Oracle® Spatial
User’s Guide and Reference

Release 8.1.7

September 2000
Part Number A85337-01

ORACLE



Oracle Spatial User’s Guide and Reference

Part Number A85337-01

Release 8.1.7

Copyright © 1997, 2000, Oracle Corporation. All rights reserved.
Primary Author: Chuck Murray

Contributors: Dan Abugov, Bruce Blackwell, Dan Geringer, Ravi Kothuri, L.J. Qian, Siva Ravada, Jayant
Sharma, Frank Wang, Jack Wang, and Ran Wei

The Programs (which include both the software and documentation) contain proprietary information of
Oracle Corporation; they are provided under a license agreement containing restrictions on use and
disclosure and are also protected by copyright, patent, and other intellectual and industrial property
laws. Reverse engineering, disassembly, or decompilation of the Programs is prohibited.

The information contained in this document is subject to change without notice. If you find any problems
in the documentation, please report them to us in writing. Oracle Corporation does not warrant that this
document is error free. Except as may be expressly permitted in your license agreement for these
Programs, no part of these Programs may be reproduced or transmitted in any form or by any means,
electronic or mechanical, for any purpose, without the express written permission of Oracle Corporation.

If the Programs are delivered to the U.S. Government or anyone licensing or using the programs on
behalf of the U.S. Government, the following notice is applicable:

Restricted Rights Notice Programs delivered subject to the DOD FAR Supplement are "commercial
computer software" and use, duplication, and disclosure of the Programs, including documentation,
shall be subject to the licensing restrictions set forth in the applicable Oracle license agreement.
Otherwise, Programs delivered subject to the Federal Acquisition Regulations are "restricted computer
software" and use, duplication, and disclosure of the Programs shall be subject to the restrictions in FAR
52.227-19, Commercial Computer Software - Restricted Rights (June, 1987). Oracle Corporation, 500
Oracle Parkway, Redwood City, CA 94065.

The Programs are not intended for use in any nuclear, aviation, mass transit, medical, or other inherently
dangerous applications. It shall be the licensee's responsibility to take all appropriate fail-safe, backup,
redundancy, and other measures to ensure the safe use of such applications if the Programs are used for
such purposes, and Oracle Corporation disclaims liability for any damages caused by such use of the
Programs.

Oracle and SQL*Loader are registered trademarks, and Oracle7 and Oracle8i are trademarks of Oracle
Corporation. All other company or product names mentioned are used for identification purposes only
and may be trademarks of their respective owners.



Contents

SENA US YOUT COMMENTS ..ottt ettt ettt se et eee et et st et e en s Xix
P I AC R ... ettt ettt ettt ettt ettt ettt ettt n ettt XXi
AN 0 Lo |11 o7 XXi
(O] o T= T =1 o] o FRT OO SRS R RRUROR XXi
Changes fOr REIEASE 8.1.7......cv it et n e e neere e ee st eneeneenes XXili
Features Released SeParately ... e XXiV
REIATEA DOCUIMEBNTS. ... .viiiiiiie ittt st e et e e ettt s et e e st e e e s b e s sabe s s sabeesssbesesbeasssbaessabbasanbensssrbanas XXV
(O00] 0 1V=T 0] 1 T o 13 XXV

1 Spatial Concepts

1.1 What IS Oracle SPatial?........ccccciiieiiieiccise st ene s 1-1
1.2 Object-Relational and Relational MOdElS............ccoeiiiiiiiinine i 1-1
1.2.1 Benefits of the Object-Relational Model ... 1-2
1.2.2 Benefits of the Relational Model ... 1-3
1.3 Introduction to Spatial DAta ...........ccvviriieieeees e 1-3
1.4 Geometric Types for Relational and Object-Relational Models ..........ccccooveeiininnnnne 1-4
15 DAta IMOGEL ... bbbttt 1-6
151 [ =T 0 T=T o | TSSOSO TSR PSPRO 1-6
15.2 LCT=To] 0 011 4 ST U VTP O PP UPPROR 1-7
153 S T 1-7
154 TOIBIANCE ..ottt ettt sttt 1-7
1.6 QUETY IMOAEL ... ettt ettt sbe e nbe b 1-8
1.7 IndeXing Of Spatial Data.........ccccccviieiiiriiieire e ennees 1-9



1.7.1 L R CTCIN [aTe F=hqT o o S 1-10

1.7.11 Before Creating an R-tree INAEeX........cooeiiiiiiiiiie e 1-11
1.7.2 (O BT To | 1 ¢=T- TN [ To (=) *q] o o [ SSPR 1-12
1.7.2.1 Tessellation of a Layer DUring INAeXing .......ccccocevevereieieeneeeene e se e 1-13
1.7.2.2 FIXEA TNAEXING ...ttt e et 1-13
1.7.2.3 [ Y701 Lo IR T a0 Lot T 1-18
1.8 Spatial Relations and FIltEriNgG ..o e e 1-22
1.9 Partitioned POINT Data ........cccooiiiiiiiii ittt ane 1-25
O T o T o o =TSR 1-25

Part 1 Object-Relational Model

2

The Object-Relational Schema

2.1 Simple Example: Inserting, Indexing, and Querying Spatial Data............c..cccccecevenenene 2-1
2.2 SDO_GEOMETRY ODJECE TYPE..tiitieriiiirieieie sttt 2-6
221 SDO_GTYPE..... ittt ettt bbbt bbbt bbbt 2-6
222 SDO_SRID ..ot 2-8
2.2.3 SDO_POINT L.ttt ettt bbbttt b b et b bbbt bbb bt 2-8
224 SDO_ELEM_INFO ..ottt 2-8
225 SDO_ORDINATES. ... oottt 2-12
2.2.6 Usage CONSIABIALIONS ......c..oiuiiiiiieiie et ettt ettt sb b e sn b s 2-13
2.3 Geometry Examples Using the Object-Relational Model ..o, 2-13
2.3.1 LT - Vo |1 S 2-13
2.3.2 Polygon With @ HOIE ......ooii e 2-14
2.3.3 Compound EIBMENT ... e e 2-16
2.3.4 (070 g a0 To 18 [aTo [0 Y7o o] o 1SS 2-17
2.4 Geometry Metadata STrUCTUIE ..........ooiiiiiiie et et 2-18
24.1 TABLE_INAME ..ottt bbbttt 2-19
242 COLUMN_NADME ...ttt 2-19
2.4.3 DIMINFO . ...ttt bbbt bbbttt b e en b 2-19
244 SRID .ttt bbbt e bbb bbbttt ebens 2-20
25 Spatial Index-Related SIrUCIUIE.........ccc i 2-20
251 SPAtial INAEX VIBWS. ...ttt s see s 2-20
25.2 Spatial Index Table Definition ...t 2-22
2.5.3 R-Tree Index SEqUENCE ODJECT........ccovv i 2-23



Loading and Indexing Spatial Object Types

3.1 (0T To N o {01 = LSS OSSP UT U USURTRP 3-1
3.1.1 211G I 0T Lo [ Vo S 3-1
3.1.1.1 Bulk Loading the SDO_GEOMETRY ODbjJeCt.......ccceveiviiveirrsr e 3-2
3.1.1.2 Bulk Loading Point-Only Data in the SDO_GEOMETRY Object.................... 3-3
3.1.2 Transactional INSert USING SQL .......ccovivierireie it 3-3
3.1.21 Polygon With HOIE ... e 3-4
3.1.2.2 CompPOoUNd LIiNE StFNQ......cooiiiiiiie i e 3-6
3.1.2.3 (7o g a] o T8 [aTe [ o] V7o o] o [FS PSSR 3-7
3.1.24 Compound Polygon With HOIES ... 3-9
3.1.25 Transactional Insert of PoOiNt-Only Data...........ccocooiiiiiiinenne e 3-10
3.2 INAEX CrEALION ... 3-11
3.2.1 Determining Index Creation Behavior (Quadtree INdexes)........cc.ccoeevererereiiennns 3-11
3.2.2 Spatial Indexing with Fixed-Size Tiles (Quadtree INAEXeS).........coevurvriereienennns 3-12
3.2.3 Hybrid Spatial Indexing with Fixed-Size and Variable-Sized Tiles..................... 3-15
3.24 R-tree Index Parameter ConSiderations..........ccocoeeirireeie s 3-16
3.24.1 SDO_FANOUT ..ottt ettt sttt bbbt 3-16
3.24.2 SDO_RTR_PCTFREE .....oct it 3-16
3.25 Cross-Schema INAeX Creation ..o s 3-16

Querying Spatial Data

4.1 QUETY IMOAEL ... bbbttt sb e b nbeebe e 4-1
4.2 SPALIAI QUETY ..ottt ettt bbb sb et e et b e eb e reene s 4-1
421 LUV ST | (= S 4-4
4.2.2 Primary and Secondary FIlterS ...t e 4-5
4.2.3 Within-DiStanCe OPEIatOr.........cououiiiiiiieiiieicie ettt ettt bbb e s 4-7
4.2.4 Nearest Neighbor OPErator........c.ccccviviiiieririeie e 4-8
4.3 SPALIAT JOTN ...ttt bbb bbb e b e ene s 4-9
4.4 Cross-Schema Operator INVOCALION ..........ooviieiriiieinee e e eae e 4-9

Indexing Statements

ALTER INDEX ...ttt e et 5-2
ALTER INDEX REBUILD .....cociiiiiiiiiicicr e 5-5
ALTER INDEX RENAME TO ..ottt 5-8



CREATE INDEX ...ttt 5-9
DROP INDEX.....coiiiiiieinieinmeesries st 5-14

6 Spatial Operators

SDO_FILTER ...ttt 6-2
SDIO_INN L s 6-6
SDO_RELATE ..ot e s 6-8
SDO_WITHIN_DISTANCE ...ttt 6-13

7 Geometry Functions

SDO_GEOM.RELATE ... eoieeeeeeeeeeoeseesssseeessseseeeeseeessesseeeseseeesssesesssssessssssesesesesseeessenees 7-4
SDO_GEOM.SDO_AREA .......oovvveeeeoeeeseseeeseesseeeessesesssssssssessessesssssesessssssesssessssssessssseeees 7-7
SDO_GEOM.SDO_BUFFER .....oovvcooccoereeeeseeeeesesesessosesesssssssesssesesssssssssssssssssssssseesessseessssenees 7-9
SDO_GEOM.SDO_CENTROID.........cooemeereeeeeeeeeeerseeessssseseeeseeeesssseessssssssssseeessssssseeseeens 7-11
SDO_GEOM.SDO_CONVEXHULL ....oeeeeveeeceoieeeseseeeseeeseeeeseessssssssssesssesnssessessesessens 7-13
SDO_GEOM.SDO_DIFFERENCE .......eoveovevveeeoeereeseseessssseseessssssssssssssssseessesssssssesssesseens 7-15
SDO_GEOM.SDO_DISTANCE .....oooormimeieeeeeeeeeeseesesssessesesseeeessessssseesssseseessesesssssssessnees 7-18
SDO_GEOM.SDO_INTERSECTION w.ccrovvvvveceoeereeesseeessseeseesssesssssesssssseseseesssssseesssesseen 7-20
SDO_GEOM.SDO_LENGTH oovvvveeeoriereeeeseeeeeeeeeessssesssessssssssesosesessssssessssessessesssssssesssees 7-23
SDO_GEOM.SDO_POINTONSURFACE .......ccocmmenrreeseeeeeeeeesssesssseseessseeeessssessssessesseee 7-25
SDO_GEOM.SDO_UNION ..ovvveeeeoeeseeeeeeeeeeeeesesesssesssssssesssseesssssssesssssssessseessssssessnees 7-27
SDO_GEOM.SDO_XOR ..eeeeeeeeeeeeeeeeoereesssseesessseseesesessssssesesssseessssssssssssssssssssnssesssssessssens 7-30
SDO_GEOM.VALIDATE_GEOMETRY ...cooovovveeeeoeeseesseeeeeeeeeeesseesssssesesssseseeesseessssneen 7-33
SDO_GEOM.VALIDATE_LAYER ...cooorrerreeeseeeeeeoiessssssesessssesseseessssssssssssesesssssessssseen 7-36
SDO_GEOMMWITHIN_DISTANCE ... ovveveeeooeeesesseeeeeseeseesesssssssessesssseesesesssssseesssesseee 7-39

8 Coordinate System Functions

Vi

SDO_CS.TRANSFORM ....cciiiiiitiiiitiie e 8-2
SDO_CS.TRANSFORM_LAYER ..ottt 8-5



9

Linear Referencing Functions

SDO_LRS.CLIP_GEOM _SEGMENT w.ooocooorrmeereeeeeeeeeoeeeesessesessssssessssssssssssssssesessesssssseen 9-5
SDO_LRS.CONCATENATE_GEOM _SEGMENTS........eerrrmreveeeeeeesssessseseeeseeeereesesseeen 9-7
SDO_LRS.CONNECTED_GEOM_SEGMENTS ...ooovevecoreeereseeeeeeeeoeesessesssseeeseeseeeeesins 9-10
SDO_LRS.CONVERT_TO_LRS_DIM_ARRAY ...oovvveeorieireeeeeessesseeessssssssesesssseseesnsns 9-12
SDO_LRS.CONVERT_TO_LRS_GEOM ...eeeeeovveeeeeeeeessesseessseseessssesssssssssssseoessssssssen 9-14
SDO_LRS.CONVERT_TO_LRS_LAYER ....ooeereoeereeeeeeseeesesseseeesseseoesessesessesssseseeneensns 9-16
SDO_LRS.CONVERT_TO_STD_DIM_ARRAY ....oocoiirmemmeeeeeeeveeeeenssessssssssssseenessesseen 9-18
SDO_LRS.CONVERT_TO_STD_GEOM ...eeeeoeoovveeeeeoeeeeseeeseseseeeesssssssssessssssseeessesseee 9-20
SDO_LRS.CONVERT_TO_STD_LAYER .....eooovveeeeeoereeeesseeeesseseesesssesssesessssseeeessessnen 9-22
SDO_LRS.DEFINE_GEOM_SEGMENT ...eeooeooovveeeeeoeeesseessesesseeessssessssessssssseeessesseee 9-24
SDO_LRS.DYNAMIC_SEGMENT .coovvvvveeorrereeeeseeesseseeeosseesssssssssssesesssessessssesssssseenesninns 9-27
SDO_LRS.FIND_IMEASURE .......coorovveeeeeeesessesseeeeseeeeeeseseesssesssssssseosesssseesesssseseeesen 9-29
SDO_LRS.GEOM_SEGMENT_END_MEASURE .........ceoieerreereeeeeesresssssessssseeneesesseee 9-31
SDO_LRS.GEOM_SEGMENT _END_PT..coooroeeeeeeeseeeeeeereessesssssssseeessessessssssssssssenesins 9-33
SDO_LRS.GEOM_SEGMENT _LENGTH ....corerreeeeececeressesseeeeeseeeeessesssssesessesseeeeses 9-35
SDO_LRS.GEOM_SEGMENT _START_MEASURE ......ossvoeorveeveereresssesesessseesessesseen 9-37
SDO_LRS.GEOM_SEGMENT _START _PT.ooeereoeeeeeeeeeoissessssesessssenssessessesssssseseenesnsns 9-39
SDO_LRS.GET_MEASURE.........ioeeeeeeeeeceseeseesseeessssseeeeseessesseesssseeeeessesssssssssessesesins 9-41
SDO_LRS.IS_GEOM_SEGMENT _DEFINED ....ovvvvvcoooreeeeeeseeeeeeeesseseessseessessseeeeesesseen 9-43
SDO_LRS.LLOCATE_PT covovoooreeeeeeeeeeseoseseeesesssessssssssessssssssssessssessssesssssssessssssseeenessesseee 9-45
SDO_LRS.MEASURE_RANGE .......ovovvveeoeeeeeeesseeeseseeeeesesessesseesssseeeessseessssesessesseeeeis 9-47
SDO_LRS.MEASURE_TO_PERCENTAGE .......ovovvveeeeeeeeeeeeseeessesenesessessesssssssseeneesns 9-49
SDO_LRS.PERCENTAGE_TO_MEASURE .......ooovoveeeeeereeeseseeesseseeeessssessssessssessesesins 9-51
SDO_LRS.PROJECT _PT oooooooeeeeeeeeeeeeeoesesssseeessseseeseeesssesesessssesesseesessssesssssssee s 9-53
SDO_LRS.REDEFINE_GEOM_SEGMENT ...eoooeorvveeeeeoreeesesesesseseeeeeessesssssssssessesesens 9-55
SDO_LRS.REVERSE_MEASURE .....oovvovveeoeeeeeeseeeeeeseeeeesesssssssssssseoeseessesssssssssessenesens 9-57
SDO_LRS.SCALE_GEOM _SEGMENT w.o.ccooorrmeeeeeseeeeesoeeeesssseeeseseeeeesssssssssssessesseeeess 9-59
SDO_LRS.SPLIT_GEOM_SEGMENT ...coovrrereeeeseeeeeeoeeeseseeseeessesessssessssessssssseeensessesseen 9-62
SDO_LRS. TRANSLATE_MEASURE. .....v.ccoooeeeseeeeeeseeeeesesessessessssssesessssessssessssssseseens 9-65
SDO_LRS.VALID_GEOM _SEGMENT w..ccooeromreeeeeeeeeeeeseessesseesseseeeeeesssssssessssesseeeesns 9-67

Vil



10

11

SDO_LRS.VALID_LRS_PT..oovvvvecooeereeesseeeeeeeeeeeessessesssesessssseeseseessssesesssseseeseesesssssssesseees 9-69
SDO_LRS.VALID_MEASURE .......ccesieemreieeeeeeeeeesessesesessssesseeseseesssseeesssseseessssessessssessnee 9-71

Migration Procedures

SDO_MIGRATE.FROM 815 TO_BLX.......ooooeveeeeeoeeeresessseeeseesseesseesssssseesssseseeessesssssnen 10-2
SDO._MIGRATE.TO_ 734 ..oeoeeeeeeeveeoeeeeeeeeseessessseeeeesssssesessssessssssesesssssssssssenesesesssssseons 10-3
SDO_MIGRATE.TO_BLX....eeereeeveeeeeeoersressssseesssssssssesssssesessssesesssesssssssssssssesessssesssssseens 10-5
SDO_MIGRATE.OGIS_METADATA_FROM......cceimmmmmrmeeoeeeeeeesreeesssseseessseeeeesssessssneen 10-8
SDO_MIGRATE.OGIS_METADATA_TO ooovovvvveooeseeeeeeeeseveseessseessssssesssseseesensessssseen 10-9

Tuning Functions and Procedures

SDO_TUNE.AVERAGE_MBR......cciiiiiiiiiiini e 11-2
SDO_TUNE.ESTIMATE_INDEX_PERFORMANCE ........cccoviiiiiiiiieee 11-4
SDO_TUNE.ESTIMATE_TILING_LEVEL.....ceciiiiiireeeee e 11-7
SDO_TUNE.ESTIMATE_TILING_TIME ..ot 11-9
SDO_TUNE.ESTIMATE_TOTAL_NUMTILES........cciiiiiic e 11-11
SDO_TUNE.EXTENT_OF ..ot 11-14
SDO_TUNE.HISTOGRAM_ANALYSIS ..ot 11-16
SDO_TUNE.MIX_INFO.....ciiiiiiiiiiiice e 11-18

Part Il Relational Model

12

13

viii

The Relational Schema
12.1  Database Structures for the Relational Implementation............cccccoceoeiniiineniicinen 12-1
Loading Spatial Data (Relational Model)
13.1 LOAA MOEL.....ciiii bt bbb b 13-1
13.2  LOBA PrOCESS ...ttt sttt ettt sttt ettt ettt bbbt et b s e ne et et e e bt eb e e be et b benee e e e enea 13-2
13.2.1 2811 1o Lo | Vo S 13-2
13.2.2 Transactional INSert USiNG SQL.......cccooiiiieriiiiieiieeesese e 13-4
13.3  INAEX CFEALION. .. .ui ittt bbbttt ettt s b e be bbb e e e e e enea 13-6
13.3.1 Choosing a Tessellation AIGOrithm ..........cccooiiiiineiieicrce e 13-6



13.3.2 Spatial Indexing With FiXed-Size TIleS.......ccccvvrieieriricreeie e
13.3.3 Hybrid Spatial Indexing with Fixed-Size and Variable-Sized Tiles....................

14 Querying Spatial Data (Relational Model)

141 QUEEY MOGEL ...t bbbttt sbe b b
14.2  Spatial INdexX Data StIUCLUIES .......ccvcveiieeiriecise s ere e e
14.3  SPALIAI QUETY ettt ettt ettt bt b bbb e bt ne et e
14.3.1 Dynamic QUETNY WINOOW ..........coiiiiiiiieiieie ettt e
14.3.2 Primary FIEr QUEIY ..ottt sne s
14.3.3 Secondary FIlter QUETY ......ooi it e
144 SPALIAL JONN ..ottt bbb bbb e et b

15 Administrative Functions and Procedures for Relational Model

SDO_ADMIN.POPULATE_INDEX .....coiiiiiiiiiiiiiieiece e
SDO_ADMIN.POPULATE_INDEX_FIXED.......cccoooiiiiniiiiee s
SDO_ADMIN.POPULATE_INDEX_FIXED_POINTS......ccoiiiiiieeneereesee e
SDO_ADMIN.SDO_CODE_SIZE .......ccoooiiiiiiiiicicc e
SDO_ADMIN.SDO_VERSION........ooiiiiiiiiiiiii s
SDO_ADMIN.UPDATE_INDEX ..ot
SDO_ADMIN.UPDATE_INDEX_FIXED......ccccotiiiiiiiiiiiiiicn e
SDO_ADMIN.VERIFY_LAYER ....oooiiiiiic s

16 Tuning Functions and Procedures for Relational Model

SDO_TUNE.AVERAGE_MBR....ccovvovveoeeeeeeesseeesssesseseessssssssssssesesssessssssssssssseoesessesssen
SDO_TUNE.ESTIMATE_INDEX_PERFORMANCE .......ovvvoeceeseeeseseeeeeeeeeeesssessesseene
SDO_TUNE.ESTIMATE_TILING_LEVEL w.cooovvveeeereeeeeeeseeseeeseeeeesessesssessssssseeneeessesseen
SDO_TUNE.ESTIMATE_TILING_TIME .eeeoovovveeeoeeeeseeeeseeeseeessssssesssesssssseeseeessessene
SDO_TUNE.EXTENT_OF ...oooooeoeeeeeeeooeeseesseesseeseseesessesssseeseesssesessssessssesessssseeessesssen
SDO_TUNE.HISTOGRAM_ANALYSIS ....oorereevoeeeeeeoeesssseeesssssssesssesssssesesssseseessenen

SDO_TUNE.MIX_INFO covvvooorrreeeeeeeeeeeeeeeesesseessssesssssseeessessessesesssssssssssssesssssssesssseseesnenen



17

18

Geometry Functions and Procedures for Relational Model

SDO_GEOM.RELATE. ...ttt e 17-2
SDO_GEOM.VALIDATE_GEOMETRY ....ociiiiiiiiierenere e 17-5
SDO_GEOM.VALIDATE_LAYER ..ottt 17-6

Window Functions and Procedures for Relational Model

SDO_WINDOW.BUILD_WINDOW ......ccoociiiiiiiiiieireeieeneeesne e 18-3
SDO_WINDOW.BUILD_WINDOW_FIXED........cccooiiiiiiiiiiicicceisne e 18-5
SDO_WINDOW.CLEAN_WINDOW.......ccccoiiiiiiiiiiiiee et 18-7
SDO_WINDOW.CLEANUP_GID........ccootiireireeneeeeeneese e 18-8
SDO_WINDOW.CREATE_WINDOW_LAYER.......coeiiiiiiiiiii s 18-9

Tuning Tips and Sample SQL Scripts

Al LU a1 T T T 1O OO ST A-1
Al1l (D= 1= Y/ (0T =] 1T o TSP A-1
Al.2 Understanding the Tiling LeVel ... A-2
Al1.3 Using Hybrid Indexes (Object-Relational Model Only) ..., A-3
Al4 Database SiZING.......cccoviiriiieiie st A-4
Al15 Visualizing the Spatial Index (Drawing Tiles) .......cccooiiiiiiiniiii e, A-5
Al151 Drawing Tiles from the Object-Relational Model ..............ccoooiiiiiiiiinne A-5
A.15.2 Drawing Tiles from the Relational Model ... A-7
Al6 Setting the SORT_AREA_SIZE VAIUE .......cceiiiiiiiiiiiinseeeee e A-9
Al17 Tuning Point Data with the Relational Model ... A-9
A.l7.1 Efficient Queries for Relational Point Data ...........ccccoeveviieiie i A-9
Al1.7.2 Efficient Schema for Relational Point Layers.........cccooovieiineneninc e A-10
Al1.7.3 Script for Using Table Partitioning with Relational Point Data...................... A-11
A.l1.8 Tuning Spatial Join Queries Using the Relational Model............cccccooveviiiiniennn, A-11
Al8.1 Using the NO_MERGE, INDEX, and USE_NL Hints.........c.ccccceoennnnnienencne. A-11
A.1.8.2 Spatial Join Queries With POINt LAYEIS ..........coooiiiireiiie e A-12
A.l1.9 Using Customized Geometry Types in the Relational Model .............cccccvennene. A-14
A.1.10 Partitioning Spatial Data Using the Relational Model..............ccocoooiiiiiiiins A-14
Al1.11 Parallel Loading and Indexing of Spatial Data Using the Relational Model....... A-14
A2 Scripts for Spatial Indexing Using the Relational Model...........c..ccccoviiiiviiiinicienenns A-16



A2.1 cr_spatial_indeX.Sql SCrIPL ..o A-16

A2.2 CrIAYEr. SOl SCIIPL ... e et eb e A-17
A3 Tools and Related PrOTUCES ... A-17
A3.1 Oracle iNterMedia LOCALON ..o A-17
A3.11 GEOCOAING SUPPOIT ...ttt ettt bbbt A-17
A3.1.2 Compatibility with Spatial ObjJectS.........cccccveiiviiii i A-18
A.3.1.3 Sample interMedia LoCator COAE ..........coiieiiiinieieeeeeee e A-18
A.3.2 Spatial Viewer on UNIX/Motif for Relational Model ... A-18
A3.21 INstallation aNd SETUP.......ccoeieveeiciece e s A-18
A3.2.2 Connecting to a Database and Viewing GEOMEtries .......cccovvveviecinienienennn. A-19
A.3.2.3 UsIiNg the SAMPIEe VIBWET .....cc.oouiiiiiiciee e A-20
A.3.3 Spatial Visualizer on Windows NT for the Object-Relational Model .................. A-20
A.3.3.1 Compiling and Running the Sample Program .........c.cccccooneniiiiniecineicenen, A-20
A.3.3.2 USBOE NOTES ...ttt bbbttt e e et enr e A-21

Installation, Compatibility, and Migration Issues

B.1 INEFOAUCTION. ....cceiteec ettt r e er e e e eb e B-1
B.2 INSEAAtION DETAIIS. .......cveeieeierei s B-2
B.2.1 Changing from 8.1 to 8.0 Compatibility Mode ... B-2
B.3 CompPatibDility DETAIIS.......ccciiiiiietie e e et be e B-3
B.4 Data Migration ISSUES .........ccccuvviiiiierieesesiesieieese e s ettt sr e a s eeese s snesresresreneeseenen B-4
B.5 Migrating from Spatial Release 8.1.5 or 8.1.6 to Release 8.1.7.......c.ccoceveveieeicinicncennne, B-5
B.5.1 Migrating from Spatial Release 8.1.5 to Release 8.1.6 .........ccocevcvviveienencieicee B-5
B.5.1.1 Data Migration t0 Release 8.1.6........cccccveviveiereiinisie s B-6
B.5.1.2 Compatibility Between Releases 8.1.5and 8.1.6.........cccceeereriniiene e B-6
B.5.2 Migrating from Spatial Release 8.1.6 to Release 8.1.7 ........ccocevviiii e B-7

Generic Geocoding Interface

Cl1 Locator Implementation: Benefits and Limitations..........c.ccccvniiiniienencie e C-2
Cc.2 Generic GeOCOAING CHENT .......cvciiici e e nnens C-2
C3 GEOCOAET IMEBTAAALA ... ..ottt b e e b et e sn e b e ene s C-3
C3.1 SEIVEE PFOPEITIES ...ttt st b et b e e C-4
C.3.2 Geocoding Input and Output SPecCifiCation ............ccocvvireiceience e C-5
c3.21 Multiple Matches and Rejected RECOIS .........ooeieiiiiiiiiiicieeee e C-9
oy} Metadata HelPEr CIASS ......ooiiiiiiiee ettt bbb C-9

Xi



Xii

C5 Single-Record and Interactive GEOCOAING ......cccevvreriirieieiieise e st ee e C-9
C.6 Java Geocoder Service INTErface ... et C-10
Cc.7 Enabling Third-Party GEOCOUEIS........c.ccveierieiee e C-11

Coordinate Systems (Spatial Reference Systems)

D.1 Why Integrate Coordinate System INformation?...........ccoceecvvevincicinie s, D-1
D.2 TEIMS AN CONMCEPLS....ctiitiitieieite ettt bttt ee bt e et e s et et ebe et e besbe b e be e nbens D-2
D.2.1 Coordinate System (Spatial Reference SyStem) ........ccocoeieieiinnninicse e D-2
D.2.2 Cartesian CoOrdINALES ..........ceiiiireeer s D-2
D.2.3 Geodetic Coordinates (Geographic Coordinates)..........ccoccevrerenenenienene e D-2
D.2.4 Projected COONTINGALES.......cc.oiuiiiiieeieee ettt bbb s D-2
D.2.5 GEOAELIC DALUM ... D-2
D.2.6 AULNATIC SPRIEIE ... e D-3
D.2.7 Transformation (Datum Transformation)..........c.ccoeveeiiiinieni e D-3
D.3 Coordinate Systems Data StFUCTUIES .........cccvveireeeieie e se s eree s aere s sresee s D-3
D.3.1 MDSYS.CS_SRS TADIE......ciiiiitiiiisice sttt e D-3
D.3.1.1 Well-KNown TeXt (WKTEXT) ..ot D-4
D.3.2 (O 1 =T @ o= £ D-5
D.4 Coordinate Systems Functions and ProCedUres............ccooiieiiiiiiiiene e D-7
D.5 Restrictions and Problems in the Current Release..........ccocovieiiiiieiencieiseece e D-7
D.5.1 Geometries with Longitude and Latitude Coordinates............ccccoecevvevevernsivccesnnne, D-7
D.6 Example of Coordinate SYSTEMS.........ooiiiiiiiiie e D-8
D.7 Error Messages for Coordinate SYStEMS .........ccoiiiieiiiieineeie e e D-14

