
Oracle® interMedia Locator

User’s Guide and Reference

Release 8.1.7

September 2000

Part No. A85334-01

Oracle interMedia Locator is a standards-based data management solution for
delivery of Internet and mobile location-based services. Locator provides a
complete plug and play infrastructure for wireless telecommunications, Internet
Service Providers (ISPs), and Application Service Providers (ASPs).

Oracle interMedia Locator User’s Guide and Reference, Release 8.1.7

Part No. A85334-01

Copyright © 1999, 2000, Oracle Corporation. All rights reserved.

Primary Author: Rod Ward

Contributors: Frank Wang, Chuck Murray, Xavier Lopez, Susan Shepard, Brenda Silva

The Programs (which include both the software and documentation) contain proprietary information of
Oracle Corporation; they are provided under a license agreement containing restrictions on use and
disclosure and are also protected by copyright, patent, and other intellectual and industrial property
laws. Reverse engineering, disassembly, or decompilation of the Programs is prohibited.

The information contained in this document is subject to change without notice. If you find any problems
in the documentation, please report them to us in writing. Oracle Corporation does not warrant that this
document is error free. Except as may be expressly permitted in your license agreement for these
Programs, no part of these Programs may be reproduced or transmitted in any form or by any means,
electronic or mechanical, for any purpose, without the express written permission of Oracle Corporation.

If the Programs are delivered to the U.S. Government or anyone licensing or using the programs on
behalf of the U.S. Government, the following notice is applicable:

Restricted Rights Notice Programs delivered subject to the DOD FAR Supplement are "commercial
computer software" and use, duplication, and disclosure of the Programs, including documentation,
shall be subject to the licensing restrictions set forth in the applicable Oracle license agreement.
Otherwise, Programs delivered subject to the Federal Acquisition Regulations are "restricted computer
software" and use, duplication, and disclosure of the Programs shall be subject to the restrictions in FAR
52.227-19, Commercial Computer Software - Restricted Rights (June, 1987). Oracle Corporation, 500
Oracle Parkway, Redwood City, CA 94065.

The Programs are not intended for use in any nuclear, aviation, mass transit, medical, or other inherently
dangerous applications. It shall be the licensee's responsibility to take all appropriate fail-safe, backup,
redundancy, and other measures to ensure the safe use of such applications if the Programs are used for
such purposes, and Oracle Corporation disclaims liability for any damages caused by such use of the
Programs.

Oracle is a registered trademark, and Oracle8, Oracle8i, and PL/SQL are trademarks of Oracle
Corporation. Other names may be trademarks of their respective owners.

Contents

List of FiguresList of Tables

Send Us Your Comments .. vii

Preface.. ix

Audience ... ix
Organization ... ix
Related Documents... x
Conventions... x
Changes to This Guide.. xi

1 Introduction

2 Locator Functions

2.1 Locator Implementation ... 2-1
2.1.1 Locator Structures .. 2-1
2.2 Results Definition and Geocode Functions ... 2-2

GEOCODE_RESULT Object .. 2-3

GEOCODE1 Function (with lastline field) .. 2-5

GEOCODE1 Function (with city, state, and postal code (zip) fields).......................... 2-11
2.3 Estimate Level and Spatial Locator Index ... 2-13

ESTIMATE_LEVEL ... 2-14

SETUP_LOCATOR_INDEX... 2-16
2.4 Locator Operator ... 2-17
 iii

LOCATOR_WITHIN_DISTANCE.. 2-18

3 Generic Geocoding Interface

3.1 Locator Implementation: Benefits and Limitations .. 3-2
3.2 Generic Geocoding Client .. 3-2
3.3 Geocoder Metadata ... 3-3
3.3.1 Server Properties .. 3-4
3.3.2 Geocoding Input and Output Specification ... 3-5
3.3.2.1 Multiple Matches and Rejected Records.. 3-8
3.4 Metadata Helper Class.. 3-9
3.5 Single-Record and Interactive Geocoding ... 3-9
3.6 Java Geocoder Service Interface .. 3-10
3.7 Enabling Third-Party Geocoders... 3-11

A Sample Programs

A.1 Sample Scripts .. A-1
A.2 Sample Code... A-2
A.2.1 Using Oracle interMedia Locator Services to Find Nearest Neighbor A-2
A.2.2 Using Oracle interMedia Locator Services to Find Distance Between Two Points A-6

B Exceptions and Error Messages

B.1 Exceptions... B-1
B.1.1 Geocode HTTP Package Exceptions .. B-1

Index
iv

 v

List of Figures

3–1 Oracle Geocoding Framework .. 3-3

vi

List of Tables

2–1 Locator Functions and Procedures .. 2-2
2–2 Locator ESTIMATE_LEVEL Function and Spatial Locator Index 2-13
2–3 Locator Operator ... 2-17

Send Us Your Comments

Oracle interMedia Locator User’s Guide and Reference , Release 8.1.7

Part No. A85334-01

Oracle Corporation welcomes your comments and suggestions on the quality and usefulness of this
document. Your input is an important part of the information used for revision.

■ Did you find any errors?
■ Is the information clearly presented?
■ Do you need more information? If so, where?
■ Are the examples correct? Do you need more examples?
■ What features did you like most?

If you find any errors or have any other suggestions for improvement, please indicate the document
title and part number, and the chapter, section, and page number (if available). You can send com-
ments to us in the following ways:

■ Electronic mail: nedc_doc@us.oracle.com
■ FAX: 603.897.3316 Attn: Oracle interMedia Locator Documentation
■ Postal service:

Oracle Corporation
Oracle interMedia Locator Documentation
One Oracle Drive
Nashua, NH 03062
USA

If you would like a reply, please give your name, address, telephone number, and (optionally) elec-
tronic mail address.

 If you have problems with the software, please contact your local Oracle Support Services.
vii

viii

Preface

This guide describes how to use Oracle interMedia Locator.

Oracle interMedia Locator requires Oracle8i or Oracle8i Enterprise Edition.

For information about the differences between Oracle8i and Oracle8i Enterprise Edi-
tion and the features and options that are available to you, see Getting to Know
Oracle8i.

Audience
This guide is for anyone who is interested in storing, retrieving, and manipulating
locator point data in an Oracle database, including developers of locator specializa-
tion services.

Organization
This guide contains the following chapters and appendixes:

Chapter 1 Introduces Oracle interMedia Locator; explains concepts.

Chapter 2 Describes the Oracle interMedia Locator functions, the geocoding service, and the
locator operator, and provides examples of their use.

Chapter 3 Describes the generic geocoding interface to third-party geocoding software.

Appendix A Describes how to run the sample application and includes the source program.

Appendix B Lists exceptions raised and potential errors, their causes, and user actions to cor-
rect them.
 ix

Related Documents

For more information about using this product in a development environment, see
the following documents in the Release 8.1.7 Oracle8i documentation set:

■ Getting to Know Oracle8i

■ Oracle8i Application Developer’s Guide - Fundamentals

■ Oracle8i Administrator’s Guide

■ Oracle8i Error Messages

■ Oracle8i Utilities

■ Oracle8i Concepts

■ Oracle8i Tuning

■ SQL*Plus User’s Guide and Reference

Conventions
In this guide, Oracle interMedia Locator is sometimes referred to as Locator.

In examples, an implied carriage return occurs at the end of each line, unless other-
wise noted. You must press the Return key at the end of a line of input.

Note: For information added after the release of this guide, refer
to the online README.TXT file in your ORACLE_HOME directory.
Depending on your operating system, this file may be in:

ORACLE_HOME/md/doc/README.TXT

Please see your operating-system specific installation guide for
more information.

For the latest documentation, see the Oracle Technology Network
Web site:

http://technet.oracle.com/
x

The following conventions are also used in this guide:
:

Changes to This Guide
The following substantive changes were made to this guide since its previous
version for release 8.1.6 on the Oracle Technology Network (OTN) Web site.

Other minor corrections and clarifications are also included.

Locator supports two new Oracle partners, MapQuest.com and whereonearth.com,
who each provide geocoding services to complement your Oracle solution. See
Chapter 1 for more information.

The generic geocoding interface to third-party geocoding software for batch geoc-
oding is described. See Chapter 3 for more information.

