XStream Guide
11g Release 2 (11.2)
E16545-05
October 2010
Oracle Database XStream Guide, 11g Release 2 (11.2)
E16545-05
Copyright © 2009, 2010, Oracle and/or its affiliates. All rights reserved.
Primary Author: Randy Urbano
Contributors: Lance Ashdown, Vinoth Chandar, Alan Downing, Thuvan Hoang, Richard Huang, Joydip Kundu, Tianshu Li, Edwina Lu, Rui Mao, Pat McElroy, Valarie Moore, Srikanth Nalla, Partha Raghunathan, Ashish Ray, Jim Stamos, Byron Wang, Lik Wong, Jun Yuan, Rod Ward, Haobo Xu, Kevin Xu
This software and related documentation are provided under a license agreement containing restrictions on use and disclosure and are protected by intellectual property laws. Except as expressly permitted in your license agreement or allowed by law, you may not use, copy, reproduce, translate, broadcast, modify, license, transmit, distribute, exhibit, perform, publish, or display any part, in any form, or by any means. Reverse engineering, disassembly, or decompilation of this software, unless required by law for interoperability, is prohibited.
The information contained herein is subject to change without notice and is not warranted to be error-free. If you find any errors, please report them to us in writing.
If this software or related documentation is delivered to the U.S. Government or anyone licensing it on behalf of the U.S. Government, the following notice is applicable:
U.S. GOVERNMENT RIGHTS Programs, software, databases, and related documentation and technical data delivered to U.S. Government customers are "commercial computer software" or "commercial technical data" pursuant to the applicable Federal Acquisition Regulation and agency-specific supplemental regulations. As such, the use, duplication, disclosure, modification, and adaptation shall be subject to the restrictions and license terms set forth in the applicable Government contract, and, to the extent applicable by the terms of the Government contract, the additional rights set forth in FAR 52.227-19, Commercial Computer Software License (December 2007). Oracle USA, Inc., 500 Oracle Parkway, Redwood City, CA 94065.
This software is developed for general use in a variety of information management applications. It is not developed or intended for use in any inherently dangerous applications, including applications which may create a risk of personal injury. If you use this software in dangerous applications, then you shall be responsible to take all appropriate fail-safe, backup, redundancy, and other measures to ensure the safe use of this software. Oracle Corporation and its affiliates disclaim any liability for any damages caused by use of this software in dangerous applications.
Oracle is a registered trademark of Oracle Corporation and/or its affiliates. Other names may be trademarks of their respective owners.
This software and documentation may provide access to or information on content, products, and services from third parties. Oracle Corporation and its affiliates are not responsible for and expressly disclaim all warranties of any kind with respect to third-party content, products, and services. Oracle Corporation and its affiliates will not be responsible for any loss, costs, or damages incurred due to your access to or use of third-party content, products, or services.
Oracle Database XStream Guide describes the features and functionality of XStream. This document contains conceptual information about XStream, along with information about configuring and managing an XStream environment. In addition, this document contains reference information related to XStream.
This guide is intended for database administrators who configure and manage XStream environments. To use this document, database administrators must be familiar with relational database concepts, SQL, distributed database administration, Oracle Streams concepts, PL/SQL, and the operating systems under which they run an XStream environment.
This guide is also intended for programmers who develop applications that use XStream. To use this document, programmers need knowledge of an application development language and relational database concepts.
Our goal is to make Oracle products, services, and supporting documentation accessible to all users, including users that are disabled. To that end, our documentation includes features that make information available to users of assistive technology. This documentation is available in HTML format, and contains markup to facilitate access by the disabled community. Accessibility standards will continue to evolve over time, and Oracle is actively engaged with other market-leading technology vendors to address technical obstacles so that our documentation can be accessible to all of our customers. For more information, visit the Oracle Accessibility Program Web site at http://www.oracle.com/accessibility/
.
Accessibility of Code Examples in Documentation
Screen readers may not always correctly read the code examples in this document. The conventions for writing code require that closing braces should appear on an otherwise empty line; however, some screen readers may not always read a line of text that consists solely of a bracket or brace.
Accessibility of Links to External Web Sites in Documentation
This documentation may contain links to Web sites of other companies or organizations that Oracle does not own or control. Oracle neither evaluates nor makes any representations regarding the accessibility of these Web sites.
Access to Oracle Support
Oracle customers have access to electronic support through My Oracle Support. For information, visit http://www.oracle.com/support/contact.html
or visit http://www.oracle.com/accessibility/support.html
if you are hearing impaired.
For more information, see the following documents:
Many of the examples in this book use the sample schemas of the sample database, which is installed by default when you install Oracle Database. Refer to Oracle Database Sample Schemas for information about how these schemas were created and how you can use them yourself.
The following text conventions are used in this document:
Convention	Meaning
boldface	Boldface type indicates graphical user interface elements associated with an action, or terms defined in text or the glossary.
italic	Italic type indicates book titles, emphasis, or placeholder variables for which you supply particular values.
monospace	Monospace type indicates commands within a paragraph, URLs, code in examples, text that appears on the screen, or text that you enter.
This chapter contains concepts related to XStream, a new feature in Oracle Database 11g Release 2 (11.2). XStream enables heterogeneous information sharing with outstanding performance and usability.	
This chapter contains these topics:	
XStream consists of Oracle Database components and application programming interfaces (APIs) that enable client applications to receive data changes from an Oracle database and send data changes to an Oracle database. These data changes can be shared between Oracle databases and other systems. The other systems include non-Oracle databases, non-RDBMS Oracle products, file systems, third party software applications, and so on. A client application is designed by the user for specific purposes and use cases.	
XStream consists of two major features: XStream Out and XStream In. XStream Out provides Oracle Database components and APIs that enable you to share data changes made to an Oracle database with other systems. XStream In provides Oracle Database components and APIs that enable you to share data changes made to other systems with Oracle databases. You can configure XStream database components using the DBMS_XSTREAM_ADM	
package and other Oracle supplied packages.	
XStream is built on the infrastructure of Oracle Streams. Therefore, XStream inherits the flexibility and functionality of Oracle Streams, including:	
An LCR is a message with a specific format that describes a database change. If the change was a data manipulation language (DML) operation, then a row LCR encapsulates each row change resulting from the DML operation. One DML operation might result in multiple row changes, and so one DML operation might result in multiple row LCRs. If the change was a data definition language (DDL) operation, then a single DDL LCR encapsulates the DDL change.	
LONG	
, LONG	
RAW	
, and XMLType	
Note: When learning about and using XStream, a general knowledge of Oracle Streams concepts is helpful. See the following documents for conceptual information about Oracle Streams:	
XStream Out can capture transactions from the redo log of an Oracle database and send them efficiently to a client application. XStream Out provides a transaction-based interface for streaming these changes to client applications. The client application can interact with other systems, including non-Oracle systems, such as non-Oracle databases or file systems.	
XStream Out has both OCI and Java interfaces and supports all of the data types that are supported by Oracle Streams, including LOBs, LONG	
, LONG	
RAW	
, and XMLType	
.	
This section contains these topics:	
With XStream Out, an Oracle Streams apply process functions as an outbound server. An outbound server is an optional Oracle background process that sends database changes to a client application. Specifically, a client application can attach to an outbound server and extract database changes from LCRs. A client application attaches to the outbound server using the OCI or Java interface.	
A client application can create multiple sessions. Each session can attach to only one outbound server, and each outbound server can serve only one session at a time. However, different client application sessions can connect to different outbound servers or inbound servers.	
In an XStream Out configuration, a capture process captures database changes and sends these changes to an outbound server. A capture process is an optional Oracle background process that scans the database redo log to capture DML and DDL changes made to database objects. When a capture process is configured to capture changes from the redo log, the database where the changes were generated is called the source database for the capture process.	
Figure 1-1 shows a capture process.	
Change capture can be performed on the same database as the outbound server or on a different database. When change capture is performed on a different database from the one that contains the outbound server, a propagation sends the changes from the change capture database to the outbound server database. Downstream capture is also a supported mode to reduce the load on the source database.	
When both the capture process and the outbound server are enabled, data changes, encapsulated in row LCRs and DDL LCRs, are sent to the outbound server. The outbound server can publish LCRs in various formats, such as OCI and Java. The client application can process LCRs that are passed to it from the outbound server or wait for LCRs from the outbound server by using a loop.	
An outbound server sends LOB, LONG	
, LONG	
RAW	
, and XMLType	
data to the client application in chunks. Several chunks comprise a single column value of LOB, LONG	
, LONG	
RAW	
, or XMLType	
data type.	
Figure 1-2 shows an outbound server configuration.	
The client application can detach from the outbound server whenever necessary. When the client application re-attaches, the outbound server automatically determines where in the stream of LCRs the client application was when it detached. The outbound server starts sending LCRs from this point forward.	
See Also: Oracle Streams Concepts and Administration for detailed information about capture processes	
An Oracle Streams apply process functions as an outbound server, but some apply process features are not applicable to an outbound server. The following sections describe which apply process features are applicable to outbound servers and which are not:	
The following apply process features can be used with outbound servers:	
When a custom rule-based transformation is specified on a rule used by an outbound server, the user who calls the transformation function is the connect user for the outbound server.	
apply_sequence_nextval	
disable_on_limit	
grouptransops	
ignore_transaction	
max_sga_size	
maximum_scn	
startup_seconds	
time_limit	
trace_level	
transaction_limit	
txn_age_spill_threshold	
txn_lcr_spill_threshold	
write_alert_log	
These apply process parameters control the behavior of outbound servers.	
Note: Starting with Oracle Database 11g Release 2 (11.2.0.2), the following parameters are available:apply_sequence_nextval , ignore_transaction , grouptransops , and max_sga_size .	
Instantiation SCNs are not required for database objects processed by an outbound server. If an instantiation SCN is set for a database object, then the outbound server only sends the LCRs for the database object with SCN values that are greater than the instantiation SCN value. If a database object does not have an instantiation SCN set, then the outbound server skips the instantiation SCN check and sends all LCRs for that database object. In both cases, the outbound server only sends LCRs that satisfy its rule sets.	
The following apply process features cannot be used with outbound servers:	
You cannot specify an apply handler for an outbound server. The client application can perform custom processing of the LCRs instead if necessary. However, if apply processes are configured in the same database as the outbound server, then you can specify apply handlers for these apply processes. In addition, you can configure general apply handlers for the database. An outbound server ignores general apply handlers.	
allow_duplicate_rows	
commit_serialization	
compare_key_only	
disable_on_error	
parallelism	
preserve_encryption	
rtrim_on_implicit_conversion	
Outbound servers ignore the settings for these apply process parameters.	
The commit_serialization	
parameter is always set to FULL	
for an outbound server, and the parallelism	
parameter is always set to 1	
for an outbound server.	
Note: Starting with Oracle Database 11g Release 2 (11.2.0.2), thecompare_key_only parameter is available.	
An outbound server cannot set an apply tag for the changes it processes.	
Outbound servers cannot use database links.	
An outbound server does not detect conflicts, and conflict resolution cannot be set for an outbound server.	
An outbound server does not evaluate dependencies because its parallelism must be 1.	
An outbound server ignores substitute key column settings.	
SET_ENQUEUE_DESTINATION	
procedure in the DBMS_APPLY_ADM	
package An outbound server cannot enqueue changes into an Oracle database queue automatically using the SET_ENQUEUE_DESTINATION	
procedure.	
SET_EXECUTE	
procedure in the DBMS_APPLY_ADM	
package An outbound server ignores execute directives.	
An outbound server does not create an error transaction when it encounters an error. It records information about errors in the ALL_APPLY	
and DBA_APPLY	
views, but it does not enqueue the transaction into the error queue.	
Note: This functionality is available starting with Oracle Database 11g Release 2 (11.2.0.2).	
XStream Out does not support the following data types in row LCRs:	
BFILE	
ROWID	
These data type restrictions pertain to both ordinary (heap-organized) tables and index-organized tables.	
ID key LCRs enable an XStream client application to process changes to rows that include unsupported data types. ID key LCRs do not contain all of the columns for a row change. Instead, they contain the rowid of the changed row, a group of key columns to identify the row in the table, and the data for the scalar columns of the table that are supported by XStream Out. ID key LCRs do not contain columns for unsupported data types.	
An XStream client application can use ID key LCRs in the following ways:	
A demo is available that creates a sample client application that process ID key LCRs. Specifically, the client application attaches to an XStream outbound server and waits for LCRs from the outbound server. When the client application receives an ID key LCR, it can query the appropriate source database table using the rowid in the ID key LCR.	
The demo is available in the following location in both OCI and Java code:	
Note: This functionality is available starting with Oracle Database 11g Release 2 (11.2.0.2).	
A sequence LCR is a row LCR that includes information about sequence values. Sequence database objects generate sequence values.	
You can stream sequence LCRs in the following ways:	
capture_sequence_nextval	
to Y	
. OCILCRNew	
function and the OCILCRHeaderSet	
function with the OCI_ROWLCR_SEQ_LCR	
flag. DefaultRowLCR	
constructor and setSequenceLCRFlag	
method. An apply process or XStream inbound server can use sequence LCRs to ensure that the sequence values at a destination database use the appropriate values. For increasing sequences, the sequence values at the destination are equal to or greater than the sequence values at the source database. For decreasing sequences, the sequence values at the destination are less than or equal to the sequence values at the source database. To instruct an apply process or XStream inbound server to use sequence LCRs, set the apply_sequence_nextval	
apply process parameter to Y	
.	
Note: Sequence LCRs are intended for one-way replication configurations. Sequence LCRs cannot be used in bi-directional replication configurations.	
See Also:	
The following are considerations for XStream outbound servers:	
You can perform distributed transactions using either of the following methods:	
DBMS_XA	
supplied PL/SQL package or by the OCI or JDBC libraries. The XA interface implements X/Open Distributed Transaction Processing (DTP) architecture. In an XStream Out configuration, changes made to the source database during a distributed transaction using either of the preceding methods are streamed to an XStream outbound server. The outbound server sends the changes in a transaction to the XStream client application after the transaction has committed.	
However, the distributed transaction state is not replicated or sent. The client application does not inherit the in-doubt or prepared state of such a transaction. Also, XStream does not replicate or send the changes using the same global transaction identifier used at the source database for XA transactions.	
XA transactions can be performed in two ways:	
XStream supports replication of changes made by loosely coupled XA branches regardless of the COMPATIBLE	
initialization parameter value. XStream supports replication of changes made by tightly coupled branches on an Oracle RAC source database only if the COMPATIBLE	
initialization parameter is set to 11.2.0	
or higher.	
See Also:	
XStream In enables a remote client application to send information into an Oracle database from another system, such as a non-Oracle database or a file system. XStream In provides an efficient, transaction-based interface for sending information to an Oracle database from client applications. XStream In can consume the information coming into the Oracle database in several ways, including data replication, auditing, and change data capture. XStream In supports both OCI and Java interfaces.	
When compared with OCI client applications that make DML changes to an Oracle database directly, XStream In is more efficient for near real-time, transaction-based, heterogeneous DML changes to Oracle databases.	
XStream In uses the following features of Oracle Streams:	
When a custom rule-based transformation is specified on a rule used by an inbound server, the user who calls the transformation function is the apply user for the inbound server.	
XStream In supports all of the data types that are supported by Oracle Streams, including LOBs, LONG	
, LONG	
RAW	
, and XMLType	
. A client application sends LOB and XMLType	
data to the inbound server in chunks. Several chunks comprise a single column value of LOB, LONG	
, LONG	
RAW	
, or XMLType	
data type.	
This section contains these topics:	
With XStream In, an Oracle Streams apply process functions as an inbound server. An inbound server is an optional Oracle background process that receives LCRs from a client application. Specifically, a client application can attach to an inbound server and send row changes and DDL changes encapsulated in LCRs.	
An external client application connects to the inbound server using the OCI or the Java interface. After the connection is established, the client application acts as the capture agent for the inbound server by streaming LCRs to it.	
A client application can create multiple sessions. Each session can attach to only one inbound server, and each inbound server can serve only one session at a time. However, different client application sessions can connect to different inbound servers or outbound servers. A client application can detach from the inbound server whenever necessary.	
Figure 1-3 shows an inbound server configuration.	
Note: An inbound server uses a queue that is not shown in Figure 1-3. An inbound server's queue is only used to store error transactions.	
The following are considerations for XStream inbound servers:	
SET_TRIGGER_FIRING_PROPERTY	
procedure in the DBMS_DDL	
package. This procedure lets you specify whether a trigger always fires, fires once, or fires for apply process changes only. When a trigger is set to fire once, it fires for changes made by a user process, but it does not fire for changes made by an apply process or inbound server. A trigger's firing property works the same for apply processes and inbound servers. See Oracle Streams Concepts and Administration. ignore_transaction	
apply process parameter because LCRs sent to the inbound server by the client application might not have transaction ID values. Note: Starting with Oracle Database 11g Release 2 (11.2.0.2), theignore_transaction parameter is available for outbound servers and apply processes.	
maximum_scn	
apply process parameter because LCRs sent to the inbound server by the client application might not have SCN values. See Also: Oracle Database PL/SQL Packages and Types Reference for more information about apply process parameters	
The following sections describe the position order in an LCR stream for both XStream Out and XStream In:	
Both XStream Out and XStream In use LCR streams to share transactions. XStream Out sends LCR streams to a client application. XStream In receives LCR streams from a client application.	
Each LCR has a position attribute. The position of an LCR identifies its placement in the stream of LCRs in a transaction. Each LCR position has the following properties:	
RAW	
data type. XStream Out only sends committed data, and XStream In only receives committed data.	
The following are the properties related to an LCR stream:	
An LCR stream can batch LCRs from multiple transactions and arrange them in increasing position order. LCRs from one transaction are contiguous, and the position must be increasing in the transaction. Also, the position must be nonzero for all LCRs.	
An XStream Out outbound server streams LCRs that were captured by a capture process to a client application. This section describes concepts related to the LCR positions for an outbound server.	
LCRs that were captured by a capture process contain the following additional attributes related to LCR position:	
scn_from_position	
attribute contains the SCN of the LCR. commit_scn_from_position	
attribute contains the commit SCN of the transaction to which the LCR belongs. Note: Thescn_from_position and commit_scn_from_position attributes are not present in row LCRs captured by a synchronous capture nor in explicitly captured row LCRs.	
If the outbound server or the client application stops abnormally, then the connection between the two is broken automatically. In this case, the client application must roll back all incomplete transactions.	
The processed low position is a position below which all transactions have been processed by the client application. The client application must maintain its processed low position to recover properly after either it or the outbound server (or both) are restarted. The processed low position indicates that the client application has processed all LCRs that are less than or equal to this value. The client application can update the processed low position for each transaction that it consumes.	
When the client application attaches to the outbound server, the following conditions related to the processed low position are possible:	
NULL	
to the outbound server. In this case, the outbound server determines the processed low position automatically and starts streaming LCRs from the LCR that has a position greater than this processed low position. When this happens, the client application must suppress or discard each LCR with a position less than or equal to the client application's processed low position. To minimize network latency, the outbound server streams LCRs to the client application with time-based acknowledgments. For example, the outbound server might send an acknowledgment every 30 seconds. This streaming protocol fully utilizes the available network bandwidth, and the performance is unaffected by the presence of a wide area network (WAN) separating the sender and the receiver. The outbound server extends the underlying Oracle Streams infrastructure, and the outbound server maintains the streaming performance rate.	
Using OCI, you can control the time period of the interval by setting the OCI_ATTR_XSTREAM_ACK_INTERVAL	
attribute through the OCI client application. The default is 30 seconds.	
Using Java, you can control the time period of the interval by setting the batchInterval	
parameter in the attach	
method in the XStreamOut	
class. The client application can specify this interval when it invokes the attach	
method.	
If the interval is large, then the outbound server can stream out more LCRs for each acknowledgment interval. However, a longer interval delays how often the client application can send the processed low position to the outbound server. Therefore, a longer interval might mean that the processed low position maintained by the outbound server is not current. In this case, when the outbound server restarts, it must start processing LCRs at an earlier position than the one that corresponds to the processed low position maintained by the client application. Therefore, more LCRs might be retransmitted, and the client application must discard the ones that have been applied.	
A client application streams LCRs to an XStream In inbound server. This section describes concepts related to the LCR positions for an inbound server.	
Each position must be encoded in a format (such as base-16 encoding) that supports byte comparison. The position is essential to the total order of the transaction stream sent by client applications using the XStream In interface.	
The following positions are important for inbound servers:	
An LCR is applied by an inbound server when the LCR has either been executed, sent to an apply handler, or moved to the error queue.	
When the commit_serialization	
apply process parameter is set to DEPENDENT_TRANSACTIONS	
for an inbound server, an LCR with a higher commit position might be applied before an LCR with a lower commit position. When this happens, the applied high position is different from the applied low position.	
The processed low position is the position below which the inbound server no longer requires any LCRs. This position corresponds with the oldest SCN for an Oracle Streams apply process that applies changes captured by a capture process.	
The processed low position indicates that the LCRs with positions less than or equal to this position have been processed by the inbound server. If the client re-attaches to the inbound server, then it must send only LCRs with positions greater than the processed low position because the inbound server discards any LCRs with positions less than or equal to the processed low position.	
If the client application stops abnormally, then the connection between the client application and the inbound server is automatically broken. Upon restart, the client application retrieves the processed low position from the inbound server and instructs its capture agent to retrieve changes starting from this processed low position.	
To limit the recovery time of a client application using the XStream In interface, the client application can send activity, such as empty transactions, periodically to the inbound server. Row LCRs can include commit transaction control directives. When there are no LCRs to send to the server, the client application can send a row LCR with a commit directive to advance the inbound server's processed low position. This activity acts as an acknowledgment so that the inbound server's processed low position is advanced.	
Example 1-1 Advancing the Processed Low Position of an Inbound Server	
Consider a client application and an external data source. The client application sends changes made to the hr.employees	
table to the inbound server for processing, but the external data source includes many other tables, including the oe.orders	
table.	
Assume that the following changes are made to the external data source:	
Position	Change
---	---
1	Insert into the hr.employees table
2	Insert into the oe.orders table
3	Commit
4	Insert into the oe.orders table
5	Update the oe.orders table
6	Commit
7	Commit
...	... (Activity on the external data source, but no changes to the hr.employees table)
100	Insert into the oe.orders table
101	Commit
The client application gets the changes from the external data source, generates appropriate LCRs, and sends the LCRs to the inbound server. Therefore, the inbound server receives the following LCRs:	
After position 3, there are no relevant changes to send to the inbound server. If the inbound server restarts when the client application has processed all the changes up to position 101, then, after restarting, the client application must recheck all of the external database changes from position 4 forward. The rechecks are required because the inbound server's processed low position is 3.	
Instead, assume that the client application sends commits to the inbound server periodically, even when there are no relevant changes to the hr.employees	
table:	
Position	Change
---	---
1	Insert into the hr.employees table
2	Insert into the oe.orders table
3	Commit
4	Insert into the oe.orders table
5	Update the oe.orders table
6	Commit
7	Commit
...	... (Activity on the external data source, but no changes to the hr.employees table)
100	Insert into the oe.orders table
101	Commit
In this case, the inbound server moves its processed low position to 101 when it has processed all of the row LCRs sent by the client application. If the inbound server restarts, its processed low position is 101, and the client application does not need to check all of the changes back to position 3.	
The sample applications in "Sample XStream Client Application" include code that sends a row LCR with a commit directive to an inbound server. These commit directives are sometimes called "ping LCRs." Search for the word "ping" in the sample XStream client applications to find the parts of the applications that include this code.	
Table 1-1 compares how an XStream Out outbound server and an XStream In inbound server use positions.	
Table 1-1 Position Use in the Outbound Server and the Inbound Server	
XStream Out Outbound Server	XStream In Inbound Server
---	---
The outbound server exposes the position.	The client application sets the position.
If the outbound server or client application stops abnormally, then all LCRs above the processed low position are resent. The processed low position is equivalent to an apply process low watermark (LWM), and the apply process obtains the oldest SCN value by using this value.	If the inbound server or client application stops abnormally, then the client application must retransmit all LCRs with a position greater than or equal to the processed low position. The processed low position is equivalent to the apply process low water mark (LWM).
SQL generation is the ability to generate the SQL statement required to perform the change encapsulated in a row LCR. Apply processes, XStream outbound servers, and XStream inbound servers can use SQL generation to generate the SQL statement necessary to perform the insert, update, or delete operation in a row LCR.	
This section contains these topics:	
You can use the following interfaces to perform SQL generation:	
GET_ROW_TEXT	
and GET_WHERE_CLAUSE	
member procedures for row LCRs The PL/SQL interface generates SQL in a CLOB	
data type, while the OCI and Java interfaces generate SQL in plain text. In the Java interface, the size of the text is limited by the size of String	
data type.	
See Also:	
SQL statements can be generated in one of two formats: inline values or bind variables. Use inline values when the returned SQL statement is relatively small. For larger SQL statements, use bind variables. In this case, the bind variables are passed to the client application in a separate list that includes pointers to both old and new column values.	
For information about using bind variables with each interface, refer to the following documentation:	
GET_ROW_TEXT	
and GET_WHERE_CLAUSE	
row LCR member procedures in Oracle Database PL/SQL Packages and Types Reference DefaultRowLCR.getBinds()	
in Oracle Database XStream Java API Reference Note: For generated SQL statements with the values inline, SQL injection is possible. SQL injection is a technique for maliciously exploiting applications that use client-supplied data in SQL statements, thereby gaining unauthorized access to a database to view or manipulate restricted data. Oracle strongly recommends using bind variables if you plan to execute the generated SQL statement. See Oracle Database PL/SQL Language Reference for more information about SQL injection.	
Regarding data types and character sets, SQL generation works the same way for XStream Out outbound servers, XStream In inbound servers, and apply processes. For detailed information, see Oracle Streams Concepts and Administration.	
A demo that performs SQL generation is available. The demo uses the DBMS_XSTREAM_ADM	
PL/SQL package to configure an XStream Out environment, and it uses either an OCI client application or a Java client application to perform SQL generation.	
The demo uses SQL generation to replicate DML changes from a source database to a destination database. Specifically, the demo creates the xsdemosg	
schema in both the source database and the destination database. It creates various types of tables in the xsdemosg	
schema at each database, including tables with LOB columns. It executes a set of DML statements on the tables in xsdemosg	
schema in the source database. Oracle Streams components, such as a capture process and a queue, send the changes in the form of LCRs to an XStream outbound server that is also running on the source database. The outbound server makes the LCRs available to the demo client application.	
The demo client application, when run, uses the OCI or Java API to connect to the outbound server and receive the LCRs. The demo client application uses SQL generation to execute the changes that are encapsulated in the LCRs. Therefore, the client application replicates the changes made to xsdemosg	
schema in the source database to the xsdemosg	
in the destination database.	
You can modify the demo to replicate changes to any schema. Both the schema and the replicated tables must exist on both the source database and the destination database. SQL generation is only possible for DML changes. Therefore, this demo cannot be used to replicate DDL changes.	
This demo is available in the following location:	
XStream Out allows a user to receive LCRs. After an XStream Out user receives LCRs, the user might save the contents of LCRs to a file or generate the SQL statements to execute the LCRs on a non-Oracle database. XStream In allows a user to update tables in its own schema. XStream does not assume that the connected user to the outbound server or inbound server is trusted.	
Java and OCI client applications must connect to an Oracle database before attaching to an XStream outbound server created on that database. The connected user must be the same as the connect user configured for the outbound server. Otherwise, an error is raised.	
Java and OCI client applications must connect to an Oracle database before attaching to an XStream inbound server created on that database. The connected user must be the same as the apply user configured for the inbound server. Otherwise, an error is raised.	
The XStream Java layer API relies on Oracle JDBC security because XStream accepts the Oracle JDBC connection instance created by client applications in the XStream attach	
API. The connected user is validated as an XStream user.	
See Also:	
Oracle Streams provides other ways to implement heterogeneous information sharing besides XStream, both in past releases and in the current release. These ways include:	
XStream provides a flexible infrastructure for sharing information between Oracle data sources and non-Oracle data sources. Therefore, you can use XStream in many different ways to meet the needs of various organizations. This chapter describes the most common use cases for XStream.	
This chapter contains these topics:	
Each XStream use case in this chapter contains three main elements:	
In some cases, a section includes a reference to sample code in the Oracle Database installation that illustrates a scenario.	
In each XStream Out use case, the following components and actions send Oracle Database changes to a client application:	
How the client application processes the LCRs is different for each use case.	
In each XStream In use case, the following components and actions send Oracle Database changes to an inbound server:	
How the client application gathers the data changes is different for each use case.	
You can configure a heterogeneous replication environment with XStream. Replication is generally used to improve availability and to improve performance by spreading the network load over multiple regions and servers. In a heterogeneous replication environment, data is replicated between databases from different vendors. See Oracle Streams Replication Administrator's Guide for common reasons to use replication.	
XStream Out can send data changes made to an Oracle database to a non-Oracle database. Specifically, the client application connects to the outbound server and receives changes made to tables within the Oracle database. The client application then applies the data changes in the LCRs to the non-Oracle database. The client application can process the LCRs in any customized way before applying them.	