Linear Referencing System

E.l TEIrMS AN CONCEPLS. ...cviitietiiteite ettt ettt sttt ee et e et s et et ebe et e besbenbe st e b E-1
E.1l.1 Geometric Segments (LRS SEgMENTS).....cccvvviiiiiirereieeeres e E-2
E.1.2 SNAPE POINTS ...ttt bbbt sbe e E-2
E.1.3 Direction of 2 GEOMELriC SEGMENT ......c.oci i E-3
E.14 Measure (LIiNEar MEASUIE) ........c.cviviuiiiriesiesiese e siesee e e et sre e see e seeeenaenaesesnenes E-3
E.1.5 (O] 7Y OSSPSR E-3
E.1.6 MEASUTE POPUIALING ...cviiiii it ettt e E-4
E.1.7 Measure Range of a GEOMELIiC SEGMENT ........ccveveieiicece e E-6
E.1.8 PROJECTION ...ttt b e bbbttt e bbbt e E-6
E.1.9 LIRS POINT ..ottt ettt sb bbb bt e st et e b e b e b e enas E-6



E.1.10

E.2
E.3
E.4
E4.1
E.4.2
E.4.3
E.4.4
E.4.5
E.4.6
E.4.7
E.4.8
E.4.9
E.5
E.6

Glossary

LINEAN FEALUIES .....cviietiiiee ettt bbb ettt E-6
LRS DAta MOGEL ..ottt et b e sttt b e e E-7
INAEXING Of LRS DALA......cciiiiieiiiicciecce ettt s ne e eere e nnen E-8
[ ST @] o =T =1 1 o] 1SS E-9

Defining @ GEOMELIiC SEOMENT ......oouiiiiiiiieiiee e e E-9

Redefining a GEOMEtriC SEGMENT ......ccocviiviiiic e E-10

Clipping @ GEOMELIiC SEOMENT .....cc.oiuiiiiiieieieee et E-11

Splitting a GEOMELriC SEGMENT......ccoiiiiiiieceee e e E-12

Concatenating Two Connected Geometric SEgMeNnts..........ccovvvvivvivniererieneniennenes E-12

Scaling @ GEOMELIIC SEOMENT ........cci i E-14

Locating a Point on a Geometric SEgMENT..........cooviviiiriirenene e E-15

Projecting a Point onto a Geometric SEgMENT........cccvvvrereeeiceeiere e E-17

Converting GeoMEtriC SEGMENTS .......cviiiiciiieee et e E-17
ez 10 0] o] L= TSSO TSP E-19
Error Messages for Linear Referencing SYStem ........cccvvevcieiiivcccn s E-31

Xiii



List of Examples

2-1 Simple Example: Inserting, Indexing, and Querying Spatial Data ..............cccccoceiiinene 2-3
3-1 Control File for @ BUIK LOA..........ccciiiiiiiiiiieic s 3-2
3-2 Control File for a Bulk Load of Point-Only Data.............ccoceioeiiiiiineis e 3-3
3-3 Procedure to Perform Transactional Insert Operation...........cccccooeoiininenene e 3-4
34 PL/SQL Block Invoking Procedure to Insert a GEOMEtrY.........cccooviieieienienine e 3-4
3-5 Creating @ FIXE INAEX ... b 3-14
3-6 Creating @ HYDEFId INAEX.....ccoiiieee e e 3-16
4-1 Primary Filter with a Temporary Query WiNndOW ..........c.ccocviiiiinniininencnesee e 4-4
4-2 Primary Filter with a Transient Instance of the Query Window ............cc.ccocvveieincenne 4-5
4-3 Primary Filter with a Stored QUEry WiNAOW ...........cccooiiiiiiiiieie e 4-5
4-4 Secondary Filter Using a Temporary Query Window ...........c.ccocviniieneneneiesieeeenene 4-6
4-5 Secondary Filter Using a Stored Query WindOW ... 4-6
13—1  RAW Data FOMMAL ..ot e e 13-2
13-2 Control File to Load Data into the Geometry Table...........ccocooiiiiiiiiiiiie, 13-3
13-3  RAW Data FOIMMAL........cccoiiiiiiiieicc e e e 13-3
13-4  Control File to Load from a Single Flat File...........ccoooiiii e 13-4
13-5  TransactioNal INSEIT ..o es 13-4
13-6  Transactional Insert for a Large GEOMELIY ........ccccoiiiiiieie e 13-5
15—1  POPUIALE AN INAEX ... ..ottt aesbe e e e e e 154
15-2 Populate an Index With FIXed-Size TIleS .......ccooiiiiiiiiiiiie et 15-7
15-3 Populate an Index with Fixed-Size Tiles Based on Point Data ...........ccccceeevereieinnenn 15-9
15—4  UPAALE AN TNOEX c.eiiviiiiii ettt b e bbb et e e ne e e 15-13
15-5 Update an Index With FiXed-Size TileS........coooiiiiiiiiie e 15-15
156 VEIIFY @ LAYEE ..ottt ettt se e e e b eeeene s 15-16
16-1 Recommended Tile Level for One-Degree Latitude/Longitude Cells.............c..c...... 16-6
16-2 Recommended Tile Level Based on the GIDs of All GEOMELries........ccoccovvvvrviniennn. 16-6
16-3 Recommended Tile Level Based on Average Extent of All Geometries ..................... 16-7
A-1 View Fixed-Size Tiles for All GEOMELIIES ........c.cvieiieiieeee e A-6
A-2 View Variable-Sized Tiles for All GEOMELIIES........cccovviieiniiereree e A-6
A-3  View Fixed-Size Tiles for ONne GEOMELIY ........cccoeiiiiiiiiiiicee s A-6
A-4  View Variable-Sized Tiles for One GEOMELIY ........cccociiiiiiiinieiicieene s A-7
A-5  View Fixed-Sized Tiles for All Geometries Using the Relational Model ..................... A-8
A—6  View Fixed-Size Tiles for a Specific Geometry Using the Relational Model ................ A-8
B-1 Insert Trigger for Metadata CONSISTENCY ........cccviriiiiiniiiceee e B-7
D-1  Simplified Example of Coordinate SYSTEMS .........ccooviiriiiriiiiiiriesee e D-8
D—2  Output of SELECT Statements in Coordinate Systems Example.........c.ccoocevninnnne. D-11
E-1 Including LRS Measure Dimension in Spatial Metadata............c.ccccoeevviiiicinciicnnnns E-7
E-2 Simplified Example: HIghWay ... E-21
E-3 Simplified Example: Output of SELECT Statements.........c.ccoveiveineneeicenceeenes E-26

Xiv



List of Figures

[ R TR L I A A P
= O

-b-bwwwwwwwlTJNITJNNHHHHHHHHHHH
NFPFDRWONRPNRPNOORWONPRPODNWONRPPPRPOO~NOOODWNPR

GEOMELIIC PrIMITIVE TYPES ..ottt bbb e bbb 1-5
Additional Geometry Types Using the Object-Relational Model ..o, 1-6
QUETY IMOAEL ...t bttt ettt et sbe e e nbeebe e 1-8
Quadtree Decomposition and MOrton COAES ..........ccoiririiireieiereee e 1-13
Fixed-Size Tiling with Many Small Tiles ... 1-15
Fixed-Size Tiling with Fewer Large Tiles ... 1-16
TeSSellated GEOMELIY ......c.ooiiiieiieteee ettt sb b e se e 1-17
Variable-Sized Tile Spatial INdeXing .........ccoiiiiiiiiei e 1-20
Decomposition 0f the GEOMELIY ..o 1-21
The 9-INtersection MOEL............coiiiiiii e 1-23
Distance Buffers for Points, Lines, and POlYQONS...........cccooiiiiiiiiiinsne e 1-25
Areas of Interest for Simple EXamPIe...... .o 2-2
RECTANGIE......cee e bbbt bt bbb e b enas 2-13
Geometry With @ HOIE ..o e 2-14
ComPOoUNd EIBMENT ... et er e 2-16
ComMPOUNT POIYGON ...t sttt sbe st e saens 2-17
POIYGON WIth HOIE ... e e 3-5
Line String Consisting of Arcs and Straight Line Segments...........ccccccooviiinininenne 3-6
CoMPOUNT POIYGON ...ttt ettt et e e beneas 3-8
Compound Polygon With @ HOIE ..o 3-9
SAMPIE DOMATN ...ttt bttt e et e r e et e ebesbeebesee e neens 3-12
Fixed-Size TiliNg @t LEVED L....co.i i 3-13
Fixed-Size TiliNg @t LEVEL 2.....c.o i 3-13
Tessellated Layer with Multiple ODJEeCtS........ccooiiiiiiiiiee e 4-2
Tessellated Layer with a QUEry WINAOW ...........cooiiiiiiiiiiiiie e 4-3
SDO_GEOM.SDO_DIFFERENCE........ccooiiiiiiiie ettt 7-16
SDO_GEOM.SDO_INTERSECTION ....ceoiiiiiiiiiiinirieiie ettt 7-21
SDO_GEOM.SDO_UNION......oiiiiiiiiiitiiitiiiette sttt 7-28
SDO_GEOM.SDO_XOR ..ottt 7-31
Reversing @ GEOMELIIC SEGMENT ........c..ciiiiiiiiiie e 9-58
Translating @ GeOMELriC SEgMENT..........cciiiiiiiriiierer e 9-66
COMPIEX POIYGON ..ottt 12-5
SAMPIE GIS DOMAIN ..viiiiiitiiitiie et 13-8
Fixed-Size TiliNg At LEVEI L ..o e 13-8
Fixed-Size TiliNg At LEVEI 2 ......oooiiee e 13-9
Tessellated Layer with Multiple ODJECTS.........ccccoviiiiiiic e 14-2
Tessellated Layer with a QUEry WINQOW .........c.ccccoiiiiiiniiinciicseesree e 14-5
Spatial JOIN OFf TWO LAYEIS .....coueiiiiiieiceeieteee e 14-8
Oracle Geocoding FramMEWOTK .........ccoociiiiiieeiete e C-3
GEOMELIIC SEOIMENT ...ttt ettt sttt sb bbb E-2

XV



E-2 Describing a Point Along a Segment with a Measure and an Offset...........cc.ccoccvivvenen. E-4
E-3 Measures, Distances, and Their Mapping Relationship ........ccccccvoviviinviiiincciciinens E-4
E-4 Measure Populating of a GEOMELric SEgMENTt.........ccoveivcveeeiesece e E-5
E-5 Measure Populating With Disproportional Assigned Measures ..........ccccccevvvvrerereennnn, E-5
E-6 Linear Feature, Geometric Segments, and LRS POINtS.........ccccccvevevvveininninnnnienesenieens E-7
E-7 Creating @ GEOMELIiC SEOMENT......cc.cieieeeici et seeeens E-8
E-8 Defining @ GEOMEIiC SEOMENT......c.ccoiiiieieiire et E-10
E-9 Redefining a GeomMetric SEGMENT.......c.oooiiiiiiiii e e E-11
E-10 Clipping, Splitting, and Concatenating Geometric SEgments ..........cccocevevrereresinnen. E-12
E-11 Measure Assignment in Geometric Segment OpPerations..........ccccooevverieneieneneieeneennas E-13
E-12 Segment Direction with CoONCateNation ..o E-14
E-13 Scaling a GeomEtriC SEgMENT........cci ittt E-15
E-14 Locating a Point Along a Segment with a Measure and an Offset..........cccccceeiiienne E-16
E-15 Ambiguity in Location Referencing with OffSets ..........ccoccooiiiiiniii i E-16
E-16 Multiple Projection POINTS .........cooiiiiiiiiie e e e E-17
E-17 Conversion from Standard to LRS Line String.......ccccooiieiiriiniiiiiiie e E-19
E-18 Simplified LRS Example: HIghWay ... E-20

XVi



List of Tables

1-1 SDOINDEX Table Using FiXed-Size TileS......cccccoiiveieiiicsesie s 1-18
1-2 Section of the SDOINDEX TabIE ..o 1-22
2-1 Valid SDO_GTYPE VaAlUES......ccceieieiecieieseeste sttt sa et snesae e aenaesenes 2-7
2-2 Values and Semantics in SDO_ELEM _INFO ..o 2-10
2-3 Columns in the xxx_SDO_INDEX_METADATA VIEWS......ccceoviveivrrsinnneseseeiereeens 2-21
2-4 Columns in a Spatial Index Data Table ... 2-22
5-1 Spatial Index Creation and Usage Statements ..o ienene e 5-1
5-2 SDO_LEVEL and SDO_NUMTILES CombINatioNS.........cccorrieiininnieieine e 5-12
6-1 Spatial USAgE OPEIATOFS ......cooiiuiiiiiiiieitieie sttt ettt sttt sb et seesbesbe e e et eseebesneaneas 6-1
7-1 Geometric Functions for the Object-Relational Model ... 7-1
8-1 Functions and Procedures for Coordinate SYStEmMS .........cccoviiiiiiieieniene e 8-1
8-2 Table to Hold Transformed LAYer ..o 8-6
9-1 Functions for Creating and Editing Geometric SEgmeNnts.........cccccocvvriiriieiineneneniennns 9-1
9-2 Functions for Querying Geometric SEgMENTS.......c.coeiiiiirireie e 9-2
9-3 Functions for Converting Geometric SEgMENTS.........cccoiviiririieienee e 9-3
B0 A \V/ [ To | = o] g I o Tol=To U] =L 10-1
11-1  Tuning FUNCtiONS aNd PrOCEAUIES ........cooiiiiiie e e 111
12-1 <layername>_SDOLAYER TabIe ..o 12-2
12-2 <layername>_SDODIM Table OF VIEW .........ccccoiiiiiiiiiieiee e 12-2
12-3 <layername>_SDOGEOM Table OF VIEW ... 12-2
12-4  <layername>_SDOINDEX TabIe .......ccoooiiiiiee e 12-2
13-1 <layername>_SDOLAYER TabIle ... s 13-1
13-2 <layername>_SDODIM Table OF VIEW .........ccccoiiiiiiiiiieee e s 13-1
13-3 <layername>_SDOGEOM Table Or VIEW ...t 13-2
13-4  <layername>_SDOINDEX TabIe .......ccoooiiiiie e 13-2
13-5 Choosing a Tessellation AIQOrithim ............ccooiiiiiiiiei e 13-7
14-1 <layername>_SDOLAYER TabIle ... s 14-3
14-2  <layername>_SDOGEOM Table Or VIEW........cccooviiiiniiinicieee e 14-3
14-3  <layername>_SDOINDEX TabIe .......cccciiiiiiiiie e 14-4
15-1 Administrative Procedures for Spatially Indexed Data.............ccccourviriinnennennienn, 15-1
16-1  Tuning FUNCLiONS aNd ProCEAUIES ..........coiiiiiiisieee e 16-1
17-1 Geometric FUNCtIONS aNd PrOCEAUIES ........ccooviiiiiiiieeieiniee e 17-1
18-1  Window FUNCtioNS and PrOCEAUIES ..........cerieiriiirieinieinieeet et 18-1
D—1  MDSYS.CS_SRS TADIE ...ttt D-3
D—2  Supported Map ProjECTIONS ........ccceoiirieiiiieieiieenieieee ettt D-5
D=3  SUPPOIted EHIPSOIS. .....cviiiiiieiiiei ettt D-6
E-1 Highway Features and LRS COUNTEIPArtS.......ccccooiiiiiiieiee e E-20

XVii



Xviii



Send Us Your Comments

Oracle Spatial User's Guide and Reference, Release 8.1.7
Part Number A85337-01

Oracle Corporation welcomes your comments and suggestions on the quality and usefulness of this
publication. Your input is an important part of the information used for revision.

Did you find any errors?

Is the information clearly presented?

Do you need more information? If so, where?

Are the examples correct? Do you need more examples?
What features did you like most about this manual?

If you find any errors or have any other suggestions for improvement, please indicate the document
title and part number, and the chapter and section or page number (if available). You can send com-
ments to us in the following ways:

Electronic mail: nedc_doc@us.oracle.com

FAX: 603.897.3316 Attn: Spatial Documentation
Postal service:

Oracle Corporation

Oracle Spatial Documentation

One Oracle Drive

Nashua, NH 03062-2698

USA

If you would like a reply, please include your name and contact information.

If you have problems with the software, please contact Oracle Support Services.

Xix



XX



Audience

Preface

The Oracle Spatial User’s Guide and Reference provides user and reference information
for the Spatial product, and extensions to Oracle8i Enterprise Edition.

Spatial requires Oracle8i Enterprise Edition. Oracle8i and Oracle8i Enterprise
Edition have the same basic features. However, several advanced features, such as
extended data types, are available only with the Enterprise Edition, and some of
these features are optional. For example, to use Oracle8i table partitioning, you
must have the Enterprise Edition and the Partitioning Option.

For information about the differences between Oracle8i and Oracle8i Enterprise
Edition and the features and options that are available to you, see Getting to Know
Oracle8i.

This guide is intended for anyone who needs to store spatial data in an Oracle
database.

Organization

This guide is divided into two parts. Part | deals with the object-relational storage
model, and Part 11 describes the relational storage model. The following table lists
the elements in this guide:

Chapter 1 Introduces spatial data concepts.
Part | The following chapters describe the object-relational spatial model:
Chapter 2 Explains the object-relational schema.

XXi



XXii

Chapter 3
Chapter 4
Chapter 5
Chapter 6

Chapter 7

Chapter 8

Chapter 9
Chapter 10
Chapter 11

Part 11

Chapter 12
Chapter 13
Chapter 14
Chapter 15

Chapter 16

Chapter 17

Chapter 18

Appendix A
Appendix B
Appendix C
Appendix D

Explains loading and indexing spatial data.
Explains methods for querying a spatial database.
Provides the syntax and semantics for the indexing functions.

Provides the syntax and semantics for operators used with the
spatial object data type.

Provides the syntax and semantics for the geometric functions and
procedures.

Provides the syntax and semantics for the linear referencing system
(LRS) functions.

Provides the syntax and semantics for the migration functions.
Provides the syntax and semantics for the migration functions.

Provides the syntax and semantics for the tuning functions and
procedures.

The following chapters describe the relational spatial model:
Explains the relational schema.

Explains spatial data loading.

Explains methods for querying a spatial database.

Provides the syntax and semantics for the administrative functions
and procedures.

Provides the syntax and semantics for the tuning functions and
procedures.

Provides the syntax and semantics for the geometric functions and
procedures.

Provides the syntax and semantics for the window functions and
procedures.

Describes sample SQL scripts and tuning tips.
Describes installation, compatibility, and migration issues.
Describes the Spatial Generic Geocoding Interface.

Provides conceptual and usage information for using coordinate
systems (spatial reference systems) with Oracle Spatial.



Appendix E  Provides conceptual and usage information for using the Oracle

Spatial linear referencing system (LRS).

Glossary Provides definitions of terms used in this guide.

Changes for Release 8.1.7

The following changes have been made to this guide for release 8.1.7:

Information about support for coordinate systems (spatial reference systems)
and the linear referencing system (LRS) has been added. This information
previously appeared in separate documents available through the Oracle
Technology Network (OTN).

Information about spatial R-tree indexes has been added. This information
previously appeared in a separate document available through the Oracle
Technology Network.

The behavior of the SDO_GEOM.VALIDATE_LAYER procedure (documented
in Chapter 7) has changed. Rows are written to the result table only for invalid
geometries, and no row is written if a geometry is valid. In the previous release,
a row was written to the result table for each geometry, and for valid geometries
the row contained the primary key value and the string TRUE. This change is
designed to minimize the size of the result table when the layer contains many
geometries.

The SDO_POLY_xxx functions, which were deprecated at release 8.1.6, have
been removed from this guide. You should use instead the corresponding
"generic" (not restricted to polygons) SDO_xxx functions documented in
Chapter 7: SDO_DIFFERENCE, SDO_INTERSECTION, SDO_UNION, and
SDO_XOR.

Minor corrections and clarifications have been made where necessary.

Note: The relational model (documented in Part I1) will not be
included in future releases of this guide, but will instead be
provided in a separate document to be announced. You are
encouraged to use only the object-relational model (documented in
Part I) for Oracle Spatial applications.

XXiii



Features Released Separately

The following features or capabilities are of interest to spatial application
developers, but are not part of Oracle Spatial. Software and documentation for the
following are available through the Oracle Technology Network.

« Geolmage
=«  Workspace Management (long transactions)
To access the Oracle Technology Network, go to

http://technet. oracl e.com

Related Documents

XXV

For more information, see the following documents:

«  Oracle interMedia Locator User’s Guide and Reference

«  Getting to Know Oracle8i

«  Oracle8i Administrator’s Guide

«  Oracle8i Application Developer’s Guide - Fundamentals

«  Oracle8i Error Messages - Spatial messages are in the range of 13000 to 13499;
however, for release 8.1.7 coordinate systems messages are in Section D.7 and
linear referencing system (LRS) messages are in Section E.6 of this guide.

«  Oracle8i Concepts
= Oracle8i Performance Guide and Reference
= Oracle8i Utilities

For additional information about Oracle Spatial, including white papers and other
collateral, visit the official Spatial Web site at

http://ww. oracl e. com dat abase/ opti ons/ spati al /

If that Web address has changed since the publication of this guide, visit the Oracle
home page at

http://ww. oracl e. com

and search for Spatial.



Conventions

In examples, an implied carriage return occurs at the end of each line, unless
otherwise noted. You must press the Return key at the end of a line of input.

The following conventions are used in this guide:

Convention Meaning

Vertical ellipsis points in an example mean that information
not directly related to the example has been omitted.

Horizontal ellipsis points in statements or commands mean
that parts of the statement or command not directly related to
the example have been omitted

boldface text Boldface text indicates a term defined in the text, the glossary,
or in both locations.

<> Angle brackets enclose user-supplied names.

[1 Brackets enclose optional clauses from which you can choose
one or none.

% The percent sign represents the system prompt on a UNIX
system.

XXV



XXVi



1

Spatial Concepts

Oracle Spatial is an integrated set of functions and procedures that enables spatial
data to be stored, accessed, and analyzed quickly and efficiently in an Oracle8i
database.

Spatial data represents the essential location characteristics of real or conceptual
objects as those objects relate to the real or conceptual space in which they exist.

1.1 What Is Oracle Spatial?

Oracle Spatial, often referred to as Spatial, provides a SQL schema and functions
that facilitate the storage, retrieval, update, and query of collections of spatial
features in an Oracle8i database. Spatial consists of the following components:

« Aschema (MDSYS) that prescribes the storage, syntax, and semantics of
supported geometric data types

« A spatial indexing mechanism

« Asetof operators and functions for performing area-of-interest queries and
spatial join queries

« Administrative utilities

The spatial attribute of a spatial feature is the geometric representation of its shape
in some coordinate space. This is referred to as its geometry.

1.2 Object-Relational and Relational Models
Spatial supports two mechanisms, or models, for representing geometries:

« The object-relational model uses a table with a single column of type
MDSYS.SDO_GEOMETRY and a single row per geometry instance.

Spatial Concepts 1-1



Object-Relational and Relational Models

« The relational model uses a table with a predefined set of columns of type
NUMBER and one or more rows for each geometry instance.

These models roughly correspond to two alternatives described in the OpenGIS
ODBC/SQL specification for geospatial features. The object-relational model
corresponds to a “SQL with Geometry Types” implementation of spatial feature
tables, and the relational model corresponds to an implementation of spatial feature
tables using numeric SQL types for geometry storage. Implementation-specific
details are described in Part | "Object-Relational Model" and Part Il "Relational
Model" of this guide.

You should select the object-relational model in all cases except where the relational
model is necessary for current needs. Basically, the object-relational model is
preferable in cases where replication and distributed databases are not required.

Note: If read-only replication is acceptable: Oracle8i does not
currently provide database replication support for tables containing
one or more columns of an object data type. In many application
environments, however, it may be acceptable to have read-only
replicas that do not need to be perfectly up to date with the
production database. In these environments, users can take
advantage of the Oracle8i managed standby capability to get, in
effect, read-only replication of database instances or tablespaces,
and thus the object-relational model can be used.

1.2.1 Benefits of the Object-Relational Model

The following are some of the benefits of using the object-relational model, as
described in Part | of this guide:

« Additional geometry types are supported: arcs, circles, compound polygons,
compound line strings, and optimized rectangles.

« Ease of use is improved for creating and maintaining indexes and for
performing spatial queries.

« Indexing is maintained by the Oracle8i database server.
« Geometries are modeled in a single row, single column.

« Performance is greatly improved.

1-2 Oracle Spatial User's Guide and Reference



Introduction to Spatial Data

1.2.2 Benefits of the Relational Model

The following are some of the benefits of using the relational model, as described in
Part 11 of this guide:

« Database replication is supported.
« Distributed databases are supported.
« Table partitioning and parallel index loading are supported.

When Oracle introduces replication and distributed support for objects in a future
release, there will be no benefits to using the relational model.

Note: In the next release of Oracle Spatial, the relational model
will no longer be documented in this guide, but will instead be
documented in a separate document whose title and location will
be announced.

Spatial applications using the relational model will continue to
work; however, if you are not already using the object-relational
model for all Spatial applications, you are encouraged to do so
before the next release.

1.3 Introduction to Spatial Data

Oracle Spatial is designed to make spatial data management easier and more
natural to users of applications such as a Geographic Information System (GIS).
Once this data is stored in an Oracle database, it can be easily manipulated,
retrieved, and related to all the other data stored in the database.

A common example of spatial data can be seen in a road map. A road map is a
two-dimensional object that contains points, lines, and polygons that can represent
cities, roads, and political boundaries such as states or provinces. A road map is a
visualization of geographic information. The location of cities, roads, and political
boundaries that exist on the surface of the Earth are projected onto a
two-dimensional display or piece of paper, preserving the relative positions and
relative distances of the rendered objects.

The data that indicates the Earth location (latitude and longitude, or height and
depth) of these rendered objects is the spatial data. When the map is rendered, this
spatial data is used to project the locations of the objects on a two-dimensional piece
of paper. A GIS is often used to store, retrieve, and render this Earth-relative spatial
data.

Spatial Concepts 1-3



Geometric Types for Relational and Object-Relational Models

Types of spatial data that can be stored using Spatial other than GIS data include
data from computer-aided design (CAD) and computer-aided manufacturing
(CAM) systems. Instead of operating on objects on a geographic scale, CAD/CAM
systems work on a smaller scale, such as for an automobile engine or printed circuit
boards.

The differences among these three systems are only in the scale of the data, not its
complexity. They might all actually involve the same number of data points. On a
geographic scale, the location of a bridge can vary by a few tenths of an inch
without causing any noticeable problems to the road builders. Whereas, if the
diameter of an engine’s pistons are off by a few tenths of an inch, the engine will not
run. A printed circuit board is likely to have many thousands of objects etched on
its surface that are no bigger than the smallest detail shown on a road builder’s
blueprints.

These applications all store, retrieve, update, or query some collection of features
that have both nonspatial and spatial attributes. Examples of nonspatial attributes
are name, soil_type, landuse_classification, and part_number. The spatial attribute
is a coordinate geometry, or vector-based representation of the shape of the feature.
The spatial attribute, referred to as the geometry, is an ordered sequence of vertices
that are connected by straight line segments or circular arcs. The semantics of the
geometry are determined by its type, which may be one of point, line string, or

polygon.

1.4 Geometric Types for Relational and Object-Relational Models

The relational model of Spatial supports three geometric primitive types and
geometries composed of collections of these types. The primitive types are as
follows:

« 2-D point and point cluster
« 2-D line strings
« 2-D n-point polygons

2-D points are elements composed of two ordinates, X and Y, often corresponding
to longitude and latitude. Line strings are composed of one or more pairs of points
that define line segments. Polygons are composed of connected line strings that
form a closed ring and the interior of the polygon is implied. Figure 1-1 illustrates
the supported geometric primitive types.

1-4 Oracle Spatial User's Guide and Reference



Geometric Types for Relational and Object-Relational Models

Figure 1-1 Geometric Primitive Types

Point Line String Polygon

Self-crossing polygons are not supported, although self-crossing line strings are
supported. If a line string crosses itself, it does not become a polygon. A
self-crossing line string does not have any implied interior.

Thus, the object-relational implementation supports the types listed in Figure 1-1,
as well as the types shown in Figure 1-2.

The object-relational model adds the following types to those previously listed:
« 2-Darc line strings (All arcs are generated as circular arcs.)

« 2-D arc polygons

« 2-D compound polygons

« 2-D compound line strings

« 2-Dcircles

« 2-D optimized rectangles

Thus, the object-relational implementation supports the types listed in Figure 1-1,
as well as the types shown in Figure 1-2.

Spatial Concepts 1-5



Data Model

Figure 1-2 Additional Geometry Types Using the Object-Relational Model

Compound Line String Circle

Rectangle

1 O

1.5 Data Model

The Spatial data model is a hierarchical structure consisting of elements, geometries,
and layers, which correspond to representations of spatial data. Layers are
composed of geometries, which in turn are made up of elements.

For example, a point might represent a building location, a line string might

represent a road or flight path, and a polygon might represent a state, city, zoning
district, or city block.

1.5.1 Element

An element is the basic building block of a geometry. The supported spatial element
types are points, line strings, and polygons. For example, elements might model
star constellations (point clusters), roads (line strings), and county boundaries
(polygons). Each coordinate in an element is stored as an X,Y pair. The exterior ring

and the interior ring of a polygon with holes are considered as two distinct elements
that together make up a complex polygon.

Point data consists of one coordinate. Line data consists of two coordinates
representing a line segment of the element. Polygon data consists of coordinate pair

1-6 Oracle Spatial User's Guide and Reference



Data Model

values, one vertex pair for each line segment of the polygon. Coordinates are
defined in order around the polygon (counterclockwise for an exterior polygon
ring, clockwise for an interior polygon ring).

1.5.2 Geometry

1.5.3 Layer

A geometry (or geometry object) is the representation of a spatial feature, modeled
as an ordered set of primitive elements. In the relational model, each geometry is

required to be uniquely identified by a geometry identifier (GID) associating it with
the other attributes of the feature. This is not required in the object-relational model.

A geometry can consist of a single element, which is an instance of one of the
supported primitive types, or a homogeneous or heterogeneous collection of
elements. A multipolygon, such as one used to represent a set of islands, is a
homogeneous collection. A heterogeneous collection is one in which the elements
are of different types.

In the relational model, a complex geometry such as a polygon with holes would be
stored as a sequence of polygon elements. All subelements of a multielement
polygon are wholly contained within the outermost element. This is not required
using the object-relational model.

An example of a geometry might describe the buildable land in a town. This could
be represented as a polygon with holes where water or zoning prevents
construction.

A layer is a heterogeneous collection of geometries having the same attribute set.
For example, one layer in a GIS might include topographical features, while another
describes population density, and a third describes the network of roads and
bridges in the area (lines and points). Each layer’s geometries and associated spatial
index are stored in the database in standard tables.

1.5.4 Tolerance

Many Spatial functions accept a tolerance parameter. If the distance between two
points is less than or equal to the tolerance, Spatial considers the two points to be a
single point. Thus, tolerance is usually a reflection of how accurate or precise users
perceive their spatial data to be.

For example, assume that you want to know which restaurants are within 5
kilometers of your house. Assume also that Maria’s Pizzeria is 5.1 kilometers from

Spatial Concepts 1-7



Query Model

your house. If you ask, Find all restaurants within 5 kilometers and use a tolerance of 0.1
(or greater, such as 0.5), Maria’s Pizzeria will be included; however, if you specify a
tolerance less than 0.1 (such as 0.05), Maria’s Pizzeria will not be included.