New sample code is provided that describes how to use Locator to find the dis-
tance between two points. See Section A.2.2 for more information.

Convention Meaning

 .
 .
 .

Vertical ellipsis points in an example mean that information not
directly related to the example has been omitted.

... Horizontal ellipsis points in statements or commands mean that
parts of the statement or command not directly related to the exam-
ple have been omitted.

boldface text Boldface text indicates a term defined in the text.

italic text Italic text is used for emphasis, for book titles, and variable names.

< > Angle brackets enclose user-supplied names.

[] Brackets enclose optional clauses from which you can choose one or
none.
 xi

xii

 Introdu
1

Introduction

Oracle interMedia Locator enables Oracle8i to support online Internet-based geoc-
oding facilities and batch geocoding services for locator applications and proximity
queries.

Geocoding represents addresses and locations of interest (postal codes, demo-
graphic regions, and so forth) as geometric factors (points). These enable distances
to be calculated and sites to be represented graphically in Web, data warehousing,
customer information system, and enterprise resource planning applications.
Geocoding services can be used to add the exact location (latitude and longitude) of
points of interest to existing data files stored in Oracle8i.

Oracle interMedia Locator supports the leading online and batch geocoding ser-
vices including MapXtreme from MapInfo Corporation, Centrus from Qualitative
Marketing Software, MapQuest destination information solutions from
MapQuest.com ("MapQuest"), and GeoZip from whereonearth.com Ltd.

MapInfo Corporation, Qualitative Marketing Software, MapQuest.com, and where-
onearth.com currently provide the online and batch geocoding services for the
Locator features. Each service offers a number of free geocoding calls at its Web site
for trial purposes for online geocoding, and geocoding service software for batch
geocoding. Locator users need to consent to the vendor policies and possibly regis-
ter with them:

MapInfo Corporation: http://www.MapMarker.com/

Qualitative Marketing Software: http://www.centrus-software.com/oracle/

MapQuest.com: http://www.mapquest.com/

whereonearth.com: http://www.whereonearth.com/

During registration for online geocoding services, you are asked to create your own
user ID and password. Please make a note of them for embedding into your sample
ction 1-1

geocoding service because the user ID/password combination is required for each
geocoding call. Your free account is limited to a small number of address records
per day.

Should you require the ability to geocode larger data sets, or for further informa-
tion, contact:

■ MapInfo technologies to complement your Oracle solution; call 1.800.FAST-
MAP (1.800.327.8627); or send e-mail to custserv@mapinfo.com (see their Web
site for more specific geographic contact information)

■ QMSoft technologies to complement your Oracle solution; call QMSoft at
1.800.782.7988; or send e-mail to oracle@qmsoft.com

■ MapQuest.com technologies to complement your Oracle solution; call
1.888.MAPQUEST (1.888.627.7837) or in Europe, (31) 70.426.2660; or send e-mail
to info@mapquest.com

■ whereonearth.com technologies to complement your Oracle solution; call +44
(0) 207 246 1400; or send e-mail to enquiries@whereonearth.com

These companies’ Web sites will also have detailed documentation about the ven-
dor-specific parameter information of the Locator features, such as match code or
error code. Because Oracle provides an interface to facilitate the geocoding func-
tions, you should contact the vendors for any questions regarding the geocoding
services.

See the Oracle interMedia Locator Release Notes (ORACLE_HOME/md/doc/
README.txt) for additional information about the geocoding services provided by
these Oracle partners.

Oracle interMedia Locator also supports server-based geocoding and data scrub-
bing operations for data warehouse applications.

Using simple location queries, Oracle interMedia Locator lets Web and other appli-
cations retrieve information based on distance. For example, using a set of geo-
coded address data and simple query-by-text or query-by-map operations, users
can use a Web browser-based application, enter a distance, and identify the nearest
location from a specific address or reference point on a map. For example, Oracle
interMedia Locator applications can help you locate stores, offices, distribution
points, and other points of interest based on their distance from a given postal (zip)
code, address, or other reference point.

Oracle interMedia Locator supports geocoding, storage, and retrieval of geocoded,
spatial-point data in Oracle8i databases. Oracle interMedia Locator is not designed
to be an end-user application. Its features consist of:
1-2 Oracle interMedia Locator

■ A Locator object type that describes and supports only the point-geometry
object type

■ A geocode result object type that describes the geocode result definition

■ A call interface described by two geocode result functions used for geocoding
spatial data that also contains the output geocode result object and the Locator
geometry object

■ A function to better estimate the index level for use with the spatial locator
index for within-distance queries that use a radius distance greater than 100
miles

■ A procedure to create a spatial locator index on the column where the spatial
information is stored in the geocoded table that is used by the locator operator

■ A locator operator that uses geometric intersection algorithms and the spatial
locator index for performing within-distance queries

Based on this implementation, this Oracle interMedia Locator release supports:

■ Geocoding spatial-point data by providing the means to add a geocoded
address column or objects to existing tables and storing the geocoded address
column or objects locally in the Oracle8i universal database server

■ Inserting and retrieving geocoded address data

■ Performing simple within-distance text- or map-based queries on the geocoded
data

Some example uses of these Locator features are the following:

■ Locate stores, offices, or distribution points based on their distances from a
given reference point such as an address or postal code.

■ Locate restaurants or hotels within a given point-to-point distance using a per-
son’s specific address, or current location on a map, such as at a tourist informa-
tion center.

These features enable database designers to extend existing application databases
with geocoded, spatial-point data, or to build new geocoded spatial-point applica-
tions. Web application developers can build specialized Web-enabled Locator appli-
cations.

For additional information, see the following:

■ Chapter 2 describes the Web-based Locator functions, the geocoding service,
and the Locator operator along with basic examples of using the Locator object
types.
 Introduction 1-3

■ Chapter 3 describes the generic interface to third-party geocoding software that
lets users geocode an entire address table through third-party batch geocoding
services.

■ Appendix A describes a number of sample scripts that are installed and that
you can modify and run.

■ Appendix B describes Oracle interMedia Locator exceptions and error mes-
sages.
1-4 Oracle interMedia Locator

 Locator Fun
2

Locator Functions

2.1 Locator Implementation
The implementation of Oracle interMedia Locator functions consists of a set of
object types, an index method type, and an operator on these types. A geometry is
stored in a single row in a column of type SDO_GEOMETRY. Spatial index creation
and maintenance is done using data definition language (DDL) (CREATE, ALTER,
DROP) and data manipulation language (DML) (INSERT, UPDATE, DELETE) state-
ments.

2.1.1 Locator Structures
The geometric description of a Locator object is stored in a single row in a column
of type SDO_GEOMETRY. This row is in a user-defined table that has one primary
key column (or a set columns that constitute a primary key) and optionally one or
more attribute columns.

The object type SDO_GEOMETRY is defined as:

Create Type SDO_GEOMETRY as object (
SDO_GTYPE NUMBER,
SDO_SRID NUMBER,
SDO_POINT SDO_POINT_TYPE,
SDO_ELEM_INFO MDSYS.SDO_ELEM_INFO_ARRAY,
SDO_ORDINATES MDSYS.SDO_ORDINATE_ARRAY);

The attributes have the following semantics:

■ SDO_GTYPE - The type of the geometry. The valid geometry type is:

1 = POINT

The geometry type must always be 1.
ctions 2-1

Results Definition and Geocode Functions
■ SDO_SRID - Spatial reference identifier. This is always NULL.

■ SDO_POINT - An object type with attributes X, Y, and Z; all of type NUMBER
represented as longitude, latitude, and NULL, respectively.

■ SDO_ELEM_INFO - Always NULL.

■ SDO_ORDINATES - Always NULL.

2.2 Results Definition and Geocode Functions
This section contains a description of the geocode result object type definition and
the call interface described by two geocode functions as shown in Table 2–1.