XStream In can receive data changes made to a non-Oracle database. Specifically, the client application gathers the data changes made to the non-Oracle database, formats these changes into LCRs, and sends these LCRs to an inbound server. The inbound server applies the changes in the LCRs to the Oracle database.	
Some environments use files to store data changes. Typically, files store data changes for the following reasons:	
XStream Out can send Oracle Database changes to a file in a file system. Specifically, the client application writes the data changes in LCRs to the file. The client application can process the LCRs in any customized way before writing them to the file, and the file can reside on the computer system running the client application or on a different computer system. Using SQL generation, the client application can also write the SQL statement required to perform the change encapsulated in a row LCR to a file.	
XStream In can send data changes from a file to an Oracle database. Specifically, the client application reads the data changes from the file and sends the changes, in the form of LCRs, to an inbound server.	
A demo is available that creates sample client applications that perform file-based replication using the XStream APIs. Specifically, at one database, the demo creates an XStream Out configuration that captures database changes and sends the LCRs to an outbound server. A client application attaches to the outbound server and writes the database changes to a file.	
At a different database, the demo creates an XStream In client application that attaches to an inbound server, reads the changes in the file, and sends them in the form of LCRs to the inbound server. The inbound server applies the changes to the database objects at the destination database.	
This demo is available in the following location:	
Some environments cache data in memory to improve performance. Cached data can provide low response times and high throughput for systems that require the best possible performance. XStream can share data changes incrementally with a client side memory cache.	
XStream Out can incrementally refresh a client-side memory cache by sending Oracle database changes to a memory cache. Specifically, the client application applies the data changes in the LCRs to the memory cache. The client application can process the LCRs in any customized way before applying them, and the memory cache can reside on the computer system running the client application or on a different computer system.	
XStream In can incrementally retrieve data changes from a memory cache. Specifically, the client application retrieves the data changes and sends the changes, in the form of LCRs, to an inbound server. The memory cache can reside on the computer system running the client application or on a different computer system.	
This part describes XStream administration. This part contains the following chapters:	
This chapter describes configuring the Oracle Database components that are used by XStream. This chapter also includes sample client applications that communicate with an XStream outbound server and inbound server.	
This chapter contains these topics:	
This section describes preparing for an XStream configuration.	
This section contains the following topics:	
An XStream administrator configures and manages XStream components in an XStream Out or XStream In environment. This section describes configuring an XStream administrator by granting a user the appropriate privileges. You must configure an XStream administrator in each Oracle database included in the XStream configuration.	
Prerequisites	
Before configuring an XStream administrator, ensure that the following prerequisites are met:	
Do not use the SYS	
or SYSTEM	
user as an XStream administrator, and ensure that the XStream administrator does not use the SYSTEM	
tablespace as its default tablespace.	
Assumptions	
This section makes the following assumptions:	
xstrmadmin	
. xstream_tbs	
. To configure an XStream administrator:	
See Also: Oracle Database Administrator's Guide for information about connecting to a database in SQL*Plus	
This tablespace stores any objects created in the XStream administrator's schema, including any spillover of messages from the buffered queues owned by the schema.	
For example, the following statement creates a new tablespace for the XStream administrator:	
For example, to create a user named xstrmadmin	
and specify that this user uses the xstream_tbs	
tablespace, run the following statement:	
Note: Enter an appropriate password for the administrative user.	
Note: TheDBA role is required for a user to create or alter outbound servers, inbound servers, capture processes, synchronous captures, and apply processes. When the user does not need to perform these tasks, the DBA role can be revoked from the user.	
GRANT_ADMIN_PRIVILEGE	
procedure in the DBMS_XSTREAM_AUTH	
package. A user must have explicit EXECUTE	
privilege on a package to execute a subprogram in the package inside of a user-created subprogram, and a user must have explicit SELECT	
privilege on a data dictionary view to query the view inside of a user-created subprogram. These privileges cannot be granted through a role. You can run the GRANT_ADMIN_PRIVILEGE	
procedure to grant such privileges to the XStream administrator, or you can grant them directly.	
Depending on the parameter settings for the GRANT_ADMIN_PRIVILEGE	
procedure, it either grants the privileges for an XStream administrator directly, or it generates a script that you can edit and then run to grant these privileges.	
Note: Starting with Oracle Database 11g Release 2 (11.2.0.2), theDBMS_XSTREAM_AUTH package is available.	
Use the GRANT_ADMIN_PRIVILEGE procedure to grant privileges directly:	
Run the following procedure:	
Use the GRANT_ADMIN_PRIVILEGE procedure to generate a script:	
Complete the following steps:	
Use the SQL statement CREATE	
DIRECTORY	
to create a directory object for the directory into which you want to generate the script. A directory object is similar to an alias for the directory. For example, to create a directory object called xstrm_dir	
for the /usr/admin directory on your computer system, run the following procedure:	
GRANT_ADMIN_PRIVILEGE	
procedure to generate a script named grant_xstrm_privs.sql	
and place this script in the /usr/admin directory on your computer system: Notice that the grant_privileges	
parameter is set to FALSE	
so that the procedure does not grant the privileges directly. Also, notice that the directory object created in Step a is specified for the directory_name	
parameter.	
GRANT_REMOTE_ADMIN_ACCESS	
procedure in the DBMS_XSTREAM_AUTH	
package. Grant this privilege if a remote XStream administrator will use a database link that connects to the local XStream administrator to perform administrative actions. Specifically, grant these privileges if either of the following conditions are true: EXECUTE	
privilege on any PL/SQL subprogram owned by another user that is executed by an inbound server. These subprograms can be used in apply handlers or error handlers. If an apply user is specified, then the apply user must have these privileges. These privileges must be granted directly. They cannot be granted through a role. EXECUTE	
privilege on any PL/SQL function owned by another user that is specified in a custom rule-based transformation for a rule used by a capture process, synchronous capture, propagation, outbound server, or inbound server. For a capture process or synchronous capture, if a capture user is specified, then the capture user must have these privileges. For an inbound server, if an apply user is specified, then the apply user must have these privileges. These privileges must be granted directly. They cannot be granted through a role. ENQUEUE	
or DEQUEUE	
privileges on the queue, or both. See Oracle Streams Concepts and Administration for information about managing queues. EXECUTE	
privilege on any object types that the XStream administrator might need to access. These privileges can be granted directly or through a role. EXP_FULL_DATABASE	
and IMP_FULL_DATABASE	
roles to the XStream administrator. BECOME	
USER	
system privilege: Granting the BECOME	
USER	
system privilege to the user who performs these actions is not required if Oracle Database Vault is not installed. You can revoke the BECOME	
USER	
system privilege from the user after the completing one of these actions, if necessary.	
This section describes the decisions to make and the tasks to complete to prepare for an XStream Out configuration.	
When you configure XStream Out, you must configure XStream components to capture database changes and send these changes to the outbound server in the form of logical change records (LCRs). These components include a capture process and at least one queue. The capture process can be a local capture process or a downstream capture process. For some configurations, you must also configure a propagation.	
Local capture means that a capture process runs on the source database. Downstream capture means that a capture process runs on a database other than the source database. The source database is the database where the changes were generated. The primary reason to use downstream capture is to reduce the load on the source database, thereby improving its performance. The primary reason to use a local capture is because it is easier to configure and maintain.	
The database that captures changes made to the source database is called the capture database. One of the following databases can be the capture database:	
If the database running the outbound server is not the capture database, then a propagation sends changes from the capture database to the database running the outbound server. If the database running the outbound server is the capture database, then this propagation between databases is not needed because the capture process and outbound server use the same queue.	
You can configure the components in the following ways:	
If you decide to configure a downstream capture process, then you must decide which type of downstream capture process you want to configure. The following types are available:	
The advantage of real-time downstream capture over archived-log downstream capture is that real-time downstream capture reduces the amount of time required to capture changes made to the source database. The time is reduced because the real-time downstream capture process does not need to wait for the redo log file to be archived before it can capture changes from it. You can configure multiple real-time downstream capture processes that capture changes from the same source database, but you cannot configure real-time downstream capture for multiple source databases at one downstream database.	
The advantage of archived-log downstream capture over real-time downstream capture is that archived-log downstream capture allows downstream capture processes for multiple source databases at a downstream database. You can copy redo log files from multiple source databases to a single downstream database and configure multiple archived-log downstream capture processes to capture changes in these redo log files.	
Preparing for an XStream Out outbound server is similar to preparing for an Oracle Streams replication environment. The components used in an Oracle Streams replication environment to capture changes and send them to an apply process are the same components used to capture changes and send them to an outbound server. These components include a capture process and one or more queues. If the capture process runs on a different database than the outbound server, then a propagation is also required.	
Several of the tasks described in this section are described in more detail in Oracle Streams Replication Administrator's Guide. This section provides an overview of each task and specific information about completing the task for an XStream Out configuration.	
Ensure that the following prerequisites are met before configuring XStream Out:	
To configure and manage an XStream Out configuration, create an XStream administrator on each Oracle database that is involved in the XStream Out configuration.	
Network connectivity and database links are not required when all of the components run on the same database. These components include the capture process, queue, and outbound server.	
You must configure network connectivity and database links if you decided to configure XStream in either of the following ways:	
See "Decide How to Configure XStream" for more information about these decisions.	
If network connectivity is required, then configure your network and Oracle Net so that the databases can communicate with each other.	
The following database links are required:	
The name of each database link must match the global name of the destination database, and each database link should be created in the XStream administrator's schema.	
For example, assume that you want to create a database link in a configuration with the following characteristics:	
dbs1.example.com	
. dbs2.example.com	
. xstrmadmin	
at each database. Given these assumptions, the following statement creates a database link from dbs1.example.com	
to dbs2.example.com	
:	
See Also:	
Each source database that generates changes that will be captured by a capture process must be in ARCHIVELOG	
mode. For downstream capture processes, the downstream database also must be in ARCHIVELOG	
mode if you plan to configure a real-time downstream capture process. The downstream database does not need to be in ARCHIVELOG	
mode if you plan to run only archived-log downstream capture processes on it.	
If you are configuring XStream in an Oracle Real Application Clusters (Oracle RAC) environment, then the archived redo log files of all threads from all instances must be available to any instance running a capture process. This requirement pertains to both local and downstream capture processes.	
See Also: Oracle Database Administrator's Guide for instructions about running a database inARCHIVELOG mode	
Some initialization parameters are important for the configuration, operation, reliability, and performance of the components in an XStream configuration. Set these parameters appropriately.	
Oracle Streams Replication Administrator's Guide contains detailed information about all of the initialization parameters that are important for an Oracle Streams environment. The guidelines for setting these parameters also apply to an XStream configuration. In addition to the requirements described in Oracle Streams Replication Administrator's Guide for all Oracle Streams components, the following requirements apply to XStream outbound servers:	
PROCESSES	
initialization parameter is set to a value large enough to accommodate the outbound server background processes and all of the other Oracle Database background processes. SESSIONS	
initialization parameter is set to a value large enough to accommodate the sessions used by the outbound server background processes and all of the other Oracle Database sessions. The Oracle Streams pool is a portion of memory in the System Global Area (SGA) that is used by Oracle Streams. The Oracle Streams pool stores buffered queue messages in memory, and it provides memory for capture processes and outbound servers. The Oracle Streams pool always stores LCRs captured by a capture process, and it stores LCRs and messages that are enqueued into a buffered queue by applications. Ensure that there is enough space in the Oracle Streams pool at each database to store LCRs and run the components properly.	
Each outbound server requires 1 MB of memory. The Oracle Streams pool is initialized the first time an outbound server is started.	
See Also: Oracle Streams Replication Administrator's Guide for information about Oracle Streams pool requirements	
If you decided to use a local capture process, then log file transfer is not required. However, if you decided to use downstream capture that uses redo transport services to transfer archived redo log files to the downstream database automatically, then configure log file transfer from the source database to the capture database. See "Decide How to Configure XStream" for information about this decision.	
If you decided to configure real-time downstream capture, then add standby redo logs to the capture database. See "Decide How to Configure XStream" for information about this decision.	
Ensure that the following prerequisites are met before configuring XStream In:	
To configure and manage an XStream In configuration, create an XStream administrator on the Oracle database that will run the XStream inbound server.	
Some initialization parameters are important for the configuration, operation, reliability, and performance of XStream inbound servers. Set these parameters appropriately.	
Oracle Streams Replication Administrator's Guide contains detailed information about all of the initialization parameters that are important for an Oracle Streams environment. The guidelines for setting these parameters also apply to an XStream configuration. In addition to the requirements described in Oracle Streams Replication Administrator's Guide for all Oracle Streams components, the following requirements apply to XStream inbound servers:	
PROCESSES	
initialization parameter is set to a value large enough to accommodate the inbound server background processes and all of the other Oracle Database background processes. SESSIONS	
initialization parameter is set to a value large enough to accommodate the sessions used by the inbound server background processes and all of the other Oracle Database sessions. The Oracle Streams pool is a portion of memory in the System Global Area (SGA) that provides memory for inbound servers. Ensure that there is enough space in the Oracle Streams pool for the inbound server to run properly. An inbound server requires 1 MB for each inbound server parallelism. For example, if parallelism is set to 10 for an inbound server, then at least 10 MB of memory is required for the inbound server. The Oracle Streams pool also must have enough space to store LCRs before they are applied. The Oracle Streams pool is initialized the first time an inbound server is started.	
An outbound server in an XStream Out configuration streams Oracle database changes to a client application. The client application attaches to the outbound server using the Oracle Call Interface (OCI) or Java interface to receive these changes.	
Configuring an outbound server involves creating the components that send captured database changes to the outbound server. It also involves configuring the outbound server itself, which includes specifying the connect user that the client application will use to attach to the outbound server.	
This section contains these topics:	
You can create an outbound server using the following procedures in the DBMS_XSTREAM_ADM	
package:	
CREATE_OUTBOUND	
procedure creates an outbound server, a queue, and a capture process in a single database with one procedure call. ADD_OUTBOUND	
procedure only creates an outbound server. You must create the capture process and queue separately, and they must exist before you run the ADD_OUTBOUND	
procedure. You can configure the capture process on the same database as the outbound server or on a different database. In both cases, you must create the client application that communicates with the outbound server and receives LCRs from the outbound server.	
If you require multiple outbound servers, then you can use the CREATE_OUTBOUND	
procedure to create the capture process that captures database changes for the first outbound server. Next, you can run the ADD_OUTBOUND	
procedure to add additional outbound servers that receive the same captured changes. The capture process can reside on the same database as the outbound servers or on a different database.	
This section contains these topics:	
The CREATE_OUTBOUND	
procedure in the DBMS_XSTREAM_ADM	
package creates a capture process, queue, and outbound server in a single database. Both the capture process and the outbound server use the queue created by the procedure. When you run the procedure, you provide the name of the new outbound server, while the procedure generates a name for the capture process and queue. If you want all of the components to run on the same database, then the CREATE_OUTBOUND	
procedure is the fastest and easiest way to create an outbound server.	
Prerequisites	
Before configuring XStream Out, ensure that the following prerequisites are met:	
Assumptions	
This section makes the following assumptions:	
The instructions in this section can only set up the local capture and outbound server on the same database configuration described in "Decide How to Configure XStream".	
xout	
. oe.orders	
and oe.order_items	
tables are sent to the outbound server. hr	
schema are sent to the outbound server. To create an outbound server using the CREATE_OUTBOUND	
procedure:	
See Oracle Database Administrator's Guide for information about connecting to a database in SQL*Plus.	
Run the CREATE_OUTBOUND	
procedure.	
Given the assumptions for this section, run the following CREATE_OUTBOUND	
procedure:	
Running this procedure performs the following actions:	
oe.orders	
and oe.order_items	
tables and for all of the tables in the hr	
schema. oe.orders	
table, the oe.order_items	
table, and the hr	
schema. xout	
with rule sets that instruct it to send DML and DDL changes to the oe.orders	
table, the oe.order_items	
table, and the hr	
schema to the client application. Tip: To capture and send all database changes to the outbound server, specifyNULL (the default) for the table_names and schema_names parameters.	
The ADD_OUTBOUND	
procedure in the DBMS_XSTREAM_ADM	
package creates an outbound server. This procedure does not create the capture process or the queue. You must configure these components manually.	
The instructions in this section can set up any of the configurations described in "Decide How to Configure XStream". However, if you chose the local capture and outbound server on the same database configuration, then it is usually easier to use the CREATE_OUTBOUND	
procedure to configure all of the components simultaneously. See "Configuring Multiple XStream Out Components Using CREATE_OUTBOUND".	
Prerequisites	
Before configuring XStream Out, ensure that the following prerequisites are met:	
Assumptions	
This section makes the following assumptions:	
xout	
. xstrmadmin.xstream_queue	
. db1.example.com	
. oe.orders	
and oe.order_items	
tables are sent to the outbound server. hr	
schema are sent to the outbound server. To create an outbound server using the ADD_OUTBOUND	
procedure:	
In SQL*Plus, connect to the database that will run the capture process (the capture database) as the XStream administrator.	
See Oracle Database Administrator's Guide for information about connecting to a database in SQL*Plus.	
See Oracle Streams Replication Administrator's Guide for instructions.	
Create the capture process.	
Add rules to the capture process's rule sets to capture changes to the hr	
schema, the oe.orders	
table, and the oe.order_items	
table. Do not start the capture process.	
See Oracle Streams Replication Administrator's Guide for instructions.	
If the capture process will run on a different database than the outbound server, then set the xout_client_exists	
capture process parameter to Y	
.	
Setting this parameter to Y	
enables the capture process to send LCRs to an outbound server.	
Skip this step if the capture process will run on the same database as the outbound server. In this case, the xout_client_exists	
capture process parameter will be set to Y	
automatically.	
See Oracle Streams Concepts and Administration for information about setting a capture process parameter. See Oracle Database PL/SQL Packages and Types Reference for information about the xout_client_exists	
capture process parameter.	
Connect to the source database.	
The source database is the database that contains the database objects for which the capture process will capture changes. The source database and the capture database might be the same database.	
Supplemental logging is required for the database objects for which the capture process will capture changes. If the capture database and the source database are the same database, then supplemental logging might have been specified during capture process creation.	
Ensure that the following supplemental logging is specified at the source database:	
For the example in this section, ensure that supplemental logging is configured for the hr	
schema, the oe.orders	
table, and the oe.order_items	
table.	
See Oracle Streams Replication Administrator's Guide for instructions about specifying supplemental logging.	
This step is not required if the capture process and the outbound server run on the same database and use the same queue.	
See Oracle Streams Replication Administrator's Guide for instructions.	
ADD_OUTBOUND	
procedure. Given the assumption for this section, run the following ADD_OUTBOUND	
procedure:	
If the capture process runs on the same database as the outbound server, then specify the capture process's queue for the queue_name	
parameter.	
Running this procedure performs the following actions:	
xout	
. The outbound server has rule sets that instruct it to send DML and DDL changes to the oe.orders	
table, the oe.order_items	
table, and the hr	
schema to the client application. The rules specify that these changes must have originated at the db1.example.com	
database. The outbound server dequeues LCRs from the queue xstrmadmin.xstream_queue	
. Tip: For the outbound server to receive all of the LCRs sent by the capture process, specifyNULL (the default) for the table_names and schema_names parameters.	
Add rules to the propagation's rule sets to send changes to the hr	
schema, the oe.orders	
table, and the oe.order_items	
table from the source queue to the destination queue.	
This step is not required if the capture process and the outbound server run on the same database and use the same queue.	
See Oracle Streams Replication Administrator's Guide for instructions.	
See Oracle Streams Concepts and Administration for instructions.	
XStream Out configurations often require multiple outbound servers that process a stream of LCRs from a single capture process. This section describes adding an additional outbound server to a database that already includes at least one outbound server. The additional outbound server uses the same queue as another outbound server to receive the LCRs from the capture process. When an XStream Out environment exists, use the ADD_OUTBOUND	
procedure in the DBMS_XSTREAM_ADM	
package to add another outbound server to a capture process stream.	
Prerequisites	
Before completing the steps in this section, configure an XStream Out environment that includes at least one outbound server. The following sections describe configuring and XStream Out environment:	
Assumptions	
This section makes the following assumptions:	
xout2	
. xstrmadmin.xstream_queue	
. oe.orders	
and oe.order_items	
tables are sent to the outbound server. hr	
schema are sent to the outbound server. db1.example.com	
. To add another outbound server to a capture process stream using the ADD_OUTBOUND	
procedure:	
See Oracle Database Administrator's Guide for information about connecting to a database in SQL*Plus.	
Run the query in "Displaying General Information About an Outbound Server" to determine the owner and name of the queue. This query also shows the name of the capture process and the source database name.	
ADD_OUTBOUND	
procedure. Given the assumptions for this section, run the following ADD_OUTBOUND	
procedure:	
Running this procedure performs the following actions:	
xout2	
. The outbound server has rule sets that instruct it to send DML and DDL changes to the oe.orders	
table, the oe.order_items	
table, and the hr	
schema to the client application. The rules specify that these changes must have originated at the db1.example.com	
database. The outbound server dequeues LCRs from the queue xstrmadmin.xstream_queue	
. Tip: For the outbound server to receive all of the LCRs sent by the capture process, specifyNULL (the default) for the table_names and schema_names parameters.	
An inbound server in an XStream In configuration receives a stream of changes from a client application. The inbound server can apply these changes to database objects in an Oracle database, or it can process the changes in a customized way. A client application can attach to an inbound server and send row changes and DDL changes encapsulated in LCRs using the OCI or Java interface.	
The CREATE_INBOUND	
procedure in the DBMS_XSTREAM_ADM	
package creates an inbound server. You must create the client application that communicates with the inbound server and sends LCRs to the inbound server.	
Prerequisites	
Before configuring XStream In, ensure that the following prerequisites are met:	
Assumptions	
This section makes the following assumptions:	
xin	
. xstrmadmin.xin_queue	
. To create an inbound server:	
See Oracle Database Administrator's Guide for information about connecting to a database in SQL*Plus.	
CREATE_INBOUND	
procedure. For example, the following CREATE_INBOUND	
procedure configures an inbound server named xin	
:	
Running this procedure performs the following actions:	
xin	
. xin_queue	
as the inbound server's queue, and creates this queue if it does not exist. This queue does not store LCRs sent by the client application. Instead, it stores error transactions if an LCR raises an error. The current user is the queue owner. In this example, the current user is the XStream administrator. Tip: By default, an inbound server does not use rules or rule sets. Therefore, it processes all LCRs sent to it by the client application. To add rules and rule sets, use theDBMS_STREAMS_ADM package or the DBMS_RULE_ADM package. See Oracle Streams Concepts and Administration.	
Apply handlers are optional. Apply handlers process LCRs sent to an inbound server in a customized way.	
See "Sample XStream Client Application" for a sample application.	
For example, enter the following:	
This section contains a sample XStream client application. This application illustrates the basic tasks that are required of an XStream Out and XStream In application.	
The application performs the following tasks:	
In an XStream Out configuration that does not send LCRs to an inbound server, the client application must obtain the processed low position in another way.	
This application waits indefinitely for transactions from the outbound server. To interrupt the application, enter the interrupt command for your operating system. For example, the interrupt command on some operating systems is control-C	
. If the program is restarted, then the outbound server starts sending LCRs from the processed low position that was set during the previous run.	
Figure 3-1 provides an overview of the XStream environment configured in this section.	
Before running the sample application, ensure that the following components exist:	
The sample applications in the following sections perform the same tasks. One sample application uses the OCI API, and the other uses the Java API.	
To run the sample XStream client application for the OCI API, compile and link the application file, and enter the following on a command line:	
Substitute the appropriate values for the following placeholders:	
When the sample client application is running, it prints information about the row LCRs it is processing. The output looks similar to the following:	
This output contains the following information for each row LCR:	
src_db_name	
shows the source database for the change encapsulated in the row LCR. cmd_type	
shows the type of SQL statement that made the change. txid	
shows the transaction ID of the transaction that includes the row LCR. owner	
shows the owner of the database object that was changed. oname	
shows the name of the database object that was changed. This demo is available in the following location:	
The file name for the demo is xio.c	
. See the README.txt	
file in the demo directory for more information about compiling and running the application.	
The code for the sample application that uses the OCI API follows:	
To run the sample XStream client application for the Java API, compile and link the application file, and enter the following on a command line:	
Substitute the appropriate values for the following placeholders:	
When the sample client application is running, it prints information about attaching to the inbound server and outbound server, along with the last position for each server. The output looks similar to the following:	
This demo is available in the following location:	
The file name for the demo is xio.java	
. See the README.txt	
file in the demo directory for more information about compiling and running the application.	
The code for the sample application that uses the Java API follows:	
This chapter provides instructions for managing XStream.	
This chapter contains these topics:	
This chapter describes managing an XStream Out configuration and an XStream In configuration. This chapter provides instructions for modifying the database components that are part of an XStream configuration, such as outbound severs, inbound servers, capture processes, and rules.	
The main interface for managing XStream database components is PL/SQL. Specifically, use the following Oracle supplied PL/SQL packages to manage XStream:	
DBMS_XSTREAM_ADM	
The DBMS_XSTREAM_ADM	
package is the main package for managing XStream. This package includes subprograms that enable you to configure, modify, or drop outbound servers and inbound servers.	
See Chapter 7, "DBMS_XSTREAM_ADM" for detailed information about this package.	
DBMS_XSTREAM_AUTH	
The DBM_XSTREAM_AUTH	
package enables you to configure and modify XStream administrators.	
See Chapter 8, "DBMS_XSTREAM_AUTH" for detailed information about this package.	
DBMS_APPLY_ADM	
The DBM_APPLY_ADM	
package enables you modify outbound servers and inbound servers.	
See Oracle Database PL/SQL Packages and Types Reference for detailed information about this package.	
DBMS_CAPTURE_ADM	
The DBM_CAPTURE_ADM	
package enables you configure and modify capture processes.	
See Oracle Database PL/SQL Packages and Types Reference for detailed information about this package.	
DBMS_STREAMS_ADM	
The DBM_STREAMS_ADM	
package enables you modify the rules used by capture processes, outbound servers, and inbound servers.	
See Oracle Database PL/SQL Packages and Types Reference for detailed information about this package.	
This section describes managing an XStream Out configuration.	
This section contains these topics:	
Note: With XStream Out, an Oracle Streams apply process functions as an outbound server. Therefore, you can use the instructions for managing an apply process to manage an outbound server. See Oracle Database 2 Day + Data Replication and Integration Guide and Oracle Streams Concepts and Administration.	
In some XStream Out configurations, you can use the DBMS_XSTREAM_ADM	
package to manage the capture process that captures changes for an outbound server. However, other configurations require that you use the DBMS_CAPTURE_ADM	
package or the DBMS_STREAMS_ADM	
package to manage the capture process.	
Specifically, the DBMS_XSTREAM_ADM	
package can manage an outbound server's capture process in the following ways:	
The DBMS_XSTREAM_ADM	
package can manage an outbound server's capture process in either of the following cases:	
CREATE_OUTBOUND	
procedure in the DBMS_XSTREAM_ADM	
package. CREATE_OUTBOUND	
procedure. To check whether an outbound server's capture process can be managed by the DBMS_XSTREAM_ADM	
package:	
See Oracle Database Administrator's Guide for information about connecting to a database in SQL*Plus.	
Your output looks similar to the following:	
If the Capture	
Process	
Name	
for an outbound server is non-NULL	
, then the DBMS_XSTREAM_ADM	
package can manage the capture process. In this case, you can also manage the capture process using the DBMS_CAPTURE_ADM	
package or the DBMS_STREAMS_ADM	
package. However, it is usually better to manage the capture process for an outbound server using the DBMS_XSTREAM_ADM	
package when it is possible.	
If the Capture	
Process	
Name	
for an outbound server is NULL	
, then the DBMS_XSTREAM_ADM	
package cannot manage the capture process. In this case, you must manage the capture process using the DBMS_CAPTURE_ADM	
package or the DBMS_STREAMS_ADM	
package.	
See Also:	
This section describes managing rules for an XStream Out configuration. Rules control which database changes are streamed to the outbound server and which database changes the outbound server streams to the client application.
This section contains these topics:
This section describes adding schema rules, table rules, and subset rules to an XStream Out configuration.
This section contains these topics:
This section describes adding schema rules and table rules to an XStream Out configuration using the ALTER_OUTBOUND
procedure in the DBMS_XSTREAM_ADM
package. The ALTER_OUTBOUND
procedure adds rules for both data manipulation language (DML) and data definition language (DDL) changes.
When you follow the instructions in this section, the ALTER_OUTBOUND
procedure always adds rules for the specified schemas and tables to one of the outbound server's rule sets. If the DBMS_XSTREAM_ADM
package can manage the outbound server's capture process, then the ALTER_OUTBOUND
procedure also adds rules for the specified schemas and tables to one of the rule sets used by this capture process.