Tolerance values for Spatial functions are typically very small, for example, 0.0005
(5E-4). With a tolerance of 5E-4 and the query in the preceding paragraph, a
restaurant 5.0005 kilometers away is returned but a restaurant 5.00051 kilometers
away is not returned.

1.6 Query Model

Spatial uses a two-tier query model to resolve spatial queries and spatial joins. The
term is used to indicate that two distinct operations are performed to resolve
queries. The output of both operations yields the exact result set.

The two operations are referred to as primary and secondary filter operations.

« The primary filter permits fast selection of candidate records to pass along to
the secondary filter. The primary filter compares geometry approximations to
reduce computation complexity and is considered a lower-cost filter. Because
the primary filter compares geometric approximations, it returns a superset of
the exact result set.

« The secondary filter applies exact computations to geometries that result from
the primary filter. The secondary filter yields an accurate answer to a spatial
query. The secondary filter operation is computationally expensive, but it is
only applied to the primary filter results, not the entire data set.

Figure 1-3 illustrates the relationship between the primary and secondary filters.

Figure 1-3 Query Model

Primary Secondary
Filter Filter
Lalrge y Smaller Exact
n% ot Candidate Result
a Set ot
Set

1-8 Oracle Spatial User's Guide and Reference



Indexing of Spatial Data

As shown in Figure 1-3, the primary filter operation on a large input data set
produces a smaller candidate set, which contains at least the exact result set and
may contain more records. The secondary filter operation on the smaller candidate
set produces the exact result set.

Spatial uses a linear quadtree-based spatial index to implement the primary filter.
This is described in detail in following sections.

The function SDO_GEOM.RELATE is used as a secondary filter. It evaluates the
topological relationship, such as whether two given geometries are touching,
covering each other, or have any interaction.

Spatial does not require the use of both the primary and secondary filters. In some
cases, just using the primary filter is sufficient. For example, a zoom feature in a
mapping application queries for data that overlaps a rectangle representing visible
boundaries. The primary filter very quickly returns a superset of the query. The
mapping application can then apply clipping routines to display the target area.

The purpose of the primary filter is to quickly create a subset of the data and reduce
the processing burden on the secondary filter. The primary filter therefore should be
as efficient (that is, selective yet fast) as possible. This is determined by the
characteristics of the spatial index on the data.

1.7 Indexing of Spatial Data

The introduction of spatial indexing capabilities into the Oracle database engine is a
key feature of the Spatial product. A spatial index, like any other index, provides a
mechanism to limit searches, but in this case based on spatial criteria such as
intersection and containment. A spatial index is needed to:

« Find objects within an indexed data space that overlap a given point or area of
interest (window query)

« Find pairs of objects from within two indexed data spaces that interact spatially
with each other (spatial join)

A spatial index is considered a logical index. The entries in the spatial index are
dependent on the location of the geometries in a coordinate space, but the index
values are in a different domain. Index entries take on values from a linearly
ordered integer domain, while the coordinates for a geometry may be pairs of
integer, floating-point, or double-precision numbers.

Oracle Spatial lets you use R-tree indexing (the default) or quadtree indexing, or
both. Each index type is appropriate in different situations. You can maintain both
an R-tree and quadtree index on the same geometry column, by using the add_index

Spatial Concepts 1-9



Indexing of Spatial Data

parameter with the ALTER INDEX statement (described in Chapter 5), and you can
choose which index to use for a query by specifying the idxtabl and/or idxtab2
parameters with certain Spatial operators, such as SDO_RELATE, described in
Chapter 6.

In choosing whether to use an R-tree or quadtree index for a spatial application,
consider the following.

With R-tree indexes:

« The approximation of geometries cannot be fine-tuned. (Spatial uses the
minimum bounding rectangles, as described in Section 1.7.1.)

« Index creation and tuning are easier than with quadtree indexes.

« Less storage is required than with quadtree indexes, except for point-only data,
where there is no significant difference.

« If your application workload includes nearest-neighbor queries (SDO_NN
operator), R-tree indexes are faster.

« If there is heavy update activity to the spatial column, an R-tree index may not
be a good choice.

With quadtree indexes:

= The approximation of geometries can be fine-tuned by setting the tiling level
and number of tiles.

= Tuning is more complex than with R-tree indexes, and setting the appropriate
tuning parameter values can affect performance significantly.

= More storage is required than with R-tree indexes, except for point-only data,
where there is no significant difference.

« Heavy update activity does not affect the performance of a quadtree index.

Testing of R-tree and quadtree indexes with many workloads and operators is
ongoing, and results and recommendations will be documented as they become
available. However, before choosing an index type for an application, you should
understand the concepts and options associated with both R-tree indexing
(described in Section 1.7.1) and quadtree indexing (described in Section 1.7.2).

1.7.1 R-tree Indexing

A spatial R-tree index can index spatial data of up to 4 dimensions. An R-tree index
approximates each geometry by a single rectangle that minimally encloses the
geometry (called the minimum bounding rectangle, or MBR). For a layer of

1-10 Oracle Spatial User's Guide and Reference



Indexing of Spatial Data

geometries, an R-tree index consists of a hierarchical index on the MBRs of the
geometries in the layer. This R-tree index is stored in the spatial index table (SDO _
INDEX_TABLE in the USER_SDO_INDEX_METADATA view, described in
Section 2.5). The R-tree index also maintains a sequence number generator (SDO_
RTREE_SEQ_NAME in the USER_SDO_INDEX_METADATA view) to ensure that
simultaneous updates by concurrent users can be made to the index.

If you create a spatial index without specifying any indexing parameters, an R-tree
index is created. For example, the following statement creates a spatial R-tree index
named territory_idx using default values for parameters that apply to R-tree indexes:

CREATE INCEX territory idx ONterritories (territory_geom
| NDEXTYPE | S MDBYS. SPATI AL_| NDEX,

If you create a spatial index without specifying the SDO_LEVEL or SDO _
NUMTILES keyword in the PARAMETERS clause, an R-tree index is created. For
detailed information about options when creating a spatial index, see the
documentation for the CREATE INDEX statement in Chapter 5.

1.7.1.1 Before Creating an R-tree Index

If the rollback segment is not large enough, an attempt to create an R-tree index will
fail. The rollback segment should be 100*n bytes, where n is the number of rows of
data to be indexed. For example, if the table contains 1 million (1,000,000) rows, the
rollback segment size should be 100,000,000 (100 million bytes).

To ensure an adequate rollback segment, or if you have tried to create an R-tree
index and received an error that the system rollback segment cannot be extended,
place that rollback segment offline, create a public rollback segment of the
appropriate size, and place that rollback segment online. For information about
performing these operations on a rollback segment, see the Oracle8i
Administrator’s Guide.

The system parameter SORT_AREA _SIZE affects the amount of time required to
create the index. The SORT_AREA _SIZE value is the maximum amount, in bytes, of
memory to use for a sort operation. The optimal value depends on the database
size, but a good guideline is to make it at least 1 million bytes when you create an
R-tree index. To change the SORT_AREA_SIZE value, use the ALTER SESSION
statement. For example, to change the value to 20 million bytes;

ALTER SESSI QN SET SCRT_AREA S ZE = 20000000,

Spatial Concepts 1-11



Indexing of Spatial Data

For large databases (over 1 million rows), a temporary tablespace may be needed to
perform internal computations. The recommended size for this temporary
tablespace is 100*n bytes, where n is the number of rows in the table.

1.7.2 Quadtree Indexing

In the linear quadtree indexing scheme, the coordinate space (for the layer where all
geometric objects are located) is subjected to a process called tessellation, which
defines exclusive and exhaustive cover tiles for every stored geometry. Tessellation
is done by decomposing the coordinate space in a regular hierarchical manner. The
range of coordinates, the coordinate space, is viewed as a rectangle. At the first level
of decomposition, the rectangle is divided into halves along each coordinate
dimension generating four tiles. Each tile that interacts with the geometry being
tessellated is further decomposed into four tiles. This process continues until some
termination criteria, such as size of the tiles or the maximum number of tiles to
cover the geometry, is met.

Spatial can use either fixed-size or variable-sized tiles to cover a geometry:

« Fixed-size tiles are controlled by tile resolution. If the resolution is the sole
controlling factor, then tessellation terminates when the coordinate space has
been decomposed a specific number of times. Therefore, each tile is of a fixed
size and shape.

« Variable-sized tiling is controlled by the value supplied for the maximum
number of tiles. If the number of tiles per geometry, n, is the sole controlling
factor, the tessellation terminates when n tiles have been used to cover the given
geometry.

Fixed-size tile resolution and the number of variable-sized tiles used to cover a
geometry are user-selectable parameters called SDO_LEVEL and SDO_NUMTILES,
respectively. Smaller fixed-size tiles or more variable-sized tiles provides better
geometry approximations. The smaller the number of tiles, or the larger the tiles,
the coarser are the approximations.

Spatial supports two quadtree indexing types, reflecting two valid combinations of
SDO_LEVEL and SDO_NUMTILES values:

« Fixed indexing: a non-null and non-zero SDO_LEVEL value and a null or zero
(0) SDO_NUMTILES value, resulting in fixed-sized tiles. Fixed indexing is
described in Section 1.7.2.2.

« Hybrid indexing: non-null and non-zero values for SDO_LEVEL and SDO _
NUMTILES, resulting in two sets of tiles per geometry. One set contains

1-12 Oracle Spatial User's Guide and Reference



Indexing of Spatial Data

fixed-size tiles and the other set contains variable-sized tiles. Hybrid indexing is
described in Section 1.7.2.3.

1.7.2.1 Tessellation of a Layer During Indexing

The process of determining which tiles cover a given geometry is called
tessellation. The tessellation process is a quadtree decomposition, where the
two-dimensional coordinate space is broken down into four covering tiles of equal
size. Successive tessellations divide those tiles that interact with the geometry down
into smaller tiles, and this process continues until the desired level or number of
tiles has been achieved. The results of the tessellation process on a geometry are
stored in a table, referred to as the SDOINDEX table.

The tiles at a particular level can be linearly sorted by systematically visiting tiles in
an order determined by a space-filling curve as shown in Figure 1-4. The tiles can
also be assigned unique numeric identifiers, known as Morton codes or z-values.
The terms tile and tile code will be used interchangeably in this and other sections
related to spatial indexing.

Figure 1-4 Quadtree Decomposition and Morton Codes

22 | 23 | 32 33 —

20 |21 | 30 | 31 Yl AN

02 | 03 | 12 13 =

00 | 01 10 11 — — 1\

1.7.2.2 Fixed Indexing

Fixed-size tile spatial indexing is the preferred indexing method for the relational
model. This method uses tiles of equal size to cover a geometry. Because all the tiles
are the same size, they all have codes of the same length, and the standard SQL
equality operator (=) can be used to compare tiles during a join operation. This
results in excellent performance characteristics.

Two geometries are likely to interact, and hence pass the primary filter stage, if they
share one or more tiles. The SQL statement for the primary filter stage is:

Spatial Concepts 1-13



Indexing of Spatial Data

SELECT D STINCT <sel ect_|ist for geonetry identifiers>
FROMt abl el_sdoi ndex A tabl e2_sdoi ndex B
WHERE A sdo_code = B. sdo_code

The effectiveness and efficiency of this indexing method depends on the tiling level
and the variation in size of the geometries in the layer. If you select a small
fixed-size tile to cover small geometries and then try to use the same size tile to
cover a very large geometry, a large number of tiles would be required. However, if
the chosen tile size is large, so that fewer tiles are generated in the case of a large
geometry, then the index selectivity suffers because the large tiles do not
approximate the small geometries very well. Figure 1-5 and Figure 1-6 illustrate the
relationships between tile size, selectivity, and the number of cover tiles.

With a small fixed-size tile as shown in Figure 1-5, selectivity is good, but a large
number of tiles is needed to cover large geometries. A window query would easily
identify geometries A and B, but would reject C.

1-14 Oracle Spatial User's Guide and Reference



Indexing of Spatial Data

Figure 1-5 Fixed-Size Tiling with Many Small Tiles

With a large fixed-size tile as shown in Figure 1-6, fewer tiles are needed to cover
the geometries, but the selectivity is not as good. The same window query as in
Figure 1-5 would probably pick up all three geometries. Any object that shares tile
T1 or T2 would identify object C as a candidate, even though the objects may be far
apart, such as objects B and C are in Figure 1-6.

Spatial Concepts 1-15



Indexing of Spatial Data

Figure 1-6 Fixed-Size Tiling with Fewer Large Tiles

query windol

----------*----:

T2

The SDO_TUNE.ESTIMATE_TILING_LEVEL function helps determine an
appropriate tiling level for your data set.

Figure 1-7 illustrates geometry 1013 tessellated to three fixed-sized tiles at level 1.
The codes for these cover tiles are then stored in an SDOINDEX table.

1-16 Oracle Spatial User's Guide and Reference



Indexing of Spatial Data

Figure 1-7 Tessellated Geometry

T2 T3
CGeonetry 1013:

El enent (
P3 P4 /

P P5
@ &

-+ El ement 1 (Hal e)

P Gl 4 6
TO T1

Only three of the four tiles generated by the first tessellation interact with the
geometry. Only those tiles that interact with the geometry are stored in the
SDOINDEX table, as shown in Table 1-1. In this example, three fixed-size tiles are
used. The table structure is shown for illustrative purposes only. The column names
of this table differ depending on which implementation method, relational or
object-relational, is in use. In the relational model, you must directly access the

Spatial Concepts 1-17



Indexing of Spatial Data

index tables. In the object-relational model, this is both unnecessary and not
recommended.

Table 1-1 SDOINDEX Table Using Fixed-Size Tiles
SDO_GID SDO_CODE

<number> <raw>
1013 TO
1013 T2
1013 T3

All elements in a geometry are tessellated. In a multielement geometry like 1013,
Element 1 is already covered by tile T2 from the tessellation of Element 0. If,
however, the specified tiling resolution were such that tile T2 were further
subdivided and one of these smaller tiles were completely contained in Element 1,
then that tile would be excluded because it would not interact with the geometry.

1.7.2.3 Hybrid Indexing

Hybrid indexing uses a combination of fixed-size and variable-sized tiles for
spatially indexing a layer. Variable-sized tile spatial indexing uses tiles of different
sizes to approximate a geometry. For each geometry, you will have a set of
fixed-size tiles that fully cover the geometry, and also a set of variable-sized tiles
that fully cover the geometry.

For most applications, you should not use hybrid indexes, but should instead use
fixed indexes or R-tree indexes. The rare circumstances where hybrid indexes
should be considered are as follows:

= When joins are required between layers whose optimal fixed index level (SDO_
LEVEL) values are significantly different (4 levels or more), it may be possible
to get better performance by bringing the layer with a higher optimal SDO _
LEVEL down to the lower SDO_LEVEL and adding the SDO_NUMTILES
parameter to ensure adequate tiling of the layer.

The best starting value for SDO_NUMTILES in the new hybrid layer can be
calculated by getting a count of the rows in the spatial index table and dividing
this number by the number of rows with geometries in the layer, then rounding
up. A spatial join (‘QUERYTYPE=JOIN’) is not a common requirement for
applications, and it is comparable to a spatial cross product where each of the
geometries in one layer will be compared with each of the geometries in the
other layer.

1-18 Oracle Spatial User's Guide and Reference



Indexing of Spatial Data

=  When both of the following are true for a single layer, hybrid indexing may be
preferable: (1) the layer has a mixture of many geometries covering a very small
area and many polygons covering a very large area; and (2) the optimal fixed
tiling level for the very small geometries will result in an extremely large
number of tiles to be generated for the very large geometries, causing the
spatial index to grow to an unreasonable size.

If both of these conditions are true, it may be better to use the SDO_NUMTILES
parameter to get coverage for the smaller geometries, while keeping the fixed
tile size relatively large for the large geometries by using a smaller SDO_LEVEL
value.

In Figure 1-8, the variable-sized cover tiles closely approximate each geometry. This
results in good selectivity. The number of variable tiles needed to cover a geometry
is controlled using the SDO_NUMTILES parameter.

Spatial Concepts 1-19



Indexing of Spatial Data

Figure 1-8 \Variable-Sized Tile Spatial Indexing

A variable tile is subdivided if it interacts with the geometry, and subdivision will
not result in tiles that are smaller than a predetermined size. This size, or tiling
resolution, is determined by a default SDO_MAXLEVEL value.

Figure 1-9 illustrates how geometry OBJ_1, represented using the object-relational
implementation, is approximated with hybrid indexing (SDO_LEVEL =1 and SDO _
NUMTILES = 4). These are not recommended values for SDO_LEVEL and SDO _
NUMTILES; they were chosen to simplify this example. The cover tiles are stored in
the SDOINDEX table as shown in Table 1-2.

1-20 Oracle Spatial User's Guide and Reference



Indexing of Spatial Data

Figure 1-9 Decomposition of the Geometry

T2_UR\ /

T2 T3
Ceonetry OBJ_1:

El enent O
P7 P6/

P8
& a3 P5
+— El enent 1 (Hol e)
[=X) @ ‘P4/T3_LL

T2 LL—» y
_ TO &4 ‘<
TO_UR

T3_UR

P2 P3

T02 TO3

TOO TO1

TO LL—»

In Figure 1-9, note that for simplicity the tiles have been numbered, and LL and UR
indicate lower left and upper right, respectively. For example, T2_LL indicates the
lower left corner of tile T2. (This designation scheme does not reflect the actual

format use in Spatial.)

In Figure 1-9, note which fixed-size tiles are associated with geometry OBJ_1. Only
three (TO, T2, T3) of the four large tiles (TO, T1, T2, T3) generated by the tessellation
actually interact with the geometry. Only those three are stored in the SDOINDEX
table. In examining which variable-sized tiles are used, tile TO shows a further
tessellation to four smaller tiles, two of which (T02, T03) are used to cover a portion
of the geometry. The variable-sized tiles are stored in the SDO_CODE column in the

Spatial Concepts 1-21



Spatial Relations and Filtering

Spatial index table. The fixed-size tiles are stored in the SDO_GROUPCODE
column. The spatial index structure is discussed in Section 2.5.

Table 1-2 shows the tiles from Figure 1-9 that are stored in the SDOINDEX table.

Table 1-2 Section of the SDOINDEX Table

SDO_ SDO_
SDO_ROWID SDO_CODE MAXCODE GROUPCODE SDO_META
<RAW> <RAW> <RAW> <RAW> <RAW>
GID_OBJ 1 T02 <binary data> TO <binary data>
GID_OBJ 1 TO3 <binary data> TO <binary data>
GID_OBJ_1 T2 <binary data> T2 <binary data>
GID_0OBJ 1 T3 <binary data> T3 <binary data>

As with the fixed-size tile model, all elements in a geometry are tessellated in one
step. In a multielement geometry like OBJ_1, Element 1 (the hole shown in

Figure 1-9) is covered by a redundant tile (T2) from the tessellation of Element 0,
but this tile is stored only once.

The SDO_TUNE package has some functions that help determine appropriate SDO _
LEVEL and SDO_NUMTILES values. Appendix A contains suggestions on when
hybrid indexing may be beneficial, and how to select values for the two required
parameters.

1.8 Spatial Relations and Filtering

Spatial uses filter methods to determine the spatial relationship between entities in
the database. The spatial relation is based on geometry locations. The most common
spatial relations are based on topology and distance. For example, the boundary of
an area consists of a set of curves that separates the area from the rest of the
coordinate space. The interior of an area consists of all points in the area that are not
on its boundary. Given this, two areas are said to be adjacent if they share part of a
boundary but do not share any points in their interior.

The distance between two spatial objects is the minimum distance between any
points in them. Two objects are said to be within a given distance of one another if
their distance is less than the given distance.

To determine spatial relations, Spatial has several secondary filter methods:

1-22 Oracle Spatial User's Guide and Reference



Spatial Relations and Filtering

« The SDO_RELATE operator evaluates topological criteria.

« The SDO_WITHIN_DISTANCE operator determines if two spatial objects are
within a Euclidean distance of each other.

« The SDO_NN operator identifies the nearest neighbors for a spatial object.
The syntax of these operators is given in Chapter 6.

The SDO_RELATE operator implements a 9-intersection model for categorizing
binary topological relations between points, lines, and polygons. Each spatial object
has an interior, a boundary, and an exterior. The boundary consists of points or lines
that separate the interior from the exterior. The boundary of a line consists of its end
points. The boundary of a polygon is the line that describes its perimeter. The
interior consists of points that are in the object but not on its boundary, and the
exterior consists of those points that are not in the object.

Given that an object A has 3 components (a boundary Ab, an interior Ai, and an
exterior Ae), any pair of objects has 9 possible interactions between their
components. Pairs of components have an empty (0) or a non-empty (1) set
intersection. The set of interactions between 2 geometries is represented by a
9-intersection matrix that specifies which pairs of components intersect and which
do not. Figure 1-10 shows the 9-intersection matrix for 2 polygons that are adjacent
to one another. This matrix yields the following bit mask, generated in row-major
form: “101001111”.

Figure 1-10 The 9-Intersection Model

o
=
o
=

>
o -
= o
= o
L -

A TOUCH B 9-Intersection Matrix

Some of the topological relationships identified in the seminal work by Professor
Max Egenhofer (University of Maine, Orono) and colleagues have names associated
with them. Spatial uses the following names:

Spatial Concepts 1-23



Spatial Relations and Filtering

DISJOINT -- The boundaries and interiors do not intersect.
TOUCH -- The boundaries intersect but the interiors do not intersect.

OVERLAPBDYDISIOINT -- The interior of one object intersects the boundary
and interior of the other object, but the two boundaries do not intersect. This
relation occurs, for example, when a line originates outside a polygon and ends
inside that polygon.

OVERLAPBDYINTERSECT -- The boundaries and interiors of the two objects
intersect.

EQUAL -- The two objects have the same boundary and interior.

CONTAINS -- The interior and boundary of one object is completely contained
in the interior of the other object.

COVERS -- The interior of one object is completely contained in the interior of
the other object and their boundaries intersect.

INSIDE -- The opposite of CONTAINS. A INSIDE B implies B CONTAINS A.

COVEREDBY -- The opposite of COVERS. A COVEREDBY B implies B
COVERS A.

ANYINTERACT -- The objects are non-disjoint.

The SDO_WITHIN_DISTANCE operator determines if two spatial objects, A and B,
are within a Euclidean distance of one another. This operator first constructs a
distance buffer, D, around the reference object B. It then checks that A and D,, are
non-disjoint. The distance buffer of an object consists of all points within the given
distance from that object. Figure 1-11 shows the distance buffers for point, line, and
area objects. Notice how the buffer is rounded near the corners of the objects.

1-24 Oracle Spatial User's Guide and Reference



Examples

Figure 1-11 Distance Buffers for Points, Lines, and Polygons

The SDO_NN operator returns a specified number of objects from a geometry
column that are closest to a specified geometry (for example, the five closest
restaurants to a city park). In determining how close two geometry objects are,
the shortest possible distance between any two points on the surface of each
object is used.

1.9 Partitioned Point Data

Point data, unlike line and polygon data, has the unique characteristic of always
using only one tile per point. For applications handling point data sets that are
several tens of gigabytes or larger, performance gains can be achieved by using
Oracle8i table partitioning features.

Table partitioning is available only with the Partitioning Option of Oracle8i
Enterprise Edition. If the Partitioning Option is available to you, the preferred
method is to use Oracle8i table partitioning in conjunction with spatial indexing
(using the relational model). See Oracle8i Concepts for a description of Oracle8i
partitioning. See Section A.1.7.3 for a description of a sample script that uses table
partitioning with point data.

1.10 Examples

Oracle Spatial provides examples that you can use to reinforce your learning and to
create models for coding certain operations. Several examples are provided in the
following directory:

Spatial Concepts 1-25



Examples

$ORACLE_HOME/md/demos/examples

The following files in that directory are helpful for applications that use the Oracle
Call Interface (OCI):

« readgeom.c and readgeom.h
= writegeom.c and writegeom.h

This guide also includes many examples in SQL and PL/SQL. One or more
examples are usually provided with the reference information for each function or
procedure, and several simplified examples are provided that illustrate table and
index creation, as well as several functions and procedures:

« Inserting, indexing, and querying spatial data (Section 2.1)
« Coordinate systems (spatial reference systems) (Section D.6)

« Linear referencing system (LRS) (Section E.5)

1-26 Oracle Spatial User's Guide and Reference



Part |

Object-Relational Model

Oracle Spatial supports two models for representing geometries: relational and
object-relational. The two models are mutually exclusive. See Section 1.2 for a
description of how to choose the model best suited for your application.

You do not need prior knowledge of the relational model to use the newer
object-relational model.

This part of the User’s Guide and Reference contains the following chapters that
describe the object-relational model:

Chapter 2, "The Object-Relational Schema"

Chapter 3, "Loading and Indexing Spatial Object Types"
Chapter 4, "Querying Spatial Data"

Chapter 5, "Indexing Statements"

Chapter 6, "Spatial Operators"

Chapter 7, "Geometry Functions"

Chapter 8, "Coordinate System Functions"

Chapter 9, "Linear Referencing Functions”

Chapter 10, "Migration Procedures"

Chapter 11, "Tuning Functions and Procedures"






2

The Object-Relational Schema

The object-relational implementation of Oracle Spatial consists of a set of object data
types, an index method type, and operators on these types. A geometry is stored as
an object, in a single row, in a column of type SDO_GEOMETRY. Spatial index
creation and maintenance is done using basic DDL (CREATE, ALTER, DROP) and
DML (INSERT, UPDATE, DELETE) statements.

2.1 Simple Example: Inserting, Indexing, and Querying Spatial Data

This section presents a simple example of creating a spatial table, inserting data,
creating the spatial index, and performing spatial queries. It refers to concepts that
were explained in Chapter 1 and that will be explained in other sections of this
chapter.

The scenario is a soft drink manufacturer that has identified geographical areas of
marketing interest for several products (colas). The colas could be those produced
by the company or by its competitors, or some combination. Each area of interest
could represent any user-defined criterion; for example, an area where that cola has
the majority market share, or where the cola is under competitive pressure, or
where the cola is believed to have significant growth potential. Each area could be a
neighborhood in a city, or a part of a state, province, or country.

Figure 2-1 shows the areas of interest for four colas.

The Object-Relational Schema 2-1



Simple Example: Inserting, Indexing, and Querying Spatial Data

Figure 2-1 Areas of Interest for Simple Example

15
13

12

11

J

9 cola_d
8

7

6 ~

5 cola  a cola b

4

3 cola) c

2

1

0 1 23456728 9101112 1314 15

Example 2-1 performs the following operations:
« Creates a table (COLA_MARKETS) to hold the spatial data
« Inserts rows for four areas of interest (cola_a, cola_b, cola_c, cola_d)

« Updates the USER_SDO_GEOM_METADATA view to reflect the dimension of
the areas

« Creates a spatial index (COLA_SPATIAL_IDX)
« Performs some spatial queries

Many concepts and techniques in Example 2-1 are explained in detail in other
sections of this chapter.

2-2 Oracle Spatial User’s Guide and Reference



Simple Example: Inserting, Indexing, and Querying Spatial Data

Example 2-1 Simple Example: Inserting, Indexing, and Querying Spatial Data

-- GQeate atable for cola (soft drink) narkets in a
-- given geography (such as city or state).

-- BEach roww || be an area of interest for a specific
-- cola (for exanple, where the cola is nost preferred
-- by residents, where the nanufacturer believes the
-- cola has growth potential, and so on).

CREATE TABLE col a_narkets (
nkt _id NUMBER PR MARY KEY,
nane VARCHAR2(32),
shape MDSYS. SDO (GFOMETRY) ;

-- The next | NSERT statenent creates an area of interest for
-- la A This area happens to be a rectangl e.

-- The area coul d represent any user-defined criterion: for
-- exanpl e, where Gola Ais the preferred drink, where

-- ola Ais under conpetitive pressure, where Gola A

-- has strong growth potential, and so on.

I NSERT | NTO col a_narkets VALUEY(

1,
"cola a',
MBYS. SDO GEQMETRY(
2003, -- 2-dinensional pol ygon
NULL,
NULL,
MDSYS. SDO H BEM | NFO ARRAY( 1, 1003, 3), -- one rectangl e (1003 = exterior)

MDSYS. SDO (RD NATE_ ARRAY( 1,1, 5,7) -- only 2 points needed to
-- define rectangl e (lower left and upper right)
)
E

-- The next two | NSERT statenents create areas of interest for

-- la Band la C These areas are sinpl e pol ygons (but not
-- rectangl es).

I NSERT | NTO col a_narkets VALUEY

2,

"cola b,

MBYS. SDO GEQMETRY(
2003, -- 2-dinensional pol ygon
NULL,
NULL,

The Object-Relational Schema 2-3



Simple Example: Inserting, Indexing, and Querying Spatial Data

MDSYS. SDO H BEM | NFO ARRAY( 1, 1003, 1), -- one pol ygon (exterior pol ygon ring)
MDSYS. SDO RO NATE ARRAY(5,1, 8,1, 8,6, 5,7, 5/1)
)
)
I NSERT | NTO col a_narkets VALUEY
3,
"cola c’,
MBYS. SDO GEOMETRY(
2003, -- 2-dinensional pol ygon
NULL,
NULL,
MDSYS. SDO H BEM | NFO ARRAY( 1, 1003, 1), -- one pol ygon (exterior pol ygon ring)
MDSYS. SDO CGRD NATE ARRAY(3,3, 6,3, 6,5 4,5 3,3)
)

)

-- Nowinsert an area of interest for Gola D Thisis a
-- circlewth aradius of 2. It is conpletely outside the
-- first three areas of interest.

I NSERT | NTO col a_narkets VALUEY

4,

"cola d',

MBYS. SDO GEQMETRY(
2003, -- 2-dinensional pol ygon
NULL,
NULL,

MDSYS. SDO H EM | NFO ARRAY( 1, 1003,4), -- one circle
MDSYS. SDO (RO NATE_ARRAY(8, 7, 10,9, 8,11)

-- UWpdat e the USER SDO GEOM METADATA view This is required
-- before the Spatial index can be created. Do this only once for each
-- layer (that is, table-colum conbination; here: OQOA MARKETS and SHAPE).

| NSERT | NTO USER_SDO GECM METADATA
VALUES (
"col a markets’,
" shape’ ,
MXSYS SDO D MARRAY(  -- 20X20 grid, virtually zero tol erance

2-4 Oracle Spatial User’s Guide and Reference



Simple Example: Inserting, Indexing, and Querying Spatial Data

MDSYS. SDO D M ELEMENT(’ X, 0, 20, 0.005),
MDSYS. SO DM ELEMENT(’ Y', 0, 20, 0.005)

)
NLL -- SRD

CREATE | NCEX col a_spati al _i dx
N col a_nar ket s(shape)
| NDEXTYPE | S MDSYS. SPATI AL | NDEX

PARAMETERS(’ SDO LEVEL = 8');

-- Return the topol ogi cal intersection of two geonetries.