Table 2–1 Locator Functions and Procedures

Type/Function Description

GEOCODE_RESULT object Geocode result object definition

GEOCODE1 function Geocode function that contains a lastline field; but no city,
state, or postal code (zip) fields

GEOCODE1 function Geocode function that contains city, state, and postal code
(zip) fields, but no lastline field
2-2 Oracle interMedia Locator

GEOCODE_RESULT Object
GEOCODE_RESULT Object

Format
create type GEOCODE_RESULT AS OBJECT(

 matchcode varchar2(16),

 firmname varchar2(512),

 addrline varchar2(512),

 addrline2 varchar2(512),

 city varchar2(512),

 state varchar2(512),

 zip varchar2(5),

 zip4 varchar2(4),

 lastline varchar2(512),

 county varchar2(32),

 block varchar2(32),

 loccode varchar2(16),

 cart varchar2(16),

 dpbc varchar2(16),

 lotcode varchar2(16),

 lotnum varchar2(16)

);

/

Description
Describes the geocode result definition.
 Locator Functions 2-3

GEOCODE_RESULT Object
Parameters

Usage Notes
In their implementation of Locator, geocode vendors may make use of all or most
fields in the GEOCODE_RESULT table. See the vendor’s documentation for a com-
plete description of this object and the fields used.

Exceptions
Application-specific exceptions:

http_error, -20000

geocoder_error, -20001

unit_error, -20003

matchcode Match result, indicating the quality of a match

firmname Firm name

addrline Address line 1

addrline2 Address line 2

city City

state State

zip Postal (zip) code

zip4 Plus 4 digit zip code

lastline City, state, zip code

county Federal information processing standards (FIPS) county code

block Census block identifier

loccode Location code

cart Carrier route (postal service)

dpbc Delivery point bar code

lotcode Line of travel code

lotnum Line of travel number
2-4 Oracle interMedia Locator

GEOCODE1 Function (with lastline field)
GEOCODE1 Function (with lastline field)

Format
function GEOCODE1(url in varchar2,

 proxy in varchar2,

 name in varchar2,

 pwd in varchar2,

 firmname in varchar2,

 addrline in varchar2,

 addrline2 in varchar2,

 lastline in varchar2,

 mm in varchar2,

 stdaddr out MDSYS.GEOCODE_RESULT,

 location out MDSYS.SDO_GEOMETRY) return varchar2;

pragma restrict_references(GEOCODE1, WNDS, WNPS);

Description
Used for geocoding and includes a lastline field that contains city, state, and zip
code information.
 Locator Functions 2-5

GEOCODE1 Function (with lastline field)
Parameters

Return Value
This return value is the error code returned as a string by the geocode vendor; typi-
cally, the string contains an error code and a message, such as 0:SUCCESS. See the
specific vendor documentation for more information.

Usage Notes
The lastline field contains the city, state, and postal (zip) code information.

Exceptions
None.

Examples
Example 1: Geocode a single record interactively.

url Vendor Web site for geocoding: for example, www.centrus-
software.com/oracle/geoservice.dll

proxy Security protection mechanisms (firewall) address, NULL or
(’’) if none

name Customer name (for accounting)

pwd Password (for accounting)

firmname Firm name

addrline Address line 1

addrline2 Address line 2

lastline Contains city, state, postal (zip) code, and zip4 information

mm Matchmode; a string telling the vendor which match mode to
use, such as STANDARD, NORMAL, and so forth

See vendor sites for more information.

stdaddr Standard address object or output geocode result object
(defined previously)

location Locator geometry object, SDO_GEOMETRY, containing lati-
tude and longitude information
2-6 Oracle interMedia Locator

GEOCODE1 Function (with lastline field)
-- Geocode a single record interactively.
set serveroutput on
set timing on
set pagesize 50000

declare
 geo_result MDSYS.GEOCODE_RESULT;
 geom MDSYS.SDO_GEOMETRY;
 result varchar2(255);
begin
 result := geocoder_http.GEOCODE1(
 ’http://www.centrus-software.com/oracle/geoservice.dll’,
 ’www-proxy.us.acme.com’,
 ’user’, ’password’,
 ’oracle’,’1 oracle dr’,’’, ’nashua NH 03062’,
 ’tight’,
 geo_result, geom);
 dbms_output.put_line(result);
exception
when geocoder_http.http_error then
 dbms_output.put_line(’Internet problem - cannot connect’);
when geocoder_http.geocoder_error then
 dbms_output.put_line(’Geocoder problem - contact vendor’);
when others then
 dbms_output.put_line(’Oracle Error - check your PL/SQL’);
end;
/

Example 2: Geocode a table in batch mode using the entire object.

-- See how to create this sample table using the file nh_cs.sql.
-- Geocode a table in batch mode using the entire object.

-- HOW TO CUSTOMIZE IT FOR YOUR USE:
-- 1. Change the select statement in the declaration section to match
-- your input table.
-- If you are placing the geocode result into the same table, make sure
-- rowid is selected; if you are geocoding into a different table, make sure
-- the primary keys are selected.
--
-- 2. In the update call at the end, if you are placing all your results
-- back in the same table, use update ... where rowid = r.rowid;
-- otherwise, use insert into ... where pk = r.pk;
--
-- 3. Exception handling:
 Locator Functions 2-7

GEOCODE1 Function (with lastline field)
-- The routine generates HTTP_ERROR and GEOCODER_ERROR.
-- HTTP_ERROR corresponds to a transmission problem.
-- GEOCODER_ERROR is when an address record cannot be matched by the
-- geocoder from the vendor Web site, and the result you get back is likely
-- to be null.
-- You should decide how to handle these errors according to your
-- own needs.
-- The GEOCODER_ERROR exception can be examined in the result variable.
--
declare
 CURSOR crs is
 select company, address, city, state, zipcode, rowid from
nh_computer_stores;
 standard_address MDSYS.GEOCODE_RESULT;
 geom_location MDSYS.SDO_GEOMETRY;
 result varchar2(255);
begin
 for r in crs loop
 begin
 result := geocoder_http.GEOCODE1(
 ’http://www.centrus-software.com/oracle/geoservice.dll’,
 ’www-proxy.us.acme.com’,
 ’user’,’password’,
 r.company,
 r.address, ’’,
 r.city, r.state, r.zipcode,
 ’normal’,
 standard_address,
 geom_location);
 exception
 when geocoder_http.geocoder_error then
 dbms_output.put_line(’Geocoder error, continuing’);
 when others then
 dbms_output.put_line(’HTTP or server error, quit’);
 exit;
 end;
 update nh_computer_stores
 set std_addr = standard_address, location = geom_location
 where rowid = r.rowid;
<<end_loop>>
 null;
 end loop;
end;
/

2-8 Oracle interMedia Locator

GEOCODE1 Function (with lastline field)
Example 3: Geocode a table in batch mode using fields in the object.

-- Geocode a table in batch mode using fields in the object.

-- HOW TO CUSTOMIZE IT FOR YOUR USE:
-- 1. Change the select statement in declaration section to match
-- your input table.
-- If you are placing the geocode result into the same table, make sure
-- rowid is selected; if you are geocoding into a different table, make sure
-- the primary keys are selected.
--
-- 2. In the update call at the end, if you are placing all your results
-- back in the same table, use update ... where rowid = r.rowid;
-- otherwise, use insert into ... where pk = r.pk;
--
-- 3. Exception handling:
-- The routine generates HTTP_ERROR and GEOCODER_ERROR.
-- HTTP_ERROR corresponds to transmission problem.
-- GEOCODER_ERROR is when an address record cannot be matched by the
-- geocoder from the vendor Web site, and the result you get back is likely
-- to be null.
-- You should decide how to handle these errors according to your
-- own needs.
-- The GEOCODER_ERROR exception can be examined in the result variable.
--
declare
 CURSOR crs is
 select company, address, city, state, zipcode, rowid from
nh_computer_stores;
 standard_address MDSYS.GEOCODE_RESULT;
 geom_location MDSYS.SDO_GEOMETRY;
 result varchar2(255);
begin
 for r in crs loop
 begin
 result := geocoder_http.GEOCODE1(
 ’http://www.centrus-software.com/oracle/geoservice.dll’,
 ’www-proxy.us.acme.com’,
 ’user’,’password’,
 r.company,
 r.address, ’’,
 r.city, r.state, r.zipcode,
 ’normal’,
 standard_address,
 geom_location);
 Locator Functions 2-9

