracle Database 2 Day DBA for instructions about how to start Database Control.	
SYSTEM	
), and then click Login. The Users page lists the user accounts created for the current database instance. The Account Status column indicates whether an account is expired, locked, or open.	
The Edit User page appears.	
See Also:	
You can use the same or different passwords for the SYS	
, SYSTEM	
, SYSMAN	
, and DBSNMP	
administrative accounts. Oracle recommends that you use different passwords for each. In any Oracle Database environment (production or test), assign strong, secure, and distinct passwords to these administrative accounts. If you use Database Configuration Assistant to create a new database, then it requires you to create passwords for the SYS	
and SYSTEM	
accounts.	
Do not use default passwords for any administrative accounts, including SYSMAN	
and DBSNMP	
. Oracle Database 11g Release 2 (11.2) and later does not install these accounts with default passwords, but if you have upgraded from an earlier release of Oracle Database, you may still have accounts that use default passwords. You should find and change these accounts by using the procedures in "Finding and Changing Default Passwords".	
At the end of database creation, Database Configuration Assistant displays a page that requires you to enter and confirm new passwords for the SYS	
and SYSTEM	
user accounts.	
After installation, you can use Database Control to change the administrative user passwords. See "Finding and Changing Default Passwords" for more information on changing a password.	
Apply basic password management rules (such as password length, history, complexity, and so forth) to all user passwords. Oracle Database has password policies enabled for the default profile. "Requirements for Creating Passwords" provides guidelines for creating password policies. Table 3-4 lists initialization parameters that you can set to enforce password management.	
You can find information about user accounts by querying the DBA_USERS	
view. The DBA_USERS	
view provides useful information such as the user account status, whether the account is locked, and password versions. You can query DBA_USERS	
as follows:	
Oracle also recommends, if possible, using Oracle Advanced Security (an option to Oracle Database Enterprise Edition) with network authentication services (such as Kerberos), token cards, smart cards, or X.509 certificates. These services provide strong authentication of users, and provide better protection against unauthorized access to Oracle Database.	
See Also:	
Table 3-4 lists initialization and profile parameters that you can set to better secure user accounts.	
Table 3-4 Initialization and Profile Parameters Used for User Account Security	
Note: You can use most of these parameters to create a user profile. See Oracle Database Security Guide for more information about user profile settings.	
To modify an initialization parameter, see "Modifying the Value of an Initialization Parameter". For detailed information about initialization parameters, see Oracle Database Reference andOracle Database Administrator's Guide.	
This chapter contains:	
You can control user privileges in the following ways:	
UPDATE	
SQL statement, to individual users or to groups of users. Because privileges are the rights to perform a specific action, such as updating or deleting a table, do not provide database users more privileges than are necessary. For an introduction to managing privileges, see "About User Privileges and Roles" in Oracle Database 2 Day DBA. Oracle Database 2 Day DBA also provides an example of how to grant a privilege.	
In other words, the principle of least privilege is that users be given only those privileges that are actually required to efficiently perform their jobs. To implement this principle, restrict the following as much as possible:	
SYS	
-privileged connections to the database For example, generally the CREATE ANY TABLE	
privilege is not granted to a user who does not have database administrator privileges.	
A role is a named group of related privileges that you grant, as a group, to users or other roles. To learn the fundamentals of managing roles, see "Administering Roles" in Oracle Database 2 Day DBA. In addition, see "Example: Creating a Role" in Oracle Database 2 Day DBA.	
Roles are useful for quickly and easily granting permissions to users. Although you can use Oracle Database-defined roles, you have more control and continuity if you create your own roles that contain only the privileges pertaining to your requirements. Oracle may change or remove the privileges in an Oracle Database-defined role, as it has with the CONNECT	
role, which now has only the CREATE SESSION	
privilege. Formerly, this role had eight other privileges.	
Ensure that the roles you define contain only the privileges required for the responsibility of a particular job. If your application users do not need all the privileges encompassed by an existing role, then apply a different set of roles that supply just the correct privileges. Alternatively, create and assign a more restrictive role.	
Do not grant powerful privileges, such as the CREATE DATABASE LINK	
privilege, to regular users such as user SCOTT	
. (Particularly do not grant any powerful privileges to SCOTT	
, because this is a well known default user account that may be vulnerable to intruders.) Instead, grant the privilege to a database role, and then grant this role to the users who must use the privilege. And remember to only grant the minimum privileges the user needs.	
You should revoke unnecessary privileges and roles from the PUBLIC	
role. The PUBLIC	
role is automatically assumed by every database user account. By default, it has no privileges assigned to it, but it does have grants to many Java objects. You cannot drop the PUBLIC	
role, and a manual grant or revoke of this role has no meaning, because the user account will always assume this role. Because all database user accounts assume the PUBLIC	
role, it does not appear in the DBA_ROLES	
and SESSION_ROLES	
data dictionary views.	
Because all users have the PUBLIC	
role, any database user can exercise privileges that are granted to this role. These privileges include, potentially enabling someone with minimal privileges to access and execute functions that this user would not otherwise be permitted to access directly.	
A secure application role is a role that can be enabled only by an authorized PL/SQL package. The PL/SQL package itself reflects the security policies necessary to control access to the application.	
This section contains:	
A secure application role is a role that can be enabled only by an authorized PL/SQL package. This package defines one or more security policies that control access to the application. Both the role and the package are typically created in the schema of the person who creates them, which is typically a security administrator. A security administrator is a database administrator who is responsible for maintaining the security of the database.	
The advantage of using a secure application role is you can create additional layers of security for application access, in addition to the privileges that were granted to the role itself. Secure application roles strengthen security because passwords are not embedded in application source code or stored in a table. This way, the decisions the database makes are based on the implementation of your security policies. Because these definitions are stored in one place, the database, rather than in your applications, you modify this policy once instead of modifying the policy in each application. No matter how many users connect to the database, the result is always the same, because the policy is bound to the role.	
A secure application role has the following components:	
CREATE ROLE	
statement with the IDENTIFIED USING	
clause to associate it with the PL/SQL package. Then, you grant the role the privileges you typically grant a role. EXECUTE	
privilege for the underlying objects that the PL/SQL package accesses. The invoker's right procedures are not bound to a particular schema. They can be run by a variety of users and enable multiple users to manage their own data by using centralized application logic. To create the invoker's rights package, use the AUTHID CURRENT_USER	
clause in the declaration section of the procedure code. The PL/SQL package also must contain a SET ROLE	
statement or DBMS_SESSION.SET_ROLE	
call to enable (or disable) the role for the user.	
After you create the PL/SQL package, you must grant the appropriate users the EXECUTE	
privilege on the package.	
When a user logs in to the application, the policies in the package perform the checks as needed. If the user passes the checks, then the role is granted, which enables access to the application. If the user fails the checks, then the user is prevented from accessing the application.	
This tutorial shows how two employees, Matthew Weiss and Winston Taylor, try to gain information from the OE.ORDERS	
table. Access rights to this table are defined in the EMPLOYEE_ROLE	
secure application role. Matthew is Winston's manager, so Matthew, as opposed to Winston, will be able to access the information in OE.ORDERS	
.	
In this tutorial:	
For greater security, you should apply separation of duty concepts when you assign responsibilities to the system administrators on your staff. For the tutorials used in this guide, you will create and use a security administrator account called sec_admin	
.	
To create the sec_admin security administrator account:	
See Oracle Database 2 Day DBA for instructions about how to start Database Control.	
SYSTEM	
) and password, and then click Login. For the SYSTEM	
user, connect as Normal	
.	
The Database Home page appears.	
The Users page appears.	
The Create User page appears.	
sec_admin	
Default	
Password	
SYSTEM	
TEMP	
UNLOCKED	
The Modify Roles page appears.	
The Modify System Privileges page appears.	
CREATE PROCEDURE	
CREATE ROLE	
CREATE SESSION	
SELECT ANY DICTIONARY	
The Create User page appears.	
The Users page appears. User sec_admin	
is listed in the UserName list.	
Matthew and Winston both are sample employees in the HR.EMPLOYEES	
schema, which provides columns for the manager ID and e-mail address of the employees, among other information. You must create user accounts for these two employees so that they can later test the secure application role.	
To create the user accounts:	
The Create User page appears.	
mweiss	
(to create the user account for Matthew Weiss) DEFAULT	
Password	
USERS	
TEMP	
Unlocked	
The Modify System Privileges page appears.	
CREATE SESSION	
privilege, and then click Move to move it to the Selected System Privileges list. The Create User page appears, with CREATE SESSION	
listed as the system privilege for user mweiss	
.	
CREATE SESSION	
is not selected, and then click OK. The Users page appears.	
wtaylor	
You do not need to specify the default and temporary tablespaces, or the CREATE SESSION	
system privilege, for user wtaylor	
because they are already specified.	
You do not need to grant wtaylor	
the CREATE SESSION	
privilege, because the Create Like action has done of this for you.	
Now both Matthew Weiss and Winston Taylor have user accounts that have identical privileges.	
Now, you are ready to create the employee_role	
secure application role. To do so, you must log on as the security administrator sec_admin	
. "Step 1: Create a Security Administrator Account" explains how to create the sec_admin	
account.	
To create the secure application role:	
sec_admin	
. SQL*Plus starts, connects to the default database, and then displays a prompt.	
For detailed information about starting SQL*Plus, see Oracle Database 2 Day DBA.	
The IDENTIFIED USING	
clause sets the role to be enabled (or disabled) only within the associated PL/SQL package, in this case, sec_roles	
. At this stage, the sec_roles	
PL/SQL package does not need to exist.	
OE	
. If you receive an error message saying that OE	
is locked, then you can unlock the OE	
account and reset its password by entering the following statements. For greater security, do not reuse the same password that was used in previous releases of Oracle Database. Enter any password that is secure, according to the password guidelines described in "Requirements for Creating Passwords".	
Another way to unlock a user account and create a new password is to use the following syntax:	
Now you can connect as user OE	
.	
EMPLOYEE_ROLE	
role SELECT	
privileges on the OE.ORDERS	
table. Do not grant the role directly to the user. The PL/SQL package will do that for you, assuming the user passes its security policies.	
You are almost ready to create the procedure that determines who is granted the employee_role	
role. The procedure will grant the employee_role	
only to managers who report to Steven King, whose employee ID is 100. This information is located in the HR.EMPLOYEES	
table. However, you should not use that table in this procedure, because it contains sensitive data such as salary information, and for it to be used, everyone will need access to it. In most real world cases, you create a lookup view that contains only the information that you need. (You could create a lookup table, but a view will reflect the most recent data.) For this tutorial, you create your own lookup view that only contains the employee names, employee IDs, and their manager IDs.	
To create the HR.HR_VERIFY lookup view:	
HR	
. If you receive an error message saying that HR	
is locked, then you can unlock the account and reset its password by entering the following statements. For greater security, do not reuse the same password that was used in previous releases of Oracle Database. Enter any password that is secure, according to the password guidelines described in "Requirements for Creating Passwords".	
CREATE VIEW	
SQL statement to create the lookup view: EXECUTE	
privilege for this view to mweiss	
, wtaylor	
, and sec_admin	
by entering the following SQL statements: Now, you are ready to create the secure application role procedure. In most cases, you create a package to hold the procedure, but because this is a simple tutorial that requires only one secure application role test (as defined in the procedure), you will create a procedure by itself. If you want to have a series of procedures to test for the role, create them in a package.	
A PL/SQL package defines a simple, clear interface to a set of related procedures and types that can be accessed by SQL statements. Packages also make code more reusable and easier to maintain. The advantage here for secure application roles is that you can create a group of security policies that used together present a solid security strategy designed to protect your applications. For users (or potential intruders) who fail the security policies, you can add auditing checks to the package to record the failure.	