SELECT SDO (GEOM SDO | NTERSECTI QN ¢_a. shape, mdi mnfo, c_c.shape, mdi ninf o)
FROM col a_narkets c_a, col a narkets c_c, user_sdo_geom net adata m
WHERE mtabl e_nane = ' GQOLA MARKETS AND m col unn_nane = ' SHAPE
AND c_a.nane = 'cola_a ANDc_c.nane = 'cola C';

-- Do two geonetries have any spatial rel ationshi p?
SELECT SDO (GEOM RELATE(¢_b. shape, mdiminfo, ’anyinteract’,
c_d. shape, mdi m nf o)
FROM col a_narkets c_b, col a narkets c_d, user_sdo_geom netadata m
WHERE mtabl e_nane = ' GQOLA MARKETS AND mcol unn_nane = ' SHAPE
AND ¢c_b.nanme = 'cola b’ ANDc_d.nane = 'cola d';

-- Return the areas of all col a narkets.

SELECT c. nane, SDO (GEOM SDO AREA( c. shape, mdi minf o)
FROM col a_narkets c, user_sdo_geomnetadata m
WHERE mtabl e_nane = ' QLA MARKETS AND m col unn_nane

%

-- Return the area of just col a a.

SELECT c. nane, SDO (GEOM SDO AREA( c. shape, mdi ninf o)
FRCM col a_narkets ¢, user_sdo_geom netadata m
WHERE mtabl e_nane = ' GQOLA MARKETS AND mcol unn_nane = ' SHAPE
A\D c.nane = 'cola a’;

-- Return the di stance between two geonetri es.

SELECT SDO (GEQM SDO O STANCK(¢_b. shape, mdi mnfo, c_d. shape, mdi m nf o)
FROM col a_narkets c_b, col a narkets c_d, user_sdo_geom net adata m
WHERE mtabl e_nane = ' GQOLA MARKETS AND m col unn_nane = ' SHAPE

The Object-Relational Schema 2-5



SDO_GEOMETRY Object Type

AND c b.nane ='cola b ANDc d.name = 'cola d';

-- Is a geonetry valid?

SELECT c. nane, SDO GEQM VALI DATE_GEOMETRY( c. shape, m di minf 0)
FROM col a_narkets c, user_sdo_geomnetadata m
WHERE mtabl e nane = ' COLA MARKETS AND mcol umm_nane = ' SHAPE
A\D c.nane = 'cola c’;

-- Is alayer valid? (First, create the results table.)
CREATE TABLE validation results (nkt_id nunber, result varchar2(10));
EXEQUTE SDO GEQM VALI DATE LAYER' QLA MARKETS , 'SHAPE , ' MKT_I D,
" VALI DATI ON RESULTS )
SHECT * fromvalidation results;

2.2 SDO_GEOMETRY Object Type

In the Spatial object-relational model, the geometric description of a spatial object is
stored in a single row, in a single column of object type SDO_GEOMETRY in a
user-defined table. Any table that has a column of type SDO_GEOMETRY must
have another column, or set of columns, that defines a unique primary key for that
table. Tables of this sort are sometimes referred to as geometry tables.

Oracle Spatial defines the object type SDO_GEOMETRY as:

CREATE TYPE sdo_geonetry AS (BIECT (
SDO GI'YPE NUMBER
SDO SR D NUMBER,
SDO PO NT SDO PQ NT_TYPE,
SDO BLEM | NFO MDSYS. SDO ELEM | NFO ARRAY,
SDO CRO NATES MDSYS. SDO (RO NATE_ARRAY) ;

The sections that follow describe the semantics of each SDO_GEOMETRY attribute,
and then describe some usage considerations (Section 2.2.6).

2.2.1 SDO_GTYPE

SDO_GTYPE indicates the type of the geometry. Valid geometry types correspond
to those specified in the Geometry Object Model for the OGIS Simple Features for SQL
specification (with the exception of Surfaces.) The numeric values differ from those
given in the OGIS specification, but there is a direct correspondence between the

2-6 Oracle Spatial User’s Guide and Reference



SDO_GEOMETRY Object Type

names and semantics where applicable. Table 2-1 shows the valid SDO_GTYPE
values.

Table 2-1 Valid SDO_GTYPE Values

Value Geometry Type Description
dooo UNKNOWN_ Spatial ignores this geometry.
GEOMETRY
doo1 POINT Geometry contains one point.
d0o2 LINESTRING Geometry contains one line string.
d003 POLYGON Geometry contains one polygon with or without holes.!
doo4 COLLECTION Geometry is a heterogeneous collection of elements.?
doos MULTIPOINT Geometry has multiple points.
doo6 MULTILINESTRING Geometry has multiple line strings.
doo7 MULTIPOLYGON Geometry has multiple, disjoint polygons (more than

one exterior boundary).

1 For a polygon with holes, enter the exterior boundary first, followed by any interior boundaries.
2 All polygons in the collection must be disjoint.

The d in the Value column of Table 2-1 is the number of dimensions: 2, 3, or 4. For
example, a value of 2003 indicates a 2-dimensional polygon.

Note: The pre-release 8.1.6 format of a 1-digit value is still
supported. If a 1-digit value is used, however, Oracle Spatial
determines the number of dimensions and stores the appropriate
4-digit value in the DIMINFO column of the metadata views
described in Section 2.4.

The number of dimensions reflects the number of ordinates used to represent each
vertex (for example, X,Y for 2-dimensional objects). Points and lines are considered
2-dimensional objects. (However, see Section E.2 for dimension information about
LRS points.)

In any given layer (column), all geometries must have the same number of
dimensions. For example, you cannot mix 2-dimensional and 3-dimensional data in
the same layer.

Values d008-d099 are reserved for future use.

The Object-Relational Schema 2-7



SDO_GEOMETRY Object Type

2.2.2 SDO_SRID

SDO_SRID can be used to identify a coordinate system (spatial reference system) to
be associated with the geometry. If SDO_SRID is null, no coordinate system is
associated with the geometry. If SDO_SRID is not null, it must contain a value from
the SRID column of the MDSYS.CS_SRS table (described in Section D.3.1), and this
value must be inserted into the SRID column of the USER_SDO_GEOM _
METADATA view (described in Section 2.4).

All geometries in a geometry column must have the same SDO_SRID value.

For information about coordinate systems, see Appendix D.

2.2.3 SDO_POINT

SDO_POINT is defined using an object type with attributes X, Y, and Z, all of type
NUMBER. If the SDO_ELEM_INFO and SDO_ORDINATES arrays are both null,
and the SDO_POINT attribute is non-null, then the X and Y values are considered
to be the coordinates for a point geometry. Otherwise the SDO_POINT attribute is
ignored by Spatial. You should store point geometries in the SDO_POINT attribute
for optimal storage; and if you have only point geometries in a layer, it is strongly
recommended that you store the point geometries in the SDO_POINT attribute.

Note: Do not use the SDO_POINT attribute in defining a linear
referencing system (LRS) point. For information about LRS, see
Appendix E.

2.2.4 SDO_ELEM_INFO

SDO_ELEM_INFO is defined using a varying length array of numbers. This
attribute lets you know how to interpret the ordinates stored in the SDO _
ORDINATES attribute (described in Section 2.2.5).

Each triplet set of numbers is interpreted as follows:

« SDO_STARTING_OFFSET -- Indicates the offset within the SDO_ORDINATES
array where the first ordinate for this element is stored. Offset values start at 1
and not at 0. Thus, the first ordinate for the first element will be at SDO _
GEOMETRY.SDO_ORDINATES(1). If there is a second element, its first ordinate
will be at SDO_GEOMETRY.SDO_ORDINATES(n), where n reflects the position
within the SDO_ORDINATE_ARRAY definition (for example, 19 for the 19th
number, as in Figure 2-3 later in this chapter).

2-8 Oracle Spatial User’s Guide and Reference



SDO_GEOMETRY Object Type

SDO_ETYPE - Indicates the type of the element. Valid values are 0 through 5, as
well as the following: 1003 and 2003 (variants of 3), and 1005 and 2005 (variants
of 5).

Note: For polygon ring elements in a single geometry, you can use
either 1-digit or 4-digit SDO_ETYPE values for all elements;
however, you cannot mix 1-digit and 4-digit SDO_ETYPE values.

SDO_ETYPE values 1, 2, and 3 are considered simple elements. They are defined
by a single triplet entry in the SDO_ELEM_INFO array. Moreover, the following
are considered variants of type 3, with the first digit indicating exterior (1) or
interior (2):

1003: exterior polygon ring (must be specified in counterclockwise order)
2003: interior polygon ring (must be specified in clockwise order)

You should specify an SDO_ETYPE value of 3 if you do not know if the simple
polygon is exterior or interior; otherwise, you should specify 1003 or 2003.

SDO_ETYPE values 4 and 5 are considered compound elements. They contain at
least one header triplet with a series of triplet values that belong to the
compound element. Moreover, the following are considered variants of type 5,
with the first digit indicating exterior (1) or interior (2):

1005: exterior polygon ring (must be specified in counterclockwise order)
2005: interior polygon ring (must be specified in clockwise order)

You should specify an SDO_ETYPE value of 5 if you do not know if the
compound polygon is exterior or interior; otherwise, you should specify 1005 or
2005.

The elements of a compound element are contiguous. The last point of a
subelement in a compound element is the first point of the next subelement.
The point is not repeated.

SDO_INTERPRETATION - Means one of two things, depending on whether or
not SDO_ETYPE is a compound element.

If SDO_ETYPE is a compound element (4 or 5), this field specifies how many
subsequent triplet values are part of the element.

If the SDO_ETYPE is not a compound element (1, 2, or 3), the interpretation
attribute determines how the sequence of ordinates for this element is

The Object-Relational Schema 2-9



SDO_GEOMETRY Object Type

interpreted. For example, a line string or polygon boundary may be made up of
a sequence of connected straight line segments or circular arcs.

Descriptions of valid SDO_ETYPE and SDO_INTERPRETATION value pairs
are given in Table 2-2.

If a geometry consists of more than one element, then the last ordinate for an
element is always one less than the starting offset for the next element. The last
element in the geometry is described by the ordinates from its starting offset to the
end of the SDO_ORDINATES varying length array.

For compound elements (SDO_ETYPE values 4 and 5), a set of n triplets (one per
subelement) is used to describe the element. It is important to remember that
subelements of a compound element are contiguous. The last point of a subelement
is the first point of the next subelement. For subelements 1 through n-1, the end
point of one subelement is the same as the starting point of the next subelement.
The starting point for subelements 2...n-2 is the same as the end point of subelement
1...n-1. The last ordinate of subelement n is either the starting offset minus 1 of the
next element in the geometry, or the last ordinate in the SDO_ORDINATES varying
length array.

The current size of a varying length array can be determined by using the function
varray_variable.Count in PL/SQL or OCIColSize in the Oracle Call Interface (OCI).

The semantics of each SDO_ETYPE element and the relationship between the SDO_
ELEM_INFO and SDO_ORDINATES varying length arrays for each of these SDO _
ETYPE elements are given in Table 2-2.

Table 2-2 Values and Semantics in SDO_ELEM_INFO

SDO_  SDO_
ETYPE INTERPRETATION Meaning

0 0 Unsupported element type. Ignored by the Spatial functions
and procedures.

1 1 Point type.

1 n>1 Point cluster with n points.

2 1 Line string whose vertices are connected by straight line
segments.

2-10 Oracle Spatial User’'s Guide and Reference



SDO_GEOMETRY Object Type

Table 2-2 Values and Semantics in SDO_ELEM_INFO (Cont.)

SDO_  SDO_
ETYPE INTERPRETATION Meaning

2 2 Line string made up of a connected sequence of circular arcs.

Each circular arc is described using three coordinates: the
arc’s starting point, any point on the arc, and the arc’s end
point. The coordinates for a point designating the end of one
arc and the start of the next arc are not repeated. For example,
five coordinates are used to describe a line string made up of
two connected circular arcs. Points 1, 2, and 3 define the first
arc, and points 3, 4, and 5 define the second arc, where point
3 is only stored once.

3 1 Simple polygon whose vertices are connected by straight line
segments. Note that you must specify a point for each vertex,
and the last point specified must be identical to the first (to
close the polygon). For example, for a 4-sided polygon,
specify 5 points, with point 5 the same as point 1.

3 2 Polygon made up of a connected sequence of circular arcs
that closes on itself. The end point of the last arc is the same
as the start point of the first arc.

Each circular arc is described using three coordinates: the
arc’s start point, any point on the arc, and the arc’s end point.
The coordinates for a point designating the end of one arc
and the start of the next arc are not repeated. For example,
five coordinates are used to describe a polygon made up of
two connected circular arcs. Points 1, 2, and 3 define the first
arc, and points 3, 4, and 5 define the second arc. The
coordinates for points 1 and 5 must be the same, and point 3
is not repeated.

3 3 Rectangle type. A bounding rectangle such that only two
points, the lower-left and the upper-right, are required to
describe it.

3 4 Circle type. Described by three points, all on the

circumference of the circle.

The Object-Relational Schema 2-11



SDO_GEOMETRY Object Type

Table 2-2 Values and Semantics in SDO_ELEM_INFO (Cont.)

SDO_  SDO_
ETYPE INTERPRETATION Meaning

4 n>1 Line string with some vertices connected by straight line
segments and some by circular arcs. The value, n, in the
Interpretation column specifies the number of contiguous
subelements that make up the line string.

The next n triplets in the SDO_ELEM_INFO array describe
each of these subelements. The subelements can only be of
SDO_ETYPE 2. The last point of a subelement is the first
point of the next subelement, and must not be repeated.

See Section 2.3 and Figure 2-4 for an example of a geometry
using this type.

5 n>1 Compound polygon with some vertices connected by straight
line segments and some by circular arcs. The value, n, in the
Interpretation column specifies the number of contiguous
subelements that make up the polygon.

The next n triplets in the SDO_ELEM_INFO array describe
each of these subelements. The subelements can only be of
SDO_ETYPE 2. The end point of a subelement is the start
point of the next subelement, and it must not be repeated.
The start and end points of the polygon must be the same.

See Section 2.3.4 and Figure 2-5 for an example of a geometry
using this type.

2.2.5 SDO_ORDINATES

SDO_ORDINATES is defined using a varying length array (1048576) of NUMBER
type that stores the coordinate values that make up the boundary of a spatial object.
This array must always be used in conjunction with the SDO_ELEM_INFO varying
length array. The values in the array are ordered by dimension. For example, a
polygon whose boundary has four 2-dimensional points is stored as {X1, Y1, X2, Y2,
X3, Y3, X4, Y4, X1, Y1}. If the points are 3-dimensional, then they are stored as {X1,
Y1,Z71,X2,Y2,72,X3,Y3,Z3, X4, Y4, 74, X1, Y1, Z1}. Spatial index creation,
operators, and functions ignore the Z values because this release of the product
supports only 2-dimensional spatial objects. The number of dimensions associated
with each point is stored as metadata in the xxx_SDO_GEOM_METADATA views,
described in Section 2.4.

The values in the SDO_ORDINATES array must all be valid and non-null. There are
no special values used to delimit elements in a multielement geometry. The start
and end points for the sequence describing a specific element are determined by the

2-12 Oracle Spatial User's Guide and Reference



Geometry Examples Using the Object-Relational Model

STARTING_OFFSET values for that element and the next element in the SDO _
ELEM_INFO array as explained previously. The offset values start at 1. SDO_
ORDINATES(1) is the first ordinate of the first point of the first element.

2.2.6 Usage Considerations

You should use the SDO_GTYPE values as shown in Table 2-1; however, Spatial
does not check or enforce all geometry consistency constraints. Spatial does check
the following:

« ForSDO_GTYPE values d001 and d005, any subelement not of SDO_ETYPE 1 is
ignored.

« For SDO_GTYPE values d002 and d006, any subelement not of SDO_ETYPE 2 or
4 is ignored.

« For SDO_GTYPE values d003 and d007, any subelement not of SDO_ETYPE 3 or
5isignored. (This includes SDO_ETYPE variants 1003, 2003, 1005, and 2005,
which are explained in Section 2.2.4).

The SDO_GEOM.VALIDATE_GEOMETRY function can be used to evaluate the
consistency of a single geometry object or all the instances of SDO_GEOMETRY in a
specified feature table.

2.3 Geometry Examples Using the Object-Relational Model

This section contains examples of several geometry types.

2.3.1 Rectangle

Figure 2-2 illustrates a rectangle.

Figure 2-2 Rectangle

Ceonetry RECT_1:
(12,24) (15,24)

(12, 15) (15, 15)

The Object-Relational Schema 2-13



Geometry Examples Using the Object-Relational Model

In the SDO_GEOMETRY definition of the geometry illustrated in Figure 2-2;

SDO_GTYPE =2003. The 2 indicates two-dimensional, and the 3 indicates a
polygon.

SDO_SRID = NULL.
SDO_POINT = NULL.

SDL_ELEM_INFO = (1, 1003, 3). The final 3 in 1,1003,3 indicates that this is a
rectangle. Because it is a rectangle, only two ordinates are specified in SDO_
ORDINATES (lower-left and upper-right).

SDO_ORDINATES = (12,15,15,24). These identify the lower-left and upper-right
ordinates of the rectangle.

2.3.2 Polygon with a Hole

Figure 2-3 illustrates a polygon consisting of two elements: an exterior polygon ring
and an interior polygon ring. The inner element in this example is treated as a void
(a hole).

Figure 2-3 Geometry with a Hole

Ceonetry OBJ_1:

(11, 40) (19, 40)

(12,24) (15, 24)

15) (15, 15)

(10, 10) (20, 10)

In the SDO_GEOMETRY definition of the geometry illustrated in Figure 2-3:

SDO_GTYPE =2003. The 2 indicates two-dimensional, and the 3 indicates a
polygon.

2-14 Oracle Spatial User’s Guide and Reference



Geometry Examples Using the Object-Relational Model

= SDO_SRID = NULL.
= SDO_POINT = NULL.

« SDO_ELEM_INFO =(1,1003,1, 19,2003,1). There are two triplet elements:
1,1003,1 and 19,2003,1.

1003 indicates that the element is an exterior polygon ring; 2003 indicates that
the element is an interior polygon ring.

19 indicates that the second element (the interior polygon ring) ordinate
specification starts at the 19th number in the SDO_ORDINATES array (that is,
12, meaning that the first point is 12,15).

= SDO_ORDINATES = (6,15, 10,10, 20,10, 25,15, 25,35, 19,40, 11,40, 6,25, 6,15,
12,15, 12,24, 15,24, 15,15, 12,15)

« Thearea (SDO_GEOM.SDO_AREA function) of the polygon is the area of the
exterior polygon minus the area of the interior polygon.

« The perimeter (SDO_GEOM.SDO_LENGTH function) of the polygon is the
perimeter of the exterior polygon plus the perimeter of the interior polygon.

An example of such a "polygon with a hole" might be a land mass (such as a
country or an island) with a lake inside it. Of course, an actual land mass might
have many such interior polygons: each one would require a triplet element in
SDO_ELEM_INFO, plus the necessary ordinate specification.

Exterior and interior rings cannot be nested. For example, if a country has a lake
and there is an island in the lake (and perhaps a lake on the island), a separate
polygon must be defined for the island; the island cannot be defined as an interior
polygon ring within the interior polygon ring of the lake.

In a multipolygon (polygon collection), rings must be grouped by polygon, and the
first ring of each polygon must be the exterior ring. For example, consider a
polygon collection that contains two polygons (A and B):

« Polygon A (one interior "hole"): exterior ring A0, interior ring Al

« Polygon B (two interior "holes"): exterior ring B0, interior ring B1, interior ring
B2

The elements in SDO_ELEM_INFO and SDO_ORDINATES must be in one of the
following orders (depending on whether you specify Polygon A or Polygon B first):

= A0, Al; BO, B1, B2
« B0, B1,B2; A0, Al

The Object-Relational Schema 2-15



Geometry Examples Using the Object-Relational Model

2.3.3 Compound Element

Figure 2-4 illustrates a crescent-shaped object represented as a compound line
string made up of one straight line segment and one circular arc. Four points are
required to represent this shape. Points 1 and 2 describe the straight line segment
and points 2, 3, and 4 describe the circular arc. The SDO_ELEM_INFO array
contains 3 triplets for this compound line string. These are {(1,4,2), (1,2,1), (3,2,2)}.
The SDO_ORDINATES array contains (X1,Y1, X2, Y2, X3, Y3, X4,Y4).

Figure 2-4 Compound Element

2

NU-3746A-Al

The first triplet indicates that this element is a compound line string made up of
two line strings, which are described with the next two triplets.

The second triplet indicates that the line string is made up of straight line segments
and that the ordinates for this line string start at offset 1. The end point of this line
string is determined by the starting offset of the second line string, 3 in this instance.
Assuming the vertices are 2-dimensional, the coordinates for the end point of the
first line string are at ordinates 3 and 4.

The third triplet indicates that the second line string is made up of circular arcs with
ordinates starting at offset 3. The end point of this line string is determined by the
starting offset of the next element or the current length of the SDO_ORDINATES
array, if this is the last element.

2-16 Oracle Spatial User's Guide and Reference



Geometry Examples Using the Object-Relational Model

2.3.4 Compound Polygon

Figure 2-5 illustrates an ice cream cone-shaped object represented as a compound
polygon made up of one straight line segment and one circular arc. Five points are
required to represent this shape. Points 1, 2, and 3 describe one acute angle-shaped
line string, and points 3, 4, and 5 describe the circular arc. Points 1 and 5 are the
same point. The SDO_ELEM_INFO array contains three triplets for this compound
line string. These triplets are {(1,1005,2), (1,2,1), (5,2,2)}.

Figure 2-5 Compound Polygon

4 x4,y4

x3,y3 x1,y1 1 5
)

x5,y5

X2,y2 2

NU-3747A-Al

The first triplet indicates that this element is a compound line string made up of
two line strings, which are described using the next two triplets.

The second triplet indicates that the line string is made up of straight line segments
and that the ordinates for this line string start at offset 1. The end point of this line
string is determined by the starting offset of the second line string, 5 in this instance.
Assuming the vertices are 2-dimensional, the coordinates for the end point of the
first line string are at ordinates 5 and 6.

The third triplet indicates that the second line string is made up of circular arcs with
ordinates starting at offset 5. The end point of this line string is determined by the
starting offset of the next element or the current length of the SDO_ORDINATES
array, if this is the last element.

The Object-Relational Schema 2-17



Geometry Metadata Structure

2.4 Geometry Metadata Structure

The geometry metadata describing the dimensions, lower and upper bounds, and
tolerance in each dimension is stored in a global table owned by MDSYS (which
users should never directly update). Each Spatial user has the following views
available in the schema associated with that user:

« USER_SDO_GEOM_METADATA contains metadata information for all spatial
tables owned by the user (schema). This is the only view that you can update,
and it is the one in which Spatial users must insert metadata related to spatial
tables.

« ALL SDO_GEOM_METADATA contains metadata information for all spatial
tables on which the user has SELECT permission.

« DBA SDO_GEOM_METADATA contains metadata information for all spatial
tables on which the user has SELECT permission if the user has the DBA role.

Spatial users are responsible for populating these views. For each spatial column,
you must insert an appropriate row into the USER_SDO_GEOM_METADATA view.
Oracle Spatial ensures that the other two views (ALL_SDO_GEOM_METADATA
and DBA_SDO_GEOM_METADATA) are also updated to reflect the rows that you
insert into USER_SDO_GEOM_METADATA.

Note: These views were new for release 8.1.6. If you are migrating
from an earlier release of Spatial, see Appendix B.

Each metadata view has the following definition:

(
TABLE NAVE  VARCHAR2(32),
COLUW NAME  VARCHAR(32) ,
D M NFO MDSYS. SDO D M ARRAY,
SRD NUVBER

)i

In addition, the ALL_SDO_GEOM_METADATA and DBA_SDO_GEOM_
METADATA views have an OWNER column identifying the schema that owns the
table specified in TABLE_NAME.

2-18 Oracle Spatial User’'s Guide and Reference



Geometry Metadata Structure

2.4.1 TABLE_NAME

The TABLE_NAME column contains the name of a feature table, such as ROADS or
PARKS, that has a column of type SDO_GEOMETRY.

2.4.2 COLUMN_NAME

The COLUMN_NAME column contains the name of the column of type SDO _
GEOMETRY. For the tables ROADS and PARKS, this column is called
THEGEOMETRY, and therefore the xxx_SDO_GEOM_METADATA views should
contain rows with values (ROADS, THEGEOMETRY, SOMEDIMINFO1, NULL) and
(PARKS, THEGEOMETRY, SOMEDIMINFO2, NULL).

2.4.3 DIMINFO

The DIMINFO column is a varying length array of an object type, ordered by
dimension, and has one entry per dimension. The SDO_DIM_ARRAY type is
defined as follows:

CQeate Type SDO D MARRAY as VARRAY(4) of SDO DM H.EMENT;

The SDO_DIM_ELEMENT type is defined as:

Qeate Type SDO D MHBBEMENT as BIECT (
SDO D MNAME VARCHAR2( 64) ,
SDO LB NUMBER
SDO LB NUMBER
SDO TA.ERANCE NMBER) ;

The SDO_DIM_ARRAY instance is of size n if there are n dimensions. That is,
DIMINFO contains 2 SDO_DIM_ELEMENT instances for 2-dimensional
geometries, 3 instances for 3-dimensional geometries, and 4 instances for
4-dimensional geometries. Each SDO_DIM_ELEMENT instance in the array must
have valid (not null) values for the SDO_LB, SDO_UB, and SDO_TOLERANCE
attributes.

Note: The number of dimensions reflected in the DIMINFO
information must match the number of dimensions of each
geometry object in the layer.

Spatial assumes that the varying length array is ordered by dimension, and
therefore, in the ROADS and PARKS tables, SomeDimlInfol is the SDO_DIM _

The Object-Relational Schema 2-19



Spatial Index-Related Structure

ELEMENT for the first dimension and SomeDimInfo2 is the SDO_DIM_ELEMENT
for the second dimension. It is imperative that the DIMINFO varying length array is
ordered by dimension in the same way the ordinates for the points in SDO_
ORDINATES varying length array are ordered. That is, if the SDO_ORDINATES
varying length array contains {X1, Y1, ..., Xn, Yn}, then SomeDimInfol must define
the X dimension and SomeDimInfo2 must define the Y dimension.

Section 3.1.2 contains examples that show the use of the SDO_GEOMETRY and
SDO_DIM_ARRAY types. These examples demonstrate how various geometry
objects are represented, and how a feature table and the USER_SDO_GEOM _
METADATA view are populated with the data for those objects.

2.4.4 SRID

The SRID column should contain either of the following: the SRID value for the
coordinate system (see Appendix D) for all geometries in the column, or NULL if no
specific coordinate system should be associated with the geometries.

2.5 Spatial Index-Related Structure

This section describes the structure of the tables containing the spatial index data
and metadata. Concepts and usage notes for spatial indexing are explained in
Section 1.7. The spatial index data and metadata are stored in tables that are created
and maintained by the Spatial indexing routines. These tables are created in the
schema of the owner of the feature (underlying) table that has a spatial index
created on a column of type SDO_GEOMETRY.

2.5.1 Spatial Index Views

There are three metadata views per schema (user). These views are read-only to
users; they are created and maintained by the Spatial indexing routines.

« USER_SDO_INDEX_METADATA contains index information for all spatial
tables owned by the user. (USER_SDO_INDEX_METADATA is the same as
SDO_INDEX_METADATA, which was the only metadata view for Oracle
Spatial release 8.1.5.)

« ALL_SDO_INDEX_METADATA contains index information for all spatial
tables on which the user has SELECT permission.

« DBA _SDO_INDEX METADATA contains index information for all spatial
tables on which the user has SELECT permission if the user has the DBA role.

2-20 Oracle Spatial User’'s Guide and Reference



Spatial Index-Related Structure

Note:

These views were new for release 8.1.6. If you are migrating

from an earlier release of Spatial, see Appendix B.

The USER_SDO_INDEX_METADATA, ALL_SDO_INDEX_METADATA, and DBA _
SDO_INDEX_ METADATA views contain the same columns, as shown Table 2-3.
(The columns are listed in their order in the view definition.)

Table 2-3 Columns in the xxx_SDO_INDEX METADATA Views

Column Name Data Type Purpose

SDO_INDEX_OWNER VARCHAR2 The owner of the index.

SDO_INDEX_TYPE VARCHAR2 Contains QTREE (for a quadtree index) or
RTREE (for an R-tree index).

SDO_INDEX_NAME VARCHAR2 The name of the index.

SDO_INDEX_TABLE VARCHAR2 Name of the spatial index table (described in
Section 2.5.2).

SDO_INDEX_PRIMARY NUMBER Indicates if this is a primary or secondary index.
1 = primary, 2 = secondary.

SDO_TSNAME VARCHAR?2 The schema name of the SDO_INDEX_TABLE.

SDO_COLUMN_NAME VARCHAR2 The column name on which this index is built.

SDO_RTREE_HEIGHT NUMBER Height of the R-tree (R-tree index).

SDO_RTREE_NUM_ NUMBER Number of nodes in the R-tree (R-tree index).

NODES

SDO_RTREE_ NUMBER Number of dimensions indexed (R-tree index).

DIMENSIONALITY

SDO_RTREE_FANOUT NUMBER Maximum number of children in each R-tree
node (R-tree index).

SDO_RTREE_ROOT VARCHAR?2 Rowid corresponding to the root node of the
R-tree in the index table (R-tree index).

SDO_RTREE_SEQ_NAME VARCHAR2 Sequence name associated with the R-tree
(R-tree index).

SDO_LEVEL NUMBER  The fixed tiling level at which to tile all objects
in the geometry column (quadtree index).

SDO_NUMTILES NUMBER  Suggested number of tiles per object that should

be used to approximate the shape (quadtree
index).

The Object-Relational Schema 2-21



Spatial Index-Related Structure

Table 2-3 Columns in the xxx_SDO_INDEX_METADATA Views (Cont.)

Column Name

Data Type Purpose

SDO_MAXLEVEL

SDO_COMMIT_INTERVAL

SDO_FIXED_META

SDO_TABLESPACE

SDO_INITIAL_EXTENT
SDO_NEXT_EXTENT
SDO_PCTINCREASE
SDO_MIN_EXTENTS
SDO_MAX_EXTENTS

NUMBER  The maximum level for any tile for any object
(quadtree index). It will always be greater than
the SDO_LEVEL value.

NUMBER  The number of geometries (rows) to process,
during index creation, before committing the
insertion of spatial index entries into the
SDOINDEX table. See Section A.1.4 for more
information about SDO_COMMIT_INTERVAL.

RAW If applicable, this column contains the metadata
portion of the SDO_GROUPCODE or SDO_
CODE for a fixed-level index.

VARCHAR2 Same as in the SQL CREATE TABLE statement.
Tablespace in which to create the SDOINDEX
table.

NUMBER Same as in SQL CREATE TABLE statement.
NUMBER Same as in SQL CREATE TABLE statement.
NUMBER Same as in SQL CREATE TABLE statement.
NUMBER Same as in SQL CREATE TABLE statement.
NUMBER Same as in SQL CREATE TABLE statement.

2.5.2 Spatial Index Table Definition

Each quadtree spatial index table (each SDO_INDEX_TABLE entry as described in
Table 2-3 in Section 2.5.1) contains the columns shown in Table 2—-4.

Table 2-4 Columns in a Spatial Index Data Table

Column Name Data Type Purpose

SDO_CODE RAW Index entry for the object in the row identified by
SDO_ROWID.