GEOCODE1 Function (with lastline field)
 exception
 when geocoder_http.geocoder_error then
 dbms_output.put_line(’Geocoder error, continuing’);
 when others then
 dbms_output.put_line(’HTTP or server error, quit’);
 exit;
 end;
 update nh_computer_stores
 set std_street = standard_address.address,
 std_city = standard_address.city,
 std_state = standard_address.state,
 std_zip = standard_address.zip,
 std_zip4 = standard_address.zip4,
 location = geom_location
 where rowid = r.rowid;
<<end_loop>>
 null;
 end loop;
end;
/

2-10 Oracle interMedia Locator

GEOCODE1 Function (with city, state, and postal code (zip) fields)
GEOCODE1 Function (with city, state, and postal code (zip) fields)

Format
function GEOCODE1(url in varchar2,

 proxy in varchar2,

 name in varchar2,

 pwd in varchar2,

 firmname in varchar2,

 addrline in varchar2,

 addrline2 in varchar2,

 city in varchar2,

 state in varchar2,

 zip in varchar2,

 mm in varchar2,

 stdaddr out MDSYS.GEOCODE_RESULT,

 location out MDSYS.SDO_GEOMETRY) return varchar2;

pragma restrict_references(GEOCODE1, WNDS, WNPS);

Description
Used for geocoding and includes city, state, and postal (zip) code fields.
 Locator Functions 2-11

GEOCODE1 Function (with city, state, and postal code (zip) fields)
Parameters

Return Value
The return value is the error code returned as a string by the geocode vendor; typi-
cally, the string contains an error code and a message, such as 0:SUCCESS. See the
specific vendor documentation for more information.

Usage Notes
The city, state, and postal (zip) fields replace the lastline field described in the previ-
ous function.

Exceptions
None.

url Vendor Web site for geocoding: for example, www.centrus-
software.com/oracle/geoservice.dll

proxy Security protection mechanisms (firewall) address, NULL or
(’’) if none

name Customer name (for accounting)

pwd Password (for accounting)

firmname Firm name

addrline Address line 1

addrline2 Address line 2

city City name

state State name

zip Postal (zip) code

mm Matchmode; a string telling the vendor which match mode to
use, such as STANDARD, NORMAL, and so forth

See vendor sites for more information.

stdaddr Standard address object or output geocode result object
(defined previously)

location Locator geometry object, SDO_GEOMETRY, containing lati-
tude and longitude information
2-12 Oracle interMedia Locator

Estimate Level and Spatial Locator Index
Examples
See the examples in the previous GEOCODE1 function description.

2.3 Estimate Level and Spatial Locator Index
This section describes the ESTIMATE_LEVEL function and the spatial locator index.
If you must use the ESTIMATE_LEVEL function, call this function prior to creating
the spatial locator index. The spatial locator index must be created before you can
use the locator operator described in Section 2.4.

Table 2–2 Locator ESTIMATE_LEVEL Function and Spatial Locator Index

Function/Procedure Description

ESTIMATE_LEVEL Estimates an appropriate index_level parame-
ter value when most of your
LOCATOR_WITHIN_DISTANCE queries use
a radius distance value that exceeds 100 miles.

SETUP_LOCATOR_INDEX Creates the spatial locator index.
 Locator Functions 2-13

ESTIMATE_LEVEL
ESTIMATE_LEVEL

Format
function ESTIMATE_LEVEL(radius1 in number,

 radius2 in number) return integer;

Description
Calculates an index_level parameter value for use in the
SETUP_LOCATOR_INDEX procedure.

Parameters

Return Value
The return value is the appropriate index_level parameter value to use in the
SETUP_LOCATOR_INDEX procedure.

Usage Notes
If you expect to use a large radius distance for queries that is greater than 100 miles,
you should call this function to determine the most appropriate index_level param-
eter value for your data.

A LOCATOR_WITHIN_DISTANCE query with a circular radius distance greater
than 100 miles actually degenerates into an ellipse with two semiaxes (radii). There-
fore, this function has two parameters, radius1 to represent the small semiaxis and

Note: Only call this function if most of your
LOCATOR_WITHIN_DISTANCE queries use a radius
distance value greater than 100 miles; otherwise, the
default value of 13 is appropriate as the index_level
parameter value.

radius1 Small radius in miles.

radius2 Large radius in miles.
2-14 Oracle interMedia Locator

ESTIMATE_LEVEL
radius2 to represent the large semiaxis of the ellipse. For Oracle8i release 8.1.7, you
should provide the same value for both radius1and radius2 parameters.

If you must call this function, call this function after you geocode your data and
before you create your spatial locator index. A more appropriate index_level param-
eter value is expected to give you better performance on your data.

Exceptions
Application-specific exceptions:

unit_error, -20004

Examples
Create a setup spatial locator index.

select geocoder_http.estimate_level(200,200) from dual;
9
 Locator Functions 2-15

SETUP_LOCATOR_INDEX
SETUP_LOCATOR_INDEX

Format
procedure SETUP_LOCATOR_INDEX(tabname in varchar2,

 colname in varchar2,

 index_level in number := 13);

Description
Creates the spatial locator index.

Parameters

Return Value
None.

Usage Notes
This procedure creates a metadata table called USER_SDO_GEOM_METADATA
under the invoker’s or current user’s schema. It creates a special domain index of
type spatial_index. The name of the index is:

substr((tabname,1,5)||’_’substr(colname,1,5)||’_idx’||_HL6N1$

Do not delete these extra tables after creating the index.

tabname Table name where the spatial information is stored

colname Column name where the spatial information is
stored within ’tabname’

index_level Value determined by calling the
ESTIMATE_LEVEL function when the radius dis-
tance exceeds 100 miles and a better index level is
required to improve performance on your data

The default value is 13.
2-16 Oracle interMedia Locator

Locator Operator
This procedure must be executed to create the spatial locator index for the geo-
coded table before you can use the LOCATOR_WITHIN_DISTANCE operator; oth-
erwise, an error message is returned indicating no spatial locator index is created.
For example:

ERROR at line 1:
ORA-20000: Interface Not Supported without a Spatial Index
ORA-06512: at "MDSYS.SDO_3GL", line 184
ORA-06512: at line 1

Usually, you do not need to modify the value of the index_level parameter if most
of your LOCATOR_WITHIN_DISTANCE queries are using a radius distance value
of 100 miles or less. However, to achieve better performance on your data, you can
change this value depending on the most popular radius distance for most of your
LOCATOR_WITHIN_DISTANCE queries. To estimate a better value for the
index_level parameter, call the ESTIMATE_LEVEL function. In this case, you must
call the ESTIMATE_LEVEL function before you create your spatial locator index.

Exceptions
None.

Examples
Create a setup spatial locator index.

procedure SETUP_LOCATOR_INDEX(’cust_table’, ’location’, 13);

2.4 Locator Operator
This section describes the function used when working with the Locator object type.

Table 2–3 Locator Operator

Function Description

LOCATOR_WITHIN_DISTANCE Determines if two points are within a speci-
fied geometric distance from one another.
 Locator Functions 2-17

LOCATOR_WITHIN_DISTANCE
LOCATOR_WITHIN_DISTANCE

Format
LOCATOR_WITHIN_DISTANCE(T.Column MDSYS.SDO_GEOMETRY, aGeom
MDSYS.SDO_GEOMETRY, params VARCHAR2);

Description
Uses geometric intersection algorithms and a spatial index to identify the set of spa-
tial points that are within some specified geometric distance (radius distance) of a
given point of interest (center of a circle).

Parameters

Return Value
The expression LOCATOR_WITHIN_DISTANCE(arg1, arg2, arg3) = ‘TRUE’ evalu-
ates to TRUE for point pairs that are within the specified distance apart, and FALSE
otherwise.

Usage Notes
■ The distance around a point of interest describes a circle and this distance is

defined as the minimum radius distance between these two points.

■ The operator must always be used in a WHERE clause and the condition that
includes the operator should be an expression of the form:

LOCATOR_WITHIN_DISTANCE(arg1, arg2,
‘distance = <some_dist_val>, units=mile’) = ‘TRUE’.

params Determines the behavior of the operator

Valid keywords and their semantics are described
as follows:

distance Required; the radius distance value

units Required; the unit value; can be mile, ft (feet), or
meter
2-18 Oracle interMedia Locator

LOCATOR_WITHIN_DISTANCE
■ It is required that T.Column have a spatial locator index built on it. See
Section 2.3 for more information.