To determine whether the DBMS_XSTREAM_ADM
package can manage the outbound server's capture process, see "Checking Whether the DBMS_XSTREAM_ADM Package Can Manage a Capture Process". If the DBMS_XSTREAM_ADM
package cannot manage the outbound server's capture process, then the ALTER_OUTBOUND
procedure adds rules to the outbound server's rule set only. In this case, if rules for same schemas and tables should be added to the capture process's rule set as well, then see Oracle Streams Concepts and Administration for instructions about adding them.
In addition, if the capture process is running on a different database than the outbound server, then add schema and table rules to the propagation that sends logical change records (LCRs) to the outbound server's database. See Oracle Streams Concepts and Administration for instructions.
To add schema rules and table rules to an XStream Out configuration:
See Oracle Database Administrator's Guide for information about connecting to a database in SQL*Plus.
ALTER_OUTBOUND
procedure, and specify the following parameters: server_name
- Specify the name of the outbound server. table_names
- Specify the tables for which to add rules, or specify NULL
to add no table rules. schema_name
- Specify the schemas for which to add rules, or specify NULL
to add no schema rules. add
- Specify TRUE
so that the rules are added. (Rules are removed if you specify FALSE
.) inclusion_rule
- Specify TRUE
to add rules to the positive rule set of the outbound server, or specify FALSE
to add rules to the negative rule set of the outbound server. If the DBMS_XSTREAM_ADM
package can manage the outbound server's capture process, then rules are also added to this capture process's rule set. The following examples add rules to the configuration of an outbound server named xout
.
Example 4-1 Adding Rules for the hr Schema, oe.orders Table, and oe.order_items Table to the Positive Rule Set
Example 4-2 Adding Rules for the hr Schema to the Negative Rule Set
This section describes adding subset rules to an outbound server's positive rule set using the ADD_SUBSET_OUTBOUND_RULES
procedure in the DBMS_XSTREAM_ADM
package. The ADD_SUBSET_OUTBOUND_RULES
procedure only adds rules for DML changes to an outbound server's positive rule set. It does not add rules for DDL changes, and it does not add rules to a capture process's rule set.
To add subset rules to an outbound server's positive rule set:
See Oracle Database Administrator's Guide for information about connecting to a database in SQL*Plus.
ADD_SUBSET_OUTBOUND_RULES
procedure, and specify the following parameters: server_name
- Specify the name of the outbound server. table_name
- Specify the table for which you want to capture and stream a subset of data. condition
- Specify the subset condition, which is similar to the WHERE
clause in a SQL statement, to stream changes to a subset of rows in the table. column_list
- Specify the subset of columns to keep or discard, or specify NULL
to keep all of the columns. keep
- Specify TRUE
to keep the columns listed in the column_list
parameter, or specify FALSE
to discard the columns in the column_list
parameter. When column_list
is non-NULL
and keep
is set to TRUE
, the procedure creates a keep columns declarative rule-based transformation for the columns listed in column_list
.
When column_list
is non-NULL
and keep
is set to FALSE
, the procedure creates a delete column declarative rule-based transformation for each column listed in column_list
.
Example 4-3 Adding Rules That Stream Changes to a Subset of Rows in a Table
The following procedure creates rules that only evaluate to TRUE
for row changes where the department_id
value is 40
in the hr.employees
table:
Example 4-4 Adding Rules That Stream Changes to a Subset of Rows and Columns in a Table
The following procedure creates rules that only evaluate to TRUE
for row changes where the department_id
value is 40
for the hr.employees
table. The procedure also creates delete column declarative rule-based transformations for the salary
and commission_pct
columns.
See Also:
|
This section describes removing schema rules, table rules, and subset rules from an XStream Out configuration.
This section contains these topics:
This section describes removing schema rules and table rules from an XStream Out configuration using the ALTER_OUTBOUND
procedure in the DBMS_XSTREAM_ADM
package. The ALTER_OUTBOUND
procedure removes rules for both DML and DDL changes.
When you follow the instructions in this section, the ALTER_OUTBOUND
procedure always removes rules for the specified schemas and tables from one of the outbound server's rule sets. If the DBMS_XSTREAM_ADM
package can manage the outbound server's capture process, then the ALTER_OUTBOUND
procedure also removes rules for the specified schemas and tables from one of the rule sets used by this capture process.
To determine whether the DBMS_XSTREAM_ADM
package can manage the outbound server's capture process, see "Checking Whether the DBMS_XSTREAM_ADM Package Can Manage a Capture Process". If the DBMS_XSTREAM_ADM
package cannot manage the outbound server's capture process, then the ALTER_OUTBOUND
procedure removes rules from the outbound server's rule set only. In this case, if you must remove the rules for same schemas and tables from the capture process's rule set as well, then see Oracle Streams Concepts and Administration for instructions.
In addition, if the capture process is running on a different database than the outbound server, then remove the schema and table rules from the propagation that sends LCRs to the outbound server's database. See Oracle Streams Concepts and Administration for instructions.
To remove schema rules and table rules from an XStream Out configuration:
See Oracle Database Administrator's Guide for information about connecting to a database in SQL*Plus.
ALTER_OUTBOUND
procedure, and specify the following parameters: server_name
- Specify the name of the outbound server. table_names
- Specify the tables for which to remove rules, or specify NULL
to remove no table rules. schema_name
- Specify the schemas for which to remove rules, or specify NULL
to remove no schema rules. add
- Specify FALSE
so that the rules are removed. (Rules are added if you specify TRUE
.) inclusion_rule
- Specify TRUE
to remove rules from the positive rule set of the outbound server, or specify FALSE
to remove rules from the negative rule set of the outbound server. If the DBMS_XSTREAM_ADM
package can manage the outbound server's capture process, then rules are also removed from this capture process's rule set. The following examples remove rules from the configuration of an outbound server named xout
.
Example 4-5 Removing Rules for the hr Schema, oe.orders Table, and oe.order_items Table from the Positive Rule Set
Example 4-6 Removing Rules for the hr Schema from the Negative Rule Set
This section describes removing subset rules from an outbound server's positive rule set using the REMOVE_SUBSET_OUTBOUND_RULES
procedure in the DBMS_XSTREAM_ADM
package. The REMOVE_SUBSET_OUTBOUND_RULES
procedure only removes rules for DML changes. It does not remove rules for DDL changes, and it does not remove rules from a capture process's rule set.
To remove subset rules from an outbound server's positive rule set:
See Oracle Database Administrator's Guide for information about connecting to a database in SQL*Plus.
Determine the rule names for the subset rules by running the following query:
REMOVE_SUBSET_OUTBOUND_RULES
procedure, and specify the rules to remove from the list of rules displayed in Step 2. For example, assume that Step 2 returned the following results:
Example 4-7 Removing Subset Rules From an Outbound Server's Positive Rule Set
To remove these rules from the positive rule set of the xout
outbound server, run the following procedure:
A client application can connect to an outbound server as the connect user. This section describes changing the connect user for an outbound server using the ALTER_OUTBOUND
procedure in the DBMS_XSTREAM_ADM
package.
The connect user is the user who can attach to the outbound server to retrieve the LCR stream. The client application must attach to the outbound server as the connect user.
You can change the connect user when a client application must connect to an outbound server as a different user. Ensure that the connect user is granted the required privileges.
See Also: "CREATE_OUTBOUND Procedure" for information about the privileges required by a connect user |
To change the connect user for an outbound server:
The XStream administrator must be granted the DBA
role to change the connect user for an outbound server.
See Oracle Database Administrator's Guide for information about connecting to a database in SQL*Plus.
ALTER_OUTBOUND
procedure, and specify the following parameters: server_name
- Specify the name of the outbound server. connect_user
- Specify the new connect user. Example 4-8 Changing the Connect User for an Outbound Server
To change the connect user to hr
for an outbound server named xout
, run the following procedure:
A capture user is the user in whose security domain a capture process captures changes from the redo log. This section describes changing the capture user for a capture process that captures changes for an outbound server using the ALTER_OUTBOUND
procedure in the DBMS_XSTREAM_ADM
package.
You can change the capture user when the capture process must capture changes in a different security domain. Ensure that the capture user is granted the required privileges. When you change the capture user, the ALTER_OUTBOUND
procedure grants the new capture user enqueue privilege on the queue used by the capture process and configures the user as a secure queue user.
Note: If Oracle Database Vault is installed, then the user who changes the capture user must be granted theBECOME USER system privilege. Granting this privilege to the user is not required if Oracle Database Vault is not installed. You can revoke the BECOME USER system privilege from the user after capture user is changed, if necessary. |
See Also: "CREATE_OUTBOUND Procedure" for information about the privileges required by a capture user |
To change the capture user of the capture process for an outbound server:
To change the capture user, the user who invokes the ALTER_OUTBOUND
procedure must be granted DBA
role. Only the SYS
user can set the capture user to SYS
.
See Oracle Database Administrator's Guide for information about connecting to a database in SQL*Plus.
DBMS_XSTREAM_ADM
package can manage the capture process. See "Checking Whether the DBMS_XSTREAM_ADM Package Can Manage a Capture Process". Based on the check, follow the appropriate instructions:
DBMS_XSTREAM_ADM
package, then proceed to Step 3. DBMS_XSTREAM_ADM
package, then follow the instructions in Oracle Streams Concepts and Administration. Run the ALTER_OUTBOUND
procedure, and specify the following parameters:
server_name
- Specify the name of the outbound server. capture_user
- Specify the new capture user. Example 4-9 Changing the Capture User of the Capture Process for an Outbound Server
To change the capture user to hq_admin
for an outbound server named xout
, run the following procedure:
Note: This functionality is available starting with Oracle Database 11g Release 2 (11.2.0.2). |
This section describes changing the start system change number (SCN) or start time for a capture process that captures changes for an outbound server using the ALTER_OUTBOUND
procedure in the DBMS_XSTREAM_ADM
package.
The start SCN is the SCN from which a capture process begins to capture changes. The start time is the time from which a capture process begins to capture changes. When you reset a start SCN or start time for a capture process, ensure that the required redo log files are available to the capture process.
Typically, you reset the start SCN or start time for a capture process if point-in-time recovery was performed on one of the destination databases that receive changes from the capture process.
This section contains these topics:
This section describes changing the start SCN of the capture process for an outbound server.
To change the start SCN for a capture process:
See Oracle Database Administrator's Guide for information about connecting to a database in SQL*Plus.
When you reset the start SCN, the specified start SCN must be equal to or greater than the first SCN for the capture process.
ALTER_OUTBOUND
procedure, and specify the following parameters: server_name
- Specify the name of the outbound server. start_scn
- Specify the SCN from which the capture process begins to capture changes. If the capture process is enabled, then the ALTER_OUTBOUND
procedure automatically stops and restarts the capture process when the start_scn
parameter is non-NULL
.
If the capture process is disabled, then the ALTER_OUTBOUND
procedure automatically starts the capture process when the start_scn
parameter is non-NULL
.
Example 4-10 Setting the Start SCN of the Capture Process for an Outbound Server
Run the following procedure to set the start SCN to 650000
for the capture process used by the xout
outbound server:
This section describes changing the start time of the capture process for an outbound server.
To change the start time for a capture process:
See Oracle Database Administrator's Guide for information about connecting to a database in SQL*Plus.
When you reset the start time, the specified start time must be greater than or equal to the time that corresponds with the first SCN for the capture process.
ALTER_OUTBOUND
procedure, and specify the following parameters: server_name
- Specify the name of the outbound server. start_time
- Specify the time from which the capture process begins to capture changes. If the capture process is enabled, then the ALTER_OUTBOUND
procedure automatically stops and restarts the capture process when the start_time
parameter is non-NULL
.
If the capture process is disabled, then the ALTER_OUTBOUND
procedure automatically starts the capture process when the start_time
parameter is non-NULL
.
The following examples set the start_time
parameter for the capture process that captures changes for an outbound server named xout
.
Example 4-11 Set the Start Time to a Specific Time
Run the following procedure to set the start time to 05-MAY-10 11.11.17 AM
for the capture process used by the xout
outbound server:
Example 4-12 Set the Start Time Using the NUMTODSINTERVAL SQL Function
Run the following procedure to set the start time to four hours earlier than the current time for the capture process used by the xout
outbound server:
This section describes dropping an outbound server using the DROP_OUTBOUND
procedure in the DBMS_XSTREAM_ADM
package.
This procedure always drops the specified outbound server. This procedure also drops the queue used by the outbound server if both of the following conditions are met:
ADD_OUTBOUND
or CREATE_OUTBOUND
procedure in the DBMS_XSTREAM_ADM
package. If either one of the preceding conditions is not met, then the DROP_OUTBOUND
procedure only drops the outbound server. It does not drop the queue.
This procedure also drops the capture process for the outbound server if both of the following conditions are met:
DBMS_XSTREAM_ADM
package can manage the outbound server's capture process. See "Checking Whether the DBMS_XSTREAM_ADM Package Can Manage a Capture Process". If the procedure can drop the queue but cannot manage the capture process, then it drops the queue without dropping the capture process.
To drop an outbound server:
See Oracle Database Administrator's Guide for information about connecting to a database in SQL*Plus.
DROP_OUTBOUND
procedure. Example 4-13 Dropping an Outbound Server
To drop an outbound server named xout
, run the following procedure:
See Also:
|
This section describes managing an XStream In inbound server configuration.
This section contains these topics:
Note: With XStream In, an Oracle Streams apply process functions as an inbound server. Therefore, you can use the instructions for managing an apply process to manage an inbound server. See Oracle Database 2 Day + Data Replication and Integration Guide and Oracle Streams Concepts and Administration. |
An inbound server applies messages in the security domain of its apply user, and the client application must attach to the inbound server as the apply user. This section describes changing the apply user for an inbound server using the ALTER_INBOUND
procedure in the DBMS_XSTREAM_ADM
package.
You can change the apply user when a client application must connect to an inbound server as a different user or when you want to apply changes using the privileges associated with a different user. Ensure that the apply user is granted the required privileges.
To change the apply user for an inbound server:
The XStream administrator must be granted the DBA
role to change the apply user for an inbound server.
See Oracle Database Administrator's Guide for information about connecting to a database in SQL*Plus.
ALTER_INBOUND
procedure, and specify the following parameters: server_name
- Specify the name of the inbound server. apply_user
- Specify the new apply user. Example 4-14 Changing the Apply User for an Inbound Server
To change the apply user to hr
for an inbound server named xin
, run the following procedure:
See Also:
|
Note: This functionality is available starting with Oracle Database 11g Release 2 (11.2.0.2). |
An inbound server can encounter an eager error when it cannot access all of the LCRs in an error transaction. The EAGER
ERROR
error type typically means that an LCR raised an error while the inbound server was receiving and applying LCRs in a large transaction. If an error transaction is not an eager error transaction, then it is referred to as a normal error transaction.
Normal error transactions and eager error transactions must be managed differently. An inbound server moves a normal error transaction, including all of its LCRs, to the error queue, but an inbound server does not move an eager error transaction to the error queue.
The following statements apply to both normal error transactions and eager error transactions:
ALL_APPLY_ERROR
and the DBA_APPLY_ERROR
view contain information (metadata) about the error transaction. Table 4-1 explains the options for managing a normal error transaction.
Table 4-1 Options Available for Managing a Normal Error Transaction
Action | Mechanisms | Description |
---|---|---|
Delete the error transaction |
Oracle Enterprise Manager | The error transaction is deleted from the error queue, and the metadata about the error transaction is deleted. An inbound server does not try to reexecute the transaction when the inbound server is restarted. The transaction is not applied. |
Execute the error transaction |
Oracle Enterprise Manager | The error transaction in the error queue is executed. If there are no errors during execution, then the transaction is applied. If an LCR raises an error during execution, then the normal error transaction is moved back to the error queue. |
Retain the error transaction | None. (The error transaction is retained automatically.) | The error transaction remains in the error queue even if the inbound server is restarted. The metadata about the error transaction is also retained. The transaction is not applied. |
Table 4-2 explains the options for managing an eager error transaction.
Table 4-2 Options Available for Managing an Eager Error Transaction
Action | Mechanisms | Description |
---|---|---|
Delete error transaction |
Oracle Enterprise Manager | The metadata about the eager error transaction is deleted. When the inbound server is restarted, it attempts to execute the transaction as an eager transaction. If the inbound server does not encounter an error during execution, then the transaction is applied successfully. If the inbound server encounters an error during execution, then the eager error transaction is recorded. |
Retain error transaction | None. (The metadata about the error transaction is retained automatically.) | The metadata about the eager error transaction is retained. When the inbound server is restarted, it attempts to execute the transaction as a normal transaction. Specifically, the inbound server spills the transaction to disk and attempts to execute the transaction. If the inbound server does not encounter an error during execution, then the transaction is applied successfully. If the inbound server encounters an error during execution, then the transaction becomes a normal error transaction. In this case, the LCR that raised the error and all of the other LCRs in the transaction are moved to the error queue. After the normal error transaction is moved to the error queue, you must manage the error transaction as a normal error transaction (not an eager error transaction). |
Note: If you attempt to execute an eager error transaction manually using theDBMS_APPLY_ADM package or Oracle Enterprise Manager, then the following error is raised: ORA-26909: cannot reexecute an eager error An eager error transaction cannot be executed manually. Instead, it is executed automatically when the inbound server is enabled. |
To manage an eager error transaction encountered by an inbound server:
See Oracle Database Administrator's Guide for information about connecting to a database in SQL*Plus.
ERROR_TYPE
column in the ALL_APPLY_ERROR
data dictionary view: Follow the appropriate instructions based on the error type:
ERROR_TYPE
column shows EAGER
ERROR
, then proceed to Step 3. ERROR_TYPE
column shows NULL
, then the apply error is not an eager error, and you cannot use the instructions in this section to manage it. Instead, use the instructions in Oracle Database 2 Day + Data Replication and Integration Guide or Oracle Streams Concepts and Administration. Examine the error message raised by the LCR, and determine the cause of the error.
See Oracle Database 2 Day + Data Replication and Integration Guide for information about checking for apply errors using Oracle Enterprise Manager.
See Oracle Streams Concepts and Administration for information about checking for apply errors using the DBA_APPLY_ERROR
data dictionary view.
Oracle Streams Concepts and Administration contains information about common apply errors.
Either retain the error transaction or delete the error transaction:
See Table 4-2 for more information about these choices.
Caution: It might not be possible to recover a normal error transaction that is deleted. Before deleting the error transaction, ensure that the error type isEAGER ERROR . |
See Oracle Database 2 Day + Data Replication and Integration Guide for information about deleting an error transaction using Oracle Enterprise Manager.
See Oracle Streams Concepts and Administration information about deleting an error transaction using the DBMS_APPLY_ADM
package.
Query the STATUS
column in the ALL_APPLY_ERROR
view to determine whether the inbound server is enabled or disabled.
If the disable_on_error
apply parameter is set to Y
for the inbound server, then the inbound server becomes disabled when it encounters the error and remains disabled.
If the disable_on_error
apply parameter is set to N
for the inbound server, then the inbound server stops and restarts automatically when it encounters the error.
See Table 4-2 for information about how the inbound server handles the error transaction based on your choice in Step 5.
See Oracle Database 2 Day + Data Replication and Integration Guide for information about starting an apply process (or inbound server) using Oracle Enterprise Manager.
See Oracle Streams Concepts and Administration for information about starting an apply process (or inbound server) using the DBMS_APPLY_ADM
package.
Note: If you have both purchased a license for the Oracle GoldenGate product and have enabled the XStream optimizations for Oracle Streams by running theDBMS_XSTREAM_ADM.ENABLE_GG_XSTREAM_FOR_STREAMS procedure, then an apply process in an Oracle Streams configuration can encounter errors of the EAGER ERROR type. Use the instructions in this section to manage eager apply process errors. When the XStream optimizations for Oracle Streams are not enabled, apply processes cannot encounter eager errors. |
This section describes dropping an inbound server using the DROP_INBOUND
procedure in the DBMS_XSTREAM_ADM
package.
This procedure always drops the specified inbound server. This procedure also drops the queue for the inbound server if both of the following conditions are met:
CREATE_INBOUND
procedure created the inbound server and the queue. If either one of the preceding conditions is not met, then the DROP_INBOUND
procedure only drops the inbound server. It does not drop the queue.
To drop an inbound server:
See Oracle Database Administrator's Guide for information about connecting to a database in SQL*Plus.
DROP_INBOUND
procedure. Example 4-15 Dropping an Inbound Server
To drop an inbound server named xin
, run the following procedure:
This chapter provides instructions for monitoring XStream.
This chapter contains these topics:
This chapter describes monitoring an XStream Out configuration and an XStream In configuration. This chapter provides instructions for querying data dictionary views related to XStream. The queries provide information about XStream components and statistics related to XStream.
The main interface for monitoring XStream database components is SQL*Plus, although you can monitor some aspects of an XStream configuring using Oracle Enterprise Manager. For example, you can view information about capture processes, outbound servers, inbound servers, and rules in Enterprise Manager. Outbound servers and inbound servers appear as apply processes in Enterprise Manager.
This chapter also describes using the Oracle Streams Performance Advisor to monitor an XStream configuration. The Oracle Streams Performance Advisor consists of the DBMS_STREAMS_ADVISOR_ADM
package and a collection of data dictionary views. The Oracle Streams Performance Advisor enables you to monitor the topology and performance of an XStream environment.
Note: This functionality is available starting with Oracle Database 11g Release 2 (11.2.0.2). |
The query in this section displays the following session information about each XStream component in a database:
This query is especially useful for determining the session information for specific XStream components when there are multiple XStream Out or XStream In components configured in a database.
To display this information for each XStream component in a database:
See Oracle Database Administrator's Guide for information about connecting to a database in SQL*Plus.
Your output for an XStream Out configuration looks similar to the following:
The row that shows TNS
for the XStream process number contains information about the session for the XStream client application that is attached to the outbound server.
Your output for an XStream In configuration looks similar to the following:
The row that shows TNS
for the XStream process number contains information about the session for the XStream client application that is attached to the inbound server.
This section provides sample queries that you can use to monitor XStream Out.
This section contains these topics:
With XStream Out, an Oracle Streams apply process functions as an outbound server. Therefore, you can also use the data dictionary views for apply processes to monitor outbound servers. In addition, an XStream Out environment includes capture processes and queues, and might include other components, such as propagations, rules, and rule-based transformations.
You can display the following information for an outbound server by running the query in this section:
The connect user is the user who can attach to the outbound server to retrieve the logical change record (LCR) stream. The client application must attach to the outbound server as the specified connect user.
The DBA_XSTREAM_OUTBOUND
view contains information about the capture user, the capture process, and the source database in either of the following cases:
CREATE_OUTBOUND
procedure in the DBMS_XSTREAM_ADM
package. ADD_OUTBOUND
procedure in the DBMS_XSTREAM_ADM
package, and the capture process for the outbound server runs on the same database as the outbound server. If the outbound server was created using the ADD_OUTBOUND
procedure, and the capture process for the outbound server is on a different database, then the DBA_XSTREAM_OUTBOUND
view does not contain information about the capture user, the capture process, or the source database.
To display this general information about an outbound server:
See Oracle Database Administrator's Guide for information about connecting to a database in SQL*Plus.
Your output looks similar to the following:
You can monitor an outbound server using the same queries as you use to monitor an Oracle Streams apply process. See Oracle Streams Concepts and Administration for instructions.
The ALL_APPLY
and DBA_APPLY
views show XStream
Out
in the PURPOSE
column for an apply process that is functioning as an outbound server.
To display detailed information about an outbound server:
See Oracle Database Administrator's Guide for information about connecting to a database in SQL*Plus.
Your output looks similar to the following:
This output shows that XOUT
is an apply process that is functioning as an outbound server. Use the instructions in Oracle Streams Concepts and Administration to display detailed information about the outbound server.
Note: This functionality is available starting with Oracle Database 11g Release 2 (11.2.0.2). |
The V$XSTREAM_OUTBOUND_SERVER
view contains the following information about the transaction currently being processed by an XStream outbound server:
Run this query to determine how many LCRs an outbound server has processed in a specific transaction. You can query the TOTAL_MESSAGE_COUNT
column in the V$XSTREAM_TRANSACTION
view to determine the total number of LCRs in a transaction.
To display information about an outbound server's current transaction:
See Oracle Database Administrator's Guide for information about connecting to a database in SQL*Plus.
Your output looks similar to the following:
Note: TheCOMMITSCN and COMMIT_POSITION values are populated only if the COMMITTED_DATA_ONLY value is YES in V$XSTREAM_OUTBOUND_SERVER . |
Note: This functionality is available starting with Oracle Database 11g Release 2 (11.2.0.2). |
The V$XSTREAM_OUTBOUND_SERVER
view contains the following statistics about the database changes processed by an XStream outbound server:
To display statistics for an outbound server:
See Oracle Database Administrator's Guide for information about connecting to a database in SQL*Plus.
Your output looks similar to the following:
Note: TheTOTAL_TRANSACTIONS_SENT value is populated only if the COMMITTED_DATA_ONLY value is YES in V$XSTREAM_OUTBOUND_SERVER . |
For an outbound server, the processed low position is the position below which all transactions have been committed and logged by the client application. The processed low position is important when the outbound server or the client application is restarted.
You can display the following information about the processed low position for an outbound server by running the query in this section:
To display the processed low position for an outbound server:
See Oracle Database Administrator's Guide for information about connecting to a database in SQL*Plus.
Your output looks similar to the following:
Note: This functionality is available starting with Oracle Database 11g Release 2 (11.2.0.2). |
An outbound server is an Oracle background process. This background process runs only when an XStream client application attaches to the outbound server. The V$XSTREAM_OUTBOUND_SERVER
view contains information about this background process.
You can display the following information for an outbound server by running the query in this section:
To display the process information for an outbound server:
See Oracle Database Administrator's Guide for information about connecting to a database in SQL*Plus.
Your output looks similar to the following:
Note: TheV$STREAMS_APPLY_SERVER view provides additional information about the outbound server process, and information about the apply server background processes used by the outbound server. |
This section provides sample queries that you can use to monitor XStream In.
This section contains these topics:
With XStream In, an Oracle Streams apply process functions as an inbound server. Therefore, you can also use the data dictionary views for apply processes to monitor inbound servers.
You can display the following information for an inbound server by running the query in this section:
To display general information about an inbound server:
See Oracle Database Administrator's Guide for information about connecting to a database in SQL*Plus.
Your output looks similar to the following:
You can monitor an inbound server using the same queries that you use to monitor an Oracle Streams apply process. See Oracle Streams Concepts and Administration for instructions.
The ALL_APPLY
and DBA_APPLY
views show XStream
In
in the PURPOSE
column for an apply process that is functioning as an inbound server.
To display the status of an inbound server:
See Oracle Database Administrator's Guide for information about connecting to a database in SQL*Plus.
Your output looks similar to the following:
This output shows that XIN
is an apply process that is functioning as an inbound server. Use the instructions in Oracle Streams Concepts and Administration to display detailed information about the inbound server.
For an inbound server, you can view position information by querying the DBA_XSTREAM_INBOUND_PROGRESS
view. Specifically, you can display the following position information by running the query in this section:
To display the position information for an inbound server:
See Oracle Database Administrator's Guide for information about connecting to a database in SQL*Plus.
Your output looks similar to the following:
The values of the positions shown in the output were set by the client application that attaches to the inbound server. However, the inbound server determines which values are the current applied low position, spill position, applied high position, and processed low position.
The ALL_XSTREAM_RULES
and DBA_XSTREAM_RULES
views contain information about the rules used by outbound servers and inbound servers. If an outbound server was created using the CREATE_OUTBOUND
procedure in the DBMS_XSTREAM_ADM
package, then these views also contain information about the rules used by the capture process that sends changes to the outbound server. However, if an outbound server was created using the ADD_OUTBOUND
procedure, then these views do not contain information about the capture process rules. Also, these views do not contain information about the rules used by any propagation in the stream from a capture process to an outbound server.
To display information about the rules used by XStream components:
See Oracle Database Administrator's Guide for information about connecting to a database in SQL*Plus.
Your output looks similar to the following:
Notice that the STREAMS_TYPE
is APPLY
even though the rules are in the positive rule set for the outbound server xout
. You can determine the purpose of an apply process by querying the PURPOSE
column in the DBA_APPLY
view.
To view information about the rules used by all components, including capture processes, propagations, apply processes, outbound servers, and inbound servers, you can query the ALL_STREAMS_RULES
and DBA_STREAMS_RULES
views. See Oracle Streams Concepts and Administration for sample queries that enable you to monitor rules.
The Oracle Streams Performance Advisor consists of the DBMS_STREAMS_ADVISOR_ADM
PL/SQL package and a collection of data dictionary views. The Oracle Streams Performance Advisor enables you to monitor the topology and performance of an XStream environment. The XStream topology includes information about the components in an XStream environment, the links between the components, and the way information flows from capture to consumption. The Oracle Streams Performance Advisor also provides information about how Oracle Streams components are performing.
Apply processes function as XStream outbound servers and inbound servers. In general, the Oracle Streams Performance Advisor works the same way for an Oracle Streams environment with apply processes and an XStream environment with outbound servers or inbound servers. This section describes important considerations about using the Oracle Streams Performance Advisor in an XStream environment.