SDO_ROWID ROWID Row ID of a row in a feature table containing the

indexed object.

SDO_STATUS VARCHAR2 Contains | if the tile is inside the geometry, or contains

SDO_GROUPCODE RAW

B if the tile is on the boundary of the geometry.

Index entry at level SDO_LEVEL (hybrid indexes
only).

2-22 Oracle Spatial User's Guide and Reference



Spatial Index-Related Structure

The SDO_CODE, SDO_ROWID, and SDO_STATUS columns are always present.
The SDO_GROUPCODE column is present only when the selected index type is
HYBRID.

2.5.3 R-Tree Index Sequence Object

Each R-tree spatial index table has an associated sequence object (SDO_RTREE _
SEQ_NAME in the USER_SDO_INDEX_METADATA view, described in Table 2-3
in Section 2.5.1). The sequence is used to ensure that simultaneous updates can be
performed to the index by multiple concurrent users.

The sequence name is the index table name with the letter S as a suffix. For
example, if the index table name is E1_RTS$, the sequence name is E1_RT$S.

The Object-Relational Schema 2-23



Spatial Index-Related Structure

2-24 Oracle Spatial User’s Guide and Reference



3

Loading and Indexing Spatial Object Types

This chapter describes how to load spatial data into a database, including storing
the data in a table with a column of type SDO_GEOMETRY and creating a spatial
index for it.

The following steps will enable you to query spatial data efficiently:
1. Load data into a column of type SDO_GEOMETRY.
2. Create spatial indexes on columns of type SDO_GEOMETRY.

3.1 Load Process

The process of loading data can be classified into two categories:
« Bulk loading of data

This process is used to load large volumes of data into the database and uses
the SQL*Loader utility to load the data.

= Transactional inserts

This process is used to insert relatively small amounts of data into the database
using the INSERT statement in SQL.

3.1.1 Bulk Loading

Bulk loading can import large amounts of ASCII data into an Oracle database. Bulk
loading is accomplished with the SQL*Loader utility. (For information about
SQL*Loader, see Oracle8i Utilities.)

Loading and Indexing Spatial Object Types 3-1



Load Process

3.1.1.1 Bulk Loading the SDO_GEOMETRY Object

The following example assumes that a table named POLY_4PT was created as
follows:

CREATE TABLE POLY 4PT (@D VARCHARX(32),
GEQMETRY  MDSYS. SDO GEOMETRY) ;

Assume that the ASCII data consists of a file with delimited columns and separate
rows fixed by the limits of the table with the following format:

geonetry rows: ab GEOMETRY

The coordinates in the geometry column represent roads for a region. Example 3-1
shows the control file for loading the roads and attributes.

Example 3-1 Control File for a Bulk Load

LOAD DATA
| NFI LE *
TRUNCATE
QONTINUELF NEXT(1:1) = #
| NTO TABLE PCLY_4PT
FI ELDS TERM NATED BY ' |’
TRAI LI NG NLLLALS (
@D | NTEGER EXTERNAL,
GEOM GOLUMN CBJECT

(

SDO GI'YPE | NTEGER EXTERNAL,
SO HEMINFO  VARRAY TERM NATED BY ' |/’
(X FLOAT EXTERNAL) ,
SDO RO NATES  VARRAY TERM NATED BY ' |/’
(Y FLOAT EXTERNAL)
)
)
begi ndat a
1] 2003| 1] 1003| 1]/

H#H+
#-122. 4215| 37. 7862| - 122. 422| 37. 7869| - 122. 421| 37. 789| - 122. 42| 37. 7866|
#-122. 4215| 37. 7862| /
2| 2003 1| 1003| 1]/
H#H+
#-122. 4019| 37. 8052| - 122. 4027| 37. 8055| - 122. 4031| 37. 806| - 122. 4012| 37. 8052|
#-122. 4019| 37. 8052| /
3| 2003 1| 1003| 1]/
#-122. 426| 37. 803| - 122. 4242| 37. 8053| - 122. 42355| 37. 8044| - 122. 4235| 37. 8025|

3-2 Oracle Spatial User’s Guide and Reference



Load Process

#-122. 426 37. 803| /

3.1.1.2 Bulk Loading Point-Only Data in the SDO_GEOMETRY Object
Example 3-2 shows a control file for loading a table with point data.

Example 3-2 Control File for a Bulk Load of Point-Only Data

LOAD DATA
| NI LE *

TRUNCATE

CONTINUELF NEXT(1:1) = #
| NTO TABLE PQ NT

FI ELDS TERM NATED BY ' |’
TRAI LI NG NLLLALS (

ao | NTEGER EXTER\AL,
GEQMVETRY GOLUWN CBJECT

(

SDO GI'YPE | NTEGER EXTERNAL,
SDO PO NT' CLUW CBIECT
(X FLOAT EXTERNAL,
Y FLOAT EXTERNAL)
)
)
BEQ NDATA

1| 2001| -122.4215| 37.7862

2| 2001] -122.4019| 37.8052]

3| 2001 -122.426| 37.803|

4] 2001| -122.4171] 37.8034|

5| 2001| -122.416151] 37.8027228)

3.1.2 Transactional Insert Using SQL

Oracle Spatial uses standard Oracle8i tables that can be accessed or loaded with
standard SQL syntax. This section contains examples of transactional inserts into
columns of type SDO_GEOMETRY. Note that the INSERT statement in Oracle8i
SQL has a limit of 999 arguments. Therefore, you cannot create a variable-length
array of more than 999 elements using the SDO_GEOMETRY constructor inside a
transactional INSERT statement; however, you can insert a geometry using a host
variable, and the host variable can be built using the SDO_GEOMETRY constructor
with more than 999 values in the SDO_ORDINATE_ARRAY specification. (The host
variable is an OCI, PL/SQL, or Java program variable.)

Loading and Indexing Spatial Object Types 3-3



Load Process

To perform transactional insertions of geometries, you can create a procedure to
insert a geometry, and then invoke that procedure on each geometry to be inserted.
Example 3-3 creates a procedure to perform the insert operation.

Example 3-3 Procedure to Perform Transactional Insert Operation

CREATE (R REPLACE PROCEDURE
| NSERT_CEQM GEQM MDSYS. SDO GEOMETRYY)
IS

BEQ N
I NSERT | NTO TEST 1 VALUES (GEQM ;
QOW T

BND

/

Using the procedure created in Example 3-3, you can insert data by using a
PL/SQL block, such as the one in Example 3-4, which loads a geometry into the
variable named geom and then invokes the INSERT_GEOM procedure to insert that
geometry.

Example 3-4 PL/SQL Block Invoking Procedure to Insert a Geometry

DEQLARE
geom nusys. sdo_geonetry : =
nusys. sdo_geonetry (2003, null, null,
nusys. sdo_el eminfo_array (1, 1003, 3),
nusys. sdo_ordi nate_array (-109, 37, - 102, 40) ) ;
BEG N
| NSERT_GEQM geon) ;
QOWT;
END
/

3.1.2.1 Polygon with Hole
The geometry to be stored can be a polygon with a hole, as shown in Figure 3-1.

3-4 Oracle Spatial User’s Guide and Reference



Load Process

P8

P1

Figure 3-1 Polygon with Hole

Ceonmetry OBJ_1:

P7 pP6 El ement 1

P5

El ement 2 (Hol e)

HL 4

P2 P3

The coordinate values for Element 1 and Element 2 (the hole), shown in Figure 3-1,
are:

Henent 1= [PL(6,15), P2(10,10), P3(20,10), P4(25,15), P5(25,35), P6(19,40),
P7(11, 40), P8(6,25), P1(6,15)]
Henment 2= [HL(12,15), H2(15,24)]

The following example assumes that a table named PARKS was created as follows:

CREATE TABLE PARKS (NAME VARCHARZ( 32),
SHAPE MDSYS. SDO GEOMETRY) ;

The SQL statement for inserting the data for geometry OBJ_1 is:

I NSERT | NTO PARKS
VALLES (* GBJ_1', MDSYS. SDO GEQMETRY(2003, NULL, NULL,
MDSYS. SDO ELEM | NFO ARRAY( 1, 1003, 1, 19, 2003, 3),
MDSYS. SDO CRD NATE ARRAY( 6, 15, 10, 10, 20,10, 25,15, 25,35,
19,40, 11,40, 6,25, 6,15, 12, 15 15,24)));

The SDO_GEOMETRY object type takes values and constructors for its attributes
SDO_GTYPE, SDO_ELEM_INFO, and SDO_ORDINATES. The SDO_GTYPE is
2003, and the SDO_ELEM_INFO has 2 triplet values because there are 2 elements.
Element 1 starts at offset 1, is of ETYPE 1003, and its interpretation value is 1
because the points are connected by straight line segments. Element 2 starts at offset
19, is of ETYPE 2003, and has an interpretation value of 3 (a rectangle). The SDO _

Loading and Indexing Spatial Object Types 3-5



Load Process

ORDINATES varying length array has 22 values with SDO_ORDINATES(1...18)
describing element 1 and SDO_ORDINATES(19...22) describing element 2.

Assume that two dimensions are named X and Y, their bounds are 0 to 100, and the
tolerance for both dimensions is 0.005. The SQL statement for loading the
USER_SDO_GEOM_METADATA metadata view is:

| NSERT | NTO USER SDO GEQM METADATA
VALUES (’ PARKS , ' SHAPE
MDSYS. SDO DI M ARRAY( MDSYS. SDO D M ELEMENT(” X, 0, 100, 0.005),
MDSYS. SDO DM BLEMENT(' Y', 0, 100, 0.005)),
NULL) ;

3.1.2.2 Compound Line String

A compound line string is a connected sequence of straight line segments and
circular arcs. Figure 3-2 is an example of a compound line string.

Figure 3-2 Line String Consisting of Arcs and Straight Line Segments
Ceonetry OBJ_2:

P7
P6

P1 P2 P5

P3 P4

In Figure 3-2, the coordinate values for points P1..P7 that describe the line string
OBJ 2 are:

(BJ_2 = [P1(15,10), P2(25,10), P3(30,5), P4(38,5), P5(38,10),

P6( 35, 15), P7(25, 20)]
The SQL statement for inserting this compound line string in a feature table defined
as ROADS(GID Varchar2(32), Shape MDSYS.SDO_GEOMETRY) is:

[ NSERT | NTO ROADS VALUES (* (BJ_2', MDBYS SDO GEOMETRY(2002, NOLL, NULL,

3-6 Oracle Spatial User’s Guide and Reference



Load Process

MDSYS. SDO ELEM | NFO ARRAY(1, 4,2, 1,2,1, 9,2,2),
MDSYS. SDO CRD NATE ARRAY( 15, 10, 25,10, 30,5, 38,5, 38,10, 35,15, 25,20)));

The SDO_GEOMETRY object type takes values and constructors for its attributes
SDO_GTYPE, SDO_ELEM_INFO, and SDO_ORDINATES. The SDO_GTYPE is
2002, and the SDO_ELEM_INFO_ARRAY has 9 values because there are 2
subelements for the compound line string. The first subelement starts at offset 1, is
of SDO_ETYPE 2, and its interpretation value is 1 because the points are connected
by straight line segments. Similarly, subelement 2 has a starting offset of 9. That is,
the first ordinate value is SDO_ORDINATES(9), is of SDO_ETYPE 2, and has an
interpretation value of 2 because the points describe a circular arc. The SDO_
ORDINATES_ARRAY varying length array has 14 values, with SDO_
ORDINATES(1..10) describing subelement 1, and SDO_ORDINATES(9..14)
describing subelement 2.

Assume that two dimensions are named X and Y, their bounds are 0 to 100, and
tolerance for both dimensions is 0.005. The SQL statement to insert the metadata
into the USER_SDO_GEOM_METADATA view is:

| NSERT | NTO USER SDO GEOM METADATA VALUES (' RADS , ' SHAPE
MSYS. SDO DI M ARRAY( MDSYS. SDO D MELEMENT(” X, 0, 100, 0.005),
MSYS. SDO D MELEMENT(’ ', 0, 100, 0.005)),
NCLL) ;

3.1.2.3 Compound Polygon

A compound polygon’s boundary is a connected sequence of straight line segments
and circular arcs, whose first point is equal to its last point. Figure 3-3 is an example
of a compound polygon.

Loading and Indexing Spatial Object Types 3-7



Load Process

Figure 3-3 Compound Polygon
Ceonetry OBJ_3:

P2 P1

P3

P7
P4

P5 P6

In Figure 3-3, the coordinate values for points P1 to P8 that describe the polygon
OBJ_3 are:

@BJ 3 = [P1(20,30), P2(11,30), P3(7,22), PA(7,15), P5(11,10), P6(21,10),
P7(27,30), P8(25,27), PL(20,30)]

The following example assumes that a table named PARKS was created as follows:

CREATE TABLE PARKS (@ D VARCHAR2(32), SHAPE MBSYS. SDO GEOMETRY) ;

The SQL statement for inserting this compound polygon is:

I NSERT | NTO PARKS VALUES (' CBJ_3', MDSYS. SDO GEOMETRY(2003, NLLL, NULL,
MDSYS. SDO ELEM | NFO ARRAY( 1, 1005, 2, 1,2, 1, 13,2, 2),
MDSYS. SDO CRD NATE ARRAY( 20, 30, 11,30, 7,22, 7,15, 11,10, 21,10, 27,30,
25,27, 20,30))):

The SDO_GEOMETRY object type takes values and constructors for its attributes
SDO_GTYPE, SDO_ELEM_INFO, and SDO_ORDINATES. The SDO_GTYPE is
2003, the SDO_ELEM_INFO has 3 triplet values. The first triplet (1,1005,2) identifies
the element as a compound polygon (ETYPE 1005) with two subelements. The first
subelement starts at offset 1, is of ETYPE 2, and its interpretation value is 1 because
the points are connected by straight line segments. Subelement 2 has a starting
offset of 13, is of ETYPE 2, and has an interpretation value of 2 because the points
describe a circular arc. The SDO_ORDINATES varying length array has 18 values,
with SDO_ORDINATES(1...14) describing subelement 1, and SDO _
ORDINATES(13...18) describing subelement 2.

3-8 Oracle Spatial User’s Guide and Reference



Load Process

This example assumes the PARKS table was created as follows:
CREATE TABLE PARKS (A D VARCHARZ2(32), SHAPE MBSYS. SDO (EQMETRY) ;

Assume that two dimensions are named X and Y, their bounds are 0 to 100, and
tolerance for both dimensions is 0.005. The SQL statement to insert the metadata
into the USER_SDO_GEOM_METADATA view is:

| NSERT | NTO USER SDO GEOM METADATA VALUES (' PARKS , ' SHAPE
MSYS. SDO DI M ARRAY( MDSYS. SDO D MELEMENT(” X, 0, 100, 0.005),
MDSYS. SDO D MELEMENT(’ ', 0, 100, 0.005)),
NCLL) ;

3.1.2.4 Compound Polygon with Holes

A compound polygon’s boundary is a connected sequence of straight line segments
and circular arcs. Figure 3-4 is an example of a geometry that contains a compound
polygon with a hole (or void).

Figure 3-4 Compound Polygon with a Hole

Ceonetry OBJ_ 4.

P2 P1 El enent 1

Subel enent 2

El enent 1

P3

El enent 2

El enent 1
Subel enment 1

P5 P6

In Figure 3-4, the coordinate values for points P1 to P8 (Element 1) and C1 to C3
(Element 2) that describe the geometry OBJ_4 are:

Henent 1 = [P1(20,30), P2(11,30), P3(7,22), P4(7,15), P5(11,10), P6(21,10),
P7(27,30), P8(25,27), P1(20,30)]
Henent 2 = [CL(10,17), C2(15,22), C3(20,17)]

The following example assumes that a table named PARKS was created as follows:

Loading and Indexing Spatial Object Types 3-9



Load Process

CREATE TABLE PARKS (A D VARCHARZ2(32), SHAPE MBSYS. SDO CEQMETRY) ;

The SQL statement for inserting this compound polygon with a hole is:

I NSERT | NTO Parks VALUES (° CBJ_4', MDSYS. SDO GEQMETRY(2003, NULL, NULL,
MDSYS. SDO ELEM | NFO ARRAY( 1, 1005, 2, 1,2,1, 13,2,2, 19, 2003, 4),
MDSYS. SDO CRD NATE ARRAY( 20, 30, 11,30, 7,22, 7,15, 11,10, 21,10, 27,30,

25,27, 20,30, 10,17, 15,22, 20,17)));

The SDO_GEOMETRY object type takes values and constructors for its attributes
SDO_GTYPE, SDO_ELEM_INFO, and SDO_ORDINATES. The SDO_GTYPE is
2003, the SDO_ELEM_INFO has 4 triplet values. The first 3 triplet values represent
element 1. The first triplet (1,1005,2) identifies this element as a compound element
with two subelements. The values in SDO_ELEM_INFO(1...9) pertain to element 1,
while SDO_ELEM_INFO(10...12) are for element 2.

The first subelement starts at offset 1, is of ETYPE 2, and its interpretation is 1
because the points are connected by straight line segments. Subelement 2 has a
starting offset of 13, is of ETYPE 2, and has an interpretation value of 2 because the
points describe a circular arc. The fourth triplet (19,2003,4) represents element 2.
Element 2 starts at offset 19, is of ETYPE 2003, and its interpretation value is 4,
indicating that it is a circle. The SDO_ORDINATES varying length array has 24
values, with SDO_ORDINATES(1...14) describing subelement 1, SDO_
ORDINATES(13...18) describing subelement 2, and SDO_ORDINATES(19...24)
describing element 2.

Assume that two dimensions are named X and Y, their bounds are 0 to 100, and
tolerance for both dimensions is 0.005. The SQL statement to insert the metadata
into the USER_SDO_GEOM_METADATA view is:

I NSERT | NTO USER SDO GEQM METADATA VALUES (' PARKS , * SHAPE
MDSYS. SDO DI M ARRAY( MDSYS. SDO DM ELEMENT(’ X, 0, 100, 0.005),
MDSYS. SDO D MELEMENT(’ Y, 0, 100, 0.005)),
NULL) ;

3.1.2.5 Transactional Insert of Point-Only Data

A point-only geometry can be inserted with the following statement:
I NSERT | NTO PARKS VALUES (' GBJ_PT,
MDSYS. SDO (GEFOMETRY( 2001, NULL,
MDSYS. SDO PA NT_TYPH 20, 30, NULL) ,
NULL, NULL)

3-10 Oracle Spatial User's Guide and Reference



Index Creation

3.2 Index Creation

Once data has been loaded into the spatial tables through either bulk or
transactional loading, a spatial index must be created on the tables for efficient
access to the data. Each spatial index can be an R-tree index or a quadtree index. To
decide which type of index to use for a spatial application, you must understand the
concepts and guidelines discussed in Section 1.7.

3.2.1 Determining Index Creation Behavior (Quadtree Indexes)

With a quadtree index, the tessellation algorithm used by the CREATE INDEX
statement and by index maintenance routines on insert or update operations is
determined by the SDO_LEVEL and SDO_NUMTILES values, which are supplied
in the PARAMETERS clause of the CREATE INDEX statement. They are interpreted
as follows:

SDO_LEVEL SDO_NUMTILES Action

Not specified or 0. Not specified or 0. R-tree index.
>=1 Not specified or 0.  Fixed indexing (indexing with fixed-size tiles).

>=1 >=1 Hybrid indexing with fixed-size and
variable-sized tiles. The SDO_LEVEL column
defines the fixed tile size. The SDO_NUMTILES
column defines the number of variable tiles to
generate per geometry.

Not specified or0. >=1 Not supported (error).

An explicit commit operation is executed after the tessellation of all the geometries
in a geometry column.

By default, spatial index creation requires a sizable amount of rollback space. To
reduce the amount of rollback space required you can supply the SDO_COMMIT_
INTERVAL parameter in the CREATE INDEX statement. This will perform a
database commit after every n geometries are indexed, where n is a user-defined
value.

If the index creation does not complete for any reason, the index is invalid and must
be deleted with the DROP INDEX <index_name> [FORCE] statement.

Loading and Indexing Spatial Object Types 3-11



Index Creation

3.2.2 Spatial Indexing with Fixed-Size Tiles (Quadtree Indexes)

If you choose quadtree indexing for a spatial index, you should use fixed indexing
for most applications, except for the rare circumstances where hybrid indexing
should be considered. (These rare circumstances are explained in Section 1.7.2.3,
and hybrid indexing is discussed in Section 3.2.3. However, you should also
consider using R-tree indexing before deciding on hybrid indexing.)

The fixed-size tile algorithm is expressed as a level referring to the number of
tessellations performed. To use fixed-size tile indexing, omit the SDO_NUMTILES
parameter and set the SDO_LEVEL value to the desired tiling level. The
relationship between the tiling level and the resulting size of the tiles depends on
the domain of the layer.

The domain used for indexing is defined by the upper and lower boundaries of
each dimension stored in the DIMINFO column of the USER_SDO_GEOM _
METADATA view, which contains an entry for the table and geometry column to
spatially index. A typical domain could be -180 to 180 degrees for longitude,! and
-90 to 90 degrees for latitude, as represented in Figure 3-5.

Figure 3-5 Sample Domain

90

-90

-180 180

If the SDO_LEVEL column is set to 1, then the tiles created by the indexing
mechanism are the same size as tiles at the first level of tessellation. Each tile would
be 180 degrees by 90 degrees as shown in Figure 3-6.

! The transference of the domain onto a sphere or other projection is left up to an
application, unless a coordinate system is specified, as explained in Appendix D.)

3-12 Oracle Spatial User's Guide and Reference



Index Creation

Figure 3—-6 Fixed-Size Tiling at Level 1

90

-90

-180 0 180
The formula for the number of fixed-size tiles in a domain is 4" where n is the
number of tessellations, stored in the SDO_LEVEL column. In reality, tiles are only

generated where geometries exist, and not for the whole domain. Figure 3-7 shows
fixed-size tiling at level 2. In this figure, each tile is 90 degrees by 45 degrees.

Figure 3-7 Fixed-Size Tiling at Level 2

90

-90
-180 -90 0 90 180

The size of a tile can be determined by applying the following formula to each
dimension:

length = (upper_bound - lower_bound) / 2 * sdo_level

The length refers to the length of the tile along the specified dimension. Applying
this formula to the tiling shown in Figure 3-7 yields the following sizes:

Loading and Indexing Spatial Object Types 3-13



Index Creation

length for dinension X = (180 - (-180) ) / 2~2
(360) / 4
90
length for dinension Y = (90 - (-90) ) / 272
=(180) / 4
=45

At level 2, the tiles are 90 degrees by 45 degrees in size. As the number of levels
increases, the tiles become smaller and smaller. Smaller tiles provide a more precise
fit of the tiles over the geometry being indexed. However, because the number of
tiles generated is unbounded, you must take into account the performance
implications of using higher levels.

Note: The Spatial Index Advisor component of Oracle Enterprise
Manager can be used to determine an appropriate level for
indexing with fixed-size tiles. The SDO_TUNE.ESTIMATE _
TILING_LEVEL function, described in Chapter 11, can also be used
for this purpose; however, this function performs less analysis than
the Spatial Index Advisor.

Besides the performance aspects related to selecting a fixed-size tile, tessellating the
geometry into fixed-size tiles might have benefits related to the type of data being
stored, such as using tiles sized to represent 1-acre farm plots, city blocks, or
individual pixels on a display. Data modeling, an important part of any database
design, is essential in a spatial database where the data often represents actual
physical locations.

In Example 3-5, assume that data has been loaded into a table called ROADS, and
the USER_SDO_GEOM_METADATA view has an entry for ROADS.SHAPE. You
can use the following SQL statement to create a fixed index named ROADS_FIXED.

Example 3-5 Creating a Fixed Index

CREATE | NDEX ROADS _FI XED QN ROADS( SHAPE) | NDEXTYPE | S MDSYS. SPATI AL_| NDEX
PARAVETERS(” SDO LEVEL=8' ) ;

The SDO_LEVEL value is used while tessellating objects. Increasing the level results
in smaller tiles and better geometry approximations.

3-14 Oracle Spatial User’'s Guide and Reference



Index Creation

3.2.3 Hybrid Spatial Indexing with Fixed-Size and Variable-Sized Tiles

This section describes hybrid indexing, which uses both fixed-size and
variable-sized tiles as a spatial indexing mechanism. For each geometry, you will
have a set of fixed-size tiles that fully covers the geometry, and a set of
variable-sized tiles that fully covers the geometry. The terms hybrid indexing,
hybrid tiling, and hybrid tessellation are used interchangeably in this section.

Note: With quadtree indexes, you should use fixed indexing for
most applications, except for the rare circumstances where hybrid
indexing should be considered. These rare circumstances are
explained in Section 1.7.2.3. You should also consider using R-tree
indexing (see Section 1.7) before deciding on hybrid indexing.

To use hybrid tiling, the SDO_LEVEL and SDO_NUMTILES keywords in the
PARAMETERS clause must contain valid values. Both SDO_LEVEL and SDO _
NUMTILES must be greater than 1.

The SDO_NUMTILES value determines the number of variable tiles that will be
used to fully cover a geometry being indexed. Typically this value is small. For
points, SDO_NUMTILES is always one. For other element types, you might set
SDO_NUMTILES to a value around 8. The larger the SDO_NUMTILES value, the
better the tiles will approximate the geometry being covered. A larger SDO _
NUMTILES value improves the selectivity of the primary filter, but it also increases
the number of index entries per geometry (see Section 4.2.1 and Section 4.2.2 for a
discussion of primary and secondary filters). The SDO_NUMTILES value should be
larger for long, linear spatial entities, such as major highways or rivers, than for
area-related spatial entities such as county or state boundaries.

The SDO_LEVEL value determines the size of the fixed tiles used to fully cover the
geometry being indexed. Setting the proper SDO_LEVEL value may appear more
like art than science. Performing some simple data analysis and testing puts the
process back in the realm of science. One approach would be to use the SDO _
TUNE.ESTIMATE_TILING_LEVEL function to determine an appropriate starting
SDO_LEVEL value, and then compare the performance with slightly higher or
lower values. This technique and others are described in Appendix A.

In Example 3-6, assume that data has been loaded into a table called ROADS, and
the USER_SDO_GEOM_METADATA view has an entry for ROADS.SHAPE.
(Assume also that no spatial index has already been created on the ROADS.SHAPE
column.) You can use the following SQL statement to create a hybrid index named
ROADS_HYBRID.

Loading and Indexing Spatial Object Types 3-15



Index Creation

Example 3-6 Creating a Hybrid Index

CREATE | NDEX ROADS_HYBR D ON ROADS( SHAPE)
| NDEXTYPE | S MDSYS, SPATI AL_| NDEX PARAMETERS(’ SDO LEVEL=6 SDO NUMIT LES=12' ) ;

3.2.4 R-tree Index Parameter Considerations

This section describes considerations and recommendations for parameters related
to R-tree indexes. For basic information about all available parameters, see the
CREATE INDEX statement description in Chapter 5.

3.2.4.1 SDO_FANOUT

The default value for SDO_FANOUT is best for most applications. However, a
larger value of 60 for SDO_FANOUT is recommended for very large databases
(more than 1 million rows).

3.2.4.2 SDO_RTR_PCTFREE

The default value for SDO_RTR_PCTFREE is best for most applications. However, a
value of 0 for SDO_RTR_PCTFREE is recommended if no updates will be
performed to the geometry column.

3.2.5 Cross-Schema Index Creation

You can create a spatial index on a table that is not in your schema. Assume that
user B wants to create a spatial index on column geometry in table T1 under user A’s
schema. User B must perform the following steps:

1. Connect as user A (or have user A connect) and execute the following
statement:

GRANT select on T1 to B

2. Connect as user B and execute a statement such as the following:

GRANT create table to A

CREATE | NCEX gtree on B T1(geonetry)
I NDEXTYPE | S nusys. spati al _i ndex
PARAMETERY( ' sdo_| evel =10 sdo_nuntil es=4");

3-16 Oracle Spatial User's Guide and Reference



A

Querying Spatial Data

This chapter describes how the structures of a Spatial layer in the object-relational
model are used to resolve spatial queries and spatial joins. For the sake of clarity,
the examples all use fixed-size tiling, but hybrid indexing is actually recommended
for the object-relational model.

4.1 Query Model

Spatial uses a two-tier query model to resolve spatial queries and spatial joins. The
term two-tier is used to indicate that two distinct operations are performed in order
to resolve queries. If both operations are performed, the exact result set is returned.

The two operations are referred to as primary filter and secondary filter operations.

« The primary filter permits fast selection of candidate records to pass along to
the secondary filter. The primary filter uses geometry approximations (or index
tiles) to reduce computational complexity and is considered a lower-cost filter.

« The secondary filter applies exact computational geometry to the result set of
the primary filter. These exact computations yield the exact answer to a query.
The secondary filter operations are computationally more expensive, but they
are applied only to the relatively small result set returned from the primary
filter.

4.2 Spatial Query

An important concept in the spatial data model is that each geometry is
represented by a set of exclusive and exhaustive tiles. This means that no tiles
overlap each other (exclusive), and the tiles fully cover the object (exhaustive).

Querying Spatial Data 4-1



Spatial Query

Consider the following layer containing several objects in Figure 4-1. Each object is
labeled with its SDO_GID. The relevant tiles are labeled with ‘Tn’.

Figure 4-1 Tessellated Layer with Multiple Objects

T1 T2 T7
1013
501

T3 T4

\\\ 12

N\

T5 T6 T8 T9

1243

61

4-2 Oracle Spatial User's Guide and Reference



Spatial Query

A typical spatial query is to request all objects that lie within a defined fence or
window. A query window is shown in Figure 4-2 by the dotted-line box. A
dynamic query window refers to a fence that is not defined in the database, but that
must be defined before it is used.

Figure 4-2 Tessellated Layer with a Query Window

T1 T2 T7

501

- — — — 1

T4 I

I

I

I

I

\_ —_———

12
N\
T5 T6 T8 T9

1243

61

Querying Spatial Data 4-3



Spatial Query

4.2.1 Primary Filter

Spatial provides an operator named SDO_FILTER. This implements the primary
filter portion of the two-step process involved in the product’s query processing
model. The primary filter uses the index data only to determine a set of candidate
object pairs that may interact. The syntax is as follows:

SDO FI LTER geonet ryl MDXSYS. SDO GEOMETRY, geonet ry2 MDSYS, SDO GEOMETRY,
par ans VARCHAR?)

Where:

« geometryl is a column of type MDSYS.SDO_GEOMETRY in a table. geometryl
must be spatially indexed.

= geometry2 is an object of type MDSYS.SDO_GEOMETRY. geometry2 may or may
not come from a table. If it comes from a table, it may or may not be spatially
indexed.

« params is a quoted string of keyword value pairs that determine the behavior of
the operator. See the SDO_FILTER operator in Chapter 6 for a list of parameters.

The following examples perform a primary filter operation only. They will return all
the geometries shown in Figure 4-2 that have an index tile in common with one of
the index tiles that approximates the query window: tiles T1, T2, T3, and T4. The
result of the following examples are geometries with IDs 1013, 1243, 12, and 501.

