Oracle8i[] Time Series

User’s Guide

Release 8.1.5

February 1999
A67294-01

ORACLE"

Enabling the Information Age™

Oracle8i Time Series User’s Guide

A67294-01

Release 8.1.5

Copyright © 1997, 1999, Oracle Corporation. All rights reserved.

The programs are not intended for use in any nuclear, aviation, mass transit, medical, or other
inherently dangerous applications. It shall be licensee’s responsibility to take all appropriate fail-safe,
back up, redundancy and other measures to ensure the safe use of such applications if the Programs
are used for such purposes, and Oracle disclaims liability for any damages caused by such use of the
Programs.

This Program contains proprietary information of Oracle Corporation; it is provided under a license
agreement containing restrictions on use and disclosure and is also protected by copyright patent and
other intellectual property law. Reverse engineering of the software is prohibited.

The information contained in this document is subject to change without notice. If you find any problems
in the documentation, please report them to us in writing. Oracle Corporation does not warrant that this
document is error free.

If this Program is delivered to a U.S. Government Agency of the Department of Defense, then it is
delivered with Restricted Rights and the following legend is applicable:

Restricted Rights Legend Programs delivered subject to the DOD FAR Supplement are ‘commercial
computer software' and use, duplication and disclosure of the Programs shall be subject to the licensing
restrictions set forth in the applicable Oracle license agreement. Otherwise, Programs delivered subject to
the Federal Acquisition Regulations are 'restricted computer software' and use, duplication and
disclosure of the Programs shall be subject to the restrictions in FAR 52..227-14, Rights in Data -- General,
including Alternate Il (June 1987). Oracle Corporation, 500 Oracle Parkway, Redwood City, CA 94065.

Oracle, SQL*L oader, and SQL* Plus are registered trademarks, and Net8, Network Computing Architecture, Oracle
Forms, Oracle8, Oracle8i, and PL/SQL are trademarks, of Oracle Corporation, Redwood City, California. All other
company or product names are used for identification purposes only and may be trademarks of their respective
owners.

Contents

SENA US YOUT COMMENTES ...ttt et eee et et ettt s ettt et et et e s e e e e senenes XV
PRI AC ... ettt ettt ettt ettt ettt ettt eeas Xvii
101 (T gL (Y0 I AN U o [1T o 1o < ISP XVil
) £ U [(0 TR XVil
REIATE DOCUMEBNES.eii ettt ettt ettt eee e s ettt e et e e e satee e s saeeesateessabsseesbaesessseesstsssessbnesesresesaes XViii
(O00] 0 1VZ=T 1 £ o] o F-THUET TR TP XViii
Changes 10 THIS GUITEciiiiiie ittt e e et e e bbb XixX

1 Introduction

11 Oracle8i Time Series and Object-Relational Technology..........cccoovviiiiiiiniiiiie 1-1
1.2 Storing and ACCESSING DATAc.ciiiiiiii e 1-2
13 Time Series UsSage MOGEIScocciiiiiiiiiei e e 1-2
13.1 NO Need fOr CalenNdaArs.........c.coo i 1-3
13.2 Need fOr CaleNUArScoooviiieiiee e 1-4
1.4 INSTAHIING TN KT ... bbb 1-7
141 Required Software for Using Oracle8i Time Series........ccoovvrvrnieinie i 1-7
1.4.2 After Installing Oracle8i TimMe SEries. ..o s 1-7
143 Creating Database Objects Without UsSing ODCAcccooeieriieniieneineeineeneeieas 1-8
15 Creating Public Synonyms for Oracle8i Time Series Packagesccoccvvevveveeneeeieenenn 1-9
1.6 Oracle8i Time Series Demos (DEMONSIFAtiONS)ccoiveirieeiieiie e e 1-9
16.1 QUICK-STAI DEIMO ...ttt ettt st s st e et e ere b b 1-10
1.6.2 USAJE DEIMO ...ttt e e 1-12

1.7

Java Client-Side AP (ProtOtYPE). ..ottt 1-14

2 Time Series Concepts

2.1
211
212
213
2.2
221
222
223
22.4
225
2.3
23.1
23.2
2.4
24.1
24.2
25
2.6
26.1
26.2
2.7
27.1
2.7.2
2.8
28.1
2.8.2
2.8.3
2.9
29.1
29.2
2.10
2.10.1

Overview Of TimMe SEriesS DAtacccoceicirieiire ettt 2-1
Regular and Irregular TIMe SErieS........ccov ittt 2-2
Data Generation for @ TiMe SEFIES ..ot s 2-2
HISTOFICAI DALAciveiecee ettt 2-4

(@51 1= To F- =3 SRRSO PRI 2-5
FIEOUENCY ...t e e e s e s 2-6
o =T o1 T T o SRR 2-8
= (=] 4 o [PP PUP USSR 2-9
Overview of Calendar DefinitioN...........cocooiiiiiiiiiic s 2-10
Deriving Calendar Exceptions from Time Series Data.........c.cccoceevenieieiiinneennne 2-12

Data TYPES ...t e 2-13
(01 [T g o -V B T L = R 1Y o 1= OSSR 2-14
TIME SErieS DAta TYPES ...eeueiiieetiriereite ettt sttt sb et st et bes e e e eneeneas 2-14

Conventions and SEMANTICSccuiui ittt enb e e e 2-16
Semantics of NUII OPerands ..o s 2-16
Semantics of Off-EXception OPErandsccoceveviieininienie e 2-17

Oracle8i Time Series ArChItECTUIEcoiciiciie e 2-18

Storage Of TiMe SEriesS DALc.cciiieiiiiieiie e 2-19
Flat IOT or Flat Table STOrage........coceviiiieire ettt 2-19
Nested IOT Storage (Object MOEl).......ccooiiiiiiiiiie s 2-20

Interfaces to Time Series and Time Scaling FUNCLIONS ... 2-21
INStanNCe-Based INTEIACEcuiiiiiiicre e 2-22
Reference-Based INTErTACEccciieiriciie e 2-24

Consistency Of TIMe SErieS DAtaccoiuriiiiiieiei et e 2-27
Rules for Time Series CONSISTENCYc..ioiieiiiiiie et 2-27
Enforcing Time Series Consistency with Relational Views............ccccoccvneinenne 2-28
Bulk Loading and CONSISTENCYcciiiriieie ettt e 2-29

Calendar FUNCLIONSouiiiie ettt et e sb e b e e e e ene e 2-30
ENd-USEE FUNCHIONS.......iiiii ittt et et s e e 2-30
Product-Developer FUNCTIONS.oo ittt e e e 2-31

TIME SEFIES FUNCLIONS ...ttt et et et st eb et e ee e 2-32
Extraction, Retrieval, and Trim FUNCLIONSccooiiiiiiie e 2-33

2.10.2
2.10.3
2.10.4
2.10.5
2.10.6
2.10.7
2.10.8
2.11

2111
2.11.2
2.12

2121
2.12.2

SHITE FUNCTIONS ..ot ettt see e e eneas 2-34
SQL FOrmatting FUNCLIONS.........cooiviiieiiiiiiee et 2-34
Aggregate FUNCHIONS..........coo i e e 2-34
AFTENMETIC FUNCTIONS ..ottt 2-35
Cumulative Sequence FUNCLIONS.cviiiiiieee e e 2-36
Moving Average and SUM FUNCLIONS ... 2-36
CONVEISION FUNCHIONSouiiiiii ittt sttt e sne e 2-37
Time SCAlING FUNCTIONS ..ot e e s s e 2-37
Time Scaling 0N COlECLIONS.........ceii i e 2-39
Scaleup Options: IgnoreNulls and DisCardErTorcoovevriviiieeceieniee e 2-41
AdMInistrative TOOIS ProCEAUIES ..ot 2-43
Role Requirement for Administrative Tools Procedures...........ccocovevvvinieieneniannns 2-44
Other Requirements for Administrative Tools Procedures...........cc.cccovevneinnnn. 2-45

3 Time Series Usage

3.1
3.2
3.3
3.4
341
3.4.2
3.5
3.6
3.7
3.8
3.8.1
3.8.2
3.8.3
3.9

Creating @ TiMe SEIES GIOUD ..ccceiiierieie ettt ettt et ettt 3-1
Creating @ CAlENUA ..o e 3-3
Maintaining @ Map TabIEcooiii e et 3-6
Populating the Detail Table USing SQL*LOAUENccoiiiriiriiiriiirecreciseiiseiinees 3-7
BUIK LOATING ...ttt bttt ettt et 3-8
INcremental LOAING.......ocoov ittt e e 3-10
Retrofitting EXIiStING TaDIES. ...c..ooi it s 3-11
Validating Time SeriesS CONSISIENCYccvieiiieiriiiie it e 3-13
Formulating Time Series QUETIESooiiiiiie ittt ettt 3-13
Deriving Calendar EXCEPLIONS.ccooiiiiiiiieiieiee ettt s eneeneas 3-15
Deriving Exceptions Using a Time Series (ApPProach 1)ccccocveveeininieeinnnnenns 3-15
Deriving Exceptions Using a Calendar and Table of Dates (Approach 1A) 3-16
Deriving Exceptions Using Two Time Series Parameters (Approach 2) 3-17
Using Product-Developer FUNCLIONSccoiiiiiiie ettt 3-19

4 Calendar Functions: Reference

COMDBINECAIS ...ttt e e e 4-3
DAY .o s 4-8
DEIELEEXCEPTIONS ...ttt ettt e st ee e et n e et e e ns 4-10

Vi

DisplayValCal PrOCEAUIEc.oiuiie ittt et s e e 4-13

BQUAICAIS ...ttt ettt et sttt ettt eb et e e en et e 4-20
GENDAIERANGETADccvii ittt ettt bbb bbb 4-23
GELINTEIVAIENG. ...ttt e eee bt s seeeens 4-27
GELINTEIVAISTAIT. ... e ettt e 4-30
LT (@) § 7] TSP 4-33
[(6161 USSP 4-36
INSEITEXCEPTIONS. ...ttt ettt st 4-38
INEEISECICAIS ...ttt e e ettt eb et e et e e 4-42
INValidTIimeStamPSBEWEEN ...ttt s 4-46
ISVAITACAL ...t e e e e b e 4-49
ISVAITADALE ...t bbb e 4-55
Y LU ST 4-58
1 o | o TSRS 4-60
NumInvalidTimeStampPSBEIWEENcoci i 4-62
NUMOTIEXCEPTIONS ...t et e 4-65
NUMONEXCEPLIONS ...ttt bbbttt 4-68
NUMTIMESTAMPSBEIWEEN ..ottt e e 4-71
OFFSEEDALEcee ettt ettt ettt s b et e ks e et ere ettt et ettt e neeneen 4-74
(@ U T g =] PR 4-77
IS0] T TSP 4-79
SEMI_ANNUAL ..o e et b e b ea e b eaae s 4-81
SEMI_MONTAIY ..o e e 4-83
1 (o = ToT] o o TS 4-85
L= AT N2 U PP PP PP PTPPI 4-88
TIMESTAMPSBETWERIciiiii e 4-90
L0 Lo ToT o (@21 3RS 4-94
ValIAALECAL ..ot et et b e e e 4-98
WVBEK .ttt e et e ettt bbb e bR et Rt e eb b e R b nr e e e 4-106
D = U U TP UPTUPRUPTR 4-108

5 Time Series Functions: Reference

1022 Vo [PRSP OSSR 5-3
104 0 - TSSO 5-5
(O3 1 071 o TSR PTSRSPTRRN 5-8
(@3 0] o o [SRS RP PSR 5-11
LGS o ST PRSTPR 5-13
DEITVEEXCEPLIONS. ... vttt ettt ettt et s e ettt e e st et e reeneenenen 5-15
DIUSPIAY . ettt bbb bbb r bbb bbb 5-18
DisplayValTS ProCeAUIE ..ottt 5-21
EXTFACTCAL ...ttt et et ettt et en e es 5-29
Q= 1o D T (TR RPR 5-31
EXTrACTTADIEottt et e enea 5-33
EXTFACTVAIUER ...ttt ettt ettt s e ben e e e eneenea 5-35
R ettt s et e ekt b e R b ehe et e ben e see e eneeneas 5-37
1 €] T TP U O PR PR ROPOPRPPN 5-43
T ES] X N TSRS 5-45
GEtDAtEAEIBMENT ...ttt ettt et st een e st eere e e e 5-48
GEENTNEIBMENT ...t et ettt et st e en s s 5-50
LT =T =TSSR 5-52
LRV Lo I TSRS 5-55
- Vo I OSSOSO U P TURUPTPRPR 5-63
[L] SO OO O U O O PTTURUPTPRRRN 5-67
[11 1 A OO U T O PTRURUPTOPRPRT 5-69
1= Lo RSP RTRSTUR SRR 5-72
Y = AV o TP PRP 5-76
IISUIM L.ttt h et b et eh bbb eehe e e nb e e e sa e e an b ere e e nre e e 5-79
LI TS =TSPTSRO 5-82
B IS X o [TR 5-85
BTNV o [TP UO U PTRTUPUPRRRN 5-89
TSCOUNT ..ttt bbb bt bbbttt et e st et eb e eb e eb e sh eb b e st eb b e beere e e neea 5-91
TSDIVIAE ..ttt ettt et et ettt et bt et et sb et e st es e e neen bt e 5-93

vii

LIS\ DT TP 5-99
LIS\ (=T - U ST TRPRPN 5-101
LIS TSRO 5-103
TSIMIININ Lottt et et et e b et et e e et e b b e b et e beb e b et nnas 5-105
TSIMUITIPIY .ottt ettt er et 5-107
LIS d (o o TSSOSO 5-111
TSSEADEY ...ttt ettt et sttt et s e st et ere et et e e re et ete et e ben e nr et e nnen 5-113
LIS ST U] o = ot PSSP 5-115
B I 1S1 6 L0 TP 5-119
TSV AFTANCE ...ttt ettt sttt ettt s e s et e st s et e st eeeetenn e bestesreeennens 5-121
V- LT UL I T ST 5-123

6 Time Scaling Functions: Reference

SCAlEdOWNINTEIPOIALEoceiecii ettt 6-3
SCAIEAOWNREPEAL.......cvivi ittt e ettt se et re b et ne bbb nbeb e 6-6
SCAIEAOWNSPIIT....c.eiieeiee ettt et bbbt eb et r bbb 6-9
SCAIBUPANVGttt ekt h et eh bbbt eh e bbb e s 6-12
SCAIBUPANVGX ..ottt ettt et bbbt eb et eb et eb et bt eb b en e ben e 6-15
SCAIBUPC OUNT ...ttt e e et e b b e eb e st eb et bt eb e bbb bt 6-18
SCAIBUPFITST ..ottt e e e e eb et eb et bt eb et eb bbb 6-21
SCAIEUPGIMEAN ...ttt ettt eb et eb et bbbt en e ben e 6-24
SCAIBUPLAST ...ttt e bbbt s 6-27
SCAIBUPIMAX ..ottt ettt e et e b et b e e eb et eb et bt eb et eb e en e 6-30
SCAIBUPIMIN ..ottt e e eb bbb s 6-33
SCAIBUPSUIM ..ottt ettt e ettt b e e b e st eb et eb et eb et bt eb bbb b 6-36
SCAIEUPSUMANNUAL ..ottt et 6-39

7 Administrative Tools Procedures: Reference

Add_EXIStING_COIUMIN ..ottt et 7-3
YN [I [o C=To =T o @Fo] 11 [o 1o [T 7-6

viii

Add_NUMDBEr_COIUMN .ottt srene s 7-8

Add_Varchar2 COIUMN ...t area 7-10
BEOIN_Create_ TS GFrOUPooeeoeeeieiere et etesie sttt sttt et e etest ettt tesae st e s ees e e nne e seens 7-12
CaNCel_Create TS GIrOUPD ..oceoiieeeeeirieieiie et esietee e ettt es e see e e tes e see e ereesseeareateseeneeneas 7-14
(@1 T =Y I Yo T SRS 7-15
DisSplay_AIFIDULES ...ttt 7-16
DIOP_TS_GIOUP .eieveiiiiiie ittt sttt sttt et e r e e e en e e 7-18
Drop_TS_GroUP_All ...ttt ettt s ten et enea 7-20
ENA_Create TS GIOUP ..uoiiieeeeieiee et sttt sttt ettt et st e s e st e e es s et nesseenessenee e seens 7-22
Get_FIat_ ATIFIDULES ..o ettt s s en s s 7-24
Get_ODJeCt _ATIIIDULES ... ettt e e en s 7-29
(7=] = U SRS 7-33
OPBN_LOG ..ttt e e 7-35
St Flat AtIIIDULES ...ttt sr et s s baen e 7-37
Set_ODJECT ATLIIDULES ..ot ettt se e eneenee s 7-41
THACE _Off oo et e et b et e bbbt eh b b ere e area 7-45
I = (oL o SRS 7-46

Error Messages

Oracle8/ Time Series Metadata Views

B.1 VIBW DEFINITIONS ...t e ettt s en e e eene e B-2
B.1.1 ALL _TIMESERIES xxx View Definitionsccccoviiiiiie i B-2
B.1.2 DBA_TIMESERIES_XxX View Definitions.......cccccooeieiiiiieincsiee e B-3
B.1.3 USER_TIMESERIES_xXX View Definitionsccocooeiiiiecniniie e B-4
B.2 (@o] (8]0 T I =TT o] o] 1[0] o IS TSSO B-5
B.2.1 XXX_TIMESERIES_ GROUPS COIUNMINS.....ccciiiiiiiiiie ettt B-5
B.2.2 XXX_TIMESERIES COLS COIUMNS.......ociiiictiiie ettt st B-6
B.2.3 XXX_TIMESERIES _OBJS COIUMINSctvitiiciecieie ettt st s B-7

Deprecated Features

C.1 SEEPIECISION FUNCLIONottt et ee e st e e e te e e st e s sa e e e et be s saaeaessabee s C-1

C.2
C3
Cc4

Glossary

Index

Lookback Window (k) Parameter for Mavg and MSUM...........ccccoivineininnnie e

Scaleup Function (GROUP BY Interface)

Package for Scaleup Functions.................

List of Examples

2-1 Overview of Calendar Definition..........ccocooiiiiinie i s
3-1 Create a Calendar of BUSINESS DAYScc.ciiriirireieiiieeeieisie ettt
3-2 Formulate Time SerieS QUEKIESocciviiuie ittt st st sr b st enaas

xi

List of Figures

1-1 Tables and Views in the Time Series Usage DemO..........coveiriireiineineinene e 1-14
2-1 Data Generation in EQUItIES MArkets. ... 2-3
2-2 Historical Data fOr STOCKS ..o e 2-4
2-3 Time SerieS ArChITECTUIEciiiiie i e 2-18
2-4 Example of ORDTNUMTab ColleCtion TYPE....c.cocviiiiiiieie e 2-22
2-5 Relationship of Input and Output Time Series in Moving Average/Sum 2-37
2-6 Time Scaling from Daily to Monthly FreqUeNCY..........ccoovviinininccee e 2-38

Xil

List of Tables

1-1 Oracle8i Time SErieS DEMOS ..ot e s s e 1-9
1-2 QUICK-STArt DEMO FIlBS ..eeiiiie ettt e e 1-11
1-3 USAQE DEMO FIIES ..ottt et et et et 1-12
2-1 FreqUENCY COOESooiviiitirieiiie ettt e e e s se bt eb et s s bbb 2-6
2-2 Frequencies and Their ReQUITEMENTSccoiiiiiiiiiie s 2-7
2-3 Precisions Using 01-Jan-1998 00:00:00 ANChOr DAtecccooveiviiienene e 2-9
2-4 End-User Calendar FUNCLIONSooiiiiiiiiieie ettt 2-30
2-5 Product-Developer Calendar FUNCLIONS ..o 2-32
2-6 EXEraction FUNCHIONS oiiiiiiiiiiiieiiiei ettt et ettt 2-33
2—7 Retrieval and Trim FUNCHIONS ...ttt 2-33
2-8 SHITE FUNCLIONS ..ot e e ettt ettt ettt ee e en s s 2-34
2-9 SQL FOrmatting FUNCLIONSoiiiiiieie e e s s 2-34
2-10 AJOregate FUNCLIONSooooiiiiiiiie ettt ettt et s 2-35
2-11 ArthmMetic FUNCHIONS ..ot ettt st ten e e e 2-35
2-12 Cumulative SEqUENCE FUNCLIONScociiiiiiiiiiieiecie e e 2-36
2-13 Moving Average and SUM FUNCLIONS ..o s 2-36
2—14 CONVEISION FUNCLIONSoiiiiiiiitii ittt e e e n s e 2-37
2-15 Scaling Compatibility MAtriX.........cccoveiniiiii e 2-39
2-16 Scaleup FuNnctions for COlIECHIONSccciiiiiiiieie e 2-40
2-17 Scaledown FUNCctions fOor COIECTIONScccooeiieiie i e 2-41
2-18 IgnoreNulls and DiscardError Syntax OPLiONScccoeereereerinieinecireerenereseeeseeeeas 2-42
2-19 Administrative TOOIS ProCeAUIES ..ot 2-43
4-1 SetPrecision and Timestamp of 19-Sep-1997 09:09:09ccocviriieieiineie e 4-85
4-2 Errors Repaired by ValidateCal ... 4-99
5-1 Lagging a Time Series DY TWO DaYSccccvciiiiiiis i 5-65
5-2 Leading @ Time SerieS DY TWO DAYScccoiiirieiriine e s 5-74
6-1 annualfactor Default Values for ScaleupSumARNNnuUal ... 6-40
B-1 XXX_TIMESERIES_ GROUPS COIUMNSooiiiiiciiececie ettt st ane B-5
B-2 XXX_TIMESERIES COLS COIUMNS ..ot er e st aae B-6
B-3 XXX_TIMESERIES _OBJS COIUMNS ...ooiiiiiecccce ettt st st srae e ane s B-7
B—4 ts_obj_type Column ValUES ..o B-8

xiii

Xiv

Send Us Your Comments

Oracle8i Time Series User's Guide, Release 8.1.5
A67294-01

Oracle Corporation welcomes your comments and suggestions on the quality and usefulness of this
publication. Your input is an important part of the information used for revision.

Did you find any errors?

Is the information clearly presented?

Do you need more information? If so, where?

Are the examples correct? Do you need more examples?
What features did you like most about this guide?

If you find any errors or have any other suggestions for improvement, please indicate the book title
and (if possible) the chapter, section, and page number. You can send comments to us in the follow-
ing ways:

Electronic mail: nedc_doc@us.oracle.com
FAX - 603-897-3316. Attn: Time Series writer
Postal service:

Oracle Corporation

Time Series Documentation

One Oracle Drive

Nashua, NH 03062

USA

If you would like a reply, please include your name and contact information.

If you have problems with the software, please contact your local Oracle Worldwide Support Center.

XV

XVi

Preface

This guide describes how to use Oracle8i Time Series. (In previous releases, this
product was called the Oracle8 Time Series Cartridge.)

For changes to this guide for the current release, see "Changes to This Guide" at the
end of this Preface.

Intended Audience

Structure

Chapter 1
Chapter 2
Chapter 3
Chapter 4
Chapter 5
Chapter 6
Chapter 7

Appendix A

This guide is intended for anyone who is interested in storing, retrieving, and
manipulating time series data in an Oracle database, including developers wishing
to extend Oracle8i Time Series.

This guide contains the following chapters, appendixes, and glossary:
Introduces object types and the contents of the Oracle8i Time Series product.
Explains time series concepts and operations.

Explains important procedures for using Oracle8i Time Series.

Provides reference information on calendar functions.

Provides reference information on time series functions.

Provides reference information on time scaling functions.

Provides reference information on administrative tools procedures for fast and
easy creation of time series schema objects.

Lists potential errors, their causes, and user actions to correct them.

Xvii

Appendix B

Appendix C

Glossary

Describes the views that Oracle8i Time Series uses to store information about time

series schema objects.

Lists deprecated features. These are features that still work for this release, but are
not documented as available for use. You are encouraged not to use these features
because they might not work in future releases.

Contains definitions of important terms related to Oracle8i Time Series.

Related Documents

For information added after the production of this guide, see the README file in
the following directory:

« $ORACLE_HOME/ord/ts/admin (Solaris systems)

« $ORACLE_HOME\ord80\ts\admin (Windows NT systems)

The location of the README file is operating system-dependent.

For more information, see the following manuals in the Oracle8i documentation set:
« PL/SQL User’s Guide and Reference

« Oracle Call Interface Programmer’s Guide

« Oracle8i Application Developer’s Guide - Fundamentals

Conventions

xviii

The following conventions are used in this guide:

Convention Meaning

A vertical ellipsis in an example means that lines not directly related
to the example have been omitted.

A horizontal ellipsis in an example means that part of the statement
or command not directly related to the example has been omitted

boldface text Boldface text indicates a term defined in the text.

italicized text Italicized text indicates emphasis or a user-defined variable, schema
name, or object data type.

<> Angle brackets enclose user-supplied names.

Convention Meaning

[1 Brackets enclose optional clauses from which you can choose one or
none.

Changes to This Guide

The following substantive changes have been made to this guide since its previous
(and initial) version for release 8.0.4.

Other minor corrections and clarifications have also been included.

See also the description of deprecated features in Appendix C.

Calendar Enhancements
Calendar enhancements include:

« New frequencies: week, 10_day, semi_monthly, quarter, and semi_annual

« Greater flexibility in pattern definition, including pattern bit numbers other
than 0 and 1 and anchor dates other than the first interval of the period

« New simpler method of deriving calendar exceptions

These calendar enhancements are included in Section 2.2.

New Calendar Functions
The following calendar functions have been added:

« Day
«» GenDateRangeTab
« GetlIntervalStart

« GetIntervalEnd

« Hour

« Minute
« Month
« Quarter
« Second

« Semi_annual

Xix

XX

=« Semi_monthly

« Ten_day
= Week
« Year

These functions are documented in Chapter 4.

Irregular Time Series

Oracle8i Time Series now supports irregular time series, which are time series
without associated calendars. Using an irregular time series lets you handle
unpredictable data, and it also lets you conveniently process predictable data
(although some Oracle8i Time Series features are unavailable with this approach).
Irregular time series are explained in Section 2.1.1.

Object Storage Model

Time series can now be stored in an object table (nested index-organized table). This
storage model is described in Section 2.6.2.

Administrative Tools Procedures

Administrative tools procedures are provided to simplify the creation and
maintenance of time series schema objects. These procedures are introduced in
Section 2.12. Reference information on these procedures is in Chapter 7.

The quick-start demo (described in Section 1.6.1) uses the administrative tools
procedures.

Time Scaling Functions in Separate Package

All time scaling functions have been placed in a new TimeScale package. These
functions are now documented in a separate chapter (Chapter 6).

The use of the TimeSeries package for scaleup functions that were available in
release 8.0.4 is a deprecated feature (see Section C.4).

New Scaleup Functions
The following scaleup functions are been added:

« ScaleupAvgX
« ScaleupGMean

« ScaleupSumAnnual

These functions are documented in Chapter 6.

Scaledown Functions
Scaledown functions are now provided:

« Scaledowninterpolate
« ScaledownRepeat
« ScaledownSplit

These functions are documented in Chapter 6.

New tsname Parameter

Functions that return a time series accept an optional tshame parameter specifying a
name for the resulting time series. Specify this parameter if you need to assign a
name to the resulting time series, for example, to insert it into an object table.

Lookback Window (k) Parameter for Mavg and Msum

The lookback window (k) parameter for the Mavg and Msum functions now comes
before any optional start-end date range. (The old format is a deprecated feature.
See Appendix C for information about deprecated features.)

Tables and Views for Time Series Data

The following clarification is added to the ORDTNumSerieslOTRef data type
description in Section 2.7.2: "table_name can be a view, but the view must be
updatable and must map to an 10T. If the view includes any functions, they must
include the PRAGMA RESTRICT_REFERENCES compiler directive with the
keywords WNPS, RNPS, and WNDS."

Glossary Added
A glossary of Oracle8i Time Series terms has been added.

XXi

xXii

1

Introduction

Oracle8i Time Series (in previous releases called the Oracle8 Time Series Cartridge)
is an extension to Oracle8i that provides storage and retrieval of timestamped data
through object types. Oracle8i Time Series is a building block for applications rather
than being an end-user application in itself. It consists of data types along with
related functions for managing and processing time series data.

For example, applications can use this product to process historical data derived
from financial market transactions, such as trades of stocks, bonds, and mutual
fund shares. In such applications, the functions included with Oracle8i Time Series
let you conveniently perform operations ranging from the simple to the complex,
such as:

« Finding the opening, closing, low, and high prices for a stock on a specific date
« Calculating monthly volumes for a stock for a specific year
« Deriving the 30-day moving average for a stock over a year

Time series applications have certain distinct requirements and some degree of
commonality. The time series data types accommodate the commonality and
support extensions that address application-specific requirements. With Oracle8i
Time Series, time series data can be managed more conveniently and efficiently than
is possible using only traditional data types and user-defined functions.

You can use or adapt existing tables for time series applications, or you can create
new tables. You can also extend the capabilities of Oracle8i Time Series to add or
modify functions and to create customized calendars.

1.1 Oracle8i Time Series and Object-Relational Technology

The Oracle8i architecture allows clients, application-specific servers, and database
servers to be extended easily and reliably. Oracle8i Time Series provides support for

Introduction 1-1

Storing and Accessing Data

time series domain-specific types, functions, and interfaces. The product focuses on
a set of time series data representation and access mechanisms sufficient to support
many applications and the development of more specialized time series functions.

The objects option makes Oracle8i an object-relational database management
system, which means that users can define additional kinds of data -- specifying
both the structure of the data and the ways of operating on it -- and use these types
within the relational model. This approach adds value to the data stored in a
database.

Oracle8i with the objects option stores structured business data in its natural form
and allows applications to retrieve it that way. For that reason, it works efficiently
with applications developed using object-oriented programming techniques.

1.2 Storing and Accessing Data

Oracle8i Time Series can store time series data in the database under transactional
control.

Once stored in the database, this data can be queried and retrieved by finding a row
in a table that contains the primary key (which includes the timestamp) using the
various alphanumeric columns (attributes) of the table. Typical queries might
include the following:

« Select the closing price from a stock market data table where the ticker (stock
symbol) is XYZ and the date is 30-May-1997.

« Select the 30-day moving average of stock XYZ for the month of May 1997.

Applications access and manipulate time series data using SQL or PL/SQL™. See
the Oracle8i SQL Reference manual for information on SQL syntax.

1.3 Time Series Usage Models

Most Oracle8i Time Series users fit into one of a few usage models, depending on
their needs. The two basic usage models are as follows:

= No need for calendars: You do not need to use a calendar if the timestamps
have no pattern, if the timestamps have a pattern but it does not need to be
checked, or if the pattern is important but the timestamps have extraneous
elements (for example, hourly timestamps created using SYSDATE, which
includes the minutes and seconds).

Many time series applications, including some for financial markets and other
environments with regular data, do not need to use calendars.

1-2 Oracle8i Time Series User’s Guide

Time Series Usage Models

Need for calendars: You may need to use calendars for any of several reasons,
such as to use the Lead and Lag functions (which require calendars) or to
ensure the validity of insert, update, and delete operations on the timestamped
data. However, depending on your needs, you may or may hot need to specify
certain elements in the calendar definition, such as:

— Lower and upper date boundaries for the calendar
— Exception timestamps (for example, to identify holidays)

For example, you may be interested only in the pattern of timestamps, but not
in defining date boundaries for the calendar or specifying exceptions for
holidays. In this case, if no data exists for a valid timestamp (for example, no
price for a stock on Friday, 04-Jul-1997 because U.S. financial markets were
closed that day), you can simply insert a null (that is, treat it as a valid
timestamp but with a null associated data value) because you are confident that
your data is accurate.

This rest of this section describes these usage models. It does not explain in detail
any of the concepts mentioned; these are explained in Chapter 2. You may want to
find the model that best fits your needs, follow the instructions in that section, and
refer to the other sections in this document as necessary.

1.3.1 No Need for Calendars

Many Oracle8i Time Series users do not need to use calendars with their
timestamped data. Situations where calendars are not needed include the following:

The timestamps have no pattern. Examples include timestamps for the opening
or closing of a valve, fluctuations in electrical power demand, transactions at an
automatic teller machine (ATM), and trades during the day on a financial
market.

The timestamps have a pattern, but you do not need to use it. (You must also
assume that all timestamps for the data are correct.) For example, you can
derive a 30-day moving average for stock XYZ for 1998 without using a
calendar, as long as you know that the closing price data is valid (that is, there
are closing prices for all trading days and no closing prices for nontrading
days).

One variation of having a pattern but no need to use it occurs when the
timestamps contain extraneous elements. For example, an electric utility may
want to collect hourly data on power demand use for different regions, but it is
unimportant whether the timestamp is exactly on the hour or contains minutes
and seconds. For example, using SYSDATE to create timestamps might result in

Introduction 1-3

Time Series Usage Models

data for 4 p.m. (16:00) being stored with a timestamp of 16:00:03, 15:59:37, or
16:01:30.

You can use all time series and time scaling functions except Lead and Lag without
a calendar. You can use all time scaling functions except ScaledownRepeat and
ScaledownSplit without a calendar for the input data (for example, daily trading
volume for stock XYZ); however, you must have a calendar to which to scale the
data (for example, a monthly calendar for deriving monthly trading volume for
stock XYZ).

Note: A time series used without an associated calendar is called
an irregular time series, regardless of whether or not the
timestamps are predictable. For more information about irregular
time series, see Section 2.1.1.

If you do not need to use a calendar with input timestamped data, you can follow
these steps to use Oracle8i Time Series:

1. Use the administrative tools procedures to create the time series schema objects.
See the description of the quick-start demo in Section 1.6.1, and use that demo
file as a model for creating your own definitions. Note that this demo also
includes a calendar definition to be used for daily to monthly scaling.

2. Load the data. The quick-start demo provides an example using the
SQL*Loader utility.

3. Use standard time series and time scaling functions for queries. See the quick-
start demo for some examples.

1.3.2 Need for Calendars

Many Oracle8i Time Series users need to use calendars to take advantage of the full
range of functions, including Lead and Lag. They also want to identify a pattern for
the timestamps and to perform at least some validation of those timestamps. The
extent of calendar maintenance required depends on whether they specify any of
the following for each calendar:

« Lower and upper date boundaries for the calendar (to let you use time series
functions to ensure that all timestamps are within a defined date range)

« Exception timestamps (for example, to identify holidays)

1-4 Oracle8i Time Series User’s Guide

Time Series Usage Models

These users can also use shared calendars (described in Section 2.2) to associate
multiple time series with a single calendar.

The rest of this section describes some calendar usage models involving different
levels of specification and maintenance.

1.3.2.1 Minimal Calendar Maintenance

Many Oracle8i Time Series users need to use calendars with their timestamped
data, but do not want or need to do substantial maintenance of calendars. They
need to use calendars to use the full range of functions, including Lead and Lag, but
they do not need to define beginning and ending boundary dates for calendars or to
specify every holiday within the date range (including adding or changing holidays
as needed). They are confident that the timestamps are correct and valid.

In this usage model, each time series has a calendar with a pattern. For example, for
daily stock market data, a calendar is defined with a frequency of day and a pattern
of’0,1,1,1,1,1,0" to reflect a Monday-to-Friday normal business week. However, no
beginning or ending date for the calendar is specified, and no exceptions are
defined for any Monday-to-Friday dates on which the markets are closed. If the
data does not include a timestamp for a particular Monday-to-Friday date (for
example, Friday, 04-Jul-1997), you must insert a null value for the data associated
with that timestamp.

This approach allows for some validation of input data. For example, trading data
with a timestamp of Saturday, 08-Aug-1998 would be invalid. However, this
approach does not catch many possible kinds of input timestamp errors. For
example, the following errors would not be detected:

« Atimestamp of 19-Aug-1997 (a Tuesday) when 19-Aug-1998 (a Wednesday)
was intended, if the year was incorrectly typed and the time series is supposed
to contain only 1998 data, but the calendar does not specify a starting date

« Price data entered for 25-Dec-1998 (a Friday), a holiday for U.S. financial
markets

If you need to use a calendar but do not need to maintain calendars to enforce input
timestamp validation, you can follow these steps to use Oracle8i Time Series:

1. Use the administrative tools procedures to create the time series schema objects.
See the description of the quick-start demo in Section 1.6.1, and use that demo
file as a model for creating your own definitions. Note that this demo creates a
table to hold calendars and a calendar definition for use with daily to monthly
scaling.

Introduction 1-5

Time Series Usage Models

2. Create one or more calendar definitions in which only the essential elements are
defined (frequency and pattern). The following example creates a Monday-to-
Friday calendar with no date boundaries and no exceptions (see Section 3.2 for
more detailed information about calendar definition):

I NSERT | NTO tsqui ck_cal VALUES(
CROSYS. GRDTCal endar (

0, -- Galendar type (0 = standard)

" BUSI NESSDAYS , -- Nane of this cal endar

4, -- 4 = frequency code for day
CROSYS. GRDTPattern(-- Pattern definition (required)

CROSYS. GRDTPatternBits(0.1,1,1,1,1,0),
TO DATE(’ 05- JAN-1998' , ' DD- MONF YYYY')),

NULL, -- No lower date boundary (n nDate)
NULL, -- No upper date boundary (naxDate)
NULL, NULL) -- No off- or on-exceptions

)

3. Load the data. The quick-start demo provides an example using the
SQL*Loader utility.

4. Use standard time series and time scaling functions for queries. See the quick-
start demo and the usage demo (see Section 1.6.2) for some examples.

1.3.2.2 Complete Calendar Definition and Maintenance

Some Oracle8i Time Series users need to create and maintain calendars, specifying
the beginning and ending boundary dates for calendars and exceptions to the
normal pattern, such as all holidays and any normally "off" days that become work
days. These users may need to check the data to ensure that all timestamps are
valid.

In this usage model, each time series has a calendar with a pattern, starting and
ending date boundaries, and full specification of all exceptions (such as holidays).
Users adopting this usage model will be able to use Oracle8i Time Series functions
to determine if any timestamps in the input data are invalid. For example, the
following errors would be detected:

« Atimestamp of 19-Aug-1997 (a Tuesday) when 19-Aug-1998 (a Wednesday)
was intended, if the year was incorrectly typed and the time series is restricted
to 1998 data

« Price data entered for 25-Dec-1998 (a Friday), a holiday for U.S. financial
markets

1-6 Oracle8i/ Time Series User’s Guide

Installing the Kit

If you need to perform complete calendar definition and maintenance, read the
information about calendars in Section 2.2 and follow the guidelines in Chapter 3.

1.4 Installing the Kit
Oracle8i Time Series installation consists of the following basic steps:
1. Installing the software on your computer
Use the Oracle Universal Installer to install the software.
2. Loading the necessary objects into the database

You can use the Oracle Database Configuration Assistant (ODCA) to automate
the creation of the necessary objects. If you are not familiar with Oracle8i
database creation, you are especially encouraged to use the ODCA. If you plan
to create the database without using the ODCA, instructions are provided in
Section 1.4.3.

Oracle8i Time Series is installed under the ORDSYS schema.

1.4.1 Required Software for Using Oracle8/ Time Series

To use Oracle8i Time Series, at least the following software components must be
installed: Oracle8i (RDBMS), PL/SQL (on systems on which it is a separate
installation option), and Oracle8i Time Series. These components can be installed all
at once, or Oracle8i Time Series can be added to an existing Oracle8i installation that
includes PL/SQL.

1.4.2 After Installing Oracle8i Time Series

After installing Oracle8i Time Series, read the README.txt file for your platform,
which can be found either in $SORACLE_HOME/ord/ts/admin (UNIX systems) or
$ORACLE_HOME\ord80\ts\admin (Windows NT systems). Follow any
instructions appropriate for your environment (for example, adjusting certain quota
values, if necessary).

You may also want to do either or both of the following:

« Create public synonyms for the Oracle8i Time Series packages (see Section 1.5),
to eliminate the need to type the schema name with the package name when
calling functions or procedures.

= Run the quick-start demo or the usage demo, or both (see Section 1.6), to
familiarize yourself with the Oracle8i Time Series product.

Introduction 1-7

Installing the Kit

1.4.3 Creating Database Objects Without Using ODCA

The following instructions are for database administrators planning to create the
database without using the Oracle Database Configuration Assistant (ODCA).

1.

Create and start the database.

The ORDSYS schema shares the SYSTEM tablespace. You should allow
approximately 25 megabytes for the SYSTEM tablespace, so that the Oracle8i
Time Series components and metadata can be accommodated.

For detailed information about database creation and startup, see the Oracle8i
Installation and Configuration Guide for your operating system, the Oracle8i
Administrator’s Guide, and the Oracle8i Concepts manual.

Install shared components.

Connect as user SYS, and run the following SQL procedure to install ORDSYS
and certain shared components.

On Solaris systems (example showing the default SYS password):

SVRMER> connect sys/ change_on_install as sysdba
SVRMERR> @CRACLE_ HOME>/ or d/ adni n/ or di nst . sql

Replace <ORACLE_HOME> with your SORACLE_HOME directory.
On NT systems (example showing the default SYS password):

SVRMER> connect sys/ change_on_install as sysdba
SVRMER> @: \ orant\ or d\ adm n\ or di nst . sql

c:\orant is the usual $SORACLE_HOME directory.

Install the Oracle8i Time Series components (data types, packages, and
metadata tables).

On Solaris systems:
SVRMERR> @CRACLE HOME>/ or d/ t s/ admi n/ t si nst . sq

Replace <ORACLE_HOME> with your SORACLE_HOME directory.
On NT systems:
SVRMER> @:\orant\ ord\ts\adm n\tsinst.sql

c:\orant is the usual $SORACLE_HOME directory.

1-8 Oracle8i/ Time Series User’s Guide

Oracle8i Time Series Demos (Demonstrations)

The user group PUBLIC is granted execute privilege on all Oracle8i Time Series
data types and packages.

1.5 Creating Public Synonyms for Oracle8/ Time Series Packages

All Oracle8i Time Series packages and data types are installed under the ORDSYS
schema, and all users must include the ORDSYS schema name when referring to
these packages and data types. However, to simplify references to packages, you
can define public synonyms for packages that contain the functions and procedures
documented in this guide.

To create public synonyms, run the ordtsyn.sql file supplied with Oracle8i Time
Series in the admin directory. The ordtsyn.sql file creates the following public
synonyms:

CREATE PUBLI C SYNONYM Ti neSeri es FCR CRDSYS. Ti neSeri es;
CREATE PUBLI C SYNONYM Cal endar FCOR GRDSYS. Gal endar ;
CREATE PUBLI C SYNONYM TSTool s FCR CRDSYS. TSTool s;
CREATE PUBLI C SYNONYM Ti neScal e FCR CRDSYS. Ti neScal €;

1.6 Oracle8i Time Series Demos (Demonstrations)

Table 1-1 shows the demos (files that demonstrate capabilities) included with
Oracle8i Time Series. This table includes a description of each demo and the default
directory in which its files are installed. (The exact location and directory syntax are
system-dependent.)

Table 1-1 Oracle8i Time Series Demos

Description Directory

Quick-start demo: quick and easy start using Oracle8i Time Series demo/tsquick
(See Section 1.6.1.)

Usage demo for end users and product developers who want to demo/usage
use existing Oracle8i Time Series features (See Section 1.6.2.)

Electric utility application demonstrating how to compute peak demo/usageutl
and off-peak summaries of 15-minute data

Java-based retrieval of time series data, using the prototype demo/applet
Oracle8i Time Series Java APl and designed to run in a Web
browser (See Section 1.7.)

Simple Java code segments that perform time series operations demo/java
and print the results (See Section 1.7.)

Introduction 1-9

Oracle8i Time Series Demos (Demonstrations)

Table 1-1 Oracle8i Time Series Demos (Cont.)

Description Directory

Demo showing the use of administrative tools procedures to demo/retrofit
"retrofit" existing time series detail tables; also, how to support

time series queries for multiple qualifier columns in the time

series detail table

Advanced-developer demo for those who want to extend Oracle8i demo/extend
Time Series features

OCI demo showing how to call Oracle8i Time Series functions demo/oci
using the Oracle Call Interface

PRO*C/C++ demo showing how to call Oracle8i Time Series demo/proc
functions in applications created using the Oracle Pro*C/C++

Precompiler

Oracle Developer demo showing how to call Oracle8i Time Series demo/dev2k
functions in an Oracle Forms™ application

The README.txt file in the demo directory introduces the demos and describes
each briefly. Also, the directory for each demo contains a README.txt file with a
more detailed description of that demo.

1.6.1 Quick-Start Demo

The quick-start demo provides a quick and easy start using Oracle8i Time Series. It
uses the same stock market trading data as in the usage demo (described in
Section 1.6.2); however, it simplifies the process by:

« Using the Oracle8i Time Series administrative tools procedures to create the
schema objects (accepting defaults for most object names)

« Not associating a calendar with the detail data (the daily stock market trading
data)

This approach assumes that the existing stockdemo data is valid, and it is used
here solely to make the quick-start demo simpler. Note, however, that using a
calendar with detail data is required if you need to use Oracle8i Time Series
functions to validate time series data (for example, to check that trading data is
not entered for an invalid date, such as for a nontrading date or a date outside a
desired start-end date range). Using a calendar with detail data is also required
for using the Lead and Lag functions.

1-10 Oracle8i Time Series User's Guide

Oracle8i Time Series Demos (Demonstrations)

The administrative tools procedures create all the schema objects needed for this
demo, including:

=« TSQUICK: the object view. Use this when using Oracle8i Time Series functions.
For example:

SH ECT ticker, CGRDSYS TimeSeries. TSAvg(cl ose) FROM TSQU KK ts;

« TSQUICK_RVW: the relational view. Use this for protected insert, update, and
delete operations. Uses an INSTEAD OF trigger.

« TSQUICK TAB: the table for detail data.

« TSQUICK_MAP: the mapping (metadata) table. A null calendar is later
associated with each ticker.

« TSQUICK_CAL: the table for calendar definitions. A monthly calendar is later
defined, for use with scaleup operations.

All of these schema objects, as well as concepts related to calendars, are explained in
Chapter 2. The administrative tools procedures are introduced in Section 2.12.

The quick-start demo also includes queries using several Oracle8i Time Series
functions.

1.6.1.1 Running the Quick-Start Demo

After Oracle8i Time Series has been installed, you can run the quick-start demo by
going to the appropriate directory (see Table 1-1) and invoking the tsquick.sql
procedure, as follows:

% svrnyrl
SVRMER> @squi ck

1.6.1.2 Quick-Start Demo Files
The quick-start demo files are listed in Table 1-2.
Table 1-2 Quick-Start Demo Files

File Description

tsquick.sql Main procedure file: creates all schema objects, loads tables,
performs queries.

tsquick.ctl SQL*Loader control file
tsquick.dat SQL*Loader data file

README.txt Description and instructions for the demo

Introduction 1-11

Oracle8i Time Series Demos (Demonstrations)

1.6.2 Usage Demo

The usage demo is a working example of using Oracle8i Time Series. The example
models a historical database of stock pricing and provides sample queries using this
data.

The usage demo is designed to guide you through Oracle8i Time Series in a step-by-
step fashion. It includes example code for creating and populating tables and
calendars, constructing relational views, constructing views to synthesize the
interface to Oracle8i Time Series functions, and running some example queries.

1.6.2.1 Running the Usage Demo

After Oracle8i Time Series has been installed, you can run the usage demo by going
to the appropriate directory (see Table 1-1) and invoking the demo.sqgl procedure, as
follows:

% svrnyrl
S\RVEF> @eno

1.6.2.2 Usage Demo Files

The usage demo files include examples of bulk and incremental loading; defining
tables, calendars, and views; and running example queries. These files are listed in
Table 1-3.

Table 1-3 Usage Demo Files

File Description
demo.sql Main procedure file
stockdat.ctl SQL*Loader control file

stockdat.dat
tables.sql
popcal.sql
queries.sql
queplsql.sql
calqueries.sql
incload.sql
stockinc.ctl

stockinc.dat

SQL*Loader data file for time series data

DDL for tables

Defines calendars and populates calendar table
Example time series queries (SQL)

Example time series queries (PL/SQL)
Example calendar queries (PL/SQL)
Incremental load script

SQL*Loader control file for incremental load

SQL*Loader data file for incremental time series data

1-12 Oracle8i Time Series User's Guide

Oracle8i Time Series Demos (Demonstrations)

Table 1-3 Usage Demo Files (Cont.)

File Description

verical.sql Verifies the correctness of calendars associated with the demo

verits.sql Vferifies the correctness of a time series (ACME) associated with
the demo

cleanup.sql Deletes database objects created by the demo

README.txt Description and instructions for the demo

1.6.2.3 Tables and Views in the Usage Demo

The stock database consists of three tables:

« stockdemo stores historical time series pricing data.
« stockdemo_calendars stores instances of calendars.

« stockdemo_metadata maintains mapping between time series (here, for tickers)
and calendars.

To maintain time series consistency and provide a collection-based interface for
time series functions, two views are constructed using these tables.

= stockdemo_sv is a relational view. A relational view should be used for any
insert, update, and delete operations to time series data.

» stockdemo_ts is an object (reference-based) view. A reference-based view
provides an object model of a time series, and it can be used for efficient read-
only access using Oracle8i Time Series functions.

The relational view ensures that insert, update, and delete operations maintain a
time series that is consistent with the associated calendar. (Time series consistency is
explained in Section 2.8.) The relational view and the object view access the three
underlying tables. The object view synthesizes references to collections.

Figure 1-1 shows the relationships between the object and relational views and the
underlying tables.

Introduction 1-13

Java Client-Side API (Prototype)

Figure 1-1 Tables and Views in the Time Series Usage Demo

f Object View Relational View
SQL Queries Updates

- Loading
Mapping
Calendar Table
Table stockdemo_ X
stockdemo_ metadata Detail Table
calendars stockdemo
NU-3745A-Al

1.7 Java Client-Side API (Prototype)

A prototype Java client-side application programming interface (API) is provided in
the following file:

<CRACLE HOME>/ ord/ ts/j1ib/thindriver.zip

Documentation (generated by javadoc) for this APl is in the following directory:
<CRACLE HOME>/ or d/ t s/ doc

The README.txt file in this directory discusses Java support.

The following directories contain demos (introduced in Table 1-1 in Section 1.6) that
can help you to learn and use the API:

« The demo/java directory contains sample code segments that demonstrate the
basic use of the API. Although your applications will probably be more
complex, you can use the techniques in these code segments to retrieve time
series data.

« The demo/applet directory contains a demonstration applet (built using
JDeveloper) that runs in a Web browser or using appletviewer. This applet can
connect to the database, perform queries on the sample time series data, and
display the results.

1-14 Oracle8i Time Series User's Guide

2

Time Series Concepts

This chapter explains concepts related to Oracle8i Time Series, and it provides
information on using the product. It contains the following major sections:

=« Section 2.1, "Overview of Time Series Data"
=« Section 2.2, "Calendars"
« Section 2.3, "Data Types"

« Section 2.4, "Conventions and Semantics" (including null values and off-
exceptions)

« Section 2.5, "Oracle8i Time Series Architecture"

« Section 2.6, "Storage of Time Series Data"

« Section 2.7, "Interfaces to Time Series and Time Scaling Functions"
« Section 2.8, "Consistency of Time Series Data"

« Section 2.9, "Calendar Functions"

« Section 2.10, "Time Series Functions"

« Section 2.11, "Time Scaling Functions"

« Section 2.12, "Administrative Tools Procedures"

2.1 Overview of Time Series Data

A time series is a set of timestamped data entries. A time series allows a natural
association of data collected over intervals of time. For example, summaries of stock
market trading or banking transactions are typically collected daily, and are
naturally modeled with time series.

Time Series Concepts 2-1

Overview of Time Series Data

2.1.1 Regular and Irregular Time Series

A time series can be regular or irregular, depending on whether or not the time
series has an associated calendar.

« Avregular time series has an associated calendar. In a regular time series, data
arrives predictably at predefined intervals. For example, daily summaries of
stock market data form regular time series, and such time series might include
the set of trade volumes and opening, high, low, and closing prices for stock
XYZ for the year 1997.

= Anirregular time series does not have an associated calendar. Often, irregular
time series are data-driven, where unpredictable bursts of data arrive at
unspecified points in time or most timestamps cannot be characterized by a
repeating pattern. For example, account deposits and withdrawals from a bank
automated teller machine (ATM) form an irregular time series. An irregular
time series may have long periods with no data or short periods with bursts of
data.

However, an irregular time series does not have to be used only for high-
volume collection of unpredictable data. An irregular time series can be used
with predictable data where it is simply not necessary to deal with a calendar.
This approach is used in the quick-start demo described in Section 1.6.1.

2.1.2 Data Generation for a Time Series

Data generation for a time series begins with individual transactions, such as trades
on a stock exchange or purchases of products. Each transaction has a timestamp and
sufficient information to identify that transaction uniquely (such as a stock ticker or
a product ID), as well as other pertinent information (such as the price and
information to identify the party initiating the purchase or sale).

Individual transaction data is typically rolled up to produce summary data for a
meaningful time period, such as a daily summary indicating the trade volume and
the opening, high, low, and closing prices for each stock traded that day. This
summary data is collected to produce historical data, such as a table of all daily
volumes and opening, high, low, and closing prices for all stocks traded for the year
1997. For example, Figure 2-1 shows how data related to securities on a stock
exchange is generated.

2-2 Oracle8i Time Series User's Guide

Overview of Time Series Data

Figure 2-1 Data Generation in Equities Markets

Daily Snapshot
or
Summary Data

min
Stock Exchange T
1nini
1
11l
mini
min
mmini
mminil
1nini
Tick Data Thin]
mminil
1nini
1nini
min

Historical Data

Applications that use the data:

Daily Newspapers
Quote Servers

Charting Tools
Technical Analysis Tools

NU-3691A-RA

In Figure 2-1, each trade on the stock exchange includes several items of
information, including a ticker and a price (for example, stock XYZ at 37.50). The
daily summary data includes the opening, high, low, and closing prices for each
ticker (for example, for XYZ: 37.75, 38.25, 37.00, 37.625). The daily data for each
ticker is appended to the historical data for the ticker. The daily data is used for
such purposes as quote server applications and listing in the next day’s
newspapers; the historical data is used by such applications as price and volume

charting and technical analysis.

The data-collection model for historical data has the following characteristics:

« Atdaily intervals, historical data is updated with daily summary data (main

update cycle).

« Atsome period after the main update cycle, corrections of the daily summary

data may need to be applied.

= Queries may be executed at any time, even during the update cycle.

= Queries do not observe the current day's summary information until after the
main update cycle has completed.

Time Series Concepts 2-3

Overview of Time Series Data

This historical data is modeled using multiple regular time series.

Oracle8i Time Series and the Oracle8i utilities, with their bulk-loading capabilities
and transactional semantics, are well suited for the requirements of time series data
generation.

2.1.3 Historical Data

Oracle8i Time Series is especially useful in dealing with historical data. This type of
data typically has relatively simple metadata but massive data storage
requirements. That is, the data attributes (columns) are relatively few and easy to
understand (such as ticker, volume, and opening, high, low, and closing prices);
however, the number of rows is enormous (for example, data for all listed stocks for
all trading days for several years). Moreover, the number of functions that users
might want to perform on the data is large: for example, finding various sums,
counts, maximum and minimum values, averages, number of trading days between
two dates, moving average, and so on.

Figure 2-2 shows an example of historical data stored in a database.
Figure 2-2 Historical Data for Stocks

Ticker Tstamp Open High Low Close Volume

XYZ 01-02-1997 21.75 22.75 21.50 22.00 352,000
XYZ 01-03-1997 22.125 2250 21.00 2175 530,000
XYZ 01-06-1997 21.625 22.00 21.625 21.875 490,000

YZA 01-02-1997 44.25 44.25 4350 43.875 125,000
YZA 01-03-1997 43.75 44.25 43.75 44125 97,000
YZA 01-06-1997 44.25 4450 44,125 44125 107,000

Stock market historical databases have the following general characteristics:

« Multiple stocks, each identified by the ticker symbol, can be stored in the
database.

« Each stock can have multiple attributes (ticker, tstamp, open, high, low, close,
volume).

= Each stock has one or more associated time series.

2-4 Oracle8i Time Series User's Guide

Calendars

« Each time series has an associated calendar (see Section 2.2).

This kind of financial historical data is used in examples in this guide and in the
usage demo (see Section 1.6) provided with Oracle8i Time Series.

2.2 Calendars

An Oracle8i Time Series calendar maps human-meaningful time values to
underlying machine representations of time.

A calendar can be associated with a time series. However, a calendar does not need to
be associated with a time series unless you need to do any of the following:

« Use Oracle8i Time Series functions to validate time series data (for example, to
check that trading data is not entered for an invalid date, such as for a
nontrading date or a date outside a desired start-end date range)

« Usethe Lead, Lag, or Fill functions

« Use the time scaling functions (where the created time series must have an
associated calendar, for example, to provide a monthly roll-up of data)

A time series with an associated calendar is called a regular time series, as described
in Section 2.1.1.

A calendar is, of course, necessary for using any of the calendar functions
(described in Section 2.9).

A business day calendar, for example, can define the days of the week on which
stocks are traded. The holidays, when trading does not occur, are also included in
the calendar as exceptions.

If you have more than one time series with the same timestamps, you can associate
these time series with the same calendar (that is, use a shared calendar). For
example, a calendar of U.S. stock market trading days could be used for all stocks
that trade every day. For any stocks that do not fit this pattern, you could create
private calendars (for example, an ACME_cal calendar for stock ACME).

The following are key components of a calendar:
« Frequency

A frequency specifies the granularity of the calendar representation. The
supported frequencies are second, minute, hour, day, week, 10-day, semi-monthly,
month, quarter, semi-annual, and year.

. Pattern

Time Series Concepts 2-5

Calendars

The pattern specifies the repeating pattern of frequencies and an anchor date
that identifies a valid timestamp for the first element in the pattern. For
example, if the frequency is set to day, the pattern can define which days of the
week are included in the calendar. For example, a pattern of ‘0,1,1,1,1,1,0’ over a
day frequency defines a calendar over all weekdays. If an anchor date of 01-Jun-
1997 (or any Sunday) is specified, then the 7-day pattern begins each Sunday;
and Sunday and Saturday (0) are excluded from the calendar, while Monday
through Friday (1) are included in the calendar.

« Exceptions

Exceptions are timestamps that do not conform to the calendar pattern but that
are significant for the calendar definition. There are two kinds of exceptions:
off-exceptions and on-exceptions:

— An off-exception is an exception to the nonzero bits in the pattern, and thus
is a timestamp to be excluded from the calendar. For example, to ensure
that Wednesday, 25-Dec-1996, is excluded from the calendar when
Wednesdays normally are included, define that date as an off-exception.

— An on-exception is an exception to the zero (0) bits in the pattern, and thus
is a timestamp to be included in the calendar. For example, to ensure that
Saturday, 28-Jun-1997, is included in the calendar when Saturdays are
excluded, define that date as an on-exception.

On-exceptions can also be used with a zero pattern. Section 2.11 includes a
description of using such a calendar for scaling, with quarterly dividend
payment dates as on-exceptions.

2.2.1 Frequency

Each frequency has an associated integer code that is used in function calls.
Table 2-1 lists the supported frequencies and their integer codes. The frequencies
are explained in Table 2-2.

Table 2-1 Frequency Codes

Frequency Integer Code
second 1
minute 2
hour 3
day 4
week 5

2-6 Oracle8i Time Series User's Guide

Calendars

Table 2-1 Frequency Codes(Cont.)

Frequency Integer Code
month 6
quarter 7
year 8
10-day 10

semi-monthly 16

semi-annual 18

Some frequencies allow flexibility in defining pattern anchor dates, whereas other
frequencies are more restrictive. Table 2-2 explains the frequencies and any
requirements and options relating to the pattern anchor date.

Table 2-2 Frequencies and Their Requirements

Frequency Explanation and Requirements

second Every second. The anchor date can be any timestamp with a
valid value for seconds.

minute Every minute. The anchor date can be any timestamp with a
valid value for minutes. The value for seconds should be zero.

hour Every hour. The anchor date can be any timestamp with a valid
value for hours. The values for minutes and seconds should be
zero.

day Every day. The anchor date can be any timestamp with a valid

value for the day. The values for hours, minutes, and seconds
should be zero

week Once every 7 days. Can start on any day of the week. For
example, defining a weekly calendar with an anchor date of 23-
Jun-1998 means that each timestamp must be for a Tuesday.

month Once every month. Can start on days 1-28 or 31. (Defining an
anchor date of the 31st of a month means the last day of each
month.) For example, defining a monthly calendar with an
anchor date of 01-Jul-1998 means that each timestamp must be
for the 1st of a month.

Time Series Concepts 2-7

Calendars

Table 2-2 Frequencies and Their Requirements (Cont.)

Frequency Explanation and Requirements

quarter Four times per year. Can start on days 1-28 or 31 of any month.
(Defining an anchor date of the 31st of a month means the last
day of each month.) For example, defining a quarterly calendar
with an anchor date of 01-Jan-1998 means that each timestamp
must be for the 1st of January, April, July, or October. Defining a
quarterly calendar with an anchor date of 15-Feb-1998 means
that each timestamp must be for the 15th of February, May,
August, or November.

year Once per year. Can start on days 1-28 or 31 of any month.
(Defining an anchor date of the 31st of a month means the last
day of that month.) For example, defining an annual calendar
with an anchor date of 01-Jan-1998 means that each timestamp
must be for the 1st of January. Defining an annual calendar with
an anchor date of 15-Feb-1998 means that each timestamp must
be for the 15th of February.

10-day The 1st, 11th, and 21st days of each month. (Used for automobile
sales data.) No other dates are permitted for a 10-day calendar,
and any anchor date is ignored.

semi-monthly The 1st and 16th days of each month. No other dates are
permitted for a semi-monthly calendar, and any anchor date is
ignored.

semi-annual Twice per year. Can start on days 1-28 or 31 of any month.
(Defining an anchor date of the 31st of a month means the last
day of each month.) For example, defining a semi-annual
calendar with an anchor date of 01-Jan-1998 means that each
timestamp must be for the 1st of January or July. Defining a semi-
annual calendar with an anchor date of 15-Feb-1998 means that
each timestamp must be for the 15th of February or August.

2.2.2 Precision

Each frequency has an associated precision. Oracle8i Time Series functions require
that input timestamps be of the precision of the frequency associated with the
calendar. (The SetPrecision function is the exception: this function takes a calendar
and a timestamp and returns a timestamp that conforms to the frequency of the
associated calendar.)

A timestamp that is not consistent with the frequency is said to be imprecise. For
example, a timestamp of 09-Sep-1997 is imprecise if it is input to a function that is

2-8 Oracle8i Time Series User's Guide

Calendars

2.2.3 Pattern

dealing with a calendar whose frequency is 6 (month) or 8 (year) and whose pattern
anchor date is not the 9th of a month. When you create a calendar, all timestamps
used in the calendar definition (the anchor date for the pattern, and all off- and on-
exceptions) must be precise with respect to the frequency. For example, the calendar
will not be valid if you specify a frequency of day, an anchor date of 01-Jun-1998
13:00:00. An anchor date of just 01-Jun-1999, however, would valid in this case. (The
calendar data types and their attributes are presented in Section 2.3.1.)

Table 2-3 shows the frequencies, their precision conventions, and an example
timestamp of each precision using a pattern anchor date of 01-Jan-1998 00:00:00
(midnight), which was a Thursday.

Table 2-3 Precisions Using 01-Jan-1998 00:00:00 Anchor Date

Frequency Precision Convention Example Result

second MM-DD-YYYY HH24:MI:SS 09-09-1997 09:09:09

minute MM-DD-YYYY HH24:M1:00 09-09-1997 09:09:00

hour MM-DD-YYYY HH24:00:00 09-09-1997 09:00:00

day MM-DD-YYYY 00:00:00 (midnight) 09-09-1997 00:00:00

week MM-DD-YYYY 00:00:00 (midnight 09-04-1997 00:00:00
of the preceding Thursday)

month MM-01-YYYY 00:00:00 (midnight of 09-01-1997 00:00:00
first day of month)

quarter MM-01-YYYY 00:00:00 (midnight of 07-01-1997 00:00:00
first day of quarter)

year 01-01-YYYY 00:00:00 (midnight of ~ 01-01-1997 00:00:00
first day of year)

10-day MM-DD-YYYY 00:00:00 (midnight ~ 09-01-1997 00:00:00

of 1st, 11th, or 21st of month)

MM-DD-YYYY 00:00:00 (midnight
of 1st or 15th of month

semi-monthly 09-01-1997 00:00:00

semi-annual MM-01-YYYY 00:00:00 (midnight of 07-01-1997 00:00:00

first day of half year)

A calendar pattern is specified as one or more zeroes (0) and/or positive integers.

Time Series Concepts 2-9

Calendars

For patterns represented by zeroes and/or ones, each '1’ represents a valid
timestamp of the frequency and each '0’ represents an invalid timestamp. For
example:

« Acalendar with a day frequency and a single 1’ pattern
(ORDSYS.ORDTPatternBits(1)) has timestamps defined for each day. (The
ORDTPatternBits data type is defined in Section 2.3.1.)

« A calendar with a day frequency, a Sunday anchor date, and a pattern of a '1’
and six '0’'s (ORDSYS.ORDTPatternBits(1,0,0,0,0,0,0)) is in effect a weekly
calendar where all Sunday timestamps are included and all other days of the
week are excluded.

For patterns containing one or more integers greater than 1, each such integer
represents an interval that is a multiple of the frequency. For example, a calendar
with a day frequency, a Sunday anchor date, and a pattern of '7’
(ORDSYS.ORDTPatternBits(7)) is in effect a weekly calendar where all Sunday
timestamps are included and all other days of the week are excluded.

Note that while the actual timestamps that are valid for the calendar will be
identical for each of the preceding weekly calendar examples
(ORDSYS.ORDTPatternBits(1,0,0,0,0,0,0) and ORDSYS.ORDTPatternBits(7) with day
frequency and Sunday anchor dates), these calendars have two different
interpretations for use in the context of time scaling. For example, if the ScaleupSum
function is invoked on a time series containing data defined for every day for
scaling to these two calendars, the following differences in behavior occur:

= With the first target calendar (ORDSYS.ORDTPatternBits(1,0,0,0,0,0,0)), each
timestamp in the resulting time series contains a sum of 1 day (Sunday) of data.

« With the second target calendar (ORDSYS.ORDTPatternBits(7)), each
timestamp in the resulting time series contains a sum of 7 days of data.

2.2.4 Overview of Calendar Definition

To define a calendar, you create a table in which to store calendar definitions and
then store a row for each calendar to be defined.

Example 2-1 creates a table named stockdemo_calendars and defines a calendar
named BusinessDays. The BusinessDays calendar includes Mondays through Fridays,
but excludes 28-Nov-1996 and 25-Dec-1996. Explanatory notes follow the example.
(For more information and examples of calendar creation, see Section 3.2.)

2-10 Oracle8i Time Series User's Guide

Calendars

Example 2-1 Overview of Calendar Definition
CREATE TABLE st ockdeno_cal endars of CROSYS. GROTGal endar (

nane GONSTRAI NT cal key PR MARY KEY);

I NSERT | NTO st ockdeno_cal endars VALUEY
ORDSYS. GROTGal endar (@

00
' Busi nessDays’, ©
4, @
CRDSYS. CRDTPattern(@

CROSYS. (RDTPatternBits(0,1,1,1,1,1,0),

TO DATE(’ 01- JAN-1995 ,’ DD MON YYYY')),

TO DATE(’ 01- JAN- 1990 , ' ID- MN-YYYY), @
TO DATE(’ 01- JAN- 2001’ , ' DD MONF YYYY'),

QROSYS. CROTEXcept i ons(TO DATE(’ 28- NOV- 1996’ , ' DD- MON- YYYY'),
TO DATE(’ 25- DEG 1996’ , ' OD-MIN-YYYY')), @

QROSYS. GRDTEXcept i ons() @

));

Notes on Example 2-1:

66 o© ¢

The stockdemo_calendars table has rows of data type ORDTCalendar, which is
described in Section 2.3.1.

0 indicates that this is a standard calendar (the only type of calendar currently
supported).

BusinessDays is the name of this calendar.
4 is the frequency code for day.

The calendar’s pattern consists of an excluded occurrence followed by five
included occurrences followed by an excluded occurrence (0,1, 1,1, 1, 1, 0).
Because the frequency is day and because the anchor date (01-Jan-1995) is a
Sunday, Sundays are excluded, Mondays through Fridays are included, and
Saturdays are excluded.

Time Series Concepts 2-11

Calendars

@ The calendar begins at the start of 01-Jan-1990 and ends at the start of 01-Jan-

2001.

Note: minDate and maxDate can each be null. If minDate is null, the
calendar has no lower boundary date; if maxDate is null, the
calendar has no upper boundary date. Specifying a null minDate
and maxDate simplifies calendar maintenance, but means you
cannot have timestamps validated against the calendar’s desired
date range.

@ 28-Nov-1996 and 25-Dec-1996 are off-exceptions (that is, excluded from the

calendar).

Note: All exceptions (off- and on-) must be specified in ascending
sorted order.

© ORDSYS.ORDTEXxceptions() indicates that there are no on-exceptions (that is, no

Saturday or Sunday dates to be included in the calendar).

2.2.5 Deriving Calendar Exceptions from Time Series Data

When you want to create calendars that conform to time series data, you can use the
DeriveExceptions function to simplify the process. You can use one of several
approaches with DeriveExceptions, depending on your needs and the requirements
for each approach:

The first approach (Approach 1) uses a DeriveExceptions call with input
parameters of a time series and optionally a starting and ending date. A
calendar is returned with the appropriate exception lists populated. This
returned calendar is defined on the pattern and frequency of the calendar
associated with the time series, and it is consistent with the timestamps of the
time series.

Approach 1 is the most convenient, and is recommended for most customers.

A variation of the first approach (Approach 1A) uses a DeriveExceptions call
with input parameters of a calendar and an ORDTDateTab instance and
optionally a starting and ending date. (An ORDTDateTab instance is a collection
of dates; these dates can be compared with the set of valid timestamps implied
by the calendar.) A calendar is returned with the appropriate exception lists
populated. This returned calendar is defined on the pattern and frequency of

2-12 Oracle8i Time Series User's Guide

Data Types

the input calendar, and it is consistent with the timestamps of the
ORDTDateTab instance.

« The final approach (Approach 2) uses a DeriveExceptions call with two time
series as input parameters and optionally a starting and ending date. The first
time series is essentially an expansion of a pattern-only calendar. As in the first
two approaches, a calendar is returned with the appropriate exception lists
populated. The returned calendar is defined on the pattern and frequency of the
calendar of the first input time series, and it is consistent with the timestamps of
the second input time series.

While Approaches 1 and 1A can be performed in a single step, Approach 2 requires
an additional step (before DeriveExceptions is called) in order to construct the first
time series.

Although Approaches 1 and 1A are simpler in practice, Approach 2 has significant
performance advantages when you need to define multiple calendars that have the
same frequency and pattern but different exception lists. The first two approaches
are less efficient than Approach 2 in this case, because the internal implementation
of the first two approaches generates a collection of dates based on the input
calendar. If you need to derive exceptions for multiple calendars defined on the
same frequency and pattern, this date-generation operation is performed multiple
times. You can avoid these multiple date-generation operations by using
Approach 2.

Section 3.8 contains more detailed information about using each approach to
deriving calendar exceptions.

2.3 Data Types

Oracle8i Time Series provides data types for working with calendars and time
series.

All Oracle8i Time Series data types are installed under the ORDSYS schema, and all
users must include the ORDSYS schema name when referring to these data types.

Note: The CREATE TYPE statements in this section do not include
the TIMESTAMP and OID keywords that are part of the object type
definitions when the product is installed. These keywords are used
internally by products for version control.

Time Series Concepts 2-13

Data Types

2.3.1 Calendar Data Types

Oracle8i Time Series provides the following calendar data types. (Time series data
types are described in Section 2.3.2.)

» Calendar (ORDTCalendar) (Sections 2.2.4 and 3.2 contain calendar definitions
with explanatory notes.)

CREATE TYPE CRDSYS. ORDTCal endar AS CGBIECT (

cal type | NTECGER
nane VARCHAR2(256) ,

frequency | NTEGER
pattern CROSYS CROTPatt ern,

m nDat e DATE,
maxDat e DATE,
of f Excepti ons CROSYS. CROTEXcept i ons,
onBExcept i ons CRDSYS. CGROTEXcept i ons) ;
« Pattern (ORDTPatternBits and ORDTPattern)
CREATE TYPE CRDSYS. ORDTPatt er nBi ts AS VARRAY(32500) CF | NTEGER
CREATE TYPE CRDSYS. ORDTPatt er n AS CRIECT (
patBits CROSYS CRDTPatternBits,
pat Anchor DATE);
« Exception (ORDTEXceptions)

CREATE TYPE CRDSYS. ORDTEXcept i ons AS VARRAY(32500) CF DATE,

2.3.2 Time Series Data Types

Oracle8i Time Series provides the following time series data types. (Calendar data
types are described in Section 2.3.1.)

CREATE TYPE CRDSYS. ORDTNuntCel | AS CRIECT
(tstanp DATE, val ue NOMBER);

CREATE TYPE CGRDSYS. ORDTNunTab AS TABLE CF
GRDSYS. CROTNUntel |

CREATE TYPE CRDSYS. ORDTNunfteri es AS CBIECT

(

nane VARCHAR2(256) ,

cal CRDSYS. CRDTCal endar ,
series CROSYS. AROTNUNTab

)

2-14 Oracle8i Time Series User's Guide

Data Types

CREATE TYPE CRDSYS. ORDTNunSer i esl OTRef AS GBIECT

(

nane VARCHAR2(256) ,

cal REF CRDSYS. CRDTCal endar,
tabl e_nane VARCHAR2(256) ,

t st anp_col nane VARCHAR2(30) ,

val ue_col nane VARCHAR2(30),

qualifier_colname VARCHAR2(30),
qual i fier_val ue VARCHAR2(4000)

)

CREATE TYPE CRDSYS. ORDTVar char 2Cel | AS QGBIECT
(tstanp DATE, val ue VARCHAR2(4000));

CREATE TYPE CRDSYS. ORDTVar char 2Tab AS TABLE CF
CROSYS. CRDIVar char 2Cel | ;

CREATE TYPE CRDSYS. ORDTVar char 2Seri es AS CBIECT

(

narre VARCHAR2(256) ,

cal CRDSYS. CRDICal endar ,
series CROSYS. ARDTVar char 2Tab

)

CREATE TYPE CRDSYS. ORDTVar char 2Ser i esl OTRef AS CBJECT

(

nane VARCHAR2(256) ,

cal REF CRDSYS. CRDTCal endar,
tabl e_nane VARCHAR2(256) ,

t st anp_col nane VARCHAR2(30),

val ue_col nane VARCHAR2(30),

qualifier_colname VARCHAR2(30),
qual i fier_val ue VARCHAR2(4000)

)
CREATE TYPE CRDSYS. CRDTDat eTab AS TABLE CF DATE:

The preceding statements show the definition of a numeric time series and a
character time series (instance-based and reference-based interfaces), each
composed of a calendar instance and a collection. The collection (ORDTxxxTab) is
defined as a table of ORDTxxxCell (except for ORDTDateTab, which is a table of
DATE). Oracle8i Time Series data types, such as ORDTNumSeries and
ORDTVarchar2Series, are input and output parameters of time series functions.

Time Series Concepts 2-15

Conventions and Semantics

The following statements show the definitions for the ORDTDateRange and
ORDTDateRangeTab types. The latter is returned by the GenDateRangeTab
function, which is described in Chapter 4.

CREATE TYPE CRDSYS. ORDTDat eRange AS CBIECT
(start_date DATE, end date DATE);

CREATE TYPE CRDSYS. ORDTDat eRangeTabTab AS TABLE CF
CRDSYS. (RDTDat eRange;

2.4 Conventions and Semantics

For time series functions that accept two time series, both time series must be
defined on calendars that have the same frequency and the same pattern. The
calendars may have different exceptions lists and different starting and ending
dates.

2.4.1 Semantics of Null Operands

A number of time series functions perform arithmetic, comparison, and grouping
operations. When nulls are encountered in this context, the default behavior is to
mirror SQL:

« Group functions ignore nulls. When all values encountered are null, a null is
returned.

For example, the sum of (1, NULL, NULL, 3) returns 4. The sum of (NULL,
NULL, NULL, NULL) returns null.

« Functions that operate on time series ignore nulls, but return a null if all values
encountered are null. Such functions include Mavg (Moving Average) and
Msum (Moving Sum)

For example, if there are 5 nulls in the last 30 timestamps for (and including) a
specific date, the 30-day moving average on that date is computed using only
25 values (that is, adding only the values that are not null and dividing by 25).
However, if all 30 dates (the date and the 29 previous dates) have nulls, the
moving average for that date is null.

= Any arithmetic expression containing a null returns a null.
For example, 10 + NULL returns null.
= A comparison operator that encounters a null returns a null.

For example, a GT comparison of 30-Jun-1997 and null returns null.

2-16 Oracle8i Time Series User's Guide

Conventions and Semantics

Note that because PL/SQL does not implement UNKNOWN, these semantics
are slightly different than the SQL treatment of comparisons with nulls. In SQL,
a comparison operator that encounters a null returns UNKNOWN, which is like
a null, except that operations on UNKNOWN return UNKNOWN.

« Scaleup functions return a null if all timestamps for a scaling interval contain
nulls.

For example, if you are scaling up daily data from 01-Jan-1997 through 30-Jun-
1997 to monthly data, and if there are no values for the month of February, a
null is returned for February and scaled data is returned for the other months.
(Note that this behavior differs from the standard GROUP BY scaling in SQL, in
which February would be missing in the scaled results.)

Some functions allow alternate semantics in the form of an option. For example, the
scaleup functions allow you to specify IgnoreNulls or IgnoreNullsOFF, as explained
in Section 2.11.2. The reference information for each function describes any alternate
semantics options.

2.4.2 Semantics of Off-Exception Operands

In comparisons of two time series, it is possible that a timestamp valid for one time
series is not valid for the other time series. Operations on two time series having
similar calendars return a time series that is defined over a new calendar. This new
calendar is derived from the two input calendars, using all of the following:

« The union of the off-exceptions

« The intersection of the on-exceptions

« Bounded by [max(minDatel, minDate2), min(maxDatel, maxDate2)]
For example, assume the following two calendars:

« Calendar 1: 01-Jan-1997 through 01-Dec-1997, daily pattern '0,1,1,1,1,1,0°
(Monday through Friday), off-exception 01-May, on-exceptions 29-Mar and
29-Jun.