This section contains these topics:
See Also: Oracle Streams Concepts and Administration for detailed information about using the Oracle Streams Performance Advisor |
The Oracle Streams Performance Advisor tracks the following types of components in an XStream environment:
QUEUE
CAPTURE
PROPAGATION
SENDER
PROPAGATION
RECEIVER
APPLY
The preceding types are the same in an Oracle Streams environment and an XStream environment, except for APPLY
. The APPLY
component type can be an XStream outbound server or inbound server.
The following subcomponent types are possible for apply processes, outbound servers, and inbound servers:
PROPAGATION
SENDER+RECEIVER
for sending LCRs from a capture process directly to an apply process or outbound server in a combined capture and apply optimization APPLY
READER
for a reader server APPLY
COORDINATOR
for a coordinator process APPLY
SERVER
for an apply server In addition, the Oracle Streams Performance Advisor identifies a bottleneck component as the busiest component or the component with the least amount of idle time. In an XStream configuration, the XStream client application might be the bottleneck when EXTERNAL
appears in the ACTION_NAME
column of the DBA_STREAMS_TP_PATH_BOTTLENECK
view.
In the Oracle Streams topology, a stream path is a flow of messages from a source to a destination. A stream path begins where a capture process, synchronous capture, or application enqueues messages into a queue. A stream path ends where an apply process, outbound server, or inbound server dequeues the messages. The stream path might flow through multiple queues and propagations before it reaches an apply process, outbound server, or inbound server. Therefore, a single stream path can consist of multiple source/destination component pairs before it reaches last component.
The Oracle Streams topology only gathers information about a stream path if the stream path ends with an apply process, an outbound server, or an inbound server. The Oracle Streams topology does not track stream paths that end when a messaging client or an application that dequeues messages.
The Oracle Streams Performance Advisor tracks the following component-level statistics:
MESSAGE
APPLY
RATE
is the average number of messages applied each second by the apply process, outbound server, or inbound server. TRANSACTION
APPLY
RATE
is the average number of transactions applied by the apply process, outbound server, or inbound server each second. Transactions typically include multiple messages. An LCR can be applied in one of the following ways:
Also, the Oracle Streams Performance Advisor tracks the LATENCY
component-level statistics. LATENCY
is defined in the following ways:
LATENCY
is the amount of time between when the message was created at a source database and when the message was applied by the apply process at the destination database. LATENCY
is amount of time between when the message was created at a source database and when the message was sent to the XStream client application. LATENCY
is amount of time between when the message was created by the XStream client application and when the message was applied by the apply process. When a capture process creates an LCR, the message creation time is the time when the redo entry for the database change was recorded. When an XStream client application creates an LCR, the message creation time is the time when the LCR was constructed.
See Also: Oracle Streams Concepts and Administration for more information about component-level statistics |
The UTL_SPADV
package provides subprograms to collect and analyze statistics for the XStream components in a distributed database environment. The package uses the Oracle Streams Performance Advisor to gather statistics, and the output is formatted so that it can be imported into a spreadsheet easily and analyzed.
The UTL_SPADV
package works the same way for an Oracle Streams environment with apply processes and an XStream environment with outbound servers or inbound servers. However, there are some differences in the output for the SHOW_STATS
procedure. This section describes the differences between the output for apply processes and the output for XStream outbound servers and inbound servers.
Note: The rest of this section assumes that you are familiar with theUTL_SPADV package and the SHOW_STATS output for apply processes. See Oracle Streams Concepts and Administration and Oracle Database PL/SQL Packages and Types Reference for detailed information about using the UTL_SPADV package. |
The following sections describe the output for the SHOW_STATS
procedure for outbound servers and inbound servers:
The following is sample output for when an outbound server is the last component in a path:
Note: This output is for illustrative purposes only. Actual performance characteristics vary depending on individual configurations and conditions. |
In this output, the A
component is the outbound server XOUT
. The output for when an outbound server is the last component in a path is similar to the output for when an apply process is the last component in a path. However, the apply server (APS) is not the last component because the outbound server connects to a client application. Statistics are not collected for the client application.
In an XStream Out configuration, the output can indicate flow control for the network because "SQL*Net more data to client" for an apply server is considered as a flow control event. If the output indicates flow control for an apply server, then either the network or the client application is considered the bottleneck component. In the previous output, EXTERNAL
indicates that either the network or the client application is the bottleneck.
Other than these differences, you can interpret the statistics in the same way that you would for a path that ends with an apply process. Use the legend and the abbreviations to determine the statistics in the output.
The following is sample output for when an inbound server is the last component in a path:
Note: This output is for illustrative purposes only. Actual performance characteristics vary depending on individual configurations and conditions. |
In this output, the A
component is the inbound server XIN
. When an inbound server is the last component in a path, the XStream client application connects to the inbound server, and the inbound server applies the changes in the LCRs. The client application is not shown in the output.
The propagation receiver receives the LCRs from the client application. So, the propagation receiver is the first component shown in the output. In the previous sample output, the propagation receiver is named clientcap
. In this case, clientcap
is the source name given by the client application when it attaches to the inbound server.
If the propagation receiver is idle for a significant percentage of time, then either the network or the client application is considered a bottleneck component. In the previous output, EXTERNAL
indicates that either the network or the client application is the bottleneck.
Other than these differences, you can interpret the statistics in the same way that you would for a path that ends with an apply process. Use the legend and the abbreviations to determine the statistics in the output.
This chapter describes common problems you might encounter while using XStream and explains how to solve them.
This chapter contains the following topics:
With XStream, an Oracle Streams apply process can function as an outbound server or an inbound server. An XStream configuration can also include other components, such as capture processes, queues, propagations, rules, and rule-based transformations.
To diagnose problems with XStream, you can use many of the same techniques that are used to diagnose problems with Oracle Streams components. These techniques include the following:
See Oracle Streams Concepts and Administration for detailed information about these topics.
In general, you can troubleshoot XStream outbound servers and inbound servers in the same way that you troubleshoot Oracle Streams apply processes. In addition, an XStream Out environment includes capture processes and queues, and might include other components, such as propagations, rules, and rule-based transformations. To troubleshoot these components, see the troubleshooting documentation in Oracle Streams Concepts and Administration.
This section describes common problems and solutions for XStream.
This section contains the following topics:
An XStream client application cannot attach to an outbound server using the Oracle Call Interface (OCI) OCIXStreamOutAttach()
function.
The following sections describe possible problems and their solutions.
Problem 1: Client Application Not Connected as Connect User
The client application is not connected as the outbound server's connect user to the outbound server's database. The client application connected to the database as a different user.
Solution 1
To correct problem 1:
Problem 2: Client Application Not Passing Service Handle
The client application is not passing a service handle to the outbound server.
Solution 2
To correct problem 2:
OCISvcCtx
and not OCIServer
. In an XStream Out configuration, database changes that should be captured and streamed to the XStream client application are not reaching the client application.
The following sections describe possible problems and their solutions.
Problem 1: Capture Process Has Fallen Behind
The capture process has fallen behind.
To determine whether the capture process has fallen behind:
See Oracle Database Administrator's Guide for information about connecting to a database in SQL*Plus.
This query displays the time when the capture process last created a logical change record (LCR) and the time when the capture process last enqueued an LCR. If the times returned are before the time when the database changes were made, then the capture process must catch up and capture the changes.
Solution 1
No action is required. Normally, the capture process will catch up on its own without the need for intervention.
Problem 2: Rules or Rule-Based Transformation Excluding Changes
Rules or rule-based transformations are excluding the changes that should be captured.
Rules determine which LCRs are captured by a capture process, sent from a source queue to a destination queue by a propagation, and sent to an XStream client application by an outbound server. If the rules are not configured properly, then the client application might not receive the LCRs it should receive. The client application might also receive LCRs that it should not receive.
Rule-based transformations modify the contents of LCRs. Therefore, if the expected change data is not reaching the client application, it might be because a rule-based transformation modified the data or deleted the data. For example, a DELETE_COLUMN
declarative rule-based transformation removes a column from an LCR.
Solution 2
To correct problem 2:
Problem 3: LCRs Blocked in the Stream
If the capture process has not fallen behind, and there are no problems with rules or rule-based transformations, then LCRs might be blocked in the stream for some other reason. For example, a propagation or outbound server might be disabled, a database link might be broken, or there might be another problem.
You can track an LCR through a stream using one of the following methods:
message_tracking_frequency
capture process parameter to 1
or another relatively low value SET_MESSAGE_TRACKING
procedure in the DBMS_STREAMS_ADM
package After using one of these methods, use the V$STREAMS_MESSAGE_TRACKING
view to monitor the progress of LCRs through a stream. By tracking an LCR through the stream, you can determine where the LCR is blocked.
Solution 3
To correct problem 3:
See Also:
|
LCRs streaming from an outbound server are expected to include extra attributes, but these attributes are not included in the LCRs.
LCRs can contain the following extra attributes related to database changes:
row_id
serial#
session#
thread#
tx_name
username
By default, a capture process does not capture these extra attributes. If you want extra attributes to be included in LCRs streamed from an outbound server to an XStream client application, but the LCRs do not contain values for extra attributes, then make sure the capture process that captures changes for the outbound server is configured to capture values for the extra attributes.
The following sections describe the possible problem and its solution.
Problem: Capture Process Not Configured to Capture Extra Attributes
The capture process is not configured to capture the required extra attributes.
To display the extra attributes currently being captured by the capture processes in a database:
See Oracle Database Administrator's Guide for information about connecting to a database in SQL*Plus.
If an extra attribute is not displayed by this query, then it is not being captured.
Solution
To solve the problem, configure the capture process to capture the required extra attributes:
See Oracle Database Administrator's Guide for information about connecting to a database in SQL*Plus.
INCLUDE_EXTRA_ATTRIBUTE
procedure in the DBMS_CAPTURE_ADM
package. Example 6-1 Including the tx_name Attribute for the Capture Process xcapture
The XStream client application in an XStream Out configuration is unresponsive.
The following sections describe the possible problem and its solution.
Problem 1: Streams Pool Size Is Too Small
The Streams pool size might be too small.
To determine whether the Streams pool size is too small:
See Oracle Database Administrator's Guide for information about connecting to a database in SQL*Plus.
V$PROPAGATION_RECEIVER
view.: If the state is WAITING
FOR
MEMORY
, then consider increasing the Streams pool size.
V$STREAMS_POOL_STATISTICS
view.: If the value returned is .90 or greater, then consider increasing the Streams pool size.
V$STREAMS_CAPTURE
view.: If the state is WAITING
FOR
BUFFER
QUEUE
TO
SHRINK
, then increase the Streams pool size.
Solution 1
To correct problem 1:
STREAMS_POOL_SIZE
initialization parameter or by modifying other initialization parameters related to memory. See Also:
|
Problem 2: Programming Errors
If there is enough memory in the Streams pool, then check your client application for programming errors.
Solution 2
To correct problem 2:
If an XStream In configuration cannot identify an inbound server, then the following error is returned:
The following sections describe the possible problem and its solution.
Problem: Multiple Subscribers to the Inbound Server's Queue
The ORA-26840
error indicates that there are multiple subscribers to the queue used by the inbound server. Subscribers can include inbound servers, outbound servers, apply processes, and propagations.
To determine whether there are multiple subscribers to the inbound server's queue:
See Oracle Database Administrator's Guide for information about connecting to a database in SQL*Plus.
You can add a WHERE
clause to the query to limit the output to the inbound server's queue.
Solution
To correct the problem:
You can check My Oracle Support at http://support.oracle.com
for more solutions to your problem.
You can visit http://www.oracle.com/support/contact.html
for more information about Oracle Support.
This part contains the XStream PL/SQL packages reference. This part contains the following chapters:
This DBMS_XSTREAM_ADM
package provides interfaces for streaming database changes between an Oracle database and other systems. XStream enables applications to stream out or stream in database changes.
This chapter contains the following topic:
This section contains topics which relate to using the DBMS_XSTREAM_ADM
package.
The package provides interfaces for configuring outbound servers that stream database changes from an Oracle database to other systems. The package also provides interfaces for configuring inbound servers that stream database changes from other systems to an Oracle database. In both cases, the database changes are encapsulated in logical change records (LCRs). Also, the other systems can be Oracle systems or a non-Oracle systems, such as non-Oracle databases or file systems.
XStream outbound servers can stream out LCRs from an Oracle database programmatically using C or Java. After receiving the LCRs, the other system can process them in any customized way. For example, the other system can save the contents of the LCRs to a file, send the LCRs to an Oracle database through an XStream inbound server, or generate SQL statements and execute them on any Oracle or non-Oracle databases.
XStream inbound servers accept LCRs from another system and either apply them to an Oracle database or process them in a customized way using apply handlers.
To ensure that the user who runs the subprograms in this package has the necessary privileges, configure an XStream administrator and connect as the XStream administrator when using this package.
An administrator must be granted the DBA
role when the administrator is performing any of the following actions:
ADD_OUTBOUND
procedure while connected as a user that is different from the configured connect user for an outbound server ALTER_OUTBOUND
procedure to change the capture user for a capture process or the connect user for an outbound server CREATE_OUTBOUND
procedure, because this procedure creates a capture process ALTER_INBOUND
procedure to change the apply user for an inbound server ADD_INBOUND
procedure while connected as a user that is different from the configured apply user for an inbound server When the administrator does not need to perform the preceding tasks, the DBA
role is not required.
See Also:
|
Some subprograms in the DBMS_APPLY_ADM
package can manage XStream outbound servers, and some subprograms in the DBMS_APPLY_ADM
package can manage XStream inbound servers.
See Also: Oracle Database PL/SQL Packages and Types Reference for details about which subprograms can manage outbound servers and inbound servers |
Table 7-1 DBMS_XSTREAM_ADM Package Subprograms
Subprogram | Description |
---|---|
| Creates an XStream outbound server that dequeues LCRs from the specified queue |
ADD_SUBSET_OUTBOUND_RULES Procedure | Adds subset rules to an outbound server configuration |
| Modifies an XStream inbound server |
| Modifies an XStream outbound server |
| Creates an XStream inbound server and its queue |
| Creates an XStream outbound server, queue, and capture process to enable XStream client applications to stream out Oracle database changes encapsulated in LCRs |
| Removes an inbound server configuration |
| Removes an outbound server configuration |
ENABLE_GG_XSTREAM_FOR_STREAMS Procedure | Enables XStream performance optimizations for Oracle Streams components |
IS_GG_XSTREAM_FOR_STREAMS Function | Returns |
REMOVE_SUBSET_OUTBOUND_RULES Procedure | Removes subset rules from an outbound server configuration |
Note: All subprograms commit unless specified otherwise. |
This procedure creates an XStream outbound server that dequeues LCRs from the specified queue. The outbound server streams out the LCRs to an XStream client application.
This procedure creates neither a capture process nor a queue. To create an outbound server, a capture process, and a queue with one procedure call, use the CREATE_OUTBOUND Procedure.
To create the capture process individually, use one of the following packages:
DBMS_STREAMS_ADM
DBMS_CAPTURE_ADM
To create a queue individually, use the SET_UP_QUEUE
procedure in the DBMS_STREAMS_ADM
package.
This procedure is overloaded. One table_names
parameter is type VARCHAR2
and the other table_names
parameter is type DBMS_UTILITY.UNCL_ARRAY
. Also, one schema_names
parameter is type VARCHAR2
and the other schema_names
parameter is type DBMS_UTILITY.UNCL_ARRAY
. These parameters enable you to enter the lists of tables and schemas in different ways and are mutually exclusive.
Note:
|
Syntax
Parameters
Table 7-2 ADD_OUTBOUND Procedure Parameters
Parameter | Description |
---|---|
| The name of the outbound server being created. A The specified name must not match the name of an existing outbound server, inbound server, apply process, or messaging client. Note: The |
| The name of the local queue from which the outbound server dequeues LCRs, specified as For example, to specify a queue named If |
| The global name of the source database. The source database is where the changes being captured originated. If you do not include the domain name, then the procedure appends it to the database name automatically. For example, if you specify If |
| The tables for which data manipulation language (DML) and data definition language (DDL) changes are streamed out to the XStream client application. The tables can be specified in the following ways:
Each table should be specified as See Also: "Usage Notes" for more information about this parameter |
| The schemas for which DML and DDL changes are streamed out to the XStream client application. The schemas can be specified in the following ways:
Note: This procedure does not concatenate the See Also: "Usage Notes" for more information about this parameter |
| The user who can attach to the specified outbound server to retrieve the LCR stream. The client application must attach to the outbound server as the specified connect user. See "CREATE_OUTBOUND Procedure" for information about the privileges required by a connect user. If |
| An optional comment associated with the outbound server. |
| The name of the capture process configured to capture changes for the outbound server. Do not specify an owner. If the specified name matches the name of an existing capture process for another outbound server, then the procedure uses the existing capture process and adds the rules for capturing changes to the database to the positive capture process rule set. If the specified name matches the name of an existing capture process for an apply process, then an error is raised. If the specified name does not match the name of an existing capture process, then an error is raised. If |
| A valid system change number (SCN) for the database from which the capture process starts capturing changes. If the If An error is returned if an invalid SCN is specified. The |
| A valid time from which the capture process starts capturing changes. If the If The |
Usage Notes
The following list describes the behavior of the outbound server for various combinations of the table_names
and schema_names
parameters:
table_names
and schema_names
parameters are NULL
or empty, then the outbound server streams all DML and DDL changes to the client application. This procedure is overloaded. The table_names
and schema_names
parameters are defaulted to NULL
. Do not specify NULL
for both table_names
and schema_names
in the same call; otherwise, error PLS-00307
is returned.
table_names
and schema_names
parameters are specified, then the outbound server streams DML and DDL changes for the specified tables and schemas. table_names
parameter is specified and the schema_names
parameter is NULL
or empty, then the outbound server streams DML and DDL changes for the specified tables. table_names
parameter is NULL
or empty and the schema_names
parameter is specified, then the outbound server streams DML and DDL changes for the specified schemas. For the procedure that uses the DBMS_UTILITY.UNCL_ARRAY
type for the table_names
and schema_names
parameters, both parameters must be specified. To specify only tables, the schema_names
parameter must be specified and empty. To specify only schemas, the table_names
parameter must be specified and empty.
Note: An empty array includes oneNULL entry. |
This procedure adds subset rules to an outbound server configuration. Subset rules instruct the outbound server to stream out a subset of the changes to the specified tables. Outbound servers can stream out a subset of both rows and columns.
This procedure is overloaded. One column_list
parameter is type VARCHAR2
and the other column_list
parameter is type DBMS_UTILITY.LNAME_ARRAY
. These parameters enable you to enter the list of columns in different ways and are mutually exclusive.
Note: This procedure does not add rules to the outbound server's capture process. |
Syntax
Parameters
Table 7-3 ADD_SUBSET_OUTBOUND_RULES Procedure Parameters
Parameter | Description |
---|---|
| The name of the outbound server to which rules are being added. Specify an existing outbound server. Do not specify an owner. |
| The name of the table specified as If the outbound server configuration uses a local capture process, then the table must exist at the local source database. If the outbound server configuration uses a downstream capture process, then the table must exist at both the source database and at the downstream capture database. The specified table cannot have any LOB, |
| The subset condition. Specify this condition similar to the way you specify conditions in a For example, to specify rows in the
If Note: The quotation marks in the preceding example are all single quotation marks. |
| The list of columns either to include in the outbound server configuration or to exclude from the outbound server configuration. Whether the columns are included or excluded depends on the setting for the The columns can be specified in the following ways:
To include or exclude all of the columns in a table, specify each column in the table in the list or array. If |
| If If See Also: "Usage Notes" |
Usage Notes
When the keep
parameter is set to TRUE
, this procedure creates a keep columns declarative rule-based transformation for the columns listed in column_list
.
When the keep
parameter is set to FALSE
, this procedure creates a delete column declarative rule-based transformation for each column listed in column_list
.
See Also: Oracle Streams Concepts and Administration for information about declarative rule-based transformations |
This procedure modifies an XStream inbound server.
Syntax
Parameters
Table 7-4 ALTER_INBOUND Procedure Parameters
Parameter | Description |
---|---|
| The name of the inbound server being altered. Specify an existing inbound server. Do not specify an owner. |
| The user who applies all DML and DDL changes that satisfy the inbound server rule sets, who runs user-defined apply handlers, and who runs custom rule-based transformations configured for inbound server rules. The client application must attach to the inbound server as the apply user. Specify a user to change the apply user. In this case, the user who invokes the If See "CREATE_INBOUND Procedure" for information about the required privileges for an apply user. |
| An optional comment associated with the inbound server. If non- If |
This procedure modifies an XStream outbound server configuration.
This procedure always alters the specified outbound server. This procedure can also alter the outbound server's capture process when either of the following conditions is met:
CREATE_OUTBOUND
procedure in this package. CREATE_OUTBOUND
procedure. To check whether this procedure can alter the outbound server's capture process, query the CAPTURE_NAME
column in the DBA_XSTREAM_OUTBOUND
view. When the name of the capture process appears in the CAPTURE_NAME
column of this view, the ALTER_OUTBOUND
procedure can manage the capture process's rules or change the capture user for the capture process. When the CAPTURE_NAME
column of this view is NULL
, the ALTER_OUTBOUND
procedure cannot manage the capture process.
This procedure is overloaded. One table_names
parameter is type VARCHAR2
and the other table_names
parameter is type DBMS_UTILITY.UNCL_ARRAY
. Also, one schema_names
parameter is type VARCHAR2
and the other schema_names
parameter is type DBMS_UTILITY.UNCL_ARRAY
. These parameters enable you to enter the list of tables and schemas in different ways and are mutually exclusive.
Note: Starting with Oracle Database 11g Release 2 (11.2.0.2), thestart_scn and start_time parameters are included in this procedure. |
Syntax
Parameters
Table 7-5 ALTER_OUTBOUND Procedure Parameters
Parameter | Description |
---|---|
| The name of the outbound server being altered. Specify an existing outbound server. Do not specify an owner. |
| The tables that are either added to or removed from the XStream Out configuration. Whether the tables are added or removed depends on the setting for the The tables can be specified in the following ways:
Each table should be specified as See Also: "Usage Notes" for more information about this parameter |
| The schemas that are either added to or removed from the XStream Out configuration. Whether the schemas are added or removed depends on the setting for the The schemas can be specified in the following ways:
Note: This procedure does not concatenate the See Also: "Usage Notes" for more information about this parameter |
| If If |
| The user in whose security domain a capture process captures changes that satisfy its rule sets and runs custom rule-based transformations configured for capture process rules. Specify a user to change the capture user. In this case, the user who invokes the If If you change the capture user, then this procedure grants the new capture user enqueue privilege on the queue used by the capture process and configures the user as a secure queue user. Ensure that the capture user is granted the other required privileges. See "CREATE_OUTBOUND Procedure" for information about the privileges required by a capture user. The capture process is stopped and restarted automatically when you change the value of this parameter. Note: If the capture user for a capture process is dropped using |
| The user who can attach to the specified outbound server to retrieve the change stream. The XStream client application must attach to the outbound server as the specified connect user. Specify a user to change the connect user. In this case, the user who invokes the If If you change the connect user, then this procedure grants the new connect user dequeue privileges on the queue used by the outbound server and configures the user as a secure queue user. Ensure that the connect user is granted the other required privileges. See "CREATE_OUTBOUND Procedure" for information about the privileges required by a connect user. |
| An optional comment associated with the outbound server. If non- If |
| If If If If |
| A valid SCN for the database from which the capture process starts capturing changes. To be valid, the SCN value must be greater than or equal to the first SCN for the capture process. If a valid SCN is specified, then the capture process captures changes from the specified SCN when it is restarted. An error is returned if an invalid SCN is specified. If If The Note: If the capture process is enabled, then the |
| A valid time from which the capture process starts capturing changes. To be valid, the time must correspond to an SCN value that is greater than or equal to the first SCN for the capture process. If a valid time is specified, then the capture process captures changes from the specified time when it is restarted. An error is returned if an invalid time is specified. If If The Note: If the capture process is enabled, then the |
Usage Notes
The following list describes the behavior of the outbound server for various combinations of the table_names
and schema_names
parameters:
table_names
and schema_names
parameters are NULL
or empty, then no rules are changed for the XStream Out configuration. This procedure is overloaded. The table_names
and schema_names
parameters are defaulted to NULL
. Do not specify NULL
for both table_names
and schema_names
in the same call; otherwise, error PLS-00307
is returned.
table_names
and schema_names
parameters are specified, then the rules for the tables and schemas are added to or removed from the XStream Out configuration, depending on the setting of the add
parameter. table_names
parameter is specified and the schema_names
parameter is NULL
or empty, then the rules for the tables are added to or removed from the XStream Out configuration, depending on the setting of the add
parameter. The existing rules for schemas are not changed for the XStream Out configuration. table_names
parameter is NULL
or empty and the schema_names
parameter is specified, then the rules for the schemas are added to or removed from the XStream Out configuration, depending on the setting of the add
parameter. The existing rules for tables are not changed for the XStream Out configuration. For the procedure that uses the DBMS_UTILITY.UNCL_ARRAY
type for the table_names
and schema_names
parameters, both parameters must be specified. To specify only tables, the schema_names
parameter must be specified and empty. To specify only schemas, the table_names
parameter must be specified and empty.
Note: An empty array includes oneNULL entry. |
This procedure creates an XStream inbound server and its queue.
Note: A client application can create multiple sessions. Each session can attach to only one inbound server, and each inbound server can serve only one session at a time. However, different client application sessions can connect to different inbound servers. See Part IV, "XStream OCI API Reference" and Oracle Database XStream Java API Reference for information about attaching to an inbound server. |
Syntax
Parameters
Table 7-6 CREATE_INBOUND Procedure Parameters
Parameter | Description |
---|---|
| The name of the inbound server being created. A The specified name must not match the name of an existing outbound server, inbound server, apply process, or messaging client. Note: The |
| The name of the local queue used by the inbound server, specified as If the specified queue exists, then it is used. If the specified queue does not exist, then the procedure creates it. For example, to specify a queue named Note: An inbound server's queue is used only to store error transactions. |
| The apply user. If The client application must attach to the inbound server as the apply user. The apply user is the user in whose security domain an inbound server evaluates whether LCRs satisfy its rule sets, applies DML and DDL changes directly to database objects, runs custom rule-based transformations configured for inbound server rules, and runs apply handlers configured for the inbound server. This user must have the necessary privileges to perform these actions. This procedure grants the apply user dequeue privileges on the queue used by the inbound server and configures the user as a secure queue user. In addition to the privileges granted by this procedure, you must grant the following privileges to the apply user:
You can grant these privileges directly to the apply user, or you can grant them through roles. In addition, the apply user must be granted Note: If the apply user for an inbound server is dropped using |
| An optional comment associated with the inbound server. |
Usage Notes
By default, an inbound server does not use rules or rule sets. Therefore, an inbound server applies all of the LCRs sent to it by an XStream client application. However, to filter the LCRs sent to an inbound server, you can add rules and rule sets to an inbound server using the DBMS_STREAMS_ADM
and DBMS_RULE_ADM
packages.
This procedure creates an XStream outbound server, queue, and capture process to enable client applications to stream out Oracle database changes.
This procedure is overloaded. One table_names
parameter is type VARCHAR2
and the other table_names
parameter is type DBMS_UTILITY.UNCL_ARRAY
. Also, one schema_names
parameter is type VARCHAR2
and the other schema_names
parameter is type DBMS_UTILITY.UNCL_ARRAY
. These parameters enable you to enter the list of tables and schemas in different ways and are mutually exclusive.