Example 4-1 performs a primary filter operation without inserting the query
window into a table. The window will be indexed in memory and performance will
be very good.

Example 4-1 Primary Filter with a Temporary Query Window

SH ECT A Feature_| D FROM TARGET A
WHERE sdo_filter (A shape, nusys. sdo_geonet ry(2003, NULL, NULL,
nusys. sdo_el emi nfo_array(1, 1003, 3),
nusys. sdo_ordi nate_array(x1,yl, x2,y2)),
" querytype=wi ndow ) ='TRE ;

Note that (x1,y1) and (x2,y2) are the lower-left and upper-right corners of the query
window.

In Example 4-2, a transient instance of type SDO_GEOMETRY was constructed for
the query window instead of specifying the window parameters in the query itself.

4-4 Oracle Spatial User's Guide and Reference



Spatial Query

Example 4-2 Primary Filter with a Transient Instance of the Query Window

SELECT A Feature_| D FROM TARGET A
WHERE sdo_filter (A shape, :theWndow ' querytype=w ndow) ='TRUE ;

Example 4-3 assumes the query window was inserted into a table called
WINDOWS, with an ID of WINS_1.

Example 4-3 Primary Filter with a Stored Query Window
SELECT A Feature_| D FROM TARGET A WNDO/S B
WERE B ID="WNs 1 AND
sdo_filter (A shape, B. shape,’ querytype=window) ='TRE ;

If the B.SHAPE column is not spatially indexed, the SDO_FILTER operator indexes
the query window in memory and performance is very good.

If the B.SHAPE column is spatially indexed with the same SDO_LEVEL value as the
A.SHAPE column, the SDO_FILTER operator reuses the existing index, and
performance is very good or better.

If the B.SHAPE column is spatially indexed with a different SDO_LEVEL value than
the A.SHAPE column, the SDO_FILTER operator reindexes B.SHAPE in the same
way as if there were no index on the column originally, and then performance is
very good.

4.2.2 Primary and Secondary Filters

The SDO_RELATE operator performs both the primary and secondary filter stages
when processing a query. The syntax of the operator is as follows:

SDO RELATE( geonetryl MDSYS. SDO GEOMETRY,
geonetry2 MXGYS. SDO GEOMETRY,
par ans VARCHAR?)

Where:

« geometryl is a column of type MDSYS.SDO_GEOMETRY in a table. geometryl
must be spatially indexed.

= geometry2 is an object of type MDSYS.SDO_GEOMETRY. geometry2 may or may
not come from a table. If it comes from a table, it may or may not be spatially
indexed.

Querying Spatial Data 4-5



Spatial Query

« params is a quoted string of keyword value pairs that determine the behavior of
the operator. See the SDO_RELATE operator in Chapter 6 for a list of
parameters.

The following examples perform both primary and secondary filter operations.
They return all the geometries in Figure 4-2 that lie within or overlap the query
window. The result of these examples is objects 1243 and 1013.

Example 4-4 performs both primary and secondary filter operations without
inserting the query window into a table. The window will be indexed in memory
and performance will be very good.

Example 4-4 Secondary Filter Using a Temporary Query Window

SHECT A Feature_| D FROM TARGET A
WHERE sdo_rel at e( A shape, ndsys. sdo_geonet ry(2003, NJLL, NLLL,
nusys. sdo_el emi nfo_array(1, 1003, 3),
nusys. sdo_ordi nate_array(x1,yl, x2,y2)),
" mask=anyi nt eract querytype=wi ndow ) ='TRUE ;

Note that (x1,y1) and (x2,y2) are the lower-left and upper-right corners of the query
window.

Example 4-5 assumes the query window was inserted into a table called
WINDOWS, with an ID of WINS_1.

Example 4-5 Secondary Filter Using a Stored Query Window
SHECT A Feature_| D FRIM TARGET A WNDO/S B
WHERE B.ID="WNS 1' AND
sdo_r el at e( A shape, B. shape,
" mask=anyi nt er act querytype=wi ndow ) ='TRE ;

If the B.SHAPE column is not spatially indexed, the SDO_RELATE operator indexes
the query window in memory and performance is very good.

If the B.SHAPE column is spatially indexed with the same SDO_LEVEL value as the
A.SHAPE column, the SDO_RELATE operator reuses the existing index, and
performance is very good or better.

If the B.SHAPE column is spatially indexed with a different SDO_LEVEL value than
the A.SHAPE column, the SDO_FILTER operator reindexes B.SHAPE in the same
way as if there were no index on the column originally, and then performance is
very good.

4-6 Oracle Spatial User's Guide and Reference



Spatial Query

4.2.3 Within-Distance Operator

The SDO_WITHIN_DISTANCE operator is used to determine the set of objects in a
table that are within n Euclidean distance units from a reference object aRefGeom.
The reference object may be a transient or persistent instance of MDSYS.SDO _
GEOMETRY (such as a temporary query window or a permanent geometry stored
in the database). The syntax is as follows:

SDO WTH N D STANCK( geonetryl MDSYS. SDO GEOMETRY,
aRef Geom  MDBYS. SDO GEOMETRY,
par ans VARCHAR?)

Where:

« geometryl is a column of type MDSYS.SDO_GEOMETRY in a table.
geometryl must be spatially indexed.

« aRefGeom is an instance of type MDSYS.SDO_GEOMETRY.

= params is a quoted string of keyword value pairs that determines the
behavior of the operator. See the SDO_WITHIN_DISTANCE operator in
Chapter 6 for a list of parameters.

The following example selects any objects within 1.35 distance units from the query
window:

SHECT A Feature_|ID
FROM TARGET A
WHERE SDO WTH N DI STANCH A shape, :theWndow ’distance=1.35) ='TRE ;

The distance units are based on the geometry coordinate system in use. Spatial
treats the coordinate space as Cartesian. If your data consists of latitude and
longitude pairs, then you cannot use the SDO_WITHIN_DISTANCE operator to
provide correct results unless all your data is near the equator. If all the data is not
near the equator, you must project the latitude/longitude data into a
locally-conformal Cartesian plane before using the SDO_WITHIN_DISTANCE
operator.

The SDO_WITHIN_DISTANCE operator is not suitable for performing spatial joins.
That is, a query such as Find all parks that are within 10 distance units from coastlines
will not be processed as an index-based spatial join of the COASTLINES and
PARKS tables. Instead, it will be processed as a nested loop query in which each
COASTLINES instance is in turn a reference object that is buffered, indexed, and
evaluated against the PARKS table. Thus, the SDO_WITHIN_DISTANCE operation
is performed n times if there are n rows in the COASTLINES table.

Querying Spatial Data 4-7



Spatial Query

There is an efficient way to accomplish a spatial join that involves buffering all the
geometries of a layer. This method does not use the SDO_WITHIN_DISTANCE
operator. First, create a new table COSINE_BUFS as follows:

CREATE TABLE cosi ne_buf s UNRECOVERABLE AS
SH ECT SDO BUFFER (A SHAPE, B OMNFQ 1. 35)
FROM QC8l NE A, USER SDO GEQM METADATA B
WHERE TABLE NAME=' G085 NES' AND GOLUMN NAME=' SHAPE

Next, create a spatial index on the SHAPE column of COSINE_BUFS. Then you can
perform the following query:

SELECT a.gif, b.gid FROM parks A cosi ne_bufs B
WHERE SDO Rel at e( A shape, B.shape, ' nmask=ANYl NTERACT querytype=JON) = TRE ;

4.2.4 Nearest Neighbor Operator

The SDO_NN operator is used to identify the nearest neighbors for a geometry. The
syntax is as follows:

SDO NN geonet ryl MXSYS. SDO GEOMETRY,
geonetry2 MXSYS SDO GEOMETRY,
par am VARCHARR?)

Where:

« geometryl is a column of type MDSYS.SDO_GEOMETRY in a table.
geometryl must be spatially indexed.

= geometry? is an instance of type MDSYS.SDO_GEOMETRY.

= param is a quoted string of a keyword value pair that determines how many
nearest neighbor geometries are returned by the operator. See the SDO_NN
operator in Chapter 6 for information about this parameter.

The following example finds the two objects from the SHAPE column in the COLA _
MARKETS table that are closest to a specified point (10,7). (Note the use of the
optimizer hint in the SELECT statement, as explained in the Usage Notes for the
SDO_NN operator in Chapter 6.)

SELECT /*+ | NDEX(col a_narkets col a_spatial _i dx) */
c.nkt_id, c.nane FROMcol a_narkets ¢ WHERE SDO N\ c. shape,
nusys. sdo_geonet ry(2001, NULL, mnusys. sdo_poi nt _type(10, 7, NOLL), NULL,
NLLL), 'sdo numres=2') ='TRE ;

4-8 Oracle Spatial User's Guide and Reference



Cross-Schema Operator Invocation

4.3 Spatial Join

A spatial join is the same as a regular join except that the predicate involves a
spatial operator. In Spatial, a spatial join takes place when you compare all the
geometries of one layer to all the geometries of another layer. This is unlike a query
window that only compares a single geometry to all geometries of a layer.

In a spatial join, all tables must have the same type of spatial index (that is, R-tree or
quadtree) defined on the geometry column; and if they have quadtree indexes, the
SDO_LEVEL value must be the same for all the indexes.

Spatial joins can be used to answer questions such as, Which highways cross national
parks?

The following table structures illustrate how the join would be accomplished for
this example:

PARKS QD VARCHAR2(32), SHAPE MSYS. SDO GEOMETRY)
H GWAYS( G D VARCHAR2(32), SHAPE MOSYS. SDO GEOMETRY)

The primary filter would identify pairs of GID values from the PARKS and
HIGHWAYS tables that interact in their index entries. The query that performs the
primary filter join is:

SHECT AAD BAD
FROM PARKS A, H G-WAYS B
WHERE sdo_filter(A shape, B. shape, 'querytypesjoin’) ='TRE ;

The original question, asking about highways that cross national parks, requires the
secondary filter operator to find the exact relationship between highways and
parks.

The query that performs this join using both primary and secondary filters is:

SHECT AGD BAD
FROM parks A hi ghways B
WHERE sdo_rel at e( A shape, B. shape,
" mask=ANYl NTERACT quer ytype=join’);

4.4 Cross-Schema Operator Invocation

You can invoke spatial operators on an indexed table that is not in your schema.
Assume that user A has a spatial table T1 (with index table IDX_TAB1) with a
spatial index defined, that user B has a spatial table T2 (with index table IDX_TAB2)

Querying Spatial Data 4-9



Cross-Schema Operator Invocation

with a spatial index defined, and that user C wants to invoke operators on tables in
one or both of the other schemas.

If user C wants to invoke an operator only on T1, user C must perform the
following steps:

1. Connect as user A and execute the following statements:
@GRANT select on T1 to G
GRANT select on idx tabl to C
2. Connect as user C and execute a statement such as the following:

SELECT a.gid
FROMTL a
WHERE sdo _filter(a.geonetry, :theGeonetry, ’'querytype=WNDON) ='TRE ;

If user C wants to invoke an operator on both T1 and T2, user C must perform the
following steps:
1. Connect as user A and execute the following statements:
GRANT select on T1 to G
GRANT sel ect on idx_tabl to G
2. Connect as user B and execute the following statements:
GRANT select on T2 to C
GRANT sel ect on idx tab2 to C
3. Connect as user C and execute a statement such as the following:

SELECT a.gi d
FRMTl a, T2 b
WERE b.gid = 5 AND
sdo_filter(a. geonetry, b.geonetry, 'querytype=WNXON) ='TRE;

4-10 Oracle Spatial User’s Guide and Reference



D

Indexing Statements

This chapter describes the statements used when working with the spatial object
data type. The statements are listed in Table 5-1.

Table 5-1 Spatial Index Creation and Usage Statements

Statement Description

ALTER INDEX Alters a spatial index on a column of type
MDSYS.SDO_GEOMETRY.

ALTER INDEX REBUILD Rebuilds a spatial index on a column of type
MDSYS.SDO_GEOMETRY.

ALTER INDEX RENAME TO Changes the name of a spatial index on a column
of type MDSYS.SDO_GEOMETRY.

CREATE INDEX Creates a spatial index on a column of type
MDSYS.SDO_GEOMETRY.

DROP INDEX Deletes a spatial index on a column of type
MDSYS.SDO_GEOMETRY

Indexing Statements 5-1



ALTER INDEX

ALTER INDEX

Purpose

Alters specific parameters for a spatial index or rebuilds a spatial index.

Syntax

ALTER INDEX [schema.]index PARAMETERS (‘index_params [physical_storage_params]')

Keywords and Parameters

INDEX_PARAMS

Keyword
add_index

delete_index

sdo_commit_
interval

sdo_fanout

sdo_indx_dims

Allows you to change the characteristics of the spatial index, and the
type (fixed or hybrid) of a quadtree index.

Description

Specifies the name of the new index table to add.
Data type is VARCHAR2.

Specifies the name of the index table to delete. You can only delete
index tables that were created with the ALTER INDEX add_index
statement. The primary index table cannot be deleted with this
parameter. To delete the primary index table, use the DROP INDEX
statement.

Data type is VARCHAR2.

Specifies the number of underlying table rows that are processed
between commit intervals for the index data. (Quadtree indexes only.)
The default behavior commits the index data only after all rows in the
underlying table have been processed. See the Usage Notes for further
details.

Data type is NUMBER.

Specifies the fanout value, which reflects the node capacity of the
index tree. (R-tree indexes only.) If queries that use the index are likely
to return thousands of rows or more, you may want to specify a value
greater than the default, such as 50 or 60.

Data type is NUMBER. Default = 35.

Specifies the number of dimensions to be indexed. (R-tree indexes
only.) For example, a value of 2 causes the first 2 dimensions to be
indexed. Must be less than or equal to the number of actual
dimensions (humber of SDO_DIM_ELEMENT instances in the
dimensional array that describes the geometry objects in the column).
Data type is NUMBER. Default = number of actual dimensions.

5-2 Oracle Spatial User’s Guide and Reference



ALTER INDEX

sdo_level

sdo_numtiles

sdo_rtr_pctfree

PHYSICAL_
STORAGE_
PARAMS

Keyword
tablespace
initial
next
minextents
maxextents
pctincrease

btree_initial

btree_next

btree_pctincrease

Specifies the desired fixed-size tiling level. (Quadtree indexes only.)
Data type is NUMBER.

Specifies the number of variable-sized tiles to be used in tessellating
an object. (Quadtree indexes only.)
Data type is NUMBER.

Specifies the minimum percentage of slots in each index tree node to
be left empty when the index is created. Slots that are left empty can
be filled later when new data is inserted into the table. (R-tree indexes
only.) The value can range from 0 to 50.

Data type is NUMBER. Default = 10.

Determines the storage parameters used for altering the spatial index
data table. A spatial index data table is a standard Oracle table with a
prescribed format. Not all physical storage parameters that are
allowed in the STORAGE clause of a CREATE TABLE statement are
supported. The following is a list of the supported subset.

Description

Specifies the tablespace in which the index data table is created. This
parameter is the same as TABLESPACE in the STORAGE clause of a
CREATE TABLE statement.

Is the same as INITIAL in the STORAGE clause of a CREATE TABLE
statement.

Is the same as NEXT in the STORAGE clause of a CREATE TABLE
statement.

Is the same as MINEXTENTS in the STORAGE clause of a CREATE
TABLE statement.

Is the same as MAXEXTENTS in the STORAGE clause of a CREATE
TABLE statement.

Is the same as PCTINCREASE in the STORAGE clause of a CREATE
TABLE statement.

Is the same as INITIAL in the STORAGE clause of a CREATE INDEX
statement in the case of a standard B-tree index. (Quadtree indexes
only.)

Is the same as NEXT in the STORAGE clause of a CREATE INDEX
statement in the case of a standard B-tree index. (Quadtree indexes
only.)

Is the same as PCTINCREASE in the STORAGE clause of a CREATE

INDEX statement in the case of a standard B-tree index. (Quadtree
indexes only.)

Indexing Statements 5-3



ALTER INDEX

Prerequisites
=« You must have EXECUTE privileges on the index type and its implementation
type.
= The spatial index to be altered is not marked in-progress.

Usage Notes

This statement is used to change the parameters of an existing index. This is the
only way you can add or build multiple indexes on the same column.

See the Usage Notes for the CREATE INDEX statement for usage information about
many of the available parameters.

Examples

The following example adds a new index table named FIXED_INDEXS$ to the index
named QTREE.

ALTER | NDEX gtree PARAMETERS (’ add_i ndex=f i xed_i ndex$
sdo_| evel =8
initial =100M
next =1M
pcti ncrease=0
btree_initial =5M
bt ree_next =1M
btree_pctincrease=0");

Related Topics
. ALTER INDEX REBUILD

= ALTER INDEX RENAME TO
= CREATE INDEX

5-4 Oracle Spatial User’s Guide and Reference



ALTER INDEX REBUILD

ALTER INDEX REBUILD

Syntax

ALTER INDEX [schema.]index REBUILD
[PARAMETERS (‘rebuild_params [physical_storage_params]') ]

Purpose

Rebuilds a spatial index.

Keywords and Parameters

REBUILD_
PARAMS

Keyword
layer_gtype

rebuild_index

sdo_commit_
interval

sdo_fanout

sdo_indx_dims

Specifies in a command string the index parameters to use in
rebuilding the spatial index.

Description

Specifies special processing for point data.

If the layer you are indexing is all points, set this parameter to POINT
for optimal performance.

Data type is VARCHAR2.

Specifies the name of the spatial index table to be rebuilt.
Data type is VARCHAR2.

Specifies the number of underlying table rows that are processed
between commit intervals for the index data. (Quadtree indexes only.)
The default behavior commits the index data only after all rows in the
underlying table have been processed. See the Usage Notes for further
details.

Data type is NUMBER.

Specifies the fanout value, which reflects the node capacity of the
index tree. (R-tree indexes only.) If queries that use the index are likely
to return thousands of rows or more, you may want to specify a value
greater than the default, such as 50 or 60.

Data type is NUMBER. Default = 35.

Specifies the number of dimensions to be indexed. (R-tree indexes
only.) For example, a value of 2 causes the first 2 dimensions to be
indexed. Must be less than or equal to the number of actual
dimensions (humber of SDO_DIM_ELEMENT instances in the
dimensional array that describes the geometry objects in the column).
Data type is NUMBER. Default = number of actual dimensions.

Indexing Statements 5-5



ALTER INDEX REBUILD

sdo_level

sdo_numtiles

sdo_rtr_pctfree

PHYSICAL_
STORAGE_
PARAMS

Keyword
tablespace
initial
next
minextents
maxextents
pctincrease

btree_initial

btree_next

btree_pctincrease

Specifies the desired fixed-size tiling level. (Quadtree indexes only.)
Data type is NUMBER.

Specifies the number of variable-sized tiles to be used in tessellating
an object. (Quadtree indexes only.)
Data type is NUMBER.

Specifies the minimum percentage of slots in each index tree node to
be left empty when the index is created. Slots that are left empty can
be filled later when new data is inserted into the table. (R-tree indexes
only.) The value can range from 0 to 50.

Data type is NUMBER. Default = 10.

Determines the storage parameters used for rebuilding the spatial
index data table. A spatial index data table is a regular Oracle table
with a prescribed format. Not all physical storage parameters that are
allowed in the STORAGE clause of a CREATE TABLE statement are
supported. The following is a list of the supported subset.

Description

Specifies the tablespace in which the index data table is created. Same
as TABLESPACE in the STORAGE clause of a CREATE TABLE
statement.

Is the same as INITIAL in the STORAGE clause of a CREATE TABLE
statement.

Is the same as NEXT in the STORAGE clause of a CREATE TABLE
statement.

Is the same as MINEXTENTS in the STORAGE clause of a CREATE
TABLE statement.

Is the same as MAXEXTENTS in the STORAGE clause of a CREATE
TABLE statement.

Is the same as PCTINCREASE in the STORAGE clause of a CREATE
TABLE statement.

Is the same as INITIAL in the STORAGE clause of a CREATE INDEX
statement in the case of a standard B-tree index. (Quadtree indexes
only.)

Is the same as NEXT in the STORAGE clause of a CREATE INDEX
statement in the case of a standard B-tree index. (Quadtree indexes
only.)

Is the same as PCTINCREASE in the STORAGE clause of a CREATE

INDEX statement in the case of a standard B-tree index. (Quadtree
indexes only.)

5-6 Oracle Spatial User's Guide and Reference



ALTER INDEX REBUILD

Prerequisites

Usage Notes

Examples

Related Topics

« You must have EXECUTE privileges on the index type and its implementation
type.

= The spatial index to be altered is not marked in-progress.

An ALTER INDEX REBUILD ‘rebuild_params’ statement rebuilds the index using
supplied parameters. Spatial index creation involves creating and inserting index
data, for each row in the underlying table column being spatially indexed, into a
table with a prescribed format. The default, or normal, operation is that all rows in
the underlying table are processed before the insertion of index data is committed.
This requires adequate rollback segment space.

You may choose to commit index data after every n rows of the underlying table
have been processed. This is done by specifying SDO_COMMIT_INTERVAL =n.
The potential complication is that, if there is an error during index rebuild and if
periodic commit operations have taken place, then the spatial index will be in an
inconsistent state. The only recovery option is to use DROP INDEX (possibly with
the FORCE option) and CREATE INDEX statements after ensuring that the various
tablespaces are the required size and any other error conditions have been removed.

This statement does not use any previous parameters from the index creation. All
parameters should be specified for the index you want to rebuild.

See also the Usage Notes for the CREATE INDEX statement for usage information
about many of the available parameters.

The following example rebuilds OLDINDEX with an SDO_LEVEL value of 12.
ALTER | NDEX ol di ndex REBU LD PARAMETERY(’ sdo_| evel =12");

= CREATE INDEX
« DROP INDEX

Indexing Statements 5-7



ALTER INDEX RENAME TO

ALTER INDEX RENAME TO

Syntax
ALTER INDEX [schema.]index RENAME TO <new_index_name>

Purpose
Alters the name of a spatial index.

Keywords and Parameters

new_index_name  Specifies the new name of the index.

Prerequisites

= You must have EXECUTE privileges on the index type and its implementation
type.

= The spatial index to be altered is not marked in-progress.

Usage Notes
The new_index_name string must not be longer than 18 characters.

Examples
The following example renames OLDINDEX to NEWINDEX.

ALTER | NDEX ol di ndex RENAME TO new ndex;

Related Topics
. CREATE INDEX

« DROP INDEX

5-8 Oracle Spatial User’s Guide and Reference



CREATE INDEX

CREATE INDEX

Syntax

CREATE INDEX [schema.]<index_name> ON [schema.]<tableName> (column)

INDEXTYPE IS MDSYS.SPATIAL_INDEX

[PARAMETERS ‘index_params [physical_storage_params]7]);

Purpose

Creates a spatial index on a column of type MDSYS.SDO_GEOMETRY.

Keywords and Parameters

INDEX_PARAMS

Keyword
layer_gtype

sdo_commit_

interval

sdo_fanout

sdo_indx_dims

sdo_level

Determine the type (R-tree or quadtree; and for quadtree, fixed or
hybrid) and the characteristics of the spatial index.

Description

Specifies special processing for point data. (Quadtree indexes only.) If
the layer you are indexing is all points, set this parameter to POINT
for optimal performance.

Data type is VARCHAR2.

Specifies the number of underlying table rows that are processed
between commit intervals for the index data. (Quadtree indexes only.)
The default behavior commits the index data only after all rows in the
underlying table have been processed. See the Usage Notes for further
details.

Data type is NUMBER.

Specifies the fanout value, which reflects the node capacity of the
index tree. (R-tree indexes only.) If queries that use the index are likely
to return thousands of rows or more, you may want to specify a value
greater than the default, such as 50 or 60.

Data type is NUMBER. Default = 35.

Specifies the number of dimensions to be indexed. (R-tree indexes
only.) For example, a value of 2 causes the first 2 dimensions to be
indexed. Must be less than or equal to the number of actual
dimensions (humber of SDO_DIM_ELEMENT instances in the
dimensional array that describes the geometry objects in the column).
Data type is NUMBER. Default = number of actual dimensions.

Specifies the desired fixed-size tiling level. (Quadtree indexes only.)
Data type is NUMBER.

Indexing Statements 5-9



CREATE INDEX

Prerequisites

sdo_numtiles

sdo_rtr_pctfree

PHYSICAL_
STORAGE_
PARAMS

Keyword
tablespace
initial
next
minextents
maxextents
pctincrease

btree_initial

btree_next

btree_pctincrease

Specifies the number of variable-sized tiles to be used in tessellating
an object. (Quadtree indexes only.)
Data type is NUMBER.

Specifies the minimum percentage of slots in each index tree node to
be left empty when the index is created. Slots that are left empty can
be filled later when new data is inserted into the table. (R-tree indexes
only.) The value can range from 0 to 50.

Data type is NUMBER. Default = 10.

Determines the storage parameters used for creating the spatial index
data table. A spatial index data table is a regular Oracle table with a
prescribed format. Not all physical_storage_params that are allowed
in the STORAGE clause of a CREATE TABLE statement are supported.
The following is a list of the supported subset.

Description

Specifies the tablespace in which the index data table is created. Same
as TABLESPACE in the STORAGE clause of a CREATE TABLE
statement.

Is the same as INITIAL in the STORAGE clause of a CREATE TABLE
statement.

Is the same as NEXT in the STORAGE clause of a CREATE TABLE
statement.

Is the same as MINEXTENTS in the STORAGE clause of a CREATE
TABLE statement.

Is the same as MAXEXTENTS in the STORAGE clause of a CREATE
TABLE statement.

Is the same as PCTINCREASE in the STORAGE clause of a CREATE
TABLE statement.

Is the same as INITIAL in the STORAGE clause of a CREATE INDEX
statement in the case of a standard B-tree index. (Quadtree indexes
only.)

Is the same as NEXT in the STORAGE clause of a CREATE INDEX
statement in the case of a standard B-tree index. (Quadtree indexes
only.)

Is the same as PCTINCREASE in the STORAGE clause of a CREATE

INDEX statement in the case of a standard B-tree index. (Quadtree
indexes only.)

All the current SQL CREATE INDEX prerequisites apply.

You must have EXECUTE privilege on the index type and its implementation

type.

5-10 Oracle Spatial User’s Guide and Reference



CREATE INDEX

Usage Notes

« The USER_SDO_GEOM_METADATA view must contain an entry with the
dimensions and coordinate boundary information for the table column to be
spatially indexed.

For information about R-tree and quadtree indexes, see Section 1.7.

By default, an R-tree index is created if the index_params string does not contain the
sdo_level keyword or if the sdo_level value is zero (0). If the index_params string
contains the sdo_level keyword with a non-zero value, a quadtree index is created.
Some keywords apply only to R-tree or quadtree indexes, as noted in the Keywords
and Parameters section.

Before you create an R-tree index, be sure that the rollback segment size and the
SORT_AREA_SIZE parameter value are adequate, as described in Section 1.7.1.1.
See also the considerations and recommendations for certain R-tree index
parameters in Section 3.2.4.

For a quadtree index, the index_params string must contain either sdo_level or both
sdo_level and sdo_numtiles, and any values specified for these parameters must be
valid.

With an R-tree index on linear referencing system (LRS) data, the sdo_indx_dims
parameter must be used and must specify the number of dimensions minus one, so
as not to index the measure dimension. For example, if the dimensions are X, Y, and
M, specify sdo_indx_dims=2 to index only the X and Y dimensions, and not the
measure (M) dimension. (The LRS data model, including the measure dimension, is
explained in Section E.2.)

Other options available for regular indexes (such as ASC and DESC) are not
applicable for spatial indexes.

The index_name string must not be longer than 18 characters.
Default values for quadtree indexing:

« sdo_numtiles must be supplied with a value greater than or equal to 1 to perform
hybrid indexing. If this parameter is not supplied, indexing with fixed-size tiles
is performed.

= sdo_commit_interval does not allow spatial data to be committed at intervals.
Insertion of spatial index data is committed only at the end of the index creation
process. That is, it is committed after all rows in the underlying table have been
processed.

Indexing Statements 5-11



CREATE INDEX

The sdo_level value must be greater than zero.

If an sdo_numtiles value is specified, it might be overridden by the indexing
algorithm.

Spatial index creation involves creating and inserting index data, for each row in the
underlying table column being spatially indexed, into a table with a prescribed
format. The default, or normal, operation is that all rows in the underlying table are
processed before the insertion of index data is committed. This requires adequate
rollback segment space.

You may choose to commit index data after every n rows of the underlying table
have been processed. This is done by specifying SDO_COMMIT_INTERVAL =n.
The potential complication is that, if there is an error during index rebuild and if
periodic commit operations have taken place, then the spatial index will be in an
inconsistent state. The only recovery option is to use DROP INDEX (possibly with
the FORCE option) and CREATE INDEX statements after ensuring that the various
tablespaces are the required size and any other error conditions have been removed.

Interpretation of sdo_level and sdo_numtiles value combinations (quadtree indexing)
is shown in Table 5-2.

Table 5-2 SDO_LEVEL and SDO_NUMTILES Combinations

SDO_LEVEL SDO_NUMTILES Action

Not specified or 0. Not specified or 0. R-tree index.

>=1 Not specified or 0. Fixed indexing (indexing with fixed-size
tiles).

>=1 >=1 Hybrid indexing with fixed-size and

variable-sized tiles. The SDO_LEVEL
column defines the fixed tile size. The
SDO_NUMTILES column defines the
number of variable tiles to generate per
geometry.

Not specified or 0. >=1 Not supported (error).

If a tablespace name is provided in the parameters clause, the user (underlying table
owner) must have appropriate privileges for that tablespace.

To determine if a CREATE INDEX statement for a spatial index has failed, check to
see if the DOMIDX_OPSTATUS column in the USER_INDEXES view is set to
FAILED. Note that this is different from the case of regular indexes, where you
check to see if the STATUS column in the USER_INDEXES view is set to FAILED.

5-12 Oracle Spatial User’s Guide and Reference



CREATE INDEX

If the CREATE INDEX statement fails because of an invalid geometry, the ROWID
of the failed geometry is returned in an error message along with the reason for the
failure.

If the CREATE INDEX statement fails for any reason, then the DROP INDEX
statement must be used to clean up the partially built index and associated
metadata. If DROP INDEX does not work, add the FORCE parameter and try again.

Examples
The following example creates a spatial quadtree index named QTREE.

CREATE | NCEX gt ree ON PQLY_4PT( geonet ry)
I NDEXTYPE | S MDSYS. SPATI AL_| NDEX
PARAMETERY(’ sdo_nunt i | es=4 sdo_| evel =6
sdo_commt _i nt erval =500 t abl espace=systemi ni ti al =10K
next =10K pcti ncr ease=10 ni next ent s=10 naxext ents=20");

Related Topics
. ALTER INDEX

« DROP INDEX

Indexing Statements 5-13



DROP INDEX

DROP INDEX

Syntax
DROP INDEX [schema.]index [FORCE]

Purpose
Deletes a spatial index.

Keywords and Parameters

FORCE Causes the spatial index to be deleted from the
system tables even if the index is marked
in-progress or some other error condition occurs.

Prerequisites
You must have EXECUTE privileges on the index type and its implementation type.