«» Calendar 2: 01-Feb-1997 through 01-Jan-1998; daily pattern ’0,1,1,1,1,1,0°
(Monday through Friday), off-exceptions 01-May and 14-jul, on-exceptions
29-Jun and 28-Sep.

The new (derived) calendar is: 01-Feb-1997 through 01-Dec-1997, daily pattern
’0,1,1,1,1,1,0’ (Monday through Friday), off-exceptions 01-May-1997 and 14-Jul-1997,
on-exception 29-Jun-1997.

Time Series Concepts 2-17

Oracle8i Time Series Architecture

2.5 Oracle8i Time Series Architecture

Figure 2-3 shows the Oracle8i Time Series architecture. At the lowest level, a
storage option is required, and this must be a flat index-organized table (10T), a flat
table, or a nested IOT. The actual product consists of PL/SQL packages for calendar,
time series, and time scaling functions and for administrative tools procedures. In
addition, a collection-based interface between time series storage and the packaged
functions is provided.

Figure 2-3 Time Series Architecture

PL/SQL Packages

Calendar | |Time Seriesl |Time Scalingl | Tools

@ Storage is flat 10T
or nested 10T

Time Series
Storage

NU-3690A-RA

The rest of this chapter describes this architecture, working from bottom to top in
Figure 2-3:

Storage of time series detail data

Interfaces (instance-based and reference-based) to time series and time scaling
functions

Calendar functions
Time series functions
Time scaling functions

Administrative tools procedures

2-18 Oracle8i Time Series User's Guide

Storage of Time Series Data

2.6 Storage of Time Series Data
Using Oracle8i Time Series involves storing three different kinds of information:

= Time series detail data (for example, prices and volume for each stock for each
trading day)

« Calendars
= Time series metadata

In the flat table or 10T storage model, these requirements are implemented using
three separate tables, and time series detail data is stored as multiple rows in the
table or 10T. (Figure 1-1 in Section 1.6.2 shows the tables created by the usage
demo.)

In the nested table storage model, the time series detail data is stored as an object in
a nested table, that is, as rows at the second level of a nested IOT.

In the time series detail table, the data should be stored in timestamp order, because
many of the analytical functions require access to the data in this order. (If
timestamps are not in order, the functions perform an internal sort before
processing the timestamps.)

2.6.1 Flat 10T or Flat Table Storage

A time series is stored as multiple rows in a flat index-organized table (I0T) or a flat
table.X Each row stores a ticker, a timestamp, and composite data. This storage
option is shown in Figure 2-2.

The flat 1OT or table model has some benefits compared to nested 10Ts:
= Only one timestamp column need be stored for multiple attributes.

For time series data such as stock market data, where multiple attributes (such
as open, high, low, volume and close) share a single timestamp, only a single
timestamp column needs to be stored, thus providing efficient utilization of
disk storage.

« Migration from legacy systems is easier.

Migrating legacy data is simplest if the target schema is a flat table or flat 10T.

1 A time series can be stored in a standard table; however, for performance reasons it is
recommended that you use an IOT rather than a standard table.

Time Series Concepts 2-19

Storage of Time Series Data

However, using this model means that ensuring time series and calendar integrity
cannot be encapsulated. The highest-integrity solution to time series and calendar
integrity would disable insert, update, and delete operations using SQL and would
implement these operations using member methods of time series and time scaling
functions. This approach is not possible with a flat IOT storage model. Instead, a
relational view must be defined to ensure integrity (see Section 2.8.2).

To minimize the burden of creating the relational view and other required schema
objects, you can use the administrative tools procedures described in Section 2.12.

2.6.2 Nested IOT Storage (Object Model)

A time series is stored as rows in a nested I0T. At the first nesting level, the ticker
symbol and any metadata associated with the time series are stored. At the second
level and associated with each ticker symbol, timestamp and composite data is
stored.

The nested IOT storage model has the following advantages compared to the flat
10T or table model:

« Locator-based access to nested 10Ts provides optimized retrieval of time series
data with standard mechanisms.

Time series analysis functions, such as Moving Average, operate on time series
data represented by collections that are passed as parameters to PL/SQL
functions. This strategy is inefficient when only a portion of the time series is
accessed because the server materializes the entire collection into the object
cache.

Locator-based access to nested 10Ts provides a solution to this problem, by
providing PL/SQL functions a handle to the nested table.

« Nested tables allow time series metadata to be stored with time series data in a
single structure.

The two levels of a nested table allow you to store metadata associated with
each time series (such as textual descriptions of the instrument, or information
related to stock splits). This simplifies schema management.

« A nested storage model cleanly supports the storage of derived time series.

Derived time series are those that are computed by applying functions to
existing time series. In a composite (multiple-attribute) model, the storage of
derived time series is complicated by the fact that derived time series data is
available for only one of many columns (at least initially).

2-20 Oracle8i Time Series User's Guide

Interfaces to Time Series and Time Scaling Functions

With a nested table storage model, a single value column is stored. This cleanly
enables the storage of derived time series.

=« When encapsulated types are available, it will be possible to support calendar
and time series integrity by requiring insert, update, delete, and append
operations to be executed using methods.

However, the nested 10T storage model has the following disadvantage compared
to the flat IOT model: each attribute column requires a separate timestamp column.
This increases the storage overhead for multiple-attribute time series data (such as
daily stock market data that includes open, high, low, close, and volume attributes).
However, many forms of time series data are single-attribute (such as the monthly
unemployment rate), and for these formats the nested 10T storage model is ideal.

2.7 Interfaces to Time Series and Time Scaling Functions

The interfaces to the time series and time scaling functions rely on the following
aspects of the Oracle8i Time Series architecture:

« Time series detail data is stored as relational data (in a flat IOT or flat table), one
timestamp per row.

« Calendars are stored in object tables.

= Time series and time scaling functions expect time series data and calendars to
be formatted as objects. A time series object is typically the first parameter to a
function.

Two basic interfaces to time series and time scaling functions are defined:
= Aninstance-based object interface

In the instance-based interface, the first input parameter to a time series
function is an instance of a time series (for example, ORDTNumSeries).

« Avreference-based object interface

In the reference-based interface, the first input parameter to a time series
function is a reference to a time series (for example, ORDTNumSerieslOTRef).
The reference-based interface requires that you provide enough descriptive
information to enable the functions to execute dynamic SQL to obtain an
instance of a time series.

The data types related to the instance-based and reference-based interfaces (for
example, ORDTNumSeries and ORDTNumSerieslOTRef) are discussed in Sections
2.7.1and 2.7.2.

Time Series Concepts 2-21

Interfaces to Time Series and Time Scaling Functions

Note that both types of interfaces return only instances of time series (for example,
ORDTNumSeries). Also, because nesting of time series and time scaling functions is
allowed (for example, SELECT (Lead(Mavg, ...) ...)), the instance-based interface is
used internally for the second and subsequent levels of nesting.

When possible, you should use the reference-based interface. Although this
interface may be difficult to understand initially, it offers significant performance
advantages over the instance-based interface. The examples in this guide emphasize
the reference-based interface.

2.7.1 Instance-Based Interface

Time series and time scaling functions operate on instances of time series objects
(for example, an ORDTNumSeries). An instance of a time series object includes a
name field, an instance of a calendar, and an instance of a time series. For example,
as the following data type definitions for a numeric time series show,
ORDTNumTab defines a collection and ORDTNumSeries combines a calendar
instance with a collection:

CREATE TYPE CRDSYS. GROTNuntel | AS GBIECT (tstanp DATE, val ue NUMBER);
CREATE TYPE CRDSYS. CROTNunTab AS TABLE CF CROTNunCel | ;
CREATE TYPE CRDSYS. GRDTNUngeri es AS CBRIECT (

nane VARCHAR2(256) ,

cal CRDTCGal endar,

seri es GROTN\unTab

)

For a numeric time series, the time series data is contained in the ORDTNumTab
structure. This structure is a table (collection) of a DATE column and a NUMBER
column.

Figure 2-4 shows an example of an ORDTNumTab collection type.

Figure 2-4 Example of ORDTNumTab Collection Type

Tstamp Value
01-01-1996 22.00
01-02-1996 23.00
12-31-1996

2-22 Oracle8i Time Series User's Guide

Interfaces to Time Series and Time Scaling Functions

Functions such as Mavg (Moving Average, described in Section 2.10.7) use the
ORDTNumTab structure as the source data for performing computations, and they
use the ORDTCalendar data type to enable navigation through the time series data.
The calendar-based navigation is especially useful for functions such as Mavg,
which has as input parameters the starting date (startDate) and ending date
(endDate) for which to return moving averages and an integer (k) indicating the
lookback window (k denoting the number of timestamps, including the current one,
over which to compute the moving average). Calendar-based navigation is used to
determine the date that is k-1 timestamps previous to startDate.

Although time series and time scaling functions operate on time series instances,
they are invoked from SQL using a REF to a time series. For a numeric time series,
this type is an ORDTNumSerieslOTRef. (Section 2.7.2 explains the use of REFs in
the reference-based interface.) The REF contains enough information so that time
series and time scaling functions can derive the instance (ORDTNumSeries) at
runtime (using dynamic SQL).

The convention of defining an interface on a DATE column and a single NUMBER
column provides a uniform interface for time series and time scaling functions.
Because the underlying IOT that stores time series detail data may have multiple
NUMBER columns, the view defining the REF also maps the underlying storage to
conform to the two-column interface defined by the ORDTNumSeries data type.

The following are the key aspects of the instance-based interface to time series and
time scaling functions:

= Theinput parameter of a time series function is a REF to a time series object (for
example, ORDTNumSerieslOTRef).

« Time series and time scaling functions operate on time series instances (for
example, ORDTNumSeries).

Note: In addition to numeric series, a character time series is also
provided, with the data types ORDT Varchar2Series and
ORDTVarchar2SerieslOTRef.

= You should use a view to construct the reference descriptor.
« The REF associates the calendar with the time series.

« Instances of calendars are typically stored in a table separate from time series
detail data.

Time Series Concepts 2-23

Interfaces to Time Series and Time Scaling Functions

« Itisimportant to ensure and maintain consistency between time series data and
the corresponding calendar. Section 2.8 discusses consistency of time series
data, including ways of ensuring consistency.

2.7.2 Reference-Based Interface

Oracle8i Time Series provides a reference-based interface for time series and time
scaling functions.

This interface provides efficient performance, especially when only a portion of the
time series is accessed. The performance benefit of this interface results from the
fact that at runtime, the reference-based interface materializes only those rows
within the specified date range, as opposed to materializing the entire collection of
rows from the time series.

Note: You should use administrative tools procedures
(documented in Chapter 7) to create and maintain objects for use
with the reference-based interface. Normally, you should not
manually create any views used by the reference-based interface,
because the specific view definitions may change in future releases
and because the administrative tools procedures provide a simple
interface.

The reference-based interface uses the ORDTNumSerieslOTRef and
ORDTVarchar2SerieslOTRef data types, which include a REF to a calendar, plus
several literal values. At runtime, reference-based time series and time scaling
functions use these literal values to form and execute a SQL statement (using
dynamic SQL) that derives an instance of a time series that contains only the
timestamps needed for this instance. The function determines which timestamps are
needed based on the startDate and endDate parameters.

The ORDTNumSerieslOTRef data type is defined as follows:

CREATE TYPE CRDSYS. GRDTNunger i esl OTRef AS CBIECT
(

nane VARCHAR2(256) ,

cal REF CRDSYS. CRDTCal endar,
tabl e_nane VARCHAR2(256) ,

t st anp_col nane VARCHAR2(30),

val ue_col nane VARCHAR2(30),

qualifier_colname VARCHAR2(30),
qual i fier_val ue VARCHAR2(4000)

2-24 Oracle8i Time Series User's Guide

Interfaces to Time Series and Time Scaling Functions

);
The attributes of the ORDTNumSerieslOTRef data type are as follows:
= name is the name of the time series.
« cal is a REF to the calendar.
« table_name is the fully qualified name of the flat IOT.

table_name can be a view, but the view must be updatable and must map to an
IOT. If the view includes any functions, they must include the PRAGMA
RESTRICT_REFERENCES compiler directive with the keywords WNPS, RNPS,
and WNDS.

« tstamp_colname is the name of tstamp column in the flat IOT.

« Value_colname is the name of the value column in the flat IOT (for example, close
for the closing price).

« qualifier_colname is the name of the column that identifies a time series instance
(for example, ticker).

« qualifier_value is the value of the column that identifies a time series instance
(for example, ACME, which is the ticker for Acme Corporation).

In the Oracle8i Time Series usage demo, the view stockdemo_ts uses the reference-
based interface to time series and time scaling functions. The stockdemo_ts view
determines which calendar should be associated with the time series by accessing
the calendar (stockdemo_calendars) and metadata (stockdemo_metadata) tables. The
pricing data is accessed through the underlying table containing historical time
series pricing data (stockdemo). For an explanation of the relationship between the
reference-based view and the underlying tables in the usage demo, see

Section 1.6.2.3.

The stockdemo_ts view is generated by the administrative tools procedures
(documented in Chapter 7) with the following definition for the current release of
Oracle8i Time Series. (This definition may change in future releases, and therefore
you are encouraged to use the administrative tools procedures rather than manually
creating such a view.)

CREATE (R REPLACE M EWst ockdeno_t s(ti cker, open, hi gh, | ow, cl ose, vol une) AS
SH ECT net a. ti cker nane,
CROSYS. GRDTN\unger i esl OTRef (
substr(neta.tickername, 1, 230) || ' open NunSeries’,
Ref (cal), 'tsdev. stockdenmo’,
"tstanp’, 'open’, 'ticker’, neta.tickernane),

Time Series Concepts 2-25

Interfaces to Time Series and Time Scaling Functions

CROSYS. GRDTN\unger i esl OTRef (
substr(neta.tickername, 1, 230) || ' high NunSeries’,
Ref (cal), 'tsdev. stockdenmo’,
"tstanp’, 'high', 'ticker’, neta.tickernane),
CROSYS. GRDOTN\unger i esl OTRef (

substr(neta.tickername, 1, 230) || ' |ow Nungeries’,
Ref (cal), 'tsdev. st ockdeno’,
"tstanp’, 'low, 'ticker’, meta.tickernane),
CROSYS. GRDTN\unger i esl OTRef (
substr(neta.tickername, 1, 230) || ' close Nunferies’,

Ref (cal), 'tsdev. st ockdeno’,
"tstanp’, 'close’, 'ticker’, neta.tickernane),
CROSYS. GRDTN\unger i esl OTRef (
substr(neta.tickername, 1, 230) || ' vol une NunSeries’,
Ref (cal), 'tsdev. st ockdeno’,
"tstanp’, 'volune’, 'ticker’, neta.tickernane)
FROM st ockdeno_net adat a neta, stockdenmo cal endars cal
WHERE net a. cal endar nane = cal . nang;

Depending on which column is selected, a different literal value is applied as an
attribute of the ORDTNumSerieslOTRef data type. For example, for the following
query:
SH ECT CRDSYS. Ti neSeri es. Mavg(cl ose,

to_date(’ 02-DEG 96", OD-MON-YY'),

to date(’' 31-DEG 96’ ,’' OD-MIN-YY'),

10)
FROM TSDEV. st ockdeno_t s
WHERE ticker = AOVE ;

The literal value close is used as the value_colname column name. The other attributes
of the ORDTNumSerieslOTRef data type include the timestamp column name
(tstamp), a qualifying column name (ticker), and the actual value of the qualifying
column (meta.tickername).

The implementation of time series and time scaling functions uses the information
stored in the ORDTNumSerieslOTRef data type to generate the appropriate
dynamic SQL statement at runtime. Using the preceding example, to instantiate a
time series object (that is, to convert an ORDTNumSerieslOTRef to an
ORDTNumSeries), the Mavg function generates a query that performs the
following action (with the logic shown, not the exact syntax):

SH ECT tstanp, close
FROM t sdev. st ockdeno ts
WHERE ticker= AOWE and tstanp BETWEN <a date range adj ust ed

2-26 Oracle8i Time Series User's Guide

Consistency of Time Series Data

to reflect the 10-day w ndow and the
cal endar, including any hol i days>;

The Mavg function computes the moving average and returns the result as a time
series instance (ORDTNumSeries). For more information about the Mavg function,
see Section 2.10.7.

2.8 Consistency of Time Series Data

Most time series and time scaling functions rely on calendars that are consistent
with time series data.t By assuming a time series is consistent with its calendar, time
series and time scaling functions can use the calendar as a basis for navigation of
time series data.

Time series consistency must be maintained; otherwise, functions might raise
exceptions or return incorrect results.

2.8.1 Rules for Time Series Consistency
For a time series to be consistent, the following must be true:
« All timestamps are sorted in ascending sequence.
« There are no duplicate timestamps.
« All timestamps match the precision of the calendar.
= No timestamps are beyond the bounds of the calendar (minDate and maxDate).

« All timestamps conform to the pattern specification, except those listed in the
off-exceptions list or the on-exceptions list.

« The time series data is contiguous. That is, between the smallest (earliest) and
largest (latest) timestamps in the time series, the time series data contains
timestamps for all valid calendar timestamps.

If some mechanism is not used to enforce these consistency rules, accidental or
malicious actions could destroy the integrity of the time series data. For example, a
user might delete rows from the middle of the time series, rather than being
restricted to deleting rows at the beginning and the end of the date range for the
time series.

1 An exception is the Fill function, which can be used to add pairs of timestamps and values
to make a time series consistent with the calendar.

Time Series Concepts 2-27

Consistency of Time Series Data

2.8.2 Enforcing Time Series Consistency with Relational Views

Enforcing time series consistency can be accomplished with a relational view of
time series data that uses an INSTEAD OF trigger to maintain time series
consistency. (For an explanation of INSTEAD OF triggers, see the Oracle8i Concepts
manual.) This relational view is intended to be used for limited or moderate insert,
update, and delete operations; it is not intended for bulk changes to time series
data.

The usage demo (see Section 1.6) includes a relational view named stockdemo_sv.
This view:

« Enables view updates to be propagated to the underlying table

« Ensures that the underlying table can be updated only by using a view
mechanism, provided that users are granted update access to the relational
view and not granted update access to the underlying table

« Ensures that update, delete, and insert operations affecting time series data are
constrained to conform to the calendar associated with the time series

2.8.2.1 Precision

With the relational view, if a timestamp to be inserted is imprecise, an exception is
raised. If a timestamp to be deleted is imprecise and if a matching timestamp exists
in the time series, the deletion is permitted.

2.8.2.2 INSTEAD OF Trigger

An INSTEAD OF trigger in a relational view enforces rules on insert, delete, and
update operations. These rules maintain time series data that conforms to the
associated calendar.

For insert operations, the following rules apply:

« For an empty time series, the new timestamp must be a valid date in the
calendar.

« For atime series that is not empty, an insertion is allowed immediately after the
last timestamp or immediately before the first timestamp, but nowhere else.

For delete operations, the following rules apply:
« For an empty time series, an exception is raised.

« For atime series that is not empty, only the following can be deleted: the first or
last timestamp, or an imprecise timestamp where a matching timestamp exists
in the time series.

2-28 Oracle8i Time Series User's Guide

Consistency of Time Series Data

For update operations, the following rules apply:
« The timestamp must exist in the time series.

« Updates are not allowed to the timestamp and qualifier columns (for example,
tstamp and ticker in the usage demo relational view).

The INSTEAD OF trigger in a relational view enables you to ensure that a time
series meets the consistency requirements described in Section 2.8.1.

The INSTEAD OF trigger allows for multiple timestamps to be inserted or deleted
in a single query, given that the group of timestamps inserted or deleted are in the
proper order. For example, a specified number of timestamps can be deleted from
the beginning of a time series by using a simple range restriction on the timestamp.
A specified number of timestamps can be inserted at the end of a time series by
using a subqguery that references another table containing time series data.

2.8.3 Bulk Loading and Consistency

The SQL*Loader utility is useful for loading large amounts of data into a table. For
better performance, you should perform bulk loads on underlying tables instead of
on relational views. However, after you load data into the tables, you must ensure
time series consistency by using one of the following approaches:

« Adjust calendars to be consistent with the time series.

If you are sure that all timestamps are correct, it is safe to adjust the calendar to
be consistent with the time series. This strategy is normally appropriate when
there is a unique calendar per time series.

The DeriveExceptions function is useful for adjusting a calendar to be consistent
with the time series.

= Validate that each time series is consistent with the calendar.

If you expect time series data to adhere to a predefined calendar, validating
each time series is the better approach. This approach is particularly useful if
the same calendar is used for all time series data being loaded.

The IsValidTimeSeries function can be used to check if the time series is
consistent with the calendar.

For better performance in the case of a shared calendar for all time series, you
may want to customize time series validation using PL/SQL. This involves
writing custom utility functions that call Oracle8i Time Series product-
developer calendar functions (see Section 2.9.2) to test and maintain time series
consistency.

Time Series Concepts 2-29

Calendar Functions

Section 3.4 contains additional information and examples of bulk and incremental
loading of time series data.

2.9 Calendar Functions

Oracle8i Time Series provides calendar functions for querying and modifying
calendars. The calendar functions can be divided into the following categories:

« End-user functions allow application developers to use the main calendar-

related features.

« Product-developer functions allow developers to modify or supplement Oracle8i
Time Series capabilities by creating value-added enhancements.

Reference information for all calendar functions is in Chapter 4.

2.9.1 End-User Functions

End-user functions let you use the main calendar-related features of Oracle8i Time
Series. If you do not need to modify or expand the product’s capabilities, you
probably can limit your use of calendar functions to those listed in Table 2-4.

Table 2-4 End-User Calendar Functions

Function Description

Calendar-Creation Functions®
Second Creates a calendar with a frequency of second.
Minute Creates a calendar with a frequency of minute.
Hour Creates a calendar with a frequency of hour.
Day Creates a calendar with a frequency of day.
Week Creates a calendar with a frequency of week.
Ten_day Creates a calendar with a frequency of 10-day.

Semi_monthly
Month
Quarter
Semi_annual

Year

2-30 Oracle8i Time Series User's Guide

Creates a calendar with a frequency of semi-monthly.
Creates a calendar with a frequency of month.
Creates a calendar with a frequency of quarter.
Creates a calendar with a frequency of semi-annual.

Creates a calendar with a frequency of year.

Calendar-Related Functions

Calendar Functions

Table 2-4 End-User Calendar Functions (Cont.)

Function Description

EqualCals Returns 1 if the two calendars are equivalent. If a date range is
provided, tests only equivalence between the supplied dates.

GenDateRangeTab Returns a table of date ranges that represent all of the valid
intervals in the input calendar (or from startDate through
endDate).

IntersectCals Intersects two calendars.

UnionCals Returns the union of two calendars.

IsValidCal Returns 1 if a calendar is valid and 0 if a calendar is not valid.

ValidateCal Validates a calendar; repairs errors where possible.

Exception-Related Functions

InsertExceptions Inserts a list of timestamps into the appropriate exceptions list
or lists.

DeleteExceptions Deletes a list of timestamps from the appropriate exceptions list
or lists.

1 The calendar-creation functions create a calendar of with a frequency corresponding to the function
name, a pattern of "1’ (all timestamps included), no lower or upper boundary dates (minDate or
maxDate), no off-exceptions or on-exceptions, and a specified or default name and anchor date.

2.9.2 Product-Developer Functions

Product-developer functions let you modify and expand the Oracle8i Time Series
capabilities. For example, you could use product-developer calendar functions in
creating a new function that modified the information returned for the moving
average or that returned a net present value for a portfolio of stocks at a specified
date.

Note: Itis recommended that you not modify the functions
provided with Oracle8i Time Series. If you want a function with a
behavior different from an existing function, create a new function
with a different name or put the function in a different package, or
do both. For example, if you work for XYZ Corporation and create
a modified moving average function, you could name the function
MavgXYZ and put it in a package named XY ZPackage.

Time Series Concepts 2-31

Time Series Functions

Table 2-5 lists the product-developer calendar functions.

Table 2-5 Product-Developer Calendar Functions

Function Description

Calendar-Related Functions

CombineCals Combines two calendars. Similar to IntersectCals, except
the patterns must be identical.

Exception-Related Functions
NumOffExceptions Returns the number of off-exceptions between two dates.
NumOnExceptions Returns the number of on-exceptions between two dates.

Date and Index-Related Functions

IsValidDate Determines if a supplied date is valid.

OffsetDate Returns a date that is k dates in the future (or k in the past
if k is negative) of the supplied date.

GetintervalStart Returns the start of the interval that includes the input
timestamp.

GetlIntervalEnd Returns the end of the interval that includes the input
timestamp.

NumlnvalidTstampsBetween Returns the number of invalid timestamps between two
dates.

NumTstampsBetween Returns the number of valid timestamps between two
dates.

TstampsBetween Returns the valid timestamps between two dates.

InvalidTstampsBetween Returns the invalid timestamps between two dates.

SetPrecision Sets the precision of the input timestamp to correspond to

the frequency of the input calendar.

For an example of using product-developer functions, see Section 3.9.

2.10 Time Series Functions

Time series functions operate on a time series. A time series data type is always
used as the input parameter to a time series function.

Reference information for all time series functions is in Chapter 5.

2-32 Oracle8i Time Series User's Guide

Time Series Functions

2.10.1 Extraction, Retrieval, and Trim Functions

Time series extraction, retrieval, and trim functions operate on any time series type.
Extraction functions return one or more time series rows, while retrieval and trim

functions return a time series.

Table 2-6 lists the extraction functions.

Table 2—-6 Extraction Functions

Function

Description

DeriveExceptions

ExtractCal

ExtractDate
ExtractTable

ExtractValue

First
GetDatedElement
GetNthElement
Last

Returns a calendar populated with exceptions derived from
either a calendar and a table of dates or two time series.

Returns a calendar that is the same as the calendar on which the
time series is based.

Gets the date from an element in a time series.

Returns the time series table (ORDTNumTab or
ORDTVarchar2Tab) associated with a time series.

Gets the value stored in an element in a time series.
Gets the first element in a time series.
Gets the element of a time series at a supplied date.
Gets the Nth element of a time series.

Gets the last element in a time series.

Table 2-7 lists the retrieval and trim functions.

Table 2-7 Retrieval and Trim Functions

Function

Description

FirstN
GetSeries
LastN

TrimSeries

Gets the first n elements in a time series.
Returns the entire time series.
Gets the last n elements in a time series.

Returns the time series data between the supplied dates.

Time Series Concepts 2-33

Time Series Functions

2.10.2 Shift Functions

Shift functions (listed in Table 2-8) lead or lag a time series by a specified number of
units, where units reflects the frequency of the calendar for the time series.

Table 2-8 Shift Functions

Function Description
Lead Leads a time series by the specified number of units.
Lag Lags a time series by the specified number of units.

2.10.3 SQL Formatting Functions

When called from a SQL SELECT expression, a time series function returns an
instance of a time series data type, which cannot be displayed. The SQL formatting
functions (listed in Table 2-9) facilitate format conversions that allow time series to
be displayed.

Table 2-9 SQL Formatting Functions

Function Description

ExtractCal Given a time series, returns a calendar that is the same as the
calendar on which the time series is based.

ExtractDate Given an element in a time series, returns the date.

ExtractTable Given a time series, returns the time series table
(ORDTNumTab or ORDTVarchar2Tab) associated with the time
series.

ExtractValue Given an element in a time series, returns the value stored in it.

2.10.4 Aggregate Functions

Aggregate functions (listed in Table 2-10) return scalar or ORDTNumTab values.
Each aggregate function can be used in either of the following ways:

= The function accepts a numeric time series, ORDTNumSeries, and operates on
all elements of the collection.

« The function accepts a numeric time series, ORDTNumSeries, and a date range,
bounded by datel and date2. The function is computed on the time series
defined by the date range.

Thus, each aggregate function is of the form:
f(ts CRTDNungeries, [datel DATE, date2 DATEH])

2-34 Oracle8i Time Series User's Guide

Time Series Functions

Table 2-10 Aggregate Functions

Function

Returns

TSAvg
TSCount
TSMax
TSMaxN
TSMedian
TSMin
TSMinN
TSProd
TSStddev
TSSum

TSVariance

Average (mean) of a time series

Number of elements in a time series

Maximum value of a time series

Specified number of top (highest) values in a time series
Middle element of a time series

Minimum value of a times series

Specified number of bottom (lowest) values in a time series
Product of the elements of a time series

Standard deviation (square root of VAR)

Sum of the elements of a time series

Variance (analogous to the SQL group function VAR)

2.10.5 Arithmetic Functions

Arithmetic functions (listed in Table 2-11) accept two time series
(ORDTNumSeriesl,ORDTNumSeries2) or a time series and a constant
(ORDTNumSeriesl, Const), and perform a pairwise arithmetic operation on each
element of the time series. This operation determines the value of each element of
the returned time series:

Agorithmfor f(tsl, ts2)
ForAll i, tsRet(i) =tsl(i) op ts2(i);

Table 2—11 Arithmetic Functions

Function

Description

TSAdd
TSDivide
TSMultiply
TSSubtract

Time series addition
Time series division
Time series multiplication

Time series subtraction

Time Series Concepts 2-35

Time Series Functions

2.10.6 Cumulative Sequence Functions

Cumulative sequence functions (listed in Table 2-12) operate on successive elements
of a time series, accumulating the result into the current element of the output time
series. For example, CSUM((1,2,3,4,5)) => (1,3,6,10,15). In this example, the result
time series (f(i)), is computed from the input time series (I(i)) as follows:

f(1) = 1(2)
ForAl i >1, f(i) =f(i - 1) +1(i)

Table 2-12 Cumulative Sequence Functions

Function Returns

Cavg Cumulative average
Cmax Cumulative maximum
Cmin Cumulative minimum
Cprod Cumulative product
Csum Cumulative sum

2.10.7 Moving Average and Sum Functions

The Moving Average (Mavg) function returns a time series that contains the
averages of values from each successive timestamp for a specified interval over a
range of dates. For example, the 30-day moving average for a stock is the average of
the closing price for the specified date and the 29 trading days preceding it.

The Moving Sum (Msum) function returns a sum of values from each successive
timestamp for a specified interval over a range of dates. For example, the 30-day
moving sum of trading volumes for a stock is the sum of the volume for the
specified date and for 29 trading days preceding it.

Table 2-13 lists the moving average and sum functions.

Table 2-13 Moving Average and Sum Functions

Function Returns
Mavg Moving average
Msum Moving sum

The relationship between the input and output time series in the computation of a
moving average or sum is illustrated in Figure 2-5. The figure focuses on the

2-36 Oracle8i Time Series User's Guide

Time Scaling Functions

common invocation of moving average or sum, where k is the number of
timestamps in the lookback window (for example, 30) and a date range (startDate
and endDate) is supplied. (For more information about the parameters, see the Mavg
function description in Chapter 5.)

Figure 2-5 Relationship of Input and Output Time Series in Moving Average/Sum

———]
Input Time Series [[] S [{]] 1]
T T

startDate endDate

Output Time Series D I

L1

f(x,)
NU-3692A-RA

2.10.8 Conversion Functions

Conversion functions (see Table 2-14) convert a time series by filling in missing
timestamp-value pairs. With the Fill function, any timestamps that are valid
calendar timestamps but missing from the time series are inserted into the time
series. This function is especially useful for converting a time series from one
calendar to another.

Table 2-14 Conversion Functions

Function Description

Fill Fills a time series based on the calendar and fill type.

2.11 Time Scaling Functions
Oracle8i Time Series provides functions to scale time series data:

« Scaleup functions produce summary information from finer granularity
information. For example, monthly data can be derived based on daily data.
Scaleup is also known as rollup.

Time Series Concepts 2-37

Time Scaling Functions

« Scaledown functions generate finer-granularity information from coarser-
granularity information. For example, quarterly data can be converted to a daily
time series. Scaledown is also known as distribution.

The relationship between the input and output time series in a scaleup operation is
illustrated in Figure 2-6, which shows a mapping when scaling from a daily
frequency to a monthly frequency.

Figure 2—-6 Time Scaling from Daily to Monthly Frequency

1-FEB-97 1-MAR-97
..... | | ...
l\ l
e N
.._|__||||||||||||||||||||||||||||||||| _____
Frrrrrrrrrrrrrrtrrrtrrr Tt TiTT T
123 28
NU-3693A-RA

Figure 2-6 shows all days in February being mapped to the month of February. This
mapping also suggests the importance of the precision of timestamps of different
frequencies. In the example shown in this figure:

« The month timestamp for February 1997 is represented as 1-FEB-97 00:00:00.

« The day timestamps for February 1997 are represented as 1-FEB-97 00:00:00, 2-
FEB-97 00:00:00,... 28-FEB-97 00:00:00.

Time scaling is permitted only when the calendar for the target time series is an
integral multiple of the calendar for the data to be scaled. For example, weekly data
(data associated with a calendar with a week frequency) cannot be scaled up to a
calendar with a frequency of month, quarter, half year, or year because a week does
not divide evenly into any of these time periods. However, monthly data can be
scaled up to a calendar with a frequency of quarter, half year, or year.

Table 2-15 provides a scaling compatibility matrix that shows for each frequency
the frequencies to which you can scale up and scale down data. For each cell in the
matrix, a Y means that scaling is permitted and a blank means that scaling is not
permitted. For scaleup operations, go down the left column to find the desired
scale-from frequency, then go across that row to see if scaling is permitted for the

2-38 Oracle8i Time Series User's Guide

Time Scaling Functions

desired scale-to frequency. For scaledown operations, go across the top row to find
the desired scale-from frequency, then go down that column to see if scaling is
permitted for the desired scale-to frequency.

Table 2-15 Scaling Compatibility Matrix

£ ©

S 2
= 5 |5 |3
> - I < <
- 13 |5 | |2 |5 | |2
©] 1 o S c
o |12 18 |8 |5 |1& |8 |«
Day Y Y Y Y Y Y Y Y

Week Y

10-day Y Y |Y |Y |Y
Semi-month Y Y Y Y
Month Y Y Y
Quarter Y Y Y
Semi-annual Y Y
IAnnual Y

If the calendar for the target time series has a zero (’0’) pattern and one or more on-
exceptions that are precise with respect to the calendar frequency, the time scaling
functions use the on-exceptions to perform scaling. For example, if quarterly
dividend payment dates are defined as on-exceptions with a day frequency calendar
that has a zero pattern (ORDSYS.ORDTPatternBits(0)), the ScaledownRepeat
function could be used to insert the current quarterly dividend rate in each daily
timestamp.

The collection-based interface (operations on collections) for time scaling is
discussed in Section 2.11.1.

Reference information for all time scaling functions is in Chapter 6.

2.11.1 Time Scaling on Collections

The scaleup and scaledown functions accept as input a numeric time series and a
destination calendar. A numeric time series is returned, which is scaled based on the
destination calendar.

Time Series Concepts 2-39

Time Scaling Functions

For example, the following statement returns the last closing prices for stock
SAMCO for the months of October, November, and December of 1996:

sel ect * fromthe
(sel ect cast (GRDSYS. Ti neSeri es. Extract Tabl e(
CROSYS. Ti neSer i es. Scal euplast (
ts. cl ose,
sc. cal endar,
to_dat e(’ 01- OCT-1996' , ' D MON- YYYY'),
to_date(’ 01- JAN- 1997, ' D MON- YYYY')
)
) as CGRDSYS. CROTNunTab)
fromtsdev. stockdeno ts ts, tsdev.scale sc
where ts.ticker= SAMDO and
sc.hame = MINTHY');

This example might produce the following output:

01- OCT- 96 42. 375
01- NOV- 96 38.25
01- DEG 96 39.75
3 rows sel ect ed.

Note that each timestamp reflects the first date of the month in the calendar
(following the convention illustrated in Table 2-3), and each value in this case
reflects the closing price on the last date for that month in the calendar.

Scaleup functions ignore nulls. For example, ScaleupAvg returns a time series
reflecting the average value of each scaled group of non-null values.

Table 2-16 lists the scaleup functions, and Table 2-17 lists the scaledown functions.

Table 2-16 Scaleup Functions for Collections

Function Description
ScaleupAvg Returns the average value of each group.
ScaleupAvgX Returns the average value of the sum of each group and the

immediately preceding source period (for example, a first-
quarter average computed as the average for the months of
December, January, February, and March).

ScaleupCount Returns the count of timestamps in each group.

ScaleupGMean Returns the geometric mean of each group.

2-40 Oracle8i Time Series User's Guide

Time Scaling Functions

Table 2-16 Scaleup Functions for Collections (Cont.)

Function Description

ScaleupSum Returns the sum of each group.

ScaleupSumAnnual Returns the sum of each group multiplied by a factor to state
the resulting time series at annual rates.

ScaleupMin Returns the minimum of each group.

ScaleupMax Returns the maximum of each group.

ScaleupFirst Returns the first value of each group.

ScaleupLast Returns the last value of each group.

Table 2—-17 Scaledown Functions for Collections

Function Description

ScaledownlInterpolate Returns missing values by interpolating between the values of
the input time series.

ScaledownRepeat Returns missing values by repeating the value of the input time
series.

ScaledownSplit Returns missing values by splitting (dividing) the value in the

input time series evenly.

2.11.2 Scaleup Options: IgnoreNulls and DiscardError
All scaleup functions allow you to specify either or both of the following options:
« IgnoreNulls (default) or IgnoreNullsOFF
« DiscardError (default) or DiscardErrorOFF
These options do not apply to scaledown functions.

IgnoreNulls controls the behavior with respect to null values. If IgnoreNulls is in
effect, nulls in the input time series are not be included in the aggregation being
performed. For example, if ScaleupAvg is operating on a group with 12 values, 3 of
which are null, only the 9 non-null values are averaged. If IgnoreNullsOFF is
specified, then any calculation involving one or more nulls results in a null. For
example, if IgnoreNullsOFF is specified and ScaleupAvg is operating on a group
with 12 values, 3 of which are null, a null is returned.

Time Series Concepts 2-41

Time Scaling Functions

DiscardError controls the behavior with respect to gaps in the target calendar. If
DiscardError (the default setting) is in effect, then whenever data from the source
time series has no corresponding interval in the target time series (which can result
from zeros in the pattern bits of the target calendar), an exception is raised. An
example of this condition is scaling up daily data to a monthly calendar for the
months January through March (anchor date of 01-Jan and pattern of
’1,1,1,0,0,0,0,0,0,0,0,0%). Using this example, the default behavior (DiscardError)
raises an exception if any input timestamps are from April through December;
however, DiscardErrorOFF performs the scaling for January through March and
ignores any input timestamps from April through December. The default behavior
ensures that certain types of incompatible calendars are not inadvertently used in
scaling.

2.11.2.1 Syntax Options: Names and Numbers

You can express the IgnoreNulls and DiscardError options syntactically using either
names or a number. Using names, you can specify one or both of the following as
the final parameter or parameters of a scaleup function call:

« ORDSYS.TimeScale.lgnoreNulls or ORDSYS.TimeScale.lgnoreNullsOFF
« ORDSYS.TimeScale.DiscardError or ORDSYS.TimeScale.DiscardErrorOFF

Instead of using names, you can use a one-digit or two-digit number from
Table 2-18:

Table 2-18 IgnoreNulls and DiscardError Syntax Options

IgnoreNulls
ON OFF
DiscardError ON 0 1

OFF 10 11

The following examples show the use of names and a number to specify the same
options (IgnoreNullsOFF and DiscardErrorOFF):

CRDSYS. Ti neScal e. Scal elbAvg(' My Ti neseries’, nyTS, targetCal,
CROSYS. Ti neScal e. | gnor eNul | sCFF,
CROSYS. Ti neScal e. D scar dError GFF) ;

CRDSYS. Ti neScal e. Scal elbAvg(’ M/ Ti neseries’, nyTS, targetCal,
11);

2-42 Oracle8i Time Series User's Guide

Administrative Tools Procedures

Names and numbers for the options cannot be used in the same function call. For
example, the following is not valid:

CRDSYS. Ti neScal e. Scal elbAvg(’ M/ Ti neseries’, nyTS, targetCal,
1, GRDSYS. Ti neScal e. O scar dError GFF) ;

An exception is raised if an option is specified twice or if conflicting options are
specified (for example, specifying IgnoreNulls and IgnoreNullsOff in the same call).
These options can be specified in any order, but they must appear after any other
parameters to the function.

2.12 Administrative Tools Procedures

Oracle8i Time Series provides procedures that simplify the creation of time series
schema objects. The quick-start demo (described in Section 1.6.1) illustrates the use
of several of these administrative tools procedures.

Table 2-19 lists the administrative tools procedures. Reference information for these
procedures is in Chapter 7.

Table 2—-19 Administrative Tools Procedures

Procedure Description

Add_Existing_Column Adds a column attribute from an existing flat table to a time
series.

Add_Integer_Column Adds an integer column attribute to an ongoing flat time series

creation specification.

Add_Number_Column Adds a number column attribute to an ongoing flat time series
creation specification.

Add_Varchar2_Column Adds a VARCHAR?2 column attribute to an ongoing flat time
series creation specification.

Begin_Create_TS_Group Initiates the context for creating a time series group (the
schema objects for a time series).

Cancel_Create_TS_Group Cancels the creation of a time series group, that is, cancels the
context initiated by the Begin_Create_TS_Group procedure.

Close_Log Closes the log file that had been opened by the Open_Log
procedure.

Display_Attributes Displays information about the time series schema being
created.

Time Series Concepts 2-43

Administrative Tools Procedures

Table 2-19 Administrative Tools Procedures (Cont.)

Procedure

Description

Drop_TS_Group

Drop_TS_Group_All

End_Create_TS_Group

Get_Flat_Attributes
Get_Object_Attributes
Get_Status

Open_Log

Set_Flat_Attributes
Set_Object_Attributes
Trace_ Off

Trace_On

Deletes the time series definition and views associated with it.
However, the underlying tables (calendar tables, detail data
tables, and so on) are not deleted.

Deletes the time series definition and all tables, views, indexes,
constraints, and triggers associated with it.

Closes the context established by the Begin_Create_TS_Group
procedure and creates all appropriate schema objects.

Retrieves the attributes of a flat time series.
Retrieves the attributes of an object-model time series.
Checks to see if a time series creation sequence is in progress.

Opens a log file that will contain the data definition language
(DDL) statements generated by the Time Series administrative
tools procedures.

Sets the attributes of a flat time series.
Sets the attributes of an object-model time series.

Disables debugging for Oracle8i Time Series administrative
tools procedures. Any data definition language (DDL)
statements and errors encountered when generating DDL
statements will not be logged to SERVEROUTPUT.

Enables debugging for Oracle8i Time Series administrative
tools procedures. Any data definition language (DDL)
statements and errors encountered when generating DDL
statements will be logged to SERVEROUTPUT.

2.12.1 Role Requirement for Administrative Tools Procedures

To create, delete, and modify schema objects using the Oracle8i Time Series
administrative tools procedures, you must have been granted one or more of the

following roles:

« DBA

« TIMESERIES DBA
« TIMESERIES_DEVELOPER (deletion restricted to current user)

For deletion of time series schema objects, the DBA and TIMESERIES_DBA roles let
you delete objects that belong to any user (schema), but the

2-44 Oracle8i Time Series User's Guide

Administrative Tools Procedures

TIMESERIES_DEVELOPER role lets you delete only objects that belong to the
current user.

2.12.2 Other Requirements for Administrative Tools Procedures

Logging, which is controlled by the Open_Log and Close_Log procedures, relies on
the PL/SQL file 1/0 procedure UTL_FILE, which is documented in the Oracle8i
Application Developer’s Reference - Packages manual.

To use logging, one or more directories for UTL_FILE output must be defined using
the UTL_FILE_DIR parameter in the Oracle initialization file. For information about
the UTL_FILE_DIR parameter, see the Oracle8i Reference manual.

Time Series Concepts 2-45

Administrative Tools Procedures

2-46 Oracle8i Time Series User's Guide

3

Time Series Usage

This chapter explains important procedures related to using Oracle8i Time Series. It
contains the following major sections:

Section 3.1, "Creating a Time Series Group"
Section 3.2, "Creating a Calendar"” (also validating the calendar)
Section 3.3, "Maintaining a Map Table"

Section 3.4, "Populating the Detail Table Using SQL*Loader" (loading time
series data)

Section 3.5, "Retrofitting Existing Tables" ("retrofitting" existing detail, calendar,
and map tables by using administrative tools procedures to generate schema
objects)

Section 3.6, "Validating Time Series Consistency"
Section 3.7, "Formulating Time Series Queries"

Section 3.8, "Deriving Calendar Exceptions" (deriving exceptions from time
series data)

Section 3.9, "Using Product-Developer Functions"

For detailed explanations of Oracle8i Time Series concepts and terminology, see
Chapter 2.

3.1 Creating a Time Series Group

You can use the administrative tools procedures to create a time series group (all the
necessary time series schema objects), accepting default values for most object
names. These procedures provide a convenient, simple way to create time series
schema objects, and they are recommended for most users. These procedures are

Time Series Usage 3-1

Creating a Time Series Group

used in the quick-start demo (see Section 1.6.1) and the usage demo (see
Section 1.6.2).

The following example shows the use of administrative tools procedures to create
all the necessary schema objects:

DECLARE

BEG N

-- Establish "tsquick’ as the tine series group nane for purposes of the
-- administrative tool s procedures. Colums w |l autonatically be created
-- for the tine series nane (which will be set to '"ticker’') and a

-- tinestanp. The colunns for the opening, high, low and closing prices
-- and the trading volume will be explicitly defined.

CROSYS. TSTool s. Begin_Qreate TS Qoup(’ tsquick’,’ flat’);

-- Set 'ticker’ as the nane of the tine series for functions.
-- Sanple values for specific tickers include ' AOVE, 'AONE, and ' XOORP .

CROSYS. TSTool s. Set_Flat _Attri but es(tsnane_col nane => "ticker’);
CROSYS. TSTool s. Set_Flat _Attri but es(tsnane_| ength => 10);

-- Define nuneric columms for prices.
CRCSYS. TSTool s. Add_Nunber _Gol urm(’ open’) ;
CRCSYS. TSTool s. Add_Nunber _Gol unm(” high’) ;
CRCSYS. TSTool s. Add_Nunber _Gol unm(’ | ow) ;
CROSYS. TSTool s. Add_Nunber _Gol unm(’ cl ose’) ;

-- Define an integer colum for tradi ng vol une (nunber of shares
-- traded on a given day).

CRCSYS. TSTool s. Add_| nt eger _Gol um(’ vol une’) ;

-- End the specification of schena objects and create the objects.

CROSYS. TSTool s. End Greate TS G oup;
exception

when ot hers then
begi n

3-2 Oracle8i Time Series User’'s Guide

Creating a Calendar

CROSYS. TSTool s. Cancel _Ceate TS G oup;
rai se;
end;

BEND,
/

The preceding call to End_Create_TS_Group causes many schema objects to be
created. Among them are:

» TSQUICK - object view. Use this when using Time Series functions.
Example: SELECT TimeSeries.<function>(ts.OPEN) FROM TSQUICK ts;

« TSQUICK_RVW - relational view. Use this for protected insert, update, and
delete operations. Uses an INSTEAD OF trigger.

« TSQUICK TAB - flat table for detail data.

« TSQUICK_MAP - mapping (metadata) table. The quick-start demo
associates a null calendar with each ticker.

« TSQUICK_CAL - table for calendar definitions. The quick-start demo
defines a monthly calendar for use with scaleup operations.

3.2 Creating a Calendar
Calendars are needed if one or more of the following conditions apply:
= You are using any regular time series.
= You need to perform time scaling.
You have several options for creating a calendar, including:

« Create the calendar dynamically in the context of a query, using one of the
calendar-creation functions. See the information on the Month function in
Chapter 4 for an example.

« Create the calendar by inserting its definition in a table of calendars. If the table
of calendars does not already exist, create it first.

Calendars for a regular time series are stored in the calendar table associated with
that time series group. The calendar table typically has a name in the format
groupname_CAL (for example, tsquick_cal for the quick-start demo). Calendars to be
used for scaling can be stored in the group calendar table or in a calendar table that
is separately created and managed.

Time Series Usage 3-3

Creating a Calendar

Calendars are based on the system-defined data type ORDTCalendar, which is
supplied with Oracle8i Time Series. ORDTCalendar has the following definition:

/* SystemDefined Cal endar Data Type */

CREATE TYPE CRDSYS. GRDTCGal endar AS GBIECT (

cal type | NTECGER
nane VARCHAR2(256) ,

frequency | NTEGER

pattern CROSYS CROTPatt ern,

m nDat e DATE,

maxDat e DATE

of f Excepti ons CROSYS. CROTEXcept i ons,
onBExcept i ons CRDSYS. CROTEXcept i ons) ;

Example 3-1 creates a table named my_calendars and defines a calendar named
BusinessDays-97. The BusinessDays-97 calendar includes Mondays through Fridays
in 1997, but excludes 04-Jul-1997 and 25-Dec-1997. Explanatory notes follow the
example.

Example 3-1 Create a Calendar of Business Days
CREATE TABLE ny_cal endars of CORDSYS. CROTCal endar ;

INSERT | NTO ny_cal endars @

VALLES(
CRDSYS. CROTCal endar (
0, @
‘BusinessDays-97, (3]
4, (4]
ORDSYS.ORDTPattem(ORDSYS. ORDTPattemBits(0,1,1,1,1,1,0), (5]

(to_date(01-0597, MM-DD-YY?)),
to_date(01-01-97,MM-DD-YY)),
to_date(01-01-98, MM-DD-YY’),
ORDSYS. ORDTExceptions(to_date(07-04-97, MM-DD-YY), (7]
to_date(12-25-97"/MM-DD-YY?),
NULL), ©

Notes on Example 3-1:

@ my calendars is a table of ORDSYS.ORDTCalendar objects. The ORDTCalendar
data type is described in Section 2.3.1.

@ 0 (zero) for calendar type (caltype) indicates that this is an exception-based
calendar. (This is the only calendar type currently supported.)

3-4 Oracle8i Time Series User’'s Guide

Creating a Calendar

®060

o

BusinessDays-97 is the name of this calendar.
4 is the frequency code for day.

The pattern is defined as an excluded occurrence followed by five included
occurrences followed by an excluded occurrence (0, 1, 1, 1, 1, 1, 0). Because the
frequency is daily and because the anchor date (05-Jan-1997) is a Sunday,
Sundays are excluded, Mondays through Fridays are included, and Saturdays
are excluded.

The calendar begins at the start of 01-Jan-1997 and ends at the start of 01-Jan-
1998.

04-Jul-1997 and 25-Dec-1997 are off-exceptions (that is, excluded from the
calendar).

NULL indicates that there are no on-exceptions (that is, no Saturday or Sunday
dates to be included in the calendar).

After you create the calendar, you should validate it to ensure that you have not
made any mistakes in the calendar definition. The following example validates the
BusinessDays-97 calendar created by Example 3-1.

CEQLARE
tstCal ordsys. ordtcal endar;
dummyVal i nteger;
val i dFl ag i nteger;

BEQ N

-- Select a calendar into tstGal fromny_cal endars.
sel ect val ue(cal) into tstCal

fromny_cal endars cal

where cal . name = ' Busi nessDays- 97’ ;

-- Dsplay the cal endar
sel ect ordsys.tineseries. display(tstCal) into dumyVal fromdual;
dbns_out put . new | i ne;

val i dFl ag : = CRDSYS. CALENDAR | sVal i dCal (tstCal);

if (validFag = 1) then
dbns_out put . put _| i ne(’ Busi nessDays-97 cal endar is valid.’);
el se
dbns_out put . put _| i ne(’ Busi nessDays-97 cal endar is NOT valid.’);
dbns_out put. put _|ine(’ Use ValidateCal to determne inconsistency.’);
end if;

Time Series Usage 3-5

Maintaining a Map Table

END,
/
S atenent processed.

CGal endar Narre = Busi nessDays- 97
Frequency = 4 (day)
M nDate = 01- JAN 97
MaxDate = 01- JAN 98
patBits:
0,1,1,1,1,1,0
pat Anchor = 05- JAN 97
onExceptions : Atomc NULL

of f Excepti ons :
04-Ju.- 97 25- DEG 97

Busi nessDays- 97 cal endar is valid.

3.3 Maintaining a Map Table

A map table maintains the mapping, or coupling, between a time series (such as a
specific stock ticker) and a calendar. When you create a time series group, the map
table by default has a name in the form groupname_MAP. (In the quick-start demo,
the map table is named tsquick_map; in the usage demo, the map table is named
stockdemo_metadata.) The map table has two VARCHAR2 columns:

= Time series name that by default matches the tsname_colname value when the
time series group was created (for example, ticker)

«» Calendar name
The following example creates a map table named my_calendars_map:

CREATE TABLE ny_cal endars_nap (
ticker VARGHARZ(5),
cal nane VARCHAR2(256) ,
QONSTRAINT - pk_ny_cal endars_nap PR MARY KEY (ticker));

For each row in the map table, the calendar name can be null or can contain the
name of a calendar:

« If the calendar name column is null, no calendar will be used for Time Series
functions (that is, the input time series will be treated as an irregular time
series). The following example creates a row in the my_calendars_map table for
each ticker in the tsquick_tab table and leaves the calname column null:

3-6 Oracle8i Time Series User’'s Guide

Populating the Detail Table Using SQL*Loader

I NSERT | NTO ny_cal endars_nap (ticker)
SELECT D STINCT ticker FROMt sdev. tsquick_tab;

« If the calendar name column contains the name of a calendar, that calendar is
used for Time Series functions specifying that time series. The following
example creates two rows in the my_calendars_map table, associating two tickers
with the BusinessDays-97 calendar:

I NSERT | NTO ny_cal endars_nap VALUES(’ AQVE , ' Busi nessDays-97);
I NSERT | NTO ny_cal endars_nap VALUES(' SAMJO , '’ Busi nessDays- 97’);

For rows where a calendar name is specified, you can adopt one of the following
strategies, depending on which calendars apply to which time series:

« Use the same calendar for all time series (the "shared calendar" approach). For
example, map all tickers to a single calendar of stock trading days.

« Use a separate calendar for each time series. For example, create an acme
calendar for the ACME ticker, a samco calendar for the SAMCO ticker, and so
on.

« Use a combination of approaches: use some calendars for multiple time series,
and perhaps some calendars for only one time series each. For example, some
stocks might trade on exchanges with different holidays, or some stocks might
have had trading suspended on certain days.

3.4 Populating the Detail Table Using SQL*Loader

To populate the underlying data storage table or tables, perform a bulk load of the
time series data, preferably using the SQL*Loader utility if you have a large amount
of data. For example, the tsquick.sql procedure uses SQL*Loader with hypothetical
stock market data, as follows:

sgl I dr useri d=t sdev/tsdev control =tsqui ck.ctl |og=tsquick.|og bad=tsqui ck. bad
ski p=15 error s=1000

To update the time series data, perform incremental loads as needed.

To ensure the consistency of time series data during loading, you must choose one
of the approaches described in Section 2.8.3:

= Adjust calendars to be consistent with the time series, if you are sure that all
timestamps are correct.

Time Series Usage 3-7

Populating the Detail Table Using SQL*Loader

This strategy is normally appropriate when there is a unique calendar per time
series.

« Validate that each time series is consistent with the calendar, if you expect time
series data to adhere to a predefined calendar.

This approach is particularly useful if the same calendar is used for all time
series data being loaded.

This section describes how to perform bulk loading using these two approaches,
and it also describes how to perform incremental loading.

The loading of time series data is usually performed under controlled
circumstances, so it is safe to perform these loads directly to an underlying table
instead of to a relational view.

3.4.1 Bulk Loading

After you create an index-organized table (I0T) to hold time series data (such as for
the stockdemo demo database), you must populate the table with data. For a
database of stock information, you may need to load millions of rows of daily
summary information into the IOT.

SQL*Loader is recommended for loading large amounts of time series data. The
following example shows a SQL*Loader script, with an excerpt from the sample
data (stockdat.dat) and the SQL*Loader control file (stockdat.ctl). For complete
information about SQL*Loader, see the Oracle8i Utilities manual.

The SQL*Loader script contains the following:

%sql | dr userid=tsdev/tsdev control =stockdat. ctl
| og=st ockdat . | og bad=st ockdat . bad errors=1000

The stockdat.dat sample data file includes the following:

AOVE 01-NO-96 59.00 60.00 58.00 59.00 1000
AOVE 04-NO-96 60.00 61.00 59.00 60.00 1000
AOVE 05-NO-96 61.00 62.00 60.00 61.00 1000

The stockdat.ctl file contains the following

options (direct=true)
unr ecover abl e

| oad dat a

infile ’stockdat.dat’
repl ace

into tabl e stockdeno

3-8 Oracle8i Time Series User’'s Guide

Populating the Detail Table Using SQL*Loader

sorted indexes (St ockTabx)
fields termnated by whitespace
(ticker, tstanp DATH13) "DD MON YY', open, high, low, close, volune)

SQL*Loader can handle many file formats and delimiters, as documented in the
Oracle8i Utilities manual.

After the load has completed, you may want to choose one of the following
approaches for ensuring calendar consistency:

« Adjust calendars to conform to time series data (see Section 3.4.1.1).
« Validate that the time series conforms to the calendar (see Section 3.4.1.2).

In either case, you may need to update the exception lists of your calendars.

3.4.1.1 Adjusting Calendars to Conform to Time Series Data

Often you will want to create calendars that conform to the time series data that you
are receiving. In this case, you usually know the frequency and the pattern of a
calendar, but not the specific on- or off-exceptions. You can extract these exceptions
from the data by using the DeriveExceptions function.

3.4.1.2 Validating That the Time Series Conforms to the Calendar

Often you will want to ensure that the time series data extracted from the incoming
data conforms to a predefined calendar. To do this, insert the exceptions either
when you create the calendar or afterward with the InsertExceptions functions (or
do both, creating the calendar with some exceptions and then adding others); then
use the IsValidTimeSeries function to check that the time series is consistent with
the calendar.

You can insert exceptions when you define the calendar. For example, the following
statement specifies 28-Nov-1996 and 25-Dec-1996 as off-exceptions in the calendar
named BUSINESS-96:

I NSERT | NTO st ockdeno_cal endars VALUEY

CROSYS. GRDTCal endar (
0,
" BUSI NESS-96',
4,
CROSYS. CRDTPat t er n(

CROSYS. (RDTPatternBits(0,1,1,1,1,1,0),
TO DATE(’ 01- JAN- 1995’ , ' DD MON- YYYY')),

TO DATH(’ 01- JAN- 1990 , ' DD MON- YYYY') ,
TO DATH(’ 01- JAN- 2001 , ' DD MON- YYYY') ,

Time Series Usage 3-9

Populating the Detail Table Using SQL*Loader

CROSYS. CRDTEXcept i ons(
TO DATH(’ 28- NOV-1996' , * DD MON YYYY') ,
TO DATH’ 25- DEG 1996’ , ' DD MON YYYY')),
CROSYS. CRDTEXcept i ons()
));

You can also add exceptions after the calendar is defined by using the
InsertExceptions function. For example, the following statement adds 01-Jan-1997,
17-Feb-1997, and 26-May-1997 as off-exceptions:

UPDATE st ockdeno_cal endar s cal
SET cal = (SELECT CROSYS. Gal endar . | nsert Except i ons(
VALUK(cal),
CROSYS. CRDTDat eTab(
to_date(’ 01-JAN-97' ,' DD-MON- YY),
to_date(’ 17-FEB-97'," DD-MON- YY),
to_date(’ 26- MAY-97' ," DD MINYY')))
FRCM dual)
WHERE cal . name = ' BUSI NESS-96' ;

After you have defined the calendar and populated the exception lists, you can use
the IsValidTimeSeries function to check that the time series is consistent with the
calendar.

3.4.2 Incremental Loading

After you have performed the bulk load of time series data and have started using
Oracle8i Time Series, you will probably want to add data periodically. For example,
every trading day after the stock exchange closes, that day’s data for each ticker
becomes available.

As with bulk loading, incremental loading is typically done in a controlled
environment. You know which timestamps will become off-exceptions, and you can
explicitly update the exception lists of the appropriate calendars. The following
example demonstrates such an update:

UPDATE st ockdeno_cal endar s cal
SET cal = (SELECT CRDSYS. Gal endar . | nser t Except i ons(
VALUK(cal),
to_date(’ 01- JAN-97' ,’ DD MON- YY)
FRCM dual)
WHERE cal . nane = ' XOORP ;

The SQL*Loader utility is recommended for performing an incremental load of such
additional data. The following example shows a SQL*Loader script, with an excerpt

3-10 Oracle8i Time Series User's Guide

Retrofitting Existing Tables

from the sample daily data (stockinc.dat) and the SQL*Loader control file
(stockinc.ctl).

The SQL*Loader script contains the following:

sql I dr useri d=t sdev/tsdev control =stocki nc. ctl
| og=st ocki nc. | og bad=st ocki nc. bad error s=1000

The stockinc.dat sample data file includes the following:

AQVE 02- JAN-97 100.00 101.00 99.00 100.00 1000
FUNQO 02- JAN-97 25.00 25.00 25.00 25.00 2000
SAMDO 02- JAN-97 39.00 40.00 38.00 39.50 30000

The stockinc.ctl file contains the following:

| oad dat a
infile ’stockinc.dat’

append
into tabl e stockdeno

fields termnated by whitespace
(ticker, tstanp DATH13) "DD MO\ YY', open, high, low, close, volune)

Note the following differences in the control file for incremental loading as opposed
to bulk loading:

= The conventional path is used instead of the direct path. That is, the control file
for incremental loading does not contain the line options (direct=true).

The conventional path is better for incremental loading because the amount of
new data (daily stock information) is small relative to the total amount of data.
For an explanation of conventional and direct paths, including situations in
which the conventional path is necessary or preferable, see the SQL*Loader
documentation in the Oracle8i Utilities manual.

« The APPEND keyword is specified, so that the new data is appended to the
existing tabular data.

3.5 Retrofitting Existing Tables

You can use the administrative tools procedures to "retrofit" existing tables (that is,
generate schema objects using existing detail, calendar, and map tables). The retrofit
demo uses this approach, and the statements and comments in the retrofit.sql file
reflect the approach described in this section. (The existing tables that are retrofitted

Time Series Usage 3-11

Retrofitting Existing Tables

are created in the tables.sql procedure, which the usage demo invokes before the
retrofit.sql procedure.)

To use the administrative tools procedures to retrofit existing tables:

1. Create the time series schema, specifying that the tables already exist and using
the Add_Existing_Column procedure to identify each existing column to be
included in the time series schema objects. For example:

DECLARE
BEG N

-- Establish 'stockdenmo ts’ as the tine series group nane for purposes
-- of the adnministrative tools procedures.

CROSYS. TSTool s. Begin_Qeate TS G oup(’ stockdeno_ts’, ' flat’);

-- Assert that the detail, nap, and cal endar tables exist,

-- and define the nanes for these tabl es.

-- Explicitly set the nane of the relational view

-- Explicitly set the nanes of the tinestanp and tine series nane
-- col ums.

ordsys.tstool s.set_flat_attri butes(

detail _tabl e nane => ' st ockdeno’ ,

detail table exists => 1,

nmap_t abl e_nane => 'stockdeno_netadat a’,
nmap_tabl e_exists = 1,

cal _table nane => ' st ockdeno_cal endars’,
cal table exists = 1,

t st anp_col nane = "tstanp',

t snane_col nane => "ticker’,

rel _view nane => ' stockdeno_sv');

-- Tell TSTools the nanes of existing tine series col unns
-- (as defined for the table stockdeno)

CRCSYS. TSTool s. Add_Exi sti ng_Col unm(’ open’) ;
CROSYS. TSTool s. Add_Exi sting_GCol unm(” hi gh') ;
CROSYS. TSTool s. Add_Exi sting_Col unm(’ | ow) ;
CRCSYS. TSTool s. Add_Exi sting_Col um(’ cl ose’) ;
CRCSYS. TSTool s. Add_Exi sting_Col umm(’ vol une’);

-- End the specification of schena objects and create the objects.

3-12 Oracle8i Time Series User's Guide

Formulating Time Series Queries

CROSYS. TSTool s. End_Greate TS G oup;

exception
when others then
begi n
CROSYS. TSTool s. Cancel _Ceate TS G oup;
rai se;
end;

BND,
/

Grant specific privileges on the views to intended users. For example:

-- Grant SELECT privil eges on the object view
GRANT SELECT ON st ockdeno_ts TO tsuser;

-- Grant SHECT, UPDATE, DHELETE privileges on the rel ational view
GRANT SELECT, | NSERT, UPDATE, DELETE on st ockdermo_sv TO tsuser;
GRANT RESOLRCE TO t suser ;

3.6 Validating Time Series Consistency

Choose one of the following approaches to ensuring the consistency of time series
data, using the guidelines in Section 2.8.3:

Adjust calendars to be consistent with the time series.

Use the DeriveExceptions function in adjusting a calendar to be consistent with
the time series. See Section 2.2.5 for more information about this approach.

Validate that each time series is consistent with the calendar.

Use the IsValid TS function to check that the time series is consistent with the
calendar. See the IsValidTS function reference information in Chapter 5.

3.7 Formulating Time Series Queries

Formulating time series queries involves invoking time series or time scaling
functions, or both. Example 3-2 uses the Mavg time series function to obtain 10-day
moving average of the closing price for stock ACME for December 1996, and it uses
the ScaleupSum time scaling function to obtain monthly trading volumes for stock
ACME. (The results shown in the example reflect sample data for the Oracle8i Time
Series usage demo.)

Time Series Usage 3-13

Formulating Time Series Queries

Example 3-2 Formulate Time Series Queries

SH ECT to_char(tstanp) tstanp, val ue
FROM st ockdeno_ts ts,
TABLE (CAST(CRDSYS. Ti neSer i es. Extract Tabl e(
CROSYS. Ti neSeri es. Mavg(ts. cl ose, to_date(’ 01-CEG 96’ ,’ DD MNYY'),
to_date(’ 31-DEG 96’ ,’ DD MON- YY), 10)
) AS GRDSYS. GRDTNunTab)) t
WHERE ts.ticker= AQOMVE ;

30- DEG 96 93.
31- DEG 96 94.
21 rows sel ect ed.

02- DEG 96 74.5
03- DEG 96 75.5
04- DEG- 96 76.5
05- DEG 96 77.5
06- DEG- 96 78.5
09- DEG 96 79.5
10- CEG- 96 80.5
11- OEG 96 81.5
12- OEG 96 82.5
13- OEG 96 83.5
16- CEG 96 84.5
17- OEG 96 85.5
18- CEG 96 86.5
19- CEG 96 87.5
20- DEG 96 88.5
23- DEG 96 89.5
24- DEG 96 90.5
26- DEG- 96 91.5
27- DEG 96 92.5

5

5

SH ECT to_char(tstanp) tstanp, val ue
FROM t sdev. st ockdenmo_ts ts, tsdev.stockdeno cal endars cal,
TABLE (CAST(CRDSYS. Ti neSeri es. Extract Tabl e(
CRDSYS. Ti neScal e. Scal eupSun{t s. vol une,
VALUE(cal))
) AS CRDSYS. GROTNunTab)) t
WHERE ts. ticker= AOME and cal . nane=" Monthly’;

01- NOV- 96 20000

3-14 Oracle8i Time Series User's Guide

Deriving Calendar Exceptions

01- DEG 96 21000
2 rows sel ected.

3.8 Deriving Calendar Exceptions

This section explains in greater detail the approaches to deriving calendar
exceptions from time series data. These approaches were introduced in

Section 2.2.5; see that section for information on concepts related to exceptions and
the reasons for choosing a particular approach.

3.8.1 Deriving Exceptions Using a Time Series (Approach 1)

This approach to deriving exceptions takes a time series and optionally a date range
as input parameters, using the following form of the function:

DeriveExceptions(inputTS ORDTNumSerieslOTRef
[, startDate DATE [, endDate DATE]]
) RETURN ORDSYS.ORDTCalendar;
or
DeriveExceptions(inputTS ORDTVarchar2SerieslOTRef
[, startDate DATE [, endDate DATE]]
) RETURN ORDSYS.ORDTCalendar;

The input time series (inputTS) has an associated calendar and data for all the
desired timestamps (for example, daily closing prices for stock XYZ for all trading
days during the period for the time series or the date range bounded by startDate
and endDate). A calendar is returned that is defined on the same pattern and
frequency as the input calendar, and the exception lists of the returned calendar are
populated to be consistent with the time series data. The exception lists are updated
based on finding timestamps that are in the calendar pattern or in the time series,
but not in both. (A timestamp is in the calendar pattern if it is within the date range
of the calendar and maps to an on (1) bit in the pattern.)

The returned calendar’s on- and off- exceptions are populated based on the calendar
pattern and the time series, as follows:

= Alltimestamps that are in the calendar pattern but not in the time series become
off-exceptions.

Time Series Usage 3-15

Deriving Calendar Exceptions

For example, 04-Jul-1997 (Friday) is in the pattern of a stock trading calendar,
but it is not a date on which U.S. stocks were traded.

« All timestamps that are in the time series but are not in the calendar pattern
become on-exceptions.

The following example populates a calendar named Quarterly with exceptions
based on the actual data in the unemployment_rate time series (in which data for
some quarters is missing):

UPDATE nyts_cal cal
SET cal =
(SELECT CRDSYS. Ti neSeri es. Deri veExceptions(ts. unenpl oynent _rate)
FROM nyts ts
WHERE ts.region ='1")
WHERE cal . name = 'Quarterly’;

3.8.2 Deriving Exceptions Using a Calendar and Table of Dates (Approach 1A)

This approach to deriving exceptions takes a calendar and an ORDTDateTab (that
is, a table of dates) as input parameters, using the following form of the function:

DeriveExceptions(cal ORDTCalendar, DateTab ORDTDateTab
[, startDate DATE [, endDate DATE]]
) RETURN ORDSYS.ORDTCalendar;

The table of dates (DateTab parameter) includes all dates in the time series, for
example, all dates on which stock XYZ traded. A calendar is returned that is
defined on the same pattern and frequency as the input calendar, and the exception
lists of the returned calendar are populated to be consistent with the time series
data in DateTab. The exception lists are updated based on finding timestamps that
are in the calendar pattern or in the table of dates, but not in both. (A timestamp is
in the calendar pattern if it is within the date range of the calendar and maps to an
on (1) bit in the pattern.)

The returned calendar’s on- and off- exceptions are populated based on the calendar
pattern and the table of dates, as follows:

= All timestamps that are in the calendar pattern but not in the table of dates
become off-exceptions.

For example, 04-Jul-1997 (Friday) is in the pattern of a stock trading calendar,
but it is not a date on which U.S. stocks were traded.

3-16 Oracle8/ Time Series User's Guide

Deriving Calendar Exceptions

« All timestamps that are in the table of dates but are not in the calendar pattern
become on-exceptions.

The following example derives the exceptions for all time series in the stockdemo
table and updates the corresponding calendars in the stockdemo_calendars table:

UPDATE st ockdeno_cal endar s cal
SET cal = (SELECT CRDSYS. Cal endar . Deri veExcept i ons(

VALUK(cal),

CAST(nul ti set (
SH ECT s.tstanp
FROM st ockderno s
WHERE cal . nane = s.ticker) AS CROSYS CRDIDat eTab))

FROM dual) ;

This approach (Approach 1A) to deriving calendar exceptions has the following
requirements:

« Theinputtable of dates must be sorted in ascending timestamp order before the
call to the DeriveExceptions function.

= The precision of the timestamps of the dates in the table must conform to the
frequency of the input calendar.

3.8.3 Deriving Exceptions Using Two Time Series Parameters (Approach 2)

This approach to deriving exceptions takes two time series references as input
parameters, using the following form of the function:

DeriveExceptions(seriesl ORDTNumSeries|OTREef,
series2 ORDTNumSeriesIOTRef)
[, startDate DATE [, endDate DATE]]
) RETURN ORDSYS.ORDTCalendar;

or

DeriveExceptions(series1 ORDTVarchar2Series|OTRef,
series2 ORDTVarchar2Series|OTRef)
[, startDate DATE [, endDate DATE]]
) RETURN ORDSYS.ORDTCalendar;

Time Series Usage 3-17

Deriving Calendar Exceptions

This overloading of the DeriveExceptions function allows the input parameters to
be time series REFs (either two ORDTNumSerieslOTRef parameters or two
ORDTVarchar2SerieslOTRef parameters).

Before calling DeriveExceptions, you must construct a time series based on a
reference calendar. This time series will contain all the timestamps within the date
range (minDate through maxDate) of the calendar.

The following example builds a reference time series based on a calendar named
PATTERN-ONLY. An INSERT statement populates the time series named PATTERN-
ONLY with the valid timestamps between the starting and ending dates of the
calendar.

I NSERT | NTO st ocks(ti cker,t st anp)
SHECT ' PATTERN QLY
tl.cl
FRQM
(SELECT col umn_val ue c1 FROMt he
(SELECT CAST(CRDSYS. Cal endar . Ti meSt anpsBet ween(VALUE(cal) ,
cal . mndat e,
cal . naxdat €)
AS CRDSYS. (RDTDat eTab)
FROM st ock_cal endars cal
WHERE cal . name = ' PATTERNQ\LY')) t1;

The insertion is made directly into the underlying table, not into the relational view.
Using the underlying table is safe here because the time series is presumed to be
correct, so the mechanisms for ensuring consistency between the time series and the
calendar provided by the relational view are not needed in this case.

The PATTERN-ONLY calendar should have no exceptions. If this calendar has any
exceptions, the resulting time series will have exception lists that are not null, which
will cause the DeriveExceptions function to report an error.

After you create the reference time series, call the DeriveExceptions function with
the reference time series as the first parameter (seriesl). DeriveExceptions compares
the dates in seriesl with the dates in series2, and it returns the calendar of series2
with the exceptions created as follows:

= All timestamps that are in seriesl but not in series2 become off-exceptions.

For example, if series2 contains dates on which stock XYZ traded and 04-Jul-
1997 (Friday) is not in that time series, then 04-Jul-1997 is added to the calendar
as an off-exception.

« All timestamps that are in series2 but not in seriesl become on-exceptions.

3-18 Oracle8/ Time Series User's Guide

Using Product-Developer Functions

The following example uses the reference time series created in the preceding
statement to update the exception lists of every other calendar in the
stockdemo_calendars table, with the exceptions for each calendar derived from the
timestamps in the associated time series. (This example assumes that each calendar
maps to a time series with the same name.)

UPDATE st ockdeno_cal endar s cal
SET cal = (SELECT CRDSYS. Ti neSeri es. Deri veExcepti ons(tsl. open, t s2. open)
FROM st ockdeno_ts tsl, stockdeno ts ts2
WHERE tsl.ticker = 'PATTERNQWLY and ts2.ticker = cal.nane)
WHERE cal . nane <> ' PATTERN-O\LY ;

This approach (Approach 2) to deriving calendar exceptions has the following
requirements:

« The input parameters to the DeriveExceptions function must be either two
ORDTNumSerieslOTRef parameters or two ORDTVarchar2Series|OTRef
parameters. ORDTNumSeries and ORDT Varchar2Series variants are not
supported for this function.

« Calendars of the time series input parameters must have the same frequency
and pattern.

= Thefirst time series parameter (PATTERN-ONLY time series) must have no
exceptions.

« The starting date (minDate) of the calendar of the second time series must be
greater (later) than or equal to the starting date of the calendar of the first time
series.

« The ending date (maxDate) of the calendar of the second time series must be less
(earlier) than or equal to the ending date of the calendar of the first time series.

3.9 Using Product-Developer Functions

Product-developer functions, described in Section 2.9.2, let you modify and expand
the Oracle8i Time Series capabilities. For example, an ISV could develop additional
time series analysis functions by calling product-developer functions.

The following example shows the use of the IsValidDate, NumTstampsBetween,
and OffsetDate product-developer functions in a PL/SQL implementation of the
Lead function. The Lead function accepts an input time series and a lead_date, and
returns a time series where the starting timestamp is the lead_date. (Note that to
simplify the presentation, some error checking has been omitted.)

Time Series Usage 3-19

Using Product-Developer Functions

create function Lead (ts CRDSYS. C(RDINungeri es, | ead date date)
return GROSYS, GROTNUn®eries is
i integer;
outts CRDSYS. CROTNungeries; /* Tenporary Storage for Result */
new tstanp date; /* Changeabl e version of |ead date */
last_| ead_date date; /* Last tinestanp of the output time series*/
first_tstanp date; /* Frst timestanp of
the input tine series */
last_index integer; /* Last index of the input time series */
last_tstanp date; /* Last tinestanp of the input tine series */
units integer; /* Nunber of tinestanps between input and
output tine series */

ERR LEAD TSTAMWP_BCOUNDS const ant i nteger := 20540;
ERR LEAD TSTAWP_BOUNDS MG const ant var char 2(100) : =
"Projected |l ead timestanp beyond cal endar bounds’;

begi n
first_tstanp :=ts.series(1).tstanp;
last _index :=ts.series.last;
last _tstanp :=ts.series(last_index).tstanp;

if CROSYS Cal endar.|sValidbate(ts.cal, |ead date) = O then
Rai se_Appl i cation_Eror (ERR_LEAD TSTAMP_BOUNDS,
ERR LEAD TSTAWP_BOUNDS MSG ;
end if;

/* units is the nunber of tinestanps between the first timestanp of

the input time series and | ead date. */

units : = CROBYS. Cal endar. NunTi neSt anpsBet ween(ts. cal , first_tstanp,
| ead_dat e);

last _|ead_date : = CROSYS Cal endar. OfsetDate(ts. cal, |ast_tstanp,
units);
if last lead date is null then
Rai se_Appl i cation_Eror (ERR_LEAD TSTAMP_BOUNDS,
ERR LEAD TSTAVP BONDS MSG ;
end if;

/* Instantiate output tine series. */
outts := CROBYS CROTNungeries(’' Lead Result’, ts.cal, CROSYS CGRDTNuntab());
outts.series. extend(last_i ndex);

/* Assign the first timestanp of the output tine series to
first_|l ead_date. Gopy value frominput tine series to out put

3-20 Oracle8/ Time Series User's Guide

Using Product-Developer Functions

end;

tinme series. */
new tstanp := | ead date;
outts.series(l) := CROBYS CGROTNuntel | (new tstanp, ts.series(1).value);

/* Assign subsequent tinestanps by calling GfsetDate with the
previous date and an offset of 1. */
for i in 2. .outts.series.last |oop
new tstanp : = CROSYS Cal endar. Ofset Dat e(ts. cal ,
outts.series(i-1).tstanp, 1);
outts.series(i) := CROSYS. CROTNUnCel | (new t st anp,
ts.series(i).val ue);
end | oop;

return(outts);

For other examples of using product-developer functions, see the files for the
advanced-developer demo (described briefly in Table 1-1 in Section 1.6).