To create the secure application role procedure:	
sec_admin	
. CREATE PROCEDURE	
statement to create the secure application role procedure. (You can copy and paste this text by positioning the cursor at the start of CREATE OR REPLACE	
in the first line.) 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18	CREATE OR REPLACE PROCEDURE sec_roles AUTHID CURRENT_USER AS v_user varchar2(50); v_manager_id number :=1; BEGIN v_user := lower((sys_context ('userenv','session_user'))); SELECT manager_id INTO v_manager_id FROM hr.hr_verify WHERE lower(email)=v_user; IF v_manager_id = 100 THEN EXECUTE IMMEDIATE 'SET ROLE employee_role'; ELSE NULL; END IF; EXCEPTION WHEN NO_DATA_FOUND THEN v_manager_id:=0; DBMS_OUTPUT.PUT_LINE(v_manager_id); END; /
In this example:	
AUTHID CURRENT_USER	
clause to the CREATE PROCEDURE	
statement, which creates the procedure using invoker's rights. The AUTHID CURRENT_USER	
clause creates the package using invoker's rights, using the privileges of the current user. You must create the package using invoker's rights for the package to work. Invoker's rights allow the user to have EXECUTE	
privileges on all objects that the package accesses.	
Roles that are enabled inside an invoker's right procedure remain in effect even after the procedure exits, but after the user exits the session, he or she no longer has the privileges associated with the secure application role. In this case, you can have a dedicated procedure that enables the role for the rest of the session.	
Because users cannot change the security domain inside definer's rights procedures, secure application roles can only be enabled inside invoker's rights procedures.	
See "About Secure Application Roles" for information about the importance of creating the procedure using invoker's rights.	
v_user	
variable, which will store the user session information. v_manager_id	
variable, which will store the manager's ID of the v_user	
user.	
SYS_CONTEXT	
SQL function with the USERENV	
namespace attributes ('userenv	
', session_attribute	
), and writes this information to the v_user	
variable. The information returned by this function indicates the way in which the user was authenticated, the IP address of the client, and whether the user connected through a proxy. See Oracle Database SQL Language Reference for more information about SYS_CONTEXT	
.	
SELECT	
statement copies the manager ID into the v_manager_id	
variable, and then checking the HR.HR_VERIFY	
view for the manager ID of the current user. This example uses the employees' e-mail addresses because they are the same as their user names. IF	
condition to test whether the user should be granted the sec_roles	
role. In this case, the test condition is whether the user reports to Matthew's manager, Steven King, whose employee number is 100. If the user reports to King, as Matthew does, then the secure application role is granted to the user. Otherwise, the role is not granted. The result is that the secure application role will grant Matthew Weiss the role because he is a direct report of Steven King, but will deny the role to Winston, because he is not a direct report of Steven King.	
IF	
condition, the THEN	
condition grants the role by executing immediately the SET ROLE	
statement. Otherwise, the ELSE	
condition denies the grant. EXCEPTION	
statement to set v_manager_id	
to 0	
if no data is found. 0	
, into a buffer so that it is readily available. Tip: If you have problems creating or running PL/SQL code, check the Oracle Database trace files. TheUSER_DUMP_DEST initialization parameter specifies the current location of the trace files. You can find the value of this parameter by issuing SHOW PARAMETER USER_DUMP_DEST in SQL*Plus. See Oracle Database Performance Tuning Guide for more information about trace files.	
At this stage, Matthew and Winston can try to access the OE.ORDERS	
table, but they are denied access. The next step is to grant them the EXECUTE	
privilege on the sec_roles	
procedure, so that the sec_roles	
procedure can execute, and then grant or deny access, when they try to select from the OE.ORDERS	
table.	
To grant EXECUTE privileges for the sec_roles procedure:	
sec_admin	
, enter the following GRANT	
SQL statements: You are ready to test the employee_role	
secure application role by logging on as Matthew and Winston and trying to access the OE.ORDERS	
table. When Matthew and Winston log on, and before they issue a SELECT	
statement on the OE.ORDERS	
table, the sec_roles	
procedure must be executed for the role verification to take place.	
To test the employee_role secure application role, as user MWEISS:	
mweiss	
. sec_roles	
procedure: This statement executes the sec_roles	
procedure for the current session. (In a real world scenario, this statement would be automatically run when the user logs in to the application.)	
SELECT	
statement on the OE.ORDERS	
table: Matthew has access to the OE.ORDERS	
table:	
Now, Winston will try to access the secure application.	
To test the employee_role secure application role as user WTAYLOR:	
wtaylor	
. sec_roles	
procedure: This statement executes the sec_roles	
procedure for the current session.	
SELECT	
statement on the OE.ORDERS	
table: Because Winston does not report directly to Steven King, he does not have access to the OE.ORDERS	
table. He will never learn the true number of orders in the ORDERS	
table, at least not by performing a SELECT	
statement on it.	
Remove the components that you created for this tutorial.	
To remove the components:	
SYSTEM	
. DROP	
statements: Do not drop user sec_admin	
. You will need this user for other tutorials in this guide.	
sec_admin	
. DROP	
SQL statements: HR	
, and then drop the HR_VERIFY	
view. Table 4-1 lists initialization parameters that you can use to secure user privileges.	
Table 4-1 Initialization Parameters Used for Privilege Security	
Initialization Parameter	Default Setting
---	---
Controls restrictions on	
Determines whether the operating system identifies and manages the roles of each user.	
Specifies the maximum number of database roles that users can enable, including roles contained within other roles.	
Specifies whether operating system roles are allowed for remote clients. The default value,	
Specifies whether users must be granted the	
To modify an initialization parameter, see "Modifying the Value of an Initialization Parameter". For detailed information about initialization parameters, see Oracle Database Reference and Oracle Database Administrator's Guide.	
This chapter contains:	
You can configure the client connection to your Oracle Database installation by following the procedures in "Configuring the Network Environment" in Oracle Database 2 Day DBA and the Oracle Database Installation Guide for your platform. This chapter explains how you can encrypt data as it travels through the network, and also provides guidelines that you can follow to secure the network connections for Oracle Database.	
This section describes how you can tightens security for the client connection to ensure thorough protection. Encrypting network traffic is essential for securing communications with the database.	
These guidelines are as follows:	
Because authenticating client computers is problematic, typically, user authentication is performed instead. This approach avoids client system issues that include falsified IP addresses, compromised operating systems or applications, and falsified or stolen client system identities. Nevertheless, the following guidelines improve the security of client connections:	
By default, Oracle allows operating system-authenticated logins only over secure connections, which precludes using Oracle Net and a shared server configuration. This default restriction prevents a remote user from impersonating another operating system user over a network connection.	
Setting the initialization parameter REMOTE_OS_AUTHENT	
to TRUE	
forces the database to accept the client, operating-system user name received over a nonsecure connection and use it for account access. (To modify an initialization parameter, see "Modifying the Value of an Initialization Parameter".) Because clients, such as PCs, are not trusted to perform operating system authentication properly, it is poor security practice to use this feature.	
The default setting, REMOTE_OS_AUTHENT = FALSE	
, creates a more secure configuration that enforces proper, server-based authentication of users connecting to an Oracle database.	
Setting this parameter to FALSE	
does not mean that users cannot connect remotely. It means that the database will not trust that the client has already authenticated, and will apply its standard authentication processes.	
Oracle network encryption makes eavesdropping difficult. To learn how to configure encryption, see Oracle Database Advanced Security Administrator's Guide.	
See Oracle Database Advanced Security Administrator's Guide for more information about using Kerberos and public key infrastructure (PKI).	
Protecting the network and its traffic from inappropriate access or modification is the essence of network security. You should consider all paths the data travels, and assess the threats on each path and node. Then, take steps to lessen or eliminate those threats and the consequences of a security breach. In addition, monitor and audit to detect either increased threat levels or penetration attempts.	
To manage network connections, you can use Oracle Net Manager. For an introduction to using Oracle Net Manager, see Oracle Database 2 Day DBA. See also Oracle Database Net Services Administrator's Guide.	
The following practices improve network security:	
You can monitor listener activity by using Oracle Enterprise Manager Database Control. In the Database Control home page, under General, click the link for your listener. The Listener page appears. This page provides detailed information, such as the category of alert generated, alert messages, when the alert was triggered, and so on. This page provides other information, such as performance statistics for the listener.	
listener.ora	
file: RELOAD	
to reload the configuration. To administer the listener remotely, define the listener in the listener.ora	
file on the client computer. For example, to access listener USER281 remotely, use the following configuration:	
For more information about the parameters in listener.ora	
, see Oracle Database Net Services Reference.	
Ensure that the password has not been set in the listener.ora	
file. The local operating system authentication will secure the listener administration. The remote listener administration is disabled when the password has not been set. This prevents brute force attacks of the listener password.	
Remember that the listener password has been deprecated in this release, and will not be supported in the next release of Oracle Database.	
This enables the listener to monitor all the IP addresses. You can restrict the listener to monitor a specific IP address. Oracle recommends that you specify the specific IP addresses on these types of computers, rather than enabling the listener to monitor all IP addresses. Restricting the listener to specific IP addresses helps to prevent an intruder from stealing a TCP end point from the listener process.	
This restriction prevents external procedure agents spawned by the listener (or procedures executed by an agent) from inheriting the ability to perform read or write operations. The owner of this separate listener process should not be the owner that installed Oracle Database or executes the Oracle Database instance (such as ORACLE	
, the default owner).	
For more information about configuring external procedures in the listener, see Oracle Database Net Services Administrator's Guide.	
See "Protecting Data on the Network by Using Network Encryption" to learn about how to protect Oracle data over the network. Oracle Database Advanced Security Administrator's Guide describes network encryption in detail.	
Appropriately placed and configured firewalls can prevent outside access to your databases.	
For more information about the listener, see Oracle Database Net Services Administrator's Guide.	
Use the Oracle Net valid node checking security feature to allow or deny access to Oracle server processes from network clients with specified IP addresses. To use this feature, set the following sqlnet.ora	
configuration file parameters:	
The tcp.validnode_checking	
parameter enables the feature. The tcp.excluded_nodes	
and tcp.invited_nodes	
parameters deny and enable specific client IP addresses from making connections to the Oracle listener. This helps to prevent potential Denial of Service attacks.	
You can use Oracle Net Manager to configure these parameters. See Oracle Database Net Services Administrator's Guide for more information.	
If possible, use Oracle Advanced Security to encrypt network traffic among clients, databases, and application servers. For an introduction to Oracle network encryption, see "Protecting Data on the Network by Using Network Encryption". For detailed information about network encryption, see Oracle Database Advanced Security Administrator's Guide.	
Secure the host operating system by disabling all unnecessary operating system services. Both UNIX and Windows platforms provide a variety of operating system services, most of which are not necessary for typical deployments. These services include FTP, TFTP, TELNET, and so forth. Be sure to close both the UDP and TCP ports for each service that is being disabled. Disabling one type of port and not the other does not make the operating system more secure.	
In addition to protecting information by encrypting it at the database level, you must protect it as it travels across the network.	
This section contains:	
See Also: Oracle Database Advanced Security Administrator's Guide for detailed information about network encryption	
Network encryption refers to encrypting data as it travels across the network between the client and server. The reason you should encrypt data at the network level, and not just the database level, is because data can be exposed on the network level. For example, an intruder can use a network packet sniffer to capture information as it travels on the network, and then spool it to a file for malicious use. Encrypting data on the network prevents this sort of activity.	
To encrypt data on the network, you need the following components:	
sqlnet.ora	
configuration file. Both Oracle Net Manager and the sqlnet.ora	
file are available in a default Oracle Database installation. You can configure network encryption by using either Oracle Net Manager or by editing the sqlnet.ora	
file. This guide explains how to use Oracle Net Manager to configure network encryption.	
To configure network encryption:	
$ORACLE_HOME/bin	
, enter the following at the command line: The Encryption settings pane appears.	
Enter the following settings:	
If you choose to use special characters such as a comma [,] or a right parenthesis [)] as a part of the Encryption Seed parameter, enclose the value within single quotation marks.	
See Also:	
Table 5-1 lists initialization parameters that you can set to better secure user accounts.	
Table 5-1 Initialization Parameters Used for Network Security	
Initialization Parameter	Default Setting
---	---
Specifies a prefix that Oracle Database uses to identify users attempting to connect to the database. Oracle Database concatenates the value of this parameter to the beginning of the user operating system account name and password. When a user attempts a connection request, Oracle Database compares the prefixed username with user names in the database.	