Usage Notes

Use DROP INDEX indexname FORCE to clean up after a failure in the CREATE
INDEX statement.

Examples

The following example deletes a spatial quadtree index named OLDINDEX and
forces the deletion to be performed even if the index is marked in-process or an
error occurs.

DRCP | NDEX ol di ndex FCRCE

Related Topics
. CREATE INDEX

5-14 Oracle Spatial User’s Guide and Reference



S

Spatial Operators

This chapter describes the operators used when working with the spatial object data
type. The operators are listed in Table 6-1.

Table 6-1 Spatial Usage Operators

Operator Description

SDO_FILTER Specifies which geometries may interact with a given
geometry.

SDO_NN Determines the nearest neighbor geometries to a geometry.

SDO_RELATE Determines whether or not two geometries interact in a

specified way.

SDO_WITHIN_DISTANCE Determines if two geometries are within a specified
Euclidean distance from one another.

Spatial Operators 6-1



SDO_FILTER

SDO_FILTER

Format
SDO_FILTER(geometryl, geometry2, params);

Description

Uses the spatial index to identify either the set of spatial objects that are likely to
interact spatially with a given object (such as an area of interest), or pairs of spatial
objects that are likely to interact spatially. Objects interact spatially if they are not
disjoint.

This operator performs only a primary filter operation. The secondary filtering
operation, performed by the SDO_RELATE operator, can be used to determine with
certainty if objects interact spatially.

Keywords and Parameters

geometryl  Specifies a geometry column in a table. The column must be spatially indexed.
Data type is MDSYS.SDO_GEOMETRY.

geometry2  Specifies either a geometry from a table or a transient instance of a geometry.
(Specified using a bind variable or SDO_GEOMETRY constructor.)
Data type is MDSYS.SDO_GEOMETRY.

PARAMS Determines the behavior of the operator. Data type is VARCHAR?2.
Keyword Description

querytype  Specifies valid query types: WINDOW or JOIN. This is a required parameter.

WINDOW is recommended in almost all cases. WINDOW implies that a query
is performed for every geometryl candidate geometry to be compared with
geometry2. WINDOW can be used to compare a single geometry (geometry2) to
all the geometries in a column (geometry1).

JOIN is rarely used. Use JOIN when you want to compare all the geometries of
a column to all the geometries of another column. JOIN implies that geometry2
refers to a table column that must have a spatial index built on it. (See the Usage
Notes for additional requirements.)

idxtabl Specifies the name of the index table, if there are multiple spatial indexes, for
geometryl.
idxtab2 Specifies the name of the index table, if there are multiple spatial indexes, for

geometry2. Valid only if querytype is JOIN.

6-2 Oracle Spatial User’s Guide and Reference



SDO_FILTER

Returns

Usage Notes

layer_gtype  Specifies special processing for point data.

If the columns you are comparing have only point data, set this parameter to
POINT for optimal performance.
Data type is VARCHAR2. Default = NOTPOINT.

The expression SDO_FILTER(argl, arg2, arg3) = ‘TRUE’ evaluates to TRUE for
object pairs that are non-disjoint, and FALSE otherwise.

The operator must always be used in a WHERE clause and the condition that
includes the operator should be an expression of the form SDO_FILTER(argl, arg2,
arg3) = ‘“TRUE".

If querytype is WINDOW, geometry2 can come from a table or be a transient SDO _
GEOMETRY obiject (such as a bind variable or SDO_GEOMETRY constructor).

If the geometry2 column is not spatially indexed, the operator indexes the query
window in memory and performance is very good.

If the geometry2 column is spatially indexed with the same SDO_LEVEL value
as the geometryl column, the operator reuses the existing index, and
performance is very good or better.

If the geometry2 column is spatially indexed with a different SDO_LEVEL value
than the geometryl column, the operator reindexes geometry2 in the same way as
if there were no index on the column originally, and then performance is very
good.

If two or more geometries from geometry2 are passed to the operator, the
ORDERED optimizer hint must be specified, and the table in geometry2 must be
specified first in the FROM clause.

If querytype is JOIN:

geometry2 must be a column in a table.

Both geometryl and geometry2 must have the same type of index (R-tree or
quadtree). If the geometries have quadtree indexes, the indexes must have the
same sdo_level value.

Spatial Operators 6-3



SDO_FILTER

Examples

The following example selects the GID values from the POLYGONS table where the
GEOMETRY column objects are likely to interact spatially with the GEOMETRY
column object in the QUERY_POLYS table that has a GID value of 1.

SELECT A gid
FRCM Pol ygons A query_pol ys B
WERE B.gid = 1
AND SDO FI LTER(A Geonetry, B. Geonetry, 'querytype = WNDON) = ' TRE ;

The following example selects the GID values from the POLYGONS table where the
GEOMETRY column object is likely to interact spatially with the geometry stored in
the aGeom variable.

Select AGd
FRCM Pol ygons A
WHERE SDO FI LTER(A Geonetry, :aGeom ' querytype=WNDOWN) = 'TRE ;

The following example selects the GID values from the POLYGONS table where the
GEOMETRY column object is likely to interact spatially with the specified rectangle
having the lower-left coordinates (x1,y1) and the upper-right coordinates (x2, y2).

Select AGd
FRCM Pol ygons A
WHERE SDO FI LTER(A Geonetry, musys. sdo_geonet ry( 2003, NLLL, NULL,
nusys. sdo_el emi nfo_array(1, 1003, 3),
nusys. sdo_ordi nate_array(x1, yl, x2,y2)),
" queryt ype=WNDON) ='TRE ;

The following example selects the GID values from the POLYGONS table where the
GEOMETRY column object is likely to interact spatially with any GEOMETRY
column object in the QUERY_POLYS table. In this example, the ORDERED
optimizer hint is used and QUERY_POLYS (geometry?2) table is specified first in the
FROM clause, because multiple geometries from geometry?2 are involved (see the
Usage Notes)

SHECT /*+ GROERED */
Agid
FRCOM query_pol ys B, pol ygons A
WHERE SDO FI LTER(A Geonetry, B Geonetry, 'querytype = WNDOW) ="' TRE ;

The following example selects the GID values from the POLYGONS table where the
GEOMETRY column object is likely to interact spatially with any GEOMETRY
column object in the QUERY_POLYS table. In this example, the QUERY _
POLYS.GEOMETRY column must be spatially indexed.

6-4 Oracle Spatial User’s Guide and Reference



SDO_FILTER

SELECT A gid
FRCM Pol ygons A query_pol ys B
WHERE SDO FI LTER(A Geonetry, B Geonetry, 'querytype = JAON) ='TRE;

Related Topics
. SDO_RELATE

Spatial Operators 6-5



SDO_NN

SDO_NN

Format

Description

SDO_NN(geometryl, geometry2, param);

Uses the spatial index to identify the nearest neighbors for a geometry.

Keywords and Parameters

Returns

Usage Notes

geometry1

geometry2

PARAM

Keyword

sdo_num_res

Specifies a geometry column in a table. The column must be spatially
indexed.
Data type is MDSYS.SDO_GEOMETRY.

Specifies either a geometry from a table or a transient instance of a
geometry. The nearest neighbor or neighbors to geometry2 will be
returned from geometryl. (geometry? is specified using a bind variable or
SDO_GEOMETRY constructor.)

Data type is MDSYS.SDO_GEOMETRY.

Determines the behavior of the operator.
Data type is VARCHAR2.

Description

Specifies the number of results (nearest neighbors). If not specified, the
default is 1.

For example: 'sdo_num_res=10’

This operator returns the sdo_num_res number of objects from geometry1 that are
closest to geometry? in the query. In determining how close two geometry objects
are, the shortest possible distance between any two points on the surface of each

object is used.

The operator must always be used in a WHERE clause, and the condition that
includes the operator should be an expression of the form SDO_NN(argl, arg2,
’sdo_num_res=<some_val>’) = "'TRUE’".

6-6 Oracle Spatial User's Guide and Reference



SDO_NN

Examples

Related Topics

You should not make any assumptions about the order of the returned results. For
example, the first of several returned objects is not guaranteed to be the one closest
to geometry?2.

If two or more objects from geometryl are an equal distance from geometry2, any of
the objects can be returned on any call to the function. For example, if item_a, item_b,
and item_c are closest to and equally distant from geometry2, and if SDO_NUM _
RES=2, two of those three objects are returned, but they can be any two of the three.

SDO_NN is not supported for spatial joins.

In some situations the SDN_NN operator will not use the spatial index unless an
optimizer hint forces the index to be used. This can occur when a query involves a
join; and if the optimizer hint is not used in such situations, an internal error occurs.
To prevent such errors, you should always specify an optimizer hint to use the
spatial index with the SDO_NN operator, regardless of how simple or complex the
query is. For example, the following excerpt from a query specifies to use the
COLA_SPATIAL_IDX index that is defined on the COLA_MARKETS table:

SELECT /*+ | NDEX(col a_narkets col a_spatial _i dx) */
c.nkt id, c.nane, ... FROMcola narkets c, ...;

For detailed information about using optimizer hints, see Oracle8i Performance
Guide and Reference.

The following example finds the two objects from the shape column in the COLA _
MARKETS table that are closest to a specified point (10,7). (The example uses the
definitions and data from Section 2.1.)

SELECT /*+ | NDEX(col a_narkets col a_spatial _i dx) */

c.nkt_id, c.nane FROMcol a narkets ¢ WHERE SDO N\ c. shape,
nusys. sdo_geonet ry(2001, NULL, ndsys. sdo_poi nt _type(10, 7, NILL), NULL,
NLLL), ’sdo_numres=2') ='TRE ;

MKT_| D NAME
4 cola_d
2 colab
None.

Spatial Operators 6-7



SDO_RELATE

SDO_RELATE

Format

SDO_RELATE(geometryl, geometry2, params);

Description

Uses the spatial index to identify either the spatial objects that have a particular
spatial interaction with a given object such as an area of interest, or pairs of spatial
objects that have a particular spatial interaction.

This operator performs both primary and secondary filter operations.

Keywords and Parameters

geometry1

geometry2

PARAMS

Keyword

mask

Specifies a geometry column in a table. The column must be spatially
indexed.
Data type is MDSYS.SDO_GEOMETRY.

Specifies either a geometry from a table or a transient instance of a
geometry. (Specified using a bind variable or SDO_GEOMETRY
constructor.)

Data type is MDSYS.SDO_GEOMETRY.

Determines the behavior of the operator.
Data type is VARCHAR2.

Description
Specifies the topological relation of interest. This is a required parameter.

Valid values are one or more of the following in the 9-intersection pattern:
TOUCH, OVERLAPBDYDISIOINT, OVERLAPBDYINTERSECT, EQUAL,
INSIDE, COVEREDBY, CONTAINS, COVERS, ANYINTERACT. Multiple
masks are combined with a the logical Boolean operator OR, for example,
’mask=inside+touch’; however, see the Usage Notes for an alternative
syntax using UNION ALL that may result in better performance. See
Section 1.8 for an explanation of the 9-intersection relationship pattern.

6-8 Oracle Spatial User’s Guide and Reference



SDO_RELATE

querytype Valid query types are: WINDOW or JOIN. This is a required parameter if
geometry2 is from another table, but it is not a required parameter if
geometry? is a literal or a host variable.

WINDOW is recommended in almost all cases. WINDOW implies that a
query is performed for every geometryl candidate geometry to be
compared with geometry2. WINDOW can be used to compare a single
geometry (geometry?2) to all the geometries in a column (geometry1).

JOIN is rarely used. Use JOIN when you want to compare all the
geometries of a column to all the geometries of another column. JOIN
implies that geometry2 refers to a table column that must have a spatial
index built on it. (See the Usage Notes for additional requirements.)

idxtabl Specifies the name of the index table, if there are multiple spatial indexes,
for geometryl.

idxtab2 Specifies the name of the index table, if there are multiple spatial indexes,
for geometry2. Only valid for 'querytype = JOIN’.

layer_gtype Specifies special processing for point data.

If the columns you are comparing have only point data, set this
parameter to POINT for optimal performance.
Data type is VARCHAR2. Default = NOTPOINT.

Returns

The expression SDO_RELATE(geometryl,geometry?2, 'mask = <some_mask_val>
querytype = <some_querytype>’) = "TRUE’ evaluates to TRUE for object pairs that
have the topological relationship specified by <some_mask_val>, and FALSE
otherwise.

Usage Notes

The operator must always be used in a WHERE clause, and the condition that
includes the operator should be an expression of the form SDO_RELATE(argl, arg2,
'mask = <some_mask_val> querytype = <some_querytype>’) = "TRUE".

If querytype is WINDOW, geometry2 can come from a table or be a transient SDO _
GEOMETRY object (such as a bind variable or SDO_GEOMETRY constructor).

« If the geometry2 column is not spatially indexed, the operator indexes the query
window in memory and performance is very good.

« If the geometry2 column is spatially indexed with the same SDO_LEVEL value
as the geometryl column, the operator reuses the existing index, and
performance is very good or better.

Spatial Operators 6-9



SDO_RELATE

« If the geometry2 column is spatially indexed with a different SDO_LEVEL value
than the geometryl column, the operator reindexes geometry2 in the same way as
if there were no index on the column originally, and then performance is very
good.

« If two or more geometries from geometry2 are passed to the operator, the
ORDERED optimizer hint must be specified, and the table in geometry2 must be
specified first in the FROM clause.

If querytype is JOIN:
= geometry2 must be a column in a table.

= Both geometryl and geometry2 must have the same type of index (R-tree or
quadtree). If the geometries have quadtree indexes, the indexes must have the
same sdo_level value.

Unlike with the SDO_GEOM.RELATE function, DISJOINT and DETERMINE masks
are not allowed in the relationship mask with the SDO_RELATE operator. This is
because SDO_RELATE uses the spatial index to find candidates that may interact,
and the information to satisfy DISJOINT or DETERMINE is not present in the
index.

Although multiple masks can be combined using the logical Boolean operator OR,
for example, 'mask=inside+coveredby’, better performance may result if the spatial
query specifies each mask individually and uses the UNION ALL syntax to
combine the results. This is due to internal optimizations that Spatial can apply
under certain conditions when masks are specified singly rather than grouped
within the same SDO_RELATE operator call. For example, the following query
using the logical Boolean operator OR to group multiple masks:

SELECT a.gid
FRCM pol ygons a, query _pol ys B
WERE B.gid =1
AND SDO RALATH( A Geonetry, B. Geonetry,
" mask=i nsi de+cover edby querytype=WNDON) ="' TRUE ;

may result in better performance if it is expressed thus, using UNION ALL to
combine results of multiple SDO_RELATE operator calls, each with a single mask:

SELECT a.gid
FROM pol ygons a, query_polys B
WERE B.gid = 1
AND SDO RALATE( A Geonetry, B. Geonetry,
" mask=i nsi de queryt ype=WNDOWN) ='TRE
UN ON ALL

6-10 Oracle Spatial User’s Guide and Reference



SDO_RELATE

Examples

SELECT a.gid
FROM pol ygons a, query_polys B
WERE B.gid =1
AND SDO RELATEH( A Geonetry, B. Geonetry,
" mask=cover edby querytype=WNXON) ='TRE ;

The following examples are similar to those for the SDO_FILTER operator; however,
they identify a specific type of interaction (using the mask parameter), and they
determine with certainty (not mere likelihood) if the spatial interaction occurs.

The following example selects the GID values from the POLYGONS table where the
GEOMETRY column objects have any spatial interaction with the GEOMETRY
column object in the QUERY_POLYS table that has a GID value of 1.

SELECT Agid
FRCM Pol ygons A, query_pol ys B
WERE B.gid = 1
AND SDO RE ATH A Geonetry, B. Geonetry,
" mask=ANYl NTERACT quer ytype=WNDOWV) ='TRE ;

The following example selects the GID values from the POLYGONS table where a
GEOMETRY column object has any spatial interaction with the geometry stored in
the aGeom variable.

Select AGd
FRCM Pol ygons A
WHERE SDO RELATH A Geonetry, :aGeom ' nask=ANYl NTERACT quer yt ype=W NDOAN/)
="TRE;

The following example selects the GID values from the POLYGONS table where a
GEOMETRY column object has any spatial interaction with the specified rectangle
having the lower-left coordinates (x1,y1) and the upper-right coordinates (x2, y2).

Select AGd
FRCM Pol ygons A
WHERE SDO RELATH A Geonet ry, musys. sdo_geonet ry( 2003, NLLL, NULL,
nusys. sdo_el emi nfo_array(1, 1003, 3),
nusys. sdo_ordi nate_array(x1, yl1, x2,y2)),
" mask=ANYl NTERACT quer yt ype=WNDON) ="' TRUE ;

The following example selects the GID values from the POLYGONS table where the

GEOMETRY column object has any spatial interaction with any GEOMETRY
column object in the QUERY_POLYS table. In this example, the ORDERED

Spatial Operators 6-11



SDO_RELATE

optimizer hint is used and QUERY_POLYS (geometry?2) table is specified first in the
FROM clause, because multiple geometries from geometry2 are involved (see the
Usage Notes).
SHECT /*+ CQROERED */

Agid

FROM query_pol ys B, pol ygons A

WHERE SDO RELATH A Geonetry, B Geonetry, 'querytype = WNDOWN) ='TRE ;

The following example selects the GID values from the POLYGONS table where a
GEOMETRY column object has any spatial interaction with any GEOMETRY
column object in the QUERY_POLYS table. In this example, the QUERY _
POLYS.GEOMETRY column must be spatially indexed.

SHECT Agid
FRCM Pol ygons A, query_pol ys B
WHERE SDO RELATH A Geonetry, B. Geonetry,
" mask=ANYl NTERACT querytype=JAN) ='TRE ;

Related Topics
. SDO_FILTER

«» SDO_WITHIN_DISTANCE
« SDO_GEOM.RELATE function

6-12 Oracle Spatial User’s Guide and Reference



SDO_WITHIN_DISTANCE

SDO_WITHIN_DISTANCE

Format

SDO_WITHIN_DISTANCE(T.column, aGeom, params);

Description

Uses the spatial index to identify the set of spatial objects that are within some
specified Euclidean distance of a given object (such as an area of interest or point of

interest).

Keywords and Parameters

T.column

aGeom

PARAMS

Keyword
distance

idxtab1

querytype

layer_gtype

Specifies a geometry column in a table. The column has the set of
geometry objects that will be operated on to determine if they are
within the specified distance of the given object (aGeom). The column
must be spatially indexed.

Data type is MDSYS.SDO_GEOMETRY.

Specifies the object to be checked for distance against the geometry
objects in T.column. Specify either a geometry from a table (using a
bind variable) or a transient instance of a geometry (using the SDO_
GEOMETRY constructor).

Data type is MDSYS.SDO_GEOMETRY.

Determines the behavior of the operator.
Data type is VARCHAR2.

Description

Specifies the Euclidean distance value. This is a required parameter.
Data type is NUMBER.

Specifies the name of the index table if there are multiple spatial index
tables for T.column.

Set 'querytype=FILTER’ to perform only a primary filter operation. If
querytype is not specified, both primary and secondary filter
operations are performed (default).

Data type is VARCHAR2.

Allows special processing for point data.

If the objects in T.column have only point data, set this parameter to
POINT for optimal performance. Do not set this parameter to POINT
if T.column contains any n on-point objects.

Data type is VARCHAR2. Default = NOTPOINT.

Spatial Operators 6-13



SDO_WITHIN_DISTANCE

Returns

The expression SDO_WITHIN_DISTANCE(argl, arg2, arg3) = 'TRUE’ evaluates to
TRUE for object pairs that are within the specified distance, and FALSE otherwise.

Usage Notes

Distance between two extended objects (nonpoint objects such as lines and
polygons) is defined as the minimum distance between these two objects. The
distance between two adjacent polygons is zero.

The operator must always be used in a WHERE clause and the condition that
includes the operator should be an expression of the form:

SDO WTH N D STANCK argl, arg2, 'distance = <sone_dist_val > ) ='TRE

T.column must have a spatial index built on it.

SDO_WITHIN_DISTANCE is not supported for spatial joins. See Section 4.2.3 for a
discussion on how to perform a spatial join within-distance operation.

Examples

The following example selects the GID values from the POLYGONS table where the
GEOMETRY column object is within 10 distance units of the geometry stored in the
aGeom variable.

SHECT AG@D
FROM POLYGONS A
WHERE
SDO WTH N D STANCH A Geonetry, :aGeom 'distance = 10°) = 'TRE ;

The following example selects the GID values from the POLYGONS table where the
GEOMETRY column object is within 10 distance units of the specified rectangle
having the lower-left coordinates (x1,y1) and the upper-right coordinates (x2, y2).

SHECT AGD
FROM PALYGONS A
WHERE
SDO WTH N D STANCH A Geonet ry, nusys. sdo_geonet ry( 2003, NULL, NULL,
nusys. sdo_el emi nfo_array(1, 1003, 3),
nusys. sdo_ordi nate_array(x1, y1, x2,y2)),
"distance = 10') ="' TRE;

6-14 Oracle Spatial User’s Guide and Reference



SDO_WITHIN_DISTANCE

The following example selects the GID values from the POLYGONS table where the
GID value in the QUERY_POINTS table is 1 and a POLYGONS.GEOMETRY object
is within 10 distance units of the QUERY_POINTS.GEOMETRY object.

SHECT AG@D
FROMPALYGNS A Query Points B
WHERE BAD =1 A\D
SDO WTH N DI STANCH A Geonetry, B Geonetry, 'distance = 10°) = 'TRE ;

Related Topics
. SDO_FILTER

« SDO_RELATE

Spatial Operators 6-15



SDO_WITHIN_DISTANCE

6-16 Oracle Spatial User's Guide and Reference



v

Geometry Functions

This chapter contains descriptions of the geometry functions, which can be grouped
into the following categories:

« Relationship (True/False) between two objects: RELATE, WITHIN_DISTANCE
= Validation: VALIDATE_GEOMETRY, VALIDATE_LAYER

= Single-object operations: SDO_AREA, SDO_BUFFER, SDO_CENTROID, SDO _
CONVEXHULL, SDO_LENGTH, SDO_POINTONSURFACE

« Two-object operations: SDO_DISTANCE, SDO_DIFFERENCE, SDO _
INTERSECTION, SDO_UNION, SDO_XOR

The geometry functions are listed Table 7-1, and some usage information follows
the table.

Table 7-1 Geometric Functions for the Object-Relational Model

Function Description

SDO_GEOM.RELATE Determines how two objects interact.

SDO_GEOM.SDO_AREA Computes the area of a two-dimensional
polygon.

SDO_GEOM.SDO_BUFFER Generates a buffer polygon around a geometry.

SDO_GEOM.SDO_CENTROID Returns the centroid of a polygon.

SDO_GEOM.SDO_CONVEXHULL Returns a polygon-type object that represents

the convex hull of a geometry object.

SDO_GEOM.SDO_DIFFERENCE Returns a geometry object that is the
topological difference (MINUS operation) of
two geometry objects.

Geometry Functions 7-1



Table 7-1 Geometric Functions for the Object-Relational Model (Cont.)

Function

Description

SDO_GEOM.SDO_DISTANCE

SDO_GEOM.SDO_INTERSECTION

SDO_GEOM.SDO_LENGTH

SDO_GEOM.SDO_POINTONSURFACE

SDO_GEOM.SDO_UNION

SDO_GEOM.SDO_XOR

SDO_GEOM.VALIDATE_GEOMETRY
SDO_GEOM.VALIDATE_LAYER

SDO_GEOM.WITHIN_DISTANCE

Computes the distance between two geometry
objects.

Returns a geometry object that is the
topological intersection (AND operation) of
two geometry objects.

Computes the length or perimeter of a
geometry.

Returns a point that is guaranteed to be on the
surface of a polygon.

Returns a geometry object that is the
topological union (OR operation) of two
geometry objects.

Returns a geometry object that is the
topological symmetric difference (XOR
operation) of two geometry objects.

Determines if a geometry is valid.

Determines if all the geometries stored in a
column are valid.

Determines if two geometries are within a
specified Euclidean distance from one another.

Note: The SDO_POLY_xxx functions were deprecated at release
8.1.6 and have been removed from this guide. You should use
instead the corresponding generic (not restricted to polygons)
SDO_xxx functions: SDO_GEOM.SDO_DIFFERENCE, SDO_
GEOM.SDO_INTERSECTION, SDO_GEOM.SDO_UNION, and SDO_

GEOM.SDO_XOR.

The following usage information applies to the geometry functions. (See also the
Usage Notes under the reference information for each function.)

« Certain combinations of input parameters and operations can return a null
value, that is, an empty geometry. For example, requesting the intersection of
two disjoint geometry objects returns a null value.

7-2 Oracle Spatial User’s Guide and Reference



A null value (empty geometry) as an input parameter to a geometry function
(for example, SDO_GEOM.RELATE) produces an error.

Certain operations can return a geometry of a different type than one or both
input geometries. For example, the intersection of a line and an overlapping
polygon returns a line; the intersection of two lines returns a point; and the
intersection of two tangent polygons returns a line.

Geometry Functions 7-3



SDO_GEOM.RELATE

SDO_GEOM.RELATE

Format
SDO_GEOM.RELATE(

geoml IN MDSYS.SDO_GEOMETRY,
diml INMDSYS.SDO_DIM_ARRAY,
mask IN VARCHAR2,
geom2 IN MDSYS.SDO_GEOMETRY,
dim2 INMDSYS.SDO_DIM_ARRAY
) RETURN VARCHAR?2;

or

SDO_GEOM.RELATE(
geoml INMDSYS.SDO_GEOMETRY,
mask  IN VARCHAR2,
geom2  INMDSYS.SDO_GEOMETRY,
tolerance IN NUMBER
) RETURN VARCHAR?2;

Description
Examines two geometry objects to determine their spatial relationship.
Parameters

geoml
Geometry object.

diml
Dimensional information array corresponding to geom1, usually selected from one
of the xxx_SDO_GEOM_METADATA views (see Section 2.4).

mask
Specifies a list of relationships to check. See the list of keywords in the Usage Notes.

7-4 Oracle Spatial User’s Guide and Reference



SDO_GEOM.RELATE

Usage Notes

geom2
Geometry object.

dim2
Dimensional information array corresponding to geom2, usually selected from one
of the xxx_SDO_GEOM_METADATA views (see Section 2.4).

tolerance
Tolerance value (see Section 1.5.4).

The MDSYS.SDO_GEOM.RELATE function can return the following types of
answers:

If you pass a mask listing one or more relationships, the function returns the
name of the relationship if it is true for the pair of geometries. If all the
relationships are false, the procedure returns FALSE.

If you pass the DETERMINE keyword in mask, the function returns the one
relationship keyword that best matches the geometries. DETERMINE can only
be used when SDO_GEOM.RELATE is in the SELECT clause of the SQL
statement.

If you pass the ANYINTERACT keyword in mask, the function returns TRUE if
the two geometries are not disjoint.

The following mask relationships can be tested:

ANYINTERACT: Returns TRUE if the objects are not disjoint.

CONTAINS: Returns CONTAINS if the second object is entirely within the first
object and the object boundaries do not touch; otherwise, returns FALSE.

COVEREDBY: Returns COVEREDRBY if the first object is entirely within the
second object and the object boundaries touch at one or more points; otherwise,
returns FALSE.

COVERS: Returns COVERS if the second object is entirely within the first object
and the boundaries touch in one or more places; otherwise, returns FALSE.

DISJOINT: Returns DISJOINT if the objects have no common boundary or
interior points; otherwise, returns FALSE.

EQUAL.: Returns EQUAL if the objects share every point of their boundaries
and interior, including any holes in the objects; otherwise, returns FALSE.

Geometry Functions 7-5



SDO_GEOM.RELATE

Examples

Related Topics

« INSIDE: Returns INSIDE if the first object is entirely within the second object
and the object boundaries do not touch; otherwise, returns FALSE.

» OVERLAPBDYDISIOINT: Returns OVERLAPBDYDISJOINT if the objects
overlap, but their boundaries do not interact; otherwise, returns FALSE.

» OVERLAPBDYINTERSECT: Returns OVERLAPBDYINTERSECT if the objects
overlap, and their boundaries intersect in one or more places; otherwise, returns
FALSE.

« TOUCH: Returns TOUCH if the two objects share a common boundary point,
but no interior points; otherwise, returns FALSE.

Values for mask can be combined using the logical Boolean operator OR. For
example, ‘INSIDE + TOUCH’ returns 'INSIDE + TOUCH’ or 'FALSE’ depending on
the outcome of the test.

If the function format with tolerance is used, all geometry objects must be defined
using 4-digit SDO_GTYPE values (explained in Section 2.2.1).

The following example checks if there is any spatial interaction between geometry
objects cola_b and cola_d. (The example uses the definitions and data from
Section 2.1.)
SELECT SDO (GEOM RELATH
c_b.shape, mdinmnfo, "anyinteract’, c_d.shape, mdininfo)
FROM col a_narkets c_b, col a narkets c_d, user_sdo_geom net adata m

WHERE mtabl e_nane = ' GQOLA MARKETS AND m col unn_nane = ' SHAPE
AND ¢c_b.nane = 'cola b’ ANDc_d.nane = 'cola d';

SDO GECM RELATH C B. SHAPE, M D M NFQ '’ ANYI NTERACT , C D. SHAPE, M O M NFOQ

None.

7-6 Oracle Spatial User’s Guide and Reference



SDO_GEOM.SDO_AREA

SDO_GEOM.SDO_AREA

Format

Description

Parameters

Usage Notes

SDO_GEOM.SDO_AREA(
geom IN MDSYS.SDO_GEOMETRY,
dim IN MDSYS.SDO_DIM_ARRAY
) RETURN NUMBER;

or

SDO_GEOM.SDO_AREA(
geom  INMDSYS.SDO_GEOMETRY,
tolerance IN NUMBER
) RETURN NUMBER;

Returns the area of a two-dimensional polygon.

geom
Geometry object.

dim
Dimensional information array corresponding to geom, usually selected from one of
the xxx_SDO_GEOM_METADATA views (see Section 2.4).

tolerance
Tolerance value (see Section 1.5.4).

This function works with any polygon, including polygons with holes.

This function does not support the units parameter that is included with the
LOCATOR_WITHIN_DISTANCE operator of interMedia Locator, which is a
component of the Oracle interMedia product.

Geometry Functions 7-7



SDO_GEOM.SDO_AREA

If the function format with tolerance is used, all geometry objects must be defined
using 4-digit SDO_GTYPE values (explained in Section 2.2.1).

Examples

The following example returns the areas of geometry objects stored in the COLA _
MARKETS table. The first statement returns the areas all objects; the second returns
just the area of cola_a. (The example uses the definitions and data from Section 2.1.)

-- Return the areas of all col a narkets.
SELECT c. nane, SDO (GEOM SDO AREA( c. shape, mdi ninf o)
FROM col a_narkets c, user_sdo_geom netadata m
WHERE mtabl e_nane = ' QLA MARKETS AND mcol unn_nane = ' SHAPE ;

NAME SDO GEQM SDO AREA(C SHAPE, M D M NFQ
cola a 24
cola b 16.5
cola c 5
colad 12. 5663706

-- Return the area of just col a a.