■ LOCATOR_WITHIN_DISTANCE() is not supported for spatial joins.

■ The default unit is latitude and longitude. Therefore, you should always spec-
ify a unit such as: mile, ft, or meter.

Exceptions
None.

Examples
Example 1: Perform a simple point query.

SELECT A.GID FROM POINTS A WHERE LOCATOR_WITHIN_DISTANCE
(A.Geometry, :aGeom, ‘distance = 10 units=mile’) = ‘TRUE’ ;

Example 2: Perform a computer store query.

Rem
Rem $Header: geolocate.sql 14-sep-98.11:51:16 pfwang Exp $
Rem
Rem geolocate.sql
Rem
Rem Copyright (c) Oracle Corporation 1998. All Rights Reserved.
Rem

-- This routine dynamically creates a geometry of interest,
-- for example, an Oracle office location. Then, it queries against the
-- NH_COMPUTER_STORES table to find out how many computer stores are
-- within a certain distance (radius) of the office. In this case, the
-- distance is 10 miles.

set serveroutput on
set pagesize 50000

declare
 standard_address MDSYS.GEOCODE_RESULT;
 geom_location MDSYS.SDO_GEOMETRY;
 result varchar2(255);
 type cur_type is ref cursor ;
 crs cur_type;
begin
 result := geocoder_http.geocode1(
 Locator Functions 2-19

LOCATOR_WITHIN_DISTANCE
 ’http://www.centrus-software.com/oracle/geoservice.dll’,
 ’www-proxy.us.acme.com’,
 ’user’, ’password’,
 ’Oracle’,’1 Oracle Drive’,’’, ’03062’,
 ’tight’, standard_address, geom_location);
 if (instr(upper(result),’SUCCESS’) = 0) then
 raise geocoder_http.geocoder_error;
 end if;
 open crs for
 ’select company from nh_computer_stores where ’||
 ’MDSYS.LOCATOR_WITHIN_DISTANCE(location, :1, ’’distance=10
units=Mile’’)=’’TRUE’’’
 using geom_location;
 loop
 fetch crs into result;
 exit when crs%NOTFOUND;
 dbms_output.put_line(result);
 end loop;
 close crs;
exception
when geocoder_http.http_error then
 dbms_output.put_line(’Internet problem - cannot connect’);
when geocoder_http.geocoder_error then
 dbms_output.put_line(’Geocoder problem - contact vendor’);
when others then
 dbms_output.put_line(’Oracle Error - check your PL/SQL’);
end;
/

2-20 Oracle interMedia Locator

 Generic Geocoding Inte
3

Generic Geocoding Interface

This chapter describes a generic interface to third-party geocoding software that lets
users geocode their address information stored in database tables and obtain stan-
dardized addresses and corresponding location information as instances of pre-
defined object types. This interface is part of the geocoding framework in the Oracle
Spatial and Oracle interMedia Locator products.

A geocoding service is used for converting tables of address data into standardized
address, location, and possibly other data. Given a geocoded address, one can then
perform proximity or location queries using a spatial engine, such as Oracle Spatial
or Oracle interMedia Locator, or demographic analysis using tools and data from
Oracle’s business partners.

Once data has been geocoded, users can perform location queries on this data. In
addition, geocoded data can be used with other spatial data such as block group,
postal code, and county code for association with demographic information. It is
now possible for decision support, customer relationship management, supply
chain analysis, and other applications to use spatial analyses as part of their infor-
mation gathering and processing functions. Results of analyses or queries can be
presented as maps, in addition to tabular formats, using third-party software inte-
grated with Oracle interMedia Locator.

This chapter describes a set of interfaces and metadata schema that enables geocod-
ing of an entire address table, or a single row. It also describes the procedures for
inserting or updating standardized address and spatial point data into another table
(or the same table). The third-party geocoding service is assumed to have been
installed on a local network and to be accessible through standard communication
protocols such as sockets or HTTP.
rface 3-1

Locator Implementation: Benefits and Limitations
3.1 Locator Implementation: Benefits and Limitations
Oracle interMedia Locator contains a set of application programming interface (API)
functions that allows the integration of Oracle Spatial with third-party geocoding
products and Web-based geocoding services. A database user can issue a standard
SQL call or construct PL/SQL routines to geocode an address, and retrieve the spa-
tial and standardized address objects, both of which are defined as Oracle database
object types. Users have the option of storing these in the database, or using the spa-
tial objects in Locator functions for Euclidean within-distance queries.

The APIs offer great flexibility in extracting information from existing relational
databases. Data conversion procedures are minimal. A geocode result also returns
an additional set of information; there is no requirement to use all the information,
and the application can decide which fields to extract and where to store them.
However, to use the full range of features of Oracle Spatial or Oracle interMedia
Locator, it is recommended that the Spatial object be stored as returned.

The existing Locator service is Web-based and requests are formatted in HTTP.
Thus, each request in SQL must contain the URL of the Web site, proxy for the fire-
wall (if any), and user account information on the service provider’s Web site. An
HTTP approach potentially limits the utility or practicality of the service when deal-
ing with large tables or undertaking frequent updates to the base address informa-
tion. In such situations, use a batch geocoding service made available within an
intranet or local area network. The following sections describe the interface for a
facility that can include the existing HTTP-based solution.

3.2 Generic Geocoding Client
A fast, scalable, highly available, and secure Java Virtual Machine (Java VM, or
JVM) is integrated in the Oracle8i database server. The Java VM provides an ideal
platform on which to deploy enterprise applications written in Java as Java Stored
Procedures (JSPs), Enterprise Java Beans (EJBs), or Java Methods of Oracle8i object
types.

Therefore, any client geocoder component written in Java can be embedded in the
Oracle8i database as a JSP. This JSP interface can perform either one-record-at-a-
time or batch geocoding. Java stored procedures are published using PL/SQL inter-
faces; thus, the generic geocoding interface can be compatible with existing Locator
APIs.

The stored procedures have an interface, oracle.spatial.geocoder, that must be
implemented by each vendor whose geocoder is integrated with Oracle Spatial and
Oracle interMedia Locator. The procedures also require certain object types to be
3-2 Oracle interMedia Locator

Geocoder Metadata
defined and metadata tables to be populated. The object types, metadata schema,
and the geocoder interface are described in further detail in the following sections.

Although the database user MDSYS oversees all data types, operators, and schema
objects for Oracle Spatial and Oracle interMedia Locator, the geocoding metadata
must exist in each user’s schema. Each user of the geocoder service must have
tables that implement the metadata schema.

Figure 3–1 shows the Oracle geocoding framework.

Figure 3–1 Oracle Geocoding Framework

3.3 Geocoder Metadata
The metadata describes the properties of the geocoding server, the location and
structure of the address data to be geocoded, and the nature and storage location of
the geocoding results. Other relevant information may include the name of the
server machine, the port to connect, and so on. Together, these constitute the initial-
ization parameters and are stored in metadata tables under the user’s own schema.

 Generic Geocoding Interface 3-3

Geocoder Metadata
At client initialization, a data dictionary lookup is performed to locate the neces-
sary metadata.

Batch geocoding lets the user simultaneously geocode many records from one table.
Batch geocoding requires the following:

■ Geocoding server setup, instructing the client where and how to connect to the
geocoding service.

■ Associating input fields and output fields with columns in the database tables.
This is called the schema setup.

■ Specifying how to handle geocoding situations such as rejects, multiple
matches, or exceptions.

Thus, the metadata table consists of a task ID, geocoding information, and schema
information. The task ID is a primary key that identifies the initialization parame-
ters for a particular geocoding task. For example, geocoding a table of customers is
one task, while geocoding a table of customer inquiries is a separate task.

The metadata is stored in a table named GEOCODE_TASK_METADATA, which is
defined as follows:

Create table geocode_task_metadata (
 task_id NUMBER, -- primary key
 geocoder_info MYSYS.GEOCODE_SERVER_PROPERTY_TYPE,
 schema_info MDSYS.GEOCODE_SCHEMA_PROPERTY_TYPE
);

Note the following about the GEOCODE_TASK_METADATA table:

■ The metadata is divided into a server object (described in Section 3.3.1) and a
schema object (described in Section 3.3.2).