No default setting	Specifies a network name that resolves to an address or address list of Oracle Net remote listeners (that is, listeners that are not running on the same computer as this instance). The address or address list is specified in the
Specifies whether remote clients will be authenticated with the value of the	
Specifies whether operating system roles are allowed for remote clients. The default value,	
To modify an initialization parameter, see "Modifying the Value of an Initialization Parameter". For detailed information about initialization parameters, see Oracle Database Reference andOracle Database Administrator's Guide.	
The script content on this page is for navigation purposes only and does not alter the content in any way.	
This chapter contains:	
Oracle Database provides many ways to secure data. This chapter describes the following methods that you can use to secure data on your site:	
You can also encrypt data on the network. "Protecting Data on the Network by Using Network Encryption" explains how.	
WHERE	
clause for all SQL statements that query the database. You create and manage the VPD policy at the database table or view level, which means that you do not modify the applications that access the database. Transparent data encryption enables you to quickly encrypt one or more table columns or a tablespace. It is easy to implement and has many advantages over other types of database encryption.	
This section contains:	
Encrypted data can only be read by its recipient. You use encryption to protect data in a potentially unprotected environment, such as data you have placed on backup media that is sent to an offsite storage location.	
The encryption data includes the following components:	
As mentioned earlier, you can encrypt individual table columns or an entire tablespace. Be careful that you do not mix the two. For example, suppose you encrypt a table column and then encrypt its surrounding tablespace. This double encryption can cause performance problems. In addition, column encryption has limitations in data type support, and only supports B-tree indexes for equality searches. To check the current encrypted settings, you can query the V$ENCRYPTED_TABLESPACES	
data dictionary view for tablespaces, and the DBA_ENCRYPTED_COLUMNS	
view for encrypted columns.	
In most cases, you encrypt sensitive data on your site to meet a regulatory compliance. For example, sensitive data such as credit card numbers, Social Security numbers, or patient health information must be encrypted.	
Historically, users have wanted to encrypt data because they want to restrict data access from their database administrators. However, this problem is more of an access control problem, not an encryption problem. You can address this problem by using Oracle Database Vault to control the access to your application data from database administrators.	
In most cases, you encrypt sensitive data such as credit cards, and Social Security numbers to prevent access when backup tapes or disk drives are lost or stolen. In recent years industry regulations such as the Payment Card Industry (PCI) Data Security Standard and the Healthcare Insurance Portability and Accountability Act (HIPAA) have become a driving factor behind increased usage of encryption for protecting credit card and health care information, respectively.	
Transparent data encryption enables you to encrypt individual table columns or an entire tablespace. When a user inserts data into an encrypted column, transparent data encryption automatically encrypts the data. When users select the column, the data is automatically decrypted.	
To encrypt data by using transparent data encryption, you create the following components:	
ALTER SYSTEM	
command. The wallet is encrypted using a password as the encryption key. You create the password when you create the wallet. Access to the contents (or master key) of the wallet is thus restricted to only those who know the password. After the wallet is created, you must open the wallet using the password so that the database can access the master encryption key. sqlnet.ora	
file. Afterward, when a user enters data, Oracle Database performs the following steps:	
If the user is selecting data, the process is similar: Oracle Database decrypts the data and then displays it in clear text format.	
Transparent data encryption has the following advantages:	
Transparent data encryption has a minimal impact on performance. Transparent data encryption column encryption affects performance only when data is retrieved from or inserted into an encrypted column. There is no impact on performance for operations involving unencrypted columns, even if these columns are in a table containing encrypted columns. However, be aware that encrypted data needs more storage space than clear text data. On average, encrypting a single column requires between 32 and 48 bytes of additional storage for each row. Transparent tablespace encryption provides even better performance because Oracle Database performs the encryption and decryption at the I/O block layer. Once blocks are decrypted, they are cached in Oracle Database memory for optimal performance.	
See Also: Oracle Database Advanced Security Administrator's Guide for detailed information about using transparent data encryption	
To start using transparent data encryption, you must create a wallet and set a master key. The wallet can be the default database wallet shared with other Oracle Database components, or a separate wallet specifically used by transparent data encryption. Oracle recommends that you use a separate wallet to store the master encryption key. This wallet will be used for all data that is being encrypted through transparent data encryption.	
You follow these steps to configure table columns to use transparent data encryption:	
See Also: Oracle Database Advanced Security Administrator's Guide for detailed information about using tablespace encryption	
You designate the directory location for the wallet in the sqlnet.ora	
file. You perform this step once.	
To configure the wallet location:	
$ORACLE_HOME	
directory in which to store the wallet. For example, create a directory called ORA_WALLETS	
in the C:\oracle\product\11.2.0\db_1	
directory.	
sqlnet.ora	
file, which by default is located in the $ORACLE_HOME/network/admin	
directory. sqlnet.ora	
file, add code similar to the following, where ORA_WALLETS	
is the name of the directory where you plan to store the wallet: sqlnet.ora	
file. SQL*Plus starts, connects to the default database, and then displays a SQL>	
prompt.	
For detailed information about starting SQL*Plus, see Oracle Database 2 Day DBA.	
COMPATIBLE	
parameter. To create the wallet, use the ALTER SYSTEM	
SQL statement. By default, the Oracle wallet stores a history of retired master keys, which enables you to change them and still be able to decrypt data that was encrypted under an old master key. A case-sensitive wallet password unknown to the database administrator provides separation of duty: The database administrator might be able to restart the database, but the wallet is closed and must be manually opened by a security administrator before the database can encrypt or decrypt the data.	
To create the wallet:	
SYS	
, or as a security administrator. For example:	
ALTER SYSTEM	
statement, where password is the password	
you want to use to protect the Oracle wallet: Enclose the password in double quotation marks. As with other passwords that you create in Oracle Database, the password does not appear in clear text or in any dynamic views or logs.	
This statement generates the wallet with a new encryption key and sets it as the current transparent data encryption master key. If you plan to use public key infrastructure (PKI) to configure the master encryption key, then specify a certificate ID, which is an optional string that contains the unique identifier of a certificate stored in the Oracle wallet. Use the following syntax:	
Immediately after you create the wallet key, the wallet is open, and you are ready to start encrypting data. However, if you have restarted the database after you created the wallet, you must manually open the wallet before you can use transparent data encryption.	
To open the wallet:	
ALTER SYSTEM	
statement, where password is the password	
you use to protect the wallet: You must inclose the password in quotation marks.	
In most cases, leave the wallet open unless you have a reason for closing it. You can close the wallet to disable access to the master key and prevent access to the encrypted columns. The wallet must be open for transparent data encryption to work. To reopen the wallet, use the ALTER SYSTEM SET WALLET OPEN IDENTIFIED BY	
password	
statement.	
After you have created a directory location for the wallet in the sqlnet.ora	
file and created the wallet itself, you are ready to encrypt either individual table columns or an entire tablespace.	
This section contains the following topics:	
The decisions that you make when you identify columns to be encrypted are determined by governmental security regulations, such as California Senate Bill 1386, or by industry standards such as the Payment Card Industry (PCI) Data Security Standard. Credit card numbers, Social Security numbers, and other personally identifiable information (PII) fall under this category. Another need for encryption is defined by your own internal security policies — trade secrets, research results, or employee salaries and bonuses. See "When Should You Encrypt Data?" for guidelines about when and when not to encrypt data.	
Follow these guidelines when you select columns to encrypt:	
BINARY_FLOAT	NUMBER
BINARY_DOUBLE	NVARCHAR2
CHAR	RAW
DATE	TIMESTAMP
NCHAR	VARCHAR2
To encrypt a column in a table:	
"Step 2: Create the Wallet" explains how to create a wallet key. To open an existing wallet key, see "Step 3: Open (or Close) the Wallet".	
See Oracle Database 2 Day DBA for instructions about how to start Database Control.	
SYSTEM	
, or the name of a security administrator) and password, and then click Login. The Database Home page appears.	
The Tables page appears.	
O%	
to find all tables beginning with the letter O.) When the table is listed in the Tables page, select the table, and then click Edit. In the Create Table or Edit Table page, you can set its encryption options.	
For example, to encrypt columns in the OE.ORDERS	
table, the Edit Table page appears as follows:	
Do not select columns that are part of a foreign key constraint (primary or unique key columns). You cannot encrypt these columns. These columns are indicated with a key or check mark icon to the left of their names.	
The Generate Key Randomly setting enables salt. Salt is a way to strengthen the security of encrypted data. It is a random string added to the data before it is encrypted, causing the same text to appear different when encrypted. Salt removes one method attackers use to steal data, namely, matching patterns of encrypted text.	
The Create Table (or Edit Table) page appears.	
While a table is being updated, read access is still possible. Afterward, existing and future data in the column is encrypted when it is written to the database file, and it is decrypted when an authorized user selects it. If data manipulation language (DML) statements are needed, you can use online redefinition statements.	
You can encrypt a new tablespace while you are creating it, but you cannot encrypt an existing tablespace. As a workaround, you can use the CREATE TABLE AS SELECT	
, ALTER TABLE MOVE	
, or use Oracle Data Pump import to get data from an existing tablespace into an encrypted tablespace. For details about creating a tablespace, see Oracle Database 2 Day DBA.	
To encrypt a tablespace:	
"Step 2: Create the Wallet" explains how to create a wallet key. To open an existing wallet key, see "Step 3: Open (or Close) the Wallet".	
See Oracle Database 2 Day DBA for instructions about how to start Database Control.	
SYSTEM	
, or the name of a security administrator) and password, and then click Login. The Database Home page appears.	
The Tablespaces page appears.	
See "Available Methods" under Step 5 in "Configuring Network Encryption" for more information about these encryption algorithms.	
The Create Tablespace page appears.	
The new tablespace appears in the list of existing tablespaces. Remember that you cannot encrypt an existing tablespace.	
See Also:	
You can query the database for the data that you have encrypted. You can check for individually encrypted columns, all tables in the current database instance that have encrypted columns, or all tablespaces that are encrypted.	
This section contains:	
You can find out if a wallet is open or closed by running the V$ENCRYPTION_WALLET	
view.	
To check whether a wallet is open or closed:	
V$ENCRYPTION_VIEW	
view as follows: The wallet status appears, similar to the following:	
You use the DESC	
(for DESCRIBE	
) statement in SQL*Plus to check the encrypted columns in a database table.	
To check the encrypted columns of an individual table:	
DESC	
statement using the following syntax. For example:	
A description of the table schema appears. For example:	
To check all encrypted table columns, you use the DBA_ENCRYPTED_COLUMNS	
view.	
To check all encrypted table columns in the current database instance:	
DBA_ENCRYPTED_COLUMNS	
view: For example:	
This SELECT	
statement lists all tables and column in the database that contain columns encrypted using Oracle Transparent Data Encryption. For example:	
Table 6-1 lists data dictionary views that you can use to check encrypted tablespaces.	
Table 6-1 Data Dictionary Views for Encrypted Tablespaces	
Data Dictionary View	Description
---	---
Describes all tablespaces in the database. For example, find out if the tablespace has been encrypted, enter the following: SELECT TABLESPACE_NAME, ENCRYPTED FROM DBA_TABLESPACES TABLESPACE_NAME ENC ---------------------------- ---- SYSTEM NO SYSAUX NO UNCOTBS1 NO TEMP NO USERS NO EXAMPLE NO SECURESPACE YES	
Describes the tablespaces accessible to the current user. It has the same columns as	
Displays information about the tablespaces that are encrypted. For example: SELECT * FROM V$ENCRYPTED_TABLESPACES; TS# ENCRYPTIONALG ENCRYPTEDTS ----------- ------------- ----------- 6 AES128 YES The list includes the tablespace number, its encryption algorithm, and whether its encryption is enabled or disabled. If you want to find the name of the tablespace, use the following join operation: SELECT NAME, ENCRYPTIONALG ENCRYPTEDTS FROM V$ENCRYPTED_TABLESPACES, V$TABLESPACE WHERE V$ENCRYPTED_TABLESPACES.TS# = V$TABLESPACE.TS#;	
Both Oracle Virtual Private Database (VPD) and Oracle Label Security (OLS) enable you to restrict the data that different users can see in database tables. But when should you use Virtual Private Database and when should you use Oracle Label Security? Virtual Private Database is effective when there is existing data you can use to determine the access requirements. For example, you can configure a sales representative to see only the rows and columns in a customer order entry table for orders he or she handles. Oracle Label Security is useful if you have no natural data (such as user accounts or employee IDs) that can be used to indicate a table's access requirements. To determine this type of user access, you assign different levels of sensitivity to the table rows.	