Note:
|
Syntax
Parameters
Table 7-7 CREATE_OUTBOUND Procedure Parameters
Parameter | Description |
---|---|
| The name of the outbound server being created. A The specified name must not match the name of an existing outbound server, inbound server, apply process, or messaging client. Note: The |
| The global name of the source database. The source database is where the changes to be captured originated. If you do not include the domain name, then the procedure appends it to the database name automatically. For example, if you specify If If non- |
| The tables for which DML and DDL changes are streamed out to the XStream client application. The tables can be specified in the following ways:
Each table should be specified as See Also: "Usage Notes" for more information about this parameter |
| The schemas for which DML and DDL changes are streamed out to the XStream client application. The schemas can be specified in the following ways:
Note: This procedure does not concatenate the See Also: "Usage Notes" for more information about this parameter |
| The user in whose security domain a capture process captures changes that satisfy its rule sets and runs custom rule-based transformations configured for capture process rules. If This procedure grants the capture user enqueue privilege on the queue used by the capture process and configures the user as a secure queue user. In addition, ensure that the capture user has the following privileges:
You can grant these privileges directly to the apply user, or you can grant them through roles. In addition, the capture user must be granted Only a user who is granted the A capture user does not require privileges on a database object to capture changes made to it. The capture process can pass these changes to a custom rule-based transformation function. Therefore, ensure that you consider security implications when you configure a capture process. |
| The user who can attach to the specified outbound server to retrieve the change stream. The client application must attach to the outbound server as the specified connect user. If The connect user is the user in whose security domain an outbound server dequeues LCRs that satisfy its rule sets and runs custom rule-based transformations configured for outbound server rules. This user must have the necessary privileges to perform these actions. This procedure grants the connect user dequeue privileges on the queue used by the outbound server and configures the user as a secure queue user. In addition to the privileges granted by this procedure, grant the following privileges to the connect user:
You can grant these privileges directly to the connect user, or you can grant them through roles. In addition, the connect user must be granted |
| An optional comment associated with the outbound server. |
| The name of the capture process configured to capture changes for the outbound server. Do not specify an owner. The capture process must not exist. If the specified name matches the name of an existing capture process, then an error is raised. If the name does not match the name of an existing capture process, then the procedure creates a new capture process with the specified name. If Note: The capture process name cannot be altered after the capture process is created. |
Usage Notes
The following list describes the behavior of the outbound server for various combinations of the table_names
and schema_names
parameters:
table_names
and schema_names
parameters are NULL
or empty, then the outbound server streams all DML and DDL changes to the client application. This procedure is overloaded. The table_names
and schema_names
parameters are defaulted to NULL
. Do not specify NULL
for both table_names
and schema_names
in the same call; otherwise, error PLS-00307
is returned.
table_names
and schema_names
parameters are specified, then the outbound server streams DML and DDL changes for the specified tables and schemas. table_names
parameter is specified and the schema_names
parameter is NULL
or empty, then the outbound server streams DML and DDL changes for the specified tables. table_names
parameter is NULL
or empty and the schema_names
parameter is specified, then the outbound server streams DML and DDL changes for the specified schema. For the procedure that uses the DBMS_UTILITY.UNCL_ARRAY
type for the table_names
and schema_names
parameters, both parameters must be specified. To specify only tables, the schema_names
parameter must be specified and empty. To specify only schemas, the table_names
parameter must be specified and empty.
Note: An empty array includes oneNULL entry. |
This procedure removes an inbound server configuration.
This procedure always removes the specified inbound server. This procedure also removes the queue for the inbound server if all of the following conditions are met:
CREATE_INBOUND
procedure created the queue. Syntax
Parameters
Table 7-8 DROP_INBOUND Procedure Parameters
Parameter | Description |
---|---|
| The name of the inbound server being removed. Specify an existing inbound server. Do not specify an owner. |
This procedure removes an outbound server configuration.
This procedure always drops the specified outbound server. This procedure also drops the queue used by the outbound server if both of the following conditions are met:
CREATE_OUTBOUND
procedure in this package. If either one of the preceding conditions is not met, then the DROP_OUTBOUND
procedure only drops the outbound server. It does not drop the queue.
This procedure also drops the capture process for the outbound server if both of the following conditions are met:
CREATE_OUTBOUND
procedure. If the procedure can drop the queue but cannot manage the capture process, then it drops the queue without dropping the capture process.
Syntax
Parameters
Table 7-9 DROP_OUTBOUND Procedure Parameters
Parameter | Description |
---|---|
| The name of the outbound server being removed. Specify an existing outbound server. Do not specify an owner. |
Note: This functionality is available starting with Oracle Database 11g Release 2 (11.2.0.2). |
This procedure enables XStream capabilities and performance optimizations for Oracle Streams components.
This procedure is intended for users of Oracle Streams who want to enable XStream capabilities and optimizations. For example, you can enable the optimizations for an Oracle Streams replication configuration that uses capture processes and apply processes to replicate changes between Oracle databases.
These capabilities and optimizations are enabled automatically for XStream components, such as outbound servers, inbound servers, and capture processes that send changes to outbound servers. It is not necessary to run this procedure for XStream components.
When XStream capabilities are enabled, Oracle Streams components can stream ID key LCRs and sequence LCRs. The XStream performance optimizations improve efficiency in various areas, including:
Syntax
Parameters
Table 7-10 ENABLE_GG_XSTREAM_FOR_STREAMS Procedure Parameters
Parameter | Description |
---|---|
| If If |
Usage Notes
The following usage notes apply to this procedure:
PURPOSE
column in the following views displays XStream
Streams
: ALL_APPLY
DBA_APPLY
ALL_CAPTURE
DBA_CAPTURE
Note: This functionality is available starting with Oracle Database 11g Release 2 (11.2.0.2). |
This function returns TRUE
if XStream performance optimizations are enabled for Oracle Streams components, or this function returns FALSE
if XStream performance optimizations are disabled for Oracle Streams components.
Syntax
This procedure removes subset rules from an outbound server configuration.
The names of the specified insert, update, and delete rules must match those generated by the ADD_SUBSET_OUTBOUND_RULES
procedure. To view the rule names for subset rules, run the following query:
Note:
|
Syntax
Parameters
Table 7-11 REMOVE_SUBSET_OUTBOUND_RULES Procedure Parameters
Parameter | Description |
---|---|
| The name of the outbound server from which rules are being removed. Specify an existing outbound server. Do not specify an owner. |
| The name of the insert rule being removed, specified as For example, to specify a rule in the If |
| The name of the update rule being removed, specified as If |
| The name of the delete rule being removed, specified as If |
The DBMS_XSTREAM_AUTH
package provides subprograms for granting privileges to and revoking privileges from XStream administrators.
Note: This functionality is available starting with Oracle Database 11g Release 2 (11.2.0.2). |
This chapter contains the following topic:
This section contains topics which relate to using the DBMS_XSTREAM_AUTH
package.
This package provides subprograms for granting privileges to XStream administrators and revoking privileges from XStream administrators.
Security on this package can be controlled in either of the following ways:
EXECUTE
on this package to selected users or roles. EXECUTE_CATALOG_ROLE
to selected users or roles. If subprograms in the package are run from within a stored procedure, then the user who runs the subprograms must be granted EXECUTE
privilege on the package directly. It cannot be granted through a role.
To ensure that the user who runs the subprograms in this package has the necessary privileges, connect as an administrative user who can create users, grant privileges, and create tablespaces when using this package.
Table 8-1 DBMS_XSTREAM_AUTH Package Subprograms
Subprogram | Description |
---|---|
GRANT_ADMIN_PRIVILEGE Procedure | Either grants the privileges needed by a user to be an XStream administrator directly, or generates a script that grants these privileges |
GRANT_REMOTE_ADMIN_ACCESS Procedure | Enables a remote XStream administrator to perform administrative actions at the local database by connecting to the grantee using a database link |
REVOKE_ADMIN_PRIVILEGE Procedure | Either revokes XStream administrator privileges from a user directly, or generates a script that revokes these privileges |
REVOKE_REMOTE_ADMIN_ACCESS Procedure | Disables a remote XStream administrator from performing administrative actions by connecting to the grantee using a database link |
Note: All subprograms commit unless specified otherwise. |
This procedure either grants the privileges needed by a user to be an XStream administrator directly, or generates a script that grants these privileges.
Syntax
Parameters
Table 8-2 GRANT_ADMIN_PRIVILEGE Procedure Parameters
Parameter | Description |
---|---|
| The user to whom privileges are granted |
| If If You specify |
| The name of the file generated by the procedure. The file contains all of the statements that grant the privileges. If a file with the specified file name exists in the specified directory name, then the grant statements are appended to the existing file. If |
| The directory into which the generated file is placed. The specified directory must be a directory object created using the SQL statement If If |
Usage Notes
The user who runs the procedure must be an administrative user who can grant privileges to other users.
Specifically, the procedure grants the following privileges to the specified user:
RESTRICTED
SESSION
system privilege EXECUTE
on the following packages: DBMS_APPLY_ADM
DBMS_AQ
DBMS_AQADM
DBMS_AQIN
DBMS_AQELM
DBMS_CAPTURE_ADM
DBMS_FLASHBACK
DBMS_LOCK
DBMS_PROPAGATION_ADM
DBMS_RULE_ADM
DBMS_STREAMS_ADM
DBMS_STREAMS_ADVISOR_ADM
DBMS_STREAMS_HANDLER_ADM
DBMS_STREAMS_MESSAGING
DBMS_TRANSFORM
DBMS_XSTREAM_ADM
In addition, the grantee can grant these privileges to other users.
SELECT_CATALOG_ROLE
SELECT
privilege on data dictionary views related to XStream and Oracle Streams This ability is enabled by running the GRANT_REMOTE_ADMIN_ACCESS
procedure in this package.
Note:
|
See Also:
|
This procedure enables a remote XStream administrator to perform administrative actions at the local database by connecting to the grantee using a database link.
Syntax
Parameters
Table 8-3 GRANT_REMOTE_ADMIN_ACCESS Procedure Parameter
Parameter | Description |
---|---|
| The user who allows remote access. The procedure adds the grantee to the |
Usage Notes
Typically, you run the procedure and specify a grantee at a local source database if a downstream capture process captures changes originating at the local source database. The XStream administrator at a downstream capture database administers the source database using this connection.
Note: TheGRANT_ADMIN_PRIVILEGE procedure in this package runs this procedure. |
This procedure either revokes XStream administrator privileges from a user directly, or generates a script that revokes these privileges.
Syntax
Parameters
Table 8-4 REVOKE_ADMIN_PRIVILEGE Procedure Parameters
Parameter | Description |
---|---|
| The user from whom privileges are revoked |
| If If You specify |
| The name of the file generated by this procedure. The file contains all of the statements that revoke the privileges. If a file with the specified file name exists in the specified directory name, then the revoke statements are appended to the existing file. If |
| The directory into which the generated file is placed. The specified directory must be a directory object created using the SQL statement If the If |
Usage Notes
The user who runs this procedure must be an administrative user who can revoke privileges from other users. Specifically, this procedure revokes the privileges granted by running the GRANT_ADMIN_PRIVILEGE
procedure in this package.
Note: To view all of the statements run by this procedure in detail, you can use the procedure to generate a script and then view the script in a text editor. |
See Also:
|
This procedure disables a remote XStream administrator from performing administrative actions by connecting to the grantee using a database link.
Note: TheREVOKE_ADMIN_PRIVILEGE procedure in this package runs this procedure. |
Syntax
Parameters
Table 8-5 REVOKE_REMOTE_ADMIN_ACCESS Procedure Parameter
Parameter | Description |
---|---|
| The user for whom access from a remote XStream administrator is disabled. If a row for the grantee exists in the If no row for the grantee exists in the |
This part contains the XStream OCI API reference. This part contains the following chapters:
The Oracle Call Interface (OCI) includes an interface for XStream. This chapter provides an introduction to the OCI interface for XStream.
This chapter contains these topics:
This chapter provides an overview of the OCI interface for XStream. For detailed information about XStream concepts, see Chapter 1, "XStream Concepts".
Since Oracle Database 11g Release 2, APIs, known as XStream Out and XStream In, are available. This technology enables high performance, near real-time information-sharing infrastructure between Oracle databases and non-Oracle databases, non-RDBMS Oracle products, file systems, third party software applications, and so on. XStream is built on top of Oracle Streams infrastructure.
XStream Out allows a remote client to attach to an outbound server and extract row changes in the form of logical change records (LCRs). For the basics of LCRs, see Oracle Streams Concepts and Administration.
To use XStream Out, a capture process and an outbound server must be created. All data types supported by Oracle Streams, including LOB, LONG
, and XMLType
, are supported by XStream. The capture process and the outbound server need not be on the same database instance. After the capture process and the outbound server have started, row changes are captured and sent to the outbound server. An external client application can connect to this outbound server using OCI. After the connection is established, the client application can loop while waiting for LCRs from the outbound server. The client application can register a client-side callback to be invoked each time an LCR is received. At any time, the client application can detach from the outbound server as needed. Upon restart, the outbound server knows where in the redo stream to start streaming LCRs to the client application.
To replicate non-Oracle data into Oracle databases, use XStream In. This technology allows a remote client application to attach to an inbound server and send row and DDL changes in the form of LCRs.
An external client application connects to the inbound server using OCI. After the connection is established, the client application acts as the capture agent for the inbound server by streaming LCRs to it. A client application can attach to only one inbound server for each database connection, and each inbound server only allows one client application to attach to it.
Each LCR has a position attribute. The position of an LCR identifies its placement in the stream of LCRs in a transaction.
XStream Out implicitly converts character data in LCRs from the outbound server database character set to the client application character set. XStream In implicitly converts character data in LCRs from the client application character set to the inbound server database character set.
To improve performance, complete the following tasks:
For XStream Out, in general, setting the client application character set to the outbound server database character set is the best practice.
This chapter describes the attributes for OCI handles and descriptors, which can be read with OCIAttrGet()
and modified with OCIAttrSet()
.
For each handle type, the attributes that can be read or changed are listed. Each attribute listing includes the following information:
The following modes are valid:
READ
- The attribute can be read using OCIAttrGet()
.
WRITE
- The attribute can be modified using OCIAttrSet()
.
READ/WRITE
- The attribute can be read using OCIAttrGet()
, and it can be modified using OCIAttrSet()
.
This is a description of the purpose of the attribute.
This is the data type of the attribute. If necessary, a distinction is made between the data type for READ
and WRITE
modes.
The following server handle attributes are available:
READ/WRITE
For XStream Out, the ACK interval is the minimum interval in seconds that the outbound server receives the processed low position from the client application. After each ACK interval, the outbound server ends any in-progress OCIXStreamOutLCRReceive()
or OCIXStreamOutLCRCallbackReceive()
call so that the processed low position cached at the client application can be sent to the outbound server.
For XStream In, the ACK interval is the minimum interval in seconds that the inbound server sends the processed low position to the client application. After each ACK interval, any in-progress OCIXStreamInLCRSend()
or OCIXStreamInLCRCallbackSend()
call is terminated for the inbound server to send a new processed low position to the client application.
The default value for OCI_ATTR_XSTREAM_ACK_INTERVAL
is 30 seconds. This attribute is checked only during the OCIXStreamOutAttach()
or OCIXStreamInAttach()
calls. Thus, it must be set before invoking these APIs; otherwise, the default value is used.
ub4 *
/ub4
READ/WRITE
The idle timeout is the number of seconds of idle the outbound server waits for an LCR before terminating the OCIXStreamOutLCRReceive()
or OCIXStreamOutLCRCallbackReceive()
call.
The default for OCI_ATTR_XSTREAM_IDLE_TIMEOUT
is one second. This attribute is checked only during the OCIXStreamOutAttach()
or OCIXStreamInAttach()
call. Thus, it must be set before invoking these APIs; otherwise, the default value is used.
ub4 *
/ub4
This chapter describes the XStream functions for OCI.
A row logical change record (LCR) is used to encapsulate each row change. It includes the schema name, table name, DML operation, and the column values. For update operations, both before and after column values are included. The column data is in the format specified by the "Program Variable" column in Table 10-3. Character columns are converted to the client's character set.
A DDL LCR is used to encapsulate each DDL change. It includes the object name, the DDL text, and the DDL command, for example, ALTER
TABLE
or TRUNCATE
TABLE
. See Oracle Call Interface Programmer's Guide for a list of DDL command codes.
See Also: Oracle Database Globalization Support Guide for more information about NLS settings.XStream sample programs are found in |
Each LCR also has a transaction ID and position. For transactions captured outside Oracle databases, any byte-comparable RAW
array can be used as the LCR position, if the position of each LCR in the stream is strictly increasing.
This chapter contains the topic:
This section includes the conventions used to describe the functions.
A description of each of the function's parameters. This includes the parameter's mode. The mode of a parameter has three possible values, as described in Table 10-1.
This section and Table 10-1 describe the OCI XStream functions.
Table 10-2 OCI XStream Functions
Function | Purpose |
---|---|
LCR Functions | To get and set one or more values of an LCR. Note: These calls do not require a server round-trip. |
| Returns existing extra attributes from the LCR |
| Sets extra attributes in a row or DDL LCR |
| Frees the LCR |
| Returns the common header fields for a row/DDL LCR |
| Initializes the common header fields for a row or DDL LCR |
| Retrieves specific fields in a DDL LCR |
| Populates DDL-specific fields in a DDL LCR |
| Returns the LOB information for a piece-wise LOB LCR |
| Sets the LOB information for a piece-wise LOB LCR |
| Constructs a new LCR object of the specified type (ROW or DDL) for the given duration |
| Returns the column fields in a row LCR |
| Populates column fields in a row LCR |
| Returns the generated SQL statement for the row LCR, with values in-lined |
"OCILCRRowStmtWithBindVarGet()" | Returns the generated SQL statement, which uses bind variables for column values |
| Gets the SCN and commit SCN from a position value |
| Converts SCN to position |
| Gets the |
"OCILCRWhereClauseWithBindVarGet()" | Gets the |
XStream In Functions | To send an LCR stream to an XStream inbound server |
| Attaches to an inbound server |
| Sends chunk data to the inbound server |
| Commits the given transaction |
| Detaches from the inbound server |
| Returns the first error encountered by the inbound server since the attach call |
| Flushes the network while attaching to an XStream inbound server |
"OCIXStreamInLCRCallbackSend()" | Sends the LCR stream to the attached inbound server using callbacks |
| Sends the LCR stream to the attached inbound server using callbacks |
"OCIXStreamInProcessedLWMGet()" | Gets the local processed low position |
XStream Out Functions | To receive an LCR stream from an XStream outbound server |
| Attaches to an outbound server |
| Retrieves data of each LOB or |
| Detaches from the outbound server |
"OCIXStreamOutLCRCallbackReceive()" | Gets the LCR stream from the outbound server using callbacks |
| Receives an LCR stream from an outbound server without using callbacks |
"OCIXStreamOutProcessedLWMSet()" | Updates the local copy of the processed low-water mark |
Purpose
Gets extra attribute information in (ROW or DDL) LCR. In addition, it gets any extra non-first class attributes that are not populated through OCILCRHeaderGet()
, OCILCRDDLInfoGet()
, or OCILCRRowColumnInfoGet()
, for example, edition name.
Syntax
Parameters
Service handle context.
An error handle you can pass to OCIErrorGet()
for diagnostic information in case of an error.
Number of extra attributes.
An array of extra attribute name pointers.
An array of extra attribute name lengths.
An array of extra attribute data types. Valid data types: see Comments.
An array of extra attribute data value pointers.
An indicator array. Each returned element is an OCIInd
value (OCI_IND_NULL
or OCI_IND_NOTNULL
).
An array of actual extra attribute data lengths. Each element in alensp
is the length in bytes.
Pointer to row or DDL LCR.
Size of the array argument in the other parameters. If array_size
is not large enough to accommodate the number of attributes in the requested attribute list, then OCI_ERROR
is returned. Parameter num_attrs
returns the expected size.
Specify OCI_DEFAULT
.
Comments
The valid data types for attr_dtyp
are:
Purpose
Populates extra attribute information in row or DDL LCR. In addition, it populates any extra non-first class attributes that cannot be set through OCILCRHeaderSet()
, OCILCRDDLInfoSet()
, or OCILCRRowColumnInfoSet()
, for example, edition name.
Syntax
Parameters
Service handle context.
An error handle you can pass to OCIErrorGet()
for diagnostic information in case of an error.
Number of extra attributes.
Pointer to an array of extra attribute names. Attribute names must be canonicalized.
Pointer to an array of extra attribute name lengths.
Pointer to an array of extra attribute data types. See valid data types in Comments of "OCILCRRowColumnInfoSet()".
Address of an array of extra attribute data values.
Pointer to an indicator array. For all data types, this is a pointer to an array of OCIInd
values (OCI_IND_NULL
or OCI_IND_NOTNULL
).
Pointer to an array of actual extra attribute data lengths. Each element in attr_lensp
is the length in bytes.
Pointer to a row or DDL LCR.
Specify OCI_DEFAULT
.
Comments
Valid attributes are:
Purpose
Frees the LCR.
Syntax
Parameters
Service handle context.
An error handle you can pass to OCIErrorGet()
for diagnostic information in case of an error.
Streams LCR pointer.
Specify OCI_DEFAULT
.
Purpose
Retrieves specific fields in a DDL LCR.
Syntax
Parameters
Service handle context.
An error handle you can pass to OCIErrorGet()
for diagnostic information in case of an error.
The type of object on which the DDL statement was executed. (See OCILCRDDLInfoSet().) Optional. If not NULL
, then both object_type
and object_type_len
arguments must not be NULL
.
Length of the object_type
string without the NULL
terminator.
The text of the DDL statement. Optional. If not NULL
, then both ddl_text
and ddl_text_len
arguments must not be NULL
.
DDL text length in bytes without the NULL
terminator.
Canonicalized (follows a rule or procedure) name of the user whose session executed the DDL statement. Optional. If not NULL
, then both logon_user
and logon_user_len
arguments must not be NULL
.
Length of the logon_user string without the NULL
terminator.
The canonicalized schema name that is used if no schema is specified explicitly for the modified database objects in ddl_text
. Optional. If not NULL
, then both current_schema
and current_schema_len
arguments must not be NULL
.
Length of the current_schema
string without the NULL
terminator.
If the DDL statement is a table-related DDL (such as CREATE
TABLE
and ALTER
TABLE
), or if the DDL statement involves a table (such as creating a trigger on a table), then base_table_owner
specifies the canonicalized owner of the table involved. Otherwise, base_table_owner
is NULL
. Optional. If not NULL
, then both base_table_owner
and base_table_owner_len
arguments must not be NULL
.
Length of the base_table_owner
string without the NULL
terminator.
If the DDL statement is a table-related DDL (such as CREATE
TABLE
and ALTER
TABLE
), or if the DDL statement involves a table (such as creating a trigger on a table), then base_table_name
specifies the canonicalized name of the table involved. Otherwise, base_table_name
is NULL
. Optional. If not NULL
, then both base_table_name
and base_table_name_len
arguments must not be NULL
.
Length of the base_table_name
string without the NULL
terminator.
DDL LCR flag. Optional. Data not returned if argument is NULL
. Future extension not used currently.
DDL LCR. Cannot be NULL
.
Specify OCI_DEFAULT
.
Purpose
Returns the common header fields for row or DDL LCR. All returned pointers point directly to the corresponding LCR fields.
Syntax
Parameters
Service handle context.
An error handle you can pass to OCIErrorGet()
for diagnostic information in case of an error.
Canonicalized source database name. Must be non-NULL
.
Length of the src_db_name
string in bytes excluding the NULL
terminator.
For row LCRs: One of the following values:
Note: The values,#define OCI_LCR_ROW_CMD_ROLLBACK and #define OCI_LCR_ROW_CMD_START_TX , is functionality that is available starting with Oracle Database 11g Release 2 (11.2.0.2). |
For DDL LCRs: One of the command types in Oracle Call Interface Programmer's Guide.
Length of the cmd_type
string in bytes excluding the NULL
terminator.
Canonicalized table owner name. Must be non-NULL
.
Length of the owner
string in bytes excluding the NULL
terminator.
Canonicalized table name. Must be non-NULL
Length of the oname
string in bytes excluding the NULL
terminator.
A binary tag that enables tracking of the LCR. For example, you can use this tag to determine the original source database of the DML statement if apply forwarding is used.
Number of bytes in the tag.
Transaction ID. Must be non-NULL
Length of the string in bytes excluding the NULL
terminator.
The time when the change was generated in the redo log file of the source database.
Number of columns in the OLD
column list. Returns 0 if the input LCR is a DDL LCR. Optional.
Number of columns in the NEW
column list. Returns 0 if the input LCR is a DDL LCR. Optional.
Position for LCR.
Length of position
.
LCR flag. Possible flags are listed in Comments.
lcrp
cannot be NULL
.
OCILCR_NEW_ONLY_MODE
- If this mode is specified, then the new_columns
returned is the count of the columns in the NEW
column list only. Otherwise, the new_columns
returned is the number of distinct columns present in either the NEW
or the OLD
column list of the given row LCR.
Comments
LCR flag.
Note: This functionality is available starting with Oracle Database 11g Release 2 (11.2.0.2). |
Purpose
Returns the generated SQL statement for the row LCR, with values in-lined. Users must preallocate the memory for sql_stmt
, and *sql_stmt_len
must be set to the size of the allocated buffer, when it is passed in. If *sql_stmt_len
is not large enough to hold the generated SQL statement, then an error is raised.
Syntax
Parameters
Service handle context.
An error handle you can pass to OCIErrorGet()
for diagnostic information in case of an error.
The generated SQL statement for the row LCR.
Set to the size of the allocated buffer for row_stmt
when passed in; returns the length of row_stmt
.
Pointer to row LCR.
Specify OCI_DEFAULT
.
Purpose
Returns the generated SQL statement, which uses bind variables for column values. The values for the bind variables are returned separately in arrays. You must preallocate the memory for sql_stmt
and the arrays, *sql_stmt_len
must be set to the size of the allocated buffer, and array_size
must be the length of the arrays. The actual column values in bind_var_valuesp
points to the values inside the LCR, so it is a shallow copy. If array_size
is not large enough to hold all the variables, or if *sql_stmt_len
is not large enough to hold the generated SQL statement, then an error is raised.
Syntax
Parameters
Service handle context.
An error handle you can pass to OCIErrorGet()
for diagnostic information in case of an error.
The generated SQL statement for the row LCR.
Set to the size of the allocated buffer for row_stmt
when passed in; returns the length of row_stmt
.
The number of bind variables.
Array of data types for the bind variables.
Array of values for the bind variables.
Array of NULL
indicators for the bind variables.
Array of lengths for the bind variable values.
Array of character set IDs for the bind variables.
Array of character set forms for the bind variables.
Pointer to row LCR.
Array of LOB column names in LCR.
Array of LOB column name lengths.
Array of LOB column flags. Possible flags are listed in Comments.
Size of each of the parameter arrays.
Either (:
) (binds are of the form :1
, :2
, and so on.) or (?
) (binds are of the form (?
)).
Specify OCI_DEFAULT
.
Comments
The following LCR column flags can be combined using bitwise OR
operator.
Purpose
Constructs a new Streams LCR object of the specified type (ROW or DDL) for the given duration.
Syntax
Parameters
Service handle context.
An error handle you can pass to OCIErrorGet()
for diagnostic information in case of an error.
Memory for the LCR is allocated for this specified duration.
LCR type. Values are:
If *lcrp
is not NULL
, an error is raised.
Specify OCI_DEFAULT
.
Comments
Note:
OCILCRHeaderSet()
to populate common header fields for row or DDL LCR. OCILCRRowColumnInfoSet()
or OCILCRDDLInfoSet()
to populate operation specific elements. Use OCILCRExtraAttributesSet()
to populate extra attribute information. OCILCRFree()
to free the LCR created by this function. Purpose
Returns the column fields in a row LCR.
Syntax
Parameters
Service handle context.
An error handle you can pass to OCIErrorGet()
for diagnostic information in case of an error.
ROW LCR column value type; either of:
Number of columns in the specified column array.
An array of column name pointers.
An array of column name lengths.
An array of column data types. Optional. Data is not returned if column_dtyp
is NULL
.
An array of column data pointers.
An array of indicators.
An array of column lengths. Each returned element is the length in bytes.
An array of character set forms for the columns. Optional. Data is not returned if the argument is NULL
.
An array of column flags. Optional. Data is not returned if the argument is NULL
. See Comments for the values.
An array of character set IDs for the columns.
row_lcrp
cannot be NULL
.
Size of each of the parameter arrays. An error is returned if array_size
is less than the number of columns in the requested column list. The actual size of the requested column list is returned through the num_columns
parameter.
OCILCR_NEW_ONLY_MODE
- If this mode is specified, then the new_columns
returned is the count of the columns in the NEW
column list only. Otherwise, the new_columns
returned is the number of distinct columns present in either the NEW
or the OLD
column list of the given row LCR.
Comments
INSERT
, this function must only be called to get the NEW column values. DELETE
, this function must only be called to get the OLD column values. UPDATE
, this function can be called twice, once to get the NEW column values and once to get the OLD column values. COMMIT
operations. The following LCR column flags can be combined using bitwise OR
operator.
Table 10-3 lists the currently supported table column data types. For each data type, it lists the corresponding LCR column data type, the C program variable type to cast the LCR column value, and the OCI functions that can manipulate the column values returned from OCILCRRowColumnInfoGet()
.
Table 10-3 Table Column Data Types
Table Column Data Types | LCR Column Data Type | Program Variable | Conversion Function |
---|---|---|---|
|
|
| |
|
|
|
|
|
|
|
Can access structure directly to get date and time fields. |
|
|
| |
| S |
| |
|
|
| |
|
|
| |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| * |
|
|
| * |
|
|
| * |
|
|
| * |
|
|
| * |
* Call OCIXStreamOutChunkReceive() to get column data.
Purpose
Populates column fields in a row LCR.
Syntax
Parameters
Service handle context.
An error handle you can pass to OCIErrorGet()
for diagnostic information in case of an error.
ROW LCR Column value types:
Number of columns in each of the array parameters.
Pointer to an array of column names. Column names must be canonicalized. Column names must follow Oracle Database naming conventions and size limitations.
Pointer to an array of column name lengths.
Pointer to an array of column data types. See Comments for valid data types.
Pointer to an array of column data pointers.
Pointer to an indicator array. For all data types, this is a pointer to an array of OCIInd
values (OCI_IND_NULL
or OCI_IND_NOTNULL
).
Pointer to an array of actual column lengths in bytes.