Time Series Usage 3-21

Using Product-Developer Functions

3-22 Oracle8i Time Series User's Guide

A

Calendar Functions: Reference

The Oracle8i Time Series library consists of:

Data types (described in Section 2.3)

Calendar functions (described in this chapter)
Time series functions (described in Chapter 5)
Time scaling functions (described in Chapter 6)

Administrative tools procedures for creating time series schema objects
(described in Chapter 7)

Calendar functions are mainly used by product developers, such as ISVs, to develop
new time series functions and to administer and modify calendars.

Time series and time scaling functions and the administrative tools procedures are
used mainly by application developers.

Syntax notes:

The ORDSYS schema name and the package name must be used with the
function name, although public synonyms can be created to eliminate the need
for specifying the schema name (see Section 1.5). Each function is included in a
PL/SQL package, such as Calendar, TimeSeries, or TimeScale. The ORDSYS
schema name and the package name are included in the Format and in any
examples.

Function calls are not case sensitive, except for any quoted literal values. For
example, the following code line excerpts are valid and semantically identical:

sel ect CAST(Ti neSeri es. Extract Tabl e(cl ose) AS CROTNunTab)
sel ect cast(TIMESER ES. extracttabl e(cl ose) as ordt nunt ab)
sel ect cast(Ti MeSeR Es. eXt RaG TaB E A osE) As ordt NJM ab)

Calendar Functions: Reference 4-1

« The syntax and examples show the reference-based interface (types
ORDTNumSerieslOTRef and ORDTVarchar2SerieslOTRef).

4-2 Oracle8i Time Series User’'s Guide

CombineCals

CombineCals

Format

Description

Parameters

ORDSYS.Calendar.CombineCals(
call ORDSYS.ORDTCalendar,
cal2 ORDSYS.ORDTCalendar,
[startDate DATE,
endDate DATE,]
equalFlag OUT INTEGER
) RETURN ORDSYS.ORDTCalendar;

Combines two calendars. The CombineCals function is provided primarily for use
in developing functions that operate on two time series (such as the TSAdd
function).

call
The first calendar to be combined.

cal2
The second calendar to be combined.

startDate

Starting date for the resulting calendar. If startDate is not specified, the starting date
is the starting date for the calendars, or the higher (later) of the starting dates if they
are different.

endDate

Ending date for the resulting calendar. If endDate is not specified, the ending date is
the ending date for the calendars, or the lower (earlier) of the ending dates if they
are different.

Calendar Functions: Reference 4-3

CombineCals

equalFlag
Contains 1 if the input calendars are equal, and 0 if the input calendars are not
equal.

Usage
If the frequencies of the two calendars are not equal, the function returns NULL.

If the aligned patterns of the two calendars are not equal, the function returns
NULL.

If startDate is not specified, the starting date of the resulting calendar is the later of
the starting dates of the two calendars, that is, resulting minDate = max(minDatel,
minDate2).

If endDate is not specified, the ending date of the resulting calendar is the earlier of
the ending dates of the two calendars, that is, resulting maxDate = min(maxDatel,
maxDate2).

The function intersects the on-exception lists of the two calendars. For example, if
call has 30-Mar and 29-Jun as on-exceptions and cal2 has 29-Jun and 28-Sep as on-
exceptions, the resulting calendar has only 29-Jun as an on-exception.

The function performs a union of the off-exceptions of the two calendars. For
example, if call has 01-Jan and 04-Jul as off-exceptions and cal2 has 01-Jan and 14-
Jul as off-exceptions, the resulting calendar has 01-Jan, 04-Jul, and 14-Jul as off-
exceptions.

CombineCals and IntersectCals differ as follows:

=« CombineCals requires the frequencies and the aligned patterns of the two
calendars to be equal, whereas IntersectCals requires only that the frequencies
be equal. However, IntersectCals does require that the patterns be of the same
length.

« CombineCals lets you specify starting and ending dates for the resulting
calendar, whereas IntersectCals does not let you specify starting and ending
dates.

Example
Combine two calendars (GENERIC-CAL1 and GENERIC-CALZ2), then intersect the
two calendars:

CONNECT TSUSER TSUSER
SET SERVERQUTPUT CN
ALTER SESSI ON SET NLS DATE FCRVAT = ' MM DD YYYY H24:M: SS ;

4-4 Oracle8i Time Series User’'s Guide

CombineCals

DECLARE

tstCal 1 CROSYS. CROTCAl endar ;
tst Cal 2 CROSYS. CRDOTCAl endar ;
resul t Cal GRDSYS. CRDICal endar ;
equal Fl ag | NTEGER

dummyVal | NTEGER

BEG N

-- Select the calendars GENER G CALL into tstCal 1
-- and GENERGCAL2 into tstCal 2

-- from st ockdeno_cal endars.

SELECT val ue(cal) INTOtstCal 1

FROM TSDEV. st ockdeno_cal endars cal

WHERE cal .nane = ' (ENER G CALT ;

SELECT val ue(cal) INTOtstCal 2

FROM TSDEV. st ockdeno_cal endars cal

WHERE cal .nane = ' (ENER G CAL?' ;

-- Dsplay the calendars tstCal 1 and tstCal 2.
SELECT CGRDSYS. Ti meSeri es. O spl ay(tst Gal 1) | NTO dummyVal FROM dual ;
SELECT CGRDSYS. Ti meSeri es. O spl ay(tst Gal 2) | NTO durmyVal FROM dual ;

-- Qonbine tstCal 1 and tstCal 2

resul tGal := CRDSYS Cal endar. Conbi neCal s(tstCal 1, tstCal 2, equal H ag);
SELECT CRDSYS. TimeSeries. D spl ay(resultCal, 'result of ConbineCals’)

I NTO durmyVal

FROM dual ;

DBV QJTPUT. PUT_LINE'equal Hag ="' || equal H ag);

-- Intersect tstCall and tstCal 2

resultCal := CROSYS Calendar. IntersectCal s(tstCal 1, tstCal 2);

SELECT ORDSYS. Ti meSeries. D spl ay(resultCal, 'result of IntersectCals’)
I NTO durmyVal

FROM dual ;

END,
/
This example might produce the following output:

CGal endar Name = GENER G CALL
Frequency = 4 (day)
M nDate = 01- JAN 96

Calendar Functions: Reference 4-5

CombineCals

MuxDat e = 31- DEG 96
patBits:
0,1,1,1,1,1,0
pat Anchor = 07- JAN 96
onExcept i ons
21- JAN 96 03- FEB- 96
27- APR 96 19- MAY- 96
07-JU- 96 04- AUG 96
of f Excepti ons :
08- JAN 96 02- FEB- 96
04- APR 96 08- MAY- 96
09-JU- 96

CGal endar Nane = GENER G CAL2
Frequency = 4 (day)
M nDate = 01- JAN 96
NaxDat e = 31- DEG 97
patBits:
1,1,1,1,1,0,0
pat Anchor = 08- JAN 96
onExcept i ons
07-JU- 96 04- AUG 96
13- OCT- 96 10- NOv- 96
04- JAN 97 09- FEB- 97
05- APR 97 11- MAY-97
of f Excepti ons :
09-JU- 96 05- AUG 96
23- CCT- 96 19- NOV- 96
01- JAN 97 12- FEB- 97
07- APR 97 05- MAY- 97

result of Conbi neCals :

Frequency = 4 (day)
M nDate = 01- JAN 96
MaxDat e = 31- DEG 96
patBits:
0,1,1,1,1,1,0
pat Anchor = 07- JAN 96
onExcept i ons
07-JU- 96 04- AUG 96
of f Excepti ons :
08- JAN 96 02- FEB- 96
04- APR 96 08- MAY- 96
09-JU- 96 05- AUG 96

4-6 Oracle8i Time Series User’'s Guide

24- NAR- 96
23-JWN 96
15- SEP- 96

05- VAR 96
25-JWN- 96

15- SEP- 96
14- DEG 96
08- MAR- 97
08- JWN- 97

10- SEP- 96
12- DEG 96
04- MAR- 97
09- JWN- 97

15- SEP- 96

05- MAR- 96
25-JWN- 96
10- SEP- 96

CombineCals

23- CCT- 96
equal Flag = 0

19- NOv- 96

result of IntersectCals :

Frequency = 4 (day)
M nDate = 01- JAN 96
MaxDat e = 31- DEG 96

patBits:

1,1,1,1,1,0,0
pat Anchor = 08- JAN 96

onExcept i ons
07-JU- 96

of f Excepti ons :

08- JAN 96
04- APR- 96
09-JU- 96
23- OCT- 96

04- AUG 96

02- FEB- 96
08- MAY- 96
05- AUG 96
19- NOv- 96

12- DEG 96

15- SEP- 96

05- MAR- 96
25-JWN- 96
10- SEP- 96
12- DEG 96

Calendar Functions: Reference 4-7

Day

Day

Format

Description

Parameters

Usage

ORDSYS.Calendar.Day(
[calname VARCHAR?2]
[, anchorDate DATE]
) RETURN ORDSYS.ORDTCalendar;

Creates a calendar with a frequency of day, a pattern of ’1’ (all timestamps included),
no lower or upper boundary dates (minDate or maxDate), no off-exceptions or on-
exceptions, a specified or default (null) name, and a specified or default anchor
date.

calname
The name of the calendar. If calname is not specified, the calendar name is null.

anchorDate
The anchor date for the calendar pattern. If anchorDate is not specified, the anchor
date is 01-Jan-2001 (a Monday).

This function provides a convenient alternative to providing a complete calendar
definition when you are creating a calendar. If you need to modify the definition
later, you can do so (for example, using the InsertExceptions function to specify
exceptions).

For an explanation of calendar concepts (such as frequency, pattern, anchor date,
and exceptions), see Section 2.2.

The following functions create a calendar with a frequency corresponding to the
function name: Day, Hour, Minute, Month, Quarter, Second, Semi_annual,
Semi_monthly, Ten_day, Week, and Year.

4-8 Oracle8i Time Series User’'s Guide

Day

Example
Insert into the stockdemo_calendars table a calendar of day frequency with a calendar
name of Daily and an anchor date of 01-Jan-1997. The calendar has no date
boundaries (minDate or maxDate) or exceptions.

I NSERT | NTO st ockdeno_cal endar s
VALUES(
CRDSYS. Gal endar . Day(
"Daily’,
(to_date(’01-01-97'," MADD YY'))));

Calendar Functions: Reference 4-9

DeleteExceptions

DeleteExceptions

Format

Description

Parameters

Usage

ORDSYS.Calendar.DeleteExceptions(
inputCal IN ORDSYS.ORDTCalendar,
delExcDate IN DATE
) RETURN ORDSYS.ORDTCalendar;

or

ORDSYS.Calendar.DeleteExceptions(
inputCal IN ORDSYS.ORDTCalendar,
delExcTab IN ORDSYS.ORDTDateTab
) RETURN ORDSYS.ORDTCalendar;

Deletes from the specified calendar all exceptions that either match a specified date
(delExcDate) or are included in a table of dates (delExcTab), and returns the resulting
calendar.

inputCal
The calendar from which one or more exceptions are to be deleted.

delExcDate
The date to be deleted from the exceptions of the calendar.

delExcTab
A table of dates to be deleted from the exceptions of the calendar.

If a date to be deleted is in either the on-exception list or off-exception list of the
calendar, the function deletes the date from the appropriate list.

4-10 Oracle8i Time Series User's Guide

DeleteExceptions

If delExcDate is not in either the on-exception list or off-exception list of the calendar,
the function returns the input calendar with no changes.

For any date in delExcTab that is not in either the on-exception list or off-exception
list of the calendar, the function ignores the date. If no date in delExcTab is in either
the on-exception list or off-exception list of the calendar, the function returns the
input calendar with no changes.

Example
Delete some exceptions from a calendar:

CONNECT TSUSER TSUSER
SET SERVERQUTPUT CN
ALTER SESSI ON SET NLS DATE FCRVAT = ' MM DD YYYY H24:M: SS ;

DECLARE

tstCGal CRDSYS CRDICal endar ;

t st DTab CROSYS. or dt Dat eTab;
resul t Cal CGRDSYS. CRDICal endar ;
dummyVal | NTEGER

rel OFfset | NTECGER

BEG N

-- Select a calendar (say, GENER GCALL) into tstGal
-- from st ockdeno_cal endars.

SELECT val ue(cal) INTOtstCal

FROM TSDEV. st ockdeno_cal endars cal

WHERE cal .nane = ' (ENER G CALT ;

-- D splay the cal endar.
SELECT CRDSYS. Ti meSeri es. D spl ay(tst Gal) | NTO dummyVal FRCM dual ;
DBVB QUTPUT. NEWLI NE

-- Delete sone exceptions in tstCal.
tstDrab : = GRDSYS. GRDTDat eTab(

'01/21/1996', -- ON Exception
'05/08/1996', -- OFF Exception
'08/ 04/ 1996', -- ON Exception

'07/ 09/ 1996’) ; -- OFF Exception
SELECT CGRDSYS. Ti meSeri es. D spl ay(tst Dlab, ' | nput DateTab')
I NTO durmyVal
FROM dual ;
resul tGal : = CROSYS Cal endar . Del et eExcepti ons(tstCal, tstDrab);

Calendar Functions: Reference 4-11

DeleteExceptions

SELECT CRDSYS. Ti meSeri es. D spl ay(resultGal) | NTO dummyVal
FROM dual ;

BEND,
/

This example might produce the following output. The second display of
information about GENERIC-CALL1 does not include the deleted on-exceptions and
off-exceptions.

Gl endar Nane = GENER G CAL1
Frequency = 4 (day)

M nDat e = 01/01/1996 00: 00: 00
MaxDat e = 12/ 31/1996 00: 00: 00
patBits:

0,111,110
pat Anchor = 01/07/1996 00: 00: 00
onExcept i ons
01/ 21/ 1996 00: 00: 00 02/ 03/ 1996 00: 00: 00 03/ 24/ 1996 00: 00: 00
04/ 27/ 1996 00: 00: 00 05/ 19/ 1996 00: 00: 00 06/ 23/ 1996 00: 00: 00
07/ 07/ 1996 00: 00: 00 08/ 04/ 1996 00: 00: 00 09/ 15/ 1996 00: 00: 00
of f Excepti ons :
01/ 08/ 1996 00: 00: 00 02/ 02/ 1996 00: 00: 00 03/ 05/ 1996 00: 00: 00
04/ 04/ 1996 00: 00: 00 05/ 08/ 1996 00: 00: 00 06/ 25/ 1996 00: 00: 00
07/ 09/ 1996 00: 00: 00

I nput Dat eTab :

01/21/1996 00: 00: 00 05/ 08/ 1996 00: 00: 00 08/ 04/ 1996 00: 00: 00
07/ 09/ 1996 00: 00: 00

CGal endar Nane = GENER G CAL1

Frequency = 4 (day)

M nDate = 01/01/1996 00: 00: 00

MaxDat e = 12/31/1996 00: 00: 00

patBits:

0,1,1,1,1,1,0

pat Anchor = 01/07/1996 00: 00: 00

onExcept i ons
02/ 03/ 1996 00: 00: 00 03/ 24/ 1996 00: 00: 00 04/ 27/ 1996 00: 00: 00
05/ 19/ 1996 00: 00: 00 06/ 23/ 1996 00: 00: 00 07/ 07/ 1996 00: 00: 00
09/ 15/ 1996 00: 00: 00

of f Excepti ons :
01/ 08/ 1996 00: 00: 00 02/ 02/ 1996 00: 00: 00 03/ 05/ 1996 00: 00: 00
04/ 04/ 1996 00: 00: 00 06/ 25/ 1996 00: 00: 00

4-12 Oracle8i Time Series User's Guide

DisplayValCal Procedure

DisplayValCal Procedure

Format
ORDSYS.Calendar.DisplayValCal(

validFlag IN INTEGER,

outMessage IN VARCHAR?2,

invOnExc IN ORDSYS.ORDTDateTab,
invOffExc IN ORDSYS.ORDTDateTab,
impOnExc IN ORDSYS.ORDTDateTab,
impOffExc IN ORDSYS.ORDTDateTab,
inputCal IN ORDSYS.ORDTCalendar,
mesg IN VARCHAR2

);

Description
Displays the results returned by the ValidateCal function.

Note: DisplayValCal is a procedure, not a function. Procedures do
not return values.

Parameters

validFlag
The return value from the ValidateCal function call:

Value Meaning

0 The calendar is valid. No errors were found.
1 Correctable errors were found and corrected. The resulting calendar is valid.

-1 Uncorrectable errors were found. The calendar is not valid.

Calendar Functions: Reference 4-13

DisplayValCal Procedure

outMessage

Message output by ValidateCal describing how the calendar was repaired (if the
return value = 1) or why the calendar could not be repaired (if the return

value = -1).

invOnExc
Table of the invalid on-exceptions found in the calendar.

invOffExc
Table of the invalid off-exceptions found in the calendar.

impOnExc
Table of the imprecise on-exceptions found in the calendar.

impOffExc
Table of the imprecise off-exceptions found in the calendar.

inputCal
The calendar returned by ValidateCal (repaired if necessary).

mesg
Optional message.

Usage

This procedure is intended to be used with the ValidateCal function. See the
information on ValidateCal in this chapter.

Example

Use the IsValidCal and ValidateCal functions and the DisplayValCal procedure with
an invalid calendar:

CONNECT TSUSER TSUSER
SET SERVERQUTPUT CN
ALTER SESSI ON SET NLS DATE FCRVAT = ' MM DD YYYY H24:M: SS ;

CEQLARE

out Message var char 2(32750) ;

i nvOnExc CRDSYS. CRDTDat eTab;
invdfExc CRDSYS. GRDTDat eTab;
i npQnExc CRDSYS. CRDTDat eTab;
inpdfExc CRDSYS. CRDTDat eTab;
dumyval i nt eger;

val i dFl ag i nteger;

4-14 Oracle8i Time Series User's Guide

DisplayValCal Procedure

CRDSYS. RDTCal endar
CRDSYS. CRDTCal endar (

0,

4,

tstGl 1

CROSYS. (RDTPat t er n(CRDSYS. GRDTPatternBits(1, 1,1,1, 1,0, 0),

TO DATE(’ 01- 01- 1975’) ,

TO DATE(’ 01-01-1999')

CROSYS. CRDTEXcept i ons(

TO DATE(’ 02-03-1969'), --
TO DATE(’ 02- 14-1969'), --
TO DATE(’ 02-03-1999'), --
TO DATE(’ 02-17-1999'), --
TO DATE(® 12-31-1995'), --
TO DATE(’ 01-13-1996'), --
TO DATE(’ 02- 24-1996'), --
TO DATE(’ 03-30-1996'), --
TO DATE(’ 02- 02- 1996 01: 01:
TO DATE(’ 03- 04- 1996 01: 01:
TO DATE(’ 04- 05- 1996 02: 02:
TO DATE(’ 03-25-1996'), --
TO DATE(’ 01-22-1996'), --
TO DATE(’ 02- 12- 1996"),

TO DATE(’ 04- 30- 1996’) ,
NULL, --
TO DATE(’ 02-12-1996'), --
NULL, --
TO DATE(’ 04-30-1996'), --
NULL, --
TO DATE(’ 03-25-1996'), --
TO DATE(’ 01-22-1996'), --
TO DATE(’ 01-17-1996'), --
TO DATE(’ 05-28-1996'), --
TO DATE(’ 06-18-1996'), --
TO DATE(’ 04-23-1996'), --
TO DATE(’ 02- 02- 1996’),

TO DATE(’ 03- 04- 1996’) ,

TO DATE(’ 05- 06- 1997)),

CRDSYS. CRDOTEXcept i ons(

TO DATE(’ 02- 08-1969'), --
TO DATE(’ 02-15-1969'), --
TO DATE(’ 02-13-1999'), --
TO DATE(’ 02-20-1999'), --
TO DATE(’ 01-03-1996'), --

Cat e
Cat e
Cat e
Cat e
Maps
Maps
Maps
Maps

01),
01),
02'),

TO DATE(’ 01- 08- 1996 01: 01: 01')),

< mnCat e,

< mnCat e,

> naxDat e,

> naxDat e,

to 0 in pattern (Sunday)
to 0 in pattern (Saturday)
to 0 in pattern (Saturday)
to 0 in pattern (Saturday)
-- | npreci se

-- | npreci se

-- | npreci se

Valid of f-exception
Valid, but out of sequence

Nul |

dat e

Duplicate date within GFFs

Nul |

dat e

Dupl i cate of f-exception

Nul |

dat e

Dupl i cate of f-exception
Dupl i cate of f-exception

Added to on-
Added to on-
Added to on-
Added to on-

Cat e
Cat e
Cat e
Cat e
Maps

and of f - excepti ons
and of f - excepti ons
and of f - excepti ons
and of f-excepti ons

< mnCat e,
< mnCat e,
> naxDat e,
> naxDat e,
to 1 in pattern (\dnesday)

Calendar Functions: Reference 4-15

DisplayValCal Procedure

TO DATE(’ 02-19-1996'), -- Myps to 1 in pattern (Mnday)
TO DATE(’ 03-18-1996'), -- Mps to 1 in pattern (Mnday)
TO DATE(’ 05-27-1996'), -- Myps to 1 in pattern (Mnday)
TO DATE(’ 03-23-1996 01:01:01'), -- |nprecise

TO DATE(’ 02-18-1996 01:01:01'), -- |nprecise

TO DATE(’ 05-26-1996 01:01:01'), -- |nprecise

TO DATE(’ 01-13-1996'), -- Valid on-exception

TO DATE(’ 01-14-1996'), -- Valid on-exception

NULL, -- Nl date

NULL, -- Null date

TO DATE(’ 02-24-1996'), -- Valid on-exception

TO DATE(’ 03-23-1996'), -- Valid on-exception

TO DATE(’ 01-13-1996'), -- Duplicate on-exception

TO DATE(’ 01-14-1996'), -- Duplicate on-exception

TO DATE(’ 02-24-1996'), -- Duplicate on-exception

TO DATE(’ 03-23-1996'), -- Duplicate on-exception

TO DATE(’ 01-17-1996'), -- Added to on- and of f-excepti ons
TO DATE(’ 05-28-1996'), -- Added to on- and of f-excepti ons
TO DATE(’ 06-18-1996'), -- Added to on- and of f-excepti ons
TO DATE(’ 04-23-1996'), -- Added to on- and of f-excepti ons
TO DATE(’ 01-06-1996'), -- Valid, but out of sequence

TO DATE(’ 02- 03-1996'),
TO DATE(’ 05- 04- 1997’))

);
BEQ N
SH ECT CRDSYS. TIMESER ES. D spl ay(tstCal 1, "tstCal 1) | NTO dummyval
FROM dual ;
val i dFl ag : = CROSYS. CALENDAR | sVal i dCal (tstCal 1);
IKvalidFlag = 0)
THEN
val i dFl ag : = CRDSYS. CALENDAR Val i dat eCal (
tstCal 1, out Message, invnExc, invdfExc, inpOExc, inpdfExc

E

CROSYS. TI MESER ES. D spl ayVal Gal (
val i dH ag,
out Message,
i nvOnhExc,
i nva f Bxc,
i npOnExc,
i npdf f Exc,
tstCal 1,
"Your Message’
E
END | F;

4-16 Oracle8/ Time Series User's Guide

DisplayValCal Procedure

BEND,
/

This example might produce the following output:
tstCGll:

CGal endar Nane = CALENDAR MYCAL

Frequency = 4 (day)

M nbate = 01/01/1975 00: 00: 00

MixDate = 01/01/1999 00: 00: 00

patBits:

1,1,1,1,1,0,0

pat Anchor = 01/08/ 1996 01: 01: 01

onExcept i ons
02/ 08/ 1969 00: 00: 00 02/ 15/ 1969 00: 00: 00 02/ 13/ 1999 00: 00: 00
02/ 20/ 1999 00: 00: 00 01/ 03/ 1996 00: 00: 00 02/ 19/ 1996 00: 00: 00
03/ 18/ 1996 00: 00: 00 05/ 27/ 1996 00: 00: 00 03/ 23/ 1996 01: 01: 01
02/ 18/ 1996 01: 01: 01 05/ 26/ 1996 01: 01: 01 01/ 13/ 1996 00: 00: 00
01/ 14/ 1996 00: 00: 00
02/ 24/ 1996 00: 00: 00 03/ 23/ 1996 00: 00: 00 01/ 13/ 1996 00: 00: 00
01/ 14/ 1996 00: 00: 00 02/ 24/ 1996 00: 00: 00 03/ 23/ 1996 00: 00: 00
01/ 17/ 1996 00: 00: 00 05/ 28/ 1996 00: 00: 00 06/ 18/ 1996 00: 00: 00
04/ 23/ 1996 00: 00: 00 01/ 06/ 1996 00: 00: 00 02/ 03/ 1996 00: 00: 00
05/ 04/ 1997 00: 00: 00

of f Excepti ons :
02/ 03/ 1969 00: 00: 00 02/ 14/ 1969 00: 00: 00 02/ 03/ 1999 00: 00: 00
02/ 17/ 1999 00: 00: 00 12/ 31/ 1995 00: 00: 00 01/ 13/ 1996 00: 00: 00
02/ 24/ 1996 00: 00: 00 03/ 30/ 1996 00: 00: 00 02/ 02/ 1996 01: 01: 01
03/ 04/1996 01: 01: 01 04/ 05/ 1996 02: 02: 02 03/ 25/ 1996 00: 00: 00
01/ 22/ 1996 00: 00: 00 02/ 12/ 1996 00: 00: 00 04/ 30/ 1996 00: 00: 00

02/ 12/ 1996 00: 00: 00

04/ 30/ 1996 00: 00: 00 03/ 25/ 1996 00: 00: 00
01/ 22/ 1996 00: 00: 00 01/ 17/ 1996 00: 00: 00 05/ 28/ 1996 00: 00: 00
06/ 18/ 1996 00: 00: 00 04/ 23/ 1996 00: 00: 00 02/ 02/ 1996 00: 00: 00
03/ 04/ 1996 00: 00: 00 05/ 06/ 1997 00: 00: 00

D spl ayVal Gal Your Message:
TS WA\ the input calendar has rectifiable errors. See the nessage for details
nessage out put by val i dat eCal :

TS WR\ fixed precision of the pattern anchor date
TS WR\ renoved superfluous dates in the on exception list (refer invalidnExc)

Calendar Functions: Reference 4-17

DisplayValCal Procedure

TS WR\ fixed inprecise dates in the on exception list (refer inpreci seOhExc)

TS WR\ renoved null dates in the on exception |ist

TS WR\ sorted the on exceptions |ist

TS WR\ renoved duplicate dates in the on exceptions |ist
TS WR\ renoved superfluous dates in off exceptions list (refer invalidCfExc)
TS WR\ fixed inprecise dates in the off exception list (refer inprecisedfExc)

TS WA\ renoved null dates in the off exception list

TS WR\ sorted the off exceptions |ist

TS WR\ renoved duplicate dates in the off exceptions I|ist
TS WR\ the on exceptions list was tri med between cal endar ninDate & naxDate
TS WR\ the off exceptions list was trinmed between cal endar mnDate & maxDate

list of invalid on exceptions :

01/ 03/ 1996 00: 00: 00
05/ 27/ 1996 00: 00: 00
06/ 18/ 1996 00: 00: 00

02/ 19/ 1996 00: 00: 00
01/ 17/ 1996 00: 00: 00
04/ 23/ 1996 00: 00: 00

list of invalid off exceptions :

12/ 31/ 1995 00: 00: 00
03/ 30/ 1996 00: 00: 00

01/ 13/ 1996 00: 00: 00

list of inprecise on exceptions :

03/23/1996 01:01: 01 02/ 18/ 1996 01: 01: 01

list of inprecise off exceptions :

02/ 02/ 1996 01:01: 01 03/ 04/ 1996 01: 01: 01

the validated cal endar :

CGal endar Nane = CALENDAR MYCAL
Frequency = 4 (day)
M nbate = 01/01/1975 00: 00: 00
MaxDat e = 01/ 01/1999 00: 00: 00
patBits:
1,1,1,1,1,0,0
pat Anchor = 01/08/ 1996 00: 00: 00
onExcept i ons
01/ 06/ 1996 00: 00: 00
02/ 03/ 1996 00: 00: 00
03/ 23/ 1996 00: 00: 00
of f Excepti ons :

01/ 13/ 1996 00: 00: 00
02/ 18/ 1996 00: 00: 00
05/ 26/ 1996 00: 00: 00

4-18 Oracle8i Time Series User's Guide

03/ 18/ 1996 00: 00: 00
05/ 28/ 1996 00: 00: 00

02/ 24/ 1996 00: 00: 00

05/ 26/ 1996 01:01: 01

04/ 05/ 1996 02: 02: 02

01/ 14/ 1996 00: 00: 00
02/ 24/ 1996 00: 00: 00
05/ 04/ 1997 00: 00: 00

DisplayValCal Procedure

01/17/1996 00: 00: 00
02/12/ 1996 00: 00: 00
04/ 05/ 1996 00: 00: 00
05/ 28/ 1996 00: 00: 00

01/ 22/ 1996 00: 00: 00
03/ 04/ 1996 00: 00: 00
04/ 23/ 1996 00: 00: 00
06/ 18/ 1996 00: 00: 00

Calendar Functions: Reference 4-19

02/ 02/ 1996 00: 00: 00
03/ 25/ 1996 00: 00: 00
04/ 30/ 1996 00: 00: 00
05/ 06/ 1997 00: 00: 00

EqualCals

EqualCals

Format

Description

Parameters

Usage

ORDSYS.Calendar.EqualCals(
call ORDSYS.ORDTCalendar,
cal2 ORDSYS.ORDTCalendar
[, startDate DATE
, endDate DATE]
) RETURN BINARY_INTEGER;

Checks if two calendars (completely or within a specified date range) are equal.

call
The first calendar to be checked.

cal2
The second calendar to be checked.

startDate

Starting date for the checking. If startDate is not specified, the starting date is the
starting date for the calendars, or the higher (later) of the starting dates if they are
different.

endDate

Ending date for the checking. If endDate is not specified, the ending date is the
ending date for the calendars, or the lower (earlier) of the ending dates if they are
different.

The function checks if the frequencies, off-exceptions, on-exceptions, and aligned
patterns are the same for the two calendars. If they are all the same, the function
returns 1; if they are not all the same, the function returns 0.

4-20 Oracle8i Time Series User's Guide

EqualCals

Example

The function does not require the calendars to have the same starting and ending
dates.

Check if two calendars (GENERIC-CAL1 and GENERIC-CALZ2) are equal:

CONNECT TSUSER TSUSER
SET SERVERQUTPUT CN
ALTER SESSI ON SET NLS DATE FCRVAT = ' MM DD YYYY H24: M: SS ;

DECLARE

tstCal 1 CROSYS. CROTCAl endar ;
tst Gal 2 CROSYS. CROTCAl endar ;
resul t Cal GRDSYS. CRDICal endar ;
equal Fl ag | NTEGER

dummyVal | NTEGER

BEG N

-- Select the calendars GENER G CALL into tstCal 1
-- and GENERGCAL2 into tstCal 2

-- from st ockdeno_cal endars.

SELECT val ue(cal) INTOtstCal 1

FROM TSDEV. st ockdeno_cal endars cal

WHERE cal .nane = ' (GENER G CALT ;

SELECT val ue(cal) INTOtstCal 2

FROM TSDEV. st ockdeno_cal endars cal

WHERE cal .nane = ' (ENER G CAL? ;

-- Dsplay the calendars tstCal 1 and tstCal 2.
SELECT CGRDSYS. Ti meSeri es. O spl ay(tst Gal 1) | NTO dumrmyVal FROM dual ;
SELECT CGRDSYS. Ti meSeri es. O spl ay(tst Gal 2) | NTO durmyVal FROM dual ;

-- Qonpare tstCGal 1 and tstCal 2 for equality.

DBVB QUTPUT. NEWLI NE

equal H ag : = CRDSYS. Cal endar . Equal Gal s(tstCal 1, tstCal 2);

DBMVB QUJTPUT. PUT_LINK(' Equal Gal s(CGENER G CALL, (ENERGCAL2) =’ || equal H ag);

BEND,
/

This example might display the following output. In this example, the returned
value of 0 indicates that the calendars are not equal.

Calendar Functions: Reference 4-21

Gl endar Nane = GENER G CAL1
Frequency = 4 (day)
M nbate = 01/01/1996 00: 00: 00
MuxDate = 12/31/1996 00: 00: 00
patBits:

0,111,110

pat Anchor = 01/07/1996 00: 00: 00
onExcept i ons

01/ 21/ 1996 00: 00: 00 02/ 03/ 1996

04/ 27/ 1996 00: 00: 00 05/ 19/ 1996

07/ 07/ 1996 00: 00: 00 08/ 04/ 1996
of f Excepti ons :

01/ 08/ 1996 00: 00: 00 02/ 02/ 1996

04/ 04/ 1996 00: 00: 00 05/ 08/ 1996

07/ 09/ 1996 00: 00: 00

CGal endar Nane = GENER G CAL2
Frequency = 4 (day)
M nDate = 01/01/1996 00: 00: 00
MaxDat e = 12/31/1997 00: 00: 00
patBits:

1,1,1,1,1,0,0

pat Anchor = 01/08/ 1996 00: 00: 00
onExcept i ons

07/ 07/ 1996 00: 00: 00 08/ 04/ 1996
10/ 13/ 1996 00: 00: 00 11/10/ 1996
01/ 04/ 1997 00: 00: 00 02/ 09/ 1997
04/ 05/ 1997 00: 00: 00 05/ 11/ 1997
of f Excepti ons :
07/ 09/ 1996 00: 00: 00 08/ 05/ 1996
10/ 23/ 1996 00: 00: 00 11/19/ 1996
01/ 01/ 1997 00: 00: 00 02/ 12/ 1997
04/ 07/ 1997 00: 00: 00 05/ 05/ 1997

Equal Cal s(GENER G CAL1, GENER G CAL2) =

4-22 Oracle8i Time Series User's Guide

00:
00:
00:

00:
00:

00:
00:
00:
00:

00:
00:
00:
00:

0

00:
00:
00:

00:
00:

00:
00:
00:
00:

00:
00:
00:
00:

00
00
00

00
00

00
00
00
00

00
00
00
00

03/ 24/ 1996
06/ 23/ 1996
09/ 15/ 1996

03/ 05/ 1996
06/ 25/ 1996

09/ 15/ 1996
12/ 14/ 1996
03/ 08/ 1997
06/ 08/ 1997

09/ 10/ 1996
12/ 12/ 1996
03/ 04/ 1997
06/ 09/ 1997

00:
00:
00:

00:
00:

00:
00:
00:
00:

00:
00:
00:
00:

00:
00:
00:

00:
00:

00:
00:
00:
00:

00:
00:
00:
00:

00
00
00

00
00

00
00
00
00

00
00
00
00

GenDateRangeTab

GenDateRangeTab

Format

Description

Parameters

Usage

ORDSYS.Calendar.GenDateRangeTab(
inputCal ORDSYS.ORDTCalendar
[, startDate DATE
, endDate DATE]
) RETURN ORDSYS.ORDTDateRangeTab;

Given an input calendar, returns a table of date ranges that represent all of the valid
intervals in the calendar (or from startDate through endDate).

inputCal
The input calendar.

startDate
Starting date for returning date ranges. If startDate is not specified, the starting date
is the starting date for the calendar (minDate).

endDate

Ending date for returning date ranges. The returned ending date is actually the first
valid timestamp after endDate. If endDate is not specified, the ending date is the
ending date for the calendar (maxDate).

The function can be used to perform time scaling against any table with a DATE
column. Itis used in a TABLE construct in the FROM clause of a SQL statement,
and it generates a table of intervals based on inputCal. By joining the output of this
function with a table containing a DATE column, you can use GROUP BY semantics
to aggregate by the generated intervals.

Calendar Functions: Reference 4-23

GenDateRangeTab

Examples

For example, if you specify a monthly calendar starting on 01-Jan-1999 and ending
on 31-Mar-1999, with standard U.S. holidays (including 01-Jan), the function returns
the following timestamps:

02-Jan-1999 01-Feb-1999
01-Feb-1999 01-Mar-1999
01-Mar-1999 01-Apr-1999

The scope of the date ranges returned is adjusted, if necessary, as follows:

« Thefirst date range reflects the first whole date range interval that it can cover
after startDate.

« The last date range reflects the full date range that includes endDate.

For example, assume a monthly calendar with a 1’ pattern (no off days), no
exceptions, and starting on the first day of the month. If startDate is 15-Jan-1999 and
endDate is 15-Dec-1999, the returned date ranges are from February through
December of 1999.

For best performance, especially with large data sets, always follow these guidelines
when constructing a date range to be joined with time series data:

« Perform the date generation before specifying other tables for the join
operation.

« Usethe /7*+ ORDERED */ optimizer hint to ensure that the TABLE clause is the
innermost table.

« Index the fields used in the table for the join operation.

If the calendar does not include date bounds (a minDate and maxDate), you must
specify startDate and endDate. (The date range table cannot be infinite.)

If startDate is greater (later) than endDate, an exception is raised.

Create a date range table of 10-day cycles (using the 10-day frequency, described in
Table 2-2 in Section 2.2.1) for 1990 through 1993:

SH ECT to_char(t.startdate,’ DAY),
to_char(t.startdate,’ DD MON YYYY HR4:M:SS),
to_char(t.enddate,’ DAY),
to_char(t.enddate, DD MINYYYY HR4:M:SS)

4-24 Oracle8i Time Series User's Guide

GenDateRangeTab

FRCM TABLE(cast (CRDSYS. Gal endar . GenDat eRangeTab(
CROSYS. GRDTCal endar (
0,
' 10- Day’ ,
10,
CROSYS. CRDTPat t er n(
CROSYS. (RDTPatternBits(1),
TO DATH(’ 01- JAN- 1998’ , ' D MON YYYY')),
TO DATE(’ 01- JAN- 1990 , ' DD MON YYYY'),
TO DATH(’ 31- DEG 1993, ' DD MON- YYYY'),
CROSYS. CRDTEXcept i ons(),
CROSYS. CRDTEXcept i ons()
)) as CROSYS. CRDTDat eRangeTab)) t;

This example might display the following output:
TO CGHAR(T TO CHAR(T. STARTDATE, TO CHAR(T TO CHAR(T. ENDDATE, ' D

MONDAY 01- JAN- 1990 00: 00: 00 THURSDAY 11-JAN-1990 00: 00: 00
THURSDAY 11- JAN-1990 00: 00: 00 SUNDAY 21- JAN-1990 00: 00: 00
SUNDAY 21- JAN 1990 00: 00: 00 THURSDAY 01- FEB-1990 00: 00: 00
THURSDAY 01- FEB-1990 00: 00: 00 SUNDAY 11- FEB- 1990 00: 00: 00
SUNDAY 11- FEB- 1990 00: 00: 00 WEDNESDAY 21- FEB- 1990 00: 00: 00
WEDNESDAY 21- FEB-1990 00: 00: 00 THURSDAY 01- MAR- 1990 00: 00: 00

VEDNESDAY 01- DEG 1993 00: 00: 00 SATURDAY 11- DEG- 1993 00: 00: 00
SATURDAY 11-DEG 1993 00: 00: 00 TUESDAY 21- DEG 1993 00: 00: 00
TUESDAY 21-DEG 1993 00: 00: 00 SATURDAY 01- JAN- 1994 00: 00: 00
144 rows sel ect ed.

Return the count and the minimum, maximum, and average values of closing prices
(for all stock tickers, not broken down by ticker) from the tsquick_tab table for 01-
Oct-1996 through 31-Dec-1996, using a weekly business-day calendar generated by
the GenDateRangeTab function:

sel ect /*+ CROERED */ to_char(t.startdate,’ DAY) "day",
to char(t.startdate,’ DD MON YYYY HR4:M:SS) "tstanp”,
count (s. close) "count",
mn(s.close) "mn",
nmax(s. cl ose) "max",
avg(s.close) "avg"
from TABLK cast (CRDSYS. Cal endar . GenDat eRangeTab(
CROSYS. CROTCal endar (
0,
" Busi nessVeek’ ,

Calendar Functions: Reference 4-25

GenDateRangeTab

4,
CROSYS. GRDTPat t er n(
CROSYS. CRDTPat ternBit s(0, 5, 0),
TO DATH(’ 15- DEG 1996’ , ' DD MON YYYY')),
TO DATH(’ 01- CCT- 1996’ , ' LD MO\ YYYY') ,
TO DATH(’ 31- DEG 1996’ , ' LD MO\ YYYY') ,
CROSYS. GRDTEXcept i ons() ,
CROSYS. GRDTEXcept i ons()
)) as CROSYS. CRDTDat eRangeTab)) t,
tsquick tab s
where s.tstanp >=t.startdate and s.tstanp < t.enddate
group by t.startdate
order by t.startdate;

Note that this example follows the guidelines in the Usage section for this function,
including the use of the /*+ ORDERED */ optimizer hint.

This example might produce the following output:

day tstanp count m n nax avg

MONDAY 28- OCT- 1996 00: 00: 00 6 23.69 79. 688 63. 7818333
MONDAY 04- NOv- 1996 00: 00: 00 20 23.72 83.25 52.64925
MONDAY 11- NOv-1996 00: 00: 00 20 23.84 85. 813 53. 5503
MONDAY 18- NOv-1996 00: 00: 00 20 23.82 88. 938 55. 2897
MONDAY 25- NOv- 1996 00: 00: 00 15 23.71 88. 75 54. 5533333
MONDAY 02- DEG 1996 00: 00: 00 20 23.75 89. 875 57.8124
MONDAY 09- DEG 1996 00: 00: 00 20 23.4 94.375 60. 12525
MONDAY 16- DEG 1996 00: 00: 00 19 23.36 95. 875 59. 6052632
MONDAY 23- DEG 1996 00: 00: 00 15 23.93 97 61. 1606667
MONDAY 30- DEG 1996 00: 00: 00 8 24.11 99 63.951875

10 rows sel ect ed.

4-26 Oracle8/ Time Series User's Guide

GetlintervalEnd

GetlIntervalEnd

Format

Description

Parameters

Usage

Example

ORDSYS.TimeSeries.GetIntervalEnd(
inputCal IN ORDSYS.ORDTCalendar,
inputDate IN DATE
) RETURN DATE;

Given a Calendar and an input timestamp (inputDate), returns the end of the
interval that includes the input timestamp.

inputCal
The input calendar.

inputDate
Timestamp for which the end of the interval is to be returned.

If inputDate is a valid timestamp, the function returns a date. Otherwise, the
function returns a null.

An exception is returned if inputCal is null.

Return the end of the interval for several timestamps:

DECLARE

i nput Cal CRDSYS. CRDTCal endar ;
tstDate DATE

retDate DATE

tstx Tab ordsys. or dt dat et ab;
BEA N

-- Select a Calendar into a | ocal variabl e

Calendar Functions: Reference 4-27

GetlintervalEnd

SELECT val ue(cal)

INTO inputCal

FROM TSDEV. st ockdeno_cal endars cal
WHERE cal . nane = ' Bl VEEKLY ;

-- Display the i nput Cal endar
CROSYS. Ti neSeri es. D spl ay(inputCal) ;

DBVB_QUTPUT. PUT LINE(" ");

-- Getinterval End of a Valid timestanp
tstDate := TO DATH' 01-JAN 1996, DD MON YYYY');
retDate := CROSYS Cal endar. Getlnterval End(i nput Cal, tstDate);

DBVB QUTPUT. PUT_LINE(’ GetInterval End (' ||
TO GHAR(tstDate, 'MMDD YYYY) ||
) = [
TO HAR(ret Date, ' MM D YYYY);

-- Getinterval End of an InValid tinestanp - returns NULL
tstDate := TODATH' 01-JU.-1996',’ DD MON YYYY');
retDate := CROSYS Cal endar. Getlnterval End(i nput Cal, tstDate);

DBVE QUJTPUT. PUT_LINE(’ GetInterval End (' ||
TO GHAR(tstDate, 'MMDD YYYY) ||
) = [
TOHAR(retDate, ' MDD YYYY));

-- Getinterval End of a Qovered tinestanp
tstDate := TO DATH' 08-JAN 1996, DD MON YYYY');
retDate := CROSYS Cal endar. Getlnterval End(i nput Cal, tstDate);

DBVE QUTPUT. PUT_LINE(’ GetInterval End (' ||
TO CHAR(tstDate, 'MMID YYYY) ||
) =" [
TO HAR(ret Date, ' MM D YYYY);

END,
/
This example might produce the following output:

CGal endar Narre = B VEEKLY
Frequency = 5 (week)
MnDate is NULL

4-28 Oracle8i Time Series User's Guide

GetlintervalEnd

MixDate is NULL
patBits: 2
pat Anchor = 01/01/1996 00: 00: 00
onExcept i ons
of f Excepti ons :
07/ 01/ 1996 00: 00: 00

Get I nterval End (01-01-1996) = 01- 15- 1996
Get I nterval End (07-01-1996) =
Get I nterval End (01-08-1996) = 01- 15- 1996

Calendar Functions: Reference 4-29

GetlintervalStart

GetlIntervalStart

Format
ORDSYS.TimeSeries.GetIntervalStart(
inputCal IN ORDSYS.ORDTCalendar,
inputDate IN DATE
) RETURN DATE;

Description

Given a Calendar and an input timestamp (inputDate), returns the start of the
interval that includes the input timestamp.

Parameters

inputCal
The input calendar.

inputDate
Timestamp for which the start of the interval is to be returned.

Usage

If inputDate is a valid timestamp, the function returns a date. Otherwise, the
function returns a null.

An exception is returned if inputCal is null.

Example
Return the start of the interval for several timestamps:

DECLARE

i nput Cal CRDSYS. CRDTCal endar ;
tstDate DATE

retDate DATE

tstx Tab ordsys. or dt dat et ab;
BEA N

-- Select a Calendar into a | ocal variabl e

4-30 Oracle8i Time Series User's Guide

GetlIntervalStart

SELECT val ue(cal)

INTO inputCal

FROM TSDEV. st ockdeno_cal endars cal
WHERE cal . nane = ' Bl VEEKLY ;

-- Display the i nput Cal endar
CROSYS. Ti neSeri es. D spl ay(inputCal) ;

DBVB_QUTPUT. PUT LINE(" ") ;

-- Getinterval Sart of a Valid tinestanp
tstDate := TO DATH' 01-JAN 1996, DD MON YYYY');
retDate := CROSYS Cal endar. Getlnterval Sart(inputCal, tstDate);

DBVE QUTPUT. PUT_LINE(" GetInterval Sart (' ||
TO GHAR(tstDate, 'MMDD YYYY) ||
) = [
TO GHAR(retDate, ' MM DD YYYY);

-- Getinterval Sart of an Invalid timestanp - returns NULL
tstDate TO DATH(’ 01- JUL- 1996 , ' LD MON YYYY') ;
retDate CROSYS. Cal endar . GetInterval Start(inputCal, tstDate);

DBVE QUTPUT. PUT_LINE(" GetInterval Sart (" ||
TO GHAR(tstDate, ' MM DD YYYY |
) = [
TO GHAR(retDate, ' MM DD YYYY);

-- Getinterval Sart of a Covered tinestanp
tstDate := TO DATH' 08-JAN 1996, DD MON YYYY');
retDate := CROSYS Cal endar. Getlnterval Sart(inputCal, tstDate);

DBVE QUTPUT. PUT_LINE(" GetInterval Sart (' ||
TO GHAR(tstDate, MM DD YYYY) ||

) =" [
TO HAR(ret Date, ' MM D YYYY);

END,
/
This example might produce the following output:

CGal endar Narre = B VEEKLY
Frequency = 5 (week)
MnDate is NULL

Calendar Functions: Reference 4-31

GetlintervalStart

MixDate is NULL
patBts: 2
pat Anchor = 01/01/ 1996 00: 00:
onExcept i ons
of f Excepti ons :
07/ 01/ 1996 00: 00: 00

GetInterval Start (01-01-1996)

GetInterval Start (07-01-1996)
GetInterval Start (01-08-1996)

4-32 Oracle8i Time Series User's Guide

00

01- 01- 1996

01- 01- 1996

GetOffset

GetOffset

Format

Description

Parameters

Usage

ORDSYS.TimeSeries.GetOffset(
inputCal IN ORDSYS.ORDTCalendar,
origin_date IN DATE,
reference_date IN DATE
) RETURN INTEGER;

Given a calendar, one date (origin_date), and another date (reference_date), returns the
number of timestamps that the second date is offset from the first.

inputCal
The input calendar.

origin_date
Date from which the offset is to be computed.

reference_date
Date whose offset from origin_date is to be returned.

The function considers the frequency, pattern, and exceptions of the calendar.

The returned integer is positive if reference_date is one or more timestamps in the
future with respect to origin_date, and negative if it is in the past with respect to
origin_date. For example, assume that the calendar includes Mondays through
Fridays, that 04-Jul-1997 (Friday) is an off-exception, and that 03-Jul-1997
(Thursday) is the origin_date. If 10-Jul-1997 (Thursday) is the reference_date, the
returned offset is 4; if the reference_date is 01-Jul-1997 (Monday), the returned offset
is -2.

If origin_date and reference_date are the same, the function returns 0 (zero).

Calendar Functions: Reference 4-33

GetOffset

An exception is returned if the calendar has an empty or null pattern.

Example
Return the offset of 05-Jun-1996 from 04-Mar-1996 in the GENERIC-CAL1 calendar:

QONNECT TSUSER TSUSER

SET SERVERQUTPUT N

ALTER SESS ON SET NLS DATE FCRVAT = ' MM DD YYYY HR24: M: SS ;
DECLARE

tstGal CRDSYS CRDICal endar;

tst Dat el DATE

t st Dat e2 DATE

result | NTECER

dummyVal | NTEGER

BEG N

-- Select a calendar (say, GENER GCALL) into tstCal
-- from st ockdeno_cal endars.

SELECT val ue(cal) INTOtstCal

FROM TSDEV. st ockdeno_cal endars cal

WHERE cal .nane = ' (ENER G CALT ;

-- D splay the cal endar.
SELECT CGRDSYS. Ti meSeri es. D spl ay(tst Gal) | NTO dummyVal FRCM dual ;
DBVB QUTPUT. NEWLI NE

-- Get offset of 05-JUN 1996 from 04- MAR 1996.
tstDatel : = TO DATH' 04/ 03/ 1996’) ;
tstDate2 : = TO DATH' 06/ 05/ 1996’) ;

result := CROSYS Cal endar. Get Ffset (tstCal, tstDatel, tstDate2);
DBV QUTPUT. PUT_LINE' Getifset(’ || tstDatel ||' , ' || tstDate2

[1 ') =" || result);
END,

/

This example might produce the following output. In this example, 05-Jun-1996 is
45 timestamps later than 04-Mar-1996.

Gl endar Nane = GENER G CAL1
Frequency = 4 (day)
M nDate = 01/01/1996 00: 00: 00
MuxDate = 12/31/1996 00: 00: 00
patBits:
0,1,1,1,1,1,0

4-34 Oracle8i Time Series User's Guide

GetOffset

pat Anchor = 01/07/1996 00: 00: 00

onExcept i ons
01/21/1996 00: 00: 00 02/ 03/ 1996 00: 00: 00 03/ 24/ 1996 00: 00: 00
04/ 27/ 1996 00: 00: 00 05/ 19/ 1996 00: 00: 00 06/ 23/ 1996 00: 00: 00
07/ 07/ 1996 00: 00: 00 08/ 04/ 1996 00: 00: 00 09/ 15/ 1996 00: 00: 00

of f Excepti ons :
01/ 08/ 1996 00: 00: 00 02/ 02/ 1996 00: 00: 00 03/ 05/ 1996 00: 00: 00
04/ 04/ 1996 00: 00: 00 05/ 08/ 1996 00: 00: 00 06/ 25/ 1996 00: 00: 00
07/ 09/ 1996 00: 00: 00

Get O f set (04/ 03/ 1996 00: 00: 00 , 06/ 05/ 1996 00: 00: 00) = 45

Calendar Functions: Reference 4-35

Hour

Hour

Format

Description

Parameters

Usage

ORDSYS.Calendar.Hour(
[calname VARCHAR?2]
[, anchorDate DATE]
) RETURN ORDSYS.ORDTCalendar;

Creates a calendar with a frequency of hour, a pattern of '1’ (all timestamps
included), no lower or upper boundary dates (minDate or maxDate), no off-
exceptions or on-exceptions, a specified or default (null) name, and a specified or
default anchor date.

calname
The name of the calendar. If calname is not specified, the calendar name is null.

anchorDate
The anchor date for the calendar pattern. If anchorDate is not specified, the anchor
date is 01-Jan-2001 (a Monday).

This function provides a convenient alternative to providing a complete calendar
definition when you are creating a calendar. If you need to modify the definition
later, you can do so (for example, using the InsertExceptions function to specify
exceptions).

For an explanation of calendar concepts (such as frequency, pattern, anchor date,
and exceptions), see Section 2.2.

The following functions create a calendar with a frequency corresponding to the
function name: Day, Hour, Minute, Month, Quarter, Second, Semi_annual,
Semi_monthly, Ten_day, Week, and Year.

4-36 Oracle8/ Time Series User's Guide

Hour

Example
Insert into the stockdemo_calendars table a calendar of hour frequency with a calendar
name of Hourly and an anchor date of 01-Jan-1997 (at midnight). The calendar has
no date boundaries (minDate or maxDate) or exceptions.

I NSERT | NTO st ockdeno_cal endar s
VALUES(
CRDSYS. Gal endar . Hour (
"Hourly',
(to_date(’01-01-97 01'," MMID YY HH))));

Calendar Functions: Reference 4-37

InsertExceptions

InsertExceptions

Format
ORDSYS.Calendar.InsertExceptions(

inputCal IN ORDSYS.ORDTCalendar,
newExcDate IN DATE
) RETURN ORDSYS.ORDTCalendar;
or
ORDSYS.Calendar.InsertExceptions(
inputCal IN ORDSYS.ORDTCalendar,
newExcTab IN ORDSYS.ORDTDateTab
) RETURN ORDSYS.ORDTCalendar;

Description

Inserts into the specified calendar all exceptions that either match a specified date
(newExcDate) or are included in a table of dates (newExcTab), and returns the
resulting calendar.

Parameters

inputCal
The calendar into which one or more exceptions are to be inserted.

newExcDate
The date to be inserted as an exception in the calendar.

newExcTab
A table of dates to be inserted as exceptions in the calendar.

Usage

For each date to be inserted, the function inserts it in the appropriate list (off-
exceptions or on-exceptions), according to the frequency and pattern of the
calendar.

4-38 Oracle8i Time Series User's Guide

InsertExceptions

If a date to be inserted is already an exception in the calendar, the function ignores
the request to insert the date.

If newExcDate or newExcTab is empty or null, or if all dates to be inserted already
exist in the calendar as exceptions, the function returns the input calendar with no
changes.

Example
Insert some exceptions into a calendar.

CONNECT TSUSER TSUSER
SET SERVERQUTPUT CN
ALTER SESSI ON SET NLS DATE FCRVAT = ' MM DD YYYY H24: M: SS ;

DECLARE

tstCGal CRDSYS CRDICal endar ;

t st DTab CROSYS. or dt Dat eTab;
resul t Cal CGRDSYS. CRDICal endar ;
dummyVal | NTEGER

rel OFfset | NTECGER

BEG N

-- Select a calendar (say, GENER GCALL) into tstGal
-- from st ockdeno_cal endars.

SELECT val ue(cal) INTOtstCal

FROM TSDEV. st ockdeno_cal endars cal

WHERE cal .nane = ' (ENER G CALT ;

-- D splay the cal endar.
SELECT CRDSYS. Ti meSeri es. D spl ay(tst Gal) | NTO dummyVal FRCM dual ;
DBVB QUTPUT. NEWLI NE

-- Popul ate tstDrab with sone on- and of f- excepti ons.
tstDrab : = GRDSYS. GRDTDat eTab(

'02/10/1996', -- ON Exception
"07/ 09/ 1996’ , -- CFF Exception
"03/17/1996', -- ON Exception

'04/ 08/ 1996’) ; -- OFF Exception
SELECT CGRDSYS. Ti meSeri es. D spl ay(tst Dlab, ' | nput DateTab')
I NTO durmyVal
FROM dual ;

Calendar Functions: Reference 4-39

InsertExceptions

-- Insert sone exceptions in tstCal.

resul tCal := CROSYS Cal endar. | nsert Exceptions(tstCal, tstDrab);
SELECT CRDSYS. Ti meSeri es. D spl ay(resultGal) | NTO dummyVal
FROM dual ;

END,

/

This example might produce the following output. The second display of
information about GENERIC-CAL1 includes the added on-exceptions and off-

exceptions.

CGal endar Nane = GENER G CAL1
Frequency = 4 (day)
M nbate = 01/01/1996 00: 00: 00
MuxDate = 12/31/1996 00: 00: 00
patBits:
0,111,110
pat Anchor = 01/07/1996 00: 00: 00
onExcept i ons
01/21/1996 00: 00: 00
04/ 27/ 1996 00: 00: 00
07/ 07/ 1996 00: 00: 00
of f Excepti ons :
01/ 08/ 1996 00: 00: 00
04/ 04/ 1996 00: 00: 00
07/ 09/ 1996 00: 00: 00

02/ 03/ 1996 00: 00: 00
05/ 19/ 1996 00: 00: 00
08/ 04/ 1996 00: 00: 00

02/ 02/ 1996 00: 00: 00
05/ 08/ 1996 00: 00: 00

I nput DateTab :

02/10/ 1996 00: 00: 00
04/ 08/ 1996 00: 00: 00

07/ 09/ 1996 00: 00: 00

CGal endar Nane = GENER G CAL1
Frequency = 4 (day)
M nDate = 01/01/1996 00: 00: 00
MaxDat e = 12/31/1996 00: 00: 00
patBits:
0,1,1,1,1,1,0
pat Anchor = 01/07/1996 00: 00: 00
onExcept i ons
01/ 21/ 1996 00: 00: 00
03/ 17/ 1996 00: 00: 00
05/ 19/ 1996 00: 00: 00

02/ 03/ 1996 00: 00: 00
03/ 24/ 1996 00: 00: 00
06/ 23/ 1996 00: 00: 00

4-40 Oracle8i Time Series User's Guide

03/ 24/ 1996 00: 00: 00
06/ 23/ 1996 00: 00: 00
09/ 15/ 1996 00: 00: 00

03/ 05/ 1996 00: 00: 00
06/ 25/ 1996 00: 00: 00

03/ 17/ 1996 00: 00: 00

02/ 10/ 1996 00: 00: 00

04/ 27/ 1996 00: 00: 00
07/ 07/ 1996 00: 00: 00

InsertExceptions

08/ 04/ 1996 00: 00: 00
of f Excepti ons :

01/ 08/ 1996 00: 00: 00

04/ 04/ 1996 00: 00: 00

06/ 25/ 1996 00: 00: 00

09/ 15/ 1996 00: 00: 00
02/ 02/ 1996 00: 00: 00 03/ 05/ 1996 00: 00: 00

04/ 08/ 1996 00: 00: 00 05/ 08/ 1996 00: 00: 00
07/ 09/ 1996 00: 00: 00

Calendar Functions: Reference 4-41

IntersectCals

IntersectCals

Format

Description

Parameters

Usage

ORDSYS.Calendar.IntersectCals(

call ORDSYS.ORDTCalendar,
cal2 ORDSYS.ORDTCalendar
) RETURN ORDSYS.ORDTCalendar;

Returns the intersection of two calendars.

call
The first calendar to be intersected.

cal2
The second calendar to be intersected.

The function performs an intersection of the two input calendars, as follows:

The starting date of the resulting calendar is the later of the starting dates of the
two calendars, that is, resulting minDate = max(minDatel, minDate2).

The ending date of the resulting calendar is the earlier of the ending dates of the
two calendars, that is, resulting maxDate = min(maxDatel, maxDate2).

The intersection of the aligned patterns is computed. For example, if both
calendars have a day frequency with Sunday as the first day, and if call has a
pattern of ’0,1,1,1,1,1,0’ and cal2 has a pattern of ’0,0,1,1,1,1,1’, the resulting
pattern is ’0,0,1,1,1,1,0’ (that is, the calendar includes only Tuesdays,
Wednesdays, Thursdays, and Fridays).

The intersection of the on-exception lists of the two calendars is computed. For
example, if call has 30-Mar and 29-Jun as on-exceptions and cal2 has 29-Jun and
28-Sep as on-exceptions, the resulting calendar has only 29-Jun as an on-
exception.

4-42 Oracle8i Time Series User's Guide

IntersectCals

Example

« The union of the off-exceptions of the two calendars is computed. For example,
if call has 01-Jan and 04-Jul as off-exceptions and cal2 has 01-Jan and 14-Jul as
off-exceptions, the resulting calendar has 01-Jan, 04-Jul, and 14-Jul as off-
exceptions.

If the frequencies of the two calendars are not equal, the function returns NULL.
Contrast this function with UnionCals, which performs a union of two calendars.
IntersectCals and CombineCals differ as follows:

=« CombineCals requires the frequencies and the aligned patterns of the two
calendars to be equal, whereas IntersectCals requires only that the frequencies
be equal. However, IntersectCals does require that the patterns be of the same
length.

« CombineCals lets you specify starting and ending dates for the resulting
calendar, whereas IntersectCals does not let you specify starting and ending
dates.

Combine two calendars (GENERIC-CAL1 and GENERIC-CALZ2), then intersect the
two calendars:

CONNECT TSUSER TSUSER
SET SERVERQUTPUT CN
ALTER SESSI ON SET NLS DATE FCRVAT = ' MM DD YYYY H24: M: SS ;

DECLARE

tstCal 1 CROSYS. CROTCAl endar ;
tst Gal 2 CROSYS. CROTCAl endar ;
resul t Cal CGRDSYS. CRDICal endar ;
equal Fl ag | NTEGER

dummyVal | NTEGER

BEG N

-- Select the calendars GENER G CALL into tstCal 1
-- and GENERGCAL2 into tstCal 2

-- from st ockdeno_cal endars.

SELECT val ue(cal) INTOtstCal 1

FROM TSDEV. st ockdeno_cal endars cal

WHERE cal .nane = ' (GENER G CALT ;

SELECT val ue(cal) INTOtstCal 2

FROM TSDEV. st ockdeno_cal endars cal

Calendar Functions: Reference 4-43

IntersectCals

WHERE cal .nane = ' (ENER G CAL?' ;

-- Dsplay the calendars tstCal 1 and tstCal 2.

SELECT CGRDSYS. Ti meSeri es. O spl ay(tst Gal 1) | NTO dummyVal FROM dual ;
SELECT CGRDSYS. Ti meSeri es. O spl ay(tst Gal 2) | NTO dumrmyVal FROM dual ;

-- Conbine tstCal 1 and tstCal 2.

resul tGal := CRDSYS Cal endar. Conbi neCal s(tstCal 1, tstCal 2, equal H ag);
SELECT CRDSYS. TimeSeries. D spl ay(resultCal, 'result of ConbineCals’)

I NTO durmyVal
FROM dual ;

DBMB QJTPUT. PUT_LINE'equal Hag ="' || equal H ag);

-- Intersect tstCall and tstCal 2.

resultCal := CROSYS Calendar. IntersectCal s(tstCal 1, tstCal 2);
SELECT ORDSYS. Ti meSeries. D spl ay(resultCal, 'result of IntersectCals’)

I NTO durmyVal
FROM dual ;

BEND,
/

This example might produce the following output:

Gl endar Nane = GENER G CAL1
Frequency = 4 (day)
M nDate = 01/01/1996 00: 00: 00
MuxDate = 12/31/1996 00: 00: 00
patBits:
0,1,1,1,1,1,0
pat Anchor = 01/07/1996 00: 00: 00
onExcept i ons
01/21/1996 00: 00: 00 02/ 03/ 1996 00: 00: 00
04/ 27/ 1996 00: 00: 00 05/ 19/ 1996 00: 00: 00
07/ 07/ 1996 00: 00: 00 08/ 04/ 1996 00: 00: 00
of f Excepti ons :
01/ 08/ 1996 00: 00: 00 02/ 02/ 1996 00: 00: 00
04/ 04/ 1996 00: 00: 00 05/ 08/ 1996 00: 00: 00
07/ 09/ 1996 00: 00: 00

CGal endar Nane = GENER G CAL2
Frequency = 4 (day)
M nDate = 01/01/1996 00: 00: 00
MaxDat e = 12/31/1997 00: 00: 00
patBits:

4-44 Oracle8i Time Series User's Guide

03/ 24/ 1996 00: 00: 00
06/ 23/ 1996 00: 00: 00
09/ 15/ 1996 00: 00: 00

03/ 05/ 1996 00: 00: 00
06/ 25/ 1996 00: 00: 00

IntersectCals

1,1,1,1,1,0,0
pat Anchor = 01/08/ 1996 00: 00: 00
onExcept i ons

07/ 07/ 1996 00: 00: 00 08/ 04/ 1996
10/ 13/ 1996 00: 00: 00 11/ 10/ 1996
01/ 04/ 1997 00: 00: 00 02/ 09/ 1997
04/ 05/ 1997 00: 00: 00 05/ 11/ 1997
of f Excepti ons :
07/ 09/ 1996 00: 00: 00 08/ 05/ 1996
10/ 23/ 1996 00: 00: 00 11/19/ 1996
01/ 01/ 1997 00: 00: 00 02/ 12/ 1997
04/ 07/ 1997 00: 00: 00 05/ 05/ 1997
result of ConbineCals :
Frequency = 4 (day)
M nDate = 01/01/1996 00: 00: 00
MaxDat e = 12/31/1996 00: 00: 00
patBits:
0,1,1,1,1,1,0

pat Anchor = 01/07/1996 00: 00: 00
onExcept i ons

07/ 07/ 1996 00: 00: 00 08/ 04/ 1996
of f Excepti ons :

01/ 08/ 1996 00: 00: 00 02/ 02/ 1996

04/ 04/ 1996 00: 00: 00 05/ 08/ 1996

07/ 09/ 1996 00: 00: 00 08/ 05/ 1996

10/ 23/ 1996 00: 00: 00 11/19/ 1996

equal Flag = 0
result of IntersectCals :

Frequency = 4 (day)

M nDat e = 01/ 01/ 1996 00: 00: 00
MaxDat e = 12/ 31/1996 00: 00: 00
patBits:

1,1,1,1,1,0,0
pat Anchor = 01/08/ 1996 00: 00: 00
onExcept i ons

07/ 07/ 1996 00: 00: 00 08/ 04/ 1996
of f Excepti ons :

01/ 08/ 1996 00: 00: 00 02/ 02/ 1996

04/ 04/ 1996 00: 00: 00 05/ 08/ 1996

07/ 09/ 1996 00: 00: 00 08/ 05/ 1996

10/ 23/ 1996 00: 00: 00 11/19/ 1996

00:
00:
00:
00:

00:
00:
00:
00:

00:

00:
00:
00:
00:

00:

00:
00:
00:
00:

00:
00:
00:
00:

00:
00:
00:
00:

00:

00:
00:
00:
00:

00:

00:
00:
00:
00:

00 09/ 15/ 1996 00: 00: 00
00 12/ 14/ 1996 00: 00: 00
00 03/ 08/ 1997 00: 00: 00
00 06/ 08/ 1997 00: 00: 00
00 09/ 10/ 1996 00: 00: 00
00 12/ 12/ 1996 00: 00: 00
00 03/ 04/ 1997 00: 00: 00
00 06/ 09/ 1997 00: 00: 00
00 09/ 15/ 1996 00: 00: 00
00 03/ 05/ 1996 00: 00: 00
00 06/ 25/ 1996 00: 00: 00
00 09/ 10/ 1996 00: 00: 00
00 12/ 12/ 1996 00: 00: 00
00 09/ 15/ 1996 00: 00: 00
00 03/ 05/ 1996 00: 00: 00
00 06/ 25/ 1996 00: 00: 00
00 09/ 10/ 1996 00: 00: 00
00 12/ 12/ 1996 00: 00: 00

Calendar Functions: Reference 4-45

InvalidTimeStampsBetween

InvalidTimeStampsBetween

Format
ORDSYS.Calendar.InvalidTimeStampsBetween(

inputCal IN ORDSYS.ORDTCalendar,
startDate IN DATE,

endDate IN DATE

) RETURN ORDSYS.ORDTDateTab;

Description

Given starting and ending input timestamps, returns a table (ORDTDateTab)
containing the invalid timestamps within that range according to the specified
calendar.

Parameters

inputCal
The calendar to be used to determine whether a timestamp is valid or invalid.

startDate
Starting date in the range to be checked for invalid timestamps.

endDate
Ending date in the range to be checked for invalid timestamps.

Usage
A timestamp is invalid if one or more of the following conditions are true:

« Itis outside the date range of the calendar.
« Itis an off-exception in the calendar.

« Itisimprecise (for example, a timestamp of 02-Jul-1997 if the calendar
frequency is month).

« Itisnull.

startDate and endDate are included in the check for invalid timestamps.

4-46 Oracle8/ Time Series User's Guide

InvalidTimeStampsBetween

Example

If there are no invalid timestamps in the date range, the function returns an empty
ORDTDateTab.

If startDate is greater (later) than endDate, an exception is raised.

Contrast this function with TimeStampsBetween, which returns a table containing
the valid timestamps in a date range.

Return a table of invalid timestamps between 03-Mar-1996 and 03-Jun-1996 in the
GENERIC-CALL1 calendar:

CONNECT TSUSER TSUSER
SET SERVERQUTPUT CN
ALTER SESSI ON SET NLS DATE FCRVAT = ' MM DD YYYY H24:M: SS ;

DECLARE

tstCGal CRDSYS CRDICal endar ;
tst Dat el DATE

t st Dat e2 DATE

resul t DTab CROSYS. or dt Dat eTab;
dummyVal | NTEGER

rel Ffset | NTECGER

BEG N

-- Select a calendar (say, GENER GCALL) into tstCl
-- from st ockdeno_cal endars.

SELECT val ue(cal) INTOtstCal

FROM TSDEV. st ockdeno_cal endars cal

WHERE cal .nane = ' (GENER G CALT ;

-- D splay the cal endar.
SELECT CRDSYS. Ti meSeri es. D spl ay(tst Gal) | NTO dummyVal FRCM dual ;
DBVB QUTPUT. NEWLI NE,

-- Get all the invalid tinestanps between 03- MAR 1996 and 03- JUN- 1996.
tstDatel : = TO DATH' 03/ 03/ 1996’) ;
tstDate2 : = TO DATH' 06/ 03/ 1996’) ;
resul t DTab : = CRDSYS. Gal endar. | nval i dTi neSt anpsBet ween
(tstCal, tstDatel, tstDate2);
SELECT CGRDSYS. Ti meSeri es. O spl ay(resul t Drab, ’InValid tinestanps’)
I NTO durmyVal
FROM dual ;

Calendar Functions: Reference 4-47

InvalidTimeStampsBetween

BEND,
/

This example might produce the following output:

Cal endar Narre =

GENR G CALL

Frequency = 4 (day)
M nDate = 01/01/1996 00: 00: 00

NaxDat e
patBits:

0,1,1,1,1,1,0
pat Anchor = 01/07/1996 00: 00: 00

onExcept i ons
01/ 21/ 1996
04/ 27/ 1996
07/ 07/ 1996

of f Excepti ons :

01/ 08/ 1996
04/ 04/ 1996
07/ 09/ 1996

00:
00:
00:

00:
00:
00:

00:
00:
00:

00:
00:
00:

InValid tinestanps :

03/ 03/ 1996
03/ 10/ 1996
03/ 23/ 1996
04/ 04/ 1996
04/ 13/ 1996
04/ 21/ 1996
05/ 05/ 1996
05/ 12/ 1996
05/ 26/ 1996

4-48 Oracle8/ Time Series User's Guide

00:
00:
00:
00:
00:
00:
00:
00:
00:

00:
00:
00:
00:
00:
00:
00:
00:
00:

00
00
00

00
00
00

00
00
00
00
00
00
00
00
00

12/ 31/ 1996 00: 00: 00

02/ 03/ 1996
05/ 19/ 1996
08/ 04/ 1996

02/ 02/ 1996
05/ 08/ 1996

03/ 05/ 1996
03/ 16/ 1996
03/ 30/ 1996
04/ 06/ 1996
04/ 14/ 1996
04/ 28/ 1996
05/ 08/ 1996
05/ 18/ 1996
06/ 01/ 1996

00:
00:
00:

00:
00:

00:
00:
00:
00:
00:
00:
00:
00:
00:

00:
00:
00:

00:
00:

00:
00:
00:
00:
00:
00:
00:
00:
00:

00
00
00

00
00

00
00
00
00
00
00
00
00
00

03/ 24/ 1996
06/ 23/ 1996
09/ 15/ 1996

03/ 05/ 1996
06/ 25/ 1996

03/ 09/ 1996
03/ 17/ 1996
03/ 31/ 1996
04/ 07/ 1996
04/ 20/ 1996
05/ 04/ 1996
05/ 11/ 1996
05/ 25/ 1996
06/ 02/ 1996

00:
00:
00:

00:
00:

00:
00:
00:
00:
00:
00:
00:
00:
00:

00:
00:
00:

00:
00:

00:
00:
00:
00:
00:
00:
00:
00:
00:

00
00
00

00
00

00
00
00
00
00
00
00
00
00

IsValidCal

IsValidCal

Format

Description

Parameters

Usage

Example

ORDSYS.Calendar.IsValidCal(
inputCal IN ORDSYS.ORDTCalendar
) RETURN BINARY_INTEGER

Returns 1 if a calendar is valid and 0 if a calendar is not valid.

inputCal
The calendar to be checked for validity.

A calendar is invalid (not valid) if it contains any errors. This function does not
correct any errors or perform any repair operations on the calendar.

Contrast this function with the ValidateCal function, which checks the validity of
the calendar and repairs any correctable errors. For detailed information on
calendar errors, see the information on ValidateCal in this chapter.