In some cases, Oracle Virtual Private Database and Oracle Label Security can complement each other. The following Oracle Technology Network hands-on tutorial demonstrates how a Virtual Private Database policy can compare an Oracle Label Security user clearance with a minimum clearance. When the user clearance dominates the threshold, the Salary	
column is not hidden.	
http://www.oracle.com/technetwork/database/security/ols-cs1-099558.html	
Table 6-2 compares the features of Oracle Virtual Private Database with Oracle Label Security.	
Table 6-2 Comparing Oracle Virtual Private Database with Oracle Label Security	
Feature	VPD
---	---
Provides row-level security	Yes
Provides column-level security (column masking)	Yes
Binds a user-defined PL/SQL package to a table, view, or synonym	Yes
Modifies SQL by dynamically adding a	Yes
Restricts database operations by privileged usersFoot 2	No
Controls access to a set of rows based on the sensitivity label of the row and the security level of the user	No
Adds a column (optionally hidden) designed to store sensitivity labels for rows in the protected tableFoot 3	No
Provides a user account to manage its administration	NoFoot 4
Provides pre-defined PL/SQL packages for row-level security	No
Is provided in the default installation of Oracle Database	Yes
Is provided as an additional option to Oracle Database and must be licensed	No
Footnote 1 Oracle Label Security uses predefined PL/SQL packages, not user-created packages, to attach security policies to tables.	
Footnote 2 If you must restrict privileged user access, consider using Oracle Database Vault.	
Footnote 3 Usually, this column is hidden to achieve transparency and not break applications that are not designed to show an additional column.	
Footnote 4 Oracle Virtual Private Database does not provide a user account, but you can create a user account that is solely responsible for managing Virtual Private Database policies.	
Footnote 5 The LBACSYS	
account manages Oracle Label Security policies. This provides an additional layer of security in that one specific user account is responsible for these policies, which reduces the risk of another user tampering with the policies.	
Oracle Virtual Private Database (VPD) enables you to dynamically add a WHERE	
clause in any SQL statement that a user executes. The WHERE	
clause filters the data the user is allowed to access, based on the identity of a user.	
This section contains:	
See Also: Oracle Database Security Guide for detailed information about how Oracle Virtual Private Database works	
Oracle Virtual Private Database (VPD) provides row-level security at the database table or view level. You can extend it to provide column-level security as well. Essentially, Virtual Private Database inserts an additional WHERE	
clause to any SQL statement that is used on any table or view to which a Virtual Private Database security policy has been applied. (A security policy is a function that allows or prevents access to data.) The WHERE	
clause allows only users whose identity passes the security policy, and hence, have access to the data that you want to protect.	
An Oracle Virtual Private Database policy has the following components, which are typically created in the schema of the security administrator:	
SELECT	
statement: to the following:	
In this example, the user can only view orders by Sales Representative 159. The PL/SQL function used to generate this WHERE	
clause is as follows:	
1 2 3 4 5 6 7 8 9 10 11 12	CREATE OR REPLACE FUNCTION auth_orders(schema_var IN VARCHAR2, table_var IN VARCHAR2) RETURN VARCHAR2 IS return_val VARCHAR2 (400); BEGIN return_val := 'SALES_REP_ID = 159'; RETURN return_val; END auth_orders; /
In this example:	
OE	
, and table name, ORDERS	
. (The second parameter, table_var	
, for the table, can also be used for views and synonyms.) Always create these two parameters in this order: create the parameter for the schema first, followed by the parameter for the table, view, or synonym object. Note that the function itself does not specify the OE	
schema or its ORDERS	
table. The Virtual Private Database policy you create uses these parameters to specify the OE.ORDERS	
table. WHERE	
predicate clause. WHERE SALES_REP_ID = 159	
predicate. You can design the WHERE	
clause to filter the user information based on the session information of that user, such as the user ID. To do so, you create an application context. Application contexts can be used to authenticate both database and nondatabase users. An application context is a name-value pair. For example:	
In this example, the WHERE	
clause uses the SYS_CONTEXT	
PL/SQL function to retrieve the user session ID (session_user	
) designated by the userenv	
context. See Oracle Database Security Guide for detailed information about application contexts.	
DBMS_RLS.ADD_POLICY	
function to attach the policy to the package. Before you can use the DBMS_RLS	
PL/SQL package, you must be granted EXECUTE	
privileges on it. User SYS	
owns the DBMS_RLS	
package. The advantages of enforcing row-level security at the database level rather than at the application program level are enormous. Because the security policy is implemented in the database itself, where the data to be protected is, this data is less likely to be vulnerable to attacks by different data access methods. This layer of security is present and enforced no matter how users (or intruders) try to access the data it protects. The maintenance overhead is low because you maintain the policy in one place, the database, rather than having to maintain it in the applications that connect to this database. The policies that you create provide a great deal of flexibility because you can write them for specific DML operations.	
The ORDERS	
table in the Order Entry database, OE	
, contains the following information:	
Suppose you want to limit access to this table based on the person who is querying the table. For example, a sales representative should only see the orders that he or she have created, but other employees should not. In this tutorial, you create a sales representative user account and an account for a finance manager. Then, you create an Oracle Virtual Private Database policy that will limit the data access to these users based on their roles.	
The Virtual Private Database policy that you will create is associated with a PL/SQL function. Because VPD policies are controlled by PL/SQL functions or procedures, you can design the policy to restrict access in many different ways. For this tutorial, the function you create will restrict access by the employees based on to whom they report. The function will restrict the customer access based on the customer's ID.	
You may want to store VPD policies in a database account separate from the database administrator and from application accounts. In this tutorial, you will use the sec_admin	
account, which was created in "Tutorial: Creating a Secure Application Role", to create the VPD policy. This provides better security by separating the VPD policy from the applications tables.	
To restrict access based on the sensitivity of row data, you can use Oracle Label Security (OLS). OLS lets you categorize data into different levels of security, with each level determining who can access the data in that row. This way, the data access restriction is focused on the data itself, rather than on user privileges. See "Enforcing Row-Level Security with Oracle Label Security" for more information.	
In this tutorial:	
In "Tutorial: Creating a Secure Application Role", you created a security administrator account called sec_admin	
for that tutorial. You can use that account for this tutorial. If you have not yet created this account, follow the steps in "Step 1: Create a Security Administrator Account" to create sec_admin	
.	
The sec_admin	
account user must have privileges to use the DBMS_RLS	
packages. User SYS	
owns this package, so you must log on as SYS	
to grant these package privileges to sec_admin	
. The user sec_admin	
also must have SELECT	
privileges on the CUSTOMERS	
table in the OE	
schema and the EMPLOYEES	
table in the HR	
schema.	
To grant sec_admin privileges to use the DBMS_RLS package:	
See Oracle Database 2 Day DBA for instructions about how to start Database Control.	
SYS	
and connect with the SYSDBA	
privilege: SYS	
SYS	
. SYSDBA	
The Users Page appears.	
The Edit User page appears.	
The Add Package Object Privileges page appears.	
SYS.DBMS_RLS	
so that sec_admin	
will have access to the DBMS_RLS	
package. The Edit User page appears.	
The Add Table Object Privileges page appears.	
HR.EMPLOYEES	
so that sec_admin	
will have access to the HR.EMPLOYEES	
table. The Edit User page appears. It shows that user sec_admin has object privileges for the EMPLOYEES	
table and DBMS_RLS	
PL/SQL package. Ensure that you do not select the grant option for either of these objects.	
All the changes you have made, in this case, the addition of the two object privileges, are applied to the sec_admin	
user account.	
You are ready to create accounts for the employees who must access the OE.ORDERS	
table.	
To create the employee user accounts:	
The Users page appears.	
The Create User page appears.	
LDORAN	
(to create the user account Louise Doran) DEFAULT	
Password	
USERS	
TEMP	
Unlocked	
The Add Table Object Privileges page appears.	
Do not include spaces in this text.	
The Create User page appears, with SELECT	
privileges for OE.ORDERS	
listed.	
The Users page appears, with user ldoran	
is listed in the UserName column.	
Select the selection button for user LDORAN, and from the Actions list, select Create Like. Then, click Go.	
The Create User page appears.	
Enter the following information:	
LPOPP	
(to create the user account for Finance Manager Luis Popp.) Both employee accounts have been created, and they have identical privileges. If you check the privileges for user LPOPP	
, you will see that they are identical to those of user LDORAN	
's. At this stage, if either of these users performs a SELECT	
statement on the OE.ORDERS	
table, he or she will be able to see all of its data.	
The f_policy_orders	
policy is a PL/SQL function that defines the policy used to filter users who query the ORDERS	
table. To filter the users, the policy function uses the SYS_CONTEXT	
PL/SQL function to retrieve session information about users who are logging in to the database.	
To create the application context and its package:	
sec_admin	
. The Functions page appears.	
The Create Function page appears.	
F_POLICY_ORDERS	
SEC_ADMIN	
(schema in varchar2)	
in the first line. The f_policy_orders	
function accomplishes this by using the SYS_CONTEXT	
PL/SQL function to get the session information of the user, and then it compares this information with the job ID of that user in the HR.EMPLOYEES	
table, for which sec_admin	
has SELECT	
privileges.	
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30	(schema in varchar2, tab in varchar2) return varchar2 as v_job_id varchar2(20); v_user varchar2(100); predicate varchar2(400); begin v_job_id := null; v_user := null; predicate := '1=2'; v_user := lower(sys_context('userenv','session_user')); select lower(job_id) into v_job_id from hr.employees where lower(email) = v_user; if v_job_id='sa_rep' then predicate := '1=1'; else null; end if; return predicate; exception when no_data_found then null; end;
In this example:	
schema	
) and table (tab	
) that must be protected. Notice that the function does not mention the OE.ORDERS	
table. The ACCESSCONTROL_ORDERS	
policy that you create in Step 5: Create the ACCESSCONTROL_ORDERS Virtual Private Database Policy uses these parameters to specify the OE	
schema and ORDERS	
table. Ensure that you create the schema	
parameter first, followed by the tab	
parameter. WHERE	
predicate clause. Always use VARCHAR2	
as the data type for this return value. WHERE	
predicate, starting the with the BEGIN	
clause at Line 9. v_job_id	
and v_user	
variables to null, and the predicate	
variable to 1=2, that is, to a false value. At this stage, no WHERE	
predicate can be generated until these variables pass the tests starting with Line 16. SYS_CONTEXT	
function to retrieve the session information of the user and write it to the v_user	
variable. sa_rep	
(sales representative), then the predicate	
variable is set to 1=1	
. In other words, the user, by being a sales representative, has passed the test. WHERE	
predicate, which translates to WHERE	
role_of_user_logging_on	
IS	
"sa_rep"	
. Oracle Database appends this WHERE	
predicate onto any SELECT	
statement that users LDORAN	
and LPOPP	
issue on the OE.ORDERS	
table. EXCEPTION	
clause for cases where a user without the correct privileges has logged on. Now that you have created the Virtual Private Database policy function, you can create the Virtual Private Database policy, accesscontrol_orders	
, and then attach it to the ORDERS	
table. To increase performance, add the CONTEXT_SENSITIVE	
parameter to the policy, so that Oracle Database only executes the f_policy_orders	
function when the content of the application context changes, in this case, when a new user logs on. Oracle Database only activates the policy when a user performs a SQL SELECT	
statement on the ORDERS	
table. Hence, the user cannot run the INSERT	
, UPDATE	
, and DELETE	
statements, because the policy does not allow him or her to do so.	