■ Each object is identified by a unique task_id value.

3.3.1 Server Properties
The geocoder_info property column of the GEOCODE_TASK_METADATA table con-
tains information describing the characteristics of the server, including machines,
ports, and vendor-specific information.

The GEOCODE_SERVER_PROPERTY_TYPE type is defined as follows:

create type geocode_value_array as
 varray(1024) of varchar2(64)
/
create type geocode_server_property_type as object
3-4 Oracle interMedia Locator

Geocoder Metadata
(
 servers geocode_value_array,
 protocol varchar2(32),
 property_name geocode_value_array,
 property_value geocode_value_array,
 reject_level integer,
 batch_size integer
)
/

Note the following about the GEOCODE_SERVER_PROPERTY_TYPE definition:

■ servers is an array of character strings each in the form Machine:Port that
uniquely identifies the geocoding service on the network. This also supports
multiple services on the same network by providing an array of servers. Some
geocoders, for example, can switch to secondary servers in the case of failures.

■ protocol allows different transport mechanisms, such as HTTP or socket.

■ Additional property_name and property_value arrays allow customization for
unique geocoder processing options. They are not intended to be used for name
or password information, because a local geocoding service usually does not
require this information.

■ reject_level is a vendor-specific value that defines the criteria for rejecting a
record. It is up to the implementation of the Java interface to interpret the value.

■ batch_size indicates how many records to send to the geocoder at one time.

3.3.2 Geocoding Input and Output Specification
The schema_info property column of the GEOCODE_TASK_METADATA table speci-
fies the set of columns that makes up an address in the table to be geocoded, the
table and columns into which the geocoded results are stored, and where rejected
record data and multiple matches are stored.

The GEOCODE_SCHEMA_PROPERTY_TYPE type uses columns of type
GEOCODE_TABLE_COLUMN_TYPE to describe the address fields in the input
(table to be geocoded) and output (table containing geocoded results). The two
types are defined as follows:

create type geocode_table_column_type as object
(
 firm varchar2(32),
 street varchar2(32),
 street2 varchar2(32),
 Generic Geocoding Interface 3-5

Geocoder Metadata
 cty_subdivision varchar2(32),
 city varchar2(2332),
 country_subdivision varchar2(32), --state
 country varchar2(32),
 postal_code varchar2(32),
 postal_addon_code varchar2(32),
 lastline varchar2(32),
 col_name geocode_value_array,
 col_value geocode_value_array
)
/

create type geocode_schema_property_type as object
(
 language varchar2(32),
 character_set varchar2(32),
 in_table varchar2(32),
 in_table_cols geocode_table_column_type,
 out_table varchar2(32),
 out_table_cols geocode_table_column_type,
 out_sdo_geom varchar2(32),
 out_geo_result varchar2(32),
 in_primary_key varchar2(32),
 out_foreign_key varchar2(32),
 DML_option varchar2(16),
 multi_match_table varchar2(32),
 reject_table varchar2(32),
 batch_commit varchar2(5)
)
/

Note the following about the GEOCODE_TABLE_COLUMN_TYPE and
GEOCODE_SCHEMA_PROPERTY_TYPE definitions:

■ language and character_set are for internationalization.

■ in_table identifies the name of the input address table (for example, ‘CUSTOM-
ERS’).

■ in_table_cols identifies the standard set of fields for geocoding. The fields in the
object are standard, and lastline is redundant with the combination of city, state,
postal_code, and postal_addon_code. Only one (lastline, or the combination of city,
state, postal_code, and postal_addon_code) should be specified.

■ out_table and out_table_cols have the same meaning as in_table and in_table_cols,
except that these are the column names where the results are stored. Either a
3-6 Oracle interMedia Locator

Geocoder Metadata
subset or all of the out_table_cols fields can be null. out_table_cols and
geocode_result contain similar information, that is, the standardized (corrected)
address in case of successful geocoding. Users can choose to store the standard-
ized address in two forms, expanded into a set of columns or as a single object.

■ If the actual address definition differs from the fields in the
GEOCODE_TABLE_COLUMN_TYPE definition, adjust the field mappings and
insert null values as needed. For example, assume an input table customers
defined as follows:

 (custname varchar2(32),
 company varchar2(32),
 street varchar2(64),
 city varchar2(32),
 state varchar2(32),
 country varchar2(32),
 zip varchar2(9))

In the GEOCODE_SCHEMA_PROPERTY_TYPE column definition, the
in_table_cols attribute value would be specified as:
geocode_table_column_type(‘company’, ‘street’, null, null, ‘city’, ‘state’, ‘country’,
‘zip’, null, null, null, null).

The col_name and col_value information will be used for feature enhancement for
individual geocoding services.

■ out_sdo_geom and out_geo_result: SDO_GEOMETRY and GEOCODE_RESULT
are the two database objects for storing a standard set of geocoded results,
including standardized address and latitude/longitude information. If you are
using Oracle Spatial, it is required that SDO_GEOMETRY objects be stored in
the database. MDSYS.GEOCODE_RESULT exists in the current Locator
implementation and is defined as follows:

Create type geocode_result as object (
 matchcode varchar2(16),
 firmname varchar2(512),
 addrline varchar2(512),
 addrline2 varchar2(512),
 city varchar2(512),
 state varchar2(512),
 zip varchar2(5),
 zip4 varchar2(4),
 lastline varchar2(512),
 county varchar2(32),
 block varchar2(32),
 Generic Geocoding Interface 3-7

Geocoder Metadata
 loccode varchar2(16),
 cart varchar2(16),
 dpbc varchar2(16),
 lotcode vrchar2(16),
 lotnum varchar2(16)
);

■ in_primary_key and out_foreign_key: Using a primary key and foreign key pair is
a way to associate the input records to the output records, and is essential when
the database stores the output results. Even if the input table and output table
are the same, a primary key and foreign key pair (essentially the same column:
for example, ’ID’ or ’ROWID’) must be specified. There is no restriction on the
data type, because no manipulation of the data is needed.

■ DML_option specifies whether to insert geocoded data into a new row in the
result table (’INSERT’) or update existing rows in the table (’UPDATE’). If
in_table is the same as out_table, then DML_option must be ‘UPDATE’, because
adding new rows in an existing table is unnecessary. If in_table is different from
out_table and if ‘UPDATE’ is specified, out_table must have partial records avail-
able for primary and foreign key lookup. This permits the service to locate the
exact row to update with the new objects.

■ multi_match_table and reject_table are table names where the primary key of the
multiple matches and rejected records are stored. If these tables do not exist,
they will be created automatically. Automatic creation is the preferred approach
due to the fixed structure. reject_table will be created with a primary key col-
umn type in the input table, a match code column, and an optional error mes-
sage column. multi_match_table will contain a primary key, SDO_GEOMETRY,
and GEO_RESULT. If these fields are null, no table will be created and no multi-
ple matches will be returned.

■ batch_commit is a string containing ‘TRUE’ or ‘FALSE’, indicating if a commit
operation should be performed after each batch. If ‘FALSE’ is specified, a large
rollback segment will be needed for large address table geocoding.

3.3.2.1 Multiple Matches and Rejected Records
Tables can be specified to store multiple matches (multi_match_table) and rejected
records (reject_table) during batch geocoding. The primary key will be a user-speci-
fied field from the original table. Hence, any single column can be used. Currently,
no composite primary keys are supported.
3-8 Oracle interMedia Locator

Single-Record and Interactive Geocoding
If a single address results in multiple matches, after the batch processing, you can
examine multi_match_table and select the correct entries for the original data rows.
For example, you can create a table in the following format:

create table <user-defined multimatch table> (
 pk <same data type as in input table>,
 location mdsys.sdo_geometry,
 std_addr mdsys.geocode_result
);

The match code in the geocode result object indicates the failure during geocoding.
The rejection level is used in determining if a record has failed the geocoding. If a
record has failed and reject_table is defined, the primary key (specified by the user)
is inserted into a rejection table. The interpretation of rejection level is left to the
programmer. reject_table can be defined in the following format:

create table <user-defined reject table> (
 pk <same data type as in input table>,
 matchcode varchar2(64),
 errcode varchar2(128)
);

3.4 Metadata Helper Class
The geocoder metadata is comprehensive. To accelerate development and deploy-
ment, Oracle offers a sample class, oracle.spatial.geocoder.Metadata, to allow easy
access (read and write) to these objects. Also, SELECT and INSERT SQL statements
are constructed automatically for the caller. See the class implementation code for
details.