If the IsValidCal function returns 0, you should do the following before you attempt
to use the calendar:

1. Use the ValidateCal function to repair any correctable errors.

2. If there are any errors that ValidateCal cannot correct, correct these errors
yourself.

3. Repeat steps 1 and 2 as often as necessary until the resulting calendar is valid.

Use the IsValidCal and ValidateCal functions and the DisplayValCal procedure with
an invalid calendar:

CONNECT TSUSER TSUSER
SET SERVERQUTPUT CN

Calendar Functions: Reference 4-49

IsValidCal

ALTER SESSI ON SET NLS DATE FCRVAT = ' MM DD YYYY H24: M: SS ;

CEQLARE
out Message var char 2(32750) ;
i nvOnExc CRDSYS. CRDTDat eTab;
invdfExc CRDSYS. GRDTDat eTab;
i npOnExc CRDSYS. CRDTDat eTab;
inpdfExc CRDSYS. CRDTDat eTab;
dumyval i nt eger;
val i dFl ag i nteger;
tstGl 1 QRDSYS. RDTCGal endar : =
CQRDSYS. CRDTCal endar (
0,
" CALENDAR MYCAL' ,
4,
CROSYS. (RDTPat t er n(CRDSYS. GRDTPatternBits(1, 1,1, 1, 1,0, 0),
TO DATE(’ 01-08-1996 01:01:01')),
TO DATE(’ 01- 01- 1975’),
TO DATH(’ 01- 01- 1999’),
CROSYS. CRDTEXcept i ons(

TO DATE(’ 02-03-1969'), -- Date < mnDate,

TO DATE(’ 02-14-1969'), -- Date < mnDate,

TO DATE(’ 02-03-1999'), -- Date > nmaxDate,

TO DATE(’ 02-17-1999'), -- Date > naxDate,

TO DATE(’ 12-31-1995'), -- Maps to O in pattern (Sunday)
TO DATE(’ 01-13-1996'), -- Maps to O in pattern (Saturday)
TO DATE(’ 02-24-1996'), -- Maps to O in pattern (Saturday)
TO DATE(’ 03-30-1996'), -- Maps to O in pattern (Saturday)
TO DATE(’ 02-02-1996 01:01:01'), -- |nprecise

TO DATE(’ 03-04-1996 01:01:01'), -- |nprecise

TO DATE(’ 04-05-1996 02: 02: 02'), -- |nprecise

TO DATE(’ 03-25-1996'), -- Valid of f-exception

TO DATE(’ 01-22-1996'), -- Valid, but out of sequence

TO DATE(’ 02- 12- 1996),
TO DATE(’ 04- 30- 1996’),

NULL, -- Nl date

TO DATE(’ 02-12-1996'), -- Duplicate date within GFFs
NULL, -- Null date

TO DATE(’ 04-30-1996'), -- Duplicate of f-exception

NULL, -- Null date

TO DATE(’ 03-25-1996'), -- Duplicate off-exception

TO DATE(’ 01-22-1996'), -- Duplicate of f-exception

TO DATE(’ 01-17-1996'), -- Added to on- and of f-excepti ons
TO DATE(’ 05-28-1996'), -- Added to on- and of f-excepti ons
TO DATE(’ 06-18-1996'), -- Added to on- and of f-excepti ons

4-50 Oracle8/ Time Series User's Guide

IsValidCal

TO DATE(’ 04-23-1996'), -- Added to on- and of f-excepti ons
TO DATE(’ 02- 02- 1996") ,
TO DATE(’ 03- 04- 1996’),
TO DATE(’ 05- 06- 1997)),
CRDSYS. CROTEXcept i ons(

TO DATE(’ 02-08-1969'), -- Date < mnDate,

TO DATE(’ 02-15-1969'), -- Date < mnDate,

TO DATE(’ 02-13-1999'), -- Date > nmaxDate,

TO DATE(’ 02-20-1999'), -- Date > nmaxDate,

TO DATE(’ 01-03-1996'), -- Maps to 1 in pattern (Védnesday)
TO DATE(’ 02-19-1996'), -- Maps to 1 in pattern (Mnday)
TO DATE(’ 03-18-1996'), -- Maps to 1 in pattern (Mnday)
TO DATE(’ 05-27-1996'), -- Maps to 1 in pattern (Mnday)
TO DATE(’ 03-23-1996 01:01:01'), -- |nprecise

TO DATE(’ 02-18-1996 01:01:01'), -- |nprecise

TO DATE(’ 05-26-1996 01:01:01'), -- |nprecise

TO DATE(’ 01-13-1996'), -- Valid on-exception

TO DATE(’ 01-14-1996'), -- Valid on-exception

NULL, -- Null date

NULL, -- Null date

TO DATE(’ 02-24-1996'), -- Valid on-exception

TO DATE(’ 03-23-1996'), -- Valid on-exception

TO DATE(’ 01-13-1996'), -- Duplicate on-exception

TO DATE(’ 01-14-1996'), -- Duplicate on-exception

TO DATE(’ 02-24-1996'), -- Duplicate on-exception

TO DATE(’ 03-23-1996'), -- Duplicate on-exception

TO DATE(’ 01-17-1996'), -- Added to on- and of f-excepti ons
TO DATE(’ 05-28-1996'), -- Added to on- and of f-excepti ons
TO DATE(’ 06-18-1996'), -- Added to on- and of f-excepti ons
TO DATE(’ 04-23-1996'), -- Added to on- and of f-excepti ons
TO DATE(’ 01-06-1996'), -- Valid, but out of sequence

TO DATE(’ 02- 03- 1996’),
TO DATE(’ 05- 04- 1997’))

);
BEQ N
SH ECT CRDSYS. TIMESER ES. D spl ay(tstCal 1, "tstCal 1) | NTO dummyval
FROM dual ;
val i dFl ag : = CROSYS. CALENDAR | sVal i dCal (tstCal 1);
IKvalidFlag = 0)
THEN
val i dFl ag : = CRDSYS. CALENDAR Val i dat eCal (
tstCal 1, out Message, invnExc, invdfExc, inpOExc, inmpdfExc

E

CROSYS. TI MESER ES. D spl ayVal Gal (

Calendar Functions: Reference 4-51

IsValidCal

val i dH ag,
out Message,

i nvOhExc,

i nva f Bxc,

i npOnExc,

i npdf f Exc,
tstCal 1,

)
BE\D IF;
END,
/

" Your Message’

This example might produce the following output:

tstGal 1 :

Cal endar Nane = CALENDAR MYCAL
Frequency = 4 (day)
M nDat e = 01/ 01/ 1975 00: 00: 00

NaxDat e
patBits:

1,1,1,1,1,0,0
pat Anchor = 01/08/ 1996 01: 01: 01

onExcept i ons
02/ 08/ 1969
02/ 20/ 1999
03/ 18/ 1996
02/ 18/ 1996
01/ 14/ 1996
02/ 24/ 1996
01/ 14/ 1996
01/ 17/ 1996
04/ 23/ 1996
05/ 04/ 1997

of f Excepti ons :

02/ 03/ 1969
02/17/ 1999
02/ 24/ 1996
03/ 04/ 1996
01/ 22/ 1996

00:
00:
00:
01:
00:
00:
00:
00:
00:
00:

00:
00:
00:
01:
00:

00:
00:
00:
01:
00:
00:
00:
00:
00:
00:

00:
00:
00:
01:
00:

00
00
00
01
00
00
00
00
00
00

00
00
00
01
00

01/ 01/ 1999 00: 00: 00

02/ 15/ 1969
01/ 03/ 1996
05/ 27/ 1996
05/ 26/ 1996

03/ 23/ 1996
02/ 24/ 1996
05/ 28/ 1996
01/ 06/ 1996

02/ 14/ 1969
12/ 31/ 1995
03/ 30/ 1996
04/ 05/ 1996
02/ 12/ 1996

02/ 12/ 1996 00: 00: 00
04/ 30/ 1996 00: 00: 00
01/22/1996 00: 00: 00
06/ 18/ 1996 00: 00: 00

4-52 Oracle8i Time Series User's Guide

03/ 25/ 1996 00: 00: 00

00:
00:
00:
01:

00:
00:
00:
00:

00:
00:
00:
02:
00:

00:
00:
00:
01:

00:
00:
00:
00:

00:
00:
00:
02:
00:

00
00
00
01

00
00
00
00

00
00
00
02
00

01/ 17/ 1996 00: 00: 00
04/ 23/ 1996 00: 00: 00

02/ 13/ 1999
02/ 19/ 1996
03/ 23/ 1996
01/ 13/ 1996

01/ 13/ 1996
03/ 23/ 1996
06/ 18/ 1996
02/ 03/ 1996

02/ 03/ 1999
01/ 13/ 1996
02/ 02/ 1996
03/ 25/ 1996
04/ 30/ 1996

05/ 28/ 1996
02/ 02/ 1996

00:
00:
01:
00:

00:
00:
00:
00:

00:
00:
01:
00:
00:

00:
00:

00:
00:
01:
00:

00:
00:
00:
00:

00:
00:
01:
00:
00:

00:
00:

00
00
01
00

00
00
00
00

00
00
01
00
00

00
00

IsValidCal

03/ 04/ 1996 00: 00: 00 05/ 06/ 1997 00: 00: 00
D spl ayVal Gal Your Message:
TSWRN the input cal endar has rectifiable errors. See the message for details
nessage out put by val i dat eCal :

TS WR\ fixed precision of the pattern anchor date

TS WR\ renoved superfluous dates in the on exception list (refer invalidnExc)
TS WR\ fixed inprecise dates in the on exception list (refer inpreci seOhExc)
TS WR\ renoved null dates in the on exception |ist

TS WR\ sorted the on exceptions |ist

TS WR\ renoved duplicate dates in the on exceptions |ist

TS WR\ renoved superfluous dates in off exceptions list (refer invalidCfExc)
TS WR\ fixed inprecise dates in the off exception list (refer inprecisedfExc)
TSWR\ renoved null dates in the off exception list

TS WR\ sorted the off exceptions |ist

TS WR\ renoved duplicate dates in the off exceptions I|ist

TS WR\ the on exceptions list was tri med between cal endar ninDate & naxDate
TS WR\ the off exceptions list was trinmed between cal endar mnDate & maxDate

list of invalid on exceptions :
01/ 03/ 1996 00: 00: 00 02/ 19/ 1996 00: 00: 00 03/ 18/ 1996 00: 00: 00
05/ 27/ 1996 00: 00: 00 01/ 17/ 1996 00: 00: 00 05/ 28/ 1996 00: 00: 00
06/ 18/ 1996 00: 00: 00 04/ 23/ 1996 00: 00: 00

list of invalid off exceptions :

12/ 31/ 1995 00: 00: 00 01/ 13/ 1996 00: 00: 00 02/ 24/ 1996 00: 00: 00
03/ 30/ 1996 00: 00: 00

list of inprecise on exceptions :

03/23/1996 01:01: 01 02/ 18/ 1996 01: 01: 01 05/ 26/ 1996 01: 01: 01
list of inprecise off exceptions :

02/ 02/ 1996 01:01: 01 03/ 04/ 1996 01: 01: 01 04/ 05/ 1996 02: 02: 02
the validated cal endar :

CGal endar Nane = CALENDAR MYCAL
Frequency = 4 (day)

Calendar Functions: Reference 4-53

IsValidCal

M nDat e = 01/ 01/ 1975 00: 00: 00
MaxDat e = 01/ 01/ 1999 00: 00: 00
patBits:

1,1,1,1,1,0,0

pat Anchor = 01/08/ 1996 00: 00: 00

onExcept i ons
01/ 06/ 1996 00: 00: 00
02/ 03/ 1996 00: 00: 00
03/ 23/ 1996 00: 00: 00
of f Excepti ons :
01/ 17/ 1996 00: 00: 00
02/ 12/ 1996 00: 00: 00
04/ 05/ 1996 00: 00: 00
05/ 28/ 1996 00: 00: 00

4-54 Oracle8i Time Series User's Guide

01/ 13/ 1996 00: 00: 00
02/ 18/ 1996 00: 00: 00
05/ 26/ 1996 00: 00: 00

01/ 22/ 1996 00: 00: 00
03/ 04/ 1996 00: 00: 00
04/ 23/ 1996 00: 00: 00
06/ 18/ 1996 00: 00: 00

01/ 14/ 1996 00: 00:
02/ 24/ 1996 00: 00:
05/ 04/ 1997 00: 00:

02/ 02/ 1996 00: 00:
03/ 25/ 1996 00: 00:
04/ 30/ 1996 00: 00:
05/ 06/ 1997 00: 00:

00
00
00

00
00
00
00

IsValidDate

IsValidDate
Format
ORDSYS.Calendar.IsValidDate(
inputCal IN ORDSYS.ORDTCalendar,
checkDate IN DATE
) RETURN BINARY_INTEGER;
Description
Checks whether an input date is valid or invalid according to the specified calendar.
Parameters
inputCal
The calendar to be used to determine whether the input timestamp is valid or
invalid.
checkDate
The timestamp to be checked for validity according to the calendar.
Usage
If checkDate is valid, the function returns 1; if checkDate is invalid, the function
returns 0.
A timestamp is invalid if one or more of the following conditions are true:
« Itis outside the date range of the calendar.
« Itis an off-exception in the calendar.
« Itis not sufficiently precise (for example, a timestamp of 01-Jul-1997 if the
calendar has a frequency of year).
« Itisnull.
Example

Check if 02-Jan-1996 is a valid timestamp for a calendar (GENERIC-CAL1):
QONNECT TSUSER TSUSER

Calendar Functions: Reference 4-55

IsValidDate

SET SERVERQUTPUT ON

ALTER SESSI ON SET NLS DATE FQRVAT = ' MM DD YYYY HR24: M: SS ;
DECLARE

tstGal CRDSYS CRDICal endar ;

tst Dat el DATE

result | NTECER

dummyVal | NTEGER

BEG N

-- Select a calendar (say, GENER GCALL) into tstCal
-- from st ockdeno_cal endars.

SELECT val ue(cal) INTOtstCal

FROM TSDEV. st ockdeno_cal endars cal

WHERE cal .nane = ' (ENER G CALT ;

-- D splay the cal endar.
SELECT CRDSYS. Ti meSeri es. O spl ay(tst Gal) | NTO dummyVal FRCM dual ;
DBVB QUTPUT. NEWLI NE,

-- Verify if 02-JAN 1996 (a Mbnday) is a valid date and display the result.
tstDatel : = TO DATH' 01/ 02/ 1996’) ;

result := CRDSYS Cal endar.|sValidbDate(tstCal,tstDatel);
DBV QJTPUT. PUT_LINK' IsVal idDate(’ || tstDatel || ') =" || result);
END,

/

This example might produce the following output. In this example, the returned
value of 1 indicates that 02-Jan-1996 is a valid timestamp for the BUSINESS-96
calendar.

CGal endar Nane = GENER G CAL1
Frequency = 4 (day)
M nDate = 01/01/1996 00: 00: 00
MuxDate = 12/31/1996 00: 00: 00
patBits:
0,1,1,1,1,1,0
pat Anchor = 01/07/1996 00: 00: 00
onExcept i ons
01/ 21/ 1996 00: 00: 00 02/ 03/ 1996 00: 00: 00 03/ 24/ 1996 00: 00: 00
04/ 27/ 1996 00: 00: 00 05/ 19/ 1996 00: 00: 00 06/ 23/ 1996 00: 00: 00
07/ 07/ 1996 00: 00: 00 08/ 04/ 1996 00: 00: 00 09/ 15/ 1996 00: 00: 00
of f Excepti ons :
01/ 08/ 1996 00: 00: 00 02/ 02/ 1996 00: 00: 00 03/ 05/ 1996 00: 00: 00

4-56 Oracle8/ Time Series User's Guide

IsValidDate

04/ 04/ 1996 00: 00: 00 05/ 08/ 1996 00: 00: 00 06/ 25/ 1996 00: 00: 00
07/ 09/ 1996 00: 00: 00

I'sVal i dDat e(01/ 02/ 1996 00: 00: 00) = 1

Calendar Functions: Reference 4-57

Minute

Minute

Format

Description

Parameters

Usage

ORDSYS.Calendar.Minute(
[calname VARCHAR?2]
[, anchorDate DATE]
) RETURN ORDSYS.ORDTCalendar;

Creates a calendar with a frequency of minute, a pattern of ’1’ (all timestamps
included), no lower or upper boundary dates (minDate or maxDate), no off-
exceptions or on-exceptions, a specified or default (null) name, and a specified or
default anchor date.

calname
The name of the calendar. If calname is not specified, the calendar name is null.

anchorDate
The anchor date for the calendar pattern. If anchorDate is not specified, the anchor
date is 01-Jan-2001 (a Monday).

This function provides a convenient alternative to providing a complete calendar
definition when you are creating a calendar. If you need to modify the definition
later, you can do so (for example, using the InsertExceptions function to specify
exceptions).

For an explanation of calendar concepts (such as frequency, pattern, anchor date,
and exceptions), see Section 2.2.

The following functions create a calendar with a frequency corresponding to the
function name: Day, Hour, Minute, Month, Quarter, Second, Semi_annual,
Semi_monthly, Ten_day, Week, and Year.

4-58 Oracle8i Time Series User's Guide

Minute

Example
Insert into the stockdemo_calendars table a calendar of minute frequency with a

calendar name of Minute and an anchor date of 01-Jan-1997 (at midnight). The
calendar has no date boundaries (minDate or maxDate) or exceptions.

I NSERT | NTO st ockdeno_cal endar s
VALUES(
CRDSYS. Gal endar . M nut e(

"Mnute',
(to_date(’ 01-01-97',” MADD YY))));

Calendar Functions: Reference 4-59

Month

Month

Format

Description

Parameters

Usage

ORDSYS.Calendar.Month(
[calname VARCHAR?2]
[, anchorDate DATE]
) RETURN ORDSYS.ORDTCalendar;

Creates a calendar with a frequency of month, a pattern of "1’ (all timestamps
included), no lower or upper boundary dates (minDate or maxDate), no off-
exceptions or on-exceptions, a specified or default (null) name, and a specified or
default anchor date.

calname
The name of the calendar. If calname is not specified, the calendar name is null.

anchorDate
The anchor date for the calendar pattern. If anchorDate is not specified, the anchor
date is 01-Jan-2001 (a Monday).

This function provides a convenient alternative to providing a complete calendar
definition when you are creating a calendar. If you need to modify the definition
later, you can do so (for example, using the InsertExceptions function to specify
exceptions).

For an explanation of calendar concepts (such as frequency, pattern, anchor date,
and exceptions), see Section 2.2.

The following functions create a calendar with a frequency corresponding to the
function name: Day, Hour, Minute, Month, Quarter, Second, Semi_annual,
Semi_monthly, Ten_day, Week, and Year.

4-60 Oracle8i Time Series User's Guide

Month

Examples

Insert into the stockdemo_calendars table a calendar of month frequency with a
calendar name of Monthly and an anchor date of 01-Jan-1997. The calendar has no
date boundaries (minDate or maxDate) or exceptions.

I NSERT | NTO st ockdeno_cal endar s
VALUES(
CRDSYS. CGal endar . Mont h(
"Mont hly’,
(to_date(’01-01-97'," MADD YY'))));

Return the sum of the daily trade volume for stock SAMCO for each month in the
entire time series. For scaling, use a monthly calendar with a null name, an anchor
date of 01-Jan-2001 (the default), no date boundaries (minDate or maxDate), and no
exceptions. This example generates a calendar within the statement, and thus
eliminates the need to specify a stored calendar that has the desired frequency.

SH ECT to_char(tstanp) tstanp, val ue
FROM t sdev. st ockdeno_ts ts,
TABLE (CAST(CRDSYS. Ti neSer i es. Extract Tabl e(
CRDSYS. Ti neScal e. Scal eupSun{t s. vol une,
CROSYS. Gal endar . Mont h())
) AS GRDSYS. GRDTNunTab)) t
WHERE ts. ticker= SAMXO ;

This example might produce the following output:

11/ 01/ 96 10207000
12/ 01/ 96 3719450
2 rows sel ected.

Calendar Functions: Reference 4-61

NumlnvalidTimeStampsBetween

NumlnvalidTimeStampsBetween

Format
ORDSYS.Calendar.NumInvalidTimeStampsBetween(

inputCal IN ORDSYS.ORDTCalendar,
startDate IN DATE,

endDate IN DATE

) RETURN INTEGER;

Description

Given starting and ending input timestamps, returns the number of invalid
timestamps within that range according to the specified calendar.

Parameters

inputCal
The calendar to be used to determine whether a timestamp is valid or invalid.

startDate
Starting date in the range to be checked for invalid timestamps.

endDate
Ending date in the range to be checked for invalid timestamps.

Usage
A timestamp is invalid if one or more of the following conditions are true:

« Itis outside the date range of the calendar.
« Itis an off-exception in the calendar.

« Itis not sufficiently precise (for example, a timestamp of 01-Jul-1997 if the
calendar has a frequency of year).

« Itisnull.
startDate and endDate are included in the check for invalid timestamps.

If there are no invalid timestamps in the date range, the function returns 0 (zero).

4-62 Oracle8i Time Series User's Guide

NuminvalidTimeStampsBetween

Example

If startDate is greater (later) than endDate, an exception is raised.

Contrast this function with NumTimeStampsBetween, which returns the number of
valid timestamps in a date range.

Return the number of invalid timestamps between 03-Feb-1996 and 16-May-1996 in
the GENERIC-CALL1 calendar:

CONNECT TSUSER TSUSER
SET SERVERQUTPUT CN
ALTER SESSI ON SET NLS DATE FCRVAT = ' MM DD YYYY H24: M: SS ;

DECLARE

tstCGal CRDSYS CRDICal endar ;
tst Dat el DATE

t st Dat e2 DATE

result | NTECER

dummyVal | NTEGER

BEG N

-- Select a calendar (say, GENER GCALL) into tstGal
-- from st ockdeno_cal endars.

SELECT val ue(cal) INTOtstCal

FROM TSDEV. st ockdeno_cal endars cal

WHERE cal .nane = ' (ENER G CALT ;

-- D splay the cal endar.
SELECT CRDSYS. Ti meSeri es. D spl ay(tst Gal) | NTO dummyVal FRCM dual ;
DBVB QUTPUT. NEWLI NE

-- Get the nunber of invalid tinmestanps between 03-FEB- 1996 and 16- MAY- 1996.

tstDatel : = TO DATH' 02/ 03/ 1996’) ;

tstDate2 : = TO DATH' 05/ 16/ 1996’) ;

result := GROSYS CGal endar. Num nval i dTi neSt anpsBet ween(
tstCal,tstDatel, tstDate2);

DBMVB QUTPUT. PUT_LI NE' Num nval i dTi neStanpsBetween(’ || tstDatel ||' , ' ||
tstDate2|| ') ="' || result);

END,

/

This example might produce the following output. In this example, there are 30
invalid timestamps in the specified date range.

Calendar Functions: Reference 4-63

NuminvalidTimeStampsBetween

Gl endar Nane = GENER G CAL1

Frequency = 4 (day)

M nbate = 01/01/1996 00: 00: 00

MuxDate = 12/31/1996 00: 00: 00

patBits:

0,111,110

pat Anchor = 01/07/1996 00: 00: 00

onExcept i ons
01/ 21/ 1996 00: 00: 00 02/ 03/ 1996 00: 00: 00 03/ 24/ 1996 00: 00: 00
04/ 27/ 1996 00: 00: 00 05/ 19/ 1996 00: 00: 00 06/ 23/ 1996 00: 00: 00
07/ 07/ 1996 00: 00: 00 08/ 04/ 1996 00: 00: 00 09/ 15/ 1996 00: 00: 00

of f Excepti ons :
01/ 08/ 1996 00: 00: 00 02/ 02/ 1996 00: 00: 00 03/ 05/ 1996 00: 00: 00
04/ 04/ 1996 00: 00: 00 05/ 08/ 1996 00: 00: 00 06/ 25/ 1996 00: 00: 00
07/ 09/ 1996 00: 00: 00

Num nval i dTi neSt anpsBet ween(02/ 03/ 1996 00: 00: 00 , 05/ 16/ 1996 00: 00: 00) = 30

4-64 Oracle8i Time Series User's Guide

NumOffExceptions

NumOffExceptions

Format

Description

Parameters

Usage

Example

ORDSYS.Calendar.NumOffExceptions(
inputCal IN ORDSYS.ORDTCalendar,
startDate IN DATE,
endDate IN DATE
) RETURN INTEGER;

Given starting and ending input timestamps, returns the number of off-exceptions
within that range according to the specified calendar.

inputCal
The calendar to be used in computing the number of off-exceptions.

startDate
Starting date in the range to be checked for off-exceptions.

endDate
Ending date in the range to be checked for off-exceptions.

startDate and endDate are included in the check for off-exceptions. (For an
explanation of off-exceptions and on-exceptions, see Section 2.2.)

If startDate is greater (later) than endDate, an exception is raised.

Return the number of off-exceptions between 02-Feb-1996 and 07-Jul-1996 in the
GENERIC-CALL1 calendar:

CONNECT TSUSER TSUSER
SET SERVERQUTPUT CN

Calendar Functions: Reference 4-65

NumOffExceptions

ALTER SESSI ON SET NLS DATE FCRVAT = ' MM DD YYYY H24: M: SS ;

DECLARE

tstGal CRDSYS CRDICal endar ;
tst Dat el DATE

t st Dat e2 DATE

result | NTECER

dummyVal | NTEGER

BEG N

-- Select a calendar (say, GENER GCALL) into tstCal
-- from st ockdeno_cal endars.

SELECT val ue(cal) INTOtstCal

FROM TSDEV. st ockdeno_cal endars cal

WHERE cal .nane = ' (ENER G CALT ;

-- D splay the cal endar.
SELECT CRDSYS. Ti meSeri es. D spl ay(tst Gal) | NTO dummyVal FRCM dual ;
DBVB QUTPUT. NEWLI NE,

-- Get the nunber of off-exceptions between 02- FEB-1996 and 07- JUL- 1996.
tstDatel : = TO DATH' 02/ 02/ 1996’) ;
tstDate2 : = TO DATH' 07/ 07/ 1996’) ;

result := CRDOSYS Cal endar. NunQf f Exceptions(tstCal ,tstDatel, tstDate2);
DBMB QUTPUT. PUT_LI NE(" Nun@¥ f Exceptions(’ || tstDatel ||’ , ' || tstDate2

[l ') =" || result);
END,

/

This example might produce the following output. As the last line of the output
indicates, there are five off-exceptions in the specified date range (02-Feb-1996
through 07-Jul-1996).

Gl endar Nane = GENER G CAL1
Frequency = 4 (day)
M nDate = 01/01/1996 00: 00: 00
MuxDate = 12/31/1996 00: 00: 00
patBits:
0,111,110
pat Anchor = 01/07/1996 00: 00: 00
onExcept i ons
01/ 21/ 1996 00: 00: 00 02/ 03/ 1996 00: 00: 00 03/ 24/ 1996 00: 00: 00
04/ 27/ 1996 00: 00: 00 05/ 19/ 1996 00: 00: 00 06/ 23/ 1996 00: 00: 00
07/ 07/ 1996 00: 00: 00 08/ 04/ 1996 00: 00: 00 09/ 15/ 1996 00: 00: 00

4-66 Oracle8/ Time Series User's Guide

NumOffExceptions

of f Excepti ons :
01/ 08/ 1996 00: 00: 00 02/ 02/ 1996 00: 00: 00 03/ 05/ 1996 00: 00: 00
04/ 04/ 1996 00: 00: 00 05/ 08/ 1996 00: 00: 00 06/ 25/ 1996 00: 00: 00
07/ 09/ 1996 00: 00: 00

NunF f Except i ons(02/ 02/ 1996 00: 00: 00 , 07/07/1996 00: 00: 00) = 5

Calendar Functions: Reference 4-67

NumOnExceptions

NumOnExceptions

Format
ORDSYS.Calendar.NumOnExceptions(
inputCal IN ORDSYS.ORDTCalendar,
startDate IN DATE,
endDate IN DATE
) RETURN INTEGER,;
Description
Given starting and ending input timestamps, returns the number of on-exceptions
within that range according to the specified calendar.
Parameters
inputCal
The calendar to be used in computing the number of on-exceptions.
startDate
Starting date in the range to be checked for on-exceptions.
endDate
Ending date in the range to be checked for on-exceptions.
Usage
startDate and endDate are included in the check for on-exceptions. (For an
explanation of off-exceptions and on-exceptions, see Section 2.2.)
If startDate is greater (later) than endDate, an exception is raised.
Example

Return the number of on-exceptions between 02-Feb-1996 and 07-Jul-1996 in the
GENERIC-CALL1 calendar:

CONNECT TSUSER TSUSER
SET SERVERQUTPUT CN
ALTER SESSI ON SET NLS DATE FCRVAT = ' MM DD YYYY H24: M: SS ;

4-68 Oracle8/ Time Series User's Guide

NumOnExceptions

DECLARE

tstGal CRDSYS CRDICal endar ;
tst Dat el DATE

t st Dat e2 DATE

result | NTECER

dummyVal | NTEGER

BEG N

-- Select a calendar (say, GENER GCALL) into tstCal
-- from st ockdeno_cal endars.

SELECT val ue(cal) INTOtstCal

FROM TSDEV. st ockdeno_cal endars cal

WHERE cal .nane = ' (GENER G CALT ;

-- D splay the cal endar.
SELECT CRDSYS. Ti meSeri es. O spl ay(tst Gal) | NTO dummyVal FRCM dual ;
DBVB QUTPUT. NEWLI NE,

-- Get the nunber of ON Exceptions between 02- FEB-1996 and 07- JUL- 1996.
tstDatel : = TO DATH' 02/ 02/ 1996’) ;
tstDate2 : = TO DATH' 07/ 07/ 1996’) ;

result := CRDSYS Cal endar. NunnExceptions(tstCal ,tstDatel, tstDate?);
DBVB QUTPUT. PUT_LI NE(' NumnExceptions(’ || tstDatel ||’ , ' || tstDate2

[1 ') =" || result);
END,

/

This example might produce the following output. As the last line of the output
indicates, there are six on-exceptions in the specified date range (02-Feb-1996
through 07-Jul-1996).

Gl endar Nane = GENER G CAL1
Frequency = 4 (day)
M nDate = 01/01/1996 00: 00: 00
MwxDate = 12/31/1996 00: 00: 00
patBits:
0,1,1,1,1,1,0
pat Anchor = 01/07/1996 00: 00: 00
onExcept i ons
01/ 21/ 1996 00: 00: 00 02/ 03/ 1996 00: 00: 00 03/ 24/ 1996 00: 00: 00
04/ 27/ 1996 00: 00: 00 05/ 19/ 1996 00: 00: 00 06/ 23/ 1996 00: 00: 00
07/ 07/ 1996 00: 00: 00 08/ 04/ 1996 00: 00: 00 09/ 15/ 1996 00: 00: 00
of f Excepti ons :

Calendar Functions: Reference 4-69

NumOnExceptions

01/ 08/ 1996 00: 00: 00 02/ 02/ 1996 00: 00: 00 03/ 05/ 1996 00: 00: 00
04/ 04/ 1996 00: 00: 00 05/ 08/ 1996 00: 00: 00 06/ 25/ 1996 00: 00: 00
07/ 09/ 1996 00: 00: 00

NumnExcept i ons(02/ 02/ 1996 00: 00: 00 , 07/07/1996 00: 00: 00) = 6

4-70 Oracle8/ Time Series User's Guide

NumTimeStampsBetween

NumTimeStampsBetween

Format
ORDSYS.Calendar.NumTimeStampsBetween(

inputCal IN ORDSYS.ORDTCalendar,
startDate IN DATE,

endDate IN DATE

) RETURN INTEGER;

Description

Given starting and ending input timestamps, returns the number of valid
timestamps within that range according to the specified calendar.

Parameters

inputCal
The calendar to be used to determine whether a timestamp is valid or invalid.

startDate
Starting date in the range to be checked for invalid timestamps.

endDate
Ending date in the range to be checked for invalid timestamps.

Usage
A timestamp is invalid if one or more of the following conditions are true:

« Itis outside the date range of the calendar.
« Itis an off-exception in the calendar.

« Itis not sufficiently precise (for example, a timestamp of 01-Jul-1997 if the
calendar has a frequency of year).

« Itisnull.
startDate and endDate are included in the check for valid timestamps.

If there are no valid timestamps in the date range, the function returns 0 (zero).

Calendar Functions: Reference 4-71

NumTimeStampsBetween

Example

If startDate is greater (later) than endDate, an exception is raised.

Contrast this function with NumInvalidTimeStampsBetween, which returns the
number of invalid timestamps in a date range.

Return the number of valid timestamps between 03-Feb-1996 and 16-May-1996 in
the GENERIC-CALL1 calendar:

CONNECT TSUSER TSUSER
SET SERVERQUTPUT CN
ALTER SESSI ON SET NLS DATE FCRVAT = ' MM DD YYYY H24:M: SS ;

DECLARE

tstGal CRDSYS CRDICal endar ;
tst Dat el DATE

t st Dat e2 DATE

result | NTECER

dummyVal | NTEGER

BEG N

-- Select a calendar (say, GENER GCALL) into tstGal
-- from st ockdeno_cal endars.

SELECT val ue(cal) INTOtstCal

FROM TSDEV. st ockdeno_cal endars cal

WHERE cal .nane = ' (ENER G CALT ;

-- D splay the cal endar.
SELECT CRDSYS. Ti meSeri es. D spl ay(tst Gal) | NTO dummyVal FRCM dual ;
DBVB QUTPUT. NEWLI NE

-- Get the nunber of Valid timestanps between 03- FEB-1996 and 16- MAY- 1996.
tstDatel : = TO DATH' 02/ 03/ 1996’) ;
tstDate2 : = TO DATH' 05/ 16/ 1996’) ;

result := CROSYS Cal endar. Nunli neSt anpsBet ween(tst Cal , tstDat el, tstDate2);

DBVB QUJTPUT. PUT_LI NE(' NunTi neSt anpsBetween(’ || tstDatel ||’ , * || tstDate2
[l ') =" || result);

END,

/

This example might produce the following output. In this example, there are 74
valid timestamps in the specified date range.

Cal endar Name = GENER G CALL

4-72 Oracle8i Time Series User's Guide

NumTimeStampsBetween

Frequency = 4 (day)

M nDate = 01/01/1996 00: 00: 00

MixDate = 12/ 31/1996 00: 00: 00

patBits:

0,1,1,1,1,1,0

pat Anchor = 01/07/1996 00: 00: 00

onExcept i ons
01/ 21/ 1996 00: 00: 00 02/ 03/ 1996 00: 00: 00 03/ 24/ 1996 00: 00: 00
04/ 27/ 1996 00: 00: 00 05/ 19/ 1996 00: 00: 00 06/ 23/ 1996 00: 00: 00
07/ 07/ 1996 00: 00: 00 08/ 04/ 1996 00: 00: 00 09/ 15/ 1996 00: 00: 00

of f Excepti ons :
01/ 08/ 1996 00: 00: 00 02/ 02/ 1996 00: 00: 00 03/ 05/ 1996 00: 00: 00
04/ 04/ 1996 00: 00: 00 05/ 08/ 1996 00: 00: 00 06/ 25/ 1996 00: 00: 00
07/ 09/ 1996 00: 00: 00

NumT meSt anpsBet ween(02/ 03/ 1996 00: 00: 00 , 05/16/1996 00: 00: 00) = 74

Calendar Functions: Reference 4-73

OffsetDate

OffsetDate

Format

Description

Parameters

Usage

ORDSYS.Calendar.OffsetDate(
inputCal IN ORDSYS.ORDTCalendar,
origin IN DATE,
relOffset IN INTEGER
) RETURN DATE;

Given a reference date (origin) and an offset with respect to the origin (relOffset),
returns the timestamp corresponding to the offset input.

inputCal
Calendar from which the date is to be returned.

origin
The date to which the offset value (relOffset) is to be applied in computing the
returned date.

relOffset
The relative offset of the returned date with respect to the origin.

The function returns the date of the timestamp at the relOffset number of
timestamps from the origin date. If relOffset is positive, the returned date is later
than origin; if relOffset is negative, the returned date is earlier than origin. If relOffset
is zero (0), the returned date is origin if origin is a valid date; however, if relOffset is
zero (0) and origin is not a valid date, the function returns NULL.

For example, assume a Monday through Friday business day calendar for 1997 with
04-Jul-1997 (Friday) defined as an off-exception, and assume that origin is 02-Jul-
1997 (Wednesday):

« IfrelOffset = 2, the returned date is 07-Jul-1997 (Monday).

4-74 Oracle8i Time Series User's Guide

OffsetDate

Example

« IfrelOffset = -2, the returned date is 30-Jun-1997 (Monday).
« If relOffset = 0, the returned date is 02-Jul-1997 (Wednesday).

If the origin date is not in the calendar (inputCal), the next later date is used if
relOffset is positive or zero, and the next earlier date is used if relOffset is negative.
Using the calendar in the preceding example, if origin is specified as 04-Jul-1997 and
if relOffset = 2, then 07-Jul-1997 (Monday, the next business day) is used as origin,
and the returned date is 09-Jul-1997 (Wednesday).

If the calendar pattern is empty or null, an exception is raised.

Get the dates 20 timestamps later and 20 timestamps earlier than 03-Mar-1996 in the
GENERIC-CAL1 calendar:

CONNECT TSUSER TSUSER
SET SERVERQUTPUT CN
ALTER SESSI ON SET NLS DATE FCRVAT = ' MM DD YYYY H24: M: SS ;

DECLARE

tstCGal CRDSYS CRDICal endar ;
tst Dat el DATE

resul t Dat e date;

dummyVal | NTEGER

rel OFfset | NTECGER

BEG N

-- Select a calendar (say, GENER GCALL) into tstCal
-- from st ockdeno_cal endars.

SELECT val ue(cal) INTOtstCal

FROM TSDEV. st ockdeno_cal endars cal

WHERE cal .nane = ' (ENER G CALT ;

-- D splay the cal endar.
SELECT CRDSYS. Ti meSeri es. D spl ay(tst Gal) | NTO dummyVal FRCM dual ;
DBVB QUTPUT. NEWLI NE

-- Ofset 03-MAR 1996 by 20.

tstDatel : = TO DATH' 03/ 03/ 1996’) ;

rel Jfset := 20;

resultDate := CRDSYS Cal endar. OFfset Date(tstCal, tstDatel, rel Ofset);
DBV QUTPUT. PUT_LINK' GFfsetDate(’ || tstDatel || ' , || rel Ofset

|| ") =" || resultDate);

Calendar Functions: Reference 4-75

OffsetDate

DBVS_QUTPUT. NEWLI NE

-- Ofset 03-MAR 1996 by -20.
tstDatel : = TO DATE(’ 03/ 03/ 1996');

relJfset : = -20;
resultDate := CRDSYS Cal endar. OFfset Date(tstCal, tstDatel, rel Ofset);
DBV QUTPUT. PUT_LINE' CFfsetDate(’ || tstDatel || ° | relGfset

|| ") =" || resultDate);
DBVB QUTPUT. NEWLI NE,

BEND,
/

This example might produce the following output. In this example, 29-Mar-1996 is
20 timestamps later than 03-Mar-1996, and 05-Feb-1996 is 20 timestamps earlier
than 03-Mar-1996.

Gl endar Nane = GENER G CAL1
Frequency = 4 (day)
M nDate = 01/01/1996 00: 00: 00
MuxDate = 12/31/1996 00: 00: 00
patBits:

0,111,110

pat Anchor = 01/07/1996 00: 00: 00
onExcept i ons

01/21/1996 00: 00: 00 02/ 03/ 1996 00: 00: 00 03/ 24/ 1996 00: 00: 00

04/ 27/ 1996 00: 00: 00 05/ 19/ 1996 00: 00: 00 06/ 23/ 1996 00: 00: 00

07/ 07/ 1996 00: 00: 00 08/ 04/ 1996 00: 00: 00 09/ 15/ 1996 00: 00: 00
of f Excepti ons :

01/ 08/ 1996 00: 00: 00 02/ 02/ 1996 00: 00: 00 03/ 05/ 1996 00: 00: 00

04/ 04/ 1996 00: 00: 00 05/ 08/ 1996 00: 00: 00 06/ 25/ 1996 00: 00: 00

07/ 09/ 1996 00: 00: 00

 f set Dat e(03/ 03/ 1996

 f set Dat e(03/ 03/ 1996

4-76 Oracle8/ Time Series User's Guide

00: 00: 00 , 20) = 03/29/1996 00: 00: 00

00: 00: 00 , -20) = 02/ 05/ 1996 00: 00: 00

Quarter

Quarter

Format

Description

Parameters

Usage

ORDSYS.Calendar.Quarter(
[calname VARCHAR?2]
[, anchorDate DATE]
) RETURN ORDSYS.ORDTCalendar;

Creates a calendar with a frequency of quarter, a pattern of ’1’ (all timestamps
included), no lower or upper boundary dates (minDate or maxDate), no off-
exceptions or on-exceptions, a specified or default (null) name, and a specified or
default anchor date.

calname
The name of the calendar. If calname is not specified, the calendar name is null.

anchorDate
The anchor date for the calendar pattern. If anchorDate is not specified, the anchor
date is 01-Jan-2001 (a Monday).

This function provides a convenient alternative to providing a complete calendar
definition when you are creating a calendar. If you need to modify the definition
later, you can do so (for example, using the InsertExceptions function to specify
exceptions).

For an explanation of calendar concepts (such as frequency, pattern, anchor date,
and exceptions), see Section 2.2.

The following functions create a calendar with a frequency corresponding to the
function name: Day, Hour, Minute, Month, Quarter, Second, Semi_annual,
Semi_monthly, Ten_day, Week, and Year.

Calendar Functions: Reference 4-77

Quarter

Example
Insert into the stockdemo_calendars table a calendar of quarter frequency with a

calendar name of Quarterly and an anchor date of 01-Jan-1997. The calendar has no
date boundaries (minDate or maxDate) or exceptions.

I NSERT | NTO st ockdeno_cal endar s
VALUES(
CRDSYS. Gal endar . Quarter (

"Quarterly’,
(to_date(’ 01-01-97',” MADD YY))));

4-78 Oracle8i Time Series User's Guide

Second

Second

Format

Description

Parameters

Usage

ORDSYS.Calendar.Second(
[calname VARCHAR?2]
[, anchorDate DATE]
) RETURN ORDSYS.ORDTCalendar;

Creates a calendar with a frequency of second, a pattern of ’1’ (all timestamps
included), no lower or upper boundary dates (minDate or maxDate), no off-
exceptions or on-exceptions, a specified or default (null) name, and a specified or
default anchor date.

calname
The name of the calendar. If calname is not specified, the calendar name is null.

anchorDate
The anchor date for the calendar pattern. If anchorDate is not specified, the anchor
date is 01-Jan-2001 (a Monday).

This function provides a convenient alternative to providing a complete calendar
definition when you are creating a calendar. If you need to modify the definition
later, you can do so (for example, using the InsertExceptions function to specify
exceptions).

For an explanation of calendar concepts (such as frequency, pattern, anchor date,
and exceptions), see Section 2.2.

The following functions create a calendar with a frequency corresponding to the
function name: Day, Hour, Minute, Month, Quarter, Second, Semi_annual,
Semi_monthly, Ten_day, Week, and Year.

Calendar Functions: Reference 4-79

Second

Example
Insert into the stockdemo_calendars table a calendar of second frequency with a

calendar name of Second and an anchor date of 01-Jan-1997 (at midnight). The
calendar has no date boundaries (minDate or maxDate) or exceptions.

I NSERT | NTO st ockdeno_cal endar s
VALUES(
CRDSYS. Gal endar . Second(

" Second’ ,
(to_date(’ 01-01-97',” MADD YY'))));

4-80 Oracle8i Time Series User's Guide

Semi_annual

Semi_annual

Format
ORDSYS.Calendar.Semi_annual(

[calname VARCHAR?2]
[, anchorDate DATE]
) RETURN ORDSYS.ORDTCalendar;

Description
Creates a calendar with a frequency of semi_annual, a pattern of 1’ (all timestamps
included), no lower or upper boundary dates (minDate or maxDate), no off-
exceptions or on-exceptions, a specified or default (null) name, and a specified or
default anchor date.

Parameters
calname
The name of the calendar. If calname is not specified, the calendar name is null.
anchorDate
The anchor date for the calendar pattern. If anchorDate is not specified, the anchor
date is 01-Jan-2001 (a Monday).

Usage

This function provides a convenient alternative to providing a complete calendar
definition when you are creating a calendar. If you need to modify the definition
later, you can do so (for example, using the InsertExceptions function to specify
exceptions).

For an explanation of calendar concepts (such as frequency, pattern, anchor date,
and exceptions), see Section 2.2.

The following functions create a calendar with a frequency corresponding to the
function name: Day, Hour, Minute, Month, Quarter, Second, Semi_annual,
Semi_monthly, Ten_day, Week, and Year.

Calendar Functions: Reference 4-81

Semi_annual

Example
Insert into the stockdemo_calendars table a calendar of semi_annual frequency with a

calendar name of Semi_annual and an anchor date of 01-Jan-1997. The calendar has
no date boundaries (minDate or maxDate) or exceptions.

I NSERT | NTO st ockdeno_cal endar s
VALUES(
CRDSYS. Gal endar . Semi _annual (
"Sem _annual ',
(to_date(’01-01-97'," MADD YY'))));

4-82 Oracle8i Time Series User's Guide

Semi_monthly

Semi_monthly

Format

Description

Parameters

Usage

ORDSYS.Calendar.Semi_monthly(
[calname VARCHAR?2]
[, anchorDate DATE]
) RETURN ORDSYS.ORDTCalendar;

Creates a calendar with a frequency of semi_monthly, a pattern of "1’ (all timestamps
included), no lower or upper boundary dates (minDate or maxDate), no off-
exceptions or on-exceptions, a specified or default (null) name, and a specified or
default anchor date.

calname
The name of the calendar. If calname is not specified, the calendar name is null.

anchorDate
The anchor date for the calendar pattern. Must be the 1st or 16th day of a month. If
anchorDate is not specified, the anchor date is 01-Jan-2001 (a Monday).

This function provides a convenient alternative to providing a complete calendar
definition when you are creating a calendar. If you need to modify the definition
later, you can do so (for example, using the InsertExceptions function to specify
exceptions).

For an explanation of calendar concepts (such as frequency, pattern, anchor date,
and exceptions), see Section 2.2.

The following functions create a calendar with a frequency corresponding to the
function name: Day, Hour, Minute, Month, Quarter, Second, Semi_annual,
Semi_monthly, Ten_day, Week, and Year.

Calendar Functions: Reference 4-83

Semi_monthly

Examples

Insert into the stockdemo_calendars table a calendar of semi_monthly frequency with a
calendar name of Semi_monthly and an anchor date of 01-Jan-1997. The calendar has
no date boundaries (minDate or maxDate) or exceptions.

I NSERT | NTO st ockdeno_cal endar s
VALUES(
CRDSYS. Gal endar . Sem _nont hl y(
"Sem _nonthly’,
(to_date(’01-01-97'," MADD YY'))));

Return the sum of the daily trade volume for stock SAMCO for each semimonthly
period in the entire time series. For scaling, use a semimonthly calendar with a null
name, an anchor date of 01-Jan-2001 (the default), no date boundaries (minDate or
maxDate), and no exceptions.

SHECT * FROM THE
(SELECT CAST(GRDSYS. Ti neSeri es. Extract Tabl e(
CROSYS. Ti neScal e. Scal eupSung
ts. vol une,
CRDSYS. Gal endar . Semi_nont hl y()))
AS CROSYS. GROTNuNnTab)
FROM TSDEV. st ockdeno ts ts
WHERE ts.ticker= SAMXO);

This example might produce the following output:

11/ 01/ 96 6403150
11/ 16/ 96 3803850
12/ 01/ 96 1894200
12/ 16/ 96 1825250
4 rows sel ect ed.

4-84 Oracle8i Time Series User's Guide

SetPrecision

SetPrecision

Format
ORDSYS.Calendar.SetPrecision(

cal ORDSYS.ORDTCalendar
timestamp IN DATE,
) RETURN DATE;

Description

Given a calendar and a timestamp, returns a timestamp that reflects the level of
precision implied by the frequency of the specified calendar.

Parameters

cal
Calendar whose frequency is to be applied in setting the precision.

timestamp
Timestamp whose precision is to be set.

Usage

The returned timestamp reflects the precision implied by the frequency, as
explained in Section 2.2.2. For example, if the input timestamp is 29-Dec-1997
12:45:00 and the frequency is 6 (month), the returned timestamp is 01-Dec-1997
00:00:00. Table 4-1 shows the frequencies, their precision conventions, and the
resulting precision if an input timestamp of 19-Sep-1997 09:09:09 is supplied.

Table 4-1 SetPrecision and Timestamp of 19-Sep-1997 09:09:09

Frequency (Every:) Precision Convention Result
second MM-DD-YYYY HH24:MI:SS 09-19-1997 09:09:09
minute MM-DD-YYYY HH24:M1:00 09-19-1997 09:09:00

Calendar Functions: Reference 4-85

SetPrecision

Example

Table 4-1 SetPrecision and Timestamp of 19-Sep-1997 09:09:09 (Cont.)

Frequency (Every:) Precision Convention Result

hour MM-DD-YYYY HH24:00:00 09-19-1997 09:00:00

day MM-DD-YYYY 00:00:00 (midnight) 09-19-1997 00:00:00

month MM-01-YYYY 00:00:00 (midnight of 09-01-1997 00:00:00
first day of month)

year 01-01-YYYY 00:00:00 (midnight of ~ 01-01-1997 00:00:00

first day of year)

If the frequency is not valid, an exception is raised.

Note: The Release 8.0.4 SetPrecision syntax specifying a
timestamp and a frequency (timestamp IN INTEGER, frequency IN
INTEGER) is still supported, but will not be supported in a future
release.

Set the precision of an imprecise timestamp (here, a timestamp containing hour,
minute, and second values where the calendar has a day frequency):

CONNECT TSUSER TSUSER
SET SERVERQUTPUT CN
ALTER SESSI ON SET NLS DATE FCRVAT = ' MM DD YYYY H24:M: SS ;

DECLARE

tstGal CRDSYS CRDICal endar ;
tst Dat el DATE

resul t Dat e date;

dummyVal | NTEGER

rel Ffset | NTECGER

BEG N

-- Select a calendar (say, GENER GCALL) into tstCal
-- from st ockdeno_cal endars.

SELECT val ue(cal) INTOtstCal

FROM TSDEV. st ockdeno_cal endars cal

WHERE cal .nane = ' (ENER G CALT ;

4-86 Oracle8/ Time Series User's Guide

SetPrecision

-- D splay the cal endar.
SELECT CRDSYS. Ti meSeri es. D spl ay(tst Gal) | NTO dummyVal FRCM dual ;
DBVB QUTPUT. NEWLI NE,

-- Set the precision of an inprecise date.
tstDatel : = TO DATE(’ 03/ 03/ 1996 01:01:01');
resul tDate := CRDSYS Cal endar. Set Precision(tstcal, tstDatel);
DBMB QUTPUT. PUT_LI N’ SetPrecision with tinmestanp ' ||
TO CHAR(tst Datel) ||
" and frequency ' || tstGal.frequency);
DBV QJTPUT. PUT_LINK' returns: ' || TOCHARresultDate));
BEND,
/

This example might produce the following output. In this example, the hour,
minute, and second components of the timestamp are set to zeroes because the
calendar frequency is 4 (day).

Gl endar Nane = GENER G CAL1

Frequency = 4 (day)

M nDate = 01/01/96 00: 00: 00

MuxDate = 12/ 31/96 00: 00: 00

patBits:

0,1,1,1,1,1,0

pat Anchor = 01/07/96 00: 00: 00

onExcept i ons
01/ 21/ 96 00: 00: 00 02/ 03/ 96 00: 00: 00 03/ 24/ 96 00: 00: 00
04/ 27/ 96 00: 00: 00 05/ 19/ 96 00: 00: 00 06/ 23/ 96 00: 00: 00
07/ 07/ 96 00: 00: 00 08/ 04/ 96 00: 00: 00 09/ 15/ 96 00: 00: 00

of f Excepti ons :
01/ 08/ 96 00: 00: 00 02/ 02/ 96 00: 00: 00 03/ 05/ 96 00: 00: 00
04/ 04/ 96 00: 00: 00 05/ 08/ 96 00: 00: 00 06/ 25/ 96 00: 00: 00
07/09/ 96 00: 00: 00

SetPrecision with tinestanp 03/03/96 01: 01: 01 and frequency 4
returns: 03/03/96 00: 00: 00

Calendar Functions: Reference 4-87

Ten_day

Ten_day

Format

Description

Parameters

Usage

ORDSYS.Calendar.Ten_day(
[calname VARCHAR?2]
[, anchorDate DATE]
) RETURN ORDSYS.ORDTCalendar;

Creates a calendar with a frequency of 10-day, a pattern of 1’ (all timestamps
included), no lower or upper boundary dates (minDate or maxDate), no off-
exceptions or on-exceptions, a specified or default (null) name, and a specified or
default anchor date.

calname
The name of the calendar. If calname is not specified, the calendar name is null.

anchorDate
The anchor date for the calendar pattern. Must be the 1st, 11th, or 21st day of a
month. If anchorDate is not specified, the anchor date is 01-Jan-2001 (a Monday).

This function provides a convenient alternative to providing a complete calendar
definition when you are creating a calendar. If you need to modify the definition
later, you can do so (for example, using the InsertExceptions function to specify
exceptions).

For an explanation of calendar concepts (such as frequency, pattern, anchor date,
and exceptions), see Section 2.2.

The following functions create a calendar with a frequency corresponding to the
function name: Day, Hour, Minute, Month, Quarter, Second, Semi_annual,
Semi_monthly, Ten_day, Week, and Year.

4-88 Oracle8i Time Series User's Guide

Ten_day

Examples

Insert into the stockdemo_calendars table a calendar of 10-day frequency with a
calendar name of Ten_day and an anchor date of 01-Jan-1997. The calendar has no
date boundaries (minDate or maxDate) or exceptions.

I NSERT | NTO st ockdeno_cal endar s
VALUES(
CRDSYS. Gal endar . Ten_day(
' Ten_day’,
(to_date(’01-01-97'," MADD YY'))));

Return the sum of the daily trade volume for stock SAMCO for each 10-day period
in the entire time series. For scaling, use a 10-day calendar with a null name, an
anchor date of 01-Jan-2001 (the default), no date boundaries (minDate or maxDate),
and no exceptions.

SHECT * FROM THE
(SELECT CAST(GRDSYS. Ti neSeri es. Extract Tabl e(
CROSYS. Ti neScal e. Scal eupSun
ts. vol une,
CRDSYS. Gal endar . Ten_day()))
AS CROSYS. GROTNuNnTab)
FROM TSDEV. st ockdeno ts ts
WHERE ts.ticker= SAMXO);

This example might produce the following output:

11/ 01/ 96 361600
11/ 11/ 96 7281200
11/ 21/ 96 2564200
12/ 01/ 96 1433850
12/ 11/ 96 1437800
12/ 21/ 96 847800
6 rows sel ected.

Calendar Functions: Reference 4-89

TimeStampsBetween

TimeStampsBetween

Format

Description

Parameters

Usage

4-90 Oracle8i Tim

ORDSYS.Calendar.TimeStampsBetween(
inputCal IN ORDSYS.ORDTCalendar,
startDate IN DATE,
endDate IN DATE
) RETURN ORDSYS.ORDTDateTab;

Given starting and ending input timestamps, returns a table (ORDTDateTab)
containing the valid timestamps within that range according to the specified
calendar.

inputCal
The calendar to be used to determine whether a timestamp is valid or invalid.

startDate
Starting date in the range to be checked for valid timestamps.

endDate
Ending date in the range to be checked for valid timestamps.

A timestamp is invalid if one or more of the following conditions are true:
« Itis outside the date range of the calendar.
« Itis an off-exception in the calendar.

« Itis not sufficiently precise (for example, a timestamp of 01-Jul-1997 if the
calendar has a frequency of year).

« Itisnull.

startDate and endDate are included in the check for valid timestamps.

e Series User's Guide

TimeStampsBetween

Example

If there are no valid timestamps in the date range, the function returns an empty
ORDTDateTab.

If startDate is greater (later) than endDate, an exception is raised.

Contrast this function with InvalidTimeStampsBetween, which returns a table
containing the invalid timestamps in a date range.

Return a table of valid timestamps between 03-Mar-1996 and 03-Jun-1996 in the
GENERIC-CALL1 calendar:

CONNECT TSUSER TSUSER
SET SERVERQUTPUT CN
ALTER SESSI ON SET NLS DATE FCRVAT = ' MM DD YYYY H24:M: SS ;

DECLARE

tstCGal CRDSYS CRDICal endar ;
tst Dat el DATE

t st Dat e2 DATE

resul t DTab CROSYS. or dt Dat eTab;
dummyVal | NTEGER

rel Ffset | NTECGER

BEG N

-- Select a calendar (say, GENER GCALL) into tstCl
-- from st ockdeno_cal endars.

SELECT val ue(cal) INTOtstCal

FROM TSDEV. st ockdeno_cal endars cal

WHERE cal .nane = ' (GENER G CALT ;

-- D splay the cal endar.
SELECT CRDSYS. Ti meSeri es. D spl ay(tst Gal) | NTO dummyVal FRCM dual ;
DBVB QUTPUT. NEWLI NE,

-- Get all the valid timestanps between 03-MAR 1996 and 03- JUN- 1996.
tstDatel : = TO DATH' 03/ 03/ 1996’) ;

tstDate2 : = TO DATH' 06/ 03/ 1996’) ;

resul t DTab : = CRDSYS. Gal endar . Ti neSt anpsBet ween(tstCal, tstDatel, tstDate2);
SELECT CORDSYS. Ti meSeri es. D spl ay(resul t DTab, 'Valid timestanps’)

I NTO durmyVal

FROM dual ;

BEND,

Calendar Functions: Reference 4-91

TimeStampsBetween

/

This example might produce the following output:

Cal endar Name = GENER G CALL

Frequency = 4 (day)

M nDate = 01/ 01/ 96 00: 00: 00
MaxDate = 12/ 31/ 96 00: 00: 00

patBits:

0,1,11110

pat Anchor = 01/07/96 00: 00: 00

onExcept i ons

01/21/96 00:
04/ 27/ 96 00:
07/ 07/ 96 00:

of f Excepti ons :

01/08/ 96 00:
04/ 04/ 96 00:
07/ 09/ 96 00:

00:
00:
00:

00:
00:
00:

Valid tinestanps :

03/ 04/ 96 00:
03/ 08/ 96 00:
03/13/96 00:
03/18/96 00:
03/21/96 00:
03/ 25/ 96 00:
03/ 28/ 96 00:
04/ 02/ 96 00:
04/ 08/ 96 00:
04/11/96 00:
04/ 16/ 96 00:
04/19/ 96 00:
04/ 24/ 96 00:
04/ 27/ 96 00:
05/ 01/ 96 00:
05/ 06/ 96 00:
05/10/ 96 00:
05/ 15/ 96 00:
05/19/ 96 00:
05/ 22/ 96 00:
05/ 27/ 96 00:
05/ 30/ 96 00:

00:
00:
00:
00:
00:
00:
00:
00:
00:
00:
00:
00:
00:
00:
00:
00:
00:
00:
00:
00:
00:
00:

4-92 Oracle8i Time Series User's Guide

00
00
00

00
00
00

00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00

02/ 03/ 96
05/ 19/ 96
08/ 04/ 96

02/ 02/ 96
05/ 08/ 96

03/ 06/ 96
03/ 11/ 96
03/ 14/ 96
03/ 19/ 96
03/ 22/ 96
03/ 26/ 96
03/ 29/ 96
04/ 03/ 96
04/ 09/ 96
04/ 12/ 96
04/ 17/ 96
04/ 22/ 96
04/ 25/ 96
04/ 29/ 96
05/ 02/ 96
05/ 07/ 96
05/ 13/ 96
05/ 16/ 96
05/ 20/ 96
05/ 23/ 96
05/ 28/ 96
05/ 31/ 96

00:
00:
00:

00:
00:

00:
00:
00:
00:
00:
00:
00:
00:
00:
00:
00:
00:
00:
00:
00:
00:
00:
00:
00:
00:
00:
00:

00:
00:
00:

00:
00:

00:
00:
00:
00:
00:
00:
00:
00:
00:
00:
00:
00:
00:
00:
00:
00:
00:
00:
00:
00:
00:
00:

00
00
00

00
00

00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00

03/ 24/ 96
06/ 23/ 96
09/ 15/ 96

03/ 05/ 96
06/ 25/ 96

03/ 07/ 96
03/ 12/ 96
03/ 15/ 96
03/ 20/ 96
03/ 24/ 96
03/ 27/ 96
04/ 01/ 96
04/ 05/ 96
04/ 10/ 96
04/ 15/ 96
04/ 18/ 96
04/ 23/ 96
04/ 26/ 96
04/ 30/ 96
05/ 03/ 96
05/ 09/ 96
05/ 14/ 96
05/ 17/ 96
05/ 21/ 96
05/ 24/ 96
05/ 29/ 96
06/ 03/ 96

00:
00:
00:

00:
00:

00:
00:
00:
00:
00:
00:
00:
00:
00:
00:
00:
00:
00:
00:
00:
00:
00:
00:
00:
00:
00:
00:

00:
00:
00:

00:
00:

00:
00:
00:
00:
00:
00:
00:
00:
00:
00:
00:
00:
00:
00:
00:
00:
00:
00:
00:
00:
00:
00:

00
00
00

00
00

00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00

TimeStampsBetween

Section 3.8.3 contains an example showing the use of TimeStampsBetween to create
a time series for use with the DeriveExceptions function.

Calendar Functions: Reference 4-93

UnionCals

UnionCals

Format

Description

Parameters

Usage

ORDSYS.Calendar.UnionCals(

call ORDSYS.ORDTCalendar,
cal2 ORDSYS.ORDTCalendar
) RETURN ORDSYS.ORDTCalendar;

Returns a calendar that is the union of two input calendars.

call

The first calendar on which the union operation is to be performed.

cal2

The second calendar on which the union operation is to be performed.

The function performs a union of the two input calendars, as follows:

The starting date of the resulting calendar is the later of the starting dates of the
two calendars, that is, resulting minDate = max(minDatel, minDate2).

The ending date of the resulting calendar is the earlier of the ending dates of the
two calendars, that is, resulting maxDate = min(maxDatel, maxDate2).

The union of the aligned patterns is computed. For example, if both calendars
have a day frequency with Sunday as the first day, and if call has a pattern of
’0,1,1,1,1,1,0’ and cal2 has a pattern of ’0,0,1,1,1,1,1’, the resulting pattern is
’0,1,1,1,1,1,1° (that is, the calendar includes Mondays through Saturdays).

The union of the on-exception lists is computed. For example, if call has 30-Mar
and 29-Jun as on-exceptions and cal2 has 29-Jun and 28-Sep as on-exceptions,
the resulting calendar has 30-Mar, 29-Jun, and 28-Sep on-exceptions.

4-94 Oracle8i Time Series User's Guide

UnionCals

Example

» The intersection of the off-exception lists is computed. For example, if call has

01-Jan and 04-Jul as off-exceptions and cal2 has 01-Jan and 14-Jul as off-
exceptions, the resulting calendar has only 01-Jan as an off-exception.

If the frequencies of the two calendars are not equal, the function returns NULL.

Contrast this function with IntersectCals, which intersects two calendars.

Perform a union of two calendars:

CONNECT TSUSER TSUSER
SET SERVERQUTPUT CN
ALTER SESSI ON SET NLS DATE FCRVAT = ' MM DD YYYY H24:M: SS ;

DECLARE

tstCal 1 CROSYS. CROTCAl endar ;
tst Cal 2 CROSYS. CRDOTCal endar ;
resul t Cal CGRDSYS. CRDICal endar ;
equal Fl ag | NTEGER

dummyVal | NTEGER

BEG N

-- Select the calendars GENER G CALL into tstCal 1
-- and GENERGCAL2 into tstCal 2

-- from st ockdeno_cal endars.

SELECT val ue(cal) INTOtstCal 1

FROM TSDEV. st ockdeno_cal endars cal

WHERE cal .nane = ' (GENER G CALT ;

SELECT val ue(cal) INTOtstCal 2

FROM TSDEV. st ockdeno_cal endars cal

WHERE cal .nane = ' (ENER G CAL?' ;

-- Dsplay the calendars tstCal 1 and tstCal 2.
SELECT CGRDSYS. Ti meSeri es. O spl ay(tst Gal 1) | NTO dumrmyVal FROM dual ;
SELECT CGRDSYS. Ti meSeri es. O spl ay(tst Gal 2) | NTO durmyVal FROM dual ;

-- lhion tstGal 1l and tstCal 2.

resul tCal := CROSYS Cal endar. Uni oncal s(tstCal 1, tstCal 2);

SELECT GRDSYS. Ti meSeries. D spl ay(resultCal, 'result of UhionCals’)
I NTO durmyVal

FROM dual ;

BEND,

Calendar Functions: Reference 4-95

UnionCals

/

This example might produce the following output:

Gl endar Nane = GENER G CAL1

Frequency = 4 (day)

M nbate = 01/01/96 00: 00: 00

MuxDate = 12/ 31/96 00: 00: 00

patBits:

0,1,1,1,1,1,0

pat Anchor = 01/07/96 00: 00: 00

onExcept i ons
01/ 21/ 96 00: 00: 00 02/ 03/ 96 00: 00: 00
04/ 27/ 96 00: 00: 00 05/ 19/ 96 00: 00: 00
07/ 07/ 96 00: 00: 00 08/ 04/ 96 00: 00: 00

of f Excepti ons :
01/ 08/ 96 00: 00: 00 02/ 02/ 96 00: 00: 00
04/ 04/ 96 00: 00: 00 05/ 08/ 96 00: 00: 00
07/09/ 96 00: 00: 00

CGal endar Nane = GENER G CAL2
Frequency = 4 (day)

M nDate = 01/ 01/ 96 00: 00: 00
MaxDate = 12/ 31/ 97 00: 00: 00
patBits:

1,1,1,1,1,0,0
pat Anchor = 01/08/96 00: 00: 00
onExcept i ons
07/ 07/ 96 00: 00: 00 08/ 04/ 96 00: 00: 00
10/ 13/ 96 00: 00: 00 11/10/96 00: 00: 00
01/ 04/ 97 00: 00: 00 02/ 09/ 97 00: 00: 00
04/ 05/ 97 00: 00: 00 05/ 11/ 97 00: 00: 00
of f Excepti ons :
07/09/ 96 00: 00: 00 08/ 05/ 96 00: 00: 00
10/ 23/ 96 00: 00: 00 11/19/96 00: 00: 00
01/ 01/ 97 00: 00: 00 02/ 12/ 97 00: 00: 00
04/ 07/ 97 00: 00: 00 05/ 05/ 97 00: 00: 00

result of UnhionCals :

Frequency = 4 (day)

M nDate = 01/ 01/ 96 00: 00: 00
MaxDate = 12/ 31/ 96 00: 00: 00
patBits:

1,1,1,1,1,0,0

4-96 Oracle8/ Time Series User's Guide

03/ 24/ 96
06/ 23/ 96
09/ 15/ 96

03/ 05/ 96
06/ 25/ 96

09/ 15/ 96
12/ 14/ 96
03/ 08/ 97
06/ 08/ 97

09/ 10/ 96
12/ 12/ 96
03/ 04/ 97
06/ 09/ 97

00:
00:
00:

00:
00:

00:
00:
00:
00:

00:
00:
00:
00:

00:
00:
00:

00:
00:

00:
00:
00:
00:

00:
00:
00:
00:

00
00
00

00
00

00
00
00
00

00
00
00
00

UnionCals

pat Anchor = 01/08/96 00: 00: 00

onExcept i ons
01/21/96 00: 00: 00
04/ 27/ 96 00: 00: 00
07/ 07/ 96 00: 00: 00
10/ 13/ 96 00: 00: 00
of f Excepti ons :
07/09/ 96 00: 00: 00

02/ 03/ 96 00: 00: 00
05/19/96 00: 00: 00
08/ 04/ 96 00: 00: 00
11/ 10/ 96 00: 00: 00

03/ 24/ 96 00: 00: 00
06/ 23/ 96 00: 00: 00
09/ 15/ 96 00: 00: 00
12/ 14/ 96 00: 00: 00

Calendar Functions: Reference 4-97

ValidateCal

ValidateCal

Format
ORDSYS.Calendar.ValidateCal(

cal INOUT ORDSYS.ORDTCalendar,
outMessage OUT VARCHAR?2,
invOnExc OUT ORDTDateTab,
invOffExc OUT ORDTDateTab,
impOnExc OUT ORDTDateTab,
impOffExc OUT ORDTDateTab
) RETURN BINARY_INTEGER;

Description

Validates a calendar and, if necessary, repairs the calendar and generates
information related to the problems and repairs.

Parameters

cal
The calendar to be validated and (if necessary) repaired.

outMessage
Message describing how the calendar was repaired (if the return value = 1) or why
the calendar could not be repaired (if the return value = -1).

invOnExc
Table of the invalid on-exceptions found in the calendar.

invOffExc
Table of the invalid off-exceptions found in the calendar.

impOnExc
Table of the imprecise on-exceptions found in the calendar.

impOffExc
Table of the imprecise off-exceptions found in the calendar.

4-98 Oracle8i Time Series User's Guide

ValidateCal

Usage

This function returns one of the following values:

Value Meaning

0 The calendar is valid. No errors were found.
1 Correctable errors were found and corrected. The resulting calendar is valid.

-1 Uncorrectable errors were found. The calendar is not valid.

Errors in the input calendar make it invalid. Depending on the error, it may be
correctable or uncorrectable. Correctable errors are repaired by the ValidateCal
function. If all errors are correctable, the resulting calendar is valid.

For a calendar to be valid, all timestamps in the off-exception and on-exception lists
must be consistent with the defined pattern for the calendar. If one or more
exception timestamps are not consistent with the pattern, the calendar is invalid.
For example, if 04-Jan-1997 (Saturday) is in the off-exception list of a calendar
whose pattern includes only Mondays through Fridays as normal business days, 04-
Jan-1997 is an invalid off-exception (because as a Saturday it would normally be an
"off" day).

Imprecise exception timestamps are repaired. For an explanation of precision, see
Section 2.2.2.

Table 4-2 lists correctable errors and the repair actions taken by the ValidateCal
function.

Table 4-2 Errors Repaired by ValidateCal

Error Repair Action

Imprecise anchor date The precision is adjusted.

Character other than 1 or 0 in the All pattern characters other than 0 or 1 are set to
pattern 1.

Imprecise date The precision is adjusted.

Superfluous date (for example, aregular The date is removed from the exceptions list.
valid date in the on-exceptions list)

Null date The date is removed from the calendar.
Unsorted dates The dates are sorted.

Duplicate dates in the on-exceptions or Duplicates are removed; the date appears only
off-exceptions list once in the list.

Calendar Functions: Reference 4-99

ValidateCal

Table 4-2 Errors Repaired by ValidateCal (Cont.)

Error Repair Action

Date appearing in both the on- The date is removed from the inappropriate list,
exceptions and off-exceptions lists depending on the pattern and the anchor date.
Date outside the date range of the The date is removed from the exceptions list.
calendar

The following errors are not correctable. The function returns -1 if one or more of
these errors are found:

« The frequency is not valid.

= The starting date is later than the ending date.
= The pattern is null or empty.

= All pattern bits are empty.

« One or more pattern bits are null.

« The anchor date is null and the pattern is not "all ones" or "all zeroes" (for
example, a pattern of ’0,1,1,1,1,1,0’ but no anchor date specified).

If the function returns -1, you should not use the calendar until you have fixed the
errors that ValidateCal could not fix. Then use ValidateCal again, and use the
calendar only if the function returns 0 or 1.

You can use the DisplayValCal procedure to display the information returned by the
ValidateCal function. See the information on DisplayValCal in this chapter.

The IsValidCal function (described in this chapter) checks the validity of the
calendar but does not perform any repair operations.

Example

Use the IsValidCal and ValidateCal functions and the DisplayValCal procedure with
an invalid calendar:

CONNECT TSUSER TSUSER
SET SERVERQUTPUT CN
ALTER SESSI ON SET NLS DATE FCRVAT = ' MM DD YYYY H24: M: SS ;

CEQLARE

out Message var char 2(32750) ;

i nvOnExc CRDSYS. CRDTDat eTab;
invdfExc CRDSYS. GRDTDat eTab;

4-100 Oracle8i Time Series User's Guide

ValidateCal

i npOnExc CRDSYS. CRDTDat eTab;
inpdfExc CRDSYS. CRDTDat eTab;
dumyval i nt eger;
val i dFl ag i nteger;
tstGl 1 QRDSYS. RDTCGal endar : =
CQRDSYS. CRDTCal endar (
0,
" CALENDAR MYCAL' ,
4,

CROSYS. (RDTPat t er n(RDSYS. GRDTPat ternBits(1, 1,1,1, 1,0, 0),

TO DATE(’ 01- 08- 1996 01: 01: 01')),

TO DATE(’ 01- 01- 1975’) ,

TO DATE(’ 01-01-1999'),

CROSYS. CRDTEXcept i ons(

TO DATE(’ 02-03-1969'), --
TO DATE(’ 02- 14-1969'), --
TO DATE(’ 02-03-1999'), --
TO DATE(’ 02-17-1999'), --
TO DATE(® 12-31-1995'), --
TO DATE(’ 01-13-1996'), --
TO DATE(’ 02- 24-1996'), --
TO DATE(’ 03-30-1996'), --
TO DATE(’ 02- 02- 1996 01: 01:
TO DATE(’ 03- 04- 1996 01: 01:
TO DATE(’ 04- 05- 1996 02: 02:
TO DATE(’ 03-25-1996'), --
TO DATE(’ 01-22-1996'), --
TO DATE(’ 02- 12- 1996’) ,

TO DATE(’ 04- 30- 1996’) ,
NULL, --
TO DATE(’ 02-12-1996'), --
NULL, --
TO DATE(’ 04-30-1996'), --
NULL, --
TO DATE(’ 03-25-1996'), --
TO DATE(’ 01-22-1996'), --
TO DATE(’ 01-17-1996'), --
TO DATE(’ 05-28-1996'), --
TO DATE(’ 06-18-1996'), --
TO DATE(’ 04-23-1996'), --
TO DATE(’ 02- 02- 1996’),

TO DATE(’ 03- 04- 1996’) ,

TO DATE(’ 05- 06- 1997)),

CRDSYS. CRDOTEXcept i ons(
TO DATE(’ 02- 08-1969'), --

Dat e < mnDat e,

Dat e < mnDat e,

Dat e > naxDat e,

Dat e > naxDat e,

Maps to O in pattern (Sunday)
Maps to O in pattern (Saturday)
Maps to O in pattern (Saturday)
Maps to O in pattern (Saturday)

01'), -- Inprecise
01'), -- Inprecise
02'), -- Inprecise

Val id of f-exception
Valid, but out of sequence

Nl | date

Duplicate date within GFs
Nl | date

Dupl i cate of f-exception
Nl | date

Dupl i cate of f-exception
Dupl i cate of f-exception
Added to on- and of f-exceptions
Added to on- and of f-exceptions
Added to on- and of f-exceptions
Added to on- and of f-exceptions

Dat e < mnDat e,

Calendar Functions: Reference

4-101

ValidateCal

TO DATE(’ 02-15-1969'), -- Date < mnDate,

TO DATE(’ 02-13-1999'), -- Date > nmaxDate,

TO DATE(’ 02-20-1999'), -- Date > nmaxDate,

TO DATE(’ 01-03-1996'), -- Mps to 1 in pattern (Védnesday)
TO DATE(’ 02-19-1996'), -- Myps to 1 in pattern (Mnday)
TO DATE(’ 03-18-1996'), -- Maps to 1 in pattern (Mnday)
TO DATE(’ 05-27-1996'), -- Maps to 1 in pattern (Mnday)
TO DATE(’ 03-23-1996 01:01:01'), -- |nprecise

TO DATE(’ 02-18-1996 01:01:01'), -- |nprecise

TO DATE(’ 05-26-1996 01:01:01'), -- |nprecise

TO DATE(’ 01-13-1996'), -- Valid on-exception

TO DATE(’ 01-14-1996'), -- Valid on-exception

NULL, -- Null date

NULL, -- Nl date

TO DATE(’ 02-24-1996'), -- Valid on-exception

TO DATE(’ 03-23-1996'), -- Valid on-exception

TO DATE(’ 01-13-1996'), -- Duplicate on-exception

TO DATE(’ 01-14-1996'), -- Duplicate on-exception

TO DATE(’ 02-24-1996'), -- Duplicate on-exception

TO DATE(’ 03-23-1996'), -- Duplicate on-exception

TO DATE(’ 01-17-1996'), -- Added to on- and of f-excepti ons
TO DATE(’ 05-28-1996'), -- Added to on- and of f-excepti ons
TO DATE(’ 06-18-1996'), -- Added to on- and of f-excepti ons
TO DATE(’ 04-23-1996'), -- Added to on- and of f-excepti ons
TO DATE(’ 01-06-1996'), -- Valid, but out of sequence

TO DATE(’ 02- 03- 1996),
TO DATE(’ 05- 04- 1997’))

);
BEQ N
SH ECT CRDSYS. TIMESER ES. D spl ay(tstCal 1, "tstCal 1) | NTO dummyval
FROM dual ;
val i dFl ag : = CROSYS. CALENDAR | sVal i dCal (tstCal 1);
IKvalidFlag = 0)
THEN
val i dFl ag : = CRDSYS. CALENDAR Val i dat eCal (
tstCal 1, out Message, invnExc, invGfExc, inpOExc, inpdfExc

E

CROSYS. TI MESER ES. D spl ayVal Gal (
val i dH ag,
out Message,
i nvOnExc,
i nva f Exc,
i npOnExc,
i npdf f BExc,

4-102 Oracle8i Time Series User's Guide

ValidateCal

tstCal 1,

"Your Message’

E
BEN\D I F;

END,

/

This example might produce the following output:
tstCGll:

CGal endar Nane = CALENDAR MYCAL

Frequency = 4 (day)

M nDate = 01/01/1975 00: 00: 00

MuxDate = 01/01/1999 00: 00: 00

patBits:

1,1,1,1,1,0,0

pat Anchor = 01/08/ 1996 01: 01: 01

onExcept i ons
02/ 08/ 1969 00: 00: 00 02/ 15/ 1969 00: 00: 00 02/ 13/ 1999 00: 00: 00
02/ 20/ 1999 00: 00: 00 01/ 03/ 1996 00: 00: 00 02/ 19/ 1996 00: 00: 00
03/ 18/ 1996 00: 00: 00 05/ 27/ 1996 00: 00: 00 03/ 23/ 1996 01: 01: 01
02/ 18/ 1996 01: 01: 01 05/ 26/ 1996 01: 01: 01 01/ 13/ 1996 00: 00: 00
01/ 14/ 1996 00: 00: 00
02/ 24/ 1996 00: 00: 00 03/ 23/ 1996 00: 00: 00 01/ 13/ 1996 00: 00: 00
01/ 14/ 1996 00: 00: 00 02/ 24/ 1996 00: 00: 00 03/ 23/ 1996 00: 00: 00
01/ 17/ 1996 00: 00: 00 05/ 28/ 1996 00: 00: 00 06/ 18/ 1996 00: 00: 00
04/ 23/ 1996 00: 00: 00 01/ 06/ 1996 00: 00: 00 02/ 03/ 1996 00: 00: 00
05/ 04/ 1997 00: 00: 00

of f Excepti ons :
02/ 03/ 1969 00: 00: 00 02/ 14/ 1969 00: 00: 00 02/ 03/ 1999 00: 00: 00
02/ 17/ 1999 00: 00: 00 12/ 31/ 1995 00: 00: 00 01/ 13/ 1996 00: 00: 00
02/ 24/ 1996 00: 00: 00 03/ 30/ 1996 00: 00: 00 02/ 02/ 1996 01: 01: 01
03/04/1996 01: 01: 01 04/ 05/ 1996 02: 02: 02 03/ 25/ 1996 00: 00: 00
01/ 22/ 1996 00: 00: 00 02/ 12/ 1996 00: 00: 00 04/ 30/ 1996 00: 00: 00

02/ 12/ 1996 00: 00: 00

04/ 30/ 1996 00: 00: 00 03/ 25/ 1996 00: 00: 00
01/ 22/ 1996 00: 00: 00 01/ 17/ 1996 00: 00: 00 05/ 28/ 1996 00: 00: 00
06/ 18/ 1996 00: 00: 00 04/ 23/ 1996 00: 00: 00 02/ 02/ 1996 00: 00: 00
03/ 04/ 1996 00: 00: 00 05/ 06/ 1997 00: 00: 00

D spl ayVal Gal Your Message:

TS WA\ the input calendar has rectifiable errors. See the nessage for details

Calendar Functions: Reference 4-103

ValidateCal

nessage out put by val i dat eCal :

TS WR\ fixed precision of the pattern anchor date

TS WR\ renoved superfluous dates in the on exception list (refer invalidnExc)
TS WR\ fixed inprecise dates in the on exception list (refer inpreci seOhExc)
TS WR\ renoved null dates in the on exception |ist

TS WR\ sorted the on exceptions |ist

TS WR\ renoved duplicate dates in the on exceptions |ist

TS WR\ renoved superfluous dates in off exceptions list (refer invalidCfExc)
TS WR\ fixed inprecise dates in the off exception list (refer inprecisedfExc)
TS WA\ renoved null dates in the off exception list

TS WR\ sorted the off exceptions |ist

TS WR\ renoved duplicate dates in the off exceptions I|ist

TS WR\ the on exceptions list was tri med between cal endar ninDate & naxDate
TS WR\ the off exceptions list was trinmed between cal endar mnDate & maxDate

list of invalid on exceptions :

01/ 03/ 1996 00: 00: 00 02/ 19/ 1996 00: 00: 00 03/ 18/ 1996 00: 00: 00
05/ 27/ 1996 00: 00: 00 01/17/ 1996 00: 00: 00 05/ 28/ 1996 00: 00: 00
06/ 18/ 1996 00: 00: 00 04/ 23/ 1996 00: 00: 00

list of invalid off exceptions :

12/ 31/ 1995 00: 00: 00 01/ 13/ 1996 00: 00: 00 02/ 24/ 1996 00: 00: 00
03/ 30/ 1996 00: 00: 00

list of inprecise on exceptions :

03/23/1996 01:01: 01 02/ 18/ 1996 01: 01: 01 05/ 26/ 1996 01:01: 01

list of inprecise off exceptions :

02/ 02/ 1996 01:01: 01 03/ 04/ 1996 01: 01: 01 04/ 05/ 1996 02: 02: 02

the validated cal endar :

CGal endar Nane = CALENDAR MYCAL
Frequency = 4 (day)

M nDat e
MaxDat e
patBits:

01/ 01/ 1975 00: 00: 00
01/ 01/ 1999 00: 00: 00

1,1,1,1,1,0,0

pat Anchor = 01/08/ 1996 00: 00: 00
onExcept i ons

4-104 Oracle8i Time Series User's Guide

ValidateCal

01/ 06/ 1996 00: 00: 00 01/ 13/ 1996 00: 00: 00 01/ 14/ 1996 00: 00: 00
02/ 03/ 1996 00: 00: 00 02/ 18/ 1996 00: 00: 00 02/ 24/ 1996 00: 00: 00
03/ 23/ 1996 00: 00: 00 05/ 26/ 1996 00: 00: 00 05/ 04/ 1997 00: 00: 00
of f Excepti ons :
01/17/1996 00: 00: 00 01/ 22/ 1996 00: 00: 00 02/ 02/ 1996 00: 00: 00
02/12/1996 00: 00: 00 03/ 04/ 1996 00: 00: 00 03/ 25/ 1996 00: 00: 00
04/ 05/ 1996 00: 00: 00 04/ 23/ 1996 00: 00: 00 04/ 30/ 1996 00: 00: 00
05/ 28/ 1996 00: 00: 00 06/ 18/ 1996 00: 00: 00 05/ 06/ 1997 00: 00: 00

Calendar Functions: Reference 4-105

Week

Week

Format

Description

Parameters

Usage

ORDSYS.Calendar.Week(
[calname VARCHAR?2]
[, anchorDate DATE]
) RETURN ORDSYS.ORDTCalendar;

Creates a calendar with a frequency of week, a pattern of '1’ (all timestamps
included), no lower or upper boundary dates (minDate or maxDate), no off-
exceptions or on-exceptions, a specified or default (null) name, and a specified or
default anchor date.

calname
The name of the calendar. If calname is not specified, the calendar name is null.

anchorDate
The anchor date for the calendar pattern. If anchorDate is not specified, the anchor
date is 01-Jan-2001 (a Monday).