To create the ACCESSCONTROL_ORDERS Virtual Private Database policy:	
The Virtual Private Database Policies page appears.	
The Create Policy page appears, with the Policy subpage displaying.	
ACCESSCONTROL_ORDERS	
OE.ORDERS	
CONTEXT_SENSITIVE	
. This type reevaluates the policy function at statement run-time if it detects context changes since the last use of the cursor. For session pooling, where multiple clients share a database session, the middle tier must reset the context during client switches. Note that Oracle Database does not cache the value that the function returns for this policy type; it always runs the policy function during statement parsing. The CONTEXT_SENSITIVE	
policy type applies to only one object.	
To enable the Policy Type, select the Enabled box.	
SEC_ADMIN.F_POLICY_ORDERS	
. Typically, you select this box to return a predicate with a length of up to 32K bytes. By not selecting this box, Oracle Database limits the predicate to 4000 bytes.	
The Virtual Private Database Policies page appears, with the ACCESSCONTROL_ORDERS	
policy listed in the list of policies.	
At this stage, you are ready to test the accesscontrol_orders	
policy by logging on as each user and attempting to select data from the ORDERS	
table.	
To test the ACCESSCONTROL_ORDERS policy:	
From a command prompt, enter the following command to start SQL*Plus, and log in as Sales Representative Louise Doran, whose user name is ldoran	
:	
SQL*Plus starts, connects to the default database, and then displays a prompt.	
For detailed information about starting SQL*Plus, see Oracle Database 2 Day DBA.	
SELECT	
statement: The following results should appear for Louise. As you can see, Louise is able to access all the orders in the OE.ORDERS	
table.	
SELECT	
statement: The following results should appear, because Mr. Popp, who is not a sales representative, does not have access to the data in the OE.ORDERS	
table. Because Mr. Popp does not have access, Oracle Database only allows him access to 0 rows.	
After completing this tutorial, you can remove the data structures that you used if you no longer need them.	
To remove the data structures created by sec_admin:	
sec_admin	
. The Virtual Private Database Policies page appears.	
OE	
ORDERS	
The policy you created, ACCESSCONTROL_ORDERS	
, is listed.	
To remove the user accounts and roles:	
SYSTEM	
) who created the user accounts and roles used in this tutorial. The Users page appears.	
LDORAN	
LPOPP	
Do not remove sec_admin	
because you will need this account for later tutorials in this guide.	
Oracle Label Security (OLS) provides row-level security for your database tables. You can accomplish this by assigning one or more security labels that define the level of security you want for the data rows of the table.	
This section contains:	
You use Oracle Label Security to secure your database tables at the row level, and assign these rows different levels of security based on the needs of your site. For example, rows that contain highly sensitive data can be assigned a label entitled HIGHLY SENSITIVE	
; rows that are less sensitive can be labeled as SENSITIVE	
, and so on. Rows that all users can have access to can be labeled PUBLIC	
. You can create as many labels as you need, to fit your site's security requirements.	
After you create and assign the labels, you can use Oracle Label Security to assign specific users authorization for specific rows, based on these labels. Afterward, Oracle Label Security automatically compares the label of the data row with the security clearance of the user to determine whether the user is allowed access to the data in the row.	
An Oracle Label Security policy has the following components:	
SENSITIVE	
or HIGHLY SENSITIVE	
. You can create Oracle Label Security labels and policies in Database Control, or you can create them using the SA_SYSDBA	
, SA_COMPONENTS	
, and SA_LABEL_ADMIN	
PL/SQL packages. For information about using the PL/SQL packages, see Oracle Label Security Administrator's Guide. This guide explains how to create Oracle Label Security labels and policies by using Database Control.	
For example, assume that a user has the SELECT	
privilege on an application table. As illustrated in the following figure, when the user runs a SELECT	
statement, Oracle Label Security evaluates each row selected to determine whether the user can access it. The decision is based on the privileges and access labels assigned to the user by the security administrator. You can also configure Oracle Label Security to perform security checks on UPDATE	
, DELETE	
, and INSERT	
statements.	
Before you create an Oracle Label Security policy, you must determine where and how to apply the labels to the application schema.	
To determine where and how to apply Oracle Label Security policies for application data, follow these guidelines:	
Analyze the application schema. Identify the tables that require an Oracle Label Security policy. In most cases, only a small number of the application tables will require an Oracle Label Security policy. For example, tables that store lookup values or constants usually do not need to be protected with a security policy. However, tables that contain sensitive data, such as patient medical histories or employee salaries, do.	
Analyze the use of data levels. After you identify the candidate tables, evaluate the data in the tables to determine the level of security for the table. Someone who has broad familiarity with business operations can provide valuable assistance with this stage of the analysis.	
Data levels refer to the sensitivity of the data. PUBLIC	
, SENSITIVE	
, and HIGHLY SENSITIVE	
are examples of data levels. You should also consider future sensitivities. Doing so creates a robust set of label definitions.	
Remember that if a data record is assigned a sensitivity label whose level component is lower than the clearance of the user, then a user attempting to read the record is granted access to that row.	
Analyze the data groups. Data groups and data compartments are typically used to control access to data by organization, region, or data ownership. For example, if the application is a sales application, access to the sales data can be controlled by country or region.	
When a data record is assigned a sensitivity label with compartments and groups, a user attempting to read the record must have a user clearance that contains a level that is equal to or greater than the level of the data label, all of its compartments, and at least one of the groups in the sensitivity label. Because groups are hierarchical, a user could have the parent of one of the groups in the sensitivity label assigned to the data label and still be able to access that record.	
This tutorial demonstrates the general concepts of using Oracle Label Security. In it, you will apply security labels to the HR.LOCATIONS	
table. Three users, sking	
, kpartner	
, and ldoran	
will have access to specific rows within this table, based on the cities listed in the LOCATIONS	
table.	
With Oracle Label Security, you restrict user access to data by focusing on row data, and designing different levels of access based on the sensitivity of your data. If you must restrict user access by focusing on user privileges, or some other method such as the job title that the user in your organization has, you can create a PL/SQL function or procedure to use with a Virtual Private Database policy. See "Controlling Data Access with Oracle Virtual Private Database" for more information.	
The schema for HR.LOCATIONS	
is as follows:	
You will apply the following labels:	
Label	Privileges
---	---
CONFIDENTIAL	Read access to the cities Munich, Oxford, and Roma
SENSITIVE	Read access to the cities Beijing, Tokyo, and Singapore
PUBLIC	Read access to all other cities listed in HR.LOCATIONS
In this tutorial:	
In a default Oracle Database installation, Oracle Label Security is installed. However, you must register Oracle Label Security and then enable the default Oracle Label Security account, which is called LBACSYS	
.	
Registering Oracle Label Security with Oracle Database	
After you complete the installation, you must register Oracle Label Security with Oracle Database. You can check if Oracle Label Security is already registered by entering the following SELECT	
statement in SQL*Plus. The PARAMETER	
column is case sensitive, so use the case shown here.	
If the output is TRUE	
, then Oracle Label Security has been registered. Go to "Enabling the Default Oracle Label Security User Account LBACSYS". If it is FALSE	
, then register Oracle Label Security.	
To register Oracle Label Security with Oracle Database:	
SYS	
with the SYSOPER	
privilege and shut down the database. Then from the command line, stop the Database Control console process and listener. For example:	
For Oracle RAC installations, shut down each database instance as follows:	
Oracle	
. ORACLE_BASE\ORACLE_HOME	
\bin	
directory, rename the oralbacll.dll.dbl	
file to oralbacll.dll	
. SYS	
with the SYSOPER	
privilege and restart the database. Then from the command line, restart the listener. For example:	
For Oracle RAC installations, restart each database instance as follows:	
Oracle	
. Typically, dbca	
is in the $ORACLE_HOME/bin	
directory.	
Alternatively, you can start Database Configuration Assistant at a command prompt:	
As with UNIX, typically, dbca	
is in the ORACLE_BASE	
\	
ORACLE_HOME	
\bin	
directory.	
The Operations page appears.	
The Database page appears.	
DBA	
role (for example, user SYS	
). Click Next. The Database Content page appears.	
The Connection Mode page appears.	
Database Configuration Assistant registers Oracle Label Security, and then restarts the database instance.	
orcl	
) from the Services tool in the Control Panel. Enabling the Default Oracle Label Security User Account LBACSYS	
The Oracle Label Security installation process creates a default user account, LBACSYS	
, who manages the Oracle Label Security features. An administrator can create a user who has the same privileges as this user, that is, EXECUTE	
privileges on the SA_SYSDBA	
, SA_COMPONENTS	
, and SA_LABEL_ADMIN	
PL/SQL packages. By default, LBACYS	
is created as a locked account with its password expired. Your next step is to unlock LBACYS	
and create a new password. Because user LBACSYS	
is using Database Control to create the Oracle Label Security policy, you must grant the SELECT ANY DICTIONARY	
privilege to LBACSYS	
.	
To enable the LBACSYS user account:	
SYS	
with the SYSDBA	
privilege. The Users page appears.	
The Edit User page appears.	
For greater security, do not reuse the same password that was used in previous releases of Oracle Database.	
The Modify Roles page appears.	
Click System Privileges.	
The Modify System Privileges page appears.	
SELECT ANY DICTIONARY	
, and then click Move to move it to the Selected System Privileges list. Then click OK to return to the Edit User page. %	
in the Search Package Name field and then click Go. Click OK to return to the Edit User page, and then click Apply to apply the changes.	
You are ready to create a role and three users, and then grant these users the role.	
Creating a Role	
The emp_role	
role provides the necessary privileges for the three users you will create.	
To create the role emp_role:	
SYSTEM	
. The Roles page appears.	
The Create Role page appears.	
EMP_ROLE	
and leave Authentication set to None. The Add Table Object Privileges page appears.	
HR.LOCATIONS	
to select the LOCATIONS	
table in the HR	
schema, and then under Available Privileges, move SELECT	
to the Selected Privileges list. Creating the Users	
The three users you create will have different levels of access to the HR.LOCATIONS	
table, depending on their position. Steven King (sking	
) is the advertising president, so he has full read access to the HR.LOCATIONS	
table. Karen Partners (kpartner	
) is a sales manager who has less access, and Louise Doran (ldoran	
) is a sales representative who has the least access.	
To create the users:	
SYSTEM	
. If you are not already logged in as SYSTEM	
, then select Logout, and then select Login. In the Login page, enter SYSTEM	
and the password assigned to that account. Set Connect As to Normal. Select Login to log in.	
If you are logged in as SYSTEM	
, click the Database Instance link to display the home page.	
The Users page appears.	
The Create User page appears.	
SKING	
DEFAULT	
USERS	
TEMP	
emp_role	
role to sking	
by selecting Edit List. From the Available Roles list, select emp_role	
, and then click Move to move it to the Selected Roles list. Click OK. In the Create User page, ensure that the Default box is selected for both the CONNECT	
and emp_role	
roles. CREATE SESSION	
privileges. Do not grant sking	
the ADMIN OPTION	
option. SKING	
, set Actions to Create Like, and then click Go. The Create User page appears.	
kpartner	
and ldoran	
. Create their names and passwords. (See "Requirements for Creating Passwords".) You do not need to grant roles or system privileges to them. Their roles and system privileges, defined in the sking	
account, are automatically created.	
At this stage, you have created three users who have identical privileges. All of these users have the SELECT	
privilege on the HR.LOCATIONS	
table, through the EMP_ROLE	
role.	
Next, you are ready to create the ACCESS_LOCATIONS	
policy.	
To create the ACCESS_LOCATIONS policy:	
LBACSYS	
. Select Logout, and then select Login. In the Login page, log in as user LBACSYS	
. Set Connect As to Normal. Select Login to log in.	
The Label Security Policies page appears.	
ACCESS_LOCATIONS	
OLS_COLUMN	
Later on, when you apply the policy to a table, the label column is added to that table. By default, the data type of the policy label column is NUMBER(10)	
.	