Pointer to an array of character set forms for the columns. The default form is SQLCS_IMPLICIT
. Setting this attribute causes the database or national character set to be used on the client side. Set this attribute to SQLCS_NCHAR
for the national character set or SQLCS_IMPLICIT
for the database character set. Pass 0 for non-character columns.
Pointer to an array of column flags. (See Comments for the list of valid LCR column flags.)
Pointer to an array of character set IDs for the columns.
row_lcrp
cannot be NULL
.
Specify OCI_DEFAULT
.
Comments
Note:
INSERT
, this function must only be called to specify the NEW column values. DELETE
, this function must only be called to specify the OLD column values. UPDATE
, this function can be called twice, once to specify the NEW column values and once to specify the OLD column values. COMMIT
operations. The following LCR column flags can be combined using the bitwise OR
operator.
Valid data types are:
Purpose
Populates DDL-specific fields in a DDL LCR.
Syntax
Parameters
Service handle context.
An error handle you can pass to OCIErrorGet()
for diagnostic information in case of an error.
The type of object on which the DDL statement was executed. See Comments for the valid object types.
Length of the object_type
string without the NULL
terminator.
The text of the DDL statement. This parameter must be set to a non-NULL
value. DDL text must be in Oracle Database DDL format.
DDL text length in bytes without the NULL
terminator.
Canonicalized name of the user whose session executed the DDL statement.
Length of the logon_user
string without the NULL
terminator. Must follow Oracle Database naming conventions and size limitations.
The canonicalized schema name that is used if no schema is specified explicitly for the modified database objects in ddl_text
. If a schema is specified in ddl_text
that differs from the one specified for current_schema
, then the function uses the schema specified in ddl_text
.
This parameter must be set to a non-NULL
value.
Length of the current_schema
string without the NULL
terminator. Must follow Oracle Database naming conventions and size limitations.
If the DDL statement is a table-related DDL (such as CREATE
TABLE
or ALTER
TABLE
), or if the DDL statement involves a table (such as creating a trigger on a table), then base_table_owner
specifies the canonicalized owner of the table involved. Otherwise, base_table_owner
is NULL
.
Length of the base_table_owner
string without the NULL
terminator. Must follow Oracle Database naming conventions and size limitations.
If the DDL statement is a table-related DDL (such as CREATE
TABLE
or ALTER
TABLE
), or if the DDL statement involves a table (such as creating a trigger on a table), then base_table_name
specifies the canonicalized name of the table involved. Otherwise, base_table_name
is NULL
.
Length of the base_table_name
without the NULL
terminator. Must follow Oracle Database naming conventions and size limitations.
DDL LCR flag. (Not currently used; used for future extension.) Specify OCI_DEFAULT
.
ddl_lcrp
cannot be NULL
.
Specify OCI_DEFAULT
.
Comments
The following are valid object types:
NULL
is also a valid object type. Specify NULL
for all object types not listed.
Purpose
Initializes the common header fields for row or DDL LCR.
Syntax
Parameters
Service handle context.
An error handle you can pass to OCIErrorGet()
for diagnostic information in case of an error.
Canonicalized source database name. Must be non-NULL
.
Length of the src_db_name
string in bytes excluding the NULL
terminator. Must follow Oracle Database naming conventions and size limitations.
For row LCRs: One of the following values:
Note: The values,#define OCI_LCR_ROW_CMD_ROLLBACK and #define OCI_LCR_ROW_CMD_START_TX , are available starting with Oracle Database 11g Release 2 (11.2.0.2). |
For DDL LCRs: One of the command types in Oracle Call Interface Programmer's Guide.
Length of cmd_type
.
Canonicalized table owner name. Owner is not required for COMMIT
LCR.
Length of the owner
string in bytes excluding the NULL
terminator. Must follow Oracle Database naming conventions and size limitations.
Canonicalized table name. Owner is not required for COMMIT
LCR.
Length of the oname
string in bytes excluding the NULL
terminator. Must follow Oracle Database naming conventions and size limitations.
A binary tag that enables tracking of the LCR. For example, you can use this tag to determine the original source database of the DML statement if apply forwarding is used.
Number of bytes in the tag. Cannot exceed 2000 bytes.
Transaction ID. Must be non-NULL
.
Length of the txid
string in bytes, excluding the NULL
terminator. Must follow Oracle Database naming conventions and size limitations.
The time when the change was generated in the online redo log file of the source database.
Position for LCR. Must be non-NULL
and byte-comparable.
Length of position. Must be greater than zero.
LCR flag. Possible flags are listed in Comments.
lcrp
cannot be NULL
.
Specify OCI_DEFAULT
.
Comments
Note:
NULL
including extra attributes. COMMIT
LCRs, owner
and oname
information are not required. Provide valid values for src_db_name
, cmd_type
, tag
, txid
, and position
. OCILCRRowColumnInfoSet()
to populate row LCR-specific column information. OCILCRDDLInfoSet()
to populate DDL operation specific information. OCILCRAttributesSet()
to populate extra attribute information. The following are LCR flags:
Note: This functionality is available starting with Oracle Database 11g Release 2 (11.2.0.2). |
Purpose
Returns the LOB information for a piece-wise LOB LCR generated from a DBMS_LOB
or OCILob
procedure.
Syntax
Parameters
Service handle context.
An error handle you can pass to OCIErrorGet()
for diagnostic information in case of an error.
LOB column name.
Length of LOB column name.
Column data type (either SQLT_CHR
or SQLT_BIN
).
Column flag. See Comments in "OCILCRRowColumnInfoSet()".
LOB operation offset in code points. Only returned for LOB
WRITE
and LOB
TRIM
operations. This is the same as the offset
parameter for OCILobErase()
or the offset
parameter in OCILobWrite()
.
LOB operation size in code points. Only returned for LOB
TRIM
and LOB
ERASE
operations. This is the same as the new_length
parameter in OCILobTrim()
or the amtp
parameter in OCILobErase()
.
Pointer to a row LCR.
Specify OCI_DEFAULT
.
Comments
Returns OCI_SUCCESS
or OCI_ERROR
.
Purpose
Sets the LOB information for a piece-wise LOB LCR. This call is valid when the input LCR is a LOB_WRITE
, LOB_ERASE
, or LOB_TRIM
; otherwise, an error is returned.
Syntax
Parameters
Service handle context.
An error handle you can pass to OCIErrorGet()
for diagnostic information in case of an error.
LOB column name.
Length of LOB column name.
Column data type (either SQLT_CHR
or SQLT_BIN
).
Column flag. See Comments in "OCILCRRowColumnInfoSet()".
LOB operation offset in code points. Only required for LOB
WRITE
and LOB
TRIM
operations. This is the same as the soffset
parameter for OCILobErase()
or the offset
parameter in OCILobWrite()
.
LOB operation size in code points. Only required for LOB
TRIM
and LOB
ERASE
operations.This is the same as the new_length
parameter in OCILobTrim()
or the amtp
parameter in OCILobErase()
.
Pointer to a row LCR.
Specify OCI_DEFAULT
.
Comments
Returns OCI_SUCCESS
or OCI_ERROR
.
Purpose
Returns the SCN and the commit SCN from the position value. The input position must be one that is obtained from an XStream outbound server. An error is returned if the input position does not conform to the expected format.
Syntax
Parameters
Service handle context.
An error handle you can pass to OCIErrorGet()
for diagnostic information in case of an error.
LCR position value.
Length of LCR position value.
SCN number embedded in the given LCR position.
The commit SCN embedded in the given position.
Mode flags used for future expansion. Specify OCI_DEFAULT
.
Purpose
Converts an SCN to a position. The generated position can be passed as the last_position
to OCIXStreamOutAttach()
to filter the LCRs with commit SCN less than the given SCN and the LCR's SCN less than the given SCN. Therefore, the first LCR sent by the outbound server is either:
Syntax
Parameters
OCI service context.
OCI error handle.
The resulting position. You must preallocate OCI_LCR_MAX_POSITION_LEN
bytes.
Length of position
.
The SCN to be stored in position
.
Mode flags (Not currently used; used for future extension).
Comments
Returns OCI_SUCCESS
if the conversion succeeds, OCI_ERROR
otherwise.
Purpose
Gets the WHERE
clause statement for the given row LCR.
Syntax
Parameters
Service handle context.
An error handle you can pass to OCIErrorGet()
for diagnostic information in case of an error.
SQL statement equivalent to the LCR.
Length of the wc_stmt
buffer.
Row LCR to be converted to SQL.
Mode flags used for future expansion. Specify OCI_DEFAULT
.
Comments
The WHERE
clause generated for an INSERT
LCR has all the columns that are being inserted. This WHERE
clause could be used to identify the inserted row after it is inserted, for example, like "returning ROWID
".
The WHERE
clause generated for UPDATE
has all the columns in the old column list. However, the values of the columns are that of the new value if it exists in the new column list of the UPDATE
. If the column does not have a new value, then the old column value is used.
The WHERE
clause for DELETE uses the columns and values from the old column list.
LOB piecewise operations use the new columns and values for generating the WHERE
clause.
Returns
OCI_SUCCESS
or OCI_ERROR
.
Purpose
Gets the WHERE
clause statement with bind variables for the given row LCR.
Syntax
Parameters
Service handle context.
An error handle you can pass to OCIErrorGet()
for diagnostic information in case of an error.
SQL statement equivalent to the LCR.
Length of the wc_stmt
buffer.
Number of bind variables.
Array of data types of bind variables.
Array of values of bind variables.
Array of NULL
indicators of bind variables.
Array of lengths of bind values.
Array of char set IDs of binds.
Array of char set forms of binds.
Row LCR to be converted to SQL.
Size of the array of bind values.
Native syntax to be used for binds.
Mode flags for future expansion. Specify OCI_DEFAULT
.
Comments
If array_size
is not large enough to accommodate the number of columns in the requested column list, then OCI_ERROR
is returned. The expected array_size
is returned through the num_bind_var
parameter.
bind_var_syntax
for Oracle Database should contain (:
). This generates positional binds such as :1
, :2
, :3
, and so on. For non-Oracle databases input the string that must be used for binds.
The WHERE
clause generated for INSERT
LCR has all the columns that are being inserted. This WHERE
clause can identify the inserted row after it is inserted, for example, like "returning ROWID
".
The WHERE
clause generated for UPDATE
has all the columns in the old column list. However, the values of the columns are that of the new column value of the column if it exists in the new values of the UPDATE
. If the column appears only in the old column, then the old column value is used.
The WHERE
clause for DELETE
uses the columns and values from the old column list.
LOB piecewise operations use the new columns and values for generating the WHERE
clause.
Returns
OCI_SUCCESS
or OCI_ERROR
.
Purpose
Attaches to an inbound server. The client application must connect to the database using a dedicated connection.
Syntax
Parameters
Service handle context.
An error handle you can pass to OCIErrorGet()
for diagnostic information in case of an error.
XStream inbound server name.
Length of the XStream inbound server name.
Source name to identify the data source.
Source name length.
Last position received by inbound server. Optional. If specified, then you must preallocate OCI_LCR_MAX_POSITION_LEN
bytes for the return value.
Length of last_position
. Must be non-NULL
if last_position
is non-NULL
.
Note: This functionality is available starting with Oracle Database 11g Release 2 (11.2.0.2). |
OCIXSTREAM_IN_ATTACH_RESTART_INBOUND
- If this mode is specified, then this function can notify the server to restart the inbound server regardless of whether it is in a disabled or aborted state. If you do not pass in this mode and the inbound server is in an aborted state when this call is made, then the function returns an error.
Comments
The name of the inbound server must be provided because multiple inbound servers can be configured in one Oracle instance. This function returns OCI_ERROR
if any error is encountered while attaching to the inbound server. Only one client can attach to an XStream inbound server at any time. An error is returned if multiple clients attempt to attach to the same inbound server or if the same client attempts to attach to multiple inbound servers concurrently.
This function returns the last position received by the inbound server. Having successfully attached to the server, the client should resume sending LCRs with positions greater than this last_position
since the inbound server discards all LCRs with positions less than or equal to the last_position
.
Returns either OCI_SUCCESS
or OCI_ERROR
status code.
Purpose
Detaches from the inbound server.
Syntax
Parameters
Service handle context.
An error handle you can pass to OCIErrorGet()
for diagnostic information in case of an error.
The server's processed low position.
Length of processed_low_position
.
Specify OCI_DEFAULT
.
Comments
You must pass in a preallocated buffer for the position argument. The maximum length of this buffer is OCI_LCR_MAX_POSITION_LEN
. This position is exposed in DBA_XSTREAM_INBOUND_PROGRESS
view
This call returns the server's processed low position. If this function is invoked while a OCIXStreamInLCRSend()
call is in progress, then it immediately terminates that call before detaching from the inbound server.
Returns either OCI_SUCCESS
or OCI_ERROR
status code.
Purpose
Sends an LCR stream from the client to the attached inbound server. To avoid a network round-trip for every OCIXStreamInLCRSend()
call, the connection is tied to this call and terminates the call after an ACK interval since the LCR stream is initiated to the server.
Syntax
Parameters
Service handle context.
An error handle you can pass to OCIErrorGet()
for diagnostic information in case of an error.
Pointer to the new LCR to send. It cannot be NULL
.
LCR type. Either of:
If bit OCI_XSTREAM_MORE_ROW_DATA
(0x01) is set, then LCR contains more chunk data. You must call OCIXStreamInChunkSend()
before calling OCIXStreamInLCRSend()
again.
Specify OCI_DEFAULT
.
Comments
Return codes are:
OCI_STILL_EXECUTING
means that the current call is still in progress. The connection associated with the specified service context handle is still tied to this call for streaming the LCRs to the server. An error is returned if you attempt to use the same connection to execute any OCI calls that require database round-trip, for example, OCIStmtExecute()
, OCIStmtFetch()
, OCILobRead()
, and so on. OCILCR*
calls are local calls; thus, they are valid while this call is in progress. OCI_SUCCESS
means the current call is completed. You can execute OCIStmt*
, OCILob*
, and so on from the same service context. OCI_ERROR
means this call encounters some errors. Use OCIErrorGet()
to obtain information about the error. Purpose
Sends an LCR stream to the attached inbound server. You must specify a callback to construct each LCR for streaming. If some LCRs contain chunk data, then a second callback must be provided to create each chunk data.
Syntax
Parameters
Service handle context.
An error handle you can pass to OCIErrorGet()
for diagnostic information in case of an error.
Client callback procedure to be invoked to generate an LCR for streaming. Cannot be NULL
.
Client callback procedure to be invoked to create each chunk. Can be NULL
if you do not need to send any LCR with LOB or LONG
or XMLType
columns. OCI_ERROR
is returned if this argument is NULL
and you attempt to send an LCR with additional chunk data.
User context to pass to both callback functions.
Specify OCI_DEFAULT
fore now.
Comments
Return code: OCI_ERROR
or OCI_SUCCESS
.
The createlcr_cb
argument must be of type OCICallbackXStreamInLCRCreate
:
Parameters of OCICallbackXStreamInLCRCreate()
:
Pointer to the user context.
Pointer to the LCR to be sent.
LCR type (OCI_LCR_XROW
or OCI_LCR_XDDL
).
If OCI_XSTREAM_MORE_ROW_DATA
is set, then the current LCR has more chunk data.
The input parameter to the callback is the user context. The output parameters are the new LCR, its type, and a flag. If the generated LCR contains additional chunk data, then this flag must have the OCI_XSTREAM_MORE_ROW_DATA
(0x01) bit set. The valid return codes from the OCICallbackXStreamInLCRCreate()
callback function are OCI_CONTINUE
or OCI_SUCCESS
. This callback function must return OCI_CONTINUE
to continue processing the OCIXStreamInLCRCallbackSend()
call. Any return code other than OCI_CONTINUE
signals that the client wants to terminate the OCIXStreamInLCRCallbackSend()
call immediately. In addition, a NULL
LCR returned from the OCICallbackXStreamInLCRCreate()
callback function signals that the client wants to terminate the current call.
The createchunk_cb
argument must be of type OCICallbackXStreamInChunkCreate
:
The input parameters of the createchunk_cb()
procedure are the user context and the information about the chunk.
Parameters of OCICallbackXStreamInChunkCreate()
:
Pointer to the user context.
Column name of the current chunk.
Length of the column name.
Chunk data type (SQLT_CHR
or SQLT_BIN
).
See Comments in "OCIXStreamInChunkSend()".
Column character set ID. Relevant only if the column is an XMLType
column (that is, column_flag
has the OCI_LCR_COLUMN_XML_DATA
bit set).
Chunk data length in bytes.
Chunk data pointer.
If OCI_XSTREAM_MORE_ROW_DATA
is set, then the current LCR has more chunk data.
The OCIXStreamInLCRCallbackSend()
function invokes the createlcr_cb()
procedure to obtain each LCR to send to the server. If the return flag from the createlcr_cb()
procedure has the OCI_XSTREAM_MORE_ROW_DATA
bit set, then it invokes the createchunk_cb()
procedure to obtain each chunk. It repeatedly calls the createchunk_cb()
procedure while the flag returned from this callback has the OCI_XSTREAM_MORE_ROW_DATA
bit set. When this bit is not set, this function cycles back to invoke the createlcr_cb()
procedure to get the next LCR. This cycle is repeated until the createlcr_cb()
procedure returns a NULL
LCR or when at the transaction boundary after an ACK interval has elapsed since the call began.
The valid return codes from the OCICallbackXStreamInChunkCreate()
callback function are OCI_CONTINUE
or OCI_SUCCESS
. This callback function must return OCI_CONTINUE
to continue processing the OCIXStreamInLCRCallbackSend()
call. Any return code other than OCI_CONTINUE
signals that the client wants to terminate the OCIXStreamInLCRCallbackSend()
call immediately.
Because terminating the current call flushes the network and incurs another network round-trip in the next call, you must avoid returning a NULL
LCR immediately when there is no LCR to send. Doing this can greatly reduce network throughput and affect performance. During short idle periods, you can add some delays in the callback procedure instead of returning a NULL
LCR immediately to avoid flushing the network too frequently.
Figure 10-1 shows the execution flow of the OCIXStreamInLCRCallbackSend()
function.
* While OCI_XSTREAM_MORE_ROW_DATA
is set
Description of Figure 10-1:
OCIXStreamInLCRCallbackSend()
providing two callbacks. This function initiates an LCR inbound stream to the server. createlcr_cb()
procedure to get an LCR from the callback to send to the server. If the return LCR is NULL
, then this function exits. OCI_XSTREAM_MORE_ROW_DATA
bit is set), then this function proceeds to 3; otherwise, it loops back to 2 to get the next LCR. createchunk_cb()
to get the chunk data to send to the server. If the flag from this callback has the OCI_XSTREAM_MORE_ROW_DATA
bit set, then it repeats 3; otherwise, it loops back to 2 to get the next LCR from the user. If any callback function returns any values other than OCI_CONTINUE
, then the OCIXStreamInLCRCallbackSend()
call terminates. Following is a sample client pseudocode snippet for callback mode (error checking is not included for simplicity):
Purpose
Gets the local processed low position that is cached at the client. This function can be called anytime while the client is attached to an XStream inbound server. Clients, using the callback mode to stream LCRs to the server (see "OCIXStreamInLCRCallbackSend()"), can invoke this function while in the callback procedures.
Syntax
Parameters
Service handle context.
An error handle you can pass to OCIErrorGet()
for diagnostic information in case of an error.
The processed low position maintained at the client.
Length of processed_low_position
.
Specify OCI_DEFAULT
.
Comments
After attaching to an XStream inbound server, a local copy of the server's processed low position (see "OCIXStreamOutProcessedLWMSet()") is cached at the client. This local copy is refreshed with the server's low position when each of the following calls returns OCI_SUCCESS
:
OCIXStreamInAttach()
OCIXStreamInLCRSend()
OCIXStreamInLCRCallbackSend()
OCIXStreamInFlush()
Return code: OCI_ERROR
or OCI_SUCCESS
.
You must pass in a preallocated buffer for the position argument. The maximum length of this buffer is OCI_LCR_MAX_POSITION_LEN
. This position is exposed in the DBA_XSTREAM_INBOUND_PROGRESS
view.
The client can use this position to periodically purge the logs used to generate the LCRs at or below this position.
Note: This functionality is available starting with Oracle Database 11g Release 2 (11.2.0.2). |
Purpose
Returns the first error encountered by the inbound server since the OCIXStreamInAttach()
call.
Syntax
Parameters
OCI service handle.
Error Handle.
Error code.
Preallocated message buffer.
Message buffer size.
Length of returned error message.
Preallocated transaction ID buffer.
The transaction ID buffer size.
Length of the returned transaction ID.
Comments
The maximum size for the returned transaction ID is OCI_LCR_MAX_TXID_LEN
. If the allocated buffer for txn_id
is too small, then this routine returns ORA-29258
. The maximum size for the returned error msg is OCI_ERROR_MAXMSG_SIZE
. If the allocated size for msgbuf
is too small, then the returned message is truncated.
Purpose
Used to flush the network while attaching to an XStream inbound server. It terminates any in-progress OCIXStreamInLCRSend()
call associated with the specified service context.
Syntax
Parameters
Service handle context.
An error handle you can pass to OCIErrorGet()
for diagnostic information in case of an error.
Note: This functionality is available starting with Oracle Database 11g Release 2 (11.2.0.2). |
OCIXSTREAM_IN_FLUSH_WAIT_FOR_COMPLETE
- If this mode is specified, then this function flushes the network, and then waits for all complete and rollback transactions that have been sent to the inbound server to complete before returning control to the client.
Comments
Return code: OCI_ERROR
or OCI_SUCCESS
.
Each call incurs a database round-trip to get the server's processed low position, which you can retrieve afterward using OCIXStreamInProcessedLWMGet()
. Call this function only when there is no LCR to send to the server and the client wants to know the progress of the attached inbound server.
This call returns OCI_ERROR
if it is invoked from the callback functions of OCIXStreamInLCRCallbackSend()
.
Purpose
Sends a chunk to the inbound server. This function is valid during the execution of the OCIXStreamInLCRSend()
call.
Syntax
Parameters
Service handle context.
An error handle you can pass to OCIErrorGet()
for diagnostic information in case of an error.
Name of column associated with the given data. Column name must be canonicalized and must follow Oracle Database naming convention.
Length of column name.
LCR chunk data type (must be SQLT_CHR
or SQLT_BIN
). See Table 10-5, "Storage of LOB or LONG Data in the LCR"
Column flag. (See Comments for valid column flags.) Must specify OCI_LCR_COLUMN_LAST_CHUNK
for the last chunk of each LOB or LONG
or XMLType
column.
Column character set ID. This is required only if the column_flag
has OCI_LCR_COLUMN_XML_DATA
bit set.
Chunk data length in bytes.
Pointer to column data chunk. If the column is NCLOB
or varying width CLOB
, then the input chunk data must be in AL16UTF16
format. The chunk data must be in the character set defined in "Storage of LOB or LONG Data in the LCR".
If OCI_XSTREAM_MORE_ROW_DATA
(0x01) bit is set, then the current row change contains more data. You must clear this bit when sending the last chunk of the current LCR.
Specify OCI_DEFAULT
.
Comments
The following LCR column flags can be combined using bitwise OR
operator.
In Streams, LOB, LONG
, or XMLType
column data is broken up into multiple chunks. For a row change containing columns of these data types, its associated LCR only contains data for the other column types. All LOB, LONG
or XMLType
columns are either represented in the LCR as NULL
or not included in the LCR as defined in Table 10-4, "Required Column List in the First LCR".
OCILCRRowColumnInfoSet()
is provided to generate a list of scalar columns in an LCR. For LOB, LONG
, and XMLType
columns, OCIXStreamInChunkSend()
is provided to set the value of each chunk in a column. For a large column, this function can be invoked consecutively multiple times with smaller chunks of data. The XStream inbound server can assemble these chunks and apply the accumulated change to the designated column.
The LCR of a row change must contain all the scalar columns that can uniquely identify a row at the apply site. Table 10-4 describes the required column list in each LCR for each DML operation.
Table 10-4 Required Column List in the First LCR
Command Type of the First LCR of a Row Change | Columns Required in the First LCR |
---|---|
| The |
| The The |
| The |
| The |
After constructing each LCR, you can call OCIXStreamInLCRSend()
to send that LCR. Afterward, OCIXStreamInChunkSend()
can be called repeatedly to send the chunk data for each LOB or LONG
or XMLType
column in that LCR. Sending the chunk value for different columns cannot be interleaved. If a column contains multiple chunks, then this function must be called consecutively using the same column name before proceeding to a new column. The ordering of the columns is irrelevant.
When invoking this function, you must pass OCI_XSTREAM_MORE_ROW_DATA
as the flag argument if there is more data for the current LCR. When sending the last chunk of the current LCR, then this flag must be cleared to signal the end of the current LCR.
This function is valid only for INSERT
, UPDATE
, and LOB_WRITE
operations. Multiple LOB, LONG
, or XMLType
columns can be specified for INSERT
and UPDATE
, while only one LOB column is allowed for LOB_WRITE
operation.
The following is a sample client pseudocode snippet for non-callback mode (error checking is not included for simplicity):
Note: This functionality is available starting with Oracle Database 11g Release 2 (11.2.0.2). |
Purpose
Commits the given transaction. This function lets the client notify the inbound server about a transaction that has been executed by the client rather than by the server. So that if the same transaction is retransmitted during apply restart, it is ignored by the inbound server. A commit LCR must be supplied for the inbound server to extract the transaction ID and the position of the commit.
Syntax
Parameters
OCI service handle.
Error Handle to which errors should be reported.
Pointer to the LCR to send. Must be a commit LCR.
Mode flags. Not used currently; used for future extension.
Comments
The position of the input LCR must be higher than DBA_XSTREAM_INBOUND_PROGRESS.APPLIED_HIGH_POSITION
, and the LCR's source database must match DBA_APPLY_PROGRESS.SOURCE_DATABASE
of the attached inbound server.
If there is any pre-commit handler defined, it is executed when this commit LCR is executed.
Assume a sample use case in which a situation where the inbound server does not support certain data types, but the client can do the work directly. The client performs the transaction changes directly to the database and then invokes the OCIXStreamInCommit()
to commit the transaction by way of the inbound server. Note that the client should not directly commit the transaction itself. Rather, the transaction changes are committed with this command (OCIXStreamInCommit()
) so that the transaction is atomic. Thus, if the inbound server becomes disabled during the client transaction, then the entire transaction is correctly rolled back.
Purpose
Attaches to an XStream outbound server. The client application must connect to the database using a dedicated connection.
Syntax
Parameters
Service handle context.
An error handle you can pass to OCIErrorGet()
for diagnostic information in case of an error.
XStream outbound server name.
Length of XStream outbound server name.
Position to the last received LCR. Can be NULL
.
Length of last_position
.
Note: This functionality is available starting with Oracle Database 11g Release 2 (11.2.0.2). |
OCIXSTREAM_OUT_ATTACH_APP_FREE_LCR
- If this mode is specified, then the application is in charge of freeing the LCRs from the outbound server.
Comments
The OCIEnv
environment handle must be created with OCI_OBJECT
mode, and the service context must be in a connected state to issue this function. This function does not support nonblocking mode. It returns either the OCI_SUCCESS
or OCI_ERROR
status code.
The name of the outbound server must be provided because multiple outbound servers can be configured in one Oracle Database instance. This function returns OCI_ERROR
if it encounters any error while attaching to the outbound server. Only one client can attach to an XStream outbound server at any time. An error is returned if multiple clients attempt to attach to the same outbound server or if the same client attempts to attach to multiple outbound servers using the same service handle.
The last_position
parameter is used to establish the starting point of the stream. This call returns OCI_ERROR
if the specified position is non-NULL
and less than the server's processed low position (see "OCIXStreamOutProcessedLWMSet()"); otherwise, LCRs with positions greater than the specified last_position
are sent to the user.
If the last_position
is NULL
, then the stream starts from the processed low position maintained in the server.
Purpose
Detaches from the outbound server.
Syntax
Parameters
Service handle context.
An error handle that you can pass to OCIErrorGet()
for diagnostic information in case of an error.
Specify OCI_DEFAULT
.
Comments
This function sends the current local processed low position to the server before detaching from the outbound server. The outbound server automatically restarts after this call. This function returns OCI_ERROR
if it is invoked while a OCIXStreamOutReceive()
call is in progress.
Purpose
Receives an LCR from an outbound stream. If an LCR is available, then this function immediately returns that LCR. The duration of each LCR is limited to the interval between two successive OCIXStreamOutLCRReceive()
calls. When there is no LCR available in the stream, this call returns a NULL
LCR after an idle timeout.
Syntax
Parameters
Service handle context.
An error handle you can pass to OCIErrorGet()
for diagnostic information in case of an error.
Pointer to the LCR received from the stream. If there is an available LCR, then this LCR is returned with status code OCI_STILL_EXECUTING
. When the call ends, a NULL
LCR is returned with status code OCI_SUCCESS
.
Type of the retrieved LCR. This value is valid only when lcrp
is not NULL
.
Return flag. If bit OCI_XSTREAM_MORE_ROW_DATA
(0x01) is set, then this LCR has more data. You must use OCIXStreamOutReceiveChunk()
function to get the remaining data.