This function provides a convenient alternative to providing a complete calendar
definition when you are creating a calendar. If you need to modify the definition
later, you can do so (for example, using the InsertExceptions function to specify
exceptions).

For an explanation of calendar concepts (such as frequency, pattern, anchor date,
and exceptions), see Section 2.2.

The following functions create a calendar with a frequency corresponding to the
function name: Day, Hour, Minute, Month, Quarter, Second, Semi_annual,
Semi_monthly, Ten_day, Week, and Year.

4-106 Oracle8i Time Series User's Guide

Week

Examples

Insert into the stockdemo_calendars table a calendar of week frequency with a calendar
name of Weekly and an anchor date of 05-Jan-1997. The calendar has no date
boundaries (minDate or maxDate) or exceptions.

I NSERT | NTO st ockdeno_cal endar s
VALUES(
CRDSYS. Gal endar . Véek(
"Wekly',
(to_date(’01-05-97"," MADD YY'))));

Return the sum of the daily trade volume for stock SAMCO for each week in the
entire time series. For scaling, use a weekly calendar with a null name, an anchor
date of 01-Jan-2001 (the default), no date boundaries (minDate or maxDate), and no
exceptions.

SHECT * FROM THE
(SELECT CAST(GRDSYS. Ti neSeri es. Extract Tabl e(
CROSYS. Ti neScal e. Scal eupSun
ts. vol une,
CROSYS. Gal endar . Wek()))
AS CROSYS. GROTNuNnTab)
FROM TSDEV. st ockdeno ts ts
WHERE ts.ticker= SAMXO);

This example might produce the following output:

10/ 28/ 96 41550
11/ 04/ 96 320050
11/ 11/ 96 6041550
11/ 18/ 96 1909850
11/ 25/ 96 1894000
12/ 02/ 96 1051350

12/ 09/ 96 842850
12/ 16/ 96 977450
12/ 23/ 96 430800
12/ 30/ 96 417000

10 rows sel ect ed.

Calendar Functions: Reference 4-107

Year

Year

Format

Description

Parameters

Usage

ORDSYS.Calendar.Year(
[calname VARCHAR?2]
[, anchorDate DATE]
) RETURN ORDSYS.ORDTCalendar;

Creates a calendar with a frequency of year, a pattern of ’1’ (all timestamps
included), no lower or upper boundary dates (minDate or maxDate), no off-
exceptions or on-exceptions, a specified or default (null) name, and a specified or
default anchor date.

calname
The name of the calendar. If calname is not specified, the calendar name is null.

anchorDate
The anchor date for the calendar pattern. If anchorDate is not specified, the anchor
date is 01-Jan-2001 (a Monday).

This function provides a convenient alternative to providing a complete calendar
definition when you are creating a calendar. If you need to modify the definition
later, you can do so (for example, using the InsertExceptions function to specify
exceptions).

For an explanation of calendar concepts (such as frequency, pattern, anchor date,
and exceptions), see Section 2.2.

The following functions create a calendar with a frequency corresponding to the
function name: Day, Hour, Minute, Month, Quarter, Second, Semi_annual,
Semi_monthly, Ten_day, Week, and Year.

4-108 Oracle8i Time Series User's Guide

Year

Example
Insert into the stockdemo_calendars table a calendar of year frequency with a calendar
name of Yearly and an anchor date of 01-Jan-1997. The calendar has no date
boundaries (minDate or maxDate) or exceptions.

I NSERT | NTO st ockdeno_cal endar s
VALUES(
CRDSYS. Gal endar . Year (
"Yearly',
(to_date(’01-01-97'," MADD YY'))));

Calendar Functions: Reference 4-109

Year

4-110 Oracle8i Time Series User's Guide

D

Time Series Functions: Reference

The Oracle8i Time Series library consists of:

Data types (described in Section 2.3)

Calendar functions (described in Chapter 4)
Time series functions (described in this chapter)
Time scaling functions (described in Chapter 6)

Administrative tools procedures for creating time series schema objects
(described in Chapter 7)

Calendar functions are mainly used by product developers, such as ISVs, to develop
new time series functions and to administer and modify calendars.

Time series and time scaling functions and the administrative tools procedures are
used mainly by application developers.

Syntax notes:

The ORDSYS schema name and the package name must be used with the
function name, although public synonyms can be created to eliminate the need
for specifying the schema name (see Section 1.5). Each function is included in a
PL/SQL package, such as Calendar, TimeSeries, or TimeScale. The ORDSYS
schema name and the package name are included in the Format and in any
examples.

Function calls are not case sensitive, except for any quoted literal values. For
example, the following code line excerpts are valid and semantically identical:

sel ect CAST(Ti neSeri es. Extract Tabl e(cl ose) AS CROTNunTab)
sel ect cast(TIMESER ES. extracttabl e(cl ose) as ordt nunt ab)
sel ect cast(Ti MeSeR Es. eXt RaG TaB E A osE) As ordt NJM ab)

Time Series Functions: Reference 5-1

« The syntax and examples show the reference-based interface (types
ORDTNumSerieslOTRef and ORDTVarchar2SerieslOTRef).

All time series and time scaling functions accept both references and instances as
parameters. (For example, an ORDTNumSerieslOTRef parameter could also be
ORDTNumSeries.) All time series functions return instances. Thus, if you nest
functions, such as Cmax(Cmax(...), ...), the innermost nesting accepts a reference and
returns an instance, and any other functions in the nesting accept an instance and
return an instance.

For an explanation of the reference-based interface, see Section 2.7.2.

5-2 Oracle8i Time Series User's Guide

Cavg

Cavg
Format
ORDSYS.TimeSeries.Cavg(
[tsname VARCHAR2,]
ts ORDSYS.ORDTNumSeriesIOTRef
[, startDate DATE
, endDate DATE]
) RETURN ORDSYS.ORDTNumSeries;
Description
Given a time series, returns an ORDTNumSeries with each element containing the
cumulative average up to and including the corresponding element in the input
ORDTNumSeries.
Parameters
tsname
Name of the returned time series. Specify this parameter if you need to assign a
name to the resulting time series, for example, to insert it into an object table.
ts
The input time series.
startDate
Starting date within the time series for which the cumulative average is to be
computed. If startDate is specified, endDate must also be specified.
endDate
Ending date within the time series for which the cumulative average is to be
computed. If endDate is specified, startDate must also be specified.
Usage

Only non-null values are considered in computing the cumulative average.

An exception is returned if one or more of the following conditions are true:

Time Series Functions: Reference 5-3

Cavg

= The time series (ts) is null.
« endDate is earlier than startDate.

If startDate and endDate are specified, the time series is trimmed to the date range
before the cumulative average is computed.

Example

Return the cumulative average of the closing price of stock ACME for November
1996:

SH ECT to_char(tstanp) tstanp, val ue
FRCMtsquick ts,
TABLE (CAST(CRDSYS. Ti neSeri es. Extract Tabl e(
CROSYS. Ti neSeri es. Cavg(ts. cl ose, to_date(’ 01-NOV-96',’' DD MIN-YY'),
to_date(’ 30- NO-96’,' DD MON-YY'))
) AS GRDSYS. GRDTNunTab)) t
WHERE ts.ticker= AQOME ;

This example might produce the following output:

01- NOv- 96 59
04- NOV- 96 59.5
05- NOV- 96 60
06- NOV- 96 60.5
07- NOV- 96 61
08- NOv- 96 61.5
11- NOv- 96 62
12- NOv- 96 62.5
13- NOv- 96 63
14- NOV- 96 63.5
15- NOv- 96 64
18- NOv- 96 64.5
19- NOv- 96 65
20- NOV- 96 65.5
21- NOV- 96 66
22- NOV- 96 66.5
25- NOV- 96 67
26- NOV- 96 67.5
27- NOV- 96 68
29- NOV- 96 68.5

20 rows sel ect ed.

5-4 Oracle8i Time Series User's Guide

Cmax

Cmax
Format
ORDSYS.TimeSeries.Cmax(
[tsname VARCHAR2,]
ts ORDSYS.ORDTNumSeriesIOTRef
[, startDate DATE
, endDate DATE]
) RETURN ORDSYS.ORDTNumSeries;
Description
Given a time series, returns an ORDTNumSeries with each element containing the
cumulative maximum up to and including the corresponding element in the input
ORDTNumSeries.
Parameters
tsname
Name of the returned time series. Specify this parameter if you need to assign a
name to the resulting time series, for example, to insert it into an object table.
ts
The input time series.
startDate
Starting date within the time series for which the cumulative maximum is to be
returned. If startDate is specified, endDate must also be specified.
endDate
Ending date within the time series for which the cumulative maximum is to be
returned. If endDate is specified, startDate must also be specified.
Usage

Only non-null values are considered in determining the cumulative maximum.

An exception is returned if one or more of the following conditions are true:

Time Series Functions: Reference 5-5

Cmax

= The time series (ts) is null.
« endDate is earlier than startDate.

If startDate and endDate are specified, the time series is trimmed to the date range
before the cumulative maximum is computed.

Example

Return the cumulative maximum of the closing price of stock ACME for November
1996:

SH ECT to_char(tstanp) tstanp, val ue
FRCMtsquick ts,
TABLE (CAST(CRDSYS. Ti neSeri es. Extract Tabl e(
CROSYS. Ti neSeri es. Qrax(ts. cl ose, to_date(’ 01-NOV-96',’' DD MIN-YY'),
to_date(’ 30- NO-96’,' DD MON-YY'))
) AS GRDSYS. GRDTNunTab)) t
WHERE ts.ticker= AQOME ;

This example might produce the following output. (Note that this output reflects

the simplified artificial data in the usage demo database, where the closing price
rises one point each day.)

01- NOv- 96 59
04- NOV- 96 60
05- NOV- 96 61
06- NOV- 96 62
07- NOV- 96 63
08- NOv- 96 64
11- NOv- 96 65
12- NOv- 96 66
13- NOv- 96 67
14- NOV- 96 68
15- NOv- 96 69
18- NOv- 96 70
19- NOv- 96 71
20- NOV- 96 72
21- NOV- 96 73
22- NOV- 96 74
25- NOV- 96 75
26- NOV- 96 76
27- NOV- 96 7

5-6 Oracle8i Time Series User's Guide

Cmax

29- NOv- 96 78
20 rows sel ect ed.

Time Series Functions: Reference 5-7

Cmin

Cmin
Format
ORDSYS.TimeSeries.Cmin(
[tsname VARCHAR2,]
ts ORDSYS.ORDTNumSeriesIOTRef
[, startDate DATE
, endDate DATE]
) RETURN ORDSYS.ORDTNumSeries;
Description
Given a time series, returns an ORDTNumSeries with each element containing the
cumulative minimum up to and including the corresponding element in the input
ORDTNumSeries.
Parameters
tsname
Name of the returned time series. Specify this parameter if you need to assign a
name to the resulting time series, for example, to insert it into an object table.
ts
The input time series.
startDate
Starting date within the time series for which the cumulative minimum is to be
returned. If startDate is specified, endDate must also be specified.
endDate
Ending date within the time series for which the cumulative minimum is to be
returned. If endDate is specified, startDate must also be specified.
Usage

Only non-null values are considered in determining the cumulative minimum.

An exception is returned if one or more of the following conditions are true:

5-8 Oracle8i Time Series User's Guide

Cmin

Example

= The time series (ts) is null.
« endDate is earlier than startDate.

If startDate and endDate are specified, the time series is trimmed to the date range
before the cumulative minimum is computed.

Return the cumulative minimum of the closing price of stock ACME for November
1996:

SH ECT to_char(tstanp) tstanp, val ue
FRCMtsquick ts,
TABLE (CAST(CRDSYS. Ti neSeri es. Extract Tabl e(
CROSYS. Ti neSeri es. Gnin(ts. cl ose, to_date(’ 01-NOV-96',’' DD MIN-YY'),
to_date(’ 30-NO-96’,’ DD MON-YY'))
) AS GRDSYS. GRDTNunTab)) t
WHERE ts.ticker= AQOMVE ;

This example might produce the following output. (Note that this output reflects

the simplified artificial data in the usage demo database, where the closing price
rises one point each day.)

01- NOv- 96 59
04- NOV- 96 59
05- NOV- 96 59
06- NOV- 96 59
07- NOV- 96 59
08- NOv- 96 59
11- NOv- 96 59
12- NOv- 96 59
13- NOv- 96 59
14- NOv- 96 59
15- NOv- 96 59
18- NOv- 96 59
19- NOv- 96 59
20- NOV- 96 59
21- NOV- 96 59
22- NOV- 96 59
25- NOV- 96 59
26- NOV- 96 59
27- NOV- 96 59

Time Series Functions: Reference 5-9

Cmin

29- NOv- 96 59
20 rows sel ect ed.

5-10 Oracle8i Time Series User's Guide

Cprod

Cprod

Format

Description

Parameters

Usage

ORDSYS.TimeSeries.Cprod(
[tsname VARCHAR2,]
ts ORDSYS.ORDTNumSeriesIOTRef
[, startDate DATE
, endDate DATE]
) RETURN ORDSYS.ORDTNumSeries;

Given a time series, returns an ORDTNumSeries with each element containing the
cumulative product of multiplication up to and including the corresponding
element in the input ORDTNumSeries.

tsname
Name of the returned time series. Specify this parameter if you need to assign a
name to the resulting time series, for example, to insert it into an object table.

ts
The input time series.

startDate
Starting date within the time series for which the cumulative product is to be
computed. If startDate is specified, endDate must also be specified.

endDate
Ending date within the time series for which the cumulative product is to be
computed. If endDate is specified, startDate must also be specified.

Only non-null values are considered in computing the cumulative product.

An exception is returned if one or more of the following conditions are true:

Time Series Functions: Reference 5-11

Cprod

Example

= The time series (ts) is null.
« endDate is earlier than startDate.

If startDate and endDate are specified, the time series is trimmed to the date range
before the cumulative product is computed.

Return the cumulative product of the daily volume of stock ACME for the first four
trading days of November 1996. (This example is presented merely to illustrate the
function; the results of this query have no practical value for financial analysis.)

SH ECT to_char(tstanp) tstanp, val ue
FRCMtsquick ts,
TABLE (CAST(CRDSYS. Ti neSeri es. Extract Tabl e(
CROSYS. Ti neSeri es. Gor od(ts. vol une, to_dat e(’ 01- NO-96' , ' DD MON YY),
to_date(’ 06- NO-96’ ,’ DD MON-YY'))
) AS GRDSYS. GRDTNunTab)) t
WHERE ts. ticker= AQOMVE ;

This example might produce the following output:

01- NOV- 96 1000
04- NO/- 96 1000000
05- NOV-96 1000000000
06- NOV-96 1. 0000E+12
4 rows sel ect ed.

5-12 Oracle8i Time Series User's Guide

Csum

Csum

Format

Description

Parameters

Usage

ORDSYS.TimeSeries.Csum(
[tsname VARCHAR2,]
ts ORDSYS.ORDTNumSeriesIOTRef
[, startDate DATE
, endDate DATE]
) RETURN ORDSYS.ORDTNumSeries;

Given a time series, returns an ORDTNumSeries with each element containing the
cumulative sum up to and including the corresponding element in the input
ORDTNumSeries.

tsname
Name of the returned time series. Specify this parameter if you need to assign a
name to the resulting time series, for example, to insert it into an object table.

ts
The input time series.

startDate
Starting date within the time series for which the cumulative sum is to be
computed. If startDate is specified, endDate must also be specified.

endDate
Ending date within the time series for which the cumulative sum is to be computed.
If endDate is specified, startDate must also be specified.

Only non-null values are considered in computing the cumulative sum.

An exception is returned if one or more of the following conditions are true:

Time Series Functions: Reference 5-13

Csum

Example

= The time series (ts) is null.
« endDate is earlier than startDate.

If startDate and endDate are specified, the time series is trimmed to the date range
before the cumulative sum is computed.

Return the cumulative sum of the daily volume of stock ACME for November 1996:

SH ECT to_char(tstanp) tstanp, val ue
FRCMtsquick ts,
TABLE (CAST(CRDSYS. Ti neSer i es. Extract Tabl e(
CROSYS. Ti neSeri es. Gsun{ts. vol une, to_date(’ 01-NO- 96" ," DD MON-YY'),
to_date(’ 30- NO-96’,' DD MON-YY'))
) AS GRDSYS. GRDTNunTab)) t
WHERE ts.ticker= AQOME ;

This example might produce the following output:

01- NOv- 96 1000
04- NOV- 96 2000
05- NOV- 96 3000
06- NOV- 96 4000
07- NOV- 96 5000
08- NOv- 96 6000
11- NOv- 96 7000
12- NOv- 96 8000
13- NOv- 96 9000
14- NOV- 96 10000
15- NOv- 96 11000
18- NOv- 96 12000
19- NOv- 96 13000
20- NOV- 96 14000
21- NOV- 96 15000
22- NOV- 96 16000
25- NOV- 96 17000
26- NOV- 96 18000
27- NOV- 96 19000
29- NOV- 96 20000

20 rows sel ect ed.

5-14 Oracle8i Time Series User's Guide

DeriveExceptions

DeriveExceptions

Format

Approach 1:
ORDSYS.TimeSeries.DeriveExceptions(
inputTS ORDTNumSerieslOTRef

[, startDate DATE [, endDate DATE]]

) RETURN ORDSYS.ORDTCalendar;
or
ORDSYS.TimeSeries.DeriveExceptions(

inputTS ORDTVarchar2Series|OTRef

[, startDate DATE [, endDate DATE]]

) RETURN ORDSYS.ORDTCalendar;
Approach 1A:
ORDSYS.TimeSeries.DeriveExceptions(

inputCal IN ORDSYS.ORDTCalendar,

DateTab IN ORDSYS.ORDTDateTab

[, startDate DATE [, endDate DATE]]

) RETURN ORDSYS.ORDTCalendar;
Approach 2:
ORDSYS.TimeSeries.DeriveExceptions(

series1 ORDTNumSeriesIOTRef,

series2 ORDTNumSeriesIOTRef

[, startDate DATE [, endDate DATE]]

) RETURN ORDSYS.ORDTCalendar;
or

ORDSYS.TimeSeries.DeriveExceptions(

Time Series Functions: Reference 5-15

DeriveExceptions

Description

Parameters

seriesl ORDTVarchar2Series|OTRef,
series2 ORDTVarchar2SeriesIOTRef
[, startDate DATE [, endDate DATE]]

) RETURN ORDSYS.ORDTCalendar;

Derives calendar exceptions from a time series (Approach 1), a calendar and a table
of dates (Approach 1A), or two time series (Approach 2).

inputTS

The time series whose calendar is to be used as the basis for the returned calendar
and whose timestamps are to be used to populate the off- and on-exceptions lists of
the returned calendar.

startDate

Starting date within the time series for which the exceptions are to be derived. If
startDate is not specified, it is the minDate of the calendar and endDate is the maxDate
of the calendar.

endDate

Ending date within the time series for which the exceptions are to be derived. If
endDate is specified, startDate must also be specified. If startDate is specified and
endDate is not specified, endDate is the maxDate of the calendar.

inputCal
The calendar that contains no exceptions and for which exceptions are to be
derived.

DateTab
The table of dates that includes all dates in the time series (for example, all dates on
which stock XYZ traded).

seriesl

The "reference" time series that contains no exceptions and all valid timestamps
from the calendar (for example, all Monday through Friday dates within the date
range of the calendar).

5-16 Oracle8i Time Series User's Guide

DeriveExceptions

Usage

Example

series2
The time series that contains the timestamps to be used in deriving the exceptions
for the resulting calendar (for example, all dates on which stock XYZ traded).

Approach 1 is the most convenient method. You specify a time series (for example,
daily closing prices of stock XYZ) that has an associated calendar. A calendar is
returned that is defined on the same pattern and frequency as the calendar for the
input time series, and the exceptions lists of the returned calendar are populated to
be consistent with the time series data.

Approach 1A is a variation of Approach 1 in which you specify a calendar and a
table of the desired timestamps (for example, dates on which stock XYZ traded).

Approach 2 involves creating a time series (seriesl) that in effect functions as a
calendar, and then using a second time series (series2) with desired timestamps to
populate the exceptions lists. Approach 2 offers a performance advantage if you
need to derive exceptions for many calendars based on many time series.

See Section 2.2.5 for a detailed explanation of the approaches to using this function.

See Section 3.8 for examples of the approaches to using this function.

Time Series Functions: Reference 5-17

Display

Display

Format

Description

Parameters

ORDSYS.TimeSeries.Display(

ts ORDSYS.[see parameter description]
[, mesg VARCHAR?]
) RETURN INTEGER;

Displays various information (see the description of the ts parameter) using
DBMS_OUTPUT routines.

ts

The object to be displayed. Because the function is overloaded, this parameter can
be any of the following data types:

ORDTNumSerieslOTRef or ORDTNumSeries
ORDTVarchar2SerieslOTRef or ORDTVarcharSeries
ORDTNumTab

ORDTVarchar2Tab

ORDTNumCell

ORDTVarchar2Cell

ORDTDateTab

ORDTCalendar

ORDTEXceptions

ORDTPattern

mesg
Optional message text to be included in the display heading ("Timeseries dump for
<mesg>").

5-18 Oracle8i Time Series User's Guide

Display

Usage

Example

Use the SET SERVEROUTPUT ON statement to view the output of the Display
function. However, the default display buffer of 2000 bytes is often too small to
display a large time series. In such cases you must use the ENABLE procedure of
the DBMS_OUTPUT package to specify a larger display buffer size. For example:

DBVS_CUTPUT. ENABLE(1000000) ;

You should use Display only for development and debugging. Specify a display
buffer larger than 2000 only when necessary, because the display buffer uses shared
system resources, and a large value might affect the performance of other users.

Because the Display function uses DBMS_OUTPUT routines, it is subject to the
limitations of these routines. These limitations include the following:

« Output cannot exceed 1 megabyte.
= The Display function cannot be used with the OCI.

« SQL*Plus does not support DBMS_OUTPUT in the context of a SELECT
statement, but it does support DBMS_OUTPUT for anonymous PL/SQL blocks.

Display the output for a query that returns the 10 highest closing prices for stock
ACME for the month of November 1996:

SET SERVERQUTPUT CN
CEQLARE
tnp | NTEGER
BEA N
SH ECT CRDSYS. Ti neSeri es. O spl ay(

CRDSYS. Ti neSeri es. TSVaxN cl ose, 10,
to_dat e(’ 11011996’ , ' MMCDYYYY'),
to_dat e(’ 11301996’ , ' MMODYYYY')))

INTO t np

FROM TSDEV. st ockdeno_t s
WHERE ticker = AQVE ;
BEND;

/

This example might produce the following output:

Time Series Functions: Reference 5-19

Display

29- NOV- 96 78
27-NOV- 96 7
26- NOV- 96 76
25- NOV- 96 75
22- NOV- 96 74
21- NOV- 96 73
20- NOV- 96 72
19- NOV- 96 71
18- NOV- 96 70
15- NOV- 96 69

The preceding example works from both SQL*Plus and the Server Manager
(svrmgrl) prompt. The following version of the example works from the Server
Manager prompt but not from SQL*Plus:

SET SERVERQUTPUT CN
SH ECT CRDSYS. Ti neSeri es. O spl ay(

CRDSYS. Ti neSeri es. TSVaxN cl ose, 10,
to_date(’ 11011996 , ' MODYYYY'),
to_dat e(’ 11301996 , ' MODYYYY')))

FROM TSDEV. st ockdeno_t s
WHERE ticker = AQVE ;

See the TSMaxN function for an example that returns the same information, but that
uses a subquery instead of the Display function.

5-20 Oracle8i Time Series User's Guide

DisplayValTS Procedure

DisplayValTS Procedure

Format

Description

Parameters

ORDSYS.TimeSeries.DisplayValTS(
validFlag IN INTEGER,
outMessage IN VARCHAR?2,
loDateTab IN ORDSYS.ORDTDateTab,
hiDateTab IN ORDSYS.ORDTDateTab,
impreciseDateTab IN ORDSYS.ORDTDateTab,
duplicateDateTab IN ORDSYS.ORDTDateTab,
extraDateTab IN ORDSYS.ORDTDateTab,
missingDateTab IN ORDSYS.ORDTDateTab,
mesg IN VARCHAR2

);

Displays the results returned by the ValidateTS function.

Note: DisplayValTsS is a procedure, not a function. Procedures do
not return values.

validFlag
The return value from the ValidateTS function.

outMessage
The diagnostic returned by the ValidateTS function.

loDateTab
A table of dates before the starting date of the calendar associated with the time
series.

Time Series Functions: Reference 5-21

DisplayValTS Procedure

hiDateTab
A table of dates after the starting date of the calendar associated with the time
series.

impreciseDateTab
A table of the imprecise dates found in the time series.

duplicateDateTab
A table of the duplicate dates (dates that appear more than once in the time series).

extraDateTab

A table of dates that are included in the time series but that should be excluded
based on the calendar definition (for example, a Saturday timestamp that is in a
Monday-Friday calendar and that is not an on-exception).

missingDateTab

A table of dates that are excluded from the time series but that should be included
based on the calendar definition (for example, a Wednesday date that is not a
holiday in a Monday-Friday calendar and for which there is no data). Such dates
can be considered as "holes" in the time series.

mesg
Optional message.

Usage
This procedure is intended to be used with the ValidateTS function. See the
information on ValidateTS in this chapter.
The DisplayValTS procedure uses the DBMS_OUTPUT package. See the Usage
information for the Display function for limitations relating to the use of
DBMS_OUTPUT.

Example

Use the I1sValidTS and ValidateTS functions and the DisplayValTS procedure with
an invalid time series:

SET SERVERQUTPUT CN
ALTER SESSI ON SET NLS DATE FCRVAT = ' MM DD YYYY H24:M: SS ;

CEQLARE
nunTS CRDSYS. CGRDOTNunter i es;
tenpVal integer;

5-22 Oracle8i Time Series User's Guide

DisplayValTS Procedure

retlsvalid integer;
retVal TS i nt eger;

| oDat eTab CRDSYS. CGRDTDat eTab
hi Dat eTab CRDSYS. CGRDTDat eTab
i mpDat eTab CGRDSYS. CRDTDat eTab :

dupDat eTab CRDSYS. GRDTDat eTab

extraDat eTab CRDSYS. GRDTDat eTab

m ssi ngDat eTab CROSYS. CRDIDat eTab : =

out Mesg var char 2(2000) ;
BEA N

-- Set the buffer size
DBVE QUTPUT. ENABLE(100000) ;

NULL;
NULL;
NULL;

= NULL;

= NULL;
NULL;

-- NOTE Here, an instance of the tine series is naterialized
-- sothat it could be nodified to generate an invalid tine series.

SH ECT CRDSYS. Tl MESER ES. Get Seri es(ts. open) | NTO nunTS

FROM t sdev. stockdeno ts ts
WERE ts.ticker ="' AQVE ;

-- Exanple of validating a valid tine series.
SH ECT ordsys. tinmeseries. display(nunTS, 'A VALID TIME SERES) INIOtenpVal

FROM dual ;

retlsvalid := CROSYS TIMESER ES. | sVal i dTS(nunTS) ;
retVal TS : = GRDSYS. TI MESER ES. Val i dat eTS(nunTS, out Mesg, | oDat eTab,
hi Dat eTab, i npDat eTab, dupDat eTab,
extrabat eTab, nissi ngDat eTab) ;
DBVS QUTPUT. PUT_LINE(' Val ue returned by IsValid =" || retlsValid);
DBVS QUTPUT. PUT_LINK(' Val ue returned by ValidateTS ="' || retVal T9);
CRDSYS. Tl MESER ES. D spl ayVal TS(ret Val TS, out Mesg, | oDat eTab, hi Dat eTab,
i npDat eTab, dupDat eTab, extraDateTab, nissi ngDat eTab,
"Testing D splayVal TS');

DBVS_CUTPUT. NEWLI NE:

-- For illustration let us first create aninvalid tineseries.

-- Here we are adjusting the calendar’s nminDate and maxDate to avoid
-- getting a huge list of nissing dates.

nunlsS. cal . mnDate :

TO DATE(’ 10/ 28/ 1996’) ;

nunTS. cal . raxDat e : = TO DATE(’ 01/ 05/ 1997");

Time Series Functions: Reference 5-23

DisplayValTS Procedure

-- Add Dates Before nunTS. cal . mnDate
nunTS. series(10).tstanp : = nuniS. cal . mnbDate - 1;
nunTS. series(11).tstanp : = nuniS. cal . mnbDate - 2;

-- Add Dates Beyond nunTS. cal . naxDat e
nunTS. series(12).tstanp : = nunTS cal . naxDate + 1;
nunTS. series(13).tstanp : = nunTS cal . naxDate + 2;

-- Add sone nul | tinestanps
nunTS. series(14).tstanp : = NULL;
nunTS. series(15).tstanp : = NULL;

-- Add sone inpreci se dates (sone are duplicated)
nunTS. series(17).tstanp : = nunTS seri es(16).tstanp + 1/24;
nunTS, series(18).tstanp : = nuniS seri es(16).tstanp + 15/ 24;

-- Add sone duplicate tinestanps
nunTS, series(19).tstanp : = nunTS seri es(18).tstanp;
nunTS, series(21).tstanp : = nunTS seri es(20).tstanp;

-- Add sone extra dates in the niddl e
nunTS. series(37).tstanp : = TO DATE(’ 12/ 28/ 1996’) ;
nunTS. series(36).tstanp : = TO DATE(’ 12/ 29/ 1996’) ;

-- Add sone hol es at the end
nunTS. series(nunTS. series. count).tstanp : = TO DATE(’ 01/ 04/1997');

-- Exanple of validating an invalid tine series.
SH ECT ordsys. tineseries. di spl ay(nunTS, AN INVALID TIME SERES)
INTO t enpVal FROM dual ;
retlsvalid := CROSYS TIMESER ES. I sVal i dTS(nunTS) ;
retVal TS : = GRDSYS. TI MESER ES. Val i dat eTS(nunTS, out Mesg,
| oDat eTab, hi Dat eTab, i npDat eTab,
dupDet eTab, extraDat eTab, mi ssi hgDat eTab);
DBVS QUTPUT. PUT_LINK(' Val ue returned by IsValid =" || retlsValid);
DBVS QUTPUT. PUT_LINK(' Val ue returned by ValidateTS ="' || retVal T9);
CRDSYS. Tl MESER ES. D spl ayVal TS(ret Val TS, out Mesg, | oDat eTab, hi Dat eTab,
i npDat eTab, dupDat eTab, extraDat eTab, nissi ngDat eTab,
"Testing D splayVal TS);
BND
/

This example might produce the following output:
A VALID TIME SER ES :

5-24 Oracle8i Time Series User's Guide

DisplayValTS Procedure

Nane = GPEN AQME
Gl endar Data:
CGal endar Nane = BUS NESS- 96
Frequency = 4 (day)

M nDate = 11/01/1996 00: 00: 00
MaxDat e = 01/ 01/ 2001 00: 00: 00
patBits:

0,1,1,1,1,1,0

pat Anchor = 01/07/1996 00: 00: 00
onExcept i ons

of f Excepti ons

11/28/ 1996 00: 00: 00 12/ 25/ 1996 00: 00: 00

Series [ata
Dat e Val ue
11/ 01/ 1996 00: 00: 00 59
11/ 04/ 1996 00: 00: 00 60
11/ 05/ 1996 00: 00: 00 61
11/ 06/ 1996 00: 00: 00 62
11/ 07/ 1996 00: 00: 00 63
11/ 08/ 1996 00: 00: 00 64
11/11/1996 00: 00: 00 65
11/ 12/ 1996 00: 00: 00 66
11/ 13/ 1996 00: 00: 00 67
11/ 14/ 1996 00: 00: 00 68
11/ 15/ 1996 00: 00: 00 69
11/ 18/ 1996 00: 00: 00 70
11/ 19/ 1996 00: 00: 00 71
11/ 20/ 1996 00: 00: 00 72
11/21/1996 00: 00: 00 73
11/ 22/ 1996 00: 00: 00 74
11/ 25/ 1996 00: 00: 00 75
11/ 26/ 1996 00: 00: 00 76
11/ 27/ 1996 00: 00: 00 77
11/ 29/ 1996 00: 00: 00 78
12/ 02/ 1996 00: 00: 00 79
12/ 03/ 1996 00: 00: 00 80
12/ 04/ 1996 00: 00: 00 81
12/ 05/ 1996 00: 00: 00 82
12/ 06/ 1996 00: 00: 00 83
12/ 09/ 1996 00: 00: 00 84
12/ 10/ 1996 00: 00: 00 85
12/11/ 1996 00: 00: 00 86
12/ 12/ 1996 00: 00: 00 87

Time Series Functions: Reference 5-25

DisplayValTS Procedure

12/ 13/ 1996 00: 00: 00 88
12/ 16/ 1996 00: 00: 00 89
12/ 17/ 1996 00: 00: 00 90
12/ 18/ 1996 00: 00: 00 91
12/ 19/ 1996 00: 00: 00 92
12/ 20/ 1996 00: 00: 00 93
12/ 23/ 1996 00: 00: 00 94
12/ 24/ 1996 00: 00: 00 95
12/ 26/ 1996 00: 00: 00 96
12/ 27/ 1996 00: 00: 00 97
12/ 30/ 1996 00: 00: 00 98
12/ 31/ 1996 00: 00: 00 99

Value returned by IsvValid =1
Value returned by ValidateTS =1

D spl ayVal TS: Testing D spl ayVal TS:

TS SUC the input tine series is avalid tine series

AN ITNVALID TIME SERES :

Nane = GPEN AQME
CGal endar Dat a:
CGal endar Nane = BUS NESS- 96
Frequency = 4 (day)

M nDate = 10/ 28/ 1996 00: 00: 00
MaxDat e = 01/ 05/ 1997 00: 00: 00
patBits:

0,1,1,1,1,1,0

pat Anchor = 01/07/1996 00: 00: 00
onExcept i ons

of f Excepti ons :

11/28/ 1996 00: 00: 00 12/ 25/ 1996 00: 00: 00

Series Data:
Dat e Val ue
11/ 01/ 1996 00: 00: 00 59
11/ 04/ 1996 00: 00: 00 60
11/ 05/ 1996 00: 00: 00 61
11/ 06/ 1996 00: 00: 00 62
11/ 07/ 1996 00: 00: 00 63

5-26 Oracle8i Time Series User's Guide

DisplayValTS Procedure

11/ 08/ 1996 00: 00: 00 64
11/11/1996 00: 00: 00 65
11/ 12/ 1996 00: 00: 00 66
11/ 13/ 1996 00: 00: 00 67
10/ 27/ 1996 00: 00: 00 68
10/ 26/ 1996 00: 00: 00 69
01/ 06/ 1997 00: 00: 00 70
01/ 07/ 1997 00: 00: 00 71
72
73
11/ 22/ 1996 00: 00: 00 74
11/ 22/ 1996 01: 00: 00 75
11/ 22/ 1996 15: 00: 00 76
11/ 22/ 1996 15: 00: 00 7
11/29/ 1996 00: 00: 00 78
11/29/ 1996 00: 00: 00 79
12/ 03/ 1996 00: 00: 00 80
12/ 04/ 1996 00: 00: 00 81
12/ 05/ 1996 00: 00: 00 82
12/ 06/ 1996 00: 00: 00 83
12/ 09/ 1996 00: 00: 00 84
12/ 10/ 1996 00: 00: 00 85
12/ 11/ 1996 00: 00: 00 86
12/ 12/ 1996 00: 00: 00 87
12/ 13/ 1996 00: 00: 00 88
12/ 16/ 1996 00: 00: 00 89
12/ 17/ 1996 00: 00: 00 90
12/ 18/ 1996 00: 00: 00 91
12/ 19/ 1996 00: 00: 00 92
12/ 20/ 1996 00: 00: 00 93
12/ 29/ 1996 00: 00: 00 94
12/ 28/ 1996 00: 00: 00 95
12/ 26/ 1996 00: 00: 00 96
12/ 27/ 1996 00: 00: 00 97
12/ 30/ 1996 00: 00: 00 98
01/ 04/ 1997 00: 00: 00 99

Value returned by Isvalid =0
Val ue returned by ValidateTS =0

D spl ayVal TS: Testing D spl ayVal TS:

TSWR\ the input tine series has errors. See the nessage for details

Time Series Functions: Reference 5-27

DisplayValTS Procedure

nessage out put by val i dat eTS:
TS ERR the input tine series i s unsorted
TS BERR the tine series has null tinestanps
TS ERR the tine series has tinestanps < cal endar nminDate (refer LoDateTab)
TS BRR the tine series has tinestanps > cal endar naxDate (refer H DateTab)
TS BERR the tine series has inprecise tinestanps (refer inpreciseDateTab)
TS BERR the tine series has duplicate tinmestanps (refer DuplicateDateTab)
list of dates < calendar nminDate - | owDateTab :
10/ 26/ 1996 00: 00: 00 10/ 27/ 1996 00: 00: 00
list of dates > cal endar naxDate - hi DateTab :
01/ 06/ 1997 00: 00: 00 01/07/ 1997 00: 00: 00
list of inprecise dates - inpreciselDateTab :
11/ 22/ 1996 01: 00: 00 11/ 22/ 1996 15: 00: 00
list of duplicate dates - dupli catelDateTab :
11/ 22/ 1996 15: 00: 00 11/ 29/ 1996 00: 00: 00
Ext raDat eTab :
12/ 28/ 1996 00: 00: 00 12/ 29/ 1996 00: 00: 00 01/ 04/ 1997 00: 00: 00
M ssi ngDat eTab :
10/ 28/ 1996 00: 00: 00 10/ 29/ 1996 00: 00: 00 10/ 30/ 1996 00: 00: 00
10/ 31/ 1996 00: 00: 00 11/ 14/ 1996 00: 00: 00 11/ 15/ 1996 00: 00: 00
11/ 18/ 1996 00: 00: 00 11/ 19/ 1996 00: 00: 00 11/ 20/ 1996 00: 00: 00
11/21/1996 00: 00: 00 11/ 25/ 1996 00: 00: 00 11/ 26/ 1996 00: 00: 00
11/ 27/ 1996 00: 00: 00 12/ 02/ 1996 00: 00: 00 12/ 23/ 1996 00: 00: 00

12/ 24/ 1996 00: 00: 00 12/ 31/ 1996 00: 00: 00 01/ 01/ 1997 00: 00: 00
01/ 02/ 1997 00: 00: 00 01/ 03/ 1997 00: 00: 00

5-28 Oracle8i Time Series User's Guide

ExtractCal

ExtractCal

Format

Description

Parameters

Usage

Example

ORDSYS.TimeSeries.ExtractCal(
ts ORDSYS.ORDTNumSeriesIOTRef
) RETURN ORDSYS.ORDTCalendar;
or
ORDSYS.TimeSeries.ExtractCal(
ts ORDSYS.ORDTVarchar2Series|OTRef
) RETURN ORDSYS.ORDTCalendar;

Given a time series, returns a calendar that is the same as the calendar on which the
time series is based.

ts
The input time series.

The function returns a calendar that has the same starting and ending timestamps,
pattern, frequency, and exceptions (on- and off-) as the calendar on which the
specified time series is based.

An exception is returned if the time series (ts) is null.

Return a calendar that matches the one on which the time series for the ACME
ticker is based:

SET SERVERQUTPUT CN
ALTER SESSI ON SET NLS DATE FCRVAT = ' MM DD YYYY H24: M: SS ;

DECLARE

Time Series Functions: Reference 5-29

ExtractCal

dummyval | NTEGER
BEA N

SELECT CGRDSYS. Ti meSeri es. O spl ay(

CROSYS. TineSeri es. Extract Cal (ts. open), 'ExtractCal Results’) |NIO dummyval
FROM TSDEV. st ockdeno _ts ts
WHERE ts.ticker= AOME ;

BEND,
/

This example might produce the following output:
ExtractCal Results :

CGal endar Nane = BUS NESS- 96
Frequency = 4 (day)
M nDate = 11/01/1996 00: 00: 00
MixDate = 01/01/2001 00: 00: 00
patBits:
0,1,1,1,1,1,0
pat Anchor = 01/07/1996 00: 00: 00
onExcept i ons
of f Excepti ons :
11/28/ 1996 00: 00: 00 12/ 25/ 1996 00: 00: 00

5-30 Oracle8i Time Series User's Guide

ExtractDate

ExtractDate
Format
ORDSYS.TimeSeries.ExtractDate(
cell ORDSYS.ORDTNumCell
) RETURN DATE;
or
ORDSYS.TimeSeries.ExtractDate(
cell ORDSYS.ORDTVarchar2Cell
) RETURN DATE;
Description
Given an element in a time series, returns the date.
Parameters
cell
The time series element for which you want the date.
Usage
The time series element must first be identified, such as by using the
GetNthElement function.
An exception is returned if the time series element (cell) is null.
Example

Return the date associated with the tenth element in a specified time series:

SH ECT to_char(CRDSYS. Ti neSeri es. Ext ract Dat e(
CROSYS. Ti neSeri es. Get N hE enent (open, 10)),
MM DD YYYY HR4:M:SS)
FROM TSDEV. st ockdeno_t
WHERE ticker ='AQE ;

This example might produce the following output:

Time Series Functions: Reference 5-31

ExtractDate

TO CHAR CRCSYS. TI ME

11/ 14/ 1996 00: 00: 00
1 row sel ect ed.

5-32 Oracle8i Time Series User's Guide

ExtractTable

ExtractTable

Format

Description

Parameters

Usage

Example

ORDSYS.TimeSeries.ExtractTable(
ts ORDSYS.ORDTNumSeriesIOTRef
) RETURN ORDSYS.ORDTNumTab;
or
ORDSYS.TimeSeries.ExtractTable(
ts ORDSYS.ORDTVarchar2Series|OTRef
) RETURN ORDSYS.ORDTVarchar2Tab;

Given a time series, returns the time series table (ORDTNumTab or
ORDTVarchar2Tab) associated with the time series.

ts
The input time series.

The function returns the time series table (ORDTNumTab or ORDTVarchar2Tab)
associated with the time series.

An exception is returned if the time series (ts) is null.

Return the closing prices for stock ACME:

SHECT * FROMthe
(SELECT CAST(GRDSYS. Ti neSeri es. Extract Tabl e(t s. cl ose)
as CROSYS. GRDTNunTab)
FROM TSDEV. st ockdeno ts ts
WHERE ts.ticker= AOME);

Time Series Functions: Reference 5-33

ExtractTable

This example might produce the following output:

01- NOv- 96 59
04- NOV- 96 60
05- NOV- 96 61
31- DEG 96 99

41 rows sel ected.

5-34 Oracle8i Time Series User's Guide

ExtractValue

ExtractValue

Format
ORDSYS.TimeSeries.ExtractValue(

cell ORDSYS.ORDTNumCell
) RETURN NUMBER;
or
ORDSYS.TimeSeries.ExtractValue(
cell ORDSYS.ORDTVarchar2Cell
) RETURN VARCHAR?;

Description

Given an element in a time series, returns the value stored in it.
Parameters

cell

The time series element for which you want the value.
Usage

The time series element must first be identified, such as by using the

GetNthElement function.

An exception is returned if the time series element (cell) is null.
Example

Return the value of the tenth opening price in the stockdemo_ts table:

SH ECT CRDSYS. Ti meSeri es. Ext ract Val ue(
CRDSYS. Ti neSeri es. Get N hE enent (open, 10))
FROM TSLEV. st ockdeno_t
WHERE ticker ="' AQVE ;

This example might produce the following output:

Time Series Functions: Reference 5-35

ExtractValue

68
1 row sel ect ed.

5-36 Oracle8i Time Series User's Guide

Fill

Fill

Format

Description

Parameters

Usage

ORDSYS.TimeSeries.Fill(
[tsname VARCHAR2,]
ts ORDSYS.ORDTNumSeriesIOTRef
[, fil_type INTEGER]
) RETURN ORDSYS.ORDTNumSeries;

Given a time series and optionally a fill type, returns a time series in which values
for missing dates are inserted. A missing date is a date that is defined by the
calendar and within the time series bounds, but that is not in the current time series.

tsname
Name of the returned time series. Specify this parameter if you need to assign a
name to the resulting time series, for example, to insert it into an object table.

ts
The input time series.

fill_type

One of the following integers indicating how missing values are to be filled:

« 0=null: Insert nulls.

« 1=forward repeat: Use the values from the preceding (most recent) timestamp.

« 2 =backward repeat: Use the values from the following (next in the future)
timestamp.

If fill_type is omitted, 0 is assumed.

The function inserts timestamps and associated values for timestamps that are
included in a calendar but for which no entries exist in the time series.

Time Series Functions: Reference 5-37

Fill

Example

The fill_type parameter lets you choose the manner in which missing values will be
defaulted. For example, assume that data for 30-Jan-1997 (Thursday) is missing
from a time series and that it should be included because this date is within the
calendar definition. Assume the following closing prices for stock XYZ:

« 49 0n29-Jan-1997
« 500n31-Jan-1997

The following table shows the closing price that would be inserted for 30-Jan-1997
with each of the fill_type parameter values:

fill_type Closing Price for 30-Jan-1997

0 null
1 49
2 50

Some potential uses for this function include:
« Deriving the price of a stock for a nontrading day

For example, you may want to compare prices for a stock that trades on several
stock exchanges, where the exchanges have different trading days.

« Converting a quarterly time series to a daily time series

For example, earnings per share (EPS) is computed quarterly, and stocks trade
daily. To compute a price-earnings (PE) ratio, earnings per share is first
converted to a daily time series using forward repeat. Then, the daily PE ratio is
calculated by dividing the daily price time series value by the corresponding
daily EPS time series value.

An exception is returned if the specified fill_type value is not 0, 1, or 2.

Return a time series illustrating each fill_type value:

SET SERVERQUTPUT ON

ALTER SESSI ON SET NLS DATE FCRVAT = ' MM DD YYYY H24:M: SS ;

-- For illustrating Fill we need a tine series with mssing dates.

-- In the follow ng exanpl e, the tine series 'FAD has sone nissing dates
-- (07-DEG 1996 and 08-DEG 1996). Al so, note that the cal endar associ at ed
-- wth 'FOO has an 'all one’ pattern.

5-38 Oracle8i Time Series User's Guide

Fill

CEQLARE
tstGal CRDSYS CRDICal endar ;
ts CROSYS. or dt nunseries : =
CRDSYS. or dt nunser i es(
' FOD
CROSYS. GRDTCGal endar (
0,
" FOD CALENDAR
4,
CROSYS. RDTPat t er n(
CROSYS. RDTPatternBits(1,1,1,1,1,1, 1),
TO DATE(’ 01/ 07/ 1996’)),
TO DATE(’ 01/ 01/ 1996’) ,
TO DATE(’ 01/ 01/ 1997) ,
CROSYS. CRDTEXcept i ons(),
CROSYS. CRDTEXcept i ons()
),
CROSYS. or dt nurt ab(
CROSYS. or dt nuncel | (TO DATH’ 12/ 02/ 1996), 1),
CROSYS. or dt nuncel | (TO DATH’ 12/ 03/ 1996’), 2),
CROSYS. or dt nuncel | (TO DATH’ 12/ 04/ 1996’), 3),
CROSYS. or dt nuncel | (TO DATH’ 12/ 05/ 1996’), 4),
CROSYS. or dt nuncel | (TO DATH’ 12/ 06/ 1996’), 5),
CROSYS. or dt nuncel | (TO DATH’ 12/ 09/ 1996’), 6),
CROSYS. or dt nuncel | (TO DATH’ 12/ 10/ 1996’), 7),
CROSYS. or dt nuneel | (TO DATH’ 12/11/ 1996’), 8),
CROSYS. or dt nuncel | (TO DATH' 12/ 12/ 1996’), 9),
CROSYS. or dt nuneel | (TO DATH ' 12/ 13/ 1996'), 10))

E
dummyval | NTEGER
BEA N

-- Generate a time series by fromXOORP s high (repeat forward).
SELECT CORDSYS. Ti meSeri es. O spl ay(

CROSYS TineSeries. F Il (ts, 1),

"F 1l Forward) | NrO dumyval
FROM dual ;

-- Generate a time series by fromXOORP s high (repeat backward).
SELECT CGRDSYS. Ti meSeri es. O spl ay(

CROSYS TineSeries.F Il (ts, 2),

"F 1l Backward') |NTIO dunmyval
FROM dual ;

Time Series Functions: Reference

5-39

Fill

-- Generate a time series by fromXOORP s high (null fill).
SELECT CGRDBYS. Ti meSeri es. O spl ay(

CROSYS TineSeries.F Il (ts, 0),

"Nl Fill") 1 NTO dummyval
FROM dual ;

BEND,
/

This example might produce the following output:
Fll Forward :

CGal endar Dat a:
Gl endar Nane = FOO CALENDAR
Frequency = 4 (day)
M nDate = 01/01/1996 00: 00: 00
MwxDate = 01/01/ 1997 00: 00: 00
patBits:
1,1,1,1,1,1,1
pat Anchor = 01/07/1996 00: 00: 00
onExcept i ons
of f Excepti ons :
Series Data:
Date Val ue
12/ 02/ 1996 00: 00: 00 1
12/ 03/ 1996 00: 00: 00 2
12/ 04/ 1996 00: 00: 00 3
12/ 05/ 1996 00: 00: 00 4
12/ 06/ 1996 00: 00: 00 5
12/ 07/ 1996 00: 00: 00 5
5
6
7
8
9

12/ 08/ 1996 00: 00: 00
12/ 09/ 1996 00: 00: 00
12/ 10/ 1996 00: 00: 00
12/ 11/ 1996 00: 00: 00
12/ 12/ 1996 00: 00: 00
12/ 13/ 1996 00: 00: 00 10

F 1l Backward :

Cal endar Dat a:
Cal endar Nare = FOO CALENDAR

5-40 Oracle8i Time Series User's Guide

Fill

Frequency = 4 (day)

M nDate = 01/01/1996 00: 00: 00

MwxDate = 01/01/ 1997 00: 00: 00

patBits:

1,1,1,1,1,1,1

pat Anchor = 01/07/1996 00: 00: 00

onExcept i ons

of f Excepti ons :

Series Data:

Date Val ue

12/ 02/ 1996 00: 00: 00 1

12/ 03/ 1996 00: 00: 00 2

12/ 04/ 1996 00: 00: 00 3

12/ 05/ 1996 00: 00: 00 4

12/ 05/ 1996 00: 00: 00 4

12/ 06/ 1996 00: 00: 00 5

6
6
6
7
8
9

12/ 07/ 1996 00: 00: 00
12/ 08/ 1996 00: 00: 00
12/ 09/ 1996 00: 00: 00
12/ 10/ 1996 00: 00: 00
12/ 11/ 1996 00: 00: 00
12/ 12/ 1996 00: 00: 00
12/ 13/ 1996 00: 00: 00 10

Nl Fill

CGal endar Dat a:
Gl endar Nane = FOO CALENDAR
Frequency = 4 (day)
M nDate = 01/01/1996 00: 00: 00
MaxDat e = 01/ 01/ 1997 00: 00: 00
patBits:

1,1,1,1,1,1,1
pat Anchor = 01/07/1996 00: 00: 00
onExcept i ons
of f Excepti ons :

Series Data:
Dat e Val ue
12/ 02/ 1996 00: 00: 00 1
12/ 03/ 1996 00: 00: 00 2
12/ 04/ 1996 00: 00: 00 3
12/ 05/ 1996 00: 00: 00 4

Time Series Functions: Reference 5-41

Fill

12/ 06/ 1996 00: 00: 00 5
12/ 07/ 1996 00: 00: 00
12/ 08/ 1996 00: 00: 00

12/ 09/ 1996 00: 00: 00 6
12/ 10/ 1996 00: 00: 00 7
12/ 11/ 1996 00: 00: 00 8
12/ 12/ 1996 00: 00: 00 9
12/ 13/ 1996 00: 00: 00 10

5-42 Oracle8i Time Series User's Guide

First

First

Format

Description

Parameters

Usage

Example

ORDSYS.TimeSeries.First(
ts ORDSYS.ORDTNumSerieslOTRef
) RETURN ORDSYS.ORDTNumCell;

Given a time series, returns the first element in it.

ts
The input time series.

A null is returned if the time series (ts) is empty.

An exception is returned if the time series (ts) is null.

Return the first timestamp and opening price for stock ACME in the stockdemo_ts

time series:
SET SERVERQUTPUT ON

ALTER SESSI ON SET NLS DATE FCRVAT = ' MM DD YYYY H24: M: SS ;

DECLARE
dummyval | NTEGER

BEG N

SELECT CORDSYS. Ti meSeri es. O spl ay(

CRDSYS. Ti neSeries. First(ts.open), 'Frst Results’) |NTO dumyval

FROM TSDEV. st ockdeno _ts ts
WHERE ts.ticker= AOME ;

BND,

Time Series Functions: Reference 5-43

First

/

This example might produce the following output:
First Results :

Tinmestanp : 11/01/1996 00: 00: 00
Val ue : 59

5-44 Oracle8i Time Series User's Guide

FirstN

FirstN

Format

Description

Parameters

ORDSYS.TimeSeries.FirstN(
[tsname VARCHAR2,]
ts ORDSYS.ORDTNumSeriesIOTRef,
NumValues NUMBER
[, startDate DATE
, endDate DATE]
) RETURN ORDSYS.ORDTNumSeries;

Given a time series and a number of elements (NumValues) to return, returns the
first NumValues elements in the time series.

tsname
Name of the returned time series. Specify this parameter if you need to assign a
name to the resulting time series, for example, to insert it into an object table.

ts
The input time series.

NumValues
Number of elements from the beginning of the time series to be returned.

startDate
Starting date within the time series for which NumValues elements are to be
returned. If startDate is specified, endDate must also be specified.

endDate
Ending date within the time series for which NumValues elements are to be
returned. If endDate is specified, startDate must also be specified.

Time Series Functions: Reference 5-45

FirstN

Usage

Example

The function returns a time series populated with the first NumValues cells from the
input time series (ts). The calendar of the output time series is the same as that of
the input time series.

An exception is returned if the time series (ts) is null, if NumValues is zero (0) or
negative, or if endDate is earlier than startDate.

If startDate and endDate are specified, the time series is trimmed to the date range
before the first NumValues cells are returned.

Return the first 10 timestamps and opening prices in the time series for stock
ACME.:

SET SERVERQUTPUT CN
ALTER SESSI ON SET NLS DATE FCRVAT = ' MM DD YYYY H24:M: SS ;

DECLARE
dummyval | NTEGER

BEG N

SELECT CGRDBYS. Ti meSeri es. O spl ay(

CRDSYS. Ti neSeries. FirstNts. open, 10), 'FirstN Results’) | NTO dumyval
FROM TSDEV. st ockdeno _ts ts
WHERE ts.ticker= AOME ;

END,

/

This example might produce the following output:
FirstN Results :

Gl endar Data:

Gl endar Nane = BUS NESS- 96
Frequency = 4 (day)

M nDate = 11/01/1996 00: 00: 00
MaxDat e = 01/ 01/ 2001 00: 00: 00
patBits:

0,1,1,1,1,1,0
pat Anchor = 01/07/1996 00: 00: 00
onExcept i ons

5-46 Oracle8i Time Series User's Guide

FirstN

of f Excepti ons
11/ 28/ 1996 00: 00: 00 12/ 25/ 1996 00: 00: 00

Series [ata
Dat e Val ue
11/ 01/ 1996 00: 00: 00 59
11/ 04/ 1996 00: 00: 00 60
11/ 05/ 1996 00: 00: 00 61
11/ 06/ 1996 00: 00: 00 62
11/ 07/ 1996 00: 00: 00 63
11/ 08/ 1996 00: 00: 00 64
11/11/1996 00: 00: 00 65
11/ 12/ 1996 00: 00: 00 66
11/ 13/ 1996 00: 00: 00 67
11/ 14/ 1996 00: 00: 00 68

Time Series Functions: Reference 5-47

GetDatedElement

GetDatedElement

Format

Description

Parameters

Usage

Example

ORDSYS.TimeSeries.GetDatedElement (
ts ORDSYS.ORDTNumSeriesIOTRef,
target_date date
) RETURN ORDSYS.ORDTNumCell;

Given a time series and a date, returns the time series element for that date.

ts
The input time series.

target_date
Positive integer specifying the date of the element to be returned.

The function returns the cell from the input time series (ts) at the specified date
(target_date). If there is no data in ts at target_date, the function returns a null.

An exception is returned if the time series (ts) is null.

Return the timestamp and opening price for 26-Nov-1996 for stock ACME:

SET SERVERQUTPUT CN
ALTER SESSI ON SET NLS DATE FCRVAT = ' MM DD YYYY H24:M: SS ;

DECLARE

dummyval | NTEGER
tstDate date;
BEA N

-- Get the cell for 26-NO- 1996 from AOME s open and display it

5-48 Oracle8i Time Series User's Guide

GetDatedElement

tstDate := TO DATH' 11/ 26/ 1996’);

SELECT CORDSYS. Ti meSeri es. O spl ay(
CROSYS. Ti neSer i es. Get Dat edH errent (ts. open, tstDate),
' Get Dat edH enent Resul ts’) | NTO dumyval
FROM TSDEV. st ockdeno _ts ts
WHERE ts.ticker= AOME ;

BEND,
/

This example might produce the following output:
Get Dat edH enent Resul ts

Tinmestanp : 11/26/1996 00: 00: 00
Value : 76

Time Series Functions: Reference 5-49

GetNthElement

GetNthElement

Format
ORDSYS.TimeSeries.GetNthElement

(ts ORDSYS.ORDTNumSeriesIOTRef,
target_index INTEGER

[startDate DATE, endDate DATE]

) RETURN ORDSYS.ORDTNumCell;

Description
Given a time series, a number (target_index), and optionally a date range, returns the
Nth element (element whose position corresponds to target_index) in the specified
time series, or within the date range if one is specified.

Parameters
ts
The input time series.
target_index
Positive integer specifying the position of the element to be returned.
startDate
Starting date within the time series to which target_index is to be applied. If
target_index = 1, the function returns the element for startDate. If startDate is
specified, endDate must also be specified.
endDate
Ending date within the time series to which target_index is to be applied. If endDate
is specified, startDate must also be specified.

Usage

An exception is returned if one or more of the following conditions are true:
= The time series (ts) is null.

« target_index is not an integer, or is zero (0) or a negative number.

5-50 Oracle8i Time Series User's Guide

GetNthElement

= endDate is earlier than startDate.

Example
Return the tenth opening price for stock ACME:

SH ECT CRDSYS. Ti meSeri es. Ext ract Val ue(
CRDSYS. Ti neSeri es. Get N hE enent (open, 10))
FROM TSLEV. st ockdeno_t
WHERE ticker ="' AQVE ;

This example might produce the following output:

68
1 row sel ect ed.

Time Series Functions: Reference 5-51

GetSeries

GetSeries

Format

Description

Parameters

Usage

Example

ORDSYS.TimeSeries.GetSeries(
[tsname VARCHAR2,]
ts ORDSYS.ORDTNumSeriesIOTRef
) RETURN ORDSYS.ORDTNumSeries;
or
ORDSYS.TimeSeries.GetSeries(
[tsname VARCHAR2,]
ts ORDSYS.ORDTVarchar2Series|OTRef
) RETURN ORDSYS.ORDTVarchar2Series;

Given a reference to a time series of references (ORDTNumSerieslOTRef or
ORDTVarchar2SerieslOTRef), returns a time series instance (ORDTNumSeries or
ORDTVarchar2Series).

tsname
Name of the returned time series. Specify this parameter if you need to assign a
name to the resulting time series, for example, to insert it into an object table.

ts
The input time series.

The function materializes the input time series.

An exception is returned if the time series (ts) is null.

Return an instance of a specified time series (opening prices for stock ACME):

5-52 Oracle8i Time Series User's Guide

GetSeries

SET SERVERQUTPUT CN
ALTER SESSI ON SET NLS DATE FCRVAT = ' MM DD YYYY H24: M: SS ;

DECLARE
dummyval | NTEGER

BEG N

SELECT CGRDBYS. Ti meSeri es. O spl ay(

CROSYS. Ti neSeri es. Get Series(ts.open), 'GetSeries Results’) | NTO dumyval
FROM TSDEV. st ockdeno _ts ts
WHERE ts.ticker= AOME ;

BEND,
/

This example might produce the following output:
Get Series Results :

Nane = GPEN AQME
Gl endar Dat a:
Gl endar Nane = BUS NESS- 96
Frequency = 4 (day)

M nDate = 11/01/1996 00: 00: 00
MixDat e = 01/01/2001 00: 00: 00
patBits:

0,111,110

pat Anchor = 01/07/1996 00: 00: 00
onExcept i ons

of f Excepti ons :

11/28/ 1996 00: 00: 00 12/ 25/ 1996 00: 00: 00

Series [ata
Date Val ue
11/ 01/ 1996 00: 00: 00 59
11/ 04/ 1996 00: 00: 00 60
11/ 05/ 1996 00: 00: 00 61
11/ 06/ 1996 00: 00: 00 62
11/ 07/ 1996 00: 00: 00 63
11/ 08/ 1996 00: 00: 00 64
11/11/1996 00: 00: 00 65
11/ 12/ 1996 00: 00: 00 66
11/ 13/ 1996 00: 00: 00 67
11/ 14/ 1996 00: 00: 00 68

Time Series Functions: Reference 5-53

GetSeries

11/ 15/ 1996 00: 00: 00 69
11/ 18/ 1996 00: 00: 00 70
11/ 19/ 1996 00: 00: 00 71
11/ 20/ 1996 00: 00: 00 72
11/21/1996 00: 00: 00 73
11/ 22/ 1996 00: 00: 00 74
11/ 25/ 1996 00: 00: 00 75
11/ 26/ 1996 00: 00: 00 76
11/ 27/ 1996 00: 00: 00 7
11/29/ 1996 00: 00: 00 78
12/ 02/ 1996 00: 00: 00 79
12/ 03/ 1996 00: 00: 00 80
12/ 04/ 1996 00: 00: 00 81
12/ 05/ 1996 00: 00: 00 82
12/ 06/ 1996 00: 00: 00 83
12/ 09/ 1996 00: 00: 00 84
12/ 10/ 1996 00: 00: 00 85
12/ 11/ 1996 00: 00: 00 86
12/ 12/ 1996 00: 00: 00 87
12/ 13/ 1996 00: 00: 00 88
12/ 16/ 1996 00: 00: 00 89
12/ 17/ 1996 00: 00: 00 90
12/ 18/ 1996 00: 00: 00 91
12/ 19/ 1996 00: 00: 00 92
12/ 20/ 1996 00: 00: 00 93
12/ 23/ 1996 00: 00: 00 94
12/ 24/ 1996 00: 00: 00 95
12/ 26/ 1996 00: 00: 00 96
12/ 27/ 1996 00: 00: 00 97
12/ 30/ 1996 00: 00: 00 98
12/ 31/ 1996 00: 00: 00 99

5-54 Oracle8i Time Series User's Guide

IsValidTS

IsValidTS

Format

Description

Parameters

Usage

ORDSYS.TimeSeries.IsValidTS(

or

ts ORDSYS.ORDTNumSeries|OTRef
) RETURN INTEGER;

ORDSYS.TimeSeries.IsValidTS(

ts ORDSYS.ORDTVarchar2SerieslOTRef
) RETURN INTEGER;

Returns 1 if the time series is valid and 0 if the time series is invalid.

ts

The input time series.

A time series is invalid if one or more of the following conditions are true:

The time series (ts) is null.

The time series (ts) does not have an associated calendar.
The calendar associated with the time series is invalid.
The timestamps are not sorted.

One or more timestamps are null, imprecise, or outside the date range of the
calendar.

One or more timestamps are included in the time series but should be excluded
based on the calendar definition (for example, a Saturday timestamp that is in a
Monday-Friday calendar and that is not an on-exception).

Time Series Functions: Reference 5-55

IsValidTS

« One or more timestamps are excluded from the time series but should be
included based on the calendar definition (for example, a Wednesday date that
is not a holiday in a Monday-Friday calendar and for which there is no data).
Such dates can be considered as "holes" in the time series.

Contrast this function with ValidateTS, which checks whether a time series is valid,
and if the time series is not valid, generates a diagnostic message and tables with
timestamps that are causing the time series to be invalid.

Example

Use the I1sValidTS and ValidateTS functions and the DisplayValTS procedure with
an invalid time series:

SET SERVERQUTPUT CN
ALTER SESSI ON SET NLS DATE FCRVAT = ' MM DD YYYY H24:M: SS ;

DECLARE

nunTS CRDSYS. CGRDOTNunter i es;
tenpVal integer;

retisvalid integer;

retVal TS i nt eger;

| oDat eTab CORDSYS. CRDTDat eTab : = NULL;
hi Dat eTab CORDSYS. CRDTDat eTab : = NULL;
i mpDat eTab CGRDSYS. GRDTDat eTab : = NULL;
dupDat eTab CRDSYS. GRDTDat eTab : = NULL;

ext rabat eTab CROSYS. CROTDat eTab : = NULL;
m ssi ngDat eTab CROSYS. CRDTDat eTab : = NULL;
out Mesg var char 2(2000) ;

BEAG N

-- Set the buffer size
DBVE QUTPUT. ENABLE(100000) ;

-- NOTE Here, an instance of the tine series is naterialized
-- sothat it could be nodified to generate an invalid tine series.

SH ECT CRDSYS. Tl MESER ES. Get Seri es(ts. open) | NTO nunTS
FROM t sdev. stockdeno ts ts
WERE ts.ticker ="' AQVE ;

-- Exanple of validating a valid tine series.
SH ECT ordsys. tinmeseries. display(nunTS, 'A VALID TIME SERES) INIOtenpVal

5-56 Oracle8i Time Series User's Guide

IsValidTS

FROM dual ;
retlsvalid := CROSYS TIMESER ES. | sVal i dTS(nunTS) ;
retVal TS : = GRDSYS. TI MESER ES. Val i dat eTS(nunTS, out Mesg, | oDat eTab,
hi Dat eTab, i npDat eTab, dupDat eTab,
extraDat eTab, nissi ngDat eTab) ;
DBVS QUTPUT. PUT_LINE(' Val ue returned by IsValid =" || retlsValid);
DBVS OQUTPUT. PUT_LINE(' Val ue returned by ValidateTS ="' || retVal T9);
CRDSYS. Tl MESER ES. D spl ayVal TS(ret Val TS, out Mesg, | oDat eTab, hi Dat eTab,
i npDat eTab, dupDat eTab, extraDateTab, nissi ngDat eTab,
"Testing D splayVal TS');
DBVE QUTPUT. NEW LI NE;

-- For illustration let us first create an invalid tineseries.

-- Here we are adjusting the calendar’s nminDate and maxDate to avoid
-- getting a huge list of nissing dates.

nunTS. cal . mnDate : = TO DATE(’ 10/ 28/ 1996’) ;

nunTS, cal . raxDat e : = TO DATE(’ 01/ 05/ 1997");

-- Add Dates Before nunTS. cal . nmnDate
nunTS. series(10).tstanp : = nuniS. cal . mnDate - 1;
nunTS. series(11).tstanp : = nuniS. cal . mnbDate - 2;

-- Add Dates Beyond nunTS. cal . naxDat e
nunTS. series(12).tstanp : = nuniS cal . naxDate + 1;
nunTS. series(13).tstanp : = nunTS cal . naxDate + 2;

-- Add sone nul | tinestanps
nunTS. series(14).tstanp : = NULL;
nunTS. series(15).tstanp : = NULL;

-- Add sone inpreci se dates (sone are duplicated)
nunTS. series(17).tstanp : = nunTS seri es(16).tstanp + 1/24;
nunTS. series(18).tstanp : = nuniS seri es(16).tstanp + 15/ 24;

-- Add sone duplicate tinestanps
nunTS. series(19).tstanp : = nunTS seri es(18).tstanp;
nunTS. series(21).tstanp : = nunTS seri es(20).tstanp;

-- Add sone extra dates in the niddl e
nunTS. series(37).tstanp : = TO DATE(’ 12/ 28/ 1996’) ;
nunTS. series(36).tstanp : = TO DATE(’ 12/ 29/ 1996’) ;

-- Add sone holes at the end

Time Series Functions: Reference 5-57

IsValidTS

nunTS. seri es(nunTS. series.count).tstanp : = TO DATE(’ 01/ 04/ 1997’);

-- Exanple of validating an invalid tine series.
SH ECT ordsys. tineseries. di spl ay(nunTS, AN INVALID TIME SERES)
INTO t enpVal FROM dual ;
retlsvalid := CROSYS TIMESER ES. I sVal i dTS(nunTS) ;
retVal TS : = GRDSYS. TI MESER ES. Val i dat eTS(nunTS, out Mesg,
| oDat eTab, hi Dat eTab, i npDat eTab,
dupDet eTab, extraDat eTab, mi ssi hgDat eTab);
DBVS QUTPUT. PUT_LINK(' Val ue returned by IsValid =" || retlsValid);
DBVS QUTPUT. PUT_LINK(' Val ue returned by ValidateTS ="' || retVal T9);
CRDSYS. Tl MESER ES. D spl ayVal TS(ret Val TS, out Mesg, | oDat eTab, hi Dat eTab,
i npDat eTab, dupDat eTab, extraDat eTab, nissi ngDat eTab,
"Testing DisplayVal TS);
END,
/

This example might produce the following output:
A VALID TIME SER ES :

Nane = GPEN AQME
Gl endar Dat a:
CGal endar Nane = BUS NESS- 96
Frequency = 4 (day)

M nDate = 11/01/1996 00: 00: 00
MwxDat e = 01/01/2001 00: 00: 00
patBits:

0,1,1,1110

pat Anchor = 01/07/1996 00: 00: 00
onExcept i ons

of f Excepti ons :

11/28/ 1996 00: 00: 00 12/ 25/ 1996 00: 00: 00

Series [ata
Dat e Val ue
11/ 01/ 1996 00: 00: 00 59
11/ 04/ 1996 00: 00: 00 60
11/ 05/ 1996 00: 00: 00 61
11/ 06/ 1996 00: 00: 00 62
11/ 07/ 1996 00: 00: 00 63
11/ 08/ 1996 00: 00: 00 64
11/11/1996 00: 00: 00 65
11/ 12/ 1996 00: 00: 00 66
11/ 13/ 1996 00: 00: 00 67

5-58 Oracle8i Time Series User's Guide

IsValidTS

11/ 14/ 1996 00: 00: 00 68
11/ 15/ 1996 00: 00: 00 69
11/ 18/ 1996 00: 00: 00 70
11/ 19/ 1996 00: 00: 00 71
11/ 20/ 1996 00: 00: 00 72
11/21/1996 00: 00: 00 73
11/ 22/ 1996 00: 00: 00 74
11/ 25/ 1996 00: 00: 00 75
11/ 26/ 1996 00: 00: 00 76
11/ 27/ 1996 00: 00: 00 77
11/29/ 1996 00: 00: 00 78
12/ 02/ 1996 00: 00: 00 79
12/ 03/ 1996 00: 00: 00 80
12/ 04/ 1996 00: 00: 00 81
12/ 05/ 1996 00: 00: 00 82
12/ 06/ 1996 00: 00: 00 83
12/ 09/ 1996 00: 00: 00 84
12/ 10/ 1996 00: 00: 00 85
12/ 11/ 1996 00: 00: 00 86
12/ 12/ 1996 00: 00: 00 87
12/ 13/ 1996 00: 00: 00 88
12/ 16/ 1996 00: 00: 00 89
12/ 17/ 1996 00: 00: 00 90
12/ 18/ 1996 00: 00: 00 91
12/ 19/ 1996 00: 00: 00 92
12/ 20/ 1996 00: 00: 00 93
12/ 23/ 1996 00: 00: 00 94
12/ 24/ 1996 00: 00: 00 95
12/ 26/ 1996 00: 00: 00 96
12/ 27/ 1996 00: 00: 00 97
12/ 30/ 1996 00: 00: 00 98
12/ 31/ 1996 00: 00: 00 99

Value returned by IsvValid =1
Val ue returned by ValidateTS =1

D spl ayVal TS: Testing D spl ayVal TS:

TS SUC the input tine series is avalid tine series

AN ITNVALID TTME SERES :

Time Series Functions: Reference 5-59

IsValidTS

Nane = GPEN AQME
Gl endar Data:
CGal endar Nane = BUS NESS- 96
Frequency = 4 (day)

M nDate = 10/ 28/ 1996 00: 00: 00
MxDat e = 01/ 05/ 1997 00: 00: 00
patBits:

0,111,110

pat Anchor = 01/07/1996 00: 00: 00
onExcept i ons

of f Excepti ons

11/28/ 1996 00: 00: 00 12/ 25/ 1996 00: 00: 00

Series [ata

Dat e Val ue
11/ 01/ 1996 00: 00: 00 59
11/ 04/ 1996 00: 00: 00 60
11/ 05/ 1996 00: 00: 00 61
11/ 06/ 1996 00: 00: 00 62
11/ 07/ 1996 00: 00: 00 63
11/ 08/ 1996 00: 00: 00 64
11/11/1996 00: 00: 00 65
11/ 12/ 1996 00: 00: 00 66
11/ 13/ 1996 00: 00: 00 67
10/ 27/ 1996 00: 00: 00 68
10/ 26/ 1996 00: 00: 00 69
01/ 06/ 1997 00: 00: 00 70
01/ 07/ 1997 00: 00: 00 71

72
73

11/ 22/ 1996 00: 00: 00 74
11/ 22/ 1996 01: 00: 00 75
11/ 22/ 1996 15: 00: 00 76
11/ 22/ 1996 15: 00: 00 77
11/ 29/ 1996 00: 00: 00 78
11/ 29/ 1996 00: 00: 00 79
12/ 03/ 1996 00: 00: 00 80
12/ 04/ 1996 00: 00: 00 81
12/ 05/ 1996 00: 00: 00 82
12/ 06/ 1996 00: 00: 00 83
12/ 09/ 1996 00: 00: 00 84
12/ 10/ 1996 00: 00: 00 85
12/11/1996 00: 00: 00 86
12/ 12/ 1996 00: 00: 00 87
12/ 13/ 1996 00: 00: 00 88

5-60 Oracle8i Time Series User's Guide

IsValidTS

12/ 16/ 1996
12/ 17/ 1996
12/ 18/ 1996
12/ 19/ 1996
12/ 20/ 1996
12/ 29/ 1996
12/ 28/ 1996
12/ 26/ 1996
12/ 27/ 1996
12/ 30/ 1996
01/ 04/ 1997

Val ue ret urned
Val ue ret urned

by Isvalid =0
by ValidateTS =0

D spl ayVal TS: Testing D spl ayVal TS:

TSWR\ the input tine series has errors. See the nessage for details

nessage out put by val i dat eTS:

TS ERR
TS ERR
TS ERR
TS ERR
TS ERR
TS ERR

t he
t he
t he
t he
t he
t he

input tine series is unsorted

tine
tine
tine
tine
tine

series
series
series
series
series

has nul | tinmestanps

has timestanps < cal endar minDate (refer LoDateTab)
has timestanps > cal endar naxDate (refer H DateTab)
has inprecise tinmestanps (refer inprecisebDateTab)
has duplicate tinmestanps (refer DuplicateDateTab)

list of dates < calendar minDate - | owbateTab :

10/ 26/ 1996 00: 00: 00

10/ 27/ 1996 00: 00: 00

list of dates > cal endar naxDate - hi Dat eTab :

01/ 06/ 1997 00: 00: 00

01/07/ 1997 00: 00: 00

list of inprecise dates - inpreciselDateTab :

11/ 22/ 1996 01: 00: 00

11/ 22/ 1996 15: 00: 00

list of duplicate dates - duplicateDateTab :

11/ 22/ 1996 15: 00: 00

11/ 29/ 1996 00: 00: 00

Time Series Functions: Reference 5-61

IsValidTS

Ext raDat eTab :

12/ 28/ 1996

M ssi nghat eTab :

10/ 28/ 1996
10/ 31/ 1996
11/ 18/ 1996
11/ 21/ 1996
11/ 27/ 1996
12/ 24/ 1996
01/ 02/ 1997

5-62 Oracle8i Time Series User's Guide

00:

00:
00:
00:
00:
00:
00:
00:

00:

00:
00:
00:
00:
00:
00:
00:

00

00
00
00
00
00
00
00

12/ 29/ 1996

10/ 29/ 1996
11/ 14/ 1996
11/ 19/ 1996
11/ 25/ 1996
12/ 02/ 1996
12/ 31/ 1996
01/ 03/ 1997

00:

00:
00:
00:
00:
00:
00:
00:

00:

00:
00:
00:
00:
00:
00:
00:

00

00
00
00
00
00
00
00

01/ 04/ 1997 00: 00:

10/ 30/ 1996 00: 00:
11/ 15/ 1996 00: 00:
11/ 20/ 1996 00: 00:
11/ 26/ 1996 00: 00:
12/ 23/ 1996 00: 00:
01/ 01/ 1997 00: 00:

00

00
00
00
00
00
00

Lag

Lag

Format

Description

Parameters

ORDSYS.TimeSeries.Lag (
[tsname VARCHAR2,]
ts ORDSYS.ORDTNumSeriesIOTRef,
units INTEGER
[, startDate DATE
, endDate DATE]
) RETURN ORDSYS.ORDTNumSeries;
or
ORDSYS.TimeSeries.Lag (
[tsname VARCHAR2,]
ts ORDSYS.ORDTNumSeries|IOTRef,
lead_date DATE
[, startDate DATE
, endDate DATE]
) RETURN ORDSYS.ORDTNumSeries;

Given a time series, a positive or negative number (units) or a date (lead_date), and
optionally a starting and ending timestamp within the time series, returns a time
series that lags or (for negative numeric values) leads the input time series by the
appropriate number of timestamps.

tsname
Name of the returned time series. Specify this parameter if you need to assign a
name to the resulting time series, for example, to insert it into an object table.