Usually, the label column is hidden, but during the development phase, you may want to have it visible so that you can check it. After the policy is created and working, hide this column so that it is transparent to applications. Many applications are designed not to show an another column, so hiding the column prevents the application from breaking.	
For all queries (READ_CONTROL)	
To use session's default label for label column update (LABEL_DEFAULT)	
The ACCESS_LOCATIONS	
policy appears in the Label Security Policies page.	
At this stage, you have the policy and have set enforcement options for it. Next, you are ready to create label components for the policy.	
At a minimum, you must create one or more levels, such as PUBLIC	
or SENSITIVE	
; and define a long name, a short name, and a number indicating the sensitivity level. Compartments and groups are optional.	
The level numbers indicate the level of sensitivity needed for their corresponding labels. Select a numeric range that can be expanded later on, in case your security policy needs more levels. For example, to create the additional levels LOW_SENSITIVITY	
and HIGH_SENSITIVITY	
, you can assign them numbers 7300 (for LOW_SENSITIVITY	
) and 7600 (for HIGH_SENSITIVITY	
), so that they fit in the scale of security your policy creates. Generally, the higher the number, the more sensitive the data.	
Compartments identify areas that describe the sensitivity of the labeled data, providing a finer level of granularity within a level. Compartments are optional.	
Groups identify organizations owning or accessing the data. Groups are useful for the controlled dissemination of data and for timely reaction to organizational change. Groups are optional.	
In this step, you define the level components, which reflect the names and relationships of the SENSITIVE	
, CONFIDENTIAL	
, and PUBLIC	
labels that you must create for the ACCESS_LOCATIONS	
policy.	
To define the label components for the ACCESS_LOCATIONS policy:	
The Edit Label Security Policy page appears.	
Long Name	Short Name
---	---
SENSITIVE	SENS
CONFIDENTIAL	CONF
PUBLIC	PUB
In this step, you create data labels for the policy you created in Step 4: Define the ACCESS_LOCATIONS Policy-Level Components. To create the data label, you must assign a numeric tag to each level. Later on, the tag number will be stored in the security column when you apply the policy to a table. It has nothing to do with the sensitivity of the label; it is only used to identify the labels for the policy.	
To create the data labels:	
The Data Labels page appears.	
The Create Data Label page appears.	
1000	
. PUB	
. The data label appears in the Data Labels page.	
CONF	
label as follows: 2000	
. CONF	
from the list. SENS	
label as follows: 3000	
. SENS	
from the list. At this stage, the CONF	
, PUB	
, and SENS	
labels appear in the Data Labels page.	
Later, the tag number will be stored in the security column when you apply the policy to the HR.LOCATIONS	
table. It has nothing to do with the sensitivity of the label; it is only used to identify the labels for the policy.	
Next, you are ready to create user authorizations for the policy.	
To create user authorizations for the policy:	
ACCESS_LOCATIONS	
policy. The Authorization page appears.	
Click Add Users.	
The Add User: Users page appears.	
The Search and Select: Userpage appears. Enter SKING	
, and then click Go.	
Typically, a database user account already has been created in the database, for example, by using the CREATE USER	
SQL statement.	
The other option is Non Database Users. Most application users are considered nondatabase users. A nondatabase user does not exist in the database. This can be any user name that meets the Oracle Label Security naming standards and can fit into the VARCHAR2(30)	
length field. However, be aware that Oracle Database does not automatically configure the associated security information for the nondatabase user when the application connects to the database. In this case, the application must call an Oracle Label Security function to assume the label authorizations of the specified user who is not a database user.	
SKING	
, and then click Select. The Create User page lists user SKING	
.	
(You may need to refresh the page to display user SKING	
's check box.)	
SENS	
(for SENSITIVE	
) CONF	
(for CONFIDENTIAL	
) SENS	
SENS	
Oracle Label Security enforces the policy through the label authorizations. The Privileges page enables the user to override the policy label authorization, so do not select any of its options.	
None	
, and then click Next. The Review page appears.	
Ensure that the settings are correct, and then click Finish.	
The Review page lists all the authorization settings you have selected.	
KPARTNER	
, so that she can read confidential and public data in HR.LOCATIONS	
. CONF	
(for CONFIDENTIAL	
) PUB	
(for PUBLIC	
) CONF	
CONF	
None	
. LDORAN	
, who is only allowed to read public data from HR.LOCATIONS	
: PUB	
. None	
. Next, you are ready to apply the policy to the HR.LOCATIONS	
table.	
To apply the ACCESS_LOCATIONS policy to the HR.LOCATIONS table:	
ACCESS_LOCATIONS	
policy. The Apply page appears.	
The Add Table page appears.	
HR.LOCATIONS	
. The default policy enforcement options for ACCESS_LOCATIONS	
are:	
The ACCESS_LOCATIONS	
policy is applied to the HR.LOCATIONS	
table.	
After you have applied the ACCESS_LOCATIONS	
policy to the HR.LOCATIONS	
table, you must apply the labels of the policy to the OLS_COLUMN	
in LOCATIONS	
. For the user HR	
(the owner of that table) to accomplish this, the user must have FULL	
access to locations before being able to add the data labels to the hidden OLS_COLUMN	
column in LOCATIONS	
.	
Granting HR FULL Policy Privilege for the HR.LOCATIONS Table	
The label security administrative user, LBACSYS	
, can grant HR	
the necessary privilege.	
To grant HR FULL access to the ACCESS_LOCATIONS policy:	
The Authorization page appears.	
The Add Users page appears.	
The Search and Select window appears.	
HR	
, and then click Select. The Create User page lists user HR	
.	
The Audit page appears.	
The Review page appears.	
At this stage, HR	
is listed in the Authorization page with the other users.	
Updating the OLS_COLUMN Table in HR.LOCATIONS	
The user HR	
now can update the OLS_COLUMN	
column in the HR.LOCATIONS	
table to include data labels that will be assigned to specific rows in the table, based on the cities listed in the CITY	
column.	
To update the OLS_COLUMN table in HR.LOCATIONS:	
HR	
. If you cannot log in as HR	
because this account locked and expired, log in as SYSTEM	
and then enter the following statement. Replace password with an appropriate password for the HR	
account. For greater security, do not reuse the same password that was used in previous releases of Oracle Database. See "Requirements for Creating Passwords".	
After you complete this ALTER USER	
statement, try logging in as user HR	
again.	
UPDATE	
statement to apply the SENS	
label to the cities Beijing, Tokyo, and Singapore: UPDATE	
statement to apply the CONF	
label to the cities Munich, Oxford, and Roma: UPDATE	
statement to apply the PUB	
label to the remaining cities: The following output should appear:	
Note: Using the label column name (OLS_COLUMN) explicitly in the preceding query enables you to see the label column, even if it was hidden. If the label column is hidden, and you do not specify the label column name explicitly, then the label column is not displayed in the query results. For example, using the	
The ACCESS_LOCATIONS	
policy is complete and ready to be tested. You can test it by logging in to SQL*Plus as each of the three users and performing a SELECT	
on the HR.LOCATIONS	
table.	
To test the ACCESS_LOCATIONS policy:	
In SQL*Plus, connect as user sking	
.	
Enter the following:	
The following commands format the width of the table columns so that you can read them easier. You only need to perform this step once for the entire session (including when kpartner	
and ldoran	
log in.)	
Now enter the SELECT	
statement as follows:	
User sking	
is able to access all 23 rows of the HR.LOCATIONS	
table. Even though he is only authorized to access rows that are labeled CONF	
and SENS	
, he can still read (but not write to) rows labeled PUB	
.	
kpartner	
and ldoran	
. User KPARTNER	
can access the rows labeled CONF	
and PUB	
:	
User LDORAN	
can access the rows labeled PUB	
:	
Remove the components that you created for this tutorial.	
To remove the components for this tutorial:	
SYSTEM	
. Select user kpartner	
, and then click Delete.	
In the Confirmation page, click Yes.	
ldoran	
and sking	
. emp_role	
, and then click Delete. LABCSYS	
. ACCESS_LOCATIONS	
policy and then click Delete. In the Confirmation page, select the Drop column check box and then click Yes. Deleting the ACCESS_LOCATIONS	
policy also drops the OLS_COLUMN	
column from the HR.LOCATIONS	
table.	
See Oracle Label Security Administrator's Guide for information about removing Oracle Label Security.s	
Oracle Database Vault enables you to restrict administrative access to an Oracle database. This helps you address the most difficult security problems remaining today: protecting against insider threats, meeting regulatory compliance requirements, and enforcing separation of duty.	
Typically, the main job of an Oracle database administrator is to perform tasks such database tuning, installing upgrades, monitoring the state of the database, and then remedying any problems that he or she finds. In a default Oracle Database installation, database administrators also have the ability to create users and access user data. For greater security, you should restrict these activities only to those users who must perform them. This is called separation of duty, and it frees the database administrator to focus on tasks ideally suited to his or her expertise, such as performance tuning.	
By restricting administrator access to your Oracle databases, Oracle Database Vault helps you to follow common regulatory compliance requirements, such as the Payment Card Industry (PCI) Data Security Standard (DSS) requirements, Sarbanes-Oxley (SOX) Act, European Union (EU) Privacy Directive, and Healthcare Insurance Portability and Accountability Act (HIPAA). These regulations require strong internal controls on access, disclosure or modification of sensitive information that could lead to fraud, identity theft, financial irregularities and financial penalties.	
Oracle Database Vault provides the following ways for you to restrict administrator access to an Oracle database:	
SELECT	
, ALTER SYSTEM	
, database definition language (DDL), and data manipulation language (DML) statements that affect one or more database objects. You can associate a rule set to further customize the command rule. You can create these components by using either Oracle Database Vault Administrator, or by using its PL/SQL packages.	
The OE	
schema has several tables that contain confidential data, such as the credit limits allowed for customers and other information. Order Entry tables typically contain sensitive information, such as credit card or Social Security numbers. This type of information must be restricted only to individuals whose job requires access to this information, according to Payment Card Industry (PCI) Data Security Standards (DSS).	
In this tutorial, you create a realm around the OE	
schema, which will protect it from administrator access. However, user SCOTT	
needs access to the OE.CUSTOMERS	
table, so you must ensure that he can continue to access this data.	
In this tutorial:	
Oracle Database Vault is installed when you perform a default installation of Oracle Database. After you install it, you must register Oracle Database Vault with Oracle Database and then enable the Oracle Database Vault Account Manager user account.	
You can check if Oracle Database Vault is enabled by logging in to SQL*Plus and entering the following SELECT	
statement. The PARAMETER	
column is case sensitive, so use the case shown here.	
If it returns TRUE	
, then Oracle Database Vault is registered. Go to "Enabling Database Access Control for the Database Vault Account Manager Account". Otherwise, complete the registration process described in the next section.	
In the registration process, Oracle Database Vault is enabled and you are prompted to create its administrative accounts.	
To register Oracle Database Vault:	
SYS	
with the SYSOPER	
privilege and shut down the database. Then from the command line, stop the Database Control console process and listener. For example:	
For Oracle RAC installations, shut down each database instance as follows:	
Oracle	
. make	
command enables both Oracle Database Vault (dv_on	
) and Oracle Label Security (lbac_on	
). You must enable Oracle Label Security before you can use Database Vault. ORACLE_BASE\ORACLE_HOME	
\bin	
directory, rename the oradvll.dll.dbl	
file to oradvll.dll	
. If Oracle Label Security has not been enabled, then change the name of the oralbacll.dll.dbl	
file to oralbacll.dll	
. You must enable Oracle Label Security before you can use Database Vault. SYS	
with the SYSOPER	
privilege and restart the database. Then from the command line, restart the listener. For example:	
For Oracle RAC installations, restart each database instance as follows:	
Oracle	
. Typically, dbca	
is in the $ORACLE_HOME/bin	
directory.	
Alternatively, you can start Database Configuration Assistant at a command prompt:	
As with UNIX, typically, dbca	
is in the ORACLE_BASE	
\	
ORACLE_HOME	
\bin	
directory.	
The Operations page appears.	