XStream outbound server's fetch low position. This value is returned only when the return code is OCI_SUCCESS
. Optional. If non-NULL
, then you must preallocate OCI_LCR_MAX_POSITION_LEN
bytes for the return value.
Length of fetch_low_position
.
Specify OCI_DEFAULT
.
Comments
To avoid a network round-trip for every OCIXStreamOutLCRReceive()
call, the connection is tied to this call and allows the server to fill up the network buffer with LCRs so subsequent calls can quickly receive the LCRs from the network. The server ends each call at the transaction boundary after an ACK interval elapses since the call began. When there is no LCR in the stream, the server ends the call after the idle timeout elapses.
Return codes:
OCI_STILL_EXECUTING
means that the current call is still in progress. The connection associated with the specified service context handle is still tied to this call for streaming the LCRs from the server. An error is returned if you attempt to use the same connection to execute any OCI calls that require database round-trip, for example, OCIStmtExecute()
, OCIStmtFetch()
, OCILobRead()
, and so on. OCILCR*
calls do not require round-trips; thus, they are valid while the call is in progress. OCI_SUCCESS
means that the current call is completed. You are free to execute OCIStmt*
, OCILob*
, and so on from the same service context. OCI_ERROR
means the current call encounters some errors. Use OCIErrorGet()
to obtain information about the error. This call always returns a NULL
LCR when the return code is OCI_SUCCESS
. In addition, it returns the fetch low position to denote that the outbound server has received all transactions with commit position lower than or equal to this value.
See Also:
|
Purpose
Used to get the LCR stream from the outbound server using callbacks. You must supply a callback procedure to be invoked for each LCR received. If some LCRs in the stream may contain LOB
or LONG
or XMLType
columns, then a second callback must be supplied to process each chunk (see "OCIXStreamOutChunkReceive()").
Syntax
Parameters
Service handle context.
An error handle you can pass to OCIErrorGet()
for diagnostic information in case of an error.
Callback function to process each LCR received by the client. Cannot be NULL
.
Callback function to process each chunk in the received LCR. Can be NULL
if you do not expect to receive any LCRs with additional chunk data.
User context to pass to both callback procedures.
XStream outbound server's fetch low position (see "OCIXStreamOutLCRReceive()"). Optional.
Length of fetch_low_position
.
Specify OCI_DEFAULT
.
Comments
Return code: OCI_SUCCESS
or OCI_ERROR
.
The processlcr_cb
argument must be of type OCICallbackXStreamOutLCRProcess
:
Parameters of OCICallbackXStreamOutLCRProcess()
:
Pointer to the user context.
Pointer to the LCR just received.
LCR type (OCI_LCR_XROW
or OCI_LCR_XDDL
).
If OCI_XSTREAM_MORE_ROW_DATA
is set, then the current LCR has more chunk data.
The input parameters of the processlcr_cb()
procedure are the user context, the LCR just received, its type, and a flag to indicate whether the LCR contains more data. If there is an LCR available, then this callback is invoked immediately. If there is no LCR in the stream, after an idle timeout, then this call ends with OCI_SUCCESS
return code. The valid return codes from the OCICallbackXStreamOutLCRProcess()
callback function are OCI_CONTINUE
or OCI_SUCCESS
. This callback function must return OCI_CONTINUE
to continue processing the OCIXStreamOutLCRCallbackReceive()
call. Any return code other than OCI_CONTINUE
signals that the client wants to terminate OCIXStreamOutLCRCallbackReceive()
immediately.
The processchunk_cb
argument must be of type OCICallbackXStreamOutChunkProcess
:
Parameters of OCICallbackXStreamOutChunkProcess()
:
Pointer to the user context.
Column name of the current chunk.
Length of the column name.
Chunk data type (SQLT_CHR
or SQLT_BIN
).
See Comments in "OCIXStreamInChunkSend()".
Column character set ID. Relevant only if the column is an XMLType
column (that is, column_flag
has the OCI_LCR_COLUMN_XML_DATA
bit set).
Chunk data length in bytes.
Chunk data pointer.
If OCI_XSTREAM_MORE_ROW_DATA
is set, then the current LCR has more chunk data.
The input parameters of the processchunk_cb()
procedure are the user context, the information about the chunk, and a flag. When the flag
argument has the OCI_XSTREAM_MORE_ROW_DATA
(0x01) bit set, then there is more data for the current LCR. The valid return codes from the OCICallbackXStreamOutChunkProcess()
callback function are OCI_CONTINUE
or OCI_SUCCESS
. This callback function must return OCI_CONTINUE
to continue processing the OCIXStreamOutLCRCallbackReceive()
call. Any return code other than OCI_CONTINUE
signals that the client wants to terminate OCIXStreamOutLCRCallbackReceive()
immediately.
OCI calls are provided to access each field in the LCR. If the LCR contains only scalar column(s), then the duration of that LCR is limited only to the processlcr_cb()
procedure. If the LCR contains some chunk data, then the duration of the LCR is extended until all the chunks have been processed. If you want to access the LCR data at a later time, then a copy of the LCR must be made before it is freed.
As for OCIXStreamOutLCRReceive()
, the server ends each call at the transaction boundary after each ACK interval since the call began, or after each idle timeout. The default ACK interval is 30 seconds, and the default idle timeout is one second. See "Server Handle Attributes" to tune these values. This function also returns the fetch low position when the call ends.
Figure 10-2 shows the execution flow of the OCIXStreamOutLCRCallbackReceive()
function.
* While OCI_XSTREAM_MORE_ROW_DATA
is set.
Description of Figure 10-2:
OCIXStreamOutLCRCallbackReceive()
providing two callbacks. This function initiates an LCR outbound stream from the server. processlcr_cb()
procedure with the LCR just received. It passes OCI_XSTREAM_MORE_ROW_DATA
flag to processlcr_cb()
if the current LCR has additional data. processchunk_cb()
for each chunk received with the OCI_XSTREAM_MORE_ROW_DATA
flag. This flag is cleared when the callback is invoked on the last chunk of the current LCR. OCI_CONTINUE
. Here is sample pseudocode for callback mode:
Purpose
Updates the local copy of the processed low position. This function can be called anytime between OCIXStreamOutAttach()
and OCIXStreamOutDetach()
calls. Clients using the callback mechanism to stream LCRs from the server (see "OCIXStreamOutLCRCallbackReceive()"), can invoke this function while in the callback procedures.
Syntax
Parameters
Service handle context.
An error handle you can pass to OCIErrorGet()
for diagnostic information in case of an error.
The processed low position maintained at the client.
Length of processed_low_position
.
Specify OCI_DEFAULT
.
Comments
The processed low position denotes that all LCRs at or below it have been processed. After successfully attaching to an XStream outbound server, a local copy of the processed low position is maintained at the client. Periodically, this position is sent to the server so that archived redo log files containing already processed transactions can be purged.
Return code: OCI_SUCCESS
or OCI_ERROR
.
Clients using XStreamOut
functions must keep track of the processed low position based on what they have processed and call this function whenever their processed low position has changed. This is done so that a more current value is sent to the server during the next update, which occurs at the beginning of the OCIXStreamOutLCRCallbackReceive()
and OCIXStreamDetach()
calls. For an OCIXStreamOutLCRReceive()
call, the processed low position is sent to the server when it initiates a request to start the outbound stream. It is not sent while the stream is in progress.
You can query the DBA_XSTREAM_OUTBOUND_PROGRESS
view to confirm that the processed low position has been saved in the server.
Purpose
Allows the client to retrieve the data of each LOB or LONG
or XMLType
column one chunk at a time.
Syntax
Syntax
Service handle context.
An error handle you can pass to OCIErrorGet()
for diagnostic information in case of an error.
Name of the column that has data.
Length of the column name.
Column chunk data type (either SQLT_CHR
or SQLT_BIN
).
Column flag. See Comments for valid flags.
Column character set ID. This is returned only for XMLType
column, that is, column_flag
has OCI_LCR_COLUMN_XML_DATA
bit set.
Number of bytes in the returned chunk.
Pointer to the chunk data in the LCR. The client must not deallocate this buffer since the LCR and its contents are maintained by this function.
If OCI_XSTREAM_MORE_ROW_DATA
(0x01) is set, then the current LCR has more chunks coming.
Specify OCI_DEFAULT
.
Comments
In Streams, LOB, LONG
, or XMLType
column data is broken up into multiple LCRs based on how they are stored in the online redo log files. Thus, for a row change containing these columns multiple LCRs may be constructed. The first LCR of a row change contains the column data for all the scalar columns. All LOB or LONG
or XMLType
columns in the first LCR are set to NULL
because their data are sent in subsequent LCRs for that row change. These column data are stored in the LCR as either RAW
(SQLT_BIN
) or VARCHAR2
(SQLT_CHR
) chunks as shown in the table Table 10-5.
Table 10-5 Storage of LOB or LONG Data in the LCR
Source Column Data Type | Streams LCR Data Type | Streams LCR Character Set |
---|---|---|
|
| N/A |
Fixed-width |
| Client Character Set |
Varying-width |
| AL16UTF16 |
|
| AL16UTF16 |
|
| column |
In Streams, LOB, LONG
, or XMLType
column data is broken up into multiple chunks based on how they are stored in the online redo log files. For a row change containing columns of these data types, its associated LCR only contains data for the other scalar columns. All LOB, LONG
, or XMLType
columns are either represented in the LCR as NULL
or not included in the LCR. The actual data for these columns are sent following each LCR as RAW
(SQLT_BIN
) or VARCHAR2
(SQLT_CHR
) chunks as shown in Table 10-5, "Storage of LOB or LONG Data in the LCR".
The following LCR column flags can be combined using the bitwise OR
operator.
Return code: OCI_ERROR
or OCI_SUCCESS
.
This call returns a NULL
column name and NULL
chunk data if it is invoked when the current LCR does not contain the LOB, LONG
, or XMLType
columns. This function is valid only when an OCIXStreamOutLCRReceive()
call is in progress. An error is returned if it is called during other times.
If the return flag from OCIXStreamOutLCRReceive()
has OCI_XSTREAM_MORE_ROW_DATA
bit set, then you must iteratively call OCIXStreamOutChunkReceive()
to retrieve all the chunks belonging to that row change before getting the next row change (that is, before making the next OCIXStreamOutLCRReceive()
call); otherwise, an error is returned.
Here is sample pseudocode for non-callback mode:
This part contains descriptions of the data dictionary views related to XStream. This part contains the following chapters:
This chapter describes the static data dictionary views related to XStream.
This chapter contains these topics:
ALL_APPLY
displays information about the apply processes that dequeue messages from queues accessible to the current user.
Related View
DBA_APPLY
displays information about all apply processes in the database.
Column | Data Type | NULL | Description |
---|---|---|---|
APPLY_NAME | VARCHAR2(30) | NOT NULL | Name of the apply process |
QUEUE_NAME | VARCHAR2(30) | NOT NULL | Name of the queue from which the apply process dequeues |
QUEUE_OWNER | VARCHAR2(30) | NOT NULL | Owner of the queue from which the apply process dequeues |
APPLY_CAPTURED | VARCHAR2(3) | Indicates whether the apply process applies captured messages (YES) or user-enqueued messages (NO) | |
RULE_SET_NAME | VARCHAR2(30) | Name of the positive rule set used by the apply process for filtering | |
RULE_SET_OWNER | VARCHAR2(30) | Owner of the positive rule set used by the apply process for filtering | |
APPLY_USER | VARCHAR2(30) | User who is applying messages | |
APPLY_DATABASE_LINK | VARCHAR2(128) | Database link to which changes are applied. If NULL , then changes are applied to the local database. | |
APPLY_TAG | RAW(2000) | Tag associated with redo log records that are generated when changes are made by the apply process | |
DDL_HANDLER | VARCHAR2(98) | Name of the user-specified data definition language (DDL) handler, which handles DDL logical change records (LCRs) | |
PRECOMMIT_HANDLER | VARCHAR2(98) | Name of the user-specified pre-commit handler | |
MESSAGE_HANDLER | VARCHAR2(98) | Name of the user-specified procedure that handles dequeued messages other than LCRs | |
STATUS | VARCHAR2(8) | Status of the apply process:
| |
MAX_APPLIED_MESSAGE_NUMBER | NUMBER | System change number (SCN) corresponding to the apply process high watermark for the last time the apply process was stopped using the DBMS_APPLY_ADM.STOP_APPLY procedure with the force parameter set to false . The apply process high watermark is the SCN beyond which no messages have been applied. | |
NEGATIVE_RULE_SET_NAME | VARCHAR2(30) | Name of the negative rule set used by the apply process for filtering | |
NEGATIVE_RULE_SET_OWNER | VARCHAR2(30) | Owner of the negative rule set used by the apply process for filtering | |
STATUS_CHANGE_TIME | DATE | Time that the STATUS of the apply process was changed | |
ERROR_NUMBER | NUMBER | Error number if the apply process was aborted | |
ERROR_MESSAGE | VARCHAR2(4000) | Error message if the apply process was aborted | |
MESSAGE_DELIVERY_MODE | VARCHAR2(10) | Reserved for internal use | |
PURPOSE | VARCHAR2(19) | Purpose of the apply process:
|
ALL_APPLY_ERROR
displays information about the error transactions generated by the apply processes that dequeue messages from queues accessible to the current user.
Note: Starting with Oracle Database 11g Release 2 (11.2.0.2), theERROR_TYPE column is included in this view. |
Related View
DBA_APPLY_ERROR
displays information about the error transactions generated by all apply processes in the database.
Column | Data Type | NULL | Description |
---|---|---|---|
APPLY_NAME | VARCHAR2(30) | Name of the apply process at the local database which processed the transaction | |
QUEUE_NAME | VARCHAR2(30) | Name of the queue at the local database from which the transaction was dequeued | |
QUEUE_OWNER | VARCHAR2(30) | Owner of the queue at the local database from which the transaction was dequeued | |
LOCAL_TRANSACTION_ID | VARCHAR2(22) | Local transaction ID for the error transaction | |
SOURCE_DATABASE | VARCHAR2(128) | Database where the transaction originated | |
SOURCE_TRANSACTION_ID | VARCHAR2(128) | Original transaction ID at the source database | |
SOURCE_COMMIT_SCN | NUMBER | Original commit SCN for the transaction at the source database | |
MESSAGE_NUMBER | NUMBER | Identifier for the message in the transaction that raised an error | |
ERROR_NUMBER | NUMBER | Error number of the error raised by the transaction | |
ERROR_MESSAGE | VARCHAR2(4000) | Error message of the error raised by the transaction | |
RECIPIENT_ID | NUMBER | User ID of the original user that applied the transaction | |
RECIPIENT_NAME | VARCHAR2(30) | Name of the original user that applied the transaction | |
MESSAGE_COUNT | NUMBER | Total number of messages inside the error transaction | |
ERROR_CREATION_TIME | DATE | Time that the error was created | |
SOURCE_COMMIT_POSITION | RAW(64) | Original commit position for the transaction | |
ERROR_TYPE | VARCHAR2(11) | NULL if the apply process can access all of the LCRs in the error transaction. When the ERROR_TYPE is NULL , manage the error transactions using the instructions in Oracle Streams Concepts and Administration.
|
Note: This functionality is available starting with Oracle Database 11g Release 2 (11.2.0.2). |
ALL_APPLY_ERROR_MESSAGES
displays information about the individual messages in an error transaction generated by the apply processes that dequeue messages from queues accessible to the current user.
For XStream inbound servers, each message in an error transaction is an LCR.
Note:
|
RELATED VIEW
DBA_APPLY_ERROR_MESSAGES
displays information about the individual messages in all of the error transactions generated by all apply processes in the database.
Column | Data Type | NULL | Description |
---|---|---|---|
MESSAGE_ID | RAW(16) | Unique identifier of the message stored in the error queue | |
LOCAL_TRANSACTION_ID | VARCHAR2(22) | Local transaction ID for the error transaction | |
TRANSACTION_MESSAGE_NUMBER | NUMBER | Message number of the message that raised the error The message number is a sequence number for the messages in the transaction, starting with 1. | |
ERROR_NUMBER | NUMBER | Error number of the error raised by the transaction The error number is populated only for the LCR that raised the error. This field is | |
ERROR_MESSAGE | VARCHAR2(4000) | Error message of the error raised by the transaction The error message is populated only for the LCR that raised the error. This field is |
ALL_CAPTURE
displays information about the capture processes that enqueue the captured changes into queues accessible to the current user.
Note: Starting with Oracle Database 11g Release 2 (11.2.0.2), theSTART_TIME and PURPOSE columns are included in this view. |
RELATED VIEW
DBA_CAPTURE
displays information about all capture processes in the database.
Column | Data Type | NULL | Description |
---|---|---|---|
CAPTURE_NAME | VARCHAR2(30) | NOT NULL | Name of the capture process |
QUEUE_NAME | VARCHAR2(30) | NOT NULL | Name of the queue used for staging captured changes |
QUEUE_OWNER | VARCHAR2(30) | NOT NULL | Owner of the queue used for staging captured changes |
RULE_SET_NAME | VARCHAR2(30) | Name of the positive rule set used by the capture process for filtering | |
RULE_SET_OWNER | VARCHAR2(30) | Owner of the positive rule set | |
CAPTURE_USER | VARCHAR2(30) | Current user who is enqueuing captured messages | |
START_SCN | NUMBER | SCN from which the capture process will start to capture changes | |
STATUS | VARCHAR2(8) | Status of the capture process:
| |
CAPTURED_SCN | NUMBER | SCN of the last redo log record scanned | |
APPLIED_SCN | NUMBER | SCN of the most recent message dequeued by the relevant apply processes. All changes below this SCN have been dequeued by all apply processes that apply changes captured by this capture process. | |
USE_DATABASE_LINK | VARCHAR2(3) | Indicates whether the source database name is used as the database link to connect to the source database from the downstream database (YES) or not (NO). If the capture process was created at the source database, then this column will be NULL . | |
FIRST_SCN | NUMBER | SCN from which the capture process can be restarted | |
SOURCE_DATABASE | VARCHAR2(128) | Global name of the source database | |
SOURCE_DBID | NUMBER | Database ID of the source database | |
SOURCE_RESETLOGS_SCN | NUMBER | Resetlogs SCN of the source database | |
SOURCE_RESETLOGS_TIME | NUMBER | Resetlogs time of the source database | |
LOGMINER_ID | NUMBER | Session ID of the Oracle LogMiner session associated with the capture process | |
NEGATIVE_RULE_SET_NAME | VARCHAR2(30) | Name of the negative rule set used by the capture process for filtering | |
NEGATIVE_RULE_SET_OWNER | VARCHAR2(30) | Owner of the negative rule set used by the capture process for filtering | |
MAX_CHECKPOINT_SCN | NUMBER | SCN at which the last checkpoint was taken by the capture process | |
REQUIRED_CHECKPOINT_SCN | NUMBER | Lowest checkpoint SCN for which the capture process requires redo information | |
LOGFILE_ASSIGNMENT | VARCHAR2(8) | Logfile assignment type for the capture process:
| |
STATUS_CHANGE_TIME | DATE | Time that the status of the capture process was changed | |
ERROR_NUMBER | NUMBER | Error number if the capture process was aborted | |
ERROR_MESSAGE | VARCHAR2(4000) | Error message if the capture process was aborted | |
VERSION | VARCHAR2(64) | Version number of the capture process | |
CAPTURE_TYPE | VARCHAR2(10) | Type of the capture process:
| |
LAST_ENQUEUED_SCN | NUMBER | Last enqueued SCN | |
CHECKPOINT_RETENTION_TIME | NUMBER | Checkpoint retention time Note: When the checkpoint retention time for a capture process is set to | |
START_TIME | TIMESTAMP(6) | Time from which the capture process will start to capture changes | |
PURPOSE | VARCHAR2(19) | Purpose of the capture process:
|
ALL_XSTREAM_INBOUND
displays information about the XStream inbound servers accessible to the current user.
Note: Starting with Oracle Database 11g Release 2 (11.2.0.2), theSTATUS and COMMITTED_DATA_ONLY columns are included in this view. |
Related View
DBA_XSTREAM_INBOUND
displays information about all XStream inbound servers in the database.
Column | Data Type | NULL | Description |
---|---|---|---|
SERVER_NAME | VARCHAR2(30) | NOT NULL | Name of the inbound server |
QUEUE_OWNER | VARCHAR2(30) | NOT NULL | Owner of the queue associated with the inbound server |
QUEUE_NAME | VARCHAR2(30) | NOT NULL | Name of the queue associated with the inbound server |
APPLY_USER | VARCHAR2(30) | Name of the user who can connect to the inbound server and apply messages | |
USER_COMMENT | VARCHAR2(4000) | User comment | |
CREATE_DATE | TIMESTAMP(6) | Date when the inbound server was created | |
STATUS | VARCHAR2(8) | Status of the inbound server:
| |
COMMITTED_DATA_ONLY | VARCHAR2(3) | YES if the inbound server can receive only LCRs in committed transactions from the XStream client application. A committed transaction is an assembled, noninterleaving transaction with no rollbacks.
|
ALL_XSTREAM_INBOUND_PROGRESS
displays information about the progress made by the XStream inbound servers accessible to the current user.
Note: Starting with Oracle Database 11g Release 2 (11.2.0.2), theOLDEST_POSITION , OLDEST_MESSAGE_NUMBER , APPLIED_MESSAGE_NUMBER , APPLIED_TIME , APPLIED_MESSAGE_CREATE_TIME , SPILL_MESSAGE_NUMBER , and SOURCE_DATABASE columns are included in this view. |
Related View
DBA_XSTREAM_INBOUND_PROGRESS
displays information about the progress made by all XStream inbound servers in the database.
Column | Data Type | NULL | Description |
---|---|---|---|
SERVER_NAME | VARCHAR2(30) | NOT NULL | Name of the inbound server |
PROCESSED_LOW_POSITION | RAW(64) | Position of the processed low transaction | |
APPLIED_LOW_POSITION | RAW(64) | All messages with a commit position less than this value have been applied | |
APPLIED_HIGH_POSITION | RAW(64) | Highest commit position of a transaction that has been applied | |
SPILL_POSITION | RAW(64) | Position of the spill low watermark of the transactions currently being applied | |
OLDEST_POSITION | RAW(64) | Earliest position of the transactions currently being applied | |
OLDEST_MESSAGE_NUMBER | NUMBER | NOT NULL | Earliest message number of the transactions currently being applied |
APPLIED_MESSAGE_NUMBER | NUMBER | NOT NULL | Message number up to which all transactions have definitely been applied. This value is the low watermark for the inbound server. That is, messages with a commit message number less than or equal to this message number have definitely been applied, but some messages with a higher commit message number may also have been applied. |
APPLIED_TIME | DATE | Time at which the message with the message number displayed in the APPLIED_MESSAGE_NUMBER column was applied | |
APPLIED_MESSAGE_CREATE_TIME | DATE | Time at which the message with the message number displayed in the APPLIED_MESSAGE_NUMBER column was created at its source database | |
SPILL_MESSAGE_NUMBER | NUMBER | Spill low watermark. Any message with a lower SCN has either been applied or spilled to disk. The XStream client application does not need to send LCRs with a lower SCN than the spill low watermark. Spilled messages may not have been applied yet. | |
SOURCE_DATABASE | VARCHAR2(128) | NOT NULL | Database where the transaction originated |
ALL_XSTREAM_OUTBOUND
displays information about the XStream outbound servers accessible to the current user.
Note: Starting with Oracle Database 11g Release 2 (11.2.0.2), theSTATUS , COMMITTED_DATA_ONLY , START_SCN , and START_TIME columns are included in this view. |
Related View
DBA_XSTREAM_OUTBOUND
displays information about all XStream outbound servers in the database.
Column | Data Type | NULL | Description |
---|---|---|---|
SERVER_NAME | VARCHAR2(30) | NOT NULL | Name of the outbound server |
CONNECT_USER | VARCHAR2(30) | Name of the user who can connect to the outbound server and process the outbound LCRs | |
CAPTURE_NAME | VARCHAR2(30) | Name of the Streams capture process | |
SOURCE_DATABASE | VARCHAR2(128) | Database where the transaction originated | |
CAPTURE_USER | VARCHAR2(30) | Current user who is enqueuing captured messages | |
QUEUE_OWNER | VARCHAR2(30) | NOT NULL | Owner of the queue associated with the outbound server |
QUEUE_NAME | VARCHAR2(30) | NOT NULL | Name of the queue associated with the outbound server |
USER_COMMENT | VARCHAR2(4000) | User comment | |
CREATE_DATE | TIMESTAMP(6) | Date when the outbound server was created | |
STATUS | VARCHAR2(8) | Status of the outbound server:
| |
COMMITTED_DATA_ONLY | VARCHAR2(3) | YES if the outbound server can send only LCRs in committed transactions to the XStream client application. A committed transaction is an assembled, noninterleaving transaction with no rollbacks.
| |
START_SCN | NUMBER | The SCN from which the outbound server's capture process started capturing changes when it was last started | |
START_TIME | TIMESTAMP(6) | The time from which the outbound server's capture process started capturing changes when it was last started |
ALL_XSTREAM_OUTBOUND_PROGRESS
displays information about the progress made by the XStream outbound servers accessible to the current user.
Note: Starting with Oracle Database 11g Release 2 (11.2.0.2), theOLDEST_POSITION column is included in this view. |
Related View
DBA_XSTREAM_OUTBOUND_PROGRESS
displays information about the progress made by all XStream outbound servers in the database.
Column | Data Type | NULL | Description |
---|---|---|---|
SERVER_NAME | VARCHAR2(30) | NOT NULL | Name of the outbound server |
SOURCE_DATABASE | VARCHAR2(128) | Database where the transaction originated | |
PROCESSED_LOW_POSITION | RAW(64) | Position of the low watermark transaction processed by the outbound server | |
PROCESSED_LOW_TIME | DATE | Time when the processed low position was last updated by the outbound server | |
OLDEST_POSITION | RAW(64) | The position of the earliest LCR that is required by the XStream client application |
ALL_XSTREAM_RULES
displays information about the XStream rules accessible to the current user.
Related View
DBA_XSTREAM_RULES
displays information about all XStream server rules in the database.
Column | Data Type | NULL | Description |
---|---|---|---|
STREAMS_NAME | VARCHAR2(30) | Name of the Streams process | |
STREAMS_TYPE | VARCHAR2(12) | Type of the Streams process:
| |
STREAMS_RULE_TYPE | VARCHAR2(6) | The Streams type of the rule:
| |
RULE_SET_OWNER | VARCHAR2(30) | Owner of the rule set | |
RULE_SET_NAME | VARCHAR2(30) | Name of the rule set | |
RULE_SET_TYPE | CHAR(8) | Type of the rule set:
| |
RULE_OWNER | VARCHAR2(30) | NOT NULL | Owner of the rule |
RULE_NAME | VARCHAR2(30) | NOT NULL | Name of the rule |
RULE_TYPE | VARCHAR2(3) | The type of the rule:
| |
RULE_CONDITION | CLOB | Current rule condition | |
SCHEMA_NAME | VARCHAR2(30) | For table and schema rules, the schema name | |
OBJECT_NAME | VARCHAR2(30) | For table rules, the table name | |
INCLUDE_TAGGED_LCR | VARCHAR2(3) | Indicates whether to include tagged LCRs (YES) or not (NO) | |
SUBSETTING_OPERATION | VARCHAR2(6) | For subset rules, the type of operation:
| |
DML_CONDITION | VARCHAR2(4000) | For subset rules, the row subsetting condition | |
SOURCE_DATABASE | VARCHAR2(128) | The name of the database where the LCRs originated | |
ORIGINAL_RULE_CONDITION | VARCHAR2(4000) | For rules created by Streams administrative APIs, the original rule condition when the rule was created | |
SAME_RULE_CONDITION | VARCHAR2(3) | For rules created by Streams administrative APIs, indicates whether the current rule condition is the same as the original rule condition (YES) or not (NO) |
DBA_APPLY
displays information about all apply processes in the database. Its columns are the same as those in ALL_APPLY
.
DBA_APPLY_ERROR
displays information about the error transactions generated by all apply processes in the database. Its columns are the same as those in ALL_APPLY_ERROR
.
Note: Starting with Oracle Database 11g Release 2 (11.2.0.2), theERROR_TYPE column is included in this view. |
Note: This functionality is available starting with Oracle Database 11g Release 2 (11.2.0.2). |
DBA_APPLY_ERROR_MESSAGES
displays information about the individual messages in all of the error transactions generated by all apply processes in the database. Its columns are the same as those in ALL_APPLY_ERROR_MESSAGES
.
For XStream inbound servers, each message in an error transaction is an LCR.
Note:
|
DBA_APPLY_SPILL_TXN
displays information about the transactions spilled from memory to hard disk by all apply processes in the database.