Time Series Functions: Reference 5-63

Lag

ts
The input time series.

units

Integer specifying the number of timestamps by which the output time series is to
be adjusted. If units is positive, each element in the output time series is the same as
the element in the input time series for that relative position minus the units. If units
is negative, each element in the output time series is the same as the element in the
input time series for that relative position plus the units.

lead_date

The date relative to the starting date reflecting the number of timestamps by which
the output time series is to be adjusted. The function calculates the number of
timestamps between lead_date and startDate, and then uses that number as if it were
a units parameter value. (If lead_date is later than startDate, the effective units value
is positive; if lead_date is before the starting date, the effective units value is
negative.)

startDate

Starting date to be used in calculating the lead or lag value; also the starting date in
the input time series for which the output time series is to be created. If startDate is
specified, endDate must also be specified.

endDate
Ending date in the input time series for which the output time series is to be
created. If endDate is specified, startDate must also be specified.

Usage

The function creates a time series whose elements reflect an input time series
adjusted by a number of timestamps. For example, using the United States stock
trading calendar for 1997, if the first timestamp in the input time series is 06-Jan-
1997 (Monday) and the units value is 2, the first timestamp in the output time series
is 02-Jan-1997 (Thursday) and its associated value (such as closing price) is the same
as that for 06-Jan-1997 in the input time series. Subsequent elements of the output
time series reflect the timestamp adjustment.

5-64 Oracle8i Time Series User's Guide

Lag

Example

For example, assuming the United States stock trading calendar for 1997, Table 5-1
shows some time series data with a two-day lag period.

Table 5-1 Lagging a Time Series by Two Days

Input Time Series: Output Time Series:

Timestamp Closing Price Timestamp Closing Price

06-Jan-1997 49.50 02-Jan-1997 49.50
07-Jan-1997 49.25 03-Jan-1997 49.25
08-Jan-1997 50.00 06-Jan-1997 50.00

For convenience, both the Lead and Lag functions are provided.The functions
operate identically, except that they interpret the sign of the units value in opposite
ways. For example, Lead with -10 for units is equivalent to Lag with 10 for units.
Moreover, because of the way the lead_date parameter is interpreted, Lead and Lag
with a lead_date operate identically.

The Lead and Lag functions do not operate on irregular time series. For an
explanation of irregular time series, see Section 2.1.1.

Return a time series starting with 03-Mar-1997 using closing prices from the time
series from 01-Nov-1996 through 30-Nov-1996 for stock ACME. The returned time
series has the same number of timestamps as are in the specified date range
(startDate through endDate).

SH ECT to_char(tstanp) tstanp, val ue
FROM st ockdeno_ts ts,
TABLE (CAST(CRDSYS. Ti neSer i es. Extract Tabl e(
CROSYS. Ti neSeri es. Lag(ts. cl ose,
to_date(’ 03-MAR 97" ," DD MON YY),
to_date(’ 01-NO-96',’ DD MON YY),
to_date(’ 30-NO-96"," DD MON-YY'))
) AS CRDSYS. GRDTNUnTab)) t
WHERE ts.ticker= AQOME ;

This example might produce the following output:

Time Series Functions: Reference 5-65

Lag

04- MAR- 97
05- MAR- 97
06- MAR- 97
07- MAR- 97
10- MAR- 97

27- MAR- 97
28- MAR- 97
20 rows sel ect ed.

60
61
62
63
64

77

78

5-66 Oracle8i Time Series User's Guide

Last

Last

Format

Description

Parameters

Usage

Example

ORDSYS.TimeSeries.Last(
ts ORDSYS.ORDTNumSeriesIOTRef
) RETURN ORDSYS.ORDTNumCell;

Given a time series, returns the last element in it.

ts
The input time series.

A null is returned if the time series (ts) is empty.

An exception is returned if the time series (ts) is null.

Return the last timestamp and opening price for stock ACME in the stockdemo_ts

time series:
SET SERVERQUTPUT ON

ALTER SESSI ON SET NLS DATE FCRVAT = ' MM DD YYYY H24: M: SS ;

DECLARE
dummyval | NTEGER

BEG N

SELECT CORDSYS. Ti meSeri es. O spl ay(

CRDSYS. Ti neSeri es. Last (ts.open), 'Last Results’) | NTO dummyval

FROM TSDEV. st ockdeno _ts ts
WHERE ts.ticker= AOME ;

BND,

Time Series Functions: Reference 5-67

Last

/

This example might produce the following output:

Last Results :

Tinmestanp : 12/31/1996 00: 00: 00
Val ue : 99

5-68 Oracle8i Time Series User's Guide

LastN

LastN

Format

Description

Parameters

ORDSYS.TimeSeries.LastN(
[tsname VARCHAR2,]
ts ORDSYS.ORDTNumSeriesIOTRef,
NumValues NUMBER
[, startDate DATE
, endDate DATE]
) RETURN ORDSYS.ORDTNumSeries;

Given a time series and a number of elements (NumValues) to return, returns the last
NumValues elements in the time series.

tsname
Name of the returned time series. Specify this parameter if you need to assign a
name to the resulting time series, for example, to insert it into an object table.

ts
The input time series.

NumValues
Number of elements from the end of the time series to be returned.

startDate
Starting date within the time series for which NumValues elements are to be
returned. If startDate is specified, endDate must also be specified.

endDate
Ending date within the time series for which NumValues elements are to be
returned. If endDate is specified, startDate must also be specified.

Time Series Functions: Reference 5-69

LastN

Usage

Example

The function returns a time series populated with the last NumValues cells from the
input time series (ts). The calendar of the output time series is the same as that of
the input time series.

An exception is returned if the time series (ts) is null, if NumValues is zero (0) or
negative, or if endDate is earlier than startDate.

If startDate and endDate are specified, the time series is trimmed to the date range
before the last NumValues cells are returned.

Return the last 10 timestamps and opening prices in the time series for stock
ACME.:

SET SERVERQUTPUT CN
ALTER SESSI ON SET NLS DATE FCRVAT = ' MM DD YYYY H24:M: SS ;

DECLARE
dummyval | NTEGER

BEG N

SELECT CGRDBYS. Ti meSeri es. O spl ay(

CRDSYS. Ti neSeri es. Last N'ts. open, 10), 'LastN Results’) | NTO dumyval
FROM TSDEV. st ockdeno _ts ts
WHERE ts.ticker= AOME ;

END,

/

This example might produce the following output:
LastN Resul ts :

Gl endar Data:

Gl endar Nane = BUS NESS- 96
Frequency = 4 (day)

M nDate = 11/01/1996 00: 00: 00
MaxDat e = 01/ 01/ 2001 00: 00: 00
patBits:

0,1,1,1,1,1,0
pat Anchor = 01/07/1996 00: 00: 00
onExcept i ons
of f Excepti ons :

5-70 Oracle8i Time Series User's Guide

LastN

11/ 28/ 1996 00: 00: 00 12/ 25/ 1996 00: 00: 00

Series [ata
Dat e Val ue
12/ 17/ 1996 00: 00: 00 20
12/ 18/ 1996 00: 00: 00 91
12/ 19/ 1996 00: 00: 00 92
12/ 20/ 1996 00: 00: 00 93
12/ 23/ 1996 00: 00: 00 94
12/ 24/ 1996 00: 00: 00 95
12/ 26/ 1996 00: 00: 00 96
12/ 27/ 1996 00: 00: 00 97
12/ 30/ 1996 00: 00: 00 98
12/31/1996 00: 00: 00 99

Time Series Functions: Reference 5-71

Lead

Lead

Format
ORDSYS.TimeSeries.Lead (

[tsname VARCHAR2,]

ts ORDSYS.ORDTNumSeriesIOTRef,

units INTEGER

[, startDate DATE

, endDate DATE]

) RETURN ORDSYS.ORDTNumSeries;
or
ORDSYS.TimeSeries.Lead (

[tsname VARCHAR2,]

ts ORDSYS.ORDTNumSeries|IOTRef,

lead_date DATE

[, startDate DATE

, endDate DATE]

) RETURN ORDSYS.ORDTNumSeries;

Description

Given a time series, a positive or negative number (units) or a date (lead_date), and
optionally a starting and ending timestamp within the time series, returns a time
series that leads or (for negative numeric values) lags the input time series by the
appropriate number of timestamps.

Parameters
tsname

Name of the returned time series. Specify this parameter if you need to assign a
name to the resulting time series, for example, to insert it into an object table.

5-72 Oracle8i Time Series User's Guide

Lead

Usage

ts
The input time series.

units

Integer specifying the number of timestamps by which the output time series is to
be adjusted. If units is positive, each element in the output time series is the same as
the element in the input time series for that relative position plus the units. If units is
negative, each element in the output time series is the same as the element in the
input time series for that relative position minus the units.

lead_date

The date relative to the starting date reflecting the number of timestamps by which
the output time series is to be adjusted. The function calculates the number of
timestamps between lead_date and startDate, and then uses that number as if it were
a units parameter value. (If lead_date is later than startDate, the effective units value
is positive; if lead_date is before startDate, the effective units value is negative.)

startDate

Starting date to be used in calculating the lead or lag value; also the starting date in
the input time series for which the output time series is to be created. If startDate is
specified, endDate must also be specified.

endDate
Ending date in the input time series for which the output time series is to be
created. If endDate is specified, startDate must also be specified.

The function creates a time series whose elements reflect an input time series
adjusted by a number of timestamps. For example, using the United States stock
trading calendar for 1997, if the first timestamp in the input time series is 02-Jan-
1997 (Thursday) and the units value is 2, the first timestamp in the output time
series is 06-Jan-1997 (Monday) and its associated value (such as closing price) is the
same as that for 02-Jan-1997 in the input time series. Subsequent elements of the
output time series reflect the timestamp adjustment.

Time Series Functions: Reference 5-73

Lead

Example

For example, assuming the United States stock trading calendar for 1997, Table 5-2
shows some time series data with a two-day lead period.

Table 5-2 Leading a Time Series by Two Days

Input Time Series: Output Time Series:

Timestamp Closing Price Timestamp Closing Price

02-Jan-1997 49.00 06-Jan-1997 49.00
03-Jan-1997 50.00 07-Jan-1997 50.00
06-Jan-1997 49.50 08-Jan-1997 49.50

For convenience, both the Lead and Lag functions are provided. The functions
operate identically, except that they interpret the sign of the units value in opposite
ways. For example, Lead with -10 for units is equivalent to Lag with 10 for units.
Moreover, because of the way the lead_date parameter is interpreted, Lead and Lag
with a lead_date operate identically.

The Lead and Lag functions do not operate on irregular time series. For an
explanation of irregular time series, see Section 2.1.1.

Return a time series starting with 03-Mar-1997 using closing prices from the time
series from 01-Nov-1996 through 30-Nov-1996 for stock ACME. The returned time
series has the same number of timestamps as are in the specified date range
(startDate through endDate).

SH ECT to_char(tstanp) tstanp, val ue
FROM st ockdeno_ts ts,
TABLE (CAST(CRDSYS. Ti neSeri es. Extract Tabl e(
CROSYS. Ti neSeri es. Lead(ts. cl ose,
to_date(’ 03-MAR 97" ," DD MON YY),
to_date(’ 01-NO- 96" ,’ DD MIN YY),
to_date(’ 30-NO-96"," DD MON-YY'))
) AS CRDSYS. (RDTNuUnTab)) t
WHERE ts. ticker= AQOMVE ;

This example might produce the following output:

03- MAR- 97 59

5-74 Oracle8i Time Series User's Guide

Lead

04- MAR- 97
05- MAR- 97
06- MAR- 97
07- MAR- 97
10- MAR- 97

27- MAR- 97
28- MMR- 97
20 rows sel ect ed.

60
61
62
63
64

77

78

Time Series Functions: Reference 5-75

Mavg

Mavg
Format
ORDSYS.TimeSeries.Mavg(
[tsname VARCHAR2,]
ts ORDSYS.ORDTNumSeriesIOTRef,
k INTEGER
[,startDate DATE, endDate DATE]
) RETURN ORDSYS.ORDTNumSeries;
Description
Given an input ORDTNumSeries, returns a moving average for the time series, or
for the date range if one is specified. Each value in the returned time series is the
average of the value for the current timestamp plus the value for each of the
previous specified number of timestamps minus one.
For example, a 30-day moving average of closing prices for a stock on any given
date is the average of that day’s closing price and the 29 preceding closing prices.
Parameters

tsname
Name of the returned time series. Specify this parameter if you need to assign a
name to the resulting time series, for example, to insert it into an object table.

ts
The input time series.

k
Positive integer specifying the lookback window (hnumber of timestamps, including
the current one, over which to compute the moving average).

startDate
Starting date within the time series for which to return moving averages. If startDate
is specified, endDate must also be specified.

5-76 Oracle8i Time Series User's Guide

Mavg

Usage

Example

endDate
Ending date within the time series for which to return moving averages. If endDate
is specified, startDate must also be specified.

The returned time series has nulls for any entry where there are not k-1 timestamps
preceding it in the calendar. For example, if a stock trading calendar for 1997 starts
on 02-Jan-1997, the series of 5-day moving averages of the closing price for a stock
for the year has nulls for the closing price for the first four timestamps (02-Jan, 03-
Jan, 06-Jan, and 07-Jan), because there are insufficient timestamps for computing the
average.

Any nulls in the entries for the k timestamps are ignored, as explained in
Section 2.4.1.

An exception is returned if one or more of the following conditions are true:
= The time series (ts) is null.

= endDate is earlier than startDate.

Return a table of 10-day moving average values of the closing price for stock ACME
for the month of December 1996:

SH ECT to_char(tstanp) tstanp, val ue
FRCMtsquick ts,
TABLE (CAST(CRDSYS. Ti neSeri es. Extract Tabl e(
CROSYS. Ti neSeri es. Mavg(ts. cl ose, to_date(’ 01-CEG 96’ ,’ DD MNYY'),
to_date(’ 31-DEG 96’ ,’ DD MON- YY), 10)
) AS GRDSYS. GRDTNunTab)) t
WHERE ts.ticker= AQOMVE ;

This example might produce the following output:

02- DEG 96 74.5
03- DEG 96 75.5
04- DEG 96 76.5
05- DEG 96 77.5
06- DEG- 96 78.5
09- DEG 96 79.5
10- CEG 96 80.5

Time Series Functions: Reference 5-77

Mavg

11- DEG 96
12- OEG 96
13- DEG 96
16- OEG 96
17- DEG 96
18- CEG 96
19- CEG 96
20- DEG 96
23- DEG 96
24- DEG 96
26- DEG- 96
27- DEG 96
30- DEG 96
31- DEG 96

81.
82.
83.
84.
85.
86.
87.
88.
89.
90.
91.
92.
93.
94.

21 rows sel ect ed.

5-78 Oracle8i Time Series User's Guide

o1 O1Oo1 o1 OO0 o1 ool ool ool

Msum

Msum

Format

Description

Parameters

ORDSYS.TimeSeries.Msum(
[tsname VARCHAR2,]
ts ORDSYS.ORDTNumSeriesIOTRef,
k INTEGER
[,startDate DATE, endDate DATE]
) RETURN ORDSYS.ORDTNumSeries;

Given an input ORDTNumSeries, returns a moving sum for the time series, or for
the date range if one is specified. Each value in the returned time series is the sum
of the value for the current timestamp plus the value for each of the previous
specified number of timestamps minus one.

For example, a 30-day moving sum for a stock’s daily trading volume on any given
date is the sum of that day’s volume and the 29 preceding daily volumes.

tsname
Name of the returned time series. Specify this parameter if you need to assign a
name to the resulting time series, for example, to insert it into an object table.

ts
The input time series.

k
Positive integer specifying the lookback window (humber of timestamps, including
the current one, over which to compute the moving sum).

startDate
Starting date within the time series for which to return moving sums. If startDate is
specified, endDate must also be specified.

Time Series Functions: Reference 5-79

Msum

Usage

Example

endDate
Ending date within the time series for which to return moving sums. If endDate is
specified, startDate must also be specified.

The returned time series has nulls for any entry where there are not k-1 timestamps
preceding it in the calendar. For example, if a stock trading calendar for 1997 starts
on 02-Jan-1997, the series of 5-day moving sums of the trading volume for a stock
for the year has nulls for the volume for the first four timestamps (02-Jan, 03-Jan, 06-
Jan, and 07-Jan), because there are insufficient timestamps for computing the sum.

Any nulls in the entries for the k timestamps are ignored, as explained in
Section 2.4.1.

An exception is returned if one or more of the following conditions are true:
= The time series (ts) is null.

= endDate is earlier than startDate.

Return a table of 30-day moving sum values of trading volume for stock ACME for
December 1996:

SH ECT to_char(tstanp) tstanp, val ue
FRCMtsquick ts,
TABLE (CAST(CRDSYS. Ti neSer i es. Extract Tabl e(
CROSYS. Ti neSeri es. Msun{ts. vol une, to_date(’ 01-DEG 96’ ," DD MON-YY'),
to_date(’ 31-DEG 96’ ,’ DD MON-YY'), 30)
) AS CROSYS. GRDOTNunTab)) t
WHERE ts.ticker= AQOMVE ;

With the simplified data in the demo database (where all ACME daily volumes are
1000 and there are no ACME timestamps before November 1996), this example
might produce the following output:

02- DEG 96
03- DEG 96
04- DEG 96
05- DEG 96
06- DEG- 96
09- DEG 96

5-80 Oracle8i Time Series User's Guide

Msum

10- CEG 96
11- DEG 96
12- OEG 96
13- DEG 96
16- OEG 96
17- DEG 96
18- CEG 96
19- CEG 96
20- DEG 96
23- DEG 96
24- DEG 96
26- DEG- 96
27- DEG 96
30- DEG 96
31- DEG 96

30000
30000
30000
30000
30000
30000
30000
30000
30000
30000
30000
30000

21 rows sel ect ed.

Time Series Functions: Reference 5-81

TrimSeries

TrimSeries

Format
ORDSYS.TimeSeries.TrimSeries(

[tsname VARCHAR2,]
ts ORDSYS.ORDTNumSeriesIOTRef,
startDate DATE,
endDate DATE
) RETURN ORDSYS.ORDTNumSeries;
or
ORDSYS.TimeSeries.TrimSeries(
[tsname VARCHAR2,]
ts ORDSYS.ORDTVarchar2Series|OTRef,
startDate DATE,
endDate DATE
) RETURN ORDSYS.ORDTVarchar2Series;

Description

Given an input ORDT series, returns an ORDT series of the same type with all data
outside of the given date range removed. The calendar of the returned series will be
the same as that of the original series.

Parameters
tsname
Name of the returned time series. Specify this parameter if you need to assign a
name to the resulting time series, for example, to insert it into an object table.

ts
The input time series.

5-82 Oracle8i Time Series User's Guide

TrimSeries

Usage

Example

startDate

Starting date within the time series. You must specify a value, either null or not null.
If you specify a null value, the starting date (minDate) of the calendar (if any)
associated with ts is used.

endDate

Ending date within the time series. You must specify a value, either null or not null.
If you specify a null value, the ending date (maxDate) of the calendar (if any)
associated with ts is used.

An exception is returned if one or more of the following conditions are true:
= The time series (ts) is null.

= endDate is earlier than startDate.

Return the opening prices for stock ACME for dates in the calendar from 01-Dec-
1996 through 31-Dec-1996:

SET SERVERQUTPUT CN
CEQLARE
tnp |INTECER
tstDatel DATE
tstDate2 DATE
BEA N
-- Set tstDate val ues
tstDatel : = TO DATH' 12/ 01/ 1996 00: 00: 00", MM DO YYYY HR24: M :
tstDate2 : = TO DATH' 12/ 31/ 1996 00: 00: 00", MM DO YYYY HR24: M :
SELECT CGRDSYS. Ti neSeri es. O spl ay(
CRDSYS. Ti neSeri es. Tri nBeri es(open, tstDatel, tstDate2))
INTO t np
FROM TSDEV. st ockdeno _t
WHERE ticker ='AQE ;

SS);
SS);

BEND,
/

This statement might produce the following output:

Cal endar Dat a:

Cal endar Narre = BUSI NESS- 96
Frequency = 4 (day)

M nDate = 01- JAN-90 00: 00: 00

Time Series Functions: Reference 5-83

TrimSeries

MixDate = 01- JAN 01 00: 00: 00
patBits:
0,1,1,1,1,1,0
pat Anchor = 07-JAN-96 00: 00: 00
onExcept i ons
of f Excepti ons :
28- NOv- 96 00: 00: 00 25- DEG 96 00: 00: 00

Series Data:
Dat e Val ue
02- DEG 96 00: 00: 00 79
03- DEG 96 00: 00: 00 80
04- DEG 96 00: 00: 00 81
05- DEG 96 00: 00: 00 82
06- DEG 96 00: 00: 00 83
09- DEG 96 00: 00: 00 84
10- DEG 96 00: 00: 00 85
11- DEG 96 00: 00: 00 86
12- DEG 96 00: 00: 00 87
13- DEG 96 00: 00: 00 88
16- DEG 96 00: 00: 00 89
17- DEG 96 00: 00: 00 20
18- DEG 96 00: 00: 00 91
19- DEG 96 00: 00: 00 92
20- DEG 96 00: 00: 00 93
23- DEG 96 00: 00: 00 94
24- DEG 96 00: 00: 00 95
26- DEG 96 00: 00: 00 96
27- DEG 96 00: 00: 00 97
30- DEG 96 00: 00: 00 98
31- DEG 96 00: 00: 00 99

5-84 Oracle8i Time Series User's Guide

TSAdd

TSAdd

Format
ORDSYS.TimeSeries. TSAdd (

[tsname VARCHAR2,]
ts1 ORDSYS.ORDTNumSeries|OTRef,
ts2 ORDSYS.ORDTNumSeriesIOTRef
[,startDate DATE, endDate DATE]
) RETURN ORDSYS.ORDTNumSeries;
or
ORDSYS.TimeSeries. TSAdd (
[tsname VARCHAR2,]
ts1 ORDSYS.ORDTNumSeries|OTRef,
k NUMBER
[startDate DATE, endDate DATE]
) RETURN ORDSYS.ORDTNumSeries;

Description

Given two input time series or a time series and a constant, and optionally starting
and ending dates, returns a time series that reflects the addition of the first two
parameters.

Parameters

tsname
Name of the returned time series. Specify this parameter if you need to assign a
name to the resulting time series, for example, to insert it into an object table.

ts1
The time series (or first time series) whose elements are to be added either to
corresponding elements in the second time series or to a constant.

Time Series Functions: Reference 5-85

TSAdd

Usage

Example

ts2
The time series whose elements are to be added to corresponding elements in the
first time series.

k
A constant to be added to corresponding elements in the first time series.

startDate
Starting date within the time series for which the addition is to be performed. If
startDate is specified, endDate must also be specified.

endDate
Ending date within the time series for which the addition is to be performed. If
endDate is specified, startDate must also be specified.

The function performs a pairwise addition operation on each element of the time
series. This operation determines the value of each element of the returned time
series. For example:

« Iftwo time series contain daily trade volumes for two stocks, each element of
the returned time series contains the sum of the trade volumes for the two
stocks for that day.

« Ifatime series (ts1) contains closing prices for a stock and if a constant (k) of 1 is
specified, each element of the returned time series contains the closing price of
tsl incremented by 1.

If ts1 and ts2 are specified, the function returns a time series whose calendar is the
result of using the CombineCals function on the calendars associated with these two
time series.

An exception is returned if one or more of the following conditions are true:
= Aninput time series is null.

» The calendars associated with ts1 and ts2 do not have the same frequency and
aligned pattern.

= endDate is earlier than startDate.

Add the high price for stock ACME and the low price for stock FUNCO for each
trading day from 14-Nov-1996 through 14-Dec-1996:

5-86 Oracle8i Time Series User's Guide

TSAdd

CONNECT TSUSER TSUSER
SET SERVERQUTPUT CN
ALTER SESSI ON SET NLS DATE FCRVAT = ' MM DD YYYY H24: M: SS ;

DECLARE

tstGal CRDSYS CRDICal endar ;
startDate date;

endDate date;

dummyval | NTEGER

BEAQ N

startDate : = TO DATE(’ 11/14/1996');

endlat e TO DATH(' 12/ 14/ 1996’) ;

SELECT CGRDSYS. Ti meSeri es. O spl ay(
CROSYS. Ti neSeri es. TSAdd(ts1. high, ts2.low startDate, endDate),
" TSAdd Results’) | NTO dunmyval

FROM TSDEV. st ockdeno_ts tsl, TSDEV.stockdeno ts ts2

WHERE tsl.ticker=" AOME and ts2.ticker=" FUNXO ;

BEND,
/

This example might produce the following output:
TSAdd Results :

CGal endar Data:
Frequency = 4 (day)
M nDate = 11/01/1996 00: 00: 00
MuxDat e = 01/01/2001 00: 00: 00
patBits:
0,1,1,1,1,1,0
pat Anchor = 01/07/1996 00: 00: 00
onExcept i ons
of f Excepti ons :
11/28/ 1996 00: 00: 00 12/ 25/ 1996 00: 00: 00

Series Data:
Dat e Val ue
11/ 14/ 1996 00: 00: 00 92. 87
11/ 15/ 1996 00: 00: 00 93. 84
11/ 18/ 1996 00: 00: 00 94. 87
11/ 19/ 1996 00: 00: 00 95. 85
11/ 20/ 1996 00: 00: 00 96. 82

Time Series Functions: Reference 5-87

TSAdd

11/21/1996 00: 00: 00 97.84
11/ 22/ 1996 00: 00: 00 98. 85
11/ 25/ 1996 00: 00: 00 99. 81
11/ 26/ 1996 00: 00: 00 100. 78
11/ 27/ 1996 00: 00: 00 101.71
11/29/ 1996 00: 00: 00 102. 75
12/ 02/ 1996 00: 00: 00 103. 88
12/ 03/ 1996 00: 00: 00 105. 03
12/ 04/ 1996 00: 00: 00 106. 02
12/ 05/ 1996 00: 00: 00 107.13
12/ 06/ 1996 00: 00: 00 107.75
12/ 09/ 1996 00: 00: 00 108. 77
12/ 10/ 1996 00: 00: 00 109. 8
12/ 11/ 1996 00: 00: 00 110.5
12/ 12/ 1996 00: 00: 00 111. 41
12/ 13/ 1996 00: 00: 00 112. 4

5-88 Oracle8i Time Series User's Guide

TSAvg

TSAvg

Format

Description

Parameters

Usage

Example

ORDSYS.TimeSeries. TSAvg (
ts ORDSYS.ORDTNumSeriesIOTRef
[startDate DATE, endDate DATE]
) RETURN NUMBER;

Given an input ORDTNumSeries and optionally starting and ending dates, returns
a number corresponding to the average of all non-null time series entries.

ts
The input time series.

startDate
Starting date within the time series for which the average is to be calculated. If
startDate is specified, endDate must also be specified.

endDate
Ending date within the time series for which the average is to be calculated. If
endDate is specified, startDate must also be specified.

An exception is returned if one or more of the following conditions are true:
= The time series (ts) is null.

= endDate is earlier than startDate.

Return the average, variance, and standard deviation of the closing price of stock
ACME:

Time Series Functions: Reference 5-89

TSAvg

-- Qonpute various aggregate statistics.

SH ECT CRDSYS. Ti neSeri es. TSAvg(cl ose), CRDSYS. Ti neSeri es. TSVar i ance(cl ose),
CRDSYS. Ti neSeri es. TSt dDev(cl ose)

FROM TSDEV. st ockdeno_ts

WHERE ti cker =" AOME ;

This example might produce the following output:
CROSYS. TI M CRDSYS. TI M GRDSYS. TI M

79 143.5 11. 9791486
1 row sel ect ed.

5-90 Oracle8i Time Series User's Guide

TSCount

TSCount

Format

Description

Parameters

Usage

Example

ORDSYS.TimeSeries.TSCount (
ts ORDSYS.ORDTNumSeriesIOTRef
[startDate DATE, endDate DATE]
) RETURN NUMBER;

Given an input ORDTNumSeries and optionally starting and ending dates, returns
a number corresponding to the count of all non-null time series entries.

ts
The input time series.

startDate
Starting date within the time series for which the count is to be calculated. If
startDate is specified, endDate must also be specified.

endDate
Ending date within the time series for which the count is to be calculated. If endDate
is specified, startDate must also be specified.

Nulls are ignored in computing the count.
An exception is returned if one or more of the following conditions are true:
= The time series (ts) is null.

= endDate is earlier than startDate.

Return the total number of daily closing prices for stock ACME for the month of
November 1996:

Time Series Functions: Reference 5-91

TSCount

SH ECT CRDSYS. Ti neSeri es. TSCount (cl ose,
to_date(’ 11/01/1996 00: 00: 00",
MM DD YYYY HR4:M:SS),
to_date(’ 11/30/ 1996 23: 59: 59",
"MM DD YYYY HR4:M:SS)) TSOount
FROM TSDEV. st ockdeno_t s
WHERE ti cker =" AOME ;

This example might produce the following output:

20
1 row sel ect ed.

5-92 Oracle8i Time Series User's Guide

TSDivide

TSDivide

Format
ORDSYS.TimeSeries.TSDivide (

[tsname VARCHAR2,]
ts1 ORDSYS.ORDTNumSeries|OTRef,
ts2 ORDSYS.ORDTNumSeriesIOTRef
[,startDate DATE, endDate DATE]
) RETURN ORDSYS.ORDTNumSeries;
or
ORDSYS.TimeSeries.TSDivide (
[tsname VARCHAR2,]
ts1 ORDSYS.ORDTNumSeries|OTRef,
k NUMBER
[startDate DATE, endDate DATE]
) RETURN ORDSYS.ORDTNumSeries;

Description

Given two input time series or a time series and a constant, and optionally starting
and ending dates, returns a time series that reflects the division of the first
parameter by the second parameter.

Parameters

tsname
Name of the returned time series. Specify this parameter if you need to assign a
name to the resulting time series, for example, to insert it into an object table.

ts1
The time series (or first time series) whose elements are to be divided by either the
corresponding elements in the second time series or a constant.

Time Series Functions: Reference 5-93

TSDivide

Usage

ts2
The time series whose elements are to be divided into corresponding elements in
the first time series.

k
A constant to be divided into corresponding elements in the first time series.

startDate
Starting date within the time series for which the division is to be performed. If
startDate is specified, endDate must also be specified.

endDate
Ending date within the time series for which the division is to be performed. If
endDate is specified, startDate must also be specified.

The function performs a pairwise division operation on each element of the time
series (or first time series) by the corresponding element in the second time series or
by a constant. This operation determines the value of each element of the returned
time series. For example:

« Iftwo time series contain daily trade volumes for two stocks, each element of
the returned time series contains the result of dividing the volume in the first
time series by the volume in the second time series for that day.

« Ifatime series (ts1) contains closing prices for a stock and if a constant (k) of 2 is
specified, each element of the returned time series contains the closing price of
tsl divided by 2.

If ts1 and ts2 are specified, the function returns a time series whose calendar is the
result of using the CombineCals function on the calendars associated with these two
time series.

An exception is returned if one or more of the following conditions are true:
= Aninput time series is null.

» The calendars associated with ts1 and ts2 do not have the same frequency and
aligned pattern.

= endDate is earlier than startDate.

5-94 Oracle8i Time Series User's Guide

TSDivide

Example

Divide the high price for stock ACME by the low price for stock FUNCO for each
trading day from 14-Nov-1996 through 14-Dec-1996:

CONNECT TSUSER TSUSER
SET SERVERQUTPUT CN
ALTER SESSI ON SET NLS DATE FCRVAT = ' MM DD YYYY H24: M: SS ;

DECLARE

tstCGal CRDSYS CRDICal endar;
startDate date;

endDate date;

dummyval | NTEGER

BEG N

startDate : = TO DATE(’ 11/14/1996');
endbDate := TO DATH' 12/14/1996');
SELECT CGRDSYS. Ti meSeri es. O spl ay(
CRDSYS. Ti neSeri es. TSO vi de(tsl. high, ts2.1ow, startDate, endDate),
" TSDivide Results’) | NTO dunmyval
FROM TSDEV. st ockdeno_ts tsl, TSDEV.stockdeno ts ts2
WHERE tsl.ticker=" AOME and ts2.ticker=" FUNXO ;

BEND,
/

This example might produce the following output:
TSOi vide Results :

CGal endar Data:
Frequency = 4 (day)
M nDate = 11/01/1996 00: 00: 00
MxDat e = 01/01/2001 00: 00: 00
patBits:
0,1,1,1,1,1,0
pat Anchor = 01/07/1996 00: 00: 00
onExcept i ons
of f Excepti ons :
11/28/ 1996 00: 00: 00 12/ 25/ 1996 00: 00: 00

Series Data:
Date Val ue
11/ 14/ 1996 00: 00: 00 2. 89065772936740678676162547130289065773

Time Series Functions: Reference 5-95

TSDivide

11/ 15/ 1996 00: 00: 00
11/ 18/ 1996 00: 00: 00
11/ 19/ 1996 00: 00: 00
11/ 20/ 1996 00: 00: 00
11/21/1996 00: 00: 00
11/ 22/ 1996 00: 00: 00
11/ 25/ 1996 00: 00: 00
11/ 26/ 1996 00: 00: 00
11/ 27/ 1996 00: 00: 00
11/29/ 1996 00: 00: 00
12/ 02/ 1996 00: 00: 00
12/ 03/ 1996 00: 00: 00
12/ 04/ 1996 00: 00: 00
12/ 05/ 1996 00: 00: 00
12/ 06/ 1996 00: 00: 00
12/ 09/ 1996 00: 00: 00
12/ 10/ 1996 00: 00: 00
12/ 11/ 1996 00: 00: 00
12/ 12/ 1996 00: 00: 00
12/ 13/ 1996 00: 00: 00

WWWWWwWWwWwWwWwWwWwWwWwwWwwwwMNN

. 93624161073825503355704697986577181208
. 97444490992878089652283200670297444491
. 01886792452830188679245283018867924528
. 0646515533165407220822837951301427372

. 10402684563758389261744966442953020134
. 1446540880503144654088050314465408805

. 19193616127677446451070978580428391432
. 23801513877207737594617325483599663583
. 28975115984816533108393083087304934627
. 32631578947368421052631578947368421053
. 35008375209380234505862646566164154104
. 37078651685393258426966292134831460674
. 41382181515403830141548709408825978351
. 43970161624533775383340240364691255698
. 53684210526315789473684210526315789474
. 57593605384938998737904922170803533866
. 61344537815126050420168067226890756303
. 70212765957446808510638297872340425532
. 75907731738573259290901324220418624519
. 8034188034188034188034188034188034188

5-96 Oracle8i Time Series User's Guide

TSMax

TSMax

Format

Description

Parameters

Usage

Example

ORDSYS.TimeSeries.TSMax (
ts ORDSYS.ORDTNumSeriesIOTRef
[startDate DATE, endDate DATE]
) RETURN NUMBER;

Given an input ORDTNumSeries and optionally starting and ending dates, returns
a number corresponding to the highest (maximum) of all non-null time series
entries.

ts
The input time series.

startDate
Starting date within the time series for which the maximum is to be calculated. If
startDate is specified, endDate must also be specified.

endDate
Ending date within the time series for which the maximum is to be calculated. If
endDate is specified, startDate must also be specified.

An exception is returned if one or more of the following conditions are true:
= The time series (ts) is null.

= endDate is earlier than startDate.

Return the highest closing price for stock ACME for the month of November 1996:
SH ECT CRDSYS. Ti neSeri es. TSvax(cl ose,

Time Series Functions: Reference 5-97

TSMax

to_date(’ 11/01/1996 00: 00: 00",
MM DD YYYY HR4:M:SS),
to_date(’ 11/30/1996 23:59: 59",
MM DO YYYY HR4:M:SS)) TSvax
FROM TSDEV. st ockdeno_ts
WHERE ti cker =" AOME ;

This example might produce the following output:

78
1 row sel ect ed.

5-98 Oracle8i Time Series User's Guide

TSMaxN

TSMaxN

Format

Description

Parameters

Usage

ORDSYS.TimeSeries.TSMaxN (
ts ORDSYS.ORDTNumSeriesIOTRef,
NumValues INTEGER,
[startDate DATE, endDate DATE]
) RETURN ORDSYS.ORDTNumTab;

Given an input ORDTNumSeries, a number of values to return, and optionally
starting and ending dates, returns an ORDTNumTab with the specified number
(NumValues) of the top (highest) values.

ts
The input time series.

NumValues
Number of values to return.

startDate
Starting date within the time series for which the top values are to be calculated. If
startDate is specified, endDate must also be specified.

endDate
Ending date within the time series for which the top values are to be calculated. If
endDate is specified, startDate must also be specified.

An exception is returned if one or more of the following conditions are true:
= The time series (ts) is null.

= endDate is earlier than startDate.

Time Series Functions: Reference 5-99

TSMaxN

« NumValues is zero (0) or negative.

Example

Return the 10 highest closing prices for stock ACME for the month of November
1996:

SH ECT * FROM THE SELECT CASIT(

CROSYS. Ti meSeri es. TSVaxN cl ose, 10,
to_date(’ 11011996, MDDYYYY'),
to_dat e(’ 11301996, MMDYYYY'))

as CROSYS. GRDTNunTab)

FROM TSDEV. st ockdeno _ts
WHERE ticker = AQVE);

This example might produce the following output:

29- NOV- 96 78
27- NOV- 96 77
26- NOV- 96 76
25- NOV- 96 75
22- NOV- 96 74
21- NOV- 96 73
20- NOV- 96 72
19- NOv- 96 71
18- NOv- 96 70
15- NOv- 96 69

10 rows sel ect ed.

5-100 Oracle8i Time Series User's Guide

TSMedian

TSMedian

Format

Description

Parameters

Usage

Example

ORDSYS.TimeSeries.TSMedian (
ts ORDSYS.ORDTNumSeriesIOTRef
[startDate DATE, endDate DATE]
) RETURN NUMBER;

Given an input ORDTNumSeries and optionally starting and ending dates, returns
a number corresponding to the median of all non-null time series entries.

ts
The input time series.

startDate
Starting date within the time series for which the median is to be calculated. If
startDate is specified, endDate must also be specified.

endDate
Ending date within the time series for which the median is to be calculated. If
endDate is specified, startDate must also be specified.

An exception is returned if one or more of the following conditions are true:
= The time series (ts) is null.

= endDate is earlier than startDate.

Return the median closing price for stock ACME for the month of November 1996:

SH ECT CRDSYS. Ti neSeri es. TSvedi an(cl ose,
to_date(’ 11/01/1996 00: 00: 00",

Time Series Functions: Reference 5-101

TSMedian

MM DD YYYY HR4:M:SS),
to_date(’ 11/30/1996 23: 59: 59",
"MM DD YYYY HR4: M :SS)) TSwedi an
FROM TSDEV. st ockdeno_t s
WHERE ti cker =" AOME ;

This example might produce the following output:

68.5
1 row sel ect ed.

5-102 Oracle8i Time Series User's Guide

TSMin

TSMin

Format

Description

Parameters

Usage

Example

ORDSYS.TimeSeries.TSMin (
ts ORDSYS.ORDTNumSeriesIOTRef
[startDate DATE, endDate DATE]
) RETURN NUMBER;

Given an input ORDTNumSeries and optionally starting and ending dates, returns
a number corresponding to the lowest (minimum) of all non-null time series entries.

ts
The input time series.

startDate
Starting date within the time series for which the minimum is to be calculated. If
startDate is specified, endDate must also be specified.

endDate
Ending date within the time series for which the minimum is to be calculated. If
endDate is specified, startDate must also be specified.

An exception is returned if one or more of the following conditions are true:
= The time series (ts) is null.

= endDate is earlier than startDate.

Return the lowest closing price for stock ACME for the month of November 1996:

SH ECT CRDSYS. Ti neSeri es. TSM n(cl ose,
to_date(’ 11/01/1996 00: 00: 00",

Time Series Functions: Reference 5-103

TSMin

MM DD YYYY HR4:M:SS),
to_date(’ 11/30/1996 23: 59: 59",
"MM DD YYYY HR4:M:SS)) TSMn
FROM TSDEV. st ockdeno_t s
WHERE ti cker =" AOME ;

This example might produce the following output:

59
1 row sel ect ed.

5-104 Oracle8i Time Series User's Guide

TSMinN

TSMinN

Format

Description

Parameters

Usage

ORDSYS.TimeSeries.TSMinN (
ts ORDSYS.ORDTNumSeriesIOTRef,
NumValues INTEGER,
[startDate DATE, endDate DATE]
) RETURN ORDSYS.ORDTNumTab;

Given an input ORDTNumSeries, a number of values to return, and optionally
starting and ending dates, returns an ORDTNumTab with the specified number
(NumValues) of the bottom (lowest) values.

ts
The input time series.

NumValues
Number of values to return.

startDate
Starting date within the time series for which the bottom values are to be calculated.
If startDate is specified, endDate must also be specified.

endDate
Ending date within the time series for which the bottom values are to be calculated.
If endDate is specified, startDate must also be specified.

An exception is returned if one or more of the following conditions are true:
= The time series (ts) is null.

= endDate is earlier than startDate.

Time Series Functions: Reference 5-105

TSMinN

« NumValues is zero (0) or negative.

Example

Return the 10 lowest closing prices for stock ACME for the month of November
1996:

SH ECT * FROM THE SELECT CASIT(

CROSYS. Ti meSeri es. TSM nN cl ose, 10,
to_date(’ 11011996, MDDYYYY'),
to_dat e(’ 11301996, MMDYYYY'))

as CROSYS. GRDTNunTab)

FROM TSDEV. st ockdeno _ts
WHERE ticker = AQVE);

This example might produce the following output:

01- NOv- 96 59
04- NOV- 96 60
05- NOV- 96 61
06- NOV- 96 62
07- NOv- 96 63
08- NOv- 96 64
11- NOv- 96 65
12- NOv- 96 66
13- NOv- 96 67
14- NOv- 96 68

10 rows sel ect ed.

5-106 Oracle8i Time Series User's Guide

TSMultiply

TSMultiply

Format
ORDSYS.TimeSeries.TSMultiply (

[tsname VARCHAR2,]
ts1 ORDSYS.ORDTNumSeries|OTRef,
ts2 ORDSYS.ORDTNumSeriesIOTRef
[,startDate DATE, endDate DATE]
) RETURN ORDSYS.ORDTNumSeries;
or
ORDSYS.TimeSeries.TSMultiply (
[tsname VARCHAR2,]
ts1 ORDSYS.ORDTNumSeries|OTRef,
k NUMBER
[startDate DATE, endDate DATE]
) RETURN ORDSYS.ORDTNumSeries;

Description

Given two input time series or a time series and a constant, and optionally starting
and ending dates, returns a time series that reflects the multiplication of the first
parameter by the second parameter.

Parameters

tsname
Name of the returned time series. Specify this parameter if you need to assign a
name to the resulting time series, for example, to insert it into an object table.

ts1
The time series (or first time series) whose elements are to be multiplied by either
the corresponding elements in the second time series or a constant.

Time Series Functions: Reference 5-107

TSMultiply

Usage

ts2
The time series whose elements are to be multiplied by corresponding elements in
the first time series.

k
A constant to be multiplied by corresponding elements in the first time series.

startDate
Starting date within the time series for which the multiplication is to be performed.
If startDate is specified, endDate must also be specified.

endDate
Ending date within the time series for which the multiplication is to be performed.
If endDate is specified, startDate must also be specified.

The function performs a pairwise multiplication operation on each element of the
time series (or first time series) by the corresponding element in the second time
series or by a constant. This operation determines the value of each element of the
returned time series. For example:

« Iftwo time series contain daily trade volumes for two stocks, each element of
the returned time series contains the result of multiplying the volume in the
first time series by the volume in the second time series for that day.

« Ifatime series (ts1) contains closing prices for a stock and if a constant (k) of 2 is
specified, each element of the returned time series contains the closing price of
ts1 multiplied by 2.

If ts1 and ts2 are specified, the function returns a time series whose calendar is the
result of using the CombineCals function on the calendars associated with these two
time series.

An exception is returned if one or more of the following conditions are true:
= Aninput time series is null.

» The calendars associated with ts1 and ts2 do not have the same frequency and
aligned pattern.

= endDate is earlier than startDate.

5-108 Oracle8i Time Series User's Guide

TSMultiply

Example

Multiply the high price for stock ACME by the low price for stock FUNCO for each
trading day from 14-Nov-1996 through 14-Dec-1996:

CONNECT TSUSER TSUSER
SET SERVERQUTPUT CN
ALTER SESSI ON SET NLS DATE FCRVAT = ' MM DD YYYY H24: M: SS ;

DECLARE

tstCGal CRDSYS CRDICal endar;
startDate date;

endDate date;

dummyval | NTEGER

BEG N

startDate : = TO DATE(’ 11/14/1996');
endbDate := TO DATH' 12/14/1996');
SELECT CGRDSYS. Ti meSeri es. O spl ay(
CRDSYS. Ti neSeries. TSMul ti pl y(tsl. high, ts2.low startDate, endDate),
"TSMiltiply Results’) | NTO dunmyval
FROM TSDEV. st ockdeno_ts tsl, TSDEV.stockdeno ts ts2
WHERE tsl.ticker=" AOME and ts2.ticker=" FUNXO ;

BEND,
/

This example might produce the following output:
TSMIltiply Results :

CGal endar Data:
Frequency = 4 (day)
M nDate = 01/01/1990 00: 00: 00
MxDat e = 01/01/2001 00: 00: 00
patBits:
0,1,1,1,1,1,0
pat Anchor = 01/07/1996 00: 00: 00
onExcept i ons
of f Excepti ons :
11/28/ 1996 00: 00: 00 12/ 25/ 1996 00: 00: 00

Series Data:
Date Val ue
11/ 14/ 1996 00: 00: 00 1647. 03

Time Series Functions: Reference 5-109

TSMultiply

11/ 15/ 1996 00: 00: 00 1668. 8
11/ 18/ 1996 00: 00: 00 1694. 77
11/ 19/ 1996 00: 00: 00 1717. 2
11/ 20/ 1996 00: 00: 00 1738. 86
11/21/1996 00: 00: 00 1764. 16
11/ 22/ 1996 00: 00: 00 1788. 75
11/ 25/ 1996 00: 00: 00 1809. 56
11/ 26/ 1996 00: 00: 00 1831. 06
11/ 27/ 1996 00: 00: 00 1849. 38
11/ 29/ 1996 00: 00: 00 1876. 25
12/ 02/ 1996 00: 00: 00 1910. 4
12/ 03/ 1996 00: 00: 00 1946. 43
12/ 04/ 1996 00: 00: 00 1969. 64
12/ 05/ 1996 00: 00: 00 2002. 79
12/ 06/ 1996 00: 00: 00 1995
12/ 09/ 1996 00: 00: 00 2020. 45
12/ 10/ 1996 00: 00: 00 2046. 8
12/ 11/ 1996 00: 00: 00 2044.5
12/ 12/ 1996 00: 00: 00 2060. 08
12/ 13/ 1996 00: 00: 00 2082. 6

5-110 Oracle8i Time Series User's Guide

TSProd

TSProd

Format

Description

Parameters

Usage

Example

ORDSYS.TimeSeries.TSProd (
ts ORDSYS.ORDTNumSeriesIOTRef
[startDate DATE, endDate DATE]
) RETURN NUMBER;

Given an input ORDTNumSeries and optionally starting and ending dates, returns
a number corresponding to the product (result of multiplication) of all non-null
time series entries.

ts
The input time series.

startDate
Starting date within the time series for which the product is to be calculated. If
startDate is specified, endDate must also be specified.

endDate
Ending date within the time series for which the product is to be calculated. If
endDate is specified, startDate must also be specified.

An exception is returned if one or more of the following conditions are true:
= The time series (ts) is null.

= endDate is earlier than startDate.

Return the product resulting from multiplying the daily closing prices for stock
ACME for the month of November 1996. (This example is not very plausible, but is
presented merely to illustrate the syntax.)

Time Series Functions: Reference 5-111

TSProd

SH ECT CRDSYS. Ti neSeri es. TSProd(cl ose,
to_date(’ 11/01/1996 00: 00: 00",
MM DD YYYY HR4:M:SS),
to_date(’ 11/30/ 1996 23:59: 59",
"MM DD YYYY HR4:M:SS)) TSProd
FROM TSDEV. st ockdeno_t s
WHERE ti cker =" AOME ;

This example might produce the following output:

4. 8177E+36
1 row sel ect ed.

5-112 Oracle8i Time Series User's Guide

TSStdDev

TSStdDev

Format

Description

Parameters

Usage

ORDSYS.TimeSeries.TSStdDev (
ts ORDSYS.ORDTNumSeriesIOTRef
[startDate DATE, endDate DATE]
) RETURN NUMBER;

Given an input ORDTNumSeries and optionally starting and ending dates, returns
a number corresponding to the standard deviation of all non-null time series
entries. (This function returns a value that is the square root of the value returned
by the TSVar function.)

ts
The input time series.

startDate
Starting date within the time series for which the standard deviation is to be
calculated. If startDate is specified, endDate must also be specified.

endDate
Ending date within the time series for which the standard deviation is to be
calculated. If endDate is specified, startDate must also be specified.

If the date range refers to a time series with fewer than two timestamps, a null is
returned.

An exception is returned if one or more of the following conditions are true:
= The time series (ts) is null.

= endDate is earlier than startDate.

Time Series Functions: Reference 5-113

TSStdDev

Example

Return the average, variance, and standard deviation of the closing price of stock
ACME:

-- Qonpute various aggregate statistics.

SH ECT CRDSYS. Ti neSeri es. TSAvg(cl ose), CRDSYS. Ti neSeri es. TSVar i ance(cl ose),
CRDSYS. Ti neSeri es. TSt dDev(cl ose)

FROM TSDEV. st ockdeno_t s

WHERE ti cker =" AOME ;

This example might produce the following output:
CROSYS. TI M GROSYS. TI M GRDSYS. TI M

79 143.5 11. 9791486
1 row sel ect ed.

5-114 Oracle8i Time Series User's Guide

TSSubtract

TSSubtract

Format
ORDSYS.TimeSeries.TSSubtract (

[tsname VARCHAR2,]
ts1 ORDSYS.ORDTNumSeries|OTRef,
ts2 ORDSYS.ORDTNumSeriesIOTRef
[,startDate DATE, endDate DATE]
) RETURN ORDSYS.ORDTNumSeries;
or
ORDSYS.TimeSeries.TSSubtract (
[tsname VARCHAR2,]
ts1 ORDSYS.ORDTNumSeries|OTRef,
k NUMBER
[startDate DATE, endDate DATE]
) RETURN ORDSYS.ORDTNumSeries;

Description

Given two input time series or a time series and a constant, and optionally starting
and ending dates, returns a time series that reflects the subtraction of the second
parameter from the first parameter.

Parameters

tsname
Name of the returned time series. Specify this parameter if you need to assign a
name to the resulting time series, for example, to insert it into an object table.

tsl
The time series (or first time series) whose elements are to be decreased either by
corresponding elements in the second time series or by a constant.

Time Series Functions: Reference 5-115

TSSubtract

Usage

Example

ts2
The time series whose elements are to be subtracted from corresponding elements
in the first time series.

k
A constant to be subtracted from corresponding elements in the first time series.

startDate
Starting date within the time series for which the subtraction is to be performed. If
startDate is specified, endDate must also be specified.

endDate
Ending date within the time series for which the subtraction is to be performed. If
endDate is specified, startDate must also be specified.

The function performs a pairwise subtraction operation on each element of ts1,
decreasing it by either the corresponding element in ts2 or by k. This operation
determines the value of each element of the returned time series. For example:

« Iftwo time series contain daily trade volumes for two stocks, each element of
the returned time series contains the result of subtracting the ts2 volume from
the ts1 volume for that day.

« Ifatime series (ts1) contains closing prices for a stock and if a constant (k) of 1 is
specified, each element of the returned time series contains the closing price of
tsl decreased by 1.

If ts1 and ts2 are specified, the function returns a time series whose calendar is the
result of using the CombineCals function on the calendars associated with these two
time series.

An exception is returned if one or more of the following conditions are true:
= Aninput time series is null.

» The calendars associated with ts1 and ts2 do not have the same frequency and
aligned pattern.

= endDate is earlier than startDate.

Subtract the low price for stock FUNCO from the high price for stock ACME for
each trading day from 14-Nov-1996 through 14-Dec-1996:

5-116 Oracle8i Time Series User's Guide

TSSubtract

CONNECT TSUSER TSUSER
SET SERVERQUTPUT CN
ALTER SESSI ON SET NLS DATE FCRVAT = ' MM DD YYYY H24: M: SS ;

DECLARE

tstGal CRDSYS CRDICal endar ;
startDate date;

endDate date;

dummyval | NTEGER

BEG N

startDate : = TO DATE(’ 11/14/1996');
endlat e TO DATH(' 12/ 14/ 1996’) ;
SELECT CGRDSYS. Ti meSeri es. O spl ay(
CRDSYS. Ti neSeri es. TSSubtract (ts1. high, ts2.1ow startDate, endDate),
" TSSubt ract Results’) | NTO dunmyval
FROM TSDEV. st ockdeno_ts tsl, TSDEV.stockdeno ts ts2
WHERE tsl.ticker=" AOME and ts2.ticker=" FUNXO ;

BEND,
/

This example might produce the following output:
TSSubtract Results :

CGal endar Data:
Frequency = 4 (day)
M nDate = 01/01/1990 00: 00: 00
MuxDat e = 01/01/2001 00: 00: 00
patBits:
0,1,1,1,1,1,0
pat Anchor = 01/07/1996 00: 00: 00
onExcept i ons
of f Excepti ons :
11/28/ 1996 00: 00: 00 12/ 25/ 1996 00: 00: 00

Series Data:
Dat e Val ue
11/ 14/ 1996 00: 00: 00 45,13
11/ 15/ 1996 00: 00: 00 46. 16
11/ 18/ 1996 00: 00: 00 47.13
11/ 19/ 1996 00: 00: 00 48. 15
11/ 20/ 1996 00: 00: 00 49, 18

Time Series Functions: Reference 5-117

TSSubtract

11/21/1996 00: 00: 00 50. 16
11/ 22/ 1996 00: 00: 00 51.15
11/ 25/ 1996 00: 00: 00 52.19
11/ 26/ 1996 00: 00: 00 53.22
11/ 27/ 1996 00: 00: 00 54.29
11/29/ 1996 00: 00: 00 55.25
12/ 02/ 1996 00: 00: 00 56. 12
12/ 03/ 1996 00: 00: 00 56. 97
12/ 04/ 1996 00: 00: 00 57.98
12/ 05/ 1996 00: 00: 00 58. 87
12/ 06/ 1996 00: 00: 00 60. 25
12/ 09/ 1996 00: 00: 00 61.23
12/ 10/ 1996 00: 00: 00 62.2

12/ 11/ 1996 00: 00: 00 63.5

12/ 12/ 1996 00: 00: 00 64.59
12/ 13/ 1996 00: 00: 00 65.6

5-118 Oracle8i Time Series User's Guide

TSSum

TSSum

Format

Description

Parameters

Usage

Example

ORDSYS.TimeSeries. TSSum (
ts ORDSYS.ORDTNumSeriesIOTRef
[startDate DATE, endDate DATE]
) RETURN NUMBER;

Given an input ORDTNumSeries and optionally starting and ending dates, returns
a number corresponding to the sum of all non-null time series entries.

ts
The input time series.

startDate
Starting date within the time series for which the sum is to be calculated. If startDate
is specified, endDate must also be specified.

endDate
Ending date within the time series for which the sum is to be calculated. If endDate
is specified, startDate must also be specified.

An exception is returned if one or more of the following conditions are true:
= The time series (ts) is null.

= endDate is earlier than startDate.

Return the sum of the daily trading volumes for stock ACME for the month of
November 1996 (that is, the total ACME volume for the month):

SH ECT CRDSYS. Ti neSeri es. TSSunf vol une,

Time Series Functions: Reference 5-119

TSSum

to_date(’ 11/01/ 1996 00: 00: 00",
MM DD YYYY HR4:M:SS),
to_date(’ 11/30/1996 23:59: 59",
"MM DD YYYY HR4:M:SS)) TSSum
FROM TSDEV. st ockdeno_t s
WHERE ti cker =" AOME ;

This example might produce the following output:

20000
1 row sel ect ed.

5-120 Oracle8i Time Series User's Guide

TSVariance

TSVariance

Format

Description

Parameters

Usage

ORDSYS.TimeSeries.TSVariance (
ts ORDSYS.ORDTNumSeriesIOTRef
[startDate DATE, endDate DATE]
) RETURN NUMBER;

Given an input ORDTNumSeries and optionally starting and ending dates, returns
a number corresponding to the variance of all non-null time series entries. (This
function is analogous to the SQL group function VAR.)

ts
The input time series.

startDate
Starting date within the time series for which the variance is to be calculated. If
startDate is specified, endDate must also be specified.

endDate
Ending date within the time series for which the variance is to be calculated. If
endDate is specified, startDate must also be specified.

If the date range refers to a time series with fewer than two timestamps, a null is
returned.

An exception is returned if one or more of the following conditions are true:
= The time series (ts) is null.

= endDate is earlier than startDate.

Time Series Functions: Reference 5-121

TSVariance

Example

Return the average, variance, and standard deviation of the closing price of stock
ACME:

-- Qonpute various aggregate statistics.

SH ECT CRDSYS. Ti neSeri es. TSAvg(cl ose), CRDSYS. Ti neSeri es. TSVar i ance(cl ose),
CRDSYS. Ti neSeri es. TSt dDev(cl ose)

FROM TSDEV. st ockdeno_t s

WHERE ti cker =" AOME ;

This example might produce the following output:
CROSYS. TI M GROSYS. TI M GRDSYS. TI M

79 143.5 11. 9791486
1 row sel ect ed.

5-122 Oracle8i Time Series User's Guide

ValidateTS

ValidateTS

Format
ORDSYS.TimeSeries.Validate TS(

ts IN ORDSYS.ORDTNumSerieslIOTRef,
outMesg OUT VARCHAR2,
loDateTab OUT ORDSYS.ORDTDateTab,
hiDateTab OUT ORDSYS.ORDTDateTab,
impreciseDateTab OUT ORDSYS.ORDTDateTab,
duplicateDateTab OUT ORDSYS.ORDTDateTab,
extraDateTab OUT ORDSYS.ORDTDateTab,
missingDateTab OUT ORDSYS.ORDTDateTab
) RETURN INTEGER;

or

ORDSYS.TimeSeries.Validate TS(
ts IN ORDSYS.ORDTVarchar2Series|OTRef,
outMesg OUT VARCHAR2,
loDateTab OUT ORDSYS.ORDTDateTab,
hiDateTab OUT ORDSYS.ORDTDateTab,
impreciseDateTab OUT ORDSYS.ORDTDateTab,
duplicateDateTab OUT ORDSYS.ORDTDateTab,
extraDateTab OUT ORDSYS.ORDTDateTab,
missingDateTab OUT ORDSYS.ORDTDateTab
) RETURN INTEGER;

Time Series Functions: Reference 5-123

ValidateTS

Description

Parameters

Checks whether a time series is valid, and if the time series is not valid, generates a
diagnostic message and tables with timestamps that are causing the time series to
be invalid.

ts
The time series to be checked for validity.

outMesg
If the time series is invalid (if the return value = 0), contains a diagnostic message
describing any problems.

loDateTab
A table of dates before the starting date of the calendar associated with the time
series.

hiDateTab
A table of dates after the ending date of the calendar associated with the calendar.

impreciseDateTab
A table of the imprecise timestamps found in the time series.

duplicateDateTab
A table of the duplicate timestamps found in the time series.

extraDateTab

A table of dates that are included in the time series but that should be excluded
based on the calendar definition (for example, a Saturday timestamp that is in a
Monday-Friday calendar and that is not an on-exception).

missingDateTab

A table of dates that are excluded from the time series but that should be included
based on the calendar definition (for example, a Wednesday date that is not a
holiday in a Monday-Friday calendar and for which there is no data). Such dates
can be considered as "holes" in the time series.

5-124 Oracle8i Time Series User's Guide

ValidateTS

Usage

Example

The function returns one of the following values:

Value Meaning

1 The time series is valid. No errors were found.

0 The time series in invalid.

A time series is invalid if one or more of the following conditions are true:
= The time series (ts) is null.

= The time series (ts) does not have an associated calendar.

= The calendar associated with the time series is invalid.

« The timestamps are not sorted.

= One or more timestamps are null, imprecise, or outside the date range of the
calendar.

= One or more timestamps are included in the time series but should be excluded
based on the calendar definition (for example, a Saturday timestamp that is in a
Monday-Friday calendar and that is not an on-exception).

« One or more timestamps are excluded from the time series but should be
included based on the calendar definition (for example, a Wednesday date that
is not a holiday in a Monday-Friday calendar and for which there is no data).
Such dates can be considered as "holes" in the time series.

Contrast this function with I1sValidTS, which simply checks to determine if a time
series is valid.

You can use the DisplayValTS procedure (documented in this chapter) to display
the information returned by the ValidateTS function.

The ValidateTS function cannot be called from SQL. It must be called from PL/SQL
because of the OUT parameters.

Use the I1sValidTS and ValidateTS functions and the DisplayValTS procedure with
an invalid time series:

SET SERVERQUTPUT CN
ALTER SESSI ON SET NLS DATE FCRVAT = ' MM DD YYYY H24: M: SS ;

Time Series Functions: Reference 5-125

ValidateTS

DEQLARE

nunTS CRDSYS. CROTNunter i es;

tenpVal integer;

retisvalid integer;

retVal TS i nt eger;

| oDat eTab CORDSYS. CRDTDat eTab : = NULL;
hi Dat eTab CORDSYS. CRDTDat eTab : = NULL;

i mpDat eTab CGRDSYS. GRDTDat eTab : = NULL;
dupDat eTab CRDSYS. GRDTDat eTab : = NULL;
ext rabat eTab CRDSYS. CROTDat eTab : = NULL;
m ssi ngDat eTab CROSYS. CRDTDat eTab : = NULL;
out Mesg var char 2(2000) ;

BEG N

-- Set the buffer size.
DBVB QUTPUT. ENABLE(100000) ;

-- NOTE Here, an instance of the tine series is naterialized
-- sothat it could be nodified to generate an invalid tine series.

SH ECT CRDSYS. Tl MESER ES. Get Seri es(ts. open) | NTO nunTS
FROM t sdev. stockdeno ts ts
WERE ts.ticker ="' AQVE ;

-- Exanple of validating a valid tine series.
SHL ECT ordsys. tinmeseries. display(nunTS, 'A VALID TIME SERES) INIOtenpVal
FROM dual ;
retlsvalid := CROSYS TIMESER ES. I sVal i dTS(nunTS) ;
retVal TS : = GRDSYS. TI MESER ES. Val i dat eTS(nunTS, out Mesg, | oDat eTab,
hi Dat eTab, i npDat eTab, dupDat eTab,
extrabat eTab, nissi ngDat eTab) ;
DBVS QUTPUT. PUT_LINK(' Val ue returned by IsValid =" || retlsValid);
DBVS QUTPUT. PUT_LINK(' Val ue returned by ValidateTS ="' || retVal T9);
CRDSYS. Tl MESER ES. Di spl ayVal TS(ret Val TS, out Mesg, | oDat eTab, hi Dat eTab,
i npDat eTab, dupDat eTab, extraDateTab, nissi ngDat eTab,
"Testing D splayVal TS);
DBVB _CQUTPUT. NEW LI NE,

-- For illustration let us first create aninvalid tineseries.

-- Here we are adjusting the calendar’s ninDate and maxDate to avoid
-- getting a huge list of nissing dates.

5-126 Oracle8i Time Series User's Guide

ValidateTS

nunTsS. cal . mnDate :
nunTsS. cal . naxDat e :

TO DATE(’ 10/ 28/ 1996’) ;
TO DATE(’ 01/ 05/ 1997") ;

-- Add Dates Before nunTS. cal . nmnDate
nunTS. series(10).tstanp : = nuniS. cal . mnbDate - 1;
nunTS. series(11).tstanp : = nuniS. cal . mnDate - 2;

-- Add Dates Beyond nunTS. cal . maxDat e
nuntrS. series(12).tstanp : = nunTS cal . raxDate + 1;
nuntrS. series(13).tstanp : = nunTS cal . naxDate + 2;

-- Add sone nul | tinestanps
nunTS. series(14).tstanp : = NULL;
nunTS. series(15).tstanp : = NULL;

-- Add sone inpreci se dates (sone are duplicated)
nunTS. series(17).tstanp : = nunTS seri es(16).tstanp + 1/24;
nunTS. series(18).tstanp : = nuniS seri es(16).tstanp + 15/ 24;

-- Add sone duplicate tinestanps
nunTS, series(19).tstanp : = nunTS seri es(18).tstanp;
nunTS, series(21).tstanp : = nunTS seri es(20).tstanp;

-- Add sone extra dates in the niddl e
nunTS. series(37).tstanp : = TO DATE(’ 12/ 28/ 1996’) ;
nunTS. series(36).tstanp : = TO DATE(’ 12/ 29/ 1996’) ;

-- Add sone hol es at the end
nunTS. series(nunTS. series. count).tstanp : = TO DATE(’ 01/ 04/ 1997');

-- Exanple of validating an invalid tine series.
SH ECT ordsys. tinmeseries. di spl ay(nunTS, AN INVALID TIME SERES)
INTO t enpVal FROM dual ;
retlsvalid := CROSYS TIMESER ES. I sVal i dTS(nunTS) ;
retVal TS : = GRDSYS. TI MESER ES. Val i dat eTS(nunTS, out Mesg,
| oDat eTab, hi Dat eTab, i npDat eTab,
dupDet eTab, extraDat eTab, mi ssi hgDat eTab);
DBVS QUTPUT. PUT_LINE(' Val ue returned by IsValid =" || retlsValid);
DBVS QUTPUT. PUT_LINK(' Val ue returned by ValidateTS ="' || retVal T9);
CRDSYS. Tl MESER ES. D spl ayVal TS(ret Val TS, out Mesg, | oDat eTab, hi Dat eTab,
i npDat eTab, dupDat eTab, extraDat eTab, nissi ngDat eTab,
"Testing DisplayVal TS);
END,

Time Series Functions: Reference 5-127

ValidateTS

This example might produce the following output:
A VALID TIME SERES :

Nane = GPEN AQME
CGal endar Dat a:
CGal endar Nane = BUS NESS- 96
Frequency = 4 (day)

M nDate = 01/01/1990 00: 00: 00
MuxDate = 01/01/2001 00: 00: 00
patBits:

0,1,1,1,1,1,0

pat Anchor = 01/07/1996 00: 00: 00
onExcept i ons

of f Excepti ons

11/28/ 1996 00: 00: 00 12/ 25/ 1996 00: 00: 00

Series Data
Date Val ue
11/ 01/ 1996 00: 00: 00 59
11/ 04/ 1996 00: 00: 00 60
11/ 05/ 1996 00: 00: 00 61
11/ 06/ 1996 00: 00: 00 62
11/ 07/ 1996 00: 00: 00 63
11/ 08/ 1996 00: 00: 00 64
11/11/1996 00: 00: 00 65
11/ 12/ 1996 00: 00: 00 66
11/ 13/ 1996 00: 00: 00 67
11/ 14/ 1996 00: 00: 00 68
11/ 15/ 1996 00: 00: 00 69
11/ 18/ 1996 00: 00: 00 70
11/ 19/ 1996 00: 00: 00 71
11/ 20/ 1996 00: 00: 00 72
11/ 21/ 1996 00: 00: 00 73
11/ 22/ 1996 00: 00: 00 74
11/ 25/ 1996 00: 00: 00 75
11/ 26/ 1996 00: 00: 00 76
11/ 27/ 1996 00: 00: 00 77
11/ 29/ 1996 00: 00: 00 78
12/ 02/ 1996 00: 00: 00 79
12/ 03/ 1996 00: 00: 00 80
12/ 04/ 1996 00: 00: 00 81
12/ 05/ 1996 00: 00: 00 82
12/ 06/ 1996 00: 00: 00 83
12/ 09/ 1996 00: 00: 00 84

5-128 Oracle8i Time Series User's Guide

ValidateTS

12/ 10/ 1996 00: 00: 00 85
12/ 11/ 1996 00: 00: 00 86
12/ 12/ 1996 00: 00: 00 87
12/ 13/ 1996 00: 00: 00 88
12/ 16/ 1996 00: 00: 00 89
12/ 17/ 1996 00: 00: 00 90
12/ 18/ 1996 00: 00: 00 91
12/ 19/ 1996 00: 00: 00 92
12/ 20/ 1996 00: 00: 00 93
12/ 23/ 1996 00: 00: 00 94
12/ 24/ 1996 00: 00: 00 95
12/ 26/ 1996 00: 00: 00 96
12/ 27/ 1996 00: 00: 00 97
12/ 30/ 1996 00: 00: 00 98
12/ 31/ 1996 00: 00: 00 99

Value returned by Isvalid =1
Value returned by ValidateTS =1

D spl ayVal TS: Testing D spl ayVal TS:

TS SUC the input tine series is avalid tine series

AN ITNVALID TIME SERES :

Nae = GPEN AQME
CGal endar Data:
CGal endar Nane = BUS NESS- 96
Frequency = 4 (day)

M nDate = 10/ 28/ 1996 00: 00: 00
MaxDat e = 01/ 05/ 1997 00: 00: 00
patBits:

0,1,1,1,1,1,0

pat Anchor = 01/07/1996 00: 00: 00
onExcept i ons

of f Excepti ons :

11/28/ 1996 00: 00: 00 12/ 25/ 1996 00: 00: 00

Series Data:
Dat e Val ue
11/ 01/ 1996 00: 00: 00 59
11/ 04/ 1996 00: 00: 00 60
11/ 05/ 1996 00: 00: 00 61

Time Series Functions: Reference 5-129

ValidateTS

11/ 06/ 1996 00: 00: 00 62
11/ 07/ 1996 00: 00: 00 63
11/ 08/ 1996 00: 00: 00 64
11/ 11/ 1996 00: 00: 00 65
11/ 12/ 1996 00: 00: 00 66
11/ 13/ 1996 00: 00: 00 67
10/ 27/ 1996 00: 00: 00 68
10/ 26/ 1996 00: 00: 00 69
01/ 06/ 1997 00: 00: 00 70
01/ 07/ 1997 00: 00: 00 71
72
73
11/ 22/ 1996 00: 00: 00 74
11/ 22/ 1996 01: 00: 00 75
11/ 22/ 1996 15: 00: 00 76
11/ 22/ 1996 15: 00: 00 77
11/29/ 1996 00: 00: 00 78
11/29/ 1996 00: 00: 00 79
12/ 03/ 1996 00: 00: 00 80
12/ 04/ 1996 00: 00: 00 81
12/ 05/ 1996 00: 00: 00 82
12/ 06/ 1996 00: 00: 00 83
12/ 09/ 1996 00: 00: 00 84
12/ 10/ 1996 00: 00: 00 85
12/ 11/ 1996 00: 00: 00 86
12/ 12/ 1996 00: 00: 00 87
12/ 13/ 1996 00: 00: 00 88
12/ 16/ 1996 00: 00: 00 89
12/ 17/ 1996 00: 00: 00 90
12/ 18/ 1996 00: 00: 00 91
12/ 19/ 1996 00: 00: 00 92
12/ 20/ 1996 00: 00: 00 93
12/ 29/ 1996 00: 00: 00 94
12/ 28/ 1996 00: 00: 00 95
12/ 26/ 1996 00: 00: 00 96
12/ 27/ 1996 00: 00: 00 97
12/ 30/ 1996 00: 00: 00 98
01/ 04/ 1997 00: 00: 00 99

Value returned by Isvalid =0
Val ue returned by ValidateTS =0

D spl ayVal TS: Testing D spl ayVal TS:

5-130 Oracle8i Time Series User's Guide

ValidateTS

TSWR\ the input tine series has errors. See the nessage for details
nessage out put by val i dat eTS:
TS ERR the input tine series is unsorted
TS BERR the tine series has null tinestanps
TS ERR the tine series has tinestanps < cal endar nminDate (refer LoDateTab)
TS BRR the tine series has tinestanps > cal endar naxDate (refer H DateTab)
TS BERR the tine series has inprecise tinestanps (refer inpreciseDateTab)
TS BERR the tine series has duplicate tinmestanps (refer DuplicateDateTab)
list of dates < calendar nmnDate - | owDateTab :
10/ 26/ 1996 00: 00: 00 10/ 27/ 1996 00: 00: 00
list of dates > cal endar naxDate - hi DateTab :
01/ 06/ 1997 00: 00: 00 01/07/ 1997 00: 00: 00
list of inprecise dates - inpreciselDateTab :
11/ 22/ 1996 01: 00: 00 11/ 22/ 1996 15: 00: 00
list of duplicate dates - dupli cateDateTab :
11/ 22/ 1996 15: 00: 00 11/ 29/ 1996 00: 00: 00
Ext raDat eTab :
12/ 28/ 1996 00: 00: 00 12/ 229/ 1996 00: 00: 00 01/ 04/ 1997 00: 00: 00
M ssi nghat eTab :
10/ 28/ 1996 00: 00: 00 10/ 29/ 1996 00: 00: 00 10/ 30/ 1996 00: 00: 00
10/ 31/ 1996 00: 00: 00 11/ 14/ 1996 00: 00: 00 11/ 15/ 1996 00: 00: 00
11/ 18/ 1996 00: 00: 00 11/ 19/ 1996 00: 00: 00 11/ 20/ 1996 00: 00: 00
11/21/1996 00: 00: 00 11/ 25/ 1996 00: 00: 00 11/ 26/ 1996 00: 00: 00
11/ 27/ 1996 00: 00: 00 12/ 02/ 1996 00: 00: 00 12/ 23/ 1996 00: 00: 00

12/ 24/ 1996 00: 00: 00 12/ 31/ 1996 00: 00: 00 01/ 01/ 1997 00: 00: 00
01/ 02/ 1997 00: 00: 00 01/ 03/ 1997 00: 00: 00

Time Series Functions: Reference 5-131

ValidateTS

5-132 Oracle8i Time Series User's Guide

S

Time Scaling Functions: Reference

The Oracle8i Time Series library consists of:

Data types (described in Section 2.3)

Calendar functions (described in Chapter 4)
Time series functions (described in Chapter 5)
Time scaling functions (described in this chapter)

Administrative tools procedures for creating time series schema objects
(described in Chapter 7)

Calendar functions are mainly used by product developers, such as ISVs, to develop
new time series functions and to administer and modify calendars.

Time series and time scaling functions and the administrative tools procedures are
used mainly by application developers.

Syntax notes:

The ORDSYS schema name and the package name must be used with the
function name, although public synonyms can be created to eliminate the need
for specifying the schema name (see Section 1.5). Each function is included in a
PL/SQL package, such as Calendar, TimeSeries, or TimeScale. The ORDSYS
schema name and the package name are included in the Format and in any
examples.

Function calls are not case sensitive, except for any quoted literal values. For
example, the following code line excerpts are valid and semantically identical:

sel ect CAST(Ti neSeri es. Extract Tabl e(cl ose) AS CROTNunTab)
sel ect cast(TIMESER ES. extracttabl e(cl ose) as ordt nunt ab)
sel ect cast(Ti MeSeR Es. eXt RaG TaB E A osE) As ordt NJM ab)

Time Scaling Functions: Reference 6-1

« The syntax and examples show the reference-based interface (types
ORDTNumSerieslOTRef and ORDTVarchar2SerieslOTRef).

All time series and time scaling functions accept both references and instances as
parameters. (For example, an ORDTNumSerieslOTRef parameter could also be
ORDTNumSeries.) All time series functions return instances. Thus, if you nest
functions, such as Cmax(Cmax(...), ...), the innermost nesting accepts a reference and
returns an instance, and any other functions in the nesting accept an instance and
return an instance.

For an explanation of the reference-based interface, see Section 2.7.2.

6-2 Oracle8i Time Series User's Guide

Scaledownlnterpolate

Scaledownlnterpolate

Format

Description

Parameters

ORDSYS.TimeScale.Scaledownlnterpolate(
[tsname VARCHAR2,]
inputTS ORDSYS.ORDTNumSeries|OTRef,
targetCal ORDSYS.ORDTCalendar
[, startDate DATE
, endDate DATE]
) RETURN ORDSYS.ORDTNumSeries;

Given a time series, a calendar to be used for scaling, and optionally starting and
ending dates, returns a time series in which data values are interpolated between
values in the input time series. For example, in a semi-annual (January and July) to
month scaledown, if the data value for a January input timestamp is 100 and the
data value for the next (July) input timestamp is 160, the data values for the
monthly timestamps for January through June will be 100, 110, 120, 130, 140, and
150.

tsname
Name of the returned time series. Specify this parameter if you need to assign a
name to the resulting time series, for example, to insert it into an object table.

inputTS
The input time series.

targetCal
The calendar to be used for the scaling.

startDate
The starting date to be used. If startDate is specified, endDate must also be specified.