The Database page appears.	
DBA	
role. Click Next. The Database Content page appears.	
The Oracle Database Vault Credentials page appears.	
DBVOWNER	
) and the Database Vault Account Manager (for example, DBVACCTMGR	
). Enter any password that is secure, according to the password guidelines described in "Requirements for Creating Passwords". Oracle Database Vault has additional password requirements, which are displayed if you try to create an incorrect password.	
The Connection Mode page appears.	
Database Configuration Assistant registers Oracle Database Vault, and then restarts the database instance.	
orcl	
) from the Services tool in the Control Panel. The Database Vault Account Manager account must have additional privileges to use Database Control.	
To grant the necessary privileges to the Database Vault Account Manager account:	
SYS	
. In the Login page, enter SYS	
and the password assigned to SYS	
. Set Connect As to SYSDBA. Select Login to log in. See Oracle Database 2 Day DBA for instructions about how to start Database Control.	
The Users page appears.	
DBVACCTMGR	
). To quickly find DBVACCTMGR	
, enter DBV	
in the Object Name field, and then click Go.	
The Edit User page appears.	
The Modify Roles page appears.	
The Modify System Privileges page appears.	
SELECT ANY DICTIONARY	
, and then click Move to move it to the Selected System Privileges list. Then click OK. To test the tutorial later on, user SCOTT	
must select from the OE.CUSTOMERS	
table. First, you should ensure that he SCOTT	
account is active.	
To enable user SCOTT:	
Normal	
privilege. After you install Oracle Database Vault, you no longer can use the administrative accounts (such as SYS	
and SYSTEM	
) to create or enable user accounts. This is because right out of the box, Oracle Database Vault provides separation-of-duty principles to administrative accounts. From now on, to manage user accounts, you must use the Oracle Database Vault Account Manager account.	
However, administrative users still have the privileges they do need. For example, user SYS	
, who owns system privileges and many PL/SQL packages, can still grant privileges on these to other users. However, user SYS	
can no longer create, modify, or drop user accounts.	
The Users page appears.	
The Edit User page appears.	
SCOTT	
account password status is expired, then enter a new password. Enter any password that is secure, according to the password guidelines described in "Requirements for Creating Passwords". To grant user SCOTT the SELECT privilege on the OE.CUSTOMERS table:	
OE	
. SCOTT	
the SELECT	
privilege on the OE.CUSTOMERS	
table. At this stage, both users SYS	
and SCOTT	
can select from the OE.CUSTOMERS	
table, because SYS	
has administrative privileges and because SCOTT	
has an explicit SELECT	
privilege granted by user OE	
.	
To select from OE.CUSTOMERS as users SYS and SCOTT:	
SYS	
using the SYSDBA	
privilege OE.CUSTOMERS	
table as follows: The following output should appear	
SCOTT	
, and then perform the same SELECT	
statement. The following output should appear:	
To restrict the OE.CUSTOMER	
table from administrative access, you will create a realm around the OE	
schema.	
To create a realm around the OE schema:	
Start Oracle Database Vault Administrator.	
In a browser, enter the following URL:	
https://	
host_name	
:	
port	
/dva	
Replace host_name	
with the name of the server on which you installed Oracle Database Vault, and port	
with the Oracle Enterprise Manager Console HTTPS port number. In most cases, the name of the server and port number are the same as those used by Database Control.	
If you cannot start Database Vault Administrator, you may need to manually deploy it. See Oracle Database Vault Administrator's Guide for more information.	
DV_OWNER	
or DV_ADMIN	
account (for example, DBVOWNER	
). myserver.us.example.com	
. orcl	
) of the database, or the service (for example, myserver.us.example.com	
). The Database Instance Administration page appears.	
The Realms page appears.	
The Create Realm page appears.	
OE Protections	
Realm to protect the OE schema	
The Realms page appears, with the OE	
schema listed as a realm. However, it has no protected objects or authorized users yet.	
The Edit Realm page appears.	
The Create Realm Secured Object page appears.	
%	
to specify all tables within the OE	
schema, and then click OK. The Edit Realm page appears.	
The Create Realm Authorization page appears.	
OE [USER]	
, and then set the Authorization Type to Owner. Then set Authorization Rule Set to <Non Selected>. This authorizes the OE	
user to manage access to the objects within the OE	
schema. As an Owner, the OE	
user can grant or revoke realm-secured database roles, and access, manipulate, and create objects protected by the OE	
Protections realm.	
The Authorization Rule Set list enables to you select a rule that further controls access, such as the time the realm is in effect, and so on.	
Now that you have created a realm to protect the OE	
schema, you are ready to test it. You do not need to restart the database session, because any protections you define in Oracle Database Vault take effect right away.	
To test the OE Protections realm:	
SYS	
using the SYSDBA	
privilege. OE.CUSTOMERS	
table. The following output should appear:	
The OE Protections realm prevents the administrative user from accessing the OE.CUSTOMERS	
table. Because you defined the OE Protections realm to protect the entire schema, the administrative user does not have access to any of the other tables in OE	
, either.	
SCOTT	
. OE.CUSTOMERS	
table. The following output should appear:	
The OE Protections realm does not apply to user SCOTT	
because user OE	
has explicitly granted this user the SELECT	
privilege on the OE.CUSTOMERS	
table. Oracle Database Vault sets up the protections you need, but does not override the explicit privileges you have defined. SCOTT	
still can query this table.	
After completing this tutorial, you can remove the data structures that you used if you no longer need them.	
To revoke the SELECT privilege on OE.CUSTOMERS from user SCOTT:	
OE	
. SELECT	
privilege from user SCOTT	
. To drop the OE Protections realm:	
DBVOWNER	
). See Step 1 in "Step 4: Create a Realm to Protect the OE.CUSTOMERS Table" for how to start Database Vault Administrator.	
The Administration page appears.	
The Realms page appears.	
To disable Oracle Database Vault:	
This chapter contains:	
See Also:	
Auditing is the monitoring and recording of selected user database actions. In standard auditing, you use initialization parameters and the AUDIT	
and NOAUDIT	
SQL statements to audit SQL statements, privileges, and schema objects, and network and multitier activities.	
There are also activities that Oracle Database always audits, regardless of whether auditing is enabled. These activities are administrative privilege connections, database startups, and database shutdowns. See Oracle Database Security Guide for more information.	
Another type of auditing is fine-grained auditing. Fine-grained auditing enables you to audit at the most granular level, data access, and actions based on content, using Boolean measurement, such as value > 1000	
. You can use fine-grained auditing to audit activities based on access to or changes in a column. You can create security policies to trigger auditing when someone accesses or alters specified elements in an Oracle database, including the contents within a specified object. You can create policies that define specific conditions that must take place for the audit to occur. For example, you can audit a particular table column to find out when and who tried to access it during a specified period of time. Furthermore, you can create alerts that are triggered when the policy is violated, and write this data to a separate audit file. Oracle Database Security Guide explains how to perform fine-grained auditing.	
You typically use auditing to perform the following activities:	
Oracle Database records audit activities in audit records. Audit records provide information about the operation that was audited, the user performing the operation, and the date and time of the operation. Audit records can be stored in either a data dictionary table, called the database audit trail, or in operating system files, called an operating system audit trail. Oracle Database also provides a set of data dictionary views that you can use to track suspicious activities. See Oracle Database Security Guide for more information about these views.	
When you use standard auditing, Oracle Database writes the audit records to either to DBA_AUDIT_TRAIL	
(the SYS.AUD$	
table), the operating system audit trail, or to the DBA_COMMON_AUDIT_TRAIL	
view, which combines standard and fine-grained audit log records.	
In addition, the actions performed by administrators are recorded in the syslog	
audit trail when the AUDIT_SYSLOG_LEVEL	
initialization parameter is set.	
This section explains how to use standard auditing to audit activities performed on SQL statements, privileges, schema objects, and network or multitier activities.	
This section contains:	
See Also: Oracle Database Security Guide for detailed information about managing the standard audit trail	
In standard auditing, you enable auditing of SQL statements, privileges, schema objects, and network or multitier activities. You can audit a specific schema table if you want. To perform this type of audit, you use Database Control.	
You can view the standard audit trail by querying the DBA_AUDIT_TRAIL	
and DBA_COMMON_AUDIT_TRAIL	
data dictionary views.	
See Also: Oracle Database Security Guide for a roadmap of how and why you can use the different types of audit options available	
Before you perform the standard auditing procedures described in this section, you must enable standard auditing. When you enable standard auditing, you can create the audit trail in the database audit trail or write the audit activities to an operating system file. If you write to an operating system file, you can create the audit record in text or XML format.	
To enable or disable the standard audit trail:	
SYS	
and connect with the SYSDBA	
privilege. SYS	
SYSDBA	
The Initialization Parameters page appears.	
If the SPFile tab does not display in your installation, then you did not install Oracle Database using a server parameters file. Go to the next step.	
In the Name field, enter audit_trail	
to find the AUDIT_TRAIL	
initialization parameter, and then click Go.	
You can enter the first few characters of the parameter, for example, AUDIT_	
. Alternatively, you can scroll down the list of parameters to find the AUDIT_TRAIL	
parameter.	
DB	
: Enables database auditing and directs standard audit records to the database audit trail (SYS.AUD$	
), except for records that are always written to the operating system audit trail. (This value is the default if you created the database using Database Configuration Assistant. Otherwise, the default is NONE	
.) OS	
: Enables database auditing and directs all audit records to an operating system file. Writing the audit trail to operating system files is better for performance instead of sending the audit records to the SYS.AUD$	
table. If the auditor is distinct from the database administrator, you must use the operating system	
setting. Any auditing information stored in the database is viewable and modifiable by the database administrator. To specify the location of the operating system audit record file, set the AUDIT_FILE_DEST	
initialization parameter. The first default directory is $ORACLE_BASE/admin/$ORACLE_SID/adump	
.	
NONE	
: Disables standard auditing. DB, EXTENDED	
: Performs all actions of the AUDIT_TRAIL=DB	
setting and also populates the SQL bind and SQL text CLOB-type columns of the SYS.AUD$	
table, when available. (These two columns are populated only when this parameter is specified.) XML	
: Writes to the operating system audit record file in XML format. Prints all elements of the AuditRecord	
node (as specified by the by the XML schema in http://xmlns.oracle.com/oracleas/schema/dbserver_audittrail-11_2.xsd	
XSD file) except Sql_Text	
and Sql_Bind	
to the operating system XML audit file. This .xsd	
file represents the schema definition of the XML audit file. An XML schema is a document written in the XML Schema language. EXTENDED	
: Specifies XML, EXTENDED	
, which performs all actions of XML	
and also populates the SQL bind and SQL text CLOB-type columns of the SYS.AUD$	
table, wherever possible. (These columns are populated only when this parameter is specified.) For a detailed explanation of the AUDIT_TRAIL	
initialization parameter settings, see Oracle Database Security Guide.	
See Oracle Database 2 Day DBA for more information.	
Note the following:	
AUDIT_TRAIL	
to enable either fine-grained auditing or SYS	
auditing. (SYS	
auditing enables you to monitor the activities of a system administrator. See Oracle Database Security Guide for more information.) For fine-grained auditing, you add and remove fine-grained auditing policies as necessary, applying them to the specific operations or objects you want to monitor. You can use the AUDIT_SYS_OPERATIONS	
parameter to enable and disable SYS	
auditing. When you use Database Configuration Assistant (DBCA) to create a new database, Oracle Database configures the database to audit the most commonly used security-relevant SQL statements and privileges. It also sets the AUDIT_TRAIL	
initialization parameter to DB	
. If you decide to use a different audit trail type (for example, OS	
if you want to write the audit trail records to operating system files), then you can do that: Oracle Database continues to audit the privileges that are audited by default. If you disable auditing by setting the AUDIT_TRAIL	
parameter to NONE	
, then no auditing takes place.	