Column | Data Type | NULL | Description |
---|---|---|---|
APPLY_NAME | VARCHAR2(30) | NOT NULL | Name of the apply process that spilled one or more transactions |
XIDUSN | NUMBER | NOT NULL | Transaction ID undo segment number |
XIDSLT | NUMBER | NOT NULL | Transaction ID slot number |
XIDSQN | NUMBER | NOT NULL | Transaction ID sequence number |
FIRST_SCN | NUMBER | NOT NULL | SCN of the first message in the transaction |
MESSAGE_COUNT | NUMBER | Number of messages spilled for the transaction | |
FIRST_MESSAGE_CREATE_TIME | DATE | Source creation time of the first message in the transaction | |
SPILL_CREATION_TIME | DATE | Time the first message was spilled | |
FIRST_POSITION | RAW(64) | Position of the first message in this transaction This column is populated only for an XStream inbound server. | |
TRANSACTION_ID | VARCHAR2(128) | Transaction ID of the spilled transaction |
DBA_CAPTURE
displays information about all capture processes in the database. Its columns are the same as those in ALL_CAPTURE
.
Note: Starting with Oracle Database 11g Release 2 (11.2.0.2), theSTART_TIME and PURPOSE columns are included in this view. |
Note: This functionality is available starting with Oracle Database 11g Release 2 (11.2.0.2). |
DBA_XSTREAM_ADMINISTRATOR
displays information about the users who have been granted privileges to be XStream administrators by procedures in the DBMS_XSTREAM_AUTH
package.
Column | Data Type | NULL | Description |
---|---|---|---|
USERNAME | VARCHAR2(30) | NOT NULL | Name of the user who has been granted privileges to be an XStream administrator |
LOCAL_PRIVILEGES | VARCHAR2(3) | Indicates whether the user has been granted local XStream administrator privileges (YES) or not (NO) | |
ACCESS_FROM_REMOTE | VARCHAR2(3) | Indicates whether the user can be used for remote XStream administration through a database link (YES) or not (NO) |
DBA_XSTREAM_INBOUND
displays information about all XStream inbound servers in the database. Its columns are the same as those in ALL_XSTREAM_INBOUND
.
Note: Starting with Oracle Database 11g Release 2 (11.2.0.2), theSTATUS and COMMITTED_DATA_ONLY columns are included in this view. |
DBA_XSTREAM_INBOUND_PROGRESS
displays information about the progress made by all XStream inbound servers in the database. Its columns are the same as those in ALL_XSTREAM_INBOUND_PROGRESS
.
Note: Starting with Oracle Database 11g Release 2 (11.2.0.2), theOLDEST_POSITION , OLDEST_MESSAGE_NUMBER , APPLIED_MESSAGE_NUMBER , APPLIED_TIME , APPLIED_MESSAGE_CREATE_TIME , SPILL_MESSAGE_NUMBER , and SOURCE_DATABASE columns are included in this view. |
Note: This functionality is available starting with Oracle Database 11g Release 2 (11.2.0.2). |
DBA_XSTREAM_OUT_SUPPORT_MODE
displays information about the level of capture process support for the tables in the database.
Column | Data Type | NULL | Description |
---|---|---|---|
OWNER | VARCHAR2(30) | Table owner | |
OBJECT_NAME | VARCHAR2(30) | Table name | |
SUPPORT_MODE | VARCHAR2(6) | Capture process support level for the table:
|
DBA_XSTREAM_OUTBOUND
displays information about all XStream outbound servers in the database. Its columns are the same as those in ALL_XSTREAM_OUTBOUND
.
Note: Starting with Oracle Database 11g Release 2 (11.2.0.2), theSTATUS , COMMITTED_DATA_ONLY , START_SCN , and START_TIME columns are included in this view. |
DBA_XSTREAM_OUTBOUND_PROGRESS
displays information about the progress made by all XStream outbound servers in the database. Its columns are the same as those in ALL_XSTREAM_OUTBOUND_PROGRESS
.
Note: Starting with Oracle Database 11g Release 2 (11.2.0.2), theOLDEST_POSITION column is included in this view. |
This chapter describes the dynamic performance (V$) views related to XStream. In an XStream configuration, an apply process can function as an XStream outbound server or inbound server.
This chapter contains these topics:
V$STREAMS_APPLY_COORDINATOR
displays information about each apply process coordinator. The coordinator for an apply process gets transactions from the apply process reader and passes them to apply servers. An apply process coordinator is a subcomponent of an apply process, outbound server, or inbound server.
Column | Data Type | Description |
---|---|---|
SID | NUMBER | Session ID of the coordinator's session |
SERIAL# | NUMBER | Serial number of the coordinator's session |
STATE | VARCHAR2(21) | State of the coordinator:
|
APPLY# | NUMBER | Apply process number An apply process coordinator is an Oracle background process, prefixed by |
APPLY_NAME | VARCHAR2(30) | Name of the apply process |
TOTAL_APPLIED | NUMBER | Total number of transactions applied by the apply process since the apply process was last started |
TOTAL_WAIT_DEPS | NUMBER | Number of times since the apply process was last started that an apply server waited to apply a logical change record (LCR) in a transaction until another apply server applied a transaction because of a dependency between the transactions |
TOTAL_WAIT_COMMITS | NUMBER | Number of times since the apply process was last started that an apply server waited to commit a transaction until another apply server committed a transaction to serialize commits |
TOTAL_ADMIN | NUMBER | Number of administrative jobs issued since the apply process was last started |
TOTAL_ASSIGNED | NUMBER | Number of transactions assigned to apply servers since the apply process was last started |
TOTAL_RECEIVED | NUMBER | Total number of transactions received by the coordinator process since the apply process was last started |
TOTAL_IGNORED | NUMBER | Number of transactions which were received by the coordinator but were ignored because they had been previously applied |
TOTAL_ROLLBACKS | NUMBER | Number of transactions which were rolled back due to unexpected contention |
TOTAL_ERRORS | NUMBER | Number of transactions applied by the apply process that resulted in an apply error since the apply process was last started |
UNASSIGNED_COMPLETE_TXNS | NUMBER | Total number of complete transactions that the coordinator has not assigned to any apply servers |
AUTO_TXN_BUFFER_SIZE | NUMBER | Current value of transaction buffer size Transaction buffer size refers to the number of transactions that the apply reader can assemble ahead of apply servers. The apply process periodically adjusts the transaction buffer size. |
LWM_TIME | DATE | Time when the message with the lowest message number was recorded The creation time of the message with the lowest message number was also recorded at this time. |
LWM_MESSAGE_NUMBER | NUMBER | Number of the message corresponding to the low-watermark That is, messages with a commit message number less than or equal to this message number have definitely been applied, but some messages with a higher commit message number also may have been applied. |
LWM_MESSAGE_CREATE_TIME | DATE | For captured messages, creation time at the source database of the message corresponding to the low-watermark. For user-enqueued messages, time when the message corresponding to the low-watermark was enqueued into the queue at the local database. |
HWM_TIME | DATE | Time when the message with the highest message number was recorded The creation time of the message with the highest message number was also recorded at this time. |
HWM_MESSAGE_NUMBER | NUMBER | Number of the message corresponding to the high-watermark That is, no messages with a commit message number greater than this message number have been applied. |
HWM_MESSAGE_CREATE_TIME | DATE | For captured messages, creation time at the source database of the message corresponding to the high-watermark. For user-enqueued messages, time when the message corresponding to the high-watermark was enqueued into the queue at the local database. |
STARTUP_TIME | DATE | Time when the apply process was last started |
ELAPSED_SCHEDULE_TIME | NUMBER | Time elapsed (in hundredths of a second) scheduling messages since the apply process was last started |
ELAPSED_IDLE_TIME | NUMBER | Elapsed idle time |
LWM_POSITION | RAW(64) | Position of the low-watermark LCR |
HWM_POSITION | RAW(64) | Position of the high-watermark LCR |
PROCESSED_MESSAGE_NUMBER | NUMBER | Message number currently processed by the apply coordinator |
Note: TheELAPSED_SCHEDULE_TIME column is only populated if the TIMED_STATISTICS initialization parameter is set to true , or if the STATISTICS_LEVEL initialization parameter is set to TYPICAL or ALL . |
V$STREAMS_APPLY_READER
displays information about each apply reader. The apply reader is a process which reads (dequeues) messages from the queue, computes message dependencies, and builds transactions. It passes the transactions on to the coordinator in commit order for assignment to the apply servers. An apply reader is a subcomponent of an apply process, outbound server, or inbound server.
Column | Data Type | Description |
---|---|---|
SID | NUMBER | Session ID of the reader's session |
SERIAL# | NUMBER | Serial number of the reader's session |
APPLY# | NUMBER | Apply process number An apply process is an Oracle background process prefixed by |
APPLY_NAME | VARCHAR2(30) | Name of the apply process |
STATE | VARCHAR2(36) | State of the reader:
|
TOTAL_MESSAGES_DEQUEUED | NUMBER | Total number of messages dequeued since the apply process was last started |
TOTAL_MESSAGES_SPILLED | NUMBER | Number of messages spilled by the reader since the apply process was last started |
DEQUEUE_TIME | DATE | Time when the last message was received |
DEQUEUED_MESSAGE_NUMBER | NUMBER | Number of the last message received |
DEQUEUED_MESSAGE_CREATE_TIME | DATE | For captured messages, creation time at the source database of the last message received. For user-enqueued messages, time when the message was enqueued into the queue at the local database. |
SGA_USED | NUMBER | Amount (in bytes) of SGA memory used by the apply process since it was last started |
ELAPSED_DEQUEUE_TIME | NUMBER | Time elapsed (in hundredths of a second) dequeuing messages since the apply process was last started |
ELAPSED_SCHEDULE_TIME | NUMBER | Time elapsed (in hundredths of a second) scheduling messages since the apply process was last started. Scheduling includes computing dependencies between messages and assembling messages into transactions. |
ELAPSED_SPILL_TIME | NUMBER | Elapsed time (in hundredths of a second) spent spilling messages since the apply process was last started |
LAST_BROWSE_NUM | NUMBER | Reserved for internal use |
OLDEST_SCN_NUM | NUMBER | Oldest SCN |
LAST_BROWSE_SEQ | NUMBER | Reserved for internal use |
LAST_DEQ_SEQ | NUMBER | Last dequeue sequence number |
OLDEST_XIDUSN | NUMBER | Transaction ID undo segment number of the oldest transaction that either has been applied or is being applied |
OLDEST_XIDSLT | NUMBER | Transaction ID slot number of the oldest transaction that either has been applied or is being applied |
OLDEST_XIDSQN | NUMBER | Transaction ID sequence number of the oldest transaction that either has been applied or is being applied |
SPILL_LWM_SCN | NUMBER | Spill low-watermark SCN |
PROXY_SID | NUMBER | When the apply process uses combined capture and apply, the session ID of the propagation receiver that is responsible for direct communication between capture and apply. If the apply process does not use combined capture and apply, then this column is 0 . |
PROXY_SERIAL | NUMBER | When the apply process uses combined capture and apply, the serial number of the propagation receiver that is responsible for direct communication between capture and apply. If the apply process does not use combined capture and apply, then this column is 0 . |
PROXY_SPID | VARCHAR2(12) | When the apply process uses combined capture and apply, the process identification number of the propagation receiver that is responsible for direct communication between capture and apply. If the apply process does not use combined capture and apply, then this column is 0 . |
CAPTURE_BYTES_RECEIVED | NUMBER | When the apply process uses combined capture and apply, the number of bytes received by the apply process from the capture process since the apply process last started. If the apply process does not use combined capture and apply, then this column is not populated. |
DEQUEUED_POSITION | RAW(64) | Dequeued position This column is populated only for an apply process that is functioning as an XStream inbound server. |
LAST_BROWSE_POSITION | RAW(64) | Reserved for internal use |
OLDEST_POSITION | RAW(64) | The earliest position of the transactions currently being dequeued and applied This column is populated only for an apply process that is functioning as an XStream inbound server. |
SPILL_LWM_POSITION | RAW(64) | Spill low-watermark position This column is populated only for an apply process that is functioning as an XStream inbound server. |
OLDEST_TRANSACTION_ID | VARCHAR2(128) | Oldest transaction ID |
TOTAL_LCRS_WITH_DEP | NUMBER | Total number of LCRs with row-level dependencies since the apply process last started |
TOTAL_LCRS_WITH_WMDEP | NUMBER | Total number of LCRs with watermark dependencies since the apply process last started A watermark dependency occurs when an apply process must wait until the apply process's low-watermark reaches a particular threshold. |
TOTAL_IN_MEMORY_LCRS | NUMBER | Total number of LCRs currently in memory |
SGA_ALLOCATED | NUMBER | The total amount of shared memory (in bytes) allocated from the Streams pool for the apply process since the apply process last started |
Note: TheELAPSED_DEQUEUE_TIME and ELAPSED_SCHEDULE_TIME columns are only populated if the TIMED_STATISTICS initialization parameter is set to true , or if the STATISTICS_LEVEL initialization parameter is set to TYPICAL or ALL . |
V$STREAMS_APPLY_SERVER
displays information about each apply server and its activities. An apply server receives messages from the apply coordinator for an apply process. For each message received, an apply server either applies the message or sends the message to the appropriate apply handler. An apply server is a subcomponent of an apply process, outbound server, or inbound server.
Column | Data Type | Description |
---|---|---|
SID | NUMBER | Session ID of the apply server's session |
SERIAL# | NUMBER | Serial number of the apply server's session |
APPLY# | NUMBER | Apply process number An apply process is an Oracle background process prefixed by |
APPLY_NAME | VARCHAR2(30) | Name of the apply process |
SERVER_ID | NUMBER | Parallel execution server number of the apply server |
STATE | VARCHAR2(20) | State of the apply server:
|
XIDUSN | NUMBER | Transaction ID undo segment number of the transaction currently being applied |
XIDSLT | NUMBER | Transaction ID slot number of the transaction currently being applied |
XIDSQN | NUMBER | Transaction ID sequence number of the transaction currently being applied |
COMMITSCN | NUMBER | Commit SCN of the transaction currently being applied |
DEP_XIDUSN | NUMBER | Transaction ID undo segment number of a transaction on which the transaction being applied by this apply server depends |
DEP_XIDSLT | NUMBER | Transaction ID slot number of a transaction on which the transaction being applied by this apply server depends |
DEP_XIDSQN | NUMBER | Transaction ID sequence number of a transaction on which the transaction being applied by this apply server depends |
DEP_COMMITSCN | NUMBER | Commit SCN of the transaction on which this apply server depends |
MESSAGE_SEQUENCE | NUMBER | Number of the current message being applied by the apply server. This value is reset to 1 at the beginning of each transaction. |
TOTAL_ASSIGNED | NUMBER | Total number of transactions assigned to the apply server since the apply process was last started |
TOTAL_ADMIN | NUMBER | Total number of administrative jobs done by the apply server since the apply process was last started. See the STATE information in this view for the types of administrative jobs. |
TOTAL_ROLLBACKS | NUMBER | Number of transactions assigned to this server that were rolled back |
TOTAL_MESSAGES_APPLIED | NUMBER | Total number of messages applied by this apply server since the apply process was last started |
APPLY_TIME | DATE | Time the last message was applied |
APPLIED_MESSAGE_NUMBER | NUMBER | Number of the last message applied |
APPLIED_MESSAGE_CREATE_TIME | DATE | Creation time at the source database of the last captured message applied. No information about user-enqueued messages is recorded in this column. |
ELAPSED_DEQUEUE_TIME | NUMBER | Time elapsed (in hundredths of a second) dequeuing messages since the apply process was last started |
ELAPSED_APPLY_TIME | NUMBER | Time elapsed (in hundredths of a second) applying messages since the apply process was last started |
COMMIT_POSITION | RAW(64) | Commit position of the transaction. This column is populated only for an apply process that is functioning as an XStream outbound server or inbound server. |
DEP_COMMIT_POSITION | RAW(64) | Commit position of the transaction the slave depends on This column is populated only for an apply process that is functioning as an XStream inbound server. |
LAST_APPLY_POSITION | RAW(64) | For inbound servers, the position of the last message applied; for outbound servers, the position of the last message sent to the XStream client application This column is populated only for an apply process that is functioning as an XStream outbound server or inbound server. |
TRANSACTION_ID | VARCHAR2(128) | Transaction ID that the slave is applying This column is populated only for an apply process that is functioning as an XStream inbound server. |
DEP_TRANSACTION_ID | VARCHAR2(128) | Transaction ID of the transaction the slave depends on This column is populated only for an apply process that is functioning as an XStream inbound server. |
Note:
|
Note: This functionality is available starting with Oracle Database 11g Release 2 (11.2.0.2). |
V$XSTREAM_CAPTURE
displays information about each capture process that sends LCRs to an XStream outbound server.
Note: This view does not display information about capture processes that send LCRs to Oracle Streams apply processes. To view information about such capture processes, query theV$STREAMS_CAPTURE view. |
Column | Data Type | Description |
---|---|---|
SID | NUMBER | Session identifier of the capture process |
SERIAL# | NUMBER | Session serial number of the capture process session |
CAPTURE# | NUMBER | Capture process number A capture process is an Oracle background process prefixed by |
CAPTURE_NAME | VARCHAR2(30) | Name of the capture process |
LOGMINER_ID | NUMBER | Session ID of the Oracle LogMiner session associated with the capture process |
STARTUP_TIME | DATE | Time when the capture process was last started |
STATE | VARCHAR2(551) | State of the capture process:
|
TOTAL_PREFILTER_DISCARDED | NUMBER | Total number of prefiltered messages discarded |
TOTAL_PREFILTER_KEPT | NUMBER | Total number of prefiltered messages kept |
TOTAL_PREFILTER_EVALUATIONS | NUMBER | Total number of prefilter evaluations |
TOTAL_MESSAGES_CAPTURED | NUMBER | Total number of redo entries passed by LogMiner to the capture process for detailed rule evaluation since the capture process last started. A capture process converts a redo entry into a message and performs detailed rule evaluation on the message when capture process prefiltering cannot discard the change. |
CAPTURE_TIME | DATE | Time when the most recent message was captured |
CAPTURE_MESSAGE_NUMBER | NUMBER | Number of the most recently captured message |
CAPTURE_MESSAGE_CREATE_TIME | DATE | Creation time of the most recently captured message |
TOTAL_MESSAGES_CREATED | NUMBER | Count associated with ELAPSED_LCR_TIME to calculate rate |
TOTAL_FULL_EVALUATIONS | NUMBER | Count associated with ELAPSED_RULE_TIME to calculate rate |
TOTAL_MESSAGES_ENQUEUED | NUMBER | Total number of messages enqueued since the capture process was last started |
ENQUEUE_TIME | DATE | Time when the last message was enqueued |
ENQUEUE_MESSAGE_NUMBER | NUMBER | Number of the last enqueued message |
ENQUEUE_MESSAGE_CREATE_TIME | DATE | Creation time of the last enqueued message |
AVAILABLE_MESSAGE_NUMBER | NUMBER | For local capture, the last redo SCN flushed to the log files. For downstream capture, the last SCN added to LogMiner through the archived redo log files. |
AVAILABLE_MESSAGE_CREATE_TIME | DATE | For local capture, the time the SCN was written to the log file. For downstream capture, the time the most recent archived redo log file (containing the most recent SCN) was added to LogMiner. |
ELAPSED_CAPTURE_TIME | NUMBER | Elapsed time (in hundredths of a second) scanning for changes in the redo log since the capture process was last started |
ELAPSED_RULE_TIME | NUMBER | Elapsed time (in hundredths of a second) evaluating rules since the capture process was last started |
ELAPSED_ENQUEUE_TIME | NUMBER | Elapsed time (in hundredths of a second) enqueuing messages since the capture process was last started |
ELAPSED_LCR_TIME | NUMBER | Elapsed time (in hundredths of a second) creating LCRs since the capture process was last started |
ELAPSED_REDO_WAIT_TIME | NUMBER | Elapsed time (in hundredths of a second) spent by the capture process in the WAITING FOR REDO state |
ELAPSED_PAUSE_TIME | NUMBER | Elapsed flow control pause time (in hundredths of a second) |
STATE_CHANGED_TIME | DATE | Time at which the state of the capture process changed |
SGA_USED | NUMBER | The total amount of shared memory (in bytes) currently used by the capture process out of the amount allocated (SGA_ALLOCATED) |
SGA_ALLOCATED | NUMBER | The total amount of shared memory (in bytes) allocated from the Streams pool for the capture process |
BYTES_OF_REDO_MINED | VARCHAR2(64) | The total amount of redo data mined (in bytes) since the capture process last started |
SESSION_RESTART_SCN | VARCHAR2(64) | The SCN from which the capture process started mining redo data when it was last started |
Note: TheELAPSED_CAPTURE_TIME , ELAPSED_RULE_TIME , ELAPSED_ENQUEUE_TIME , ELAPSED_LCR_TIME , and ELAPSED_REDO_WAIT_TIME columns are only populated if the TIMED_STATISTICS initialization parameter is set to true , or if the STATISTICS_LEVEL initialization parameter is set to TYPICAL or ALL . |
Note: This functionality is available starting with Oracle Database 11g Release 2 (11.2.0.2). |
V$XSTREAM_MESSAGE_TRACKING
displays information about LCRs tracked through the stream that are processed by XStream components.
You can track an LCR through a stream using one of the following methods:
message_tracking_frequency
capture process parameter to 1
or another relatively low value. SET_MESSAGE_TRACKING
procedure in the DBMS_STREAMS_ADM
package. When the actions
parameter in the DBMS_STREAMS_ADM.SET_MESSAGE_TRACKING
procedure is set to DBMS_STREAMS_ADM.ACTION_MEMORY
, information about the LCRs is tracked in memory, and this view is populated with information about the LCRs. Currently, DBMS_STREAMS_ADM.ACTION_MEMORY
is the only valid setting for the actions
parameter in the procedure.
Note: This view does not display information about messages flowing in an Oracle Streams configuration. To view information about such message streams, query theV$STREAMS_MESSAGE_TRACKING view. |
Column | Data Type | Description |
---|---|---|
TRACKING_LABEL | VARCHAR2(30) | User-specified tracking label |
TAG | RAW(30) | First 30 bytes of the tag of the LCR |
COMPONENT_NAME | VARCHAR2(30) | Name of the component that processed the LCR |
COMPONENT_TYPE | VARCHAR2(30) | Type of the component that processed the LCR |
ACTION | VARCHAR2(50) | Action performed on the LCR |
ACTION_DETAILS | VARCHAR2(100) | Details of the action |
TIMESTAMP | TIMESTAMP(9) WITH TIME ZONE | Time when the action was performed |
MESSAGE_CREATION_TIME | DATE | Time when the message was created |
MESSAGE_NUMBER | NUMBER | SCN of the message |
TRACKING_ID | RAW(16) | Globally unique OID of the LCR |
SOURCE_DATABASE_NAME | VARCHAR2(128) | Name of the source database |
OBJECT_OWNER | VARCHAR2(30) | Owner of the object |
OBJECT_NAME | VARCHAR2(30) | Name of the object |
XID | VARCHAR2(128) | Transaction ID |
COMMAND_TYPE | VARCHAR2(30) | Command type of the LCR |
MESSAGE_POSITION | RAW(64) | Position of the message |
Note: This functionality is available starting with Oracle Database 11g Release 2 (11.2.0.2). |
V$XSTREAM_OUTBOUND_SERVER
displays statistics about an outbound server. An outbound server sends LCRs to an XStream client application.
Note: When theCOMMITTED_DATA_ONLY column is YES in the V$XSTREAM_OUTBOUND_SERVER view, the V$STREAMS_APPLY_SERVER view provides additional information about the outbound server process, and information about the apply server background processes used by the outbound server. |
Column | Data Type | Description |
---|---|---|
SID | NUMBER | Session ID of the outbound server's session |
SERIAL# | NUMBER | Serial number of the outbound server's session |
SPID | VARCHAR2(12) | Process identification number of the operating-system process that sends LCRs to the client application |
SERVER_NAME | VARCHAR2(30) | Name of the outbound server |
STARTUP_TIME | DATE | Time when the client application attached to the outbound server |
STATE | VARCHAR2(37) | State of the outbound server When the
When the
When a state refers to a capture process, it is the capture process that captures changes for the outbound server. When a state refers to a propagation, it is the outbound server that sends LCRs to the XStream client application. |
XIDUSN | NUMBER | Transaction ID undo segment number of the transaction currently being processed This column is populated only if the |
XIDSLT | NUMBER | Transaction ID slot number of the transaction currently being processed This column is populated only if the |
XIDSQN | NUMBER | Transaction ID sequence number of the transaction currently being processed This column is populated only if the |
COMMITSCN | NUMBER | Commit SCN of the transaction currently being processed This column is populated only if the |
TOTAL_TRANSACTIONS_SENT | NUMBER | Total number of transactions sent by the outbound server to the XStream client application since the last time the client application attached to the outbound server This column is populated only if the |
MESSAGE_SEQUENCE | NUMBER | Number of the current LCR being processed by the outbound server. This value is reset to 1 at the beginning of each transaction. This column is populated only if the |
TOTAL_MESSAGES_SENT | NUMBER | Total number of LCRs sent by the outbound server to the XStream client application since the last time the client application attached to the outbound server |
SEND_TIME | DATE | Time the last LCR was sent by the outbound server to the XStream client application |
LAST_SENT_MESSAGE_NUMBER | NUMBER | Message number of the last LCR sent by the outbound server to the XStream client application |
LAST_SENT_MESSAGE_CREATE_TIME | DATE | Creation time at the source database of the last LCR sent by the outbound server to the client application |
ELAPSED_SEND_TIME | NUMBER | Time elapsed (in hundredths of a second) sending LCRs to the XStream client application since the last time the client application attached to the outbound server |
COMMIT_POSITION | RAW(64) | Commit position of the transaction currently being processed This column is populated only if the |
LAST_SENT_POSITION | RAW(64) | Position of the last LCR sent to the XStream client application This column is populated only if the |
BYTES_SENT | NUMBER | Total number of bytes sent by the outbound server to the XStream client application since the last time the client application attached to the outbound server |
COMMITTED_DATA_ONLY | VARCHAR2(3) | YES if the outbound server can send only LCRs in committed transactions to the XStream client application. A committed transaction is an assembled, noninterleaving transaction with no rollbacks.
|
Note: This functionality is available starting with Oracle Database 11g Release 2 (11.2.0.2). |
V$XSTREAM_TRANSACTION
displays information about transactions that are being processed by capture processes, outbound servers, and inbound servers. This view can identify long running transactions and display how many LCRs are being processed in each transaction. This view only contains information about captured LCRs. It does not contain information about user-enqueued LCRs or user messages.
This view only shows information about LCRs that are being processed because they satisfied the rule sets for the component at the time of the query. For capture processes, this view only shows information about changes in transactions that the capture process has converted into LCRs. It does not show information about all the active transactions present in the redo log.
For outbound servers, this view only shows information about LCRs that the outbound server has dequeued. It does not show information about LCRs in the outbound server's queue. For outbound servers, information about a transaction remains in the view until the transaction is sent to the XStream client application.
For inbound servers, information about a transaction remains in the view until the transaction commits or until the entire transaction is rolled back.
Note: This view does not display information about Oracle Streams transactions. To view information about Oracle Streams transactions, query theV$STREAMS_TRANSACTION view. |
Column | Data Type | Description |
---|---|---|
COMPONENT_NAME | VARCHAR2(30) | Name of the component |
COMPONENT_TYPE | VARCHAR2(10) | Type of component:
|
XIDUSN | NUMBER | Transaction ID undo segment number of the transaction |
XIDSLT | NUMBER | Transaction ID slot number of the transaction |
XIDSQN | NUMBER | Transaction ID sequence number of the transaction |
CUMULATIVE_MESSAGE_COUNT | NUMBER | Number of LCRs processed in the transaction. If a component is restarted while the transaction is being processed, then this column shows the number of LCRs processed in the transaction since the component was started. |
TOTAL_MESSAGE_COUNT | NUMBER | Total number of LCRs processed in the transaction by an outbound server or inbound server. This column does not pertain to capture processes. |
FIRST_MESSAGE_TIME | DATE | Time stamp of the first LCR processed in the transaction. If a capture process is restarted while the transaction is being processed, then this column shows the time stamp of the first LCR processed after the capture process was started. |
FIRST_MESSAGE_NUMBER | NUMBER | SCN of the first message in the transaction. If a capture process is restarted while the transaction is being processed, then this column shows the SCN of the first message processed after the capture process was started. |
LAST_MESSAGE_TIME | DATE | Time stamp of the last LCR processed in the transaction |
LAST_MESSAGE_NUMBER | NUMBER | SCN of the most recent message encountered in the transaction |
FIRST_MESSAGE_POSITION | RAW(64) | Position of the first message seen by an XStream inbound server This column is populated only for an apply process that is functioning as an XStream inbound server. |
LAST_MESSAGE_POSITION | RAW(64) | Position of the last message seen by an XStream inbound server This column is populated only for an apply process that is functioning as an XStream inbound server. |
TRANSACTION_ID | VARCHAR2(128) | Transaction ID for an XStream inbound server This column is populated only for an apply process that is functioning as an XStream inbound server. |
 Copyright © 2009, 2010, Oracle and/or its affiliates. All rights reserved. |