3.5 Single-Record and Interactive Geocoding
Geocoding a row in a table is required when updating or inserting data in the
address table. One way to maintain consistency between the base address table and
the table of geocoded results is to use a trigger to call the geocoding function. The
Java interface method geocode1() will take the primary key to perform the geocod-
ing task and insert or update the geocoded information into the specified table.

The GEOCODER_HTTP package functions are still supported for single-record
geocoding. In addition, you are able to pass an address in as a parameter, and get
back an array of matches. The Java interface takes a metadata structure (see the
GEOCODE_SCHEMA_PROPERTY_TYPE definition in Section 3.3.2) and an
address structure, and returns an array of this same address structure:
 Generic Geocoding Interface 3-9

Java Geocoder Service Interface
create type geocode_record_type as object
(
 firm varchar2(40),
 street varchar2(40),
 street2 varchar2(40),
 city_subdivision varchar2(40),
 city varchar2(40),
 country_subdivision varchar2(40),
 country varchar2(40),
 postal_code varchar2(40),
 postal_addon_code varchar2(40),
 lastline varchar2(80),
 latitude number,
 longitude number
);

After performing geocoding, it will return an array (SQL collection type) of such
structures as possible matches. In this method, no database table or schema is
accessed. This method can enable interactive applications such as store locators.

3.6 Java Geocoder Service Interface
Each geocoder independent software vendor (ISV) must implement the following
geocoder interface in order to integrate their products with Oracle Spatial and Ora-
cle interMedia Locator.

The interface is defined as follows:

// Geocoder Interface
package oracle.spatial.geocoder;

public interface GeocoderInterface {
 public void geocode(int taskId)
 throws oracle.spatial.geocoder.GeocoderException, java.sql.SQLException;
 public void geocode1(int taskId, BigDecimal pkVal)
 throws oracle.spatial.geocoder.GeocoderException, java.sql.SQLException;

// … other geocode1 functions with different pkVal types

 public ARRAY interactive_geocode(STRUCT meta, STRUCT inAddr)
 throws oracle.spatial.geocoder.GeocoderException, java.sql.SQLException;
}

// Geocoder Exception Class
package oracle.spatial.geocoder;
3-10 Oracle interMedia Locator

Enabling Third-Party Geocoders
public class GeocoderException extends java.lang.Exception {
 public GeocoderException() {}
 public GeocoderException(String mesg)
 {
 super(mesg);
 }
}
Further details, including some of the actual implementation, will be provided to
developers by Oracle.

3.7 Enabling Third-Party Geocoders
For customers to implement an Oracle solution with any vendor’s Java client, they
will have to download a copy of the Java client from the geocoder vendor’s Web
site, link the geocoder interface package with the vendor’s code, and then upload
the resulting JSP into the Oracle JVM. Once enabled, the Java client resides on the
vendor’s server and can provide the required services.

To load a client into the database, invoke the Oracle8i loadjava utility, and the Java
geocoding method will be exposed as a SQL function call.

The vendor-specific geocoder interface implementation can be owned by any
schema, such as MDSYS, a DBA account, or an account determined by the cus-
tomer or vendor. The owner must grant the appropriate EXECUTE privileges to
PUBLIC or some set of users of the service.
 Generic Geocoding Interface 3-11

Enabling Third-Party Geocoders
3-12 Oracle interMedia Locator

 Sample Prog
A

Sample Programs

Oracle interMedia Locator includes a number of scripts that you can modify and
run.

A.1 Sample Scripts
Sample Oracle interMedia Locator scripts are available in the following directory
after you install this product:

$ORACLE_HOME/md/demo/geocoder

These scripts consist of the following files:

■ geohttp.sql

This file contains two parts. One part is for running a geocode function in inter-
active mode and the other is for running the geocode function in batch mode.

– Interactive mode.

See Example 1 in “GEOCODE1 Function (with lastline field)” on page 2-6
for a listing of this part of the file.

– Batch mode.

You must update the setup tables in the nh_cs.sql file before you run
geohttp.sql in batch mode. See Example 2 in “GEOCODE1 Function (with
lastline field)” on page 2-7 or Example 3 in “GEOCODE1 Function (with
lastline field)” on page 2-9 for a listing of this part of the file.

■ geoindex.sql

This file contains:
rams A-1

Sample Code
– A function named ESTIMATE_LEVEL to better estimate the index level for
use with the spatial locator index for within-distance queries that use a
radius distance greater than 100 miles. See the example in
“ESTIMATE_LEVEL” on page 2-15 for a listing of this file.

– A procedure statement named SETUP_LOCATOR_INDEX. This statement
builds a setup spatial locator index on the location column that contains the
spatial information within the cust_table table where the spatial informa-
tion is stored. See the example in “SETUP_LOCATOR_INDEX” on
page 2-17 for a listing of this file.

■ geolocate.sql

This file contains a routine that dynamically creates a geometry of interest and
then queries against the NH_COMPUTER_STORES table to find out how many
stores are within a 10-mile radius of the office. See Example 2 in
“LOCATOR_WITHIN_DISTANCE” on page 2-19 for a listing of this file.

A.2 Sample Code
Oracle interMedia Locator includes sample code that you can modify and run.

A.2.1 Using Oracle interMedia Locator Services to Find Nearest Neighbor
Oracle interMedia Locator services support the within_distance operator. To facili-
tate a nearest-neighbor search, you must write a PL/SQL routine to find a number
of geometries, and subsequently sort them by distance. The shortest distance
between the point of interest and a neighboring point gives the nearest neighbor.

The following code sample illustrates how to find the top three points using Oracle
interMedia Locator services. Assume the Porsche dealer and spatial tables are as fol-
lows:

create table porsche_dealer (
id number constraint pk_id primary key,
dealer_name varchar2(50),
address varchar2(50),
lastline varchar2(50),
phone varchar2(12),
fax varchar2(12));

create table porsche_spatial (
id constraint fk_id references porsche_dealer(id),
geo_address mdsys.geocode_result,
location mdsys.sdo_geometry,
A-2 Oracle interMedia Locator

Sample Code
map ordsys.ordimage,
last_modified date);

These two tables contain the database on US Porsche dealers. The Porsche dealer
table contains dealer attribute data. The Porsche spatial table contains the geocoded
location and result for each record in the Porsche dealer table. The goal is to find the
top three Porsche dealers around a given customer location. This customer location
(in address form) must first be geocoded. After the initial geocoding, the location
object (sdo_geometry) is populated with the location for the center of the search.
The following sample code illustrates how to find the top three points, using the
Oracle interMedia Locator features:

procedure find_top3
found3 boolean;
dist number;
type cursor_type is ref cursor;
addr mdsys.geocode_result;
loc mdsys.sdo_geometry;
crs cursor_type;
dist number;
cnt number;
i number;
tmp number;

id_a dbms_sql.number_table;
company_a dbms_sql.varchar2_table;
address_a dbms_sql.varchar2_table;
lastline_a dbms_sql.varchar2_table;
phone_a dbms_sql.varchar2_table;
fax_a dbms_sql.varchar2_table;
x_a dbms_sql.number_table;
y_a dbms_sql.number_table;
dist_a dbms_sql.number_table;
no1 number;
no2 number;
no3 number;

begin

-- populate the location object by dynamically geocoding an address
-- geocode_http.geocode1(..., loc, addr);
-- ...

found3 := false;
-- keep increasing distance until you find 3 points
 Sample Programs A-3