Time Scaling Functions: Reference 6-3

Scaledownlnterpolate

Usage

Example

endDate
The ending date to be used. If endDate is specified, startDate must also be specified.

inputTS cannot be an irregular time series (a time series with no associated
calendar).

An exception is returned for any of the following conditions:
« Theinput time series (inputTS) or the specified calendar (targetCal) is null.

= The frequency of the calendar on which the time series is based is shorter than
the frequency of the specified calendar (for example, the time series calendar’s
frequency is day and the specified calendar’s frequency is month).

« The frequency of the calendar on which the time series is based is incompatible
for scaling to the frequency of the specified calendar because the smaller
interval does not divide evenly into the larger interval. (For example, the time
series calendar’s frequency is month and the frequency of targetCal is week.)

« Any data in the input time series has no corresponding interval in the target
time series.

= Aninterval of the input time series straddles two or more intervals of the target
scaling calendar.

For an explanation of concepts related to time scaling, see Section 2.11.

Scale quarterly unemployment rate values down to monthly values, using
interpolation:

SH ECT to_char(tstanp) tstanp, val ue
FROM nyts ts, tsdev. stockdeno_cal endars cal,
TABLE (CAST(CRDSYS. Ti neSeri es. Extract Tabl e(
CRDSYS. Ti neScal e. Scal edownl nt er pol at e(ts. unenpl oynent _rat e,
VALUK cal))
) AS GRDSYS. GRDTNunTab)) t
WHERE ts.region=1 AND cal.name = Mnthly’;

Assume the following timestamps and values for unemployment_rate:

6-4 Oracle8i Time Series User's Guide

Scaledownlnterpolate

Timestamp Value

01-Jan-1998 4.0
01-Apr-1998 3.2
01-Jul-1998 51
01-Oct-1998 3.9

This example might produce the following output:

01- JAN- 98 4
01- FEB- 98 3. 72444444
01- MAR- 98 3. 47555556
01- APR- 98 3.2
01- MAY-98 4. 15604396
01- JUN-98 5. 14395604
01-JUL-98 6.1
01- AUG 98 5. 35869565
01- SEP-98 4.6173913
01- OCT-98 3.9
10 rows sel ect ed.

Note that only 10 rows are returned here, as opposed to 12 rows in the
ScaledownRepeat example. Interpolation cannot be performed for the months of
November and December in this example because the input time series does not
contain a timestamp for the following January.

See also the Month function in Chapter 4 for an example of using a calendar-
creation function (in this case, Month) to perform scaling, as opposed to specifying
a stored calendar that has the desired frequency.

Time Scaling Functions: Reference 6-5

ScaledownRepeat

ScaledownRepeat

Format
ORDSYS.TimeScale.ScaledownRepeat(

[tsname VARCHAR2,]

inputTS ORDSYS.ORDTNumSeries|OTRef,
targetCal ORDSYS.ORDTCalendar

[, startDate DATE

, endDate DATE]

) RETURN ORDSYS.ORDTNumSeries;

Description

Given a time series, a calendar to be used for scaling, and optionally starting and
ending dates, returns a time series in which data values in the input time series are
repeated. For example, in a semi-annual (January and July) to month scaledown, if
the data value for a January input timestamp is 100 and the data value for the next
(July) input timestamp is 160 (or any other value), the data values for the monthly
timestamps for January through June will all be 100.

Parameters

tsname
Name of the returned time series. Specify this parameter if you need to assign a
name to the resulting time series, for example, to insert it into an object table.

inputTS
The input time series.

targetCal
The calendar to be used for the scaling.

startDate
The starting date to be used. If startDate is specified, endDate must also be specified.

endDate
The ending date to be used. If endDate is specified, startDate must also be specified.

6-6 Oracle8i Time Series User's Guide

ScaledownRepeat

Usage

Example

inputTS cannot be an irregular time series (a time series with no associated
calendar).

An exception is returned for any of the following conditions:
« Theinput time series (inputTS) or the specified calendar (targetCal) is null.
« Theinput time series (inputTS) does not have an associated calendar.

= The frequency of the calendar on which the time series is based is shorter than
the frequency of the specified calendar (for example, the time series calendar’s
frequency is day and the specified calendar’s frequency is month).

« The frequency of the calendar on which the time series is based is incompatible
for scaling to the frequency of the specified calendar because the smaller
interval does not divide evenly into the larger interval. (For example, the time
series calendar’s frequency is month and the frequency of targetCal is week.)

= Any data in the input time series has no corresponding interval in the target
time series.

= Aninterval of the input time series straddles two or more intervals of the target
scaling calendar.

For an explanation of concepts related to time scaling, see Section 2.11.

Scale quarterly unemployment rate values down to monthly values, using
repetition:

SH ECT to_char(tstanp) tstanp, val ue
FROM nyts ts, tsdev. stockdeno_cal endars cal,
TABLE (CAST(CRDSYS. Ti neSeri es. Extract Tabl e(
CRDSYS. Ti nescal e. Scal edownRepeat (t's. unenpl oynent _r at e,
VALUK cal))
) AS GRDSYS. GRDTNunTab)) t
WHERE ts.region=1 AND cal.name = Mnthly’;

Assume the following timestamps and values for unemployment_rate:

Time Scaling Functions: Reference 6-7

ScaledownRepeat

Timestamp Value

01-Jan-1998 4.0
01-Apr-1998 3.2
01-Jul-1998 51
01-Oct-1998 3.9

This example might produce the following output:

01- JAN-98
01- FEB- 98
01- MAR- 98
01- APR- 98
01- MAY- 98
01- JUN-98
01-JUL-98
01- AUG 98
01- SEP-98
01- OCT-98
01- NOV-98
01- DEG 98
12 rows sel ect ed.

©COOFRPEFPEFEPNNNMIED

WRWWO DO WWW

Note that 12 rows are returned here, as opposed to only 10 rows in the
Scaledownlnterpolate example. Repetition is performed for the months of
November and December based on the October value, and is not dependent on the
value for the following January.

See also the Month function in Chapter 4 for an example of using a calendar-
creation function (in this case, Month) to perform scaling, as opposed to specifying
a stored calendar that has the desired frequency.

6-8 Oracle8i Time Series User's Guide

ScaledownSplit

ScaledownSplit

Format

Description

Parameters

ORDSYS.TimeScale.ScaledownSplit(
[tsname VARCHAR2,]
inputTS ORDSYS.ORDTNumSeries|OTRef,
targetCal ORDSYS.ORDTCalendar
[, startDate DATE
, endDate DATE]
) RETURN ORDSYS.ORDTNumSeries;

Given a time series, a calendar to be used for scaling, and optionally starting and
ending dates, returns a time series in which data values reflect the division of the
data value in the input time series by the number of associated timestamps in the
resulting time series. For example, in a semi-annual (January and July) to month
scaledown, if the data value for a January input timestamp is 100 and the data value
for the next (July) input timestamp is 160 (or any other value), the data values for
the monthly timestamps for January through June will all be 16.667 (1/6 of 100).

tsname
Name of the returned time series. Specify this parameter if you need to assign a
name to the resulting time series, for example, to insert it into an object table.

inputTS
The input time series.

targetCal
The calendar to be used for the scaling.

startDate
The starting date to be used. If startDate is specified, endDate must also be specified.

Time Scaling Functions: Reference 6-9

ScaledownSplit

Usage

Example

endDate
The ending date to be used. If endDate is specified, startDate must also be specified.

inputTS cannot be an irregular time series (a time series with no associated
calendar).

An exception is returned for any of the following conditions:
« Theinput time series (inputTS) or the specified calendar (targetCal) is null.
« Theinput time series (inputTS) does not have an associated calendar.

= The frequency of the calendar on which the time series is based is shorter than
the frequency of the specified calendar (for example, the time series calendar’s
frequency is day and the specified calendar’s frequency is month).

« The frequency of the calendar on which the time series is based is incompatible
for scaling to the frequency of the specified calendar because the smaller
interval does not divide evenly into the larger interval. (For example, the time
series calendar’s frequency is month and the frequency of targetCal is week.)

« Any data in the input time series has no corresponding interval in the target
time series.

= Aninterval of the input time series straddles two or more intervals of the target
scaling calendar.

For an explanation of concepts related to time scaling, see Section 2.11.

Scale quarterly widget production values down to monthly values, dividing each
quarter’s value evenly among the three months in that quarter:

SH ECT to_char(tstanp) tstanp, val ue
FROM nyts ts, tsdev. stockdeno_cal endars cal,
TABLE (CAST(CRDSYS. Ti neSeri es. Extract Tabl e(
CRDSYS. Ti neScal e. Scal edownSplit (ts.w dget _producti on,
VALUK cal))
) AS GRDSYS. GRDTNunTab)) t
WHERE ts.region=1 AND cal.name = Mnthly’;

With quarterly widget_production values of 1000, 1500, 900, and 1200, this example
might produce the following output:

6-10 Oracle8i Time Series User's Guide

ScaledownSplit

01- JAN-98 333. 333333
01- FEB-98 333. 333333
01- MAR- 98 333. 333333

01- APR- 98
01- MAY- 98
01- JUN-98
01-JUL-98
01- AUG 98
01- SEP-98
01- OCT-98
01- NOV-98
01- DEG 98
12 rows sel ect ed.

500
500
500
300
300
300
400
400
400

For example, one-third (333.33...) of the quarterly value of 1000 for 01-Jan is
returned as the monthly value for 01-Jan, 01-Feb, and 01-Mar.

See also the Month function in Chapter 4 for an example of using a calendar-
creation function (in this case, Month) to perform scaling, as opposed to specifying
a stored calendar that has the desired frequency.

Time Scaling Functions: Reference 6-11

ScaleupAvg

ScaleupAvg

Format
ORDSYS.TimeScale.ScaleupAvg(

[tsname VARCHAR2,]

inputTS ORDSYS.ORDTNumSeries|OTRef,
targetCal ORDSYS.ORDTCalendar

[, startDate DATE

, endDate DATE]

[,options]

) RETURN ORDSYS.ORDTNumSeries;

Description
Given a time series, a calendar to be used for scaling, and optionally starting and
ending dates, returns a time series reflecting the average value of each scaled group
of values.

Parameters
tsname

Name of the returned time series. Specify this parameter if you need to assign a
name to the resulting time series, for example, to insert it into an object table.

inputTS
The input time series.

targetCal
The calendar to be used for the scaling.

startDate
The starting date to be used. If startDate is specified, endDate must also be specified.

endDate
The ending date to be used. If endDate is specified, startDate must also be specified.

6-12 Oracle8i Time Series User's Guide

ScaleupAvg

Usage

Example

options
Either or both of the following options:

ORDSYS.TimeScale.lgnoreNulls (default) | IgnoreNullsOFF. The default is to
ignore null input values in performing the scaleup.

ORDSYS.TimeScale.DiscardError (default) | DiscardErrorOFF. The default is to
raise an exception if any data in the input time series has no corresponding
interval in the target time series.

See Section 2.11.2 for detailed information about these options and examples of their

use.

An exception is returned for any of the following conditions:

The input time series (ts) or the specified calendar (targetCal) is null.

The frequency of the calendar on which the time series is based is greater than
the frequency of the specified calendar (for example, the time series calendar’s
frequency is month and the specified calendar’s frequency is day).

The frequency of the calendar on which the time series is based is incompatible
for scaling to the frequency of the specified calendar because the smaller
interval does not divide evenly into the larger interval. (For example, the time
series calendar’s frequency is week and the frequency of targetCal is month.)

Any data in the input time series has no corresponding interval in the target
time series and DiscardErrorOFF is not specified.

An interval of the input time series straddles two or more intervals of the target
scaling calendar.

For an explanation of concepts related to time scaling, see Section 2.11.

Return the average closing prices for stock SAMCO for each month for the entire
time series:

SH ECT to_char(tstanp) tstanp, val ue

FROM t sdev. st ockdenmo_ts ts, tsdev.stockdeno cal endars cal,

TABLE (CAST(CRDSYS. Ti neSeri es. Extract Tabl e(
CRDSYS. Ti necal e. Scal eupAvg(ts. cl ose,

VALUE(cal))
) AS GRDSYS. GRDTNunTab)) t

Time Scaling Functions: Reference 6-13

ScaleupAvg

WHERE ts. ticker= SAMOO and cal . nane=" Monthl y’ ;

This example might produce the following output:

01-NO-96 39. 83125
01- DEG 96 38. 2738095
2 rows sel ected.

See also the Month function in Chapter 4 for an example of using a calendar-

creation function (in this case, Month) to perform scaling, as opposed to specifying
a stored calendar that has the desired frequency.

6-14 Oracle8i Time Series User's Guide

ScaleupAvgX

ScaleupAvgX

Format

Description

Parameters

ORDSYS.TimeScale.ScaleupAvgX(
[tsname VARCHAR2,]
ts ORDSYS.ORDTNumSeriesIOTRef,
calendar ORDSYS.ORDTCalendar
[, startDate DATE
, endDate DATE]
[,options]
) RETURN ORDSYS.ORDTNumSeries;

Given a time series, a calendar to be used for scaling, and optionally starting and
ending dates, returns a time series reflecting the average value of each scaled group
of values plus the immediately preceding source period.

tsname
Name of the returned time series. Specify this parameter if you need to assign a
name to the resulting time series, for example, to insert it into an object table.

ts
The input time series.

calendar
The calendar to be used for the scaling.

startDate
The starting date to be used. If startDate is specified, endDate must also be specified.

endDate
The ending date to be used. If endDate is specified, startDate must also be specified.

Time Scaling Functions: Reference 6-15

ScaleupAvgX

Usage

options
Either or both of the following options:

ORDSYS.TimeScale.lgnoreNulls (default) | IgnoreNullsOFF. The default is to
ignore null input values in performing the scaleup.

ORDSYS.TimeScale.DiscardError (default) | DiscardErrorOFF. The default is to
raise an exception if any data in the input time series has no corresponding
interval in the target time series.

See Section 2.11.2 for detailed information about these options and examples of their

use.

ScaleupAvgX is like ScaleupAvg, except that ScaleupAvgX also considers the last
timestamp before the current scaling period. For example:

The monthly average closing price for January for a stock is the average of the
closing price on trading days in January and the last trading day in December.

The quarterly average unemployment rate for the first calendar quarter (scaling
up from monthly data) is the average of the rates for December, January;,
February, and March.

An exception is returned for any of the following conditions:

The input time series (ts) or the specified calendar (targetCal) is null.

The frequency of the calendar on which the time series is based is greater than
the frequency of the specified calendar (for example, the time series calendar’s
frequency is month and the specified calendar’s frequency is day).

The frequency of the calendar on which the time series is based is incompatible
for scaling to the frequency of the specified calendar because the smaller
interval does not divide evenly into the larger interval. (For example, the time
series calendar’s frequency is week and the frequency of targetCal is month.)

Any data in the input time series has no corresponding interval in the target
time series and DiscardErrorOFF is not specified.

An interval of the input time series straddles two or more intervals of the target
scaling calendar.

For an explanation of concepts related to time scaling, see Section 2.11.

6-16 Oracle8i Time Series User's Guide

ScaleupAvgX

Example

Return the average closing prices for stock SAMCO for each month plus the last
trading day of the preceding month for the entire time series:

SH ECT to_char(tstanp) tstanp, val ue
FROM t sdev. st ockdenmo_ts ts, tsdev.stockdeno cal endars cal,
TABLE (CAST(CRDSYS. Ti neSer i es. Extract Tabl e(
CRDSYS. Ti neScal e. Scal eupAvgX(ts. cl ose,

VALUE(cal))
) AS GRDSYS. GRDTNunTab)) t

WHERE ts. ticker= SAMOO and cal . nane=" Monthl y’ ;

This example might produce the following output:

01-NO-96 39. 83125
01- DEG 96 38. 2727273
2 rows sel ected.

Note that the value for 01-Dec-1996 in this example is different from the value in the
ScaleupAvg example, because this ScaleupAvgX value for 01-Dec considers the
closing price for the last timestamp in November. (There is no October data in the
stockdemo_ts table, and thus the 01-Nov values are the same in the ScaleupAvg and
ScaleupAvgX examples.)

See also the Month function in Chapter 4 for an example of using a calendar-
creation function (in this case, Month) to perform scaling, as opposed to specifying
a stored calendar that has the desired frequency.

Time Scaling Functions: Reference 6-17

ScaleupCount

ScaleupCount

Format
ORDSYS.TimeScale.ScaleupCount(

[tsname VARCHAR2,]

ts ORDSYS.ORDTNumSeriesIOTRef,
calendar ORDSYS.ORDTCalendar

[, startDate DATE

, endDate DATE]

[,options]

) RETURN ORDSYS.ORDTNumSeries;

Description
Given a time series, a calendar to be used for scaling, and optionally starting and
ending dates, returns a time series reflecting the count of non-null timestamps in
each scaled group of values.

Parameters

tsname
Name of the returned time series. Specify this parameter if you need to assign a
name to the resulting time series, for example, to insert it into an object table.

ts
The input time series.

calendar
The calendar to be used for the scaling.

startDate
The starting date to be used. If startDate is specified, endDate must also be specified.

endDate
The ending date to be used. If endDate is specified, startDate must also be specified.

6-18 Oracle8i Time Series User's Guide

ScaleupCount

Usage

Example

options
Either or both of the following options:

« ORDSYS.TimeScale.lgnoreNulls (default) | IgnoreNullsOFF. The default is to
ignore null input values in performing the scaleup.

=« ORDSYS.TimeScale.DiscardError (default) | DiscardErrorOFF. The default is to
raise an exception if any data in the input time series has no corresponding
interval in the target time series.

See Section 2.11.2 for detailed information about these options and examples of their
use.

An exception is returned for any of the following conditions:
« The input time series (ts) or the specified calendar (targetCal) is null.

« The frequency of the calendar on which the time series is based is greater than
the frequency of the specified calendar (for example, the time series calendar’s
frequency is month and the specified calendar’s frequency is day).

« The frequency of the calendar on which the time series is based is incompatible
for scaling to the frequency of the specified calendar because the smaller
interval does not divide evenly into the larger interval. (For example, the time
series calendar’s frequency is week and the frequency of targetCal is month.)

= Any data in the input time series has no corresponding interval in the target
time series and DiscardErrorOFF is not specified.

= Aninterval of the input time series straddles two or more intervals of the target
scaling calendar.

For an explanation of concepts related to time scaling, see Section 2.11.

Return the monthly count of daily closing prices for stock SAMCO for the period
01-Nov-1996 through 31-December 1996:

SH ECT to_char(tstanp) tstanp, val ue
FROM t sdev. st ockdenmo_ts ts, tsdev.stockdeno cal endars cal,
TABLE (CAST(CRDSYS. Ti neSeri es. Extract Tabl e(
CRDSYS. Ti neScal e. Scal eupCount (t s. cl ose,
VALUK(cal),
to_dat e(’ 01- NOv- 1996’ , ' DD MON YYYY'),

Time Scaling Functions: Reference 6-19

ScaleupCount

to_dat e(’ 31- DEG 1996’ , ' DD MON YYYY'))
) AS CRDSYS. GROTNunTab)) t
WHERE ts. ticker= SAMOO and cal . nane=" Monthl y’ ;

This example might produce the following output:

01- DEG 96 21
2 rows sel ected.

See also the Month function in Chapter 4 for an example of using a calendar-

creation function (in this case, Month) to perform scaling, as opposed to specifying
a stored calendar that has the desired frequency.

6-20 Oracle8i Time Series User's Guide

ScaleupFirst

ScaleupFirst

Format

Description

Parameters

ORDSYS.TimeScale.ScaleupFirst(
[tsname VARCHAR2,]
ts ORDSYS.ORDTNumSeriesIOTRef,
calendar ORDSYS.ORDTCalendar
[, startDate DATE
, endDate DATE]
[,options]
) RETURN ORDSYS.ORDTNumSeries;

Given a time series, a calendar to be used for scaling, and optionally starting and
ending dates, returns a time series reflecting the first non-null value of each scaled
group of values.

tsname
Name of the returned time series. Specify this parameter if you need to assign a
name to the resulting time series, for example, to insert it into an object table.

ts
The input time series.

calendar
The calendar to be used for the scaling.

startDate
The starting date to be used. If startDate is specified, endDate must also be specified.

endDate
The ending date to be used. If endDate is specified, startDate must also be specified.

Time Scaling Functions: Reference 6-21

ScaleupFirst

options
Either or both of the following options:

ORDSYS.TimeScale.lgnoreNulls (default) | IgnoreNullsOFF. The default is to
ignore null input values in performing the scaleup.

If IgnoreNulls (the default) is enabled, the first non-null value of the group is
returned (unless all values of the group are null, in which case a null is
returned). If IgnoreNullsOFF is enabled, the first value of the group is returned.

ORDSYS.TimeScale.DiscardError (default) | DiscardErrorOFF. The default is to
raise an exception if any data in the input time series has no corresponding
interval in the target time series.

See Section 2.11.2 for detailed information about these options and examples of their

use.

Usage

An exception is returned for any of the following conditions:

The input time series (ts) or the specified calendar (targetCal) is null.

The frequency of the calendar on which the time series is based is greater than
the frequency of the specified calendar (for example, the time series calendar’s
frequency is month and the specified calendar’s frequency is day).

The frequency of the calendar on which the time series is based is incompatible
for scaling to the frequency of the specified calendar because the smaller
interval does not divide evenly into the larger interval. (For example, the time
series calendar’s frequency is week and the frequency of targetCal is month.)

Any data in the input time series has no corresponding interval in the target
time series and DiscardErrorOFF is not specified.

An interval of the input time series straddles two or more intervals of the target
scaling calendar.

For an explanation of concepts related to time scaling, see Section 2.11.

Example

6-22

Return the first closing prices for stock SAMCO for the months of November and
December of 1996:

SH ECT to_char(tstanp) tstanp, val ue

FROM t sdev. st ockdenmo_ts ts, tsdev.stockdeno cal endars cal,

TABLE (CAST(CRDSYS. Ti neSer i es. Extract Tabl e(

Oracle8i Time Series User's Guide

ScaleupFirst

CRDSYS. Ti neScal e. Scal eupFi rst(ts. cl ose,
VALUK(cal),
to_dat e(’ 01- NOV- 1996’ , ' DD MON- YYYY'),
to_dat e(’ 31- DEG 1996’ , ' DD MON- YYYY'))
) AS GRDSYS. GRDTNunTab)) t
WHERE ts. ticker= SAMOO and cal . nane=" Monthl y’ ;

This example might produce the following output:

01- NOV- 96 41. 875
01- DEG 96 38. 125
2 rows sel ected.

See also the Month function in Chapter 4 for an example of using a calendar-

creation function (in this case, Month) to perform scaling, as opposed to specifying
a stored calendar that has the desired frequency.

Time Scaling Functions: Reference 6-23

ScaleupGMean

ScaleupGMean

Format
ORDSYS.TimeScale.ScaleupGMean(

[tsname VARCHAR2,]

ts ORDSYS.ORDTNumSeriesIOTRef,
calendar ORDSYS.ORDTCalendar

[, startDate DATE

, endDate DATE]

[,options]

) RETURN ORDSYS.ORDTNumSeries;

Description
Given a time series, a calendar to be used for scaling, and optionally starting and
ending dates, returns a time series reflecting the geometric mean of each scaled
group of values.

Parameters

tsname
Name of the returned time series. Specify this parameter if you need to assign a
name to the resulting time series, for example, to insert it into an object table.

ts
The input time series.

calendar
The calendar to be used for the scaling.

startDate
The starting date to be used. If startDate is specified, endDate must also be specified.

endDate
The ending date to be used. If endDate is specified, startDate must also be specified.

6-24 Oracle8i Time Series User's Guide

ScaleupGMean

Usage

Example

options
Either or both of the following options:

« ORDSYS.TimeScale.lgnoreNulls (default) | IgnoreNullsOFF. The default is to
ignore null input values in performing the scaleup.

=« ORDSYS.TimeScale.DiscardError (default) | DiscardErrorOFF. The default is to
raise an exception if any data in the input time series has no corresponding
interval in the target time series.

See Section 2.11.2 for detailed information about these options and examples of their
use.

The geometric mean of each scaled group is computed by taking the sum of the
logarithms (base 10) of the values for the corresponding source period, and then
raising 10 to the power of the logarithm sum divided by the number of elements in
the corresponding source period. That is: POWER(10, log_sum/number_elements).

An exception is returned for any of the following conditions:
« The input time series (ts) or the specified calendar (targetCal) is null.

« The frequency of the calendar on which the time series is based is greater than
the frequency of the specified calendar (for example, the time series calendar’s
frequency is month and the specified calendar’s frequency is day).

« The frequency of the calendar on which the time series is based is incompatible
for scaling to the frequency of the specified calendar because the smaller
interval does not divide evenly into the larger interval. (For example, the time
series calendar’s frequency is week and the frequency of targetCal is month.)

= Any data in the input time series has no corresponding interval in the target
time series and DiscardErrorOFF is not specified.

= Aninterval of the input time series straddles two or more intervals of the target
scaling calendar.

For an explanation of concepts related to time scaling, see Section 2.11.

Return the geometric mean of closing prices for stock SAMCO for each month for
the entire time series:

SH ECT to_char(tstanp) tstanp, val ue
FROM t sdev. st ockdenmo_ts ts, tsdev.stockdeno cal endars cal,

Time Scaling Functions: Reference 6-25

ScaleupGMean

TABLE (CAST(CRDSYS. Ti neSeri es. Extract Tabl e(
CRDSYS. Ti nescal e. Scal eupQvkan(t s. cl ose,
VALUE(cal))
) AS GRDSYS. GRDTNunTab)) t
WHERE ts. ticker= SAMOO and cal . nane=" Monthl y’ ;

This example might produce the following output:

01- NOV-96 39. 7833842
01- DEG 96 38. 2719057
2 rows sel ected.

See also the Month function in Chapter 4 for an example of using a calendar-

creation function (in this case, Month) to perform scaling, as opposed to specifying
a stored calendar that has the desired frequency.

6-26 Oracle8i Time Series User's Guide

ScaleupLast

ScaleupLast

Format

Description

Parameters

ORDSYS.TimeScale.ScaleupLast(
[tsname VARCHAR2,]
ts ORDSYS.ORDTNumSeriesIOTRef,
calendar ORDSYS.ORDTCalendar
[, startDate DATE
, endDate DATE]
[,options]
) RETURN ORDSYS.ORDTNumSeries;

Given a time series, a calendar to be used for scaling, and optionally starting and
ending dates, returns a time series reflecting the last non-null value of each scaled
group of values.

tsname
Name of the returned time series. Specify this parameter if you need to assign a
name to the resulting time series, for example, to insert it into an object table.

ts
The input time series.

calendar
The calendar to be used for the scaling.

startDate
The starting date to be used. If startDate is specified, endDate must also be specified.

endDate
The ending date to be used. If endDate is specified, startDate must also be specified.

Time Scaling Functions: Reference 6-27

ScaleupLast

options
Either or both of the following options:

ORDSYS.TimeScale.lgnoreNulls (default) | IgnoreNullsOFF. The default is to
ignore null input values in performing the scaleup.

If IgnoreNulls (the default) is enabled, the last non-null value of the group is
returned (unless all values of the group are null, in which case a null is
returned). If IgnoreNullsOFF is enabled, the last value of the group is returned.

ORDSYS.TimeScale.DiscardError (default) | DiscardErrorOFF. The default is to
raise an exception if any data in the input time series has no corresponding
interval in the target time series.

See Section 2.11.2 for detailed information about these options and examples of their

use.

Usage

An exception is returned for any of the following conditions:

The input time series (ts) or the specified calendar (targetCal) is null.

The frequency of the calendar on which the time series is based is greater than
the frequency of the specified calendar (for example, the time series calendar’s
frequency is month and the specified calendar’s frequency is day).

The frequency of the calendar on which the time series is based is incompatible
for scaling to the frequency of the specified calendar because the smaller
interval does not divide evenly into the larger interval. (For example, the time
series calendar’s frequency is week and the frequency of targetCal is month.)

Any data in the input time series has no corresponding interval in the target
time series and DiscardErrorOFF is not specified.

An interval of the input time series straddles two or more intervals of the target
scaling calendar.

For an explanation of concepts related to time scaling, see Section 2.11.

Example

6-28

Return the last closing prices for stock SAMCO for the months of November and
December of 1996:

SH ECT to_char(tstanp) tstanp, val ue

FROM t sdev. st ockdenmo_ts ts, tsdev.stockdeno cal endars cal,

TABLE (CAST(CRDSYS. Ti neSer i es. Extract Tabl e(

Oracle8i Time Series User's Guide

ScaleupLast

CRDSYS. Ti nescal e. Scal euplast (ts. cl ose,
VALUK(cal),
to_dat e(’ 01- NOV- 1996’ , ' DD MON- YYYY'),
to_dat e(’ 31- DEG 1996’ , ' DD MON- YYYY'))
) AS GRDSYS. GRDTNunTab)) t
WHERE ts. ticker= SAMOO and cal . nane=" Monthl y’ ;

This example might produce the following output:

01- NOV- 96 38.25
01- DEG 96 39.75
2 rows sel ected.

Note that each timestamp reflects the first date of the month in the calendar
(following the convention illustrated in Table 2-3 in Section 2.2.2), and each value in
this case reflects the closing price on the last date for that month in the calendar.

See also the Month function in Chapter 4 for an example of using a calendar-
creation function (in this case, Month) to perform scaling, as opposed to specifying
a stored calendar that has the desired frequency.

Time Scaling Functions: Reference 6-29

ScaleupMax

ScaleupMax

Format
ORDSYS.TimeScale.ScaleupMax(

[tsname VARCHAR2,]

ts ORDSYS.ORDTNumSeriesIOTRef,
calendar ORDSYS.ORDTCalendar

[, startDate DATE

, endDate DATE]

[,options]

) RETURN ORDSYS.ORDTNumSeries;

Description
Given a time series, a calendar to be used for scaling, and optionally starting and
ending dates, returns a time series reflecting the maximum value of each scaled
group of values.

Parameters

tsname
Name of the returned time series. Specify this parameter if you need to assign a
name to the resulting time series, for example, to insert it into an object table.

ts
The input time series.

calendar
The calendar to be used for the scaling.

startDate
The starting date to be used. If startDate is specified, endDate must also be specified.

endDate
The ending date to be used. If endDate is specified, startDate must also be specified.

6-30 Oracle8i Time Series User's Guide

ScaleupMax

Usage

Example

options
Either or both of the following options:

ORDSYS.TimeScale.lgnoreNulls (default) | IgnoreNullsOFF. The default is to
ignore null input values in performing the scaleup.

ORDSYS.TimeScale.DiscardError (default) | DiscardErrorOFF. The default is to
raise an exception if any data in the input time series has no corresponding
interval in the target time series.

See Section 2.11.2 for detailed information about these options and examples of their

use.

An exception is returned for any of the following conditions:

The input time series (ts) or the specified calendar (targetCal) is null.

The frequency of the calendar on which the time series is based is greater than
the frequency of the specified calendar (for example, the time series calendar’s
frequency is month and the specified calendar’s frequency is day).

The frequency of the calendar on which the time series is based is incompatible
for scaling to the frequency of the specified calendar because the smaller
interval does not divide evenly into the larger interval. (For example, the time
series calendar’s frequency is week and the frequency of targetCal is month.)

Any data in the input time series has no corresponding interval in the target
time series and DiscardErrorOFF is not specified.

An interval of the input time series straddles two or more intervals of the target
scaling calendar.

For an explanation of concepts related to time scaling, see Section 2.11.

Return the highest (maximum) closing prices for stock SAMCO for each month in
the entire time series:

SH ECT to_char(tstanp) tstanp, val ue

FROM t sdev. st ockdenmo_ts ts, tsdev.stockdeno cal endars cal,

TABLE (CAST(CRDSYS. Ti neSeri es. Extract Tabl e(
CRDSYS. Ti nescal e. Scal euphax(ts. cl ose,
VALUE(cal))
) AS GRDSYS. GRDTNunTab)) t

Time Scaling Functions: Reference 6-31

ScaleupMax

WHERE ts. ticker= SAMOO and cal . nane=" Monthl y’ ;

This example might produce the following output:

01- NOV- 96 43. 75
01- DEG 96 39.75
2 rows sel ected.

See also the Month function in Chapter 4 for an example of using a calendar-

creation function (in this case, Month) to perform scaling, as opposed to specifying
a stored calendar that has the desired frequency.

6-32 Oracle8i Time Series User's Guide

ScaleupMin

ScaleupMin

Format

Description

Parameters

ORDSYS.TimeScale.ScaleupMin(
[tsname VARCHAR2,]
ts ORDSYS.ORDTNumSeriesIOTRef,
calendar ORDSYS.ORDTCalendar
[, startDate DATE
, endDate DATE]
[,options]
) RETURN ORDSYS.ORDTNumSeries;

Given a time series, a calendar to be used for scaling, and optionally starting and
ending dates, returns a time series reflecting the minimum value of each scaled
group of values.

tsname
Name of the returned time series. Specify this parameter if you need to assign a
name to the resulting time series, for example, to insert it into an object table.

ts
The input time series.

calendar
The calendar to be used for the scaling.

startDate
The starting date to be used. If startDate is specified, endDate must also be specified.

endDate
The ending date to be used. If endDate is specified, startDate must also be specified.

Time Scaling Functions: Reference 6-33

ScaleupMin

options
Either or both of the following options:

ORDSYS.TimeScale.lgnoreNulls (default) | IgnoreNullsOFF. The default is to
ignore null input values in performing the scaleup.

ORDSYS.TimeScale.DiscardError (default) | DiscardErrorOFF. The default is to
raise an exception if any data in the input time series has no corresponding
interval in the target time series.

See Section 2.11.2 for detailed information about these options and examples of their

use.

Usage

An exception is returned for any of the following conditions:

The input time series (ts) or the specified calendar (targetCal) is null.

The frequency of the calendar on which the time series is based is greater than
the frequency of the specified calendar (for example, the time series calendar’s
frequency is month and the specified calendar’s frequency is day).

The frequency of the calendar on which the time series is based is incompatible
for scaling to the frequency of the specified calendar because the smaller
interval does not divide evenly into the larger interval. (For example, the time
series calendar’s frequency is week and the frequency of targetCal is month.)

Any data in the input time series has no corresponding interval in the target
time series and DiscardErrorOFF is not specified.

An interval of the input time series straddles two or more intervals of the target
scaling calendar.

For an explanation of concepts related to time scaling, see Section 2.11.

Example

6-34

Return the lowest (minimum) closing prices for stock SAMCO for each month in the
entire time series:

SH ECT to_char(tstanp) tstanp, val ue

FROM t sdev. st ockdenmo_ts ts, tsdev.stockdeno cal endars cal,

TABLE (CAST(CRDSYS. Ti neSer i es. Extract Tabl e(
CRDSYS. Ti neScal e. Scal eupM n(ts. cl ose,
VALUE(cal))
) AS GRDSYS. GRDTNunTab)) t

WHERE ts. ticker= SAMOO and cal . nane=" Monthl y’ ;

Oracle8i Time Series User's Guide

ScaleupMin

This example might produce the following output:

01- NOV- 96 37.375
01- DEG 96 37.875
2 rows sel ected.

See also the Month function in Chapter 4 for an example of using a calendar-

creation function (in this case, Month) to perform scaling, as opposed to specifying
a stored calendar that has the desired frequency.

Time Scaling Functions: Reference 6-35

ScaleupSum

ScaleupSum

Format

Description

Parameters

ORDSYS.TimeScale.ScaleupSum(
[tsname VARCHAR2,]
ts ORDSYS.ORDTNumSeriesIOTRef,
calendar ORDSYS.ORDTCalendar
[, startDate DATE
, endDate DATE]
[,options]
) RETURN ORDSYS.ORDTNumSeries;

Given a time series, a calendar to be used for scaling, and optionally starting and
ending dates, returns a time series reflecting the sum of each scaled group of values.

tsname
Name of the returned time series. Specify this parameter if you need to assign a
name to the resulting time series, for example, to insert it into an object table.

ts
The input time series.

calendar
The calendar to be used for the scaling.

startDate
The starting date to be used. If startDate is specified, endDate must also be specified.

endDate
The ending date to be used. If endDate is specified, startDate must also be specified.

options
Either or both of the following options:

6-36 Oracle8i Time Series User's Guide

ScaleupSum

Usage

Example

« ORDSYS.TimeScale.lgnoreNulls (default) | IgnoreNullsOFF. The default is to
ignore null input values in performing the scaleup.

=« ORDSYS.TimeScale.DiscardError (default) | DiscardErrorOFF. The default is to
raise an exception if any data in the input time series has no corresponding
interval in the target time series.

See Section 2.11.2 for detailed information about these options and examples of their
use.

An exception is returned for any of the following conditions:
« The input time series (ts) or the specified calendar (targetCal) is null.

« The frequency of the calendar on which the time series is based is greater than
the frequency of the specified calendar (for example, the time series calendar’s
frequency is month and the specified calendar’s frequency is day).

« The frequency of the calendar on which the time series is based is incompatible
for scaling to the frequency of the specified calendar because the smaller
interval does not divide evenly into the larger interval. (For example, the time
series calendar’s frequency is week and the frequency of targetCal is month.)

= Any data in the input time series has no corresponding interval in the target
time series and DiscardErrorOFF is not specified.

= Aninterval of the input time series straddles two or more intervals of the target
scaling calendar.

For an explanation of concepts related to time scaling, see Section 2.11.

Return the sum of the daily trade volume for stock SAMCO for each month in the
time series:

SH ECT to_char(tstanp) tstanp, val ue
FROM t sdev. st ockdenmo_ts ts, tsdev.stockdeno cal endars cal,
TABLE (CAST(CRDSYS. Ti neSeri es. Extract Tabl e(
CRDSYS. Ti neScal e. Scal eupSun{t s. vol une,
VALUE(cal))
) AS CROSYS. GRDOTNunTab)) t
WHERE ts. ticker= SAMOO and cal . nane=" Monthl y’ ;

This example might produce the following output:

Time Scaling Functions: Reference 6-37

ScaleupSum

01-NO-96 10207000
01- DEG 96 3719450
2 rows sel ected.

Note that the following example uses the Month function to produce the same
output. Using the Month function eliminates the need to have and specify a stored
calendar with a month frequency.

SH ECT to_char(tstanp) tstanp, val ue
FROM t sdev. st ockdeno_ts ts,
TABLE (CAST(CRDSYS. Ti neSeri es. Extract Tabl e(
CRDSYS. Ti neScal e. Scal eupSun{t s. vol une,
CRDSYS. Gal endar . Mont h())
) AS GRDSYS. GRDTNunTab)) t
WHERE ts. ticker= SAMXO ;

6-38 Oracle8i Time Series User's Guide

ScaleupSumAnnual

ScaleupSumAnnual

Format

Description

Parameters

ORDSYS.TimeScale.ScaleupSumAnnual(
[tsname VARCHAR2,]
ts ORDSYS.ORDTNumSeriesIOTRef,
calendar ORDSYS.ORDTCalendar,
annualfactor
[, startDate DATE
, endDate DATE]
[,options]
) RETURN ORDSYS.ORDTNumSeries;

Given a time series, a calendar to be used for scaling, and optionally starting and
ending dates, returns a time series reflecting the sum, expressed as an annual rate,
of each scaled group of values.

tsname
Name of the returned time series. Specify this parameter if you need to assign a
name to the resulting time series, for example, to insert it into an object table.

ts
The input time series.

calendar
The calendar to be used for the scaling.

annualfactor

The factor by which to multiply the sum of each scaled group in order to obtain the
desired annualized value. You must specify a value, either null or not null. If you
specify a null value, a default value is used depending on the frequency of calendar,
as shown in Table 6-1.

Time Scaling Functions: Reference 6-39

ScaleupSumAnnual

Table 6-1 annualfactor Default Values for ScaleupSumAnnual

Frequency

annualfactor Default Value

second
minute

hour

day

week

month
quarter

year

10-day
semi-monthly

semi-annual

31536000
525600
8760
365

52

12

4

1

36

24

2

startDate

The starting date to be used. If startDate is specified, endDate must also be specified.

endDate

The ending date to be used. If endDate is specified, startDate must also be specified.

options

Either or both of the following options:

« ORDSYS.TimeScale.lgnoreNulls (default) | IgnoreNullsOFF. The default is to

ignore null input values in performing the scaleup.

=« ORDSYS.TimeScale.DiscardError (default) | DiscardErrorOFF. The default is to
raise an exception if any data in the input time series has no corresponding

interval in the target time series.

See Section 2.11.2 for detailed information about these options and examples of their

use.

Usage

ScaleupSumAnnual is like ScaleupSum, except that ScaleupSumAnnual converts
each scaled group to an annual rate by multiplying the scaled group’s value by the

annualfactor value.

6-40 Oracle8i Time Series User's Guide

ScaleupSumAnnual

Example

The pattern and exceptions lists of calendar are not considered.
An exception is returned for any of the following conditions:
= Theinput time series (ts) or the specified calendar (targetCal) is null.

« The frequency of the calendar on which the time series is based is greater than
the frequency of the specified calendar (for example, the time series calendar’s
frequency is month and the specified calendar’s frequency is day).

« The frequency of the calendar on which the time series is based is incompatible
for scaling to the frequency of the specified calendar because the smaller
interval does not divide evenly into the larger interval. (For example, the time
series calendar’s frequency is week and the frequency of targetCal is month.)

= Any data in the input time series has no corresponding interval in the target
time series and DiscardErrorOFF is not specified.

= Aninterval of the input time series straddles two or more intervals of the target
scaling calendar.

For an explanation of concepts related to time scaling, see Section 2.11.

Return the sum of the daily trade volume for stock SAMCO for each month in the
entire time series, with each month’s value expressed as if it were an annual value.
In this case, each monthly value is computed and then multiplied by 12, the default
annualfactor for monthly data.

SH ECT to_char(tstanp) tstanp, val ue
FROM t sdev. st ockdenmo_ts ts, tsdev.stockdeno cal endars cal,
TABLE (CAST(CRDSYS. Ti neSer i es. Extract Tabl e(
CRDSYS. Ti neScal e. Scal eupSurmAnnual (ts. vol ure,
VALUK(cal),
NULL)
) AS CROSYS. GROTNunTab)) t
WHERE ts. ticker= SAMOO and cal . nane=" Monthl y’ ;

This example might produce the following output. (Note that each value is 12 times
the corresponding value in the ScaleupAvg example.)

01- NO-96 122484000
01-DEG- 96 44633400
2 rows sel ected.

Time Scaling Functions: Reference 6-41

ScaleupSumAnnual

See also the ScaleupSum function in this chapter and the Month function in
Chapter 4 for examples of using a calendar-creation function (in this case, Month) to
perform scaling, as opposed to specifying a stored calendar that has the desired

frequency.

6-42 Oracle8i Time Series User's Guide

v

Administrative Tools Procedures:
Reference

The Oracle8i Time Series library consists of:

« Data types (described in Section 2.3)

« Calendar functions (described in Chapter 4)

= Time series functions (described in Chapter 5)
« Time scaling functions (described in Chapter 6)

« Administrative tools procedures for creating time series schema objects
(described in this chapter)

Note: This chapter documents procedures, not functions.
Procedures do not return values

The procedures described in this chapter simplify the task of creating the schema
objects (tables, views, triggers, and so forth) required for using Oracle8i Time Series.

For an overview of these procedures and requirements for using them, see

Section 2.12. For an example showing the use of several procedures to create a time
series group, see Section 3.1. Many of these procedures are used in the quick-start
demo, described in Section 1.6.1, and in the retrofit.sqgl file included with the retrofit
demo.

Syntax notes:

« The ORDSYS schema name and the package name must be used with the
procedure name, although public synonyms can be created to eliminate the

Administrative Tools Procedures: Reference 7-1

need for specifying the schema name (see Section 1.5). Each procedure is
included in a PL/SQL package named TSTools. The ORDSYS schema name and
the package name are included in the Format and in any examples.

« Procedure and function calls are not case sensitive, except for any quoted literal
values. For example, the following code line excerpts are valid and semantically
identical:
sel ect CAST(Ti neSeri es. Extract Tabl e(cl ose) AS CROTNunTab)

sel ect cast(TIMESER ES. extracttabl e(cl ose) as ordt nunt ab)
sel ect cast(Ti MeSeR Es. eXt RaG TaB E(A osE) As ordt NJM ab)

7-2 Oracle8i Time Series User's Guide

Add_Existing_Column

Add_Existing_Column

Format

Description

Parameters

Usage

Example

ORDSYS.TSTools.Add_Existing_Column(
colname IN VARCHAR?

);

Adds a column attribute from an existing flat table to a time series.

colname
The name of the column attribute to be added to the time series.

Use this procedure when you are creating a time series from an existing flat table.
To use this procedure, you must first call the Set_Flat_Attributes procedure and set
detail_table_exists to 1.

An exception is raised if Begin_Create_TS_Group has not been called to initialize
the context. Standard Oracle exceptions are raised if the number attributes are
invalid.

If an exception is raised, call Get_Status to determine if the exception canceled an
ongoing Begin_Create_TS_Group sequence.

Create a time series group, specify the appropriate existing tables, and add existing
columns to the time series group. (This example is taken in slightly modified form
from the retrofit.sql file in the retrofit demo directory.)

DECLARE

BEG N

-- Establish 'stockdeno ts' as the tine series group nane for purposes of the

Administrative Tools Procedures: Reference 7-3

Add_Existing_Column

-- adninistrative tool s procedures.

CRCSYS. TSTool s. Begin_Q eate TS Goup(’ stockdeno_ts’, ' flat’);

-- Assert that the detail, nap, and cal endar tables exist,

-- and define the nanes for these tabl es.

-- Note that these tables are defined in a separate file.

-- Explicitly set the nane of the relational view

-- Explicitly set the nanes of the tinestanp and tine series nane
-- col ums.

ordsys.tstool s.set_flat_attri butes(

detail _tabl e nane => ' st ockdeno’ ,

detail table exists => 1,

nmap_t abl e_nane => 'stockdeno_netadat a’,
nmap_tabl e_exists = 1,

cal _table nane => ' st ockdeno_cal endars’,
cal table exists = 1,

t st anp_col nane = "tstanp',

t snane_col nane => "ticker’,

rel _view nane => ' stockdeno_sv');

-- Tell TSTools the nanes of existing tine series col unns
-- (as defined for the tabl e stockdeno).

CROSYS. TSTool s. Add_Exi sti ng_Col unm(’ open’) ;
CROSYS. TSTool s. Add_Exi sti ng_GCol unm(” hi gh') ;
CROSYS. TSTool s. Add_Exi sting_Col unm(’ | ow) ;
CRCSYS. TSTool s. Add_Exi sting_Col um(’ cl ose’) ;
CRCSYS. TSTool s. Add_Exi sti ng_Col umm(’ vol une’);

-- End the specification of schena objects and create the objects.
CRCSYS. TSTool s. End_Greate TS G oup;

exception
when others then
begi n
CROSYS. TSTool s. Cancel _Ceate TS G oup;
rai se;
end;

7-4 Oracle8i Time Series User's Guide

Add_Existing_Column

Administrative Tools Procedures: Reference 7-5

Add_Integer_Column

Add_Integer_Column

Format

Description

Parameters

Usage

Example

ORDSYS.TSTools.Add_Integer_Column(
colname IN VARCHAR2

);

Adds an integer column attribute to an ongoing flat time series creation
specification.

colname
The name of the column attribute to be added to the time series.

An exception is raised if Begin_Create TS_Group has not been called to initialize
the context. Standard Oracle exceptions are raised if the number attributes are
invalid.

An exception returned by this procedure might clear the package state. If the
package state is cleared, the ongoing Begin_Create_TS_Group sequence is canceled,
and you must reissue the complete sequence of administrative tools procedure calls.
If the package state is not cleared, the ongoing Begin_Create_TS_Group sequence is
not canceled, and you can reissue just the most recent procedure call. You can call
Get_Status to determine if an exception cleared the package state.

The following example specifies a flat-model time series named MYTS and adds
one VARCHAR?2 column (ticker), four NUMBER columns (open, close, low, and high),
and one INTEGER column (volume). The End_Create_TS_Group call ends the
specification of the time series and creates the schema objects.

DECLARE

BEG N

7-6 Oracle8i Time Series User's Guide

Add_Integer_Column

CRCSYS. TSTool s. Begin_Qeate TS Goup(' WTS , ' flat’);

CROSYS. TSTool s. Add_Var char 2_Col unm(' ti cker’, 10);
CRCSYS. TSTool s. Add_Nunber _Gol urm(’ open’) ;
CROSYS. TSTool s. Add_Nunber _Gol unm(’ cl ose’) ;
CRCSYS. TSTool s. Add_Nunber _Gol unm(’ | ow) ;

CRCSYS. TSTool s. Add_Nunber _Gol unm(” high’) ;
CRCSYS. TSTool s. Add_| nt eger _Gol um(’ vol une’) ;

CROSYS. TSTool s. End Greate TS G oup;
BND

Administrative Tools Procedures: Reference 7-7

Add_Number_Column

Add_Number_Column

Format
ORDSYS.TSTools.Add_Number_Column(
colname IN VARCHAR2
[,colprecision IN NUMBER,
colscale IN NUMBER]
)i
Description
Adds a number column attribute to an ongoing flat time series creation
specification.
Parameters
colname
The name of the column attribute to be added to the time series.
colprecision
The precision of the column attribute, that is, the maximum number of digits
permitted to the left of the decimal point. Must be between 1 and 38. If colprecision is
specified, colscale must also be specified.
colscale
The scale of the column attribute, that is, the number of digits to the right of the
decimal point. Must be between -84 and 127. If colscale is specified, colprecision must
also be specified.
Usage

If you specify colprecision, you must also specify colscale. If you specify either
colprecision or colscale, you cannot omit the other parameter or specify a null for it.
For example, to specify that close (closing price) can have up to 4 digits to the left of
the decimal point and 3 digits to the right of the decimal point, specify the
following:

ORDSYS.TSTools.Add_Number_Column('close’4,3);

7-8 Oracle8i Time Series User's Guide

Add_Number_Column

Example

For this definition, the following close values would be valid: 127.25, 9.875, 53, and
21.5.

For this definition, the following close values would be invalid: 12345.6 (exceeds
colprecision) and 6.1234 (exceeds colscale).

An exception is raised if Begin_Create TS_Group has not been called to initialize
the context. Standard Oracle exceptions are raised if the number attributes are
invalid.

An exception returned by this procedure might clear the package state. If the
package state is cleared, the ongoing Begin_Create_TS_Group sequence is canceled,
and you must reissue the complete sequence of administrative tools procedure calls.
If the package state is not cleared, the ongoing Begin_Create_TS_Group sequence is
not canceled, and you can reissue just the most recent procedure call. You can call
Get_Status to determine if an exception cleared the package state.

The following example specifies a flat-model time series named MYTS and adds
one VARCHAR?2 column (ticker), four NUMBER columns (open, close, low, and high),
and one INTEGER column (volume). The End_Create_TS_Group call ends the
specification of the time series and creates the schema objects.

CEQLARE
BEA N
CROSYS. TSTool s. Begin_Qeate TS Goup(' WTS ,'flat’);

CROSYS. TSTool s. Add_Var char 2_Col umm(' ti cker’, 10);
CRCSYS. TSTool s. Add_Nunber _Gol urm(’ open’) ;
CROSYS. TSTool s. Add_Nunber _Gol unm(’ cl ose’) ;
CROSYS. TSTool s. Add_Nunber _Gol unm(’ | ow) ;

CRCSYS. TSTool s. Add_Nunber _Gol unm(” high’) ;
CROSYS. TSTool s. Add_| nt eger _Gol um(’ vol une’) ;

CROSYS. TSTool s. End Greate TS G oup;
BEND

Administrative Tools Procedures: Reference 7-9

Add_Varchar2_Column

Add_Varchar2_Column

Format

Description

Parameters

Usage

Example

ORDSYS.TSTools.Add_Varchar2_Column(
colname IN VARCHAR2,
length IN INTEGER

);

Adds a VARCHAR?2 column attribute to an ongoing flat time series creation
specification.

colname
The name of the column attribute to be added to the time series.

length
The name of the column attribute to be added to the time series. Must be between 1
and 4000.

An exception is raised if Begin_Create TS_Group has not been called to initialize
the context. Standard Oracle exceptions are raised if the number attributes are
invalid.

An exception returned by this procedure might clear the package state. If the
package state is cleared, the ongoing Begin_Create_TS_Group sequence is canceled,
and you must reissue the complete sequence of administrative tools procedure calls.
If the package state is not cleared, the ongoing Begin_Create_TS_Group sequence is
not canceled, and you can reissue just the most recent procedure call. You can call
Get_Status to determine if an exception cleared the package state.

The following example specifies a flat-model time series named MYTS and adds
one VARCHAR?2 column (ticker), four NUMBER columns (open, close, low, and high),

7-10 Oracle8i Time Series User's Guide

Add_Varchar2_Column

and one INTEGER column (volume). The End_Create_TS_Group call ends the
specification of the time series and creates the schema objects.

CEQLARE
BEA N
CROSYS. TSTool s. Begin_Qeate TS Goup(' WTS ,'flat’);

CROSYS. TSTool s. Add_Var char 2_Col unm(' ti cker’, 10);
CRCSYS. TSTool s. Add_Nunber _Gol unm(’ open’) ;
CROSYS. TSTool s. Add_Nunber _Gol unm(’ cl ose’) ;
CROSYS. TSTool s. Add_Nunber _Gol unm(’ | ow) ;

CRCSYS. TSTool s. Add_Nunber _Gol unm(” high’) ;
CRCSYS. TSTool s. Add_| nt eger _Gol um(’ vol une’) ;

CROSYS. TSTool s. End Greate TS G oup;
BEND

Administrative Tools Procedures: Reference 7-11

Begin_Create_TS_Group

Begin_Create TS_Group

Format

Description

Parameters

Usage

Example

ORDSYS.TSTools.Begin_Create_TS_Group(
name IN VARCHAR2,
storage_model IN VARCHAR?2

);

Initiates the context for creating a time series group (the schema objects for a time
series).

name
Name of the time series group to be created.

storage_model
Storage model for the time series. Must be 'FLAT’ or 'OBJECT’ (not case sensitive).

To avoid possible naming conflicts, name should be different from any other object
names under the current schema. (For example, user SCOTT should not create a
time series group named EMP because there is already a table with that name.)

This procedure returns an error if the context for creating time series schema objects
is active, that is, has been initiated and not canceled or closed.

The following example specifies a flat-model time series named MYTS and adds
one VARCHAR?2 column (ticker), four NUMBER columns (open, close, low, and high),
and one INTEGER column (volume). The End_Create_TS_Group call ends the
specification of the time series and creates the schema objects.

DECLARE

BEG N

7-12 Oracle8i Time Series User's Guide

Begin_Create_TS_Group

CRCSYS. TSTool s. Begin_Qeate TS Goup(' WTS , ' flat’);

CROSYS. TSTool s. Add_Var char 2_Col umm(' ti cker’, 10);
CRCSYS. TSTool s. Add_Nunber _Gol urm(’ open’) ;
CROSYS. TSTool s. Add_Nunber _Gol unm(’ cl ose’) ;
CRCSYS. TSTool s. Add_Nunber _Gol unm(’ | ow) ;

CRCSYS. TSTool s. Add_Nunber _Gol unm(” high’) ;
CRCSYS. TSTool s. Add_| nt eger _Gol um(’ vol une’) ;

CROSYS. TSTool s. End Greate TS G oup;
BND

Administrative Tools Procedures: Reference 7-13

Cancel_Create_TS_Group

Cancel Create TS Group

Format
ORDSYS.TSTools.Cancel_Create_TS_Group;

Description
Cancels the creation of a time series group, that is, cancels the context initiated by
the Begin_Create_TS_Group procedure.

Parameters
None.

Usage
This procedure clears all package state information that was created by
Begin_Create_TS_Group and other Oracle8i Time Series administrative tools
procedures. To create a time series group, you must reissue the complete sequence
of administrative tools procedure calls.

Example

The following example cancels the creation of the current time series group if an
exception occurs:

CROSYS. TSTool s. End Greate TS G oup;
exception
when others then
begi n
CROSYS. TSTool s. Cancel _Create TS G oup;
rai se;
end;

7-14 Oracle8i Time Series User's Guide

Close_Log

Close Log

Format
ORDSYS.TSTools.Close_Log;

Description
Closes the log file that had been opened by the Open_Log procedure.

Parameters
None.

Usage
This procedure is equivalent to calling UTL_FILE.FCLOSE. For information on the
PL/SQL file 1/0 procedure UTL_FILE, see the Oracle8i Application Developer’s
Reference - Packages manual.
The log file (Open_Log...Close_Log) and the debug display (Trace_On...Trace_Off)
contain the same information.

Example

The following example opens a log file named tsl.log in the logdir directory, creates
time series schema objects, and closes the log file:

CRCSYS. TSTool s. Qpen_Log('logdir’, tsl.l1og’);
CRCSYS. TSTool s. Begin_Qeate TS Goup(' nyts’,' flat’);

CROSYS. TSTool s. End Greate TS G oup;
CRCSYS. TSTool s. d ose_Log;

Administrative Tools Procedures: Reference 7-15

Display_Attributes

Display_Attributes

Format

Description

Parameters

Usage

Example

ORDSYS.TSTools.Display_Attributes:

Displays information about the time series group being created.

None.

This procedure displays the current values of all attributes that can be set using the
Set_xxx function (Set_Flat_Attributes or Set_Obiject_Attributes) appropriate for the
current type of time series group.

The output is displayed to SERVEROUTPUT.

The following example displays the attributes for the time series being created:

CRDSYS. TSTool s. O spl ay_Attri but es;

This example might produce the following output:

current settings for begin_create ts_group

NAVE

STORAGE MODEL
SCHEVA

REL_M EWNAVE
DETAl L_TABLE NAME
DETAl L_TABLE ATTR
DETAI L_TABLE PK
DETAl L_TABLE EXI STS
TSTAMP_COLNAME
TSNAME_ GOLNAME
TSNAME_LENGTH
MAP_TABLE NAME
MAP_TABLE ATTR
NAP_TABLE PK

7-16 Oracle8i Time Series User's Guide

MYTS
FLAT

TSOEV

MWTS_ RMW

MWTS TAB
CRGAN ZATI ON | NDEX
MYTS_TPK

0

TSTAWP

TSNAME

25

MYTS_MAP

MYTS_ MPK

Display_Attributes

MAP_TABLE_EXI STS =0
CAL_TABLE NAME = MYTS_CAL
CAL_TABLE ATTR =
CAL_TABLE PK = MYTS_CPK
CAL_TABLE EXI STS =0
REL EWTR GER NAVE = MYTS TR
QCLUWN NAME = T CKER

TYPE = VARCHAR?

LENGTH = 10

PREQ S/ ON =

SCALE =
QCLUWN NAME = CPEN

TYPE = NUVBER

LENGTH = 22

PREQ S/ ON =

SCALE =
QCLUWN NAME = QLCsE

TYPE = NVBER

LENGTH = 22

PREQ S| ON =

SCALE =
QCLUWN NAME = LOV

TYPE = NUVBER

LENGTH = 22

PREQ S| ON =

SCALE =
QCLUWN NAME =H&

TYPE = NUVBER

LENGTH = 22

PREQ S/ ON =

SCALE =
QCLUWN NAME = VALUME

TYPE = NUVBER

LENGTH = 22

PREQSION =

SCALE =

Administrative Tools Procedures: Reference 7-17

Drop_TS_Group

Drop TS Group

Format

Description

Parameters

Usage

ORDSYS.TSTools.Drop_TS_Group(
name IN VARCHAR2
[, schema IN VARCHAR?]

);

Deletes the time series group definition and views associated with it. However, the
underlying tables (calendar tables, detail data tables, and so on) are not deleted.

name
Name of the time series group to be deleted.

schema
The schema (user) where the name objects are located. The default is the current
schema.

Contrast this procedure with Drop_TS_Group_All, which deletes all the underlying
tables. For example, if you have an existing time series table filled with data and
want to add a column, you could use Drop_TS_Group as follows:

1. Use Drop_TS_Group.

2. Add the desired column to the underlying table (ALTER TABLE...ADD...).
3. Add data for the new column (INSERT...).

4. Create the time series schema objects again, including the new column.

If an attempt to delete a specific object fails, an exception is raised and the
procedure attempts to delete any remaining appropriate objects.

To delete time series schema objects that were not created by the current user, you
must have been granted the DBA or TIMESERIES_DBA role.

7-18 Oracle8i Time Series User's Guide

Drop_TS_Group

Example

The following example deletes the schema objects, but not the underlying tables, for
the time series group MYTS:

CEQLARE

BEA N
CROSYS. TSTool s. Drop_TS G oup(’ MWTS) ;
exception

when ot hers then
rai se;

Administrative Tools Procedures: Reference 7-19

Drop_TS_Group_All

Drop TS Group_All

Format

Description

Parameters

Usage

Example

ORDSYS.TSTools.Drop_TS_Group_All(
name IN VARCHAR2
[, schema IN VARCHAR?Z]

);

Deletes the time series group definition and all tables, views, indexes, constraints,
and triggers associated with it.

name
Name of the time series group to be deleted.

schema
The schema (user) where the name objects are located. The default is the current
schema.

Contrast this procedure with Drop_TS_Group, which does not delete the
underlying tables.

If an attempt to delete a specific object fails, an exception is raised and the
procedure attempts to delete any remaining appropriate objects.

To delete time series schema objects that were not created by the current user, you
must have been granted the DBA or TIMESERIES_DBA role.

The following example deletes all schema objects, including underlying tables, for
the time series group MYTS:

7-20 Oracle8i Time Series User's Guide

Drop_TS_Group_All

CEQLARE

BEA N
CRCSYS. TSTool s. Drop_TS Goup Al (" WTS');
exception

when ot hers then
rai se;

Administrative Tools Procedures: Reference 7-21

End_Create_TS_Group

End Create TS Group

Format

Description

Parameters

Usage

Example

ORDSYS.TSTools.End_Create_TS_Group(
[in_description IN VARCHARZ]

);

Closes the context established by the Begin_Create TS_Group procedure and
creates all appropriate schema objects.

in_description
Optional comment or other information; will be included in the log if logging is in
effect.

An exception is raised if the time series being created is missing any required
elements. For example, at least one column must be specified.

The following example specifies a flat-model time series named MYTS and adds
one VARCHAR?2 column (ticker), four NUMBER columns (open, close, low, and high),
and one INTEGER column (volume). The End_Create_TS_Group call ends the
specification of the time series and creates the schema objects.

CEQLARE

BEA N
CROSYS. TSTool s. Begin_Qeate TS Goup(' WTS ,'flat’);
CROSYS. TSTool s. Add_Var char 2_Col unm(' ti cker’, 10);
CRCSYS. TSTool s. Add_Nunber _Gol urm(’ open’) ;

CROSYS. TSTool s. Add_Nunber _Gol unm(’ cl ose’) ;
CRCSYS. TSTool s. Add_Nunber _Gol unm(’ | ow) ;

7-22 Oracle8i Time Series User's Guide

End_Create_TS_Group

CRCSYS. TSTool s. Add_Nunber _Gol unm(” high’) ;
CRCSYS. TSTool s. Add_| nt eger _Gol um(’ vol une’) ;

CROSYS. TSTool s. End Greate TS G oup;

BEND,
/

Administrative Tools Procedures: Reference 7-23

Get_Flat_Attributes

Get_Flat_Attributes

Format
ORDSYS.TSTools.Get_Flat_attributes(

tstamp_colname OUT VARCHAR2,
tsname_colname OUT VARCHAR2,
tsname_length OUT NUMBER,
rel_view_name OUT VARCHAR?2,
detail_table_name OUT VARCHAR?2,
detail_table_attr OUT VARCHAR?2,
detail_table_pk OUT VARCHAR?,
detail_table_exists OUT INTEGER,
map_table_name OUT VARCHAR?2,
map_table_attr OUT VARCHAR?2,
map_table_pk OUT VARCHAR2,
map_table_exists OUT VARCHAR?2,
cal_table_name OUT VARCHAR?2,
cal_table_attr OUT VARCHAR2,
cal_table_pk OUT VARCHAR?2,
cal_table_exists OUT INTEGER
rv_trigger_name OUT VARCHAR?2);

Description
Retrieves the attributes of a flat time series.

Parameters

tstamp_colname
Name of the timestamp column.

7-24 Oracle8i Time Series User's Guide

Get_Flat_Attributes

tsname_colname
Name of the column that identifies a time series instance.

tsname_length
Length of tsname_colname.

rel_view_name
Name of the relational view created on the underlying (detail) table identified by
detail_table_name.

detail_table_name
Name of the table containing the composite data.

detail_table_attr
Attributes of the table identified by detail_table_name.

detail_table_pk
Primary key for the table identified by detail_table_name.

detail_table_exists
Contains 1 if the table identified by detail_table_name exists; contains 0 if this table
does not exist.

map_table_name
Name of the table that maps time series to calendars.

map_table_attr
Attributes of the table identified by map_table_name.

map_table_pk
Primary key for the table identified by map_table_name.

map_table_exists
Contains 1 if the table identified by map_table_name exists; contains 0 if this table
does not exist.

cal_table_name
Name of the table containing the calendar definitions.

cal_table_attr
Attributes of the table identified by cal_table_name.

Administrative Tools Procedures: Reference 7-25

Get_Flat_Attributes

cal_table_pk
Primary key for the table identified by cal_table_name.

cal_table_exists
Contains 1 if the table identified by cal_table_name exists; contains 0 if this table does
not exist.

rv_trigger_name
Name of the INSTEAD OF trigger for insert, update, or delete operations on the
relational view.

Usage

This procedure returns the attributes into variables that you specify. If you simply
want to display the attributes of the time series being created, you can use the
Display_Attributes procedure.

To return the attributes of an object-model time series, use the
Get_Object_Attributes procedure.

Example
The following example gets the attributes of the flat time series being created:
DECLARE

t stanp_col nane VARCHAR2(30) ;
t snane_col nanme VARCHAR2(30) ;
t snane_| engt h NUMBER,

rel _vi ew nane VARCHAR2(30) ;
detail _tabl e name VARCHAR2(30) ;
detail _table attr VARCHAR2(30) ;

detail _table pk VARCHAR2(30) ;
detail table exists |NIEGER
map_t abl e_nane VARCHAR2(30) ;
map_table attr VARCHAR2(30) ;
map_t abl e_pk VARCHAR2(30) ;
map_tabl e _exists | NTEGER
cal _tabl e_name VARCHAR2(30) ;
cal _table attr VARCHAR2(30) ;
cal _table pk VARCHAR2(30) ;
cal _table exists | NTEGER
rv_trigger_nane VARCHAR2(30) ;
BEQ N

7-26 Oracle8i Time Series User's Guide

Get_Flat_Attributes

CRDSYS. TSTool s. Get _H at_Attri butes(
t st anp_col nane,
t sname_col nane,
tsnane_| engt h,
rel _view narre,
detai|l _table nane,
detail table attr,
detai | _tabl e pk,
detai |l _table exists,
nap_t abl e_nane,
nap_tabl e attr,
nap_t abl e_pk,
nap_t abl e_exi st s,
cal _tabl e nane,
cal table attr,
cal _tabl e_pk,
cal table exists,
rv_trigger_nane);

DBVS OUTPUT. PUT_LI NK(' t st anp_col nane "1

DBVS QUTPUT. PUT_LI NE(' t snane_col nane "1

DBVS QUTPUT. PUT_LI NK(' t snane_| engt h "1

DBVS QUTPUT. PUT_LINK(' rel _vi ew_nane "1

DBVS QUTPUT. PUT_LINK(' det ai | _t abl e_nane "1

DBVS OQUTPUT. PUT_LINE(" detail _table_ attr "1

DBVS QUTPUT. PUT_LINK(' detai | _tabl e_pk "| | detail _table pk);
DBVS QUTPUT. PUT_LINE(' detai | _table_exists "| | detail _table exists);
DBVS QUTPUT. PUT_LI N’ nap_t abl e_nane "| | map_t abl e_nane) ;
'l
'l
'l
'l
'l
'l
'l
'l

tstanp_col nane);

t snane_col nane) ;
tsnane_| engt h) ;

rel _vi ew nane);
detail _tabl e nane);
detail _table attr);

DBVS OQUTPUT. PUT_LINK' map_tabl e_attr "| | map_tabl e attr);
DBVS QUTPUT. PUT_LI N’ map_t abl e_pk "| | map_t abl e_pk);
DBVS OUTPUT. PUT_LINE(’ nap_t abl e_exi sts "| | map_t abl e_exi sts);
DBVS QUTPUT. PUT_LINK(' cal _t abl e_nane "| | cal _tabl e_nane) ;
DBVS QUTPUT. PUT_LINK' cal _table attr "||cal _table attr);
DBVS QUTPUT. PUT_LI NK(' cal _tabl e_pk "| | cal _tabl e_pk);
DBVS OUTPUT. PUT_LINE(' cal _tabl e _exists "| | cal _tabl e_exists);
DBVS QUTPUT. PUT_LINE(' rv_tri gger _nane ="||rv_trigger_nane);

BEND,
/

This example might produce the following output:

t st anp_col nane TSTAW
t snane_col nane = TSNAME

Administrative Tools Procedures: Reference 7-27

Get_Flat_Attributes

tsnane_| engt h =25

rel _vi ew nane = MWTS RW
detail _tabl e nane = WTS TAB
detail table attr = CRGAN ZATI ON | NDEX
detail _table pk = WTS TPK
detail table exists =0

nap_t abl e_nane = MWTS MAP
nmap_table attr =

nmap_t abl e_pk = MYTS_MK
nmap_tabl e_exists =0

cal _tabl e nane = TS CAL
cal _table attr =

cal _table pk = MWTS (K
cal _table exists =0
rv_trigger_nane = MWTS TR

7-28 Oracle8i Time Series User's Guide

Get_Obiject_Attributes

Get_Object_Attributes

Format

Description

Parameters

ORDSYS.TSTools.Get_Object_Attributes(

object_table_name OUT VARCHAR?2,
object_table_type OUT VARCHAR?2,
object_table_exists OUT INTEGER,
storage_table_name OUT VARCHAR?2,
rel_view_name OUT VARCHAR?2,
ov_trigger_name OUT VARCHAR2,
nt_trigger_name OUT VARCHAR2,
rv_trigger_name OUT VARCHAR?2,
object_table_attributes OUT VARCHAR?2,
storage_table_attributes OUT VARCHAR?2,
object_table_pk OUT VARCHAR?2,

);

Retrieves the attributes of an object-model time series.

object_table_name

Name of the table containing the composite data.

object_table_attr

Attributes of the table identified by object_table_name.

object_table_exists

Contains 1 if the table identified by object_table_name exists; contains 0 if this table

does not exist.

Administrative Tools Procedures: Reference 7-29

Get_Object_Attributes

Usage

Example

storage_table_name
Name of the nested storage table.

rel_view_name
Name of the relational view created on the object table identified by
object_table_name.

ov_trigger_name
Name of the INSTEAD OF trigger for insert and update operations on the object
view.

nt_trigger_name
Name of the INSTEAD OF trigger for insert, update, and delete operations on the
nested table.

rv_trigger_name
Name of the INSTEAD OF trigger for insert, update, and delete operations on the
relational view.

object_table_attributes
Attributes of the table identified by object_table_name.

storage_table_attributes
Attributes of the nested storage table.

object_table_pk
Primary key of the table identified by object_table_name.

This procedure returns the attributes into variables that you specify. If you simply
want to display the attributes of the time series being created, you can use the
Display_Attributes procedure.

To return the attributes of a flat time series, use the Get_Flat_Attributes procedure.

The following example gets the attributes of an object-model time series being
created.

DECLARE

obj ect _table name VARCHAR2(30);
object _table type VARCHAR2(30);

7-30 Oracle8i Time Series User's Guide

Get_Obiject_Attributes

obj ect _table exists | NTEGER
storage_tabl e nane VARCHAR2(30);

rel _vi ew name VARCHAR2(30) ;
ov_trigger_nane VARCHAR2(30) ;
nt_trigger_nane VARCHAR2(30) ;
rv_trigger_nane VARCHAR2(30) ;
rv_utrigger_nane VARCHAR2(30) ;
rv_dtrigger_nane VARCHAR2(30) ;
object table attributes VARCHAR2(30);
storage tabl e attributes VARCHAR2(30);
obj ect _tabl e pk VARCHAR2(30) ;

BEAG N

CRDSYS. TSTool s. Get _(hj ect _Attri but es(

obj ect _t abl e_nane,

obj ect _t abl e_type,

obj ect _tabl e_exists,

st orage_t abl e_nane,

rel _view narre,
ov_trigger_nane,
nt_trigger_nane,
rv_trigger_nane,

obj ect _table attributes,
storage tabl e_attributes,
obj ect _t abl e_pk);

DBVS OUTPUT. PUT_LI NE(' obj ect _tabl e_nane = ' || obj ect _t abl e_nane);

DBVS OUTPUT. PUT_LINE(' obj ect _tabl e_type = '|| obj ect _tabl e type);

DBVS QUTPUT. PUT_LINK(' obj ect _tabl e_exists = '|| object_table exists);

DBVS OUTPUT. PUT_LINE(’ storage _tabl e nane = ' || storage_tabl e_nane);

DBVS QUTPUT. PUT_LINE('rel _view nane = '||rel _vi ew nane);

DBVS QUTPUT. PUT_LINE(' ov_trigger_nane = '||ov_trigger_nane);

DBVS QUTPUT. PUT_LINE' nt _trigger_nane = '||nt_trigger_nane);

DBVS QUTPUT. PUT_LINE('rv_trigger_nane = '||rv_trigger_nane);

DBVS OUTPUT. PUT_LINE(' obj ect _table attributes = '||object_table attributes);

DBVS QUTPUT. PUT_LINK(' storage _tabl e _attributes ="

||storage tabl e attributes);

DBVS QUTPUT. PUT_LINK(' obj ect _table_pk = ' || obj ect _tabl e _pk);

BEND,

Administrative Tools Procedures: Reference 7-31

Get_Object_Attributes

This example might produce the following output:

obj ect _tabl e_name = AUTO PRCD

obj ect _tabl e type = CROTNUMBER ES
object _table exists =0

storage_t abl e_nane = WTS_STAB
rel _view nane = WTS RWV/
ov_trigger_name = MTS TO
nt_trigger_name = MTS TNT
rv_trigger_nanme = MWTS TR

object _table attributes =
storage tabl e _attributes = CRGAN ZATI ON | NDEX
obj ect _table pk = WTS OTPK

7-32 Oracle8i Time Series User's Guide

Get_Status

Get_Status

Format

Description

Parameters

Usage

Example

ORDSYS.TSTools.Get_Status(
out_status OUT INTEGER

);

Checks to see if a time series creation sequence is in progress.

out_status
Contains 1 if a time series creation sequence is in progress; contains 0 if a time series
creation sequence is not in progress.

This call can be made after a previous TSTools procedure raises an exception, to
determine if you need to reissue only the last administrative tools procedure call or
the complete sequence of administrative tools procedure calls.

If the exception caused the package state to be cleared, out_status contains 0 and you
must reissue the complete sequence of administrative tools procedure calls. If the
exception did not cause the package state to be cleared, out_status contains 1 and
you can reissue just the most recent administrative tools procedure call.

The following example gets the status, stores it in a variable named status, and
displays the value:

CEQLARE
status | NTECER
BEG N
CROSYS. TSTool s. Get_Stat us(stat us) ;
DBVB QUTPUT. PUT_LINE(" Status = '||status);
END;
/

Administrative Tools Procedures: Reference 7-33

Get_Status

This example might produce the following output:
Satus =0

7-34 Oracle8i Time Series User's Guide

Open_Log

Open_Log
Format
ORDSYS.TSTools.Open_Log(
location IN VARCHAR?2,
filename IN VARCHAR?2
)i
Description
Opens a log file that will contain the data definition language (DDL) statements
generated by the administrative tools procedures.
Parameters
location
Directory location in which to create the log file on the server system. Must be a
valid specification for the server system operating system.
filename
Name of the log file, including any extension.
Usage
This procedure is equivalent to calling UTL_FILE.FOPEN. For information on the
PL/SQL file 1/0 procedure UTL_FILE, see the Oracle8i Application Developer’s
Reference - Packages manual.
To use this procedure, one or more directories for UTL_FILE output must be
defined using the UTL_FILE_DIR parameter in the Oracle initialization file. For
information about the UTL_FILE_DIR parameter, see the Oracle8i Reference manual.
The log file (Open_Log...Close_Log) and the debug display (Trace_On...Trace_Off)
contain the same information.
Example

The following example opens a log file named tsl.log in the logdir directory, creates
time series schema objects, and closes the log file:

Administrative Tools Procedures: Reference 7-35

Open_Log

CRCSYS. TSTool s. Qpen_Log('logdir’, tsl.l1og’);
CROSYS. TSTool s. Begin_Qeate TS Goup(' nyts',' flat’);

CROSYS. TSTool s. End Greate TS G oup;
CRCSYS. TSTool s. d ose_Log;

7-36 Oracle8i Time Series User's Guide

Set_Flat_Attributes

Set_Flat_Attributes

Format
ORDSYS.TSTools.Set_Flat_Attributes(

tstamp_colname IN VARCHAR2 DEFAULT NULL,
tsname_colname IN VARCHAR2 DEFAULT NULL,
tsname_length IN NUMBER DEFAULT NULL,
rel_view_name IN VARCHAR2 DEFAULT NULL,
detail_table_name IN VARCHAR2 DEFAULT NULL,
detail_table_attr IN VARCHAR2 DEFAULT NULL,
detail_table_pk IN VARCHAR2 DEFAULT NULL,
detail_table_exists IN INTEGER DEFAULT NULL,
map_table_name IN VARCHAR2 DEFAULT NULL,
map_table_attr IN VARCHAR2 DEFAULT NULL,
map_table_pk IN VARCHAR2 DEFAULT NULL,
map_table_exists IN VARCHAR2 DEFAULT NULL,
cal_table_name IN VARCHAR2 DEFAULT NULL,
cal_table_attr IN VARCHAR2 DEFAULT NULL,
cal_table_pk OUT VARCHAR2 DEFAULT NULL,
cal_table_exists IN INTEGER DEFAULT NULL,
rv_trigger_name IN VARCHAR2 DEFAULT NULL

);

Description
Sets the attributes of a flat time series.