Oracle Database audits the following privileges by default:	
ALTER ANY PROCEDURE	CREATE ANY LIBRARY
ALTER ANY TABLE	CREATE ANY PROCEDURE
ALTER DATABASE	CREATE ANY TABLE
ALTER PROFILE	CREATE EXTERNAL JOB
ALTER SYSTEM	CREATE PUBLIC DATABASE LINK
ALTER USER	CREATE SESSION
AUDIT SYSTEM	CREATE USER
CREATE ANY JOB	DROP ANY PROCEDURE
Oracle Database audits the following SQL statement shortcuts by default:	
ROLE	SYSTEM AUDIT
DATABASE LINK	PROFILE
To individually control the auditing of SQL statements and privileges, use the AUDIT	
and NOAUDIT	
statements.	
Oracle strongly recommends that you audit the database. Auditing is an effective method of enforcing strong internal controls so that your site can meet its regulatory compliance requirements, as defined in the Sarbanes-Oxley Act. This enables you to monitor business operations and catch any activities that may deviate from company policy. Doing so translates into tightly controlled access to your database and the application software. By enabling auditing by default, you can generate an audit record for audit and compliance personnel.	
Note: If your applications use the default audit settings from Oracle Database 10g Release 2 (10.2), then you can revert to these audit settings until you modify the applications to use the Release 11g audit settings. To do so, run theundoaud.sql script. After you have modified your applications to conform to the Release 11g audit settings, then you can manually update your database to use the audit configuration that suits your business needs, or you can run the The	
See Also:	
The SQL statements that you can audit are in the following categories:	
AUDIT	
TABLE	
) audits all CREATE	
and DROP	
TABLE	
statements SELECT	
TABLE	
audits all SELECT	
... FROM	
TABLE/VIEW	
statements, regardless of the table or view Statement auditing can be broad or focused, for example, by auditing the activities of all database users or of only a select list of users.	
Privilege auditing is a way to audit statements that can use a system privilege. For example, you can audit the SELECT ANY TABLE	
privilege if you want to audit all the SELECT	
statements that will use the SELECT ANY TABLE	
privilege. You can audit the use of any system privilege. Similar to statement auditing, privilege auditing can audit the activities of all database users or of only a specified list. As with SQL statement auditing, you use the AUDIT	
and NOAUDIT	
statements to enable and disable privilege auditing. In addition, you must have the AUDIT SYSTEM	
system privilege before you can enable auditing.	
Privilege audit options match the corresponding system privileges. For example, the option to audit use of the DELETE ANY TABLE	
privilege is DELETE ANY TABLE	
. For example:	
To audit all successful and unsuccessful uses of the DELETE ANY TABLE	
system privilege, enter the following statement:	
To audit all unsuccessful SELECT	
, INSERT	
, and DELETE	
statements on all tables and unsuccessful uses of the EXECUTE PROCEDURE	
system privilege, by all database users, and by individual audited statement, issue the following statement:	
You can audit the activities of a client in a multitier environment by specifying a proxy in the Add Audited Statements or Add Audited Privileges page in Database Control. You can use the SQL AUDIT	
statement to audit the activities of a client in a multitier environment. To do so, use the BY	
user	
clause in the AUDIT	
statement.	
For example, to audit SELECT TABLE	
statements issued by the proxy application user jackson	
:	
Afterward, user jackson	
can connect using the appserve	
proxy user as follows:	
The middle tier can also set the user client identity in a database session, enabling the auditing of user actions through the middle-tier application. The user client identity then shows up in the audit trail.	
See Also: Oracle Database Security Guide for detailed information about auditing in a multitier environment	
Schema object auditing can audit all SELECT	
and DML statements permitted by object privileges, such as SELECT	
or DELETE	
statements on a particular table. The GRANT	
and REVOKE	
statements that control those privileges are also audited.	
You can use the AUDIT	
statement to audit unexpected errors in network protocol or internal errors in the network layer. The types of errors uncovered by network auditing are not connection failures, but can have several other possible causes. One possible cause is an internal event set by a database engineer for testing purposes. Other causes include conflicting configuration settings for encryption, such as the network not finding the information required to create or process expected encryption.	
To enable network auditing:	
SYSTEM	
, or as a security administrator. For example: SQL*Plus starts, connects to the default database, and then displays a prompt.	
For detailed information about starting SQL*Plus, see Oracle Database 2 Day DBA.	
To disable network auditing, enter the following:	
Suppose you wanted to audit SELECT	
statements on the OE.CUSTOMERS	
table. In this tutorial, you enable standard auditing, enable auditing for the SELECT	
SQL statement, run the SELECT	
SQL statement on the OE.CUSTOMERS	
table, and then check its audit file.	
In this tutorial:	
First, log in, and, if necessary, enable standard auditing.	
To enable standard auditing:	
SYS	
. SYS	
SYSDBA	
The Initialization Parameters page appears.	
If the SPFile tab does not display in your installation, then you did not install Oracle Database using a server parameters file. Go to the next step.	
In the Name field, enter AUDIT_TRAIL	
to find the AUDIT_TRAIL	
parameter, and then click Go.	
You can enter the first few characters of the parameter, for example, AUDIT	
. Alternatively, you can scroll down the list of parameters to find the AUDIT_TRAIL	
parameter. To sort the list of parameters in alphabetical order, click the Name column.	
DB_EXTENDED	
. By default, the AUDIT_TRAIL	
parameter is set to DB	
, which enables database auditing and directs all audit records to the database audit trail (SYS.AUD$	
), except for records that are always written to the operating system audit trail. DB_EXTENDED	
has this functionality, plus it records SQL text and SQL bind variables.	
From a command line, enter the following commands:	
At this point, you can check the AUDIT_TRAIL	
setting by entering the following command:	
Next, enable auditing for SELECT	
statements on the OE.CUSTOMERS	
table.	
To enable auditing of SELECT statements for the OE.CUSTOMERS table:	
sec_admin	
exists. Log on as SYSTEM	
, and then from the Database Control home page, click Server to display the Server subpage. Select Users under Security, and check the list of accounts for sec_admin	
. "Step 1: Create a Security Administrator Account" explains how to create the sec_admin	
security administrator account. If you still have Oracle Database Vault enabled, then you must recreate the account using the Database Vault Account Manager account.	
OE	
and then grant sec_admin	
the SELECT	
privilege on the OE.CUSTOMERS	
table. SYS	
with the SYSDBA	
privilege. The Audit Settings page appears.	
The Add Audited Object page appears.	
Table	
. OE.CUSTOMERS	
. SELECT	
, and then click Move to move it to the Selected Statements list. At this stage, auditing is enabled and any SELECT	
statements performed on the OE.CUSTOMERS	
table are written to the to DBA_AUDIT_TRAIL	
data dictionary view. Now, you are ready to test the audit settings.	
To test the audit settings:	
sec_admin	
. Enter the following SELECT	
statement to create an alert in the audit trail:	
DBA_AUDIT_TRAIL	
view: For this SELECT	
statement, enter the text for the SQL_TEXT	
column ('SELECT %'	
) using the same case that you used when you entered the SELECT	
statement in Step 2. In other words, if you entered that SELECT	
statement in lowercase letters, then enter 'select %'	
when you query the DBA_AUDIT_TRAIL	
view, not 'SELECT %'	
.	
Output similar to the following appears:	
Optionally, remove the audit settings that you created earlier.	
To remove the audit settings in Database Control:	
SYS	
with the SYSDBA	
privilege. The Audit Settings page appears.	
OE	
. CUSTOMERS	
. OE.CUSTOMERS	
audited schema, and then click Remove. A Confirmation dialog box appears.	
AUDIT_TRAIL	
parameter and then set it to the original value. Click Apply. This is the last example in this guide. If you no longer need the sec_admin	
administrator account, then you should remove it.	
To remove the sec_admin security administrator account:	
SYSTEM	
. If Oracle Database Vault is enabled, then you must log on as the Database Vault Account Manager.	
The Users page appears.	
sec_admin	
. sec_admin	
user account, and then click Delete. A Confirmation dialog box appears.	
This section contains the following topics:	
When you create a new database, you can enable the auditing of a select set of SQL statements and privileges. Oracle recommends that you enable default auditing. Auditing is an effective method of enforcing strong internal controls so that your site meets its regulatory compliance requirements. See "Using Default Auditing for Security-Relevant SQL Statements and Privileges" for more information about default auditing.	
Although auditing has a minimal impact on database performance, limit the number of audited events as much as possible. This minimizes the performance impact on the execution of audited statements and the size of the audit trail, making it easier to analyze and understand.	
Follow these guidelines when devising an auditing strategy:	
After you understand of the reasons for auditing, you can devise an appropriate auditing strategy and avoid unnecessary auditing.	
For example, suppose you are auditing to investigate suspicious database activity. This information by itself is not specific enough. What types of suspicious database activity do you suspect or have you noticed? A more focused auditing purpose might be to audit unauthorized deletions from arbitrary tables in the database. This purpose narrows the type of action being audited and the type of object being affected by the suspicious activity.	
Audit the minimum number of statements, users, or objects required to get the targeted information. This prevents unnecessary audit information from cluttering the meaningful information. Balance your need to gather sufficient security information with your ability to store and process it.	
For example, if you are auditing to gather information about database activity, then determine exactly what types of activities you want to track, audit only the activities of interest, and audit only for the amount of time necessary to gather the information that you want. As another example, do not audit objects if you are only interested in logical I/O information for each session.	
When your purpose for auditing is to gather historical information about particular database activities, follow these guidelines:	
To avoid cluttering meaningful information with useless audit records and to reduce the amount of audit trail administration, audit only the targeted database activities. You can audit specific actions by using fine-grained auditing. Oracle Database Security Guide describes fine-grained auditing in detail.	
After you collect the required information, archive the audit records of interest, and purge the audit trail of this information.	
To archive audit records, you copy the relevant records to a database table, for example, using INSERT INTO	
table	
SELECT ... FROM SYS.AUD$...	
for the standard audit trail. (Fine-grained audit records are in the SYS.FGA_LOG$	
table.) Alternatively, you can export the audit trail table to an operating system file. Oracle Database Utilities explains how to export tables by using Oracle Data Pump.	
To purge audit records, you delete standard audit records from the SYS.AUD$	
table and fine-grained audit records from the SYS.FGA_LOG$	
table. For example, to delete all audit records from the standard audit trail, enter the following statement:	
Alternatively, to delete all audit records from the standard audit trail generated as a result of auditing the table emp	
, enter the following statement:	
Privacy regulations often lead to additional business privacy policies. Most privacy laws require businesses to monitor access to personally identifiable information (PII), and this type of monitoring is implemented by auditing. A business-level privacy policy should address all relevant aspects of data access and user accountability, including technical, legal, and company policy concerns.	
When you audit to monitor suspicious database activity, follow these guidelines:	
When you start to audit for suspicious database activity, often not much information is available to target specific users or schema objects. Therefore, set audit options more generally at first, that is, by using the standard audit options described in "Auditing General Activities Using Standard Auditing".	
After you have recorded and analyzed the preliminary audit information, disable general auditing, and then audit specific actions. You can use fine-grained auditing, described in Oracle Database Security Guide, to audit specific actions. Continue this process until you gather enough evidence to draw conclusions about the origin of the suspicious database activity.	
When auditing for suspicious database activity, protect the audit trail so that audit information cannot be added, changed, or deleted without being audited. You audit the standard audit trail by using the AUDIT	
SQL statement. For example:	
Table 7-1 lists initialization parameters that you can use to secure auditing.	
Table 7-1 Initialization Parameters Used for Auditing	
Initialization Parameter	Default Setting
---	---
Enables or disables auditing. See "Enabling or Disabling the Standard Audit Trail" for detailed information. For a full listing of the	
or	
Specifies the operating system directory into which the audit trail is written when the Oracle Database also writes mandatory auditing information to this location, and if the	
Enables or disables the auditing of top-level operations directly issued by user On UNIX systems, if you have also set the	
No default setting | On UNIX systems, writes the |
To modify an initialization parameter, see "Modifying the Value of an Initialization Parameter". For detailed information about initialization parameters, see Oracle Database Reference and Oracle Database Administrator's Guide.
Copyright © 2006, 2011, Oracle and/or its affiliates. All rights reserved. |