Sample Code
dist := 0.25;
while found3 = false loop

begin
dist := dist + 0.5;
open crs for ’select a.id, b.geo_address.firmname, b.geo_address.addrline,
b.geo_address.lastline, a.phone, a.fax, ’||
’b.location.sdo_point.x, b.location.sdo_point.y from ’||
’porsche_dealer a, porsche_spatial b where ’ ||
’a.id=b.id and ’||
’mdsys.locator_within_distance(b.location,’||
’:1,’’distance=’|| dist || ’’’)=’’TRUE’’’
using loc;
cnt := 1;
loop
fetch crs into id_a(cnt), company_a(cnt), address_a(cnt), lastline_a(cnt),
phone_a(cnt), fax_a(cnt), x_a(cnt), y_a(cnt);
exit when crs%NOTFOUND;
dbms_output.put_line(company_a(cnt)||’/’||address_a(cnt)||’/’||lastline_a(cnt));
cnt := cnt + 1;
end loop;
close crs;

-- dbms_output.put_line(cnt);
if cnt >= 4 then
found3 := true;
end if;
exception when NO_DATA_FOUND then

-- htp.print(’Start all over again’);
-- dbms_output.put_line(’new radius=’||dist);
if dist > 100 then
exit;
end if;
end;
end loop;
cnt := cnt - 1;

-- find the top 3 candidates
no1 := 1;
no2 := 2;
no3 := 3;
for i in 1 .. cnt loop
A-4 Oracle interMedia Locator

Sample Code
-- dbms_output.put_line(x_a(i) ||’,’|| y_a(i));
-- calculate distance

dist_a(i) := (loc.sdo_point.x - x_a(i))*(loc.sdo_point.x - x_a(i)) +
(loc.sdo_point.y - y_a(i))*(loc.sdo_point.y - y_a(i));

end loop;
for i in 4 .. cnt+1 loop

-- order the 3 numbers in the bucket
if dist_a(no1) > dist_a(no2) then
tmp := no2;
no2 := no1;
no1 := tmp;
end if;

if dist_a(no1) > dist_a(no3) then
tmp := no1;
no1 := no3;
no3 := tmp;
end if;

if dist_a(no2) > dist_a(no3) then
tmp := no2;
no2 := no3;
no3 := tmp;
end if;

if (i > cnt) then
exit;
end if;
if dist_a(i) < dist_a(no3) then
no3 := i;
end if;
end loop;

dbms_output.put_line(company_a(no1)||’\’||address_a(no1)||’\’||lastline_a(no1));
dbms_output.put_line(company_a(no2)||’\’||address_a(no2)||’\’||lastline_a(no2));
dbms_output.put_line(company_a(no3)||’\’||address_a(no3)||’\’||lastline_a(no3));
end;
 Sample Programs A-5

Sample Code
A.2.2 Using Oracle interMedia Locator Services to Find Distance Between Two Points
This function is provided as a sample function with an open source. It calculates the
true earth distance between two latitude/longitude points in meters. It assumes the
earth to be a true spherical object, and the distance returned represents the distance
on a great circle on the sphere. Results will have a small percent of inaccuracy (0.5%
or less) depending on the point locations on earth.

Input: two SDO_GEOMETRY objects, each with SDO_POINT field filled, including
x and y values.

The return value is the distance on earth in meters.

No exception is thrown, because this is a sample program illustrating the algorithm
of the code.

function earth_distance(a mdsys.sdo_geometry, b mdsys.sdo_geometry) return
number as
 R number;
 c number;
 s1 number;
 s2 number;
 t1 number;
 t2 number;
 l number;
 ac number;
begin
 R := 6371.2;
 c := 3.14159265359 / 180.0;
 s1 := a.sdo_point.x;
 t1 := a.sdo_point.y;
 s2 := b.sdo_point.x;
 t2 := b.sdo_point.y;

 s1 := s1 * c;
 t1 := t1 * c;
 s2 := s2 * c;
 t2 := t2 * c;
 ac := cos(t1)*cos(t2)*cos(s2-s1)+sin(t1)*sin(t2);
 l := R * acos(ac) * 1000.0;
 return l;
end earth_distance;
A-6 Oracle interMedia Locator

 Exceptions and Error Mess
B

Exceptions and Error Messages

B.1 Exceptions
This appendix describes the geocode HTTP package exceptions.

B.1.1 Geocode HTTP Package Exceptions
The following exceptions are associated with the geocode HTTP package.

http_error EXCEPTION
PRAGMA EXCEPTION_INIT(http_error, -20000)

Cause: This exception is raised when an HTTP transmission error occurs.

Action: The HTTP server may be down or the communications link may be
down. Try again several times until successful, or try again later.

geocoder_error EXCEPTION
PRAGMA EXCEPTION_INIT(geocoder_error, -20001)

Cause: This exception is raised when a geocode vendor error occurs. This error
is raised when a row cannot be matched by the geocode vendor and the result
returned is likely to be null.

Action: Check with the specific vendor returning this exception to help diag-
nose the underlying problem and determine a solution.

unit_error EXCEPTION
PRAGMA EXCEPTION_INIT(unit_error, -20003)

Cause: This exception is raised when a unit conversion error occurs.

Action: A unit value is not recognized. Check your unit value for compliance.

radius_error EXCEPTION
PRAGMA EXCEPTION_INIT(unit_error, -20004)
ages B-1

Exceptions
Cause: This exception is raised when a negative radius value is used.

Action: Change the radius value to a positive value.
B-2 Oracle interMedia Locator

Index

B
batch geocoding, 3-4

E
enabling third-party geocoders, 3-11
ESTIMATE_LEVEL, 2-14
exceptions and error messages, B-1

G
generic geocoding interface, 3-1
geocode function, 2-2

GEOCODE1, 2-5, 2-11
geocode result definition, 2-3
GEOCODE_RESULT object, 2-3
GEOCODE_SCHEMA_PROPERTY_TYPE, 3-5
GEOCODE_SERVER_PROPERTY_TYPE, 3-4
GEOCODE_TABLE_COLUMN_TYPE, 3-5
GEOCODE_TASK_METADATA, 3-4
GEOCODE1 function, 2-5, 2-11
geocoder metadata, 3-3
GEOCODER_HTTP package, 3-9
geocoding

generic interface, 3-1

J
Java Virtual Machine, 3-2
JVM (Java Virtual Machine), 3-2

L
locator operator, 2-17
LOCATOR_WITHIN_DISTANCE, 2-18

M
messages, exceptions and errors, B-1
metadata for geocoding, 3-3
multimatch table, 3-8
multiple matches, 3-8

O
object

GEOCODE_RESULT, 2-3
operator

LOCATOR_WITHIN_DISTANCE, 2-18
oracle.spatial.geocoder.Metadata, 3-9

R
rejected records, 3-8
related documents, x
results definition, 2-2

S
sample code, A-2

find nearest neighbor, A-2
sample program, A-1
sample scripts, A-1
SETUP_LOCATOR_INDEX, 2-16
spatial locator index
 Index-1

estimate level, 2-13
ESTIMATE_LEVEL, 2-14
SETUP_LOCATOR_INDEX, 2-16
Index-2

	PDF Directory
	User’s Guide and Reference
	Send Us Your Comments
	Preface
	Audience
	Organization
	Related Documents
	Conventions
	Changes to This Guide

	1 Introduction
	2 Locator Functions
	2.1� Locator Implementation
	2.1.1� Locator Structures

	2.2� Results Definition and Geocode Functions
	2.3� Estimate Level and Spatial Locator Index
	2.4� Locator Operator

	3 Generic Geocoding Interface
	3.1� Locator Implementation: Benefits and Limitations
	3.2� Generic Geocoding Client
	3.3� Geocoder Metadata
	3.3.1� Server Properties
	3.3.2� Geocoding Input and Output Specification
	3.3.2.1� Multiple Matches and Rejected Records

	3.4� Metadata Helper Class
	3.5� Single-Record and Interactive Geocoding
	3.6� Java Geocoder Service Interface
	3.7� Enabling Third-Party Geocoders

	A Sample Programs
	A.1� Sample Scripts
	A.2� Sample Code
	A.2.1� Using Oracle interMedia Locator Services to Find Nearest Neighbor
	A.2.2� Using Oracle interMedia Locator Services to Find Distance Between Two Points

	B Exceptions and Error Messages
	B.1� Exceptions
	B.1.1� Geocode HTTP Package Exceptions

	Index