Administrative Tools Procedures: Reference 7-37

Set_Flat_Attributes

Parameters

tstamp_colname
Name of the timestamp column in a composite.

tsname_colname
Name of the column that identifies a time series instance in a composite.

tsname_length
Length of tsname_colname.

rel_view_name
Name of the relational view created on the underlying (detail) table identified by
detail_table_name.

detail_table_name
Name of the table containing the composite data.

detail_table_attr
Attributes of the table identified by detail_table_name.

detail_table_pk
Primary key for the table identified by detail_table_name.

detail_table_exists
1 if the table identified by detail _table_name exists; 0 if this table does not exist.

map_table_name
Name of the table that maps time series to calendars.

map_table_attr
Attributes of the table identified by map_table_name.

map_table_pk
Primary key for the table identified by map_table_name.

map_table_exists
1if the table identified by map_table_name exists; 0 if this table does not exist.

cal_table_name
Name of the table containing the calendar definitions.

7-38 Oracle8i Time Series User's Guide

Set_Flat_Attributes

Usage

cal_table_attr
Attributes of the table identified by cal_table_name.

cal_table_pk
Primary key for the table identified by cal_table_name.

cal_table_exists
1 if the table identified by cal_table_name exists; 0 if this table does not exist.

rv_trigger_name
Name of the INSTEAD OF trigger for insert, update, and delete operations on the
relational view.

This procedure can be used to override some or all of the attributes of a flat-model
time series. To leave an attribute unchanged, pass a null value for that attribute. To
display the current attributes, use the Display_Attributes procedure; to retrieve the
current attributes, use the Get_Flat_Attributes procedure.

If detail_table_exists is 1 (TRUE), the following attributes must be null:
detail_table_attr, tsname_length, and detail_table_pk.

If map_table_exists is 1 (TRUE), the following attributes must be null: map_table_attr
and map_table_pk.

If cal_table_exists is 1 (TRUE), the following attributes must be null: cal_table_attr and
cal_table_pk.

An exception is raised if one or more of the following conditions are true: a time
series is not being created, the time series being created is not of the flat model, or a
calendar in the table identified by cal_table_name has an invalid frequency.

An exception is also raised if the procedure is called after a successful call to the
same procedure during the creation of a time series group (that is, before the call to
End_Create_TS_Group). For example, the following sequence of calls is not valid:

CRDSYS. TSTool s. Set_Hat_Attributes(detail _table_nane => 'nytable');
CRDSYS. TSTool s. Set _Hat_Attributes(map_tabl e nane => 'nynap’);

However, the following call is valid:

CRDSYS. TSTool s. Set_Hat_Attributes(detai | _table_nane => 'nytabl e,
nap_t abl e nane => ' nynap’);

Administrative Tools Procedures: Reference 7-39

Set_Flat_Attributes

For convenience in PL/SQL coding, because of the number of parameters for this
procedure, you may want to use the association operator (=>) instead of positional
notation. For example, to specify a maximum length of 25 for the timestamp column
name, use the following:

CRDSYS. TSTool s. Set_Hat_Attributes(tsname | ength => 25);

Example

The following example begins the creation of schema objects for a flat time series
named MYTS, and sets the tsname_length attribute to 25 (that is, maximum of 25
characters for the name of the time series):

CRDSYS. TSTool s. Begin_Oreate TS Goup(' WTS , ' flat’);
CRDSYS. TSTool s. Set_Hat_Attributes(tsname | ength => 25);

7-40 Oracle8i Time Series User's Guide

Set_Object_Attributes

Set_Object_Attributes

Format
ORDSYS.TSTools.Set_Object_Attributes(

object_table_name IN VARCHAR2 DEFAULT NULL,
object_table_type IN VARCHAR2 DEFAULT NULL,
object_table_exists IN INTEGER DEFAULT NULL,
storage_table_name IN VARCHAR2 DEFAULT NULL,
rel_view_name IN VARCHAR2 DEFAULT NULL,
ov_trigger_name IN VARCHAR2 DEFAULT NULL,
nt_trigger_name IN VARCHAR2 DEFAULT NULL,
rv_trigger_name IN VARCHAR2 DEFAULT NULL,
object_table_attributes IN VARCHAR2 DEFAULT NULL,
storage_table_attributes IN VARCHAR2 DEFAULT NULL,
object_table_pk IN VARCHAR2 DEFAULT NULL

);
Description
Sets the attributes of an object-model time series.
Parameters

object_table_name
Name of the object table.

object_table_type
Type associated with the object table: numseries or varchar2series.

object_table_exists
1if the table identified by object_table_name exists; 0 if this table does not exist.

storage_table_name
Name of the nested storage table.

Administrative Tools Procedures: Reference 7-41

Set_Object_Attributes

rel_view_name
Name of the relational view created on the object table identified by
object_table_name.

ov_trigger_name
Name of the INSTEAD OF trigger for insert and update operations on the object
view.

nt_trigger_name
Name of the INSTEAD OF trigger for insert, update, and delete operations on the
nested table.

rv_trigger_name
Name of the INSTEAD OF trigger for insert, update, and delete operations on the
relational view.

object_table_attributes
Attributes of the table identified by object_table_name. Must include an OVERFLOW
clause if object_table_type is varchar2series.

storage_table_attributes
Attributes of the nested storage table.

object_table_pk
Primary key of the table identified by object_table_name.

Usage

This procedure can be used to override some or all of the attributes of an object-
model time series. To leave an attribute unchanged, pass a null value for that
attribute. To display the current attributes, use the Display_Attributes procedure; to
retrieve the current attributes, use the Get_Object_Attributes procedure.

If object_table_exists is 1 (TRUE), the following attributes must be null:
object_table_attributes, storage_table_name, storage_table_attributes, and object_table_pk.

An exception is raised if a time series is not being created or if the time series being
created is not of the object model.

An exception is also raised if the procedure is called after a successful call to the
same procedure during the creation of a time series group (that is, before the call to
End_Create_TS_Group). For example, the following sequence of calls is not valid:

CRDSYS. TSTool s. Set_(hj ect _Attri but es(obj ect _table name => 'nytabl e’);
CRDSYS. TSTool s. Set_(hj ect _Attri butes(storage_tabl e nane => 'nystore’);

7-42 Oracle8i Time Series User's Guide

Set_Object_Attributes

Example

However, the following call is valid:
CRDSYS. TSTool s. Set_(hj ect _Attri but es(obj ect _tabl e name => ' nytabl e,
storage_tabl e_nane => 'nystore’);

For convenience in PL/SQL coding, because of the number of parameters for this
procedure, you may want to use the association operator (=>) instead of positional
notation. For example, to specify mytable as the object table name, use the following:

ORDSYS.TSTools.Set_Object Attributes(object_table_name =>'mytable’);

The following example starts the creation of schema objects for an object-model
time series, sets the object table name to auto-prod (because this time series will
contain the number of automobiles produced each calendar frequency interval), and
accepts default attributes for the other object-model time series group attributes.
The example also displays the attributes.

DECLARE
BEGIN
ORDSYS.TSTools.Begin_Create TS Group(myts, object);
ORDSYS.TSTools.Set_Object_Attributes(
object table name =>'auto_prod'
)
ORDSYS.TSTools.Display_Attributes;

END;
/

This example might produce the following output:

current settings for begin_create ts group

NAME =MYTS
STORAGE_MODEL =OBJECT
SCHEMA =TSDEV

OBJECT TABLE NAME =AUTO_PROD
OBJECT TABLE TYPE =ORDTNUMSERIES
OBJECT TABLE EXISTS =0
STORAGE_TABLE NAME =MYTS_STAB
OBJECT_TABLE_ATTRIBUTES =

Administrative Tools Procedures: Reference 7-43

Set_Object_Attributes

STCRACE TABLE ATTR BUTES = CRGAN ZATI ON | NDEX

CBJECT_TABLE PK = MYTS_OTPK
REL_\ EWNAME = MYTS_ RW
CBJECT Ml EN TR GER NAME = MYTS_TO

NESTED TABLE TR GEER NAME= MYTS_TNT
REL VI EWTR GER NAVE = MYTS_TR

7-44 Oracle8i Time Series User's Guide

Trace_Off

Trace Off

Format

Description

Parameters

Usage

Example

ORDSYS.TSTools.Trace_Off;

Disables debugging for Oracle8i Time Series administrative tools procedures. Any
data definition language (DDL) statements and errors encountered when generating
DDL statements will not be logged to SERVEROUTPUT.

None.

The log file (Open_Log...Close_Log) and the debug display (Trace_On...Trace_Off)
contain the same information.

The following example enables debugging for Oracle8i Time Series administrative
tools procedures, creates time series schema objects, and disables debugging for
Oracle8i Time Series administrative tools procedures:

CRDSYS. TSTool s. Trace_ (On;
CRCSYS. TSTool s. Begin_Qeate TS Goup(' nyts’,' flat’);

CROSYS. TSTool s. End Greate TS G oup;
CRDSYS. TSTool s. Trace O f;

Administrative Tools Procedures: Reference 7-45

Trace_On

Trace On

Format

Description

Parameters

Usage

Example

ORDSYS.TSTools.Trace_On;

Enables debugging for Oracle8i Time Series administrative tools procedures. Any
data definition language (DDL) statements and errors encountered when generating
DDL statements will be logged to SERVEROUTPUT.

None.

The log file (Open_Log...Close_Log) and the debug display (Trace_On...Trace_Off)
contain the same information.

The following example enables debugging for Oracle8i Time Series administrative
tools procedures, creates time series schema objects, and disables debugging for
Oracle8i Time Series administrative tools procedures:

CRDSYS. TSTool s. Trace_ (n;
CRCSYS. TSTool s. Begin_Qeate TS Goup(' nyts’,' flat’);

CROSYS. TSTool s. End Greate TS G oup;
CRDSYS. TSTool s. Trace O f;

7-46 Oracle8i Time Series User's Guide

A

Error Messages

This appendix lists the Oracle8i Time Series error messages, including the cause and
recommended user action for each.
TS-00500, "internal error"

Cause: This is the generic internal error number for Time Series exceptions.
This indicates that a process has encountered an exception.

Action: Report as a bug.

TS-00501, "the input patterns are not of the same length"
Cause: The input calendars have patterns of different lengths. For example,
’0,1,1,1,1,1,0' and '0,1,1,1,1,0” were specified.

Action: Use calendars with patterns of the same length.

TS-00502, "patanchor cannot be on the 29th or 30th day of the month"

Cause: Oracle8i Time Series encountered a calendar having a pattern anchor on
the 29th or 30th day of the month.

Action: Ensure that all calendar pattern anchors are not on the 29th or 30th day
of the month.

TS-00503, "patanchor can be null only for all-zero or all-one patterns”

Cause: Pattern anchor was null, and pattern was not acceptable for a null
patanchor. The anchor can be null only when using all-zero or all-one pattern
bits.

Action: Supply a pattern anchor date, or adjust the pattern bits.

TS-00504, "illegal validflag parameter was passed to DisplayValCal/
DisplayValTS"

Cause: DisplayValCal or DisplayValTS was called with invalid parameters.

Error Messages A-1

Action: Only call DisplayValCal and DisplayValTS with the output of Validate-
Cal or ValidateTs, respectively.

TS-00505, "illegal outmessage parameter was passed to DisplayValCal/
DisplayValTS"
Cause: DisplayValCal or DisplayValTS was called with invalid parameters.

Action: Only call DisplayValCal and DisplayValTS with the output of Validate-
Cal or ValidateTs, respectively.

TS-00506, "the calendar pattern is null”
Cause: Oracle8i Time Series encountered a calendar having a null pattern.

Action: Ensure that all calendars have a non-null pattern.

TS-00507, "the calendar has an imprecise mindate or maxdate"
Cause: Oracle8i Time Series encountered a calendar having an imprecise
mindate or maxdate.

Action: Ensure that all calendar mindates and maxdates are precise.

TS-00508, "a NULL patanchor is illegal for calendars with frequencies -
5,7,10,16,18"
Cause: Oracle8i Time Series encountered a calendar having a null pattern
anchor date with one of the following frequencies: week (5), quarter (7), 10-day
(10), semi-monthly (16), semi-annual (18).
Action: Ensure that all calendars with the frequency value in (5,10,16,18) have
non-null pattern anchor dates.

TS-00509, "the input calendars have unequal pattern bits greater than 1"

Cause: Oracle8i Time Series encountered calendars having patterns with
pattern bits greater than 1 and the corresponding pattern bits being unequal.
For Union and Intersection operations, the two input calendars need to have
matching pattern bits if the bits are greater than 1.

Action: Ensure that the two input calendars passed in have patterns with
matching pattern bits.

TS-00510, "datetab has dates outside the bounds of the calendar"

Cause: DeriveExceptions encountered dates outside of the input calendar’s
mindate/maxdate.

Action: Adjust mindate/maxdate or remove extraneous dates from the input
DateTab.

A-2 Oracle8i Time Series User’s Guide

TS-00511, "calendar pattern bits array is either empty or null”
Cause: Oracle8i Time Series encountered a calendar with an empty or null
array of pattern bits.

Action: Update the calendar to include a valid array of pattern bits.

TS-00512, "invalid frequency value"
Cause: Oracle8i Time Series encountered a calendar with an unsupported
frequency.

Action: Restrict all calendars to frequencies: 1, 2, 3,4, 5, 6, 7, 8, 10, 16, 18.

TS-00513, "the input dates are in the wrong order"
Cause: The date range provided was in reverse order.

Action: When specifying a date range, always list the earlier date first.

TS-00514, "calendar pattern has an imprecise anchor date"
Cause: Oracle8i Time Series encountered a calendar with an anchor having the
wrong precision.

Action: Adjust the precision of the anchor to match the calendar’s frequency.

TS-00515, "input date is beyond the calendar mindate/maxdate”
Cause: Oracle8i Time Series encountered a date less than the mindate or greater
than the maxdate.

Action: Ensure that all input dates are within the mindate-maxdate range of the
calendar.

TS-00516, "input date is greater than calendar maxdate"
Cause: Oracle8i Time Series encountered a date greater than maxdate.

Action: Ensure that all input dates are within the mindate-maxdate range of the
calendar.

TS-00517, "unable to set precision of calendar pattern anchor"

Cause: Oracle8i Time Series encountered a calendar with a pattern anchor
whose precision cannot be set. Setting the precision of the anchor takes it
beyond the allowed Oracle dates.

Action: Ensure that the calendar pattern anchor is at least frequency units from
the minimum Oracle date (Julian 1). Pattern anchors have to be within the fol-
lowing range: [Oracle Mindate + frequency, Oracle Maxdate]

TS-00519, "the series attribute of the time series type is null”

Error Messages A-3

Cause: Oracle8i Time Series encountered a null series within a time series.
Action: Ensure that all time series have a non-null series component.

TS-00520, "the input calendar is null"
Cause: Oracle8i Time Series encountered a null calendar.

Action: Ensure that all calendars are non-null.

TS-00522, "error scaling date to calendar"
Cause: Input date cannot be scaled to given calendar.

Action: Ensure that the given calendar is valid and that the calendar’s mindate
and maxdate encompass all potential timestamp values.

TS-00523, "the input date is null"

Cause: Scaleup has encountered a null date. No scaling semantics are defined
for a null date.

Action: Ensure that all input to Scaleup is non-null.

TS-00525, "the input time series is null"
Cause: Oracle8i Time Series encountered a null time series.

Action: Ensure that all time series are not atomically null.

TS-00526, "the input time series has a null calendar"
Cause: Oracle8i Time Series encountered a null calendar within a time series.

Action: Ensure that all time series include valid (non-null) calendars.

TS-00527, "error scaling up to the target calendar frequency"

Cause: Scaleup encountered a target calendar of finer frequency than that of
the input time series’ calendar.

Action: Scaleup requires a target calendar of equal or coarser (timestamps at
less frequent intervals) frequency.

TS-00528, "calendar has a null mindate or a null maxdate"

Cause: Oracle8i Time Series encountered a calendar with a null mindate or
maxdate.

Action: Ensure that all calendars have a valid mindate and maxdate.

TS-00529, "calendar mindate is greater than its maxdate"
Cause: Oracle8i Time Series encountered a calendar with mindate > maxdate.

A-4 Oracle8i Time Series User's Guide

Action: Ensure that all calendars have a valid mindate <= maxdate.

TS-00530, "series indexes must be greater than 0"
Cause: GetNthElement encountered an index less than 1.

Action: Use indexes greater than 0.

TS-00531, "the input time series has a null calendar reference”

Cause: Oracle8i Time Series encountered a time series with a null calendar
reference.

Action: Ensure that all calendar references are valid.

TS-00532, "unable to DEREF calendar referenced by time series"
Cause: Oracle8i Time Series was unable to dereference a calendar reference.

Action: Verify that the user executing the query has select privileges for the
calendar table storing the object, and that the correct calendar has been refer-
enced by the time series reference.

TS-00533, "the time series has data beyond its calendar mindate/maxdate"

Cause: Oracle8i Time Series encountered a time series with data beyond
mindate/maxdate.

Action: Ensure that all timestamps in a time series are within the calendar’s
mindate/ maxdate.

TS-00534, "the number of rows requested must be a positive integer"
Cause: The requested number of rows was less than 0.

Action: Use a positive number to specify the number of rows requested.

TS-00535, "the time series ref has a null table_name parameter”

Cause: Oracle8i Time Series encountered a time series reference having a null
table_name.

Action: Ensure that all time series references include a valid table name.

TS-00536, "the time series ref has a null tstamp_colname parameter"

Cause: Oracle8i Time Series encountered a time series reference having a null
tstamp_colname.

Action: Ensure that all time series references include a valid timestamp col-
umn name.

TS-00537, "the time series ref has a null value_colname parameter”

Error Messages A-5

Cause: Oracle8i Time Series encountered a time series reference having a null
value_colname.

Action: Ensure that all time series references include a valid value column
name.

TS-00538, "the time series ref has a null qualifier_colname parameter”
Cause: Oracle8i Time Series encountered a time series reference having a null
qualifier_colname.

Action: Ensure that all time series references include a valid qualifier column
name.

TS-00539, "the time series ref has a null qualifier_value parameter"

Cause: Oracle8i Time Series encountered a time series reference having a null
qualifier_value.

Action: Ensure that all time series references include a valid qualifier value.

TS-00540, "the projected lead timestamp is beyond the calendar mindate/
maxdate"

Cause: The given parameters result in timestamps outside of mindate/maxdate.

Action: Adjust the lead timestamp or lead units to remain within calendar min-
date/maxdate, or extend the mindate/maxdate.

TS-00541, "the projected lag timestamp is beyond the calendar mindate/maxdate”
Cause: The given parameters result in timestamps outside of mindate/maxdate.

Action: Adjust the lag timestamp or lag units to remain within calendar mind-
ate/maxdate, or extend the mindate/maxdate.

TS-00542, "the window size for mavg/msum must be >= 1"

Cause: Window size parameter passed to moving average/sum was not
greater than 0.

Action: Use a window size parameter greater than or equal to 1.

TS-00547, "the input fill type is invalid"
Cause: Fill has been called with a filltype less than 0 or greater than 2.

Action: Use a valid filltype: 0, 1, or 2.

TS-00548, "the target timestamp for leading is invalid"

Cause: The target timestamp input to the Lead function was invalid with
respect to the input time series calendar.

A-6 Oracle8i Time Series User's Guide

Action: Ensure that the target timestamp input to the Lead function is a valid
timestamp with respect to the input time series calendar.

TS-00551, "error parsing the SQL statement with the time series ref"

Cause: The SQL statement constructed from the time series reference was
invalid.

Action: Verify the validity of the time series reference:

« Verify the validity of all components of the time series reference.

« No spaces or invalid punctuation may appear in table or column names.
« The user must have select privileges on the table referenced.

= The table name must be qualified with its schema name.

TS-00552, "error executing the SQL statement with the time series ref"

Cause: The SQL statement constructed from the time series reference was
invalid.

Action: Verify the validity of the time series reference:

« Verify the validity of all components of the time series reference.
« No spaces or invalid punctuation may appear in table or column names.
« The user must have select privileges on the table referenced.
= The table name must be qualified with its schema name.
TS-00553, "divide by zero error"
Cause: An attempt was made to divide by zero with TSDivide.
Action: When dividing by a constant, ensure that the constant is nonzero.

TS-00554, "the input calendar patterns are not equal”
Cause: DeriveExceptions requires the calendar of the reference time series to
have the same pattern as the calendar of the time series being processed.

Action: Ensure that DeriveExceptions is called only with time series having
calendars with the same pattern.

TS-00555, "the input calendar frequencies are not equal”

Cause: DeriveExceptions requires the calendar of the reference time series to
have the same frequency as the calendar of the time series being processed.

Error Messages A-7

Action: Ensure that DeriveExceptions is called only with time series having
calendars with the same frequency.

TS-00556, "mindate of the ref calendar exceeds the mindate of the target calendar”
Cause: DeriveExceptions encountered a reference time series whose calendar
has a mindate greater than that of the calendar of the target time series.

Action: Ensure that DeriveExceptions is called only with appropriate time
series.

"

TS-00557, "maxdate of the target calendar exceeds the maxdate of the ref calendar
Cause: DeriveExceptions encountered a reference time series whose calendar
has a maxdate less than that of the calendar of the target time series.

Action: Ensure that DeriveExceptions is called only with appropriate time
series.

TS-00558, "the target calendar should have empty on/off exception lists"
Cause: DeriveExceptions encountered a target time series whose calendar has
non-empty exception lists.

Action: Ensure that DeriveExceptions is called only with target time series
whose calendars have empty exception lists.

TS-00559, "the caltype field in the calendar has an illegal value"
Cause: Oracle8i Time Series encountered a calendar with an invalid calendar
type.

Action: Ensure that all calendars have valid calendar type value. Valid calen-
dar types are: (Exception-driven calendars = 0)

TS-00560, "the input data includes imprecise timestamps"

Cause: DeriveExceptions function encountered an imprecise date in the time
series (or datetab) input.

Action: Ensure that all the timestamps in the time series (datetab) are precise
with respect to the target calendar before calling DeriveExceptions.

TS-00561, "begin_create_ts_group has not been called"

Cause: BEGIN_CREATE_TS_GROUP must be called before calling this
procedure.

Action: Call BEGIN_CREATE_TS_GROUP before calling this procedure.

TS-00562, "the column name is a duplicate”

A-8 Oracle8i Time Series User’s Guide

Cause: Two column names given for a time series were the same.

Action: Provide a unique column name for each time series column. Ensure
that this column name does not conflict with any other column name including
the explicit or default column name of the tstamp column or the column name of
the group_name column. Use GET_ATTRIBUTES to determine default values.

TS-00563, "missing column attributes"
Cause: A time series was defined without defining columns.

Action: Define at least one column for the time series using ADD_VARCHAR?2,
ADD_NUMBER, or ADD_INTEGER.

TS-00564, "unknown storage model"

Cause: The time series storage model specified does not correspond to a valid
storage model.

Action: Ensure that the procedure is called with a valid storage model descrip-
tor: 'OBJECT or 'FLAT".

TS-00565, "wrong storage model"

Cause: The time series procedure cannot be called for the storage model
currently being defined.

Action: Ensure that the procedure called is appropriate for the time series being
created.

TS-00566, "unknown time series group"
Cause: The time series definition specified is not known.

Action: Ensure that the call references a known time series definition.

TS-00567, "unsupported datatype"
Cause: The column data type specified for a time series is not supported.

Action: Ensure that the column data type for a time series is NUMBER, INTE-
GER, or VARCHAR2.

TS-00568, "illegal call sequence”
Cause: The function is not being called in the correct sequence.
Action: Ensure that the function is called in the correct sequence.

TS-00569, "not all attributes dropped"

Error Messages A-9

Cause: Not all objects belonging to a time series group could be dropped
(deleted). This was either because underlying objects no longer exist or because
another time series definition references them.

Action: Get privileges to drop (delete) the object directly.

TS-00570, "too many columns declared"
Cause: Too many columns were declared for the time series. Please consult the
documentation for a limit on the maximum number of columns allowed.

Action: Declare another time series to accommodate the extra columns.

TS-00571, "detail table must exist"
Cause: ADD_EXISTING_COLUMN is invalid if the detail table does not exist.

Action: Call ADD_VARCHAR2_COLUMN or ADD_NUMBER_COLUMN pro-
cedure.

TS-00572, "column not found"
Cause: ADD_EXISTING_COLUMN was called for a column that does not exist
in the detail table.

Action: Specify a NUMBER or VARCHAR? column table in the existing detail
table.

TS-00573, "detail table must not exist"
Cause: ADD_VARCHAR2 COLUMN, ADD_NUMBER_COLUMN is invalid if
the detail table does not exist.

Action: Call ADD_COLUMN function when detail table exists.

TS-00574, "log file is already open”
Cause: OPEN_LOG was called when a log file is already open.

Action: Call CLOSE_LOG to close the current log file before calling
OPEN_LOG.

TS-00575, "parameters conflict with detail_table_exists"
Cause: The detail_table_attr, detail_table_pk, or tsname_length field was set to non-
null values when detail_table_exists was called with value of 1.

Action: When calling SET_FLAT_ATTRIBUTES with detail_table_exists=1, the
detail_table_attr, detail_table_pk, and detail_tsname_length parameters must be
null.

TS-00576, "parameters conflict with map_table_exists"

A-10 Oracle8i Time Series User’s Guide

Cause: The map_table_attr or map_table_pk field was set to non-null values when
map_table_exists was called with value of 1.

Action: When calling SET_FLAT_ATTRIBUTES with map_table_exists=1, the
map_table_attr and map_table_pk parameters must be null.

TS-00577, "parameters conflict with cal_table_exists"
Cause: The cal_table_attr or cal_table_pk field was set to non-null values when
cal_table_exists was called with value of 1.

Action: When calling SET_FLAT_ATTRIBUTES with cal_table_exists=1, the
cal_table_attr and cal_table_pk parameters must be null.

TS-00578, "detail table not found"
Cause: The detail table specified in SET_FLAT_ATTRIBUTES could not be
found.

Action: Ensure that the detail table specified in SET_FLAT_ATTRIBUTES
exists.

TS-00579, "the tstamp field specified in SET_FLAT_ATTRIBUTES does not exist"
Cause: The tstamp field is not found in the existing detail table.

Action: Ensure that the tstamp column name specified in
SET_FLAT_ATTRIBUTES is in the detail table.

TS-00580, "the tstamp field specified is not a DATE column™
Cause: The call specified a tstamp field that is not a DATE data type.

Action: Specify a tstamp column that is a DATE data type.

TS-00581, "the tsname field specified in SET_FLAT_ATTRIBUTES does not exist"
Cause: The tsname field is not found in the existing detail table.
Action: Ensure that the tsname field column name specified in
SET_FLAT_ATTRIBUTES is in the detail table.

TS-00582, "the tsname field specified is not a VARCHAR2 column™
Cause: The call specified a tsname field that is not a VARCHAR2 data type.

Action: Specify a tsname column that is a VARCHAR?2 data type.

TS-00583, "existing detail table missing primary key constraint"
Cause: An attempt was made to build a time series on a detail table that is
missing a required primary key constraint.

Error Messages A-11

Action: Ensure that the detail table has a primary key constraint on the tsname
and tstamp columns.

TS-00584, "existing detail table missing index with tsname as first column"
Cause: An attempt was made to build a time series on a detail table that does
not specify the tsname field as the first column of a primary key index.

Action: Ensure that the detail table has a primary key constraint on the tsname
and tstamp columns.

TS-00585, "existing detail table missing index with tstamp as second column”
Cause: An attempt was made to build a time series on a detail table that does
not specify the tstamp field as the second column of a primary key index.

Action: Ensure that the detail table has a primary key constraint on the tsname
and tstamp columns.

TS-00586, "calendar table not found"
Cause: The calendar table specified in SET_FLAT_ATTRIBUTES could not be
found.

Action: Ensure that the calendar table specified in SET_FLAT_ATTRIBUTES
exists.

TS-00587, "calendar table not correct type"
Cause: The calendar table specified in SET_FLAT_ATTRIBUTES was not an
object table of type ORDSYS.ORDTCALENDAR.

Action: Ensure that the calendar table specified in SET_FLAT_ATTRIBUTES is
an object table of type ORDSYS.ORDTCALENDAR.

TS-00588, "calendar table missing primary key constraint"
Cause: An attempt was made to build a time series on a calendar table that is
missing a required primary key constraint.

Action: Ensure that the calendar table has a primary key constraint on the name
field.

TS-00589, "existing calendar table missing index with NAME as first column*

Cause: An attempt was made to build a time series on a calendar table that
does not specify the name field as the first column of a primary key index.

Action: Ensure that the calendar table has a primary key constraint on the name
field.

A-12 Oracle8i Time Series User’s Guide

TS-00590, "map table not found"
Cause: The map table specified in SET_FLAT_ATTRIBUTES could not be
found.

Action: Ensure that the map table specified in SET_FLAT_ATTRIBUTES exists.

TS-00591, "existing map table missing CALNAME field"
Cause: The map table specified should have field called calname of type
VARCHAR2(256).

Action: Check to see that the existing map table specified is correct and has the
required fields.

TS-00592, "the CALNAME field in the existing map table is not a VARCHAR?2
field"
Cause: The existing map table specified should have a field called calname of
type VARCHAR2.

Action: Check to see that the existing map table specified is correct and has the
required fields.

TS-00593, "the CALNAME VARCHAR? field is not of length 256"
Cause: The existing map table specified should have a VARCHAR? field called
calname of a length of 256.

Action: Check to see that the existing map table specified is correct and has the
required fields.

TS-00594, "the existing map table is missing the tshame column”
Cause: The existing map table specified should have a field of the same name
as the tsname column in the detail table.

Action: Check to see that the existing map table specified is correct and has the
required fields.

TS-00595, "the tsname field in the map table is not a VARCHAR2 column”
Cause: The tsname field in the existing map table must be a VARCHAR?2 field.
Action: Check to see that the existing map table specified is correct and has the
required fields.

TS-00596, "the length of the tsname field in the existing map table is incorrect"

Cause: The length of the tsname field in the existing map table must be the
same length as the tsname field in the detail table.

Error Messages A-13

Action: Check to see that the existing map table specified is correct and has the
required fields.

TS-00597, "the map table is missing a primary key constraint"

Cause: The map table specified must have a primary key constraint on the
tsname field.

Action: Check to see that the existing map table specified is correct and has the
required fields.

TS-00598, "the map table is missing an index on the tsname field"

Cause: An attempt was made to build a time series on a map table that does
not specify the tsname field as the first column of a primary key index.

Action: Check to see that the existing map table specified is correct and has the
required fields.

TS-00599, "illegal input param values"
Cause: The combination or the values of the input parameters are invalid.

Action: Check to see that the values and combination of input parameters to
the call are correct.

TS-00600, "update of tstamp value is illegal”
Cause: An INSTEAD OF trigger detected an attempt to update the tstamp field.

Action: Updates of tstamp fields in a time series are not permitted.

TS-00601, "update of tsname value is illegal”
Cause: An update trigger detected an attempt to update the tsname field.

Action: Updates of tsname fields in a time series are not permitted.

TS-00602, "no calendar found"

Cause: An insert or delete trigger failed to retrieve a calendar for a regular time
series.

Action: Check to see that the time series being updated has a calendar associ-
ated with it.

TS-00603, "tstamp date not valid"

Cause: An insert was done using a timestamp date value that was not valid for
the calendar.

Action: Check to see that the timestamp date is valid for the calendar of the
time series.

A-14 Oracle8i Time Series User’s Guide

TS-00604, "time stamp must be next valid date before startdate"
Cause: An attempt was made to insert a timestamp that was not the first valid
date before the starting date.

Action: Check to see that the timestamp date is valid for the calendar of the
time series.

TS-00605, "time stamp must be next valid date after enddate"

Cause: An attempt was made to insert a timestamp that was not the first valid
date after the ending date.

Action: Check to see that the timestamp date is valid for the calendar of the
time series.

TS-00606, "cannot delete a legal date in the middle of a time series"

Cause: An attempt was made to delete a timestamp in the middle of a time
series.

Cause: Delete timestamps from the ends of the time series.

TS-00607, "time series group exists"
Cause: The time series group specified already exists.

Action: Ensure that BEGIN_CREATE_TS_GROUP specifies a time series group
that does not already exist.

TS-00608, "no time series instance found"
Cause: An insert or delete trigger failed to retrieve the time series instance.

Action: Check to see that the time series instance specified exists.

TS-00609, "begin_create_ts_group already called"

Cause: An attempt was made to call BEGIN_CREATE_TS_group while
currently defining a time series group.

Action: Call CANCEL_CREATE_TS_group or complete a time series group
definition that has been started.

TS-00610, "nothing to cancel”

Cause: Tried to call CANCEL_CREATE_TS_GROUP when no time series group
definition has been started.

Action: Avoid making this call if a time series definition has not been started.

TS-00611, "the frequency is not valid"

Error Messages A-15

Cause: The frequency passed into the function does not correspond to a valid
calendar frequency value.

Action: Ensure that the call is passed a valid calendar frequency value.

TS-00612, "the time series type specified is not supported"
Cause: A wrong type was specified for the time series object table to be
created.

Action: The only supported types for the time series object table are ORD-
SYS.ORDTNumSeries and ORDSYS.ORDT Varchar2Series.

TS-00613, "time series object table not found"
Cause: The time series object table specified in SET_OBJECT_ATTRIBUTES
could not be found.

Action: Ensure that the time series object table specified in
SET_OBJECT_ATTRIBUTES exists.

TS-00614, "existing object table is of different type"
Cause: The type of the (existing) object table does not match the type of the
time series specified.

Action: Ensure that while trying to build a time series group on an existing
object table, the type of the time series matches the type of the object table. Note
that the only supported types for the time series are ORDSYS.ORDTNumSeries
and ORDSYS.ORDTVarchar2Series.

TS-00615, "time series object table missing primary key constraint"

Cause: Tried to build a time series on an object table that is missing a required
primary key constraint.

Action: Ensure that the time series object table has a primary key constraint on
the name field.

TS-00616, "existing time series object table missing index on the NAME attribute”

Cause: An attempt was made to build a time series on an object table that does
not specify the name field as the first column of a primary key index.

Action: Ensure that the time series object table has a primary key constraint on
the name field.

TS-00617, "parameters conflict with object_table_exists"

A-16 Oracle8i Time Series User’s Guide

Cause: The object_table_attributes, storage_table_name, storage_table_attributes, or
object_table_pk field was set to non-null value when SET_OBJECT_ATTRIBUTES
was called with object_table_exists set to 1.

Action: Ensure that when SET_OBJECT_ATTRIBUTES is called with
object_table_exists set to 1, object_table_attributes, storage_table_name,
storage_table_attributes, and object_table_pk are all set to null.

TS-00620, "time series is invalid"
Cause: An object view insert or update trigger failed because the new time
series instance was not a valid time series.

Action: Check to see that the new time series being inserted or updated is a
valid time series.

TS-00630, "an irregular time series is not a valid input"

Cause: DeriveExceptions function requires that the input time series be a
regular time series. (An irregular time series does not have an associated
calendar and therefore is not valid as input to the DeriveExceptions function.)

Action: Ensure that the time series input to the DeriveExceptions function is a
regular time series.

TS-00631, "lead and lag operations not supported for irregular time series"

Cause: Lead and Lag operations require calendars to compute the timestamps
of the resulting time series.

Action: Ensure that Lead and Lag are only used with time series that have cal-
endars.

TS-00632, "fill is not supported for irregular time series"

Cause: Fill requires a calendar to compute the timestamps of the resulting time
series.

Action: Ensure that Fill is only used with time series that have calendars.

TS-00633, "table attribute value is too large"
Cause: A table attribute value passed in is too large.

Action: Ensure that the table attribute VARCHAR?2 value is less than 1023.

TS-00640, "time series cannot be scaled to target calendar - frequencies
incompatible"

Cause: The frequencies of the time series and the calendar are not compatible.

Error Messages A-17

Action: Ensure that the calendar associated with the scaled time series is com-
patible with the target calendar.

TS-00641, "time series cannot be scaled to target calendar - calendar anchors
incompatible"
Cause: The calendar anchors associated with the time series and the calendar
are not compatible.

Action: Ensure that the calendar associated with the scaled time series is com-
patible with the target calendar.

TS-00642, "time scaling error: input interval straddles two or more output
intervals"
Cause: An interval of the source time series straddles two or more intervals of
the target scaling calendar.

Action: Ensure that the time series to be scaled is compatible with the target
calendar.

TS-00643, "time scaling error: input interval maps to non-existing output interval

Cause: One or more cells of the input time series have no associated interval of
the target calendar.

Action: Ensure that the time series to be scaled is compatible with the target
calendar.

TS-00644, "time scaling error: permitDropData parameter out of bounds"

Cause: An invalid value of DiscardError was supplied as a parameter to
Scaleup

Action: Ensure that the DiscardError option is either 0 or 1.

TS-00645, "scaledownrepeat is not supported for irregular time series"
Cause: A time series with a null calendar was passed to ScaleDownRepeat.

Action: Ensure that all time series used with ScaleDownRepeat have calendars.

TS-00646, "scaledownsplit is not supported for irregular time series"
Cause: A time series with a null calendar was passed to ScaleDownSplit.

Action: Ensure that all time series used with ScaleDownSplit have calendars.

TS-00647, "invalid scaleup option"
Cause: An unrecognized option has been used with a ScaleUp function.

Action: Consult the documentation for a list of valid options.

A-18 Oracle8i Time Series User’s Guide

TS-00648, "invalid combination of scaleup options"
Cause: Multiple numeric options or a combination of numeric and named
options has been used with ScaleUp.

Action: Consult the documentation for a list of valid options, and ensure that
named options are not used with a numeric option, and that no more than one
numeric option is specified.

TS-00649, "invalid scaleup option"
Cause: An unrecognized numeric option has been used with a ScaleUp
function. Valid numeric options include 0, 1, 10, and 11.

Action: Be sure to only use valid numeric options, or consult the documenta-
tion for information about using named options.

TS-00650, "duplicate scaleup option™
Cause: A ScaleUp option has been specified twice, or two conflicting options
have been specified.

Action: When using multiple named options, be sure not to duplicate options
and not to use conflicting options. Consult the documentation for a list of con-
flicting options.

Error Messages A-19

A-20 Oracle8i Time Series User’s Guide

B

Oracle8/ Time Series Metadata Views

This appendix describes the views that Oracle8i Time Series uses to store
information about time series schema objects:

ALL_TIMESERIES_GROUPS
ALL_TIMESERIES_OBJS
ALL_TIMESERIES_COLS
DBA_TIMESERIES_GROUPS
DBA_TIMESERIES_OBJS
DBA_TIMESERIES_COLS
USER_TIMESERIES_GROUPS
USER_TIMESERIES_OBIJS
USER_TIMESERIES_COLS

These views are created when Oracle8i Time Series is installed, and they are
updated when time series schema objects are created, deleted, or altered.

Access to these views is determined as follows:

ALL_TIMESERIES_xxx views are accessible if you can use the time series from
your schema. To use the time series, you must have been granted select
privilege on the object relational view, the detail table, and the calendar table.
Moreover, for ALL_TIMESERIES_OBJS, the corresponding ALL_xxx views must
be accessible. For example, to access the map table as an object in ALL_
TIMESERIES_OBIJS, you must be able to access the time series and to access the
map table in ALL_TABLES.

DBA_TIMESERIES_ xxx views are accessible if you have been granted either or
both of the following roles: DBA or TIMESERIES_DBA.

Oracle8i Time Series Metadata Views B-1

View Definitions

« USER_TIMESERIES_xxx views are accessible if the objects have been created
under your schema.

You can query these views to get information about time series schema objects. For
example, to display the available information about all time series schemas, enter
the following query:

SELECT * from ALL_TIMESERIES_GROUPS;

In addition to examining these views, you can examine certain standard Oracle
dictionary views for metadata relating to specific schema names. For example, the
following queries return names of objects associated with any time series schemas
with names containing MYTS:

SELECT table nane fromUSER TABLES where table nane like ' WTS%;
SELECT trigger_nane from USER TR GERS where trigger_nane |ike ' MWTS%;
SELECT vi ew nane f rom USER M BV where view nane |ike ' MWTS%;
SELECT table nane from USER (BJECT TABLES where table_nane |ike ' MYTS%;

For information about standard Oracle dictionary views, see the Oracle8i Reference
manual.

B.1 View Definitions
This section shows the definitions of the Oracle8i Time Series metadata views.

For explanations of the columns in these views, see Section B.2.

B.1.1 ALL_TIMESERIES xxx View Definitions

The following code example shows the definitions of the ALL_TIMESERIES _
GROUPS, ALL_TIMESERIES _OBJS, and ALL_TIMESERIES_COLS views:

SVRMER> DESCR BE ALL_TI MESER ES (ROPS,

Gol urm Nane Nl |2 Type

OMER VARCHAR2(30)
QROP_NAME VARCHAR2(30)
STORACE MIDEL VARCHAR2(30)
DESCR PTI ON VARCHAR2(4000)
SVRMER> DESCR BE ALL_TI MESER ES (BJS

Gol urm Nane Nl | ? Type

OMER VARCHAR2(30)

B-2 Oracle8i Time Series User’'s Guide

View Definitions

QROP_NAME VARCHAR2(30)
CBJ_NAME VARCHAR2(30)
CBI_TYPE VARCHAR2(30)
TS BI_TYPE VARCHAR2(30)
OMED AR
STORACE MIDEL VARCHAR2(30)
DESCR PTI ON VARCHAR2(4000)
SVRVER> DESCR BE ALL_TI MESER ES A0S

Gol urn Nane Nl |2 Type

OMER NOT NULL VARCHAR2(30)
QROP_NAME NOT NULL VARCHAR2(30)
TS BI_TYPE NOT NULL VARCHAR2(30)
VI EWNAME NOT NULL VARCHAR2(30)
COLUMN_NAME NOT NULL VARCHAR2(30)
DATA TYPE NOT NULL VARCHAR2(106)
DATA LENGTH NUMBER
DATA PRE S ON NUMBER

DATA SCALE NUMBER

IS TSNAME NOT NULL CHAR(1)

| S TSTAWP NOT NULL GHAR(1)

IS TSVALUE NOT NULL CHAR(1)
CGOLUMN | D NOT NULL NUMBER

B.1.2 DBA_TIMESERIES xxx View Definitions

The following code example shows the definitions of the DBA_TIMESERIES _
GROUPS, DBA _TIMESERIES_OBIJS, and DBA _TIMESERIES _COLS views:

SVRMER> DESCR BE DBA TI MESER ES (ROPS,

Gol urm Nane Nl |2 Type

OMER NOT NULL VARCHAR2(30)
QROP_NAME NOT NULL VARCHAR2(30)
STORACE MIDEL NOT NULL VARCHAR2(30)
DESCR PTI ON VARCHAR2(4000)
SVRVER> DESCR BE DBA TI MESER ES (BJS

Gol urm Nane Nl | ? Type

OMER NOT NULL VARCHAR2(30)
QROP_NAME NOT NULL VARCHAR2(30)
CBJ_NAME NOT NULL VARCHAR2(30)
CBI_TYPE NOT NULL VARCHAR2(30)

Oracle8i Time Series Metadata Views B-3

View Definitions

TS BI_TYPE NOT NULL VARCHAR2(30)
OMED NOT NULL CHAR(1)
STORACE MIDEL NOT NULL VARCHAR2(30)
DESCR PTI ON VARCHAR2(4000)
SVRVER> DESCR BE DBA TI MESER ES AO.S

Gol urn Nane Nl |2 Type

OMER NOT NULL VARCHAR2(30)
QROP_NAME NOT NULL VARCHAR2(30)
TS BI_TYPE NOT NULL VARCHAR2(30)
VI EWNAME NOT NULL VARCHAR2(30)
COLUMN_NAME NOT NULL VARCHAR2(30)
DATA TYPE NOT NULL VARCHAR2(106)
DATA LENGTH NUMBER

DATA PREQ S ON NUMBER

DATA SCALE NUMBER

IS TSNAME NOT NULL GHAR(1)

| S TSTAWP NOT NULL CHAR(1)

IS TSVALUE NOT NULL CHAR(1)
CGOLUMN | D NOT NULL NUMBER

B.1.3 USER_TIMESERIES xxx View Definitions

The following code example shows the definitions of the USER_TIMESERIES _
GROUPS, USER_TIMESERIES_OBJS, and USER_TIMESERIES_COLS views:

SVRMER> DESCR BE USER Tl MESER ES GROPS,

Gol urm Nane Nl |2 Type
QROP_NAME NOT NULL VARCHAR2(30)
STORACE MIDEL NOT NULL VARCHAR2(30)
DESCR PTI ON VARCHAR2(4000)
SVRMER> DESCR BE USER TI MESER ES (BJS,

Gol urm Nane Nl | ? Type
QROP_NAME NOT NULL VARCHAR2(30)
CBJ_NAME NOT NULL VARCHAR2(30)
CBI_TYPE NOT NULL VARCHAR2(30)
TS BI_TYPE NOT NULL VARCHAR2(30)
OMED NOT NULL CHAR(1)
STORACE MIDEL NOT NULL VARCHAR2(30)
DESCR PTI ON VARCHAR2(4000)

B-4 Oracle8i Time Series User’'s Guide

Column Descriptions

SVRMER> DESCR BE USER TI MESER ES OO.S;

Gol urn Nane Nl | ? Type
QROP_NAME NOT NULL VARCHAR2(30)
TS BI_TYPE NOT NULL VARCHAR2(30)
VI EWNAME NOT NULL VARCHAR2(30)
COLUMN_NAME NOT NULL VARCHAR2(30)
DATA TYPE NOT NULL VARCHAR2(106)
DATA LENGTH NUMBER
DATA PREQ S ON NUMBER

DATA SCALE NUMBER

IS TSNAME NOT NULL CHAR(1)

| S TSTAWP NOT NULL GHAR(1)

IS TSVALUE NOT NULL CHAR(1)
CGOLUMN | D NOT NULL NUMBER

B.2 Column Descriptions
This section describes the columns in the Oracle8i Time Series metadata views.

The corresponding ALL_TIMESERIES_xxx, DBA_TIMESERIES_xxx, and USER_
TIMESERIES_xxx views have the same columns, except that the ALL_TIMESERIES _
xxx and DBA_TIMESERIES_xxx views also include owner as the first column. The
USER_TIMESERIES_xxx views do not contain an owner column.

B.2.1 xxx_TIMESERIES_GROUPS Columns

Table B-1 describes the columns in the ALL_TIMESERIES GROUPS, DBA _
TIMESERIES_GROUPS, and USER_TIMESERIES_GROUPS, views. Note that owner
is not included in the USER_TIMESERIES_GROUPS view.

Table B-1 xxx_TIMESERIES GROUPS Columns

Column Name Data Type Explanation

owner VARCHAR2(30) Identifies the schema under which the time series
schema objects are defined.

group_name VARCHAR2(30) Contains the name of the time series schema, which
is also the name of the time series object relational
view (flat storage model) or object view (object
storage model).

Oracle8i Time Series Metadata Views B-5

Column Descriptions

Table B-1 xxx_TIMESERIES_GROUPS Columns (Cont.)

Column Name Data Type Explanation

storage_model VARCHAR2(30) Contains FLAT for flat storage model or OBJECT for
nested table storage.

description VARCHARZ2(4000) Optional descriptive comment.

B.2.2 xxx_TIMESERIES_COLS Columns

Table B-2 describes the columns in the ALL_TIMESERIES COLS, DBA _
TIMESERIES_COLS, and USER_TIMESERIES_COLS, views. Note that owner is not
included in the USER_TIMESERIES_COLS view.

Table B-2 xxx_TIMESERIES COLS Columns

Column Name Data Type Explanation

owner VARCHAR2(30) Identifies the schema under which the time series
schema objects are defined.

group_name VARCHAR2(30) Contains the name of the time series schema, which is
also the name of the time series object relational view
(flat storage model) or object view (object storage
model).

ts_obj_type VARCHAR2(30) Contains RELATIONAL VIEW for a relational view or
OBJECT RELATIONAL VIEW for an object view.

view_name VARCHAR2(30) Name of the view.

column_name VARCHAR2(30) Name of the column in the view (for example, open,
close, tstamp, ticker, volume using the flat storage

model).
data_type VARCHARZ2(106) Data type of column_name.
data_length NUMBER Maximum length in bytes of column_name data.
data_precision NUMBER The precision of column_name (if numeric), that is, the

maximum number of digits permitted to the left of the
decimal point.

data_scale NUMBER The scale of column_name (if numeric), that is, the
number of digits to the right of the decimal point.

is_tsname CHAR(1) Contains Y if column_name is the time series name;
contains N if column_name is not the time series name.

B-6 Oracle8i Time Series User’'s Guide

Column Descriptions

Table B-2 xxx_TIMESERIES_COLS Columns (Cont.)

Column Name Data Type

Explanation

is_tstamp CHAR(1)
is_tsvalue CHAR(1)
column_id NUMBER

Contains Y if column_name is the timestamp column;
contains N if column_name is not the timestamp
column.

Contains Y if column_name is a data value column;
contains N if column_name is not a data value column.

Internally assigned ID number.

B.2.3 xxx_TIMESERIES_OBJS Columns

Table B-3 describes the co

lumns in the ALL_TIMESERIES_OBIS, DBA_

TIMESERIES_OBIJS, and USER_TIMESERIES_OBIJS, views. Note that owner is not
included in the USER_TIMESERIES_COLS view.

Table B-3 xxx_TIMESERIES OBJS Columns

Column Name Data Type Explanation

owner VARCHAR2(30) Identifies the schema under which the
time series schema objects are defined.

group_name VARCHAR2(30) Contains the name of the time series
schema, which is also the name of the
time series object relational view (flat
storage model) or object view (object
storage model).

obj_name VARCHAR2(30) Name of the Oracle DDL object.

obj_type VARCHAR2(30) Type of Oracle DDL object (for example,
TABLE or VIEW).

ts_obj_type VARCHAR2(30) Type of Oracle time series object See
Table B—4 for a list of ts_obj_type values.

owned VARCHAR2(1) Contains Y if the object was created by a

storage_model

description

TSTools procedure; contains N if was
not originally created by a TSTools
procedure.

VARCHAR2(30) Indicates the storage model: FLAT or
OBJECT.

VARCHAR2(4000) Optional descriptive comment.

Table B-4 lists the values that the ts_obj_type column in Table B-3 can contain.

Oracle8i Time Series Metadata Views B-7

Column Descriptions

Table B-4 ts_obj _type Column Values

Value

Explanation

CALENDAR TABLE
DETAIL TABLE
MAP TABLE

OBJECT RELATIONAL
VIEW

OBJECT TABLE
OBJECT VIEW

OBJECT VIEW NT
TRIGGER

OBIJECT VIEW
TRIGGER

RELATIONAL VIEW

RELATIONAL VIEW
TRIGGER

STORAGE TABLE

Calendar table in the flat storage model.
Detail table in the flat storage model.
Map table in the flat storage model.

Time series view for time series and time scaling functions in the
flat storage model.

Time series table in the object storage model.

Time series view for time series and time scaling functions in the
object storage model.

Trigger on the object view (object storage model) for nested table
insert, update, and delete operations.

Trigger on the object view (object storage model) for object insert
and update operations.

Relational view for the flat storage model or object storage
model.

Trigger on the relational view (flat or object storage model) for
relational insert, update, and delete operations.

Nested table storage for the nested table (object storage model).

B-8 Oracle8i Time Series User’'s Guide

C

Deprecated Features

This appendix describes the new and old (deprecated) behavior or certain Oracle8i
Time Series features. The old behaviors are deprecated features for the Oracle8i
release. These deprecated features were documented in the previous edition of this
guide, but are not in this edition. The features continue to work for this release, but
they may not work in subsequent releases, and you are encouraged not to use them.
If you are currently using any of these features, you are encouraged to choose a
documented alternative before the next release of Oracle8i Time Series.

C.1 SetPrecision Function

The SetPrecision function takes a calendar rather than a frequency as one of its
input parameters. The release 8.0.4 SetPrecision syntax specifying a timestamp and
a frequency (timestamp IN INTEGER, frequency IN INTEGER) is still supported,

but will not be supported in a future release. See the SetPrecision description in
Chapter 4 for more information.

C.2 Lookback Window (k) Parameter for Mavg and Msum

The lookback window (k) parameter for the Mavg and Msum functions now comes
before any optional start-end date range. The old format, as documented in the
previous version of this guide, is a deprecated feature.

C.3 Scaleup Function (GROUP BY Interface)

The Scaleup function and explanations of the GROUP BY interface for scaleup
operations are removed. The Scaleup function and the GROUP BY interface are still
supported, but their use is discouraged and they may not be supported in a future

Deprecated Features C-1

Package for Scaleup Functions

release.The use of the collection-based interface for scaleup, as documented in
Section 2.11.1, is encouraged.

C.4 Package for Scaleup Functions

All scaling functions (scaleup and scaledown) are included in the TimeScale
package. Scaleup functions that were available in release 8.0.4 can still be called

specifying the TimeSeries package; however, this usage is discouraged and may not
be supported in a future release.

C-2 Oracle8i Time Series User’s Guide

Glossary

anchor date

The date to be used for establishing the start of a pattern and (based on the pattern)
which timestamps are to be included in and excluded from the calendar. For
example, consider a pattern of ‘0,1,1,1,1,1,0’ over a day frequency defines a calendar
over all weekdays. If an anchor date of 01-Jun-1997 (or any Sunday) is specified,
then the 7-day pattern begins each Sunday; and Sunday and Saturday (0) are
excluded from the calendar, while Monday through Friday (1) are included in the
calendar.

calendar

A data structure that maps human-meaningful time values to underlying machine
representations of time. The calendar definition includes a frequency and a pattern,
and optionally exceptions and date boundaries (upper and lower).

exception

A timestamp that does not conform to the calendar pattern but that is significant for
the calendar definition. There are two kinds of exceptions: off-exceptions and
on-exceptions. (See the glossary definitions for each.)

frequency

The granularity of the calendar representation. The supported frequencies are
second, minute, hour, day, week, 10-day, semi-monthly, month, quarter, semi-annual, and
year.

group
See time series group.

Glossary-1

Glossary-2

irregular time series

A time series that does not have an associated calendar. Often, irregular time series
are data-driven, where unpredictable bursts of data arrive at unspecified points in
time or most timestamps cannot be characterized by a repeating pattern. However,
an irregular time series can be used with predictable data where it is simply not
necessary to deal with a calendar.

off-exception

An exception to the non-zero bits in the pattern, and thus is a timestamp to be
excluded from the calendar. For example, to ensure that Wednesday, 25-Dec-1996, is
excluded from the calendar when Wednesdays normally are included, define that
date as an off-exception.

on-exception

An exception to the zero (0) bits in the pattern, and thus is a timestamp to be
included in the calendar. For example, to ensure that Saturday, 28-Jun-1997, is
included in the calendar when Saturdays are excluded, define that date as an
on-exception.

pattern

The repeating pattern of frequencies and an anchor date that identifies a valid
timestamp for the first element in the pattern. For example, if the frequency is set to
day, the pattern can define which days of the week are included in the calendar.

pattern anchor date
See anchor date.

precision

The degree of exactness to which a timestamp needs to be specified. Each frequency
has an associated precision. Oracle8i Time Series functions require that input
timestamps be of the precision of the frequency associated with the calendar. A
timestamp that is not consistent with the frequency is said to be imprecise.

regular time series

A time series that has an associated calendar. In a regular time series, data arrives
predictably at predefined intervals. For example, daily summaries of stock market
data form regular time series, and such time series might include the set of trade
volumes and opening, high, low, and closing prices for stock XYZ for the year 1997.

time series

A set of timestamped data entries. Each time series consists of an identifier (such as
stock ticker ACME), and multiple timestamp-value pairs (such as all trading days
and the closing price for ACME on each trading day).

time series group

The schema objects for a time series. The time series group is created by
administrative tools procedures, starting with a call to Begin_Create_TS_Group and
ending with a call to End_Create TS_Group.

Glossary-3

Glossary-4

Numerics

8.1
documentation changes for release 8.1, xix

A

Add_Existing_Column procedure, 7-3
Add_Integer_Column procedure, 7-6
Add_Number_Column procedure, 7-8
Add_Varchar2_Column procedure, 7-10
addition

TSAdd function, 5-85

TSSum function, 5-119
administrative tools procedures, 2-43,7-1

role requirement, 2-44

UTL_FILE requirements, 2-45
advanced-developer demo, 1-9
aggregate functions, 2-34
ALL_TIMESERIES xxx views, B-2
API

Javaclient, 1-14
architecture

Oracle8i Time Series, 2-18
arithmetic functions, 2-35
average

TSAvg function, 5-89
average, moving

Mavg function, 2-36, 5-76

B

Begin_Create_TS_Group procedure, 7-12
bottom values

Index

TSMinN function, 5-105
bulk loading of time series data, 3-8
consistency, 2-29, 3-9

C

calendar, 2-5

data types, 2-14

defining, 2-10

exceptions, 2-6

frequency, 2-6

pattern, 2-5

precision, 2-9

shared, 2-5,3-7

validating, 4-49, 4-98
calendar functions, 2-30, 4-1
calendar precision, 2-8
calendar-creation functions, 2-30
Cancel_Create_TS_Group procedure, 7-14
Cavg function, 5-3
changes to documentation for release 8.1, xix
client-side API

Java, 1-14
Close_Log procedure, 7-15
Cmax function, 5-5
Cmin function, 5-8
collection-based interface, 2-22
CombineCals function, 4-3
compatibility matrix for scaleup/scaledown, 2-39
consistency of time series data

approaches, 2-29, 3-9
conventional path (SQL*Loader), 3-11
conversion functions, 2-37
count

Index-1

TSCount function, 5-91
Cprod function, 5-11
cumulative sequence functions, 2-36

D

data types

calendar, 2-14

time series, 2-14
Database Configuration Assistant (ODCA), 1-7
data-driven time series, 2-2
Day function, 4-8
DBA_TIMESERIES xxx views, B-3
defining

calendar, 2-10
DeleteExceptions function, 4-10
demos (demonstration files)

advanced-developer, 1-9

electric utility, 1-9

Java, 1-9,1-14

Oracle Call Interface (OCI), 1-10

Oracle Developer, 1-10

PRO*C/C++, 1-9

quick-start, 1-10

retrofitting existing tables, 1-9

usage, 1-9
deprecated features, C-1
DeriveExceptions function, 2-12,5-15
Developer/2000 (Oracle Developer) demo, 1-10
direct path (SQL*Loader), 3-11
DiscardError options for scaleup, 2-41
Display function, 5-18
Display_Attributes procedure, 7-16
DisplayValCal procedure, 4-13
DisplayValTS procedure, 5-21
division

TSDivide function, 5-93
Drop_TS_Group procedure, 7-18
Drop_TS_Group_All procedure, 7-20

E

electric utility demo, 1-9
End_Create_TS_Group procedure, 7-22
EqualCals function, 4-20

Index-2

error messages, A-1
errors
DiscardError options for scaleup, 2-41
exceptions, 2-6
deriving, 2-12
ExtractCal function, 5-29
ExtractDate function, 5-31
extraction functions, 2-33
ExtractTable function, 5-33
ExtractValue function, 5-35

F

Fill function, 5-37

First function, 5-43

FirstN function, 5-45

flat IOT storage model, 2-19

frequency, 2-6

functions
Add_Existing_Column procedure, 7-3
Add_Integer_Column procedure, 7-6
Add_Number_Column procedure, 7-8
Add_Varchar2_Column procedure, 7-10
Begin_Create_TS_Group procedure, 7-12
calendar, 2-30,4-1
calendar-creation, 2-30
Cancel_Create_TS_Group procedure, 7-14
Cavg, 5-3
Close_Log procedure, 7-15
Cmax, 5-5
Cmin, 5-8
CombineCals, 4-3
Cprod, 5-11
Day, 4-8
DeleteExceptions, 4-10
DeriveExceptions, 2-12, 5-15
Display, 5-18
Display_Attributes procedure, 7-16
DisplayValCal procedure, 4-13
DisplayValTS procedure, 5-21
Drop_TS_Group procedure, 7-18
Drop_TS_Group_All procedure, 7-20
End_Create_TS_Group procedure, 7-22
EqualCals, 4-20
ExtractCal, 5-29

ExtractDate, 5-31
ExtractTable, 5-33
ExtractValue, 5-35

Fill, 5-37
First, 5-43
FirstN, 5-45

GenDateRangeTab, 4-23
Get_Flat_Attributes procedure, 7-24
Get_Object_Attributes procedure, 7-29
Get_Status procedure, 7-33
GetDatedElement, 5-48
GetIntervalEnd, 4-27
GetlntervalStart, 4-30
GetNthElement, 5-50

GetOffset, 4-33

GetSeries, 5-52

Hour, 4-36

InsertExceptions, 4-38
IntersectCals, 4-42
InvalidTimeStampsBetween, 4-46
IsValidCal, 4-49

IsValidDate, 4-55

IsValidTS, 5-55

Lag, 5-63
Last, 5-67
LastN, 5-69
Lead, 5-72
Mavg, 5-76
Minute, 4-58
Month, 4-60
Msum, 5-79

NumlinvalidTimeStampsBetween, 4-62
NumOffExceptions, 4-65
NumOnExceptions, 4-68
NumTimeStampsBetween, 4-71
OffsetDate, 4-74

Open_Log procedure, 7-35
Quarter, 4-77
Scaledownlinterpolate, 6-3
ScaledownRepeat, 6-6
ScaledownSplit, 6-9
ScaleupAvg, 6-12
ScaleupAvgX, 6-15
ScaleupCount, 6-18
ScaleupFirst, 6-21

ScaleupGMean, 6-24
ScaleuplLast, 6-27
ScaleupMax, 6-30
ScaleupMin, 6-33
ScaleupSum, 6-36
ScaleupSumAnnual, 6-39
Second, 4-79
Semi_annual, 4-81
Semi_monthly, 4-83
Set_Flat_Attributes procedure, 7-37
Set_Object_Attributes procedure, 7-41
SetPrecision, 4-85
Ten_day, 4-88

time scaling, 2-37, 6-1
time series, 2-32,5-1
TimeStampsBetween, 4-90
Trace_Off procedure, 7-45
Trace_On procedure, 7-46
TrimSeries, 5-82

TSAdd, 5-85

TSAvg, 5-89

TSCount, 5-91
TSDivide, 5-93

TSMax, 5-97

TSMaxN, 5-99
TSMedian, 5-101
TSMin, 5-103

TSMinN, 5-105
TSMultiply, 5-107
TSProd, 5-111
TSStdDev, 5-113
TSSubtract, 5-115
TSSum, 5-119
TSVariance, 5-121
UnionCals, 4-94
ValidateCal, 4-98
ValidateTS, 5-123

Week, 4-106

Year, 4-108

G

GenDateRangeTab function, 4-23
Get_Flat_Attributes procedure, 7-24
Get_Object_Attributes procedure, 7-29

Index-3

Get_Status procedure, 7-33
GetDatedElement function, 5-48
GetlIntervalEnd function, 4-27
GetlntervalStart function, 4-30
GetNthElement function, 5-50
GetOffset function, 4-33
GetSeries function, 5-52

group (time series), 7-12

H

highest values
TSMaxN, 5-99
Hour function, 4-36

IgnoreNulls options for scaleup, 2-41
imprecise timestamps, 2-8
incremental loading of time series data, 3-10
index-organized table (10T)

flat (storage model), 2-19

nested (storage model), 2-20
InsertExceptions function, 4-38
installing the product, 1-7
instance-based interface, 2-22
interpolation with scaledown, 6-3
IntersectCals function, 4-42
InvalidTimeStampsBetween function, 4-46
irregular time series, 1-4,2-2
IsValidCal function, 4-49
IsValidDate function, 4-55
IsValidTS function, 5-55

J

Java
client-side API, 1-14
demos, 1-9,1-14

K

kit installation, 1-7

Index-4

L

Lag function, 5-63
Last function, 5-67
LastN function, 5-69
Lead function, 5-72
loading
time series data, 3-7
logging
UTL_FILE procedure used, 2-45
lowest values
TSMinN, 5-105

M

map table, 3-6
Mavg function, 2-36, 5-76
maxDate

effect if null, 2-12
maximum

TSMax function, 5-97
median

TSMedian function, 5-101
messages

error, A-1
metadata (map) table, 3-6
metadata for usage demo, 1-13,2-25
metadata views

Oracle8i Time Series metadata, B-1
minDate

effect if null, 2-12
minimum

TSMin function, 5-103
Minute function, 4-58
Month function, 4-60
moving average

Mavg function, 2-36, 5-76
moving sum

Msum function, 2-36,5-79
Msum function, 2-36,5-79
multiplication

TSMultiply function, 5-107

TSProd function, 5-111

N

nested 10T storage model, 2-20
null minDate or maxDate for calendar, 2-12
null operand semantics, 2-16

scaleup options, 2-41
NumlnvalidTimeStampsBetween function, 4-62
NumOffExceptions function, 4-65
NumOnExceptions function, 4-68
NumTimeStampsBetween function, 4-71

O

object model (nested IOT storage), 2-20
object relational technology, 1-2
object view, 1-13
OCl demo, 1-10
off-exception, 2-6
semantics, 2-17

OffsetDate function, 4-74
on-exception, 2-6
Open_Log procedure, 7-35
Oracle Call Interface (OCI) demo, 1-10
Oracle Database Configuration Assistant

(ODCA), 1-7
Oracle Developer demo, 1-10
Oracle Forms demo, 1-10
Oracle Universal Installer, 1-7
ORDSYS schema, 1-9
ORDTCalendar data type, 2-14
ORDTDateRange data type, 2-16
ORDTDateRangeTab data type, 2-16
ORDTDateTab data type, 2-15
ORDTEXxceptions data type, 2-14
ORDTNumCell data type, 2-14
ORDTNumSeries data type, 2-14
ORDTNumSerieslOTRef data type, 2-15
ORDTNumSerieslOTRef type, 2-24
ORDTNumTab data type, 2-14
ORDTPattern data type, 2-14
ORDTPatternBits data type, 2-14
ordtsyn.sqgl (public synonyms), 1-9
ORDTVarchar2Cell data type, 2-15
ORDTVarchar2Series data type, 2-15
ORDTVarchar2SerieslOTRef data type, 2-15

ORDTVarchar2Tab data type, 2-15

P

package names
public synonyms for, 1-9

package state, 7-33

pattern, 2-5

PRAGMA RESTRICT_REFERENCES
with ORDTNumSerieslOTRef view, 2-25

precision, 2-8,2-9

privilege (role) requirements for tools
procedures, 2-44

PRO*C/C++ demo, 1-9

procedures
Add_Existing_Column, 7-3
Add_Integer_Column, 7-6
Add_Number_Column, 7-8
Add_Varchar2_Column, 7-10
administrative tools, 2-43,7-1
Begin_Create_TS_Group, 7-12
Cancel_Create_TS Group, 7-14
Close_Log, 7-15
Display_Attributes, 7-16
DisplayValCal, 4-13
DisplayValTS, 5-21
Drop_TS_Group, 7-18
Drop_TS_Group_All, 7-20
End_Create_TS_Group, 7-22
Get_Flat_Attributes, 7-24
Get_Object_Attributes, 7-29
Get_Status, 7-33
Open_Log, 7-35
Set_Flat_Attributes, 7-37
Set_Object_Attributes, 7-41
Trace Off, 7-45
Trace_On, 7-46

product
TSProd function, 5-111

public synonyms for package names, 1-9

Q

Quarter function, 4-77
quick-start demo, 1-10

Index-5

files, 1-11

R

README.txt files, 1-10
reference-based interface, 2-24
reference-based view, 1-13
regular time series, 2-2
relational view, 1-13
release 8.1 documentation changes, Xxix
repeat with scaledown, 6-6
RESTRICT_REFERENCES
with ORDTNumSerieslOTRef view, 2-25
retrofit demo, 1-9
retrofitting existing tables to create time series
schema objects, 3-11
role requirement for administrative tools
procedures, 2-44

S

scaledown

compatibility matrix, 2-39
Scaledownlnterpolate function, 6-3
ScaledownRepeat function, 6-6
ScaledownSplit function, 6-9
scaleup

compatibility matrix, 2-39
ScaleupAvg function, 6-12
ScaleupAvgX function, 6-15
ScaleupCount function, 6-18
ScaleupFirst function, 6-21
ScaleupGmean function, 6-24
ScaleupLast function, 6-27
ScaleupMax function, 6-30
ScaleupMin function, 6-33
ScaleupSum function, 6-36
ScaleupSumAnnual function, 6-39
Second function, 4-79
semantics

null operands, 2-16

off-exception operands, 2-17
Semi_annual function, 4-81
Semi_monthly function, 4-83
server output, setting, 5-19

Index-6

SET SERVEROUTPUT ON statement, 5-19
Set_Flat_Attributes procedure, 7-37
Set_Object_Attributes procedure, 7-41
SetPrecision function, 4-85
shared calendar, 2-5, 3-7
shift functions, 2-34
split with scaledown, 6-9
SQL formatting functions, 2-34
SQL*Loader utility, 3-7

bulk loading, 3-8

conventional and direct paths, 3-11

incremental loading, 3-10
standard deviation

TSStdDev function, 5-113
state

package, 7-33
stockdemo_metadata table, 1-13, 2-25
stockdemo_sv object view, 1-13
stockdemo_sv relational view, 1-13
stockdemo _ts reference-based view, 1-13
stockdemo_ts view, 2-25
subtraction

TSSubtract function, 5-115
sum

TSSum function, 5-119
sum, moving

Msum function, 2-36,5-79
synonyms

public (package names), 1-9

T

Ten_day function, 4-88
time scaling functions, 2-37, 6-1
time series

architecture, 2-18

data storage, 2-19

data types, 2-14

irregular, 1-4,2-2

regular, 2-2

validating, 3-9, 5-55, 5-123
time series functions, 2-32,5-1
time series group, 7-12
TIMESERIES _DBA role, 2-44
TIMESERIES DEVELOPER role, 2-44

TimeStampsBetween function, 4-90
tools procedures, 7-1

role requirement, 2-44

UTL_FILE requirements, 2-45
top values

TSMaxN function, 5-99
Trace_Off procedure, 7-45
Trace_On procedure, 7-46
trim functions, 2-33
TrimSeries function, 5-82
TSAdd function, 5-85
TSAvg function, 5-89
TSCount function, 5-91
TSDivide function, 5-93
TSMax function, 5-97
TSMaxN function, 5-99
TSMedian function, 5-101
TSMin function, 5-103
TSMinN function, 5-105
TSMultiply function, 5-107
TSProd function, 5-111
TSStdDev function, 5-113
TSSubtract function, 5-115
TSSum function, 5-119
TSVariance function, 5-121

U

UnionCals function, 4-94
usage demo, 1-9

files, 1-12

tables and views, 1-13,2-25
USER_TIMESERIES xxx views, B-4
utility (electric) demo, 1-9

UTL_FILE procedure and logging, 2-45
UTL_FILE_DIR parameter in Oracle initialization

file, 2-45

\%

ValidateCal function, 4-98
ValidateTS function, 5-123
validating

calendar, 4-49, 4-98

time series, 3-9, 5-55, 5-123

variance

TSVariance function,

view

with ORDTNumSerieslOTRef data type,

Vviews

Oracle8i Time Series metadata,

\W

5-121

B-1

2-25

Week function,

Y

4-106

Year function,

4-108

Index-7

Index-8

	PDF Directory
	Send Us Your Comments
	Preface
	Intended Audience
	Structure
	Related Documents
	Conventions
	Changes to This Guide

	1 Introduction
	1.1� Oracle8i Time Series and Object-Relational Technology
	1.2� Storing and Accessing Data
	1.3� Time Series Usage Models
	1.3.1� No Need for Calendars
	1.3.2� Need for Calendars

	1.4� Installing the Kit
	1.4.1� Required Software for Using Oracle8i Time Series
	1.4.2� After Installing Oracle8i Time Series
	1.4.3� Creating Database Objects Without Using ODCA

	1.5� Creating Public Synonyms for Oracle8i Time Series Packages
	1.6� Oracle8i Time Series Demos (Demonstrations)
	1.6.1� Quick-Start Demo
	1.6.2� Usage Demo

	1.7� Java Client-Side API (Prototype)

	2 Time Series Concepts
	2.1� Overview of Time Series Data
	2.1.1� Regular and Irregular Time Series
	2.1.2� Data Generation for a Time Series
	2.1.3� Historical Data

	2.2� Calendars
	2.2.1� Frequency
	2.2.2� Precision
	2.2.3� Pattern
	2.2.4� Overview of Calendar Definition
	2.2.5� Deriving Calendar Exceptions from Time Series Data

	2.3� Data Types
	2.3.1� Calendar Data Types
	2.3.2� Time Series Data Types

	2.4� Conventions and Semantics
	2.4.1� Semantics of Null Operands
	2.4.2� Semantics of Off-Exception Operands

	2.5� Oracle8i Time Series Architecture
	2.6� Storage of Time Series Data
	2.6.1� Flat IOT or Flat Table Storage
	2.6.2� Nested IOT Storage (Object Model)

	2.7� Interfaces to Time Series and Time Scaling Functions
	2.7.1� Instance-Based Interface
	2.7.2� Reference-Based Interface

	2.8� Consistency of Time Series Data
	2.8.1� Rules for Time Series Consistency
	2.8.2� Enforcing Time Series Consistency with Relational Views
	2.8.3� Bulk Loading and Consistency

	2.9� Calendar Functions
	2.9.1� End-User Functions
	2.9.2� Product-Developer Functions

	2.10� Time Series Functions
	2.10.1� Extraction, Retrieval, and Trim Functions
	2.10.2� Shift Functions
	2.10.3� SQL Formatting Functions
	2.10.4� Aggregate Functions
	2.10.5� Arithmetic Functions
	2.10.6� Cumulative Sequence Functions
	2.10.7� Moving Average and Sum Functions
	2.10.8� Conversion Functions

	2.11� Time Scaling Functions
	2.11.1� Time Scaling on Collections
	2.11.2� Scaleup Options: IgnoreNulls and DiscardError

	2.12� Administrative Tools Procedures
	2.12.1� Role Requirement for Administrative Tools Procedures
	2.12.2� Other Requirements for Administrative Tools Procedures

	3 Time Series Usage
	3.1� Creating a Time Series Group
	3.2� Creating a Calendar
	3.3� Maintaining a Map Table
	3.4� Populating the Detail Table Using SQL*Loader
	3.4.1� Bulk Loading
	3.4.2� Incremental Loading

	3.5� Retrofitting Existing Tables
	3.6� Validating Time Series Consistency
	3.7� Formulating Time Series Queries
	3.8� Deriving Calendar Exceptions
	3.8.1� Deriving Exceptions Using a Time Series (Approach 1)
	3.8.2� Deriving Exceptions Using a Calendar and Table of Dates (Approach 1A)
	3.8.3� Deriving Exceptions Using Two Time Series Parameters (Approach 2)

	3.9� Using Product-Developer Functions

	4 Calendar Functions: Reference
	CombineCals
	Day
	DeleteExceptions
	DisplayValCal Procedure
	EqualCals
	GenDateRangeTab
	GetIntervalEnd
	GetIntervalStart
	GetOffset
	Hour
	InsertExceptions
	IntersectCals
	InvalidTimeStampsBetween
	IsValidCal
	IsValidDate
	Minute
	Month
	NumInvalidTimeStampsBetween
	NumOffExceptions
	NumOnExceptions
	NumTimeStampsBetween
	OffsetDate
	Quarter
	Second
	Semi_annual
	Semi_monthly
	SetPrecision
	Ten_day
	TimeStampsBetween
	UnionCals
	ValidateCal
	Week
	Year

	5 Time Series Functions: Reference
	Cavg
	Cmax
	Cmin
	Cprod
	Csum
	DeriveExceptions
	Display
	DisplayValTS Procedure
	ExtractCal
	ExtractDate
	ExtractTable
	ExtractValue
	Fill
	First
	FirstN
	GetDatedElement
	GetNthElement
	GetSeries
	IsValidTS
	Lag
	Last
	LastN
	Lead
	Mavg
	Msum
	TrimSeries
	TSAdd
	TSAvg
	TSCount
	TSDivide
	TSMax
	TSMaxN
	TSMedian
	TSMin
	TSMinN
	TSMultiply
	TSProd
	TSStdDev
	TSSubtract
	TSSum
	TSVariance
	ValidateTS

	6 Time Scaling Functions: Reference
	ScaledownInterpolate
	ScaledownRepeat
	ScaledownSplit
	ScaleupAvg
	ScaleupAvgX
	ScaleupCount
	ScaleupFirst
	ScaleupGMean
	ScaleupLast
	ScaleupMax
	ScaleupMin
	ScaleupSum
	ScaleupSumAnnual

	7 Administrative Tools Procedures: Reference
	Add_Existing_Column
	Add_Integer_Column
	Add_Number_Column
	Add_Varchar2_Column
	Begin_Create_TS_Group
	Cancel_Create_TS_Group
	Close_Log
	Display_Attributes
	Drop_TS_Group
	Drop_TS_Group_All
	End_Create_TS_Group
	Get_Flat_Attributes
	Get_Object_Attributes
	Get_Status
	Open_Log
	Set_Flat_Attributes
	Set_Object_Attributes
	Trace_Off
	Trace_On

	A Error Messages
	B Oracle8i Time Series Metadata Views
	B.1� View Definitions
	B.1.1� ALL_TIMESERIES_xxx View Definitions
	B.1.2� DBA_TIMESERIES_xxx View Definitions
	B.1.3� USER_TIMESERIES_xxx View Definitions

	B.2� Column Descriptions
	B.2.1� xxx_TIMESERIES_GROUPS Columns
	B.2.2� xxx_TIMESERIES_COLS Columns
	B.2.3� xxx_TIMESERIES_OBJS Columns

	C Deprecated Features
	C.1� SetPrecision Function
	C.2� Lookback Window (k) Parameter for Mavg and Msum
	C.3� Scaleup Function (GROUP BY Interface)
	C.4� Package for Scaleup Functions

	Glossary
	Index