SELECT c. nane, SDO (GEOM SDO AREA( c. shape, mdi minf o)
FROM col a_narkets ¢, user_sdo_geom netadata m
WHERE mtabl e_nane = ' GCOLA MARKETS AND mcol unn_nane = ' SHAPE
A\D c.nane = 'cola a’;

NAVE SDO GEQM SDO AREA( C. SHAPE, M O M NFQ

cola a 24
Related Topics

None.

7-8 Oracle Spatial User’s Guide and Reference



SDO_GEOM.SDO_BUFFER

SDO_GEOM.SDO_BUFFER

Format

Description

Parameters

SDO_GEOM.SDO_BUFFER(
geom  INMDSYS.SDO_GEOMETRY,
dim IN MDSYS.SDO_DIM_ARRAY,
distance IN NUMBER,
) RETURN MDSYS.SDO_GEOMETRY;
or
SDO_GEOM.SDO_BUFFER(
geom  INMDSYS.SDO_GEOMETRY,
distance IN NUMBER,
tolerance IN NUMBER
) RETURN MDSYS.SDO_GEOMETRY;

Generates a buffer polygon around a geometry object.

geom
Geometry object.

dim

Dimensional information array corresponding to geom, usually selected from one of

the xxx_SDO_GEOM_METADATA views (see Section 2.4).

distance
Euclidean distance value.

tolerance
Tolerance value (see Section 1.5.4).

Geometry Functions 7-9



SDO_GEOM.SDO_BUFFER

Usage Notes
This function returns a geometry object representing the buffer polygon.
This function creates a rounded buffer around a point, line, or polygon. The buffer

within a void is also rounded, and is the same distance from the inner boundary as
the outer buffer is from the outer boundary. See Figure 1-11 for an illustration.

If the function format with tolerance is used, all geometry objects must be defined
using 4-digit SDO_GTYPE values (explained in Section 2.2.1).

This function does not support the units parameter that is included with the
LOCATOR_WITHIN_DISTANCE operator of interMedia Locator, which is a
component of the Oracle interMedia product.

Examples

The following example returns a polygon representing a buffer of 1 around cola_a.
Note the "rounded" corners (for example, at .292893219,.292893219) in the returned
polygon. (The example uses the definitions and data from Section 2.1.)

-- Generate a buffer of 1 unit around a geonetry.

SELECT c. nane, SDO (GBEOM SDO BUFFER(c. shape, mdimnfo, 1)
FROM col a_narkets c, user_sdo_geomnetadata m
WHERE mtabl e_nane = ' QLA MARKETS  AND m col uim_nane = ' SHAPE
A\D c.nane = 'cola a’;

cola a

SDO GEOMETRY(2003, NULL, NULL, SDO HEMINO ARRAY(1, 1005, 8, 1, 2, 2, 5, 2, 1,
7, 2, 2, 11, 2, 1, 13, 2, 2, 17, 2, 1, 19, 2, 2, 23, 2, 1), SDO CRO NATE ARRAY(
0, 1, .292893219, .292893219, 1, 0, 5, 0, 5. 70710678, .292893219, 6, 1, 6, 7, 5.
70710678, 7.70710678, 5, 8, 1, 8, .292893219, 7.70710678, 0, 7, 0, 1))

Related Topics
. SDO_TUNE.EXTENT_OF

. SDO_GEOM.SDO_UNION

. SDO_GEOM.SDO_INTERSECTION
. SDO_GEOM.SDO_UNION

. SDO_GEOM.SDO_XOR

7-10 Oracle Spatial User’s Guide and Reference



SDO_GEOM.SDO_CENTROID

SDO_GEOM.SDO_CENTROID

Format
SDO_GEOM.SDO_CENTROID(

geom IN MDSYS.SDO_GEOMETRY,
dim IN MDSYS.SDO_DIM_ARRAY
) RETURN MDSYS.SDO_GEOMETRY;
or
SDO_GEOM.SDO_CENTROID(
geom  INMDSYS.SDO_GEOMETRY,
tolerance IN NUMBER
) RETURN MDSYS.SDO_GEOMETRY;

Description

Returns the centroid of a polygon. (The centroid is also known as the "center of
gravity.")

Parameters

geom
Geometry object.

dim
Dimensional information array corresponding to geom, usually selected from one of
the xxx_SDO_GEOM_METADATA views (see Section 2.4).

tolerance
Tolerance value (see Section 1.5.4).

Usage Notes

This function returns a null value if geom is not a polygon or if geom is a
multipolygon.

Geometry Functions 7-11



SDO_GEOM.SDO_CENTROID

Examples

Related Topics

If the function format with tolerance is used, all geometry objects must be defined
using 4-digit SDO_GTYPE values (explained in Section 2.2.1).

The following example returns a geometry object that is the centroid of cola_c. (The
example uses the definitions and data from Section 2.1.)

-- Return the centroid of a geonetry.

SELECT c. nane, SDO (GEOM SDO CENTRO X c. shape, m di mi nf 0)
FROM col a_narkets c, user_sdo_geom netadata m
WHERE mtabl e_nane = ' GQOLA MARKETS AND mcol unn_nane = ' SHAPE
AN\D c.nane = 'cola c’;

cola c
SDO GEOMETRY(2001, NULL, NULL, SDO ELEMINFO ARRAY(1, 1, 1), SDO CRD NATE ARRAY(
4. 73333333, 3.93333333))

None.

7-12 Oracle Spatial User's Guide and Reference



SDO_GEOM.SDO_CONVEXHULL

SDO_GEOM.SDO_CONVEXHULL

Format

Description

Parameters

Usage Notes

SDO_GEOM.SDO_CONVEXHULL(
geom IN MDSYS.SDO_GEOMETRY,
dim IN MDSYS.SDO_DIM_ARRAY
) RETURN MDSYS.SDO_GEOMETRY;
or
SDO_GEOM.SDO_CONVEXHULL(
geom  INMDSYS.SDO_GEOMETRY,
tolerance IN NUMBER
) RETURN MDSYS.SDO_GEOMETRY;

Returns a polygon-type object that represents the convex hull of a geometry object.

geom
Geometry object.

dim
Dimensional information array corresponding to geom, usually selected from one of
the xxx_SDO_GEOM_METADATA views (see Section 2.4).

tolerance
Tolerance value (see Section 1.5.4).

The convex hull is a simple convex polygon that completely encloses the geometry
object. Spatial uses as few straight-line sides as possible to create the smallest
polygon that completely encloses the specified object. A convex hull is a convenient
way to get an approximation of a complex geometry object.

Geometry Functions 7-13



SDO_GEOM.SDO_CONVEXHULL

The geometry object (geom) cannot be a circle.

This function returns a null value if geom is of point type or has fewer than three
points or vertices.

If the function format with tolerance is used, all geometry objects must be defined
using 4-digit SDO_GTYPE values (explained in Section 2.2.1).

Examples

The following example returns a geometry object that is the convex hull of cola_c
(The example uses the definitions and data from Section 2.1. This specific example,
however, does not produce useful output -- the returned polygon is identical to the
input polygon -- because the input polygon is already a simple convex polygon.)

-- Return the convex hull of a pol ygon.

SELECT c. nane, SDO (GEOM SDO OONVEXHULL(c. shape, m di ni nf 0)
FRCM col a_narkets ¢, user_sdo_geom netadata m
WHERE mtabl e_nane = ' GQOLA MARKETS AND mcol unn_nane = ' SHAPE
AN\D c.nane = 'cola c’;

cola c
SO0 GEOMETRY(2003, NULL, NULL, SDO HEMINFO ARRAY(1, 1003, 1), SDO CRO NATE ARR
AY(6, 3, 6, 5 4, 5 3, 3, 6, 3))

Related Topics
None.

7-14 Oracle Spatial User’s Guide and Reference



SDO_GEOM.SDO_DIFFERENCE

SDO_GEOM.SDO_DIFFERENCE

Format
SDO_GEOM.SDO_DIFFERENCE(

geoml IN MDSYS.SDO_GEOMETRY,
diml INMDSYS.SDO_DIM_ARRAY,
geom2 IN MDSYS.SDO_GEOMETRY,
dim2 IN MDSYS.SDO_DIM_ARRAY
) RETURN MDSYS.SDO_GEOMETRY;
or
SDO_GEOM.SDO_DIFFERENCE(
geoml INMDSYS.SDO_GEOMETRY,
geom2  INMDSYS.SDO_GEOMETRY,
tolerance IN NUMBER
) RETURN MDSYS.SDO_GEOMETRY;

Description

Returns a geometry object that is the topological difference (MINUS operation) of
two geometry objects.

Parameters

geoml
Geometry object.

diml
Dimensional information array corresponding to geom1, usually selected from one
of the xxx_SDO_GEOM_METADATA views (see Section 2.4).

geom2
Geometry object.

Geometry Functions 7-15



SDO_GEOM.SDO_DIFFERENCE

Usage Notes

Examples

dim2
Dimensional information array corresponding to geom2, usually selected from one
of the xxx_SDO_GEOM_METADATA views (see Section 2.4).

tolerance
Tolerance value (see Section 1.5.4).

In Figure 7-1, the shaded area represents the polygon returned when SDO _
DIFFERENCE is used with a square (geom1) and another polygon (geom2).

Figure 7-1 SDO_GEOM.SDO_DIFFERENCE

geoml
geom?2

If the function format with tolerance is used, all geometry objects must be defined
using 4-digit SDO_GTYPE values (explained in Section 2.2.1).

You should use this function instead of the deprecated function SDO_GEOM.SDO _
POLY_DIFFERENCE.

The following example returns a geometry object that is the topological difference
(MINUS operation) of cola_a and cola_c. (The example uses the definitions and data
from Section 2.1.)

-- Return the topol ogi cal difference of two geonetries.

SELECT SDO GEOM SDO D FFERENCE( ¢_a. shape, mdi minfo, c_c. shape, mdi m nf o)
FROM col a_narkets c_a, col a narkets c_c, user_sdo_geom net adata m
WHERE mtabl e nane = ' COLA MARKETS AND mcol unm_nane = ' SHAPE

7-16 Oracle Spatial User’s Guide and Reference



SDO_GEOM.SDO_DIFFERENCE

Related Topics

AND c a.nane = 'colaa ANDc c.name = 'cola C’;

SDO GEQM SDO DI FFERENCE( C A SHAPE, M O M NFQ C_C. SHAPE, M DI M NFQ (SDO GIYPE, SDO_

SDO GECMETRY( 2003, NULL, NULL, SDO ELEM | NFO ARRAY(1, 1003, 1), SDO CRO NATE ARR
AY(1, 7, 1, 1, 5 1,5 3, 3 3 45 5 5 5 7, 1, 7)

Note that in the returned polygon, the SDO_ORDINATE_ARRAY starts and ends at
the same point (1, 7).

. SDO_GEOM.SDO_INTERSECTION
. SDO_GEOM.SDO_UNION
. SDO_GEOM.SDO_XOR

Geometry Functions  7-17



SDO_GEOM.SDO_DISTANCE

SDO_GEOM.SDO_DISTANCE

Format
SDO_GEOM.SDO_DISTANCE(

geoml IN MDSYS.SDO_GEOMETRY,
diml INMDSYS.SDO_DIM_ARRAY,
geom2 IN MDSYS.SDO_GEOMETRY,
dim2 IN MDSYS.SDO_DIM_ARRAY
) RETURN NUMBER;

or

SDO_GEOM.SDO_DISTANCE(
geoml INMDSYS.SDO_GEOMETRY,
geom2  INMDSYS.SDO_GEOMETRY,
tolerance IN NUMBER
) RETURN NUMBER;

Description

Computes the distance between two geometry objects. The distance between two
geometry objects is the distance between the closest pair of points or segments of
the two objects.

Parameters

geoml
Geometry object whose distance from geom2 is to be computed.

diml
Dimensional information array corresponding to geom1, usually selected from one
of the xxx_SDO_GEOM_METADATA views (see Section 2.4).

geom2
Geometry object whose distance from geom1 is to be computed.

7-18 Oracle Spatial User’s Guide and Reference



SDO_GEOM.SDO_DISTANCE

Usage Notes

Examples

Related Topics

dim2
Dimensional information array corresponding to geom2, usually selected from one
of the xxx_SDO_GEOM_METADATA views (see Section 2.4).

tolerance
Tolerance value (see Section 1.5.4).

This function does not support the units parameter that is included with the
LOCATOR_WITHIN_DISTANCE operator of interMedia Locator, which is a
component of the Oracle interMedia product.

If the function format with tolerance is used, all geometry objects must be defined
using 4-digit SDO_GTYPE values (explained in Section 2.2.1).

The following example returns the shortest distance between cola_b and cola_d. (The
example uses the definitions and data from Section 2.1.)

-- Return the di stance between two geonetri es.

SELECT SDO (GEQM SDO O STANCK(¢_b. shape, mdi mnfo, c_d. shape, mdi m nf o)
FROMcol a_narkets c_b, cola narkets c_d, user_sdo_geom netadata m
WHERE mtabl e_nane = ' GQOLA MARKETS AND mcol unn_nane = ' SHAPE
AND ¢c_b.nanme = 'cola b’ ANDc_d.nane = 'cola d';

SDO GECM SDO D STANCH C B. SHAPE, M O M NFQ C D SHAPE, M D M NFOQ

. 846049894

= SDO_GEOM.WITHIN_DISTANCE

Geometry Functions 7-19



SDO_GEOM.SDO_INTERSECTION

SDO_GEOM.SDO_INTERSECTION

Format
SDO_GEOM.SDO_INTERSECTION(

geoml IN MDSYS.SDO_GEOMETRY,
diml INMDSYS.SDO_DIM_ARRAY,
geom2 IN MDSYS.SDO_GEOMETRY,
dim2 IN MDSYS.SDO_DIM_ARRAY
) RETURN MDSYS.SDO_GEOMETRY;
or
SDO_GEOM.SDO_INTERSECTION(
geoml INMDSYS.SDO_GEOMETRY,
geom2  INMDSYS.SDO_GEOMETRY,
tolerance IN NUMBER
) RETURN MDSYS.SDO_GEOMETRY;

Description

Returns a geometry object that is the topological intersection (AND operation) of
two geometry objects.

Parameters

geoml
Geometry object.

diml
Dimensional information array corresponding to geom1, usually selected from one
of the xxx_SDO_GEOM_METADATA views (see Section 2.4).

geom2
Geometry object.

7-20 Oracle Spatial User’s Guide and Reference



SDO_GEOM.SDO_INTERSECTION

Usage Notes

Examples

dim2
Dimensional information array corresponding to geom2, usually selected from one
of the xxx_SDO_GEOM_METADATA views (see Section 2.4).

tolerance
Tolerance value (see Section 1.5.4).

In Figure 7-2, the shaded area represents the polygon returned when SDO _
INTERSECTION is used with a square (geom1) and another polygon (geom2).

Figure 7-2 SDO_GEOM.SDO_INTERSECTION

—

geom?2

geoml

\

If the function format with tolerance is used, all geometry objects must be defined
using 4-digit SDO_GTYPE values (explained in Section 2.2.1).

You should use this function instead of the deprecated function SDO_GEOM.SDO _
POLY_INTERSECTION.

The following example returns a geometry object that is the topological intersection
(AND operation) of cola_a and cola_c. (The example uses the definitions and data
from Section 2.1.)

-- Return the topol ogi cal intersection of two geonetries.

SELECT SDO GEOM SDO | NTERSECTI QN ¢_a. shape, mdi mnfo, c_c.shape, mdi ninfo)
FROM col a_narkets c_a, col a narkets c_c, user_sdo_geom net adata m
WHERE mtabl e nane = ' GCOLA MARKETS AND mcol unm_nane = ' SHAPE

Geometry Functions 7-21



SDO_GEOM.SDO_INTERSECTION

AND c a.nane = 'colaa ANDc c.name = 'cola C’;

SDO GEQM SDO | NTERSECTI ON(C A SHAPE, M DI M NFQ C C. SHAPE, M DI M NFQ) ( SDO GIYPE, SD

SDO GEOMETRY(2003, NULL, NULL, SDO ELEMINFO ARRAY(1, 1003, 1), SDO CRD NATE ARR
AY(4, 5, 3, 3, 5 3,5 5 4, 5)

Note that in the returned polygon, the SDO_ORDINATE_ARRAY starts and ends at
the same point (4, 5).

Related Topics
. SDO_GEOM.SDO_DIFFERENCE

« SDO_GEOM.SDO_UNION
« SDO_GEOM.SDO_XOR

7-22 Oracle Spatial User’s Guide and Reference



SDO_GEOM.SDO_LENGTH

SDO_GEOM.SDO_LENGTH

Format

Description

Parameters

Usage Notes

SDO_GEOM.SDO_LENGTH(
geom IN MDSYS.SDO_GEOMETRY,
dim IN MDSYS.SDO_DIM_ARRAY
) RETURN NUMBER;

or

SDO_GEOM.SDO_LENGTH(
geom  INMDSYS.SDO_GEOMETRY,
tolerance IN NUMBER
) RETURN NUMBER;

Returns the length or perimeter of a geometry object.

geom
Geometry object.

dim
Dimensional information array corresponding to geom, usually selected from one of
the xxx_SDO_GEOM_METADATA views (see Section 2.4).

tolerance
Tolerance value (see Section 1.5.4).

If the input polygon contains one or more holes, this function calculates the
perimeters of the exterior boundary and all holes. It returns the sum of all the
perimeters.

Geometry Functions 7-23



SDO_GEOM.SDO_LENGTH

If the function format with tolerance is used, all geometry objects must be defined
using 4-digit SDO_GTYPE values (explained in Section 2.2.1).

This function does not support the units parameter that is included with the
LOCATOR_WITHIN_DISTANCE operator of interMedia Locator, which is a
component of the Oracle interMedia product.

Examples

The following example returns the perimeters of geometry objects stored in the
COLA_MARKETS table. The first statement returns the perimeters of all objects; the
second returns just the perimeter of cola_a. (The example uses the definitions and
data from Section 2.1.)

-- Return the perineters of all cola narkets.
SELECT c. nane, SDO GEOM SDO LENGIH c. shape, mdi m nf 0)
FRCM col a_narkets ¢, user_sdo_geom netadata m
WHERE mtabl e_nane = ' QLA MARKETS AND mcol unn_nane = ' SHAPE ;

NAME SDO GEQM SDO LENGTH C SHAPE, M O M NFQ
cola a 20
cola b 17. 1622777
cola c 9. 23606798
colad 12. 5663706

-- Return the perineter of just cola a.

SELECT c. nane, SDO GEOM SDO LENGIH c. shape, mdi m nf 0)
FRCM col a_narkets c, user_sdo_geom netadata m
WHERE mtabl e_nane = ' GQOLA MARKETS AND mcol unn_nane = ' SHAPE
A\D c.nane = 'cola a’;

NAVE SDO GEQM SDO LENGTH C SHAPE, M DI M NFQ

cola a 20
Related Topics

None.

7-24 Oracle Spatial User's Guide and Reference



SDO_GEOM.SDO_POINTONSURFACE

SDO_GEOM.SDO_POINTONSURFACE

Format
SDO_GEOM.SDO_POINTONSURFACE(

geom IN MDSYS.SDO_GEOMETRY,
dim IN MDSYS.SDO_DIM_ARRAY
) RETURN MDSYS.SDO_GEOMETRY;
or
SDO_GEOM.SDO_POINTONSURFACE(
geom  INMDSYS.SDO_GEOMETRY,
tolerance IN NUMBER
) RETURN MDSYS.SDO_GEOMETRY;

Description

Returns a point that is guaranteed to be on the surface of a polygon geometry
object.

Parameters

geom
Polygon geometry object.

dim

Dimensional information array corresponding to geom, usually selected from one of
the xxx_SDO_GEOM_METADATA views (see Section 2.4).

tolerance
Tolerance value (see Section 1.5.4).

Usage Notes

This function returns a point geometry object representing a point that is
guaranteed to be on the surface of geom.

Geometry Functions 7-25



SDO_GEOM.SDO_POINTONSURFACE

The returned point can be any point on the surface. You should not make any
assumptions about where on the surface the returned point is, or about whether the
point is the same or different when the function is called multiple times with the
same input parameter values.

If the function format with tolerance is used, all geometry objects must be defined
using 4-digit SDO_GTYPE values (explained in Section 2.2.1).

Examples

The following example returns a geometry object that is a point on the surface of
cola_a. (The example uses the definitions and data from Section 2.1.)

-- Return a point on the surface of a geonetry.

SELECT SDO (GEOM SDO PA NTANSURFACK( . shape, m di mi nf 0)
FRCM col a_narkets ¢, user_sdo_geom netadata m
WHERE mtabl e_nane = ' GQOLA MARKETS AND mcol unn_nane = ' SHAPE
A\D c.nane = 'cola a’;

SDO GECM SDO PA NTANSURFACK( C SHAPE, M DM NFQ (SDO GI'YPE, SDO SR D, SDO PA NI( X,

SDO GEOMETRY(2001, NULL, NULL, SDO EHLEMIN-O ARRAY(1, 1, 1), SDO CRO NATE ARRAY(
1 1)

Related Topics
None.

7-26 Oracle Spatial User’s Guide and Reference



SDO_GEOM.SDO_UNION

SDO_GEOM.SDO_UNION

Format
SDO_GEOM.SDO_UNION(

geoml IN MDSYS.SDO_GEOMETRY,
diml INMDSYS.SDO_DIM_ARRAY,
geom2 IN MDSYS.SDO_GEOMETRY,
dim2 IN MDSYS.SDO_DIM_ARRAY
) RETURN MDSYS.SDO_GEOMETRY;
or
SDO_GEOM.SDO_UNION(
geoml INMDSYS.SDO_GEOMETRY,
geom2  INMDSYS.SDO_GEOMETRY,
tolerance IN NUMBER
) RETURN MDSYS.SDO_GEOMETRY;

Description

Returns a geometry object that is the topological union (OR operation) of two
geometry objects.

Parameters

geoml
Geometry object.

diml
Dimensional information array corresponding to geom1, usually selected from one
of the xxx_SDO_GEOM_METADATA views (see Section 2.4).

geom2
Geometry object.

Geometry Functions  7-27



SDO_GEOM.SDO_UNION

Usage Notes

Examples

dim2
Dimensional information array corresponding to geom2, usually selected from one
of the xxx_SDO_GEOM_METADATA views (see Section 2.4).

tolerance
Tolerance value (see Section 1.5.4).

In Figure 7-3, the shaded area represents the polygon returned when SDO_UNION
is used with a square (geom1) and another polygon (geom2).

Figure 7-3 SDO_GEOM.SDO_UNION

—

geom?2

geoml

\

If the function format with tolerance is used, all geometry objects must be defined
using 4-digit SDO_GTYPE values (explained in Section 2.2.1).

You should use this function instead of the deprecated function SDO_GEOM.SDO _
POLY_UNION.

The following example returns a geometry object that is the topological union (OR
operation) of cola_a and cola_c. (The example uses the definitions and data from
Section 2.1.)

-- Return the topol ogi cal intersection of two geonetries.

SELECT SDO GEOM SDO LN ON(¢_a. shape, mdi minfo, c_c.shape, mdi ninfo)
FROM col a_narkets c_a, col a narkets c_c, user_sdo_geom net adata m
WHERE mtabl e nane = ' COLA MARKETS AND mcol unm_nane = ' SHAPE

7-28 Oracle Spatial User’s Guide and Reference



SDO_GEOM.SDO_UNION

Related Topics

AND c a.nane = 'colaa ANDc c.name = 'cola C’;

SDO GEQM SDO UN ON(C A SHAPE, M O M NFQ C_C. SHAPE, M DI M NFO (SDO GTYPE, SDO SR D

SDO GECMETRY( 2003, NULL, NULL, SDO ELEM | NFO ARRAY(1, 1003, 1), SDO CRO NATE ARR
AY(5, 5 5 7,1, 7,1, 1, 5 1, 5 3,6 3 6, 5 5 5))

Note that in the returned polygon, the SDO_ORDINATE_ARRAY starts and ends at
the same point (5, 5).

. SDO_GEOM.SDO_DIFFERENCE
.  SDO_GEOM.SDO_INTERSECTION
. SDO_GEOM.SDO_XOR

Geometry Functions 7-29



SDO_GEOM.SDO_XOR

SDO_GEOM.SDO_XOR

Format
SDO_GEOM.SDO_XOR(

geoml IN MDSYS.SDO_XOR,
diml INMDSYS.SDO_DIM_ARRAY,
geom2 IN MDSYS.SDO_GEOMETRY,
dim2 IN MDSYS.SDO_DIM_ARRAY
) RETURN MDSYS.SDO_GEOMETRY;
or
SDO_GEOM.SDO_XOR(
geoml INMDSYS.SDO_GEOMETRY,
geom2  INMDSYS.SDO_GEOMETRY,
tolerance IN NUMBER
) RETURN MDSYS.SDO_GEOMETRY;

Description

Returns a geometry object that is the topological symmetric difference (XOR
operation) of two geometry objects.

Parameters

geoml
Geometry object.

diml
Dimensional information array corresponding to geom1, usually selected from one
of the xxx_SDO_GEOM_METADATA views (see Section 2.4).

geom2
Geometry object.

7-30 Oracle Spatial User’s Guide and Reference



SDO_GEOM.SDO_XOR

Usage Notes

Examples

dim2
Dimensional information array corresponding to geom2, usually selected from one
of the xxx_SDO_GEOM_METADATA views (see Section 2.4).

tolerance
Tolerance value (see Section 1.5.4).

In Figure 7-4, the shaded area represents the polygon returned when SDO_XOR is
used with a square (geom1) and another polygon (geom2).

Figure 7-4 SDO_GEOM.SDO_XOR

—

geom?2

geoml

\

If the function format with tolerance is used, all geometry objects must be defined
using 4-digit SDO_GTYPE values (explained in Section 2.2.1).

You should use this function instead of the deprecated function SDO_GEOM.SDO _
POLY_XOR.

The following example returns a geometry object that is the topological symmetric
difference (XOR operation) of cola_a and cola_c. (The example uses the definitions
and data from Section 2.1.)

-- Return the topol ogi cal symmetric difference of two geonetries.

SELECT SDO (GEOM SDO XOR(c_a. shape, mdi minfo, c_c.shape, mdi nm nfo)
FROMcol a_narkets c_a, cola narkets c_c, user_sdo_geom netadata m
WHERE mtabl e_nane = ' GQOLA MARKETS AND mcol unn_nane = ' SHAPE

Geometry Functions 7-31



SDO_GEOM.SDO_XOR

AND c a.nane = 'colaa ANDc c.name = 'cola C’;

SDO GEQM SDO XCR(C A SHAPE, M DI M NFQ C G SHAPE, M DM NFQ (SDO GTYPE, SIOSRID, S

SDO GEQMETRY(2007, NULL, NULL, SDO ELEMINFO ARRAY(1, 1003, 1, 11, 1003, 1), SDO
_CRD NATE ARRAY(5, 5, 5, 3, 6, 3, 6 5 5 5 1, 7, 1, 1, 5 1, 5 3 3 3, 4, 5
, 5 5 5 7 1, 7)

Note that in the returned polygon is a multipolygon (SDO_GTYPE = 2007), and the
SDO_ORDINATE_ARRAY describes two polygons: one starting and ending at (5, 5)
and the other starting and ending at (1, 7).

Related Topics
. SDO_GEOM.SDO_DIFFERENCE

. SDO_GEOM.SDO_INTERSECTION
. SDO_GEOM.SDO_UNION

7-32 Oracle Spatial User’s Guide and Reference



SDO_GEOM.VALIDATE_GEOMETRY

SDO_GEOM.VALIDATE_GEOMETRY

Format

Description

Parameters

Usage Notes

SDO_GEOM.VALIDATE_GEOMETRY(
geom IN MDSYS.SDO_GEOMETRY,
dim  IN MDSYS.SDO_DIM_ARRAY
) RETURN VARCHARZ;

Performs a consistency check for valid geometry types. The function checks the
representation of the geometry from the tables against the element definitions.

geom
Geometry object.

dim
Dimensional information array corresponding to geom, usually selected from one of
the xxx_SDO_GEOM_METADATA views (see Section 2.4).

If the geometry is valid, this function returns TRUE.
If the geometry is not valid, this function returns one of the following:

= An Oracle error message number based on the specific reason the geometry is
invalid

« FALSE if the geometry fails for some other reason

This function checks for type consistency and geometry consistency.
For type consistency, the function checks for the following:

« TheSDO_GTYPE is valid.

« The SDO_ETYPE values are consistent with the SDO_GTYPE value. For
example, if the SDO_GTYPE is 2003, there should be at least one element of
type POLYGON in the geometry.

Geometry Functions 7-33



SDO_GEOM.VALIDATE_GEOMETRY

Examples

« The SDO_ELEM_INFO_ARRAY has valid triplet values.

For geometry consistency, the function checks for the following, as appropriate for
the specific geometry type:

« Polygons have at least four points, which includes the point that closes the
polygon. (The last point is the same as the first.)

« Polygons are not self-crossing.
= No two vertices on a line or polygon are the same.

« Polygons are oriented correctly. (Exterior ring boundaries must be oriented
counterclockwise, and interior ring boundaries must be oriented clockwise.)

= Aninterior polygon ring touches the exterior polygon ring at no more than one
point.

« If two or more interior polygon rings are in an exterior polygon ring, the
interior polygon rings touch at no more than one point.

« Line strings have at least two points.

« 1-digit and 4-digit SDO_ETYPE values are not mixed (that is, both used) in
defining polygon ring elements.

= Points on an arc are not colinear (that is, are not on a straight line) and are not
the same point.

« Geometries are within the specified bounds of the applicable DIMINFO column
value (from the USER_SDO_GEOM_METADATA view).

« Geometries are within the extent of the coordinate system.

In checking for geometry consistency, the function considers the geometry’s
tolerance value in determining if lines touch or if points are the same.

You can use this function in a PL/SQL procedure as an alternative to using the
SDO_GEOM.VALIDATE_LAYER procedure. See the Usage Notes for SDO _
GEOM.VALIDATE_LAYER for more information.

The following example validates the geometry of cola_c. (The example uses the
definitions and data from Section 2.1.)

-- Is a geonetry valid?
SELECT c. nane, SDO GEOM VALI DATE_ (EOMETRY( c. shape, m di nmi nf 0)
FRCM col a_narkets ¢, user_sdo_geom netadata m

7-34 Oracle Spatial User’s Guide and Reference



SDO_GEOM.VALIDATE_GEOMETRY

WHERE mtabl e nane = ' COLA MARKETS AND mcol umm_nane = ' SHAPE
AN\D c.nane = 'cola c’;

Related Topics
. SDO_GEOM.VALIDATE_LAYER

Geometry Functions 7-35



SDO_GEOM.VALIDATE_LAYER

SDO_GEOM.VALIDATE_LAYER

Format

Description

Parameters

Usage Notes

SDO_GEOM.VALIDATE_LAYER(
geom_table  IN VARCHAR?2,
geom_column IN VARCHAR2,
pkey_column IN VARCHARZ,
result_table  IN VARCHAR2);

Examines a geometry column to determine if the stored geometries follow the
defined rules for geometry objects.

geom_table
Geometry table.

geom_column
Geometry object column to be examined.

pkey_column
The primary key column. This must be a single numeric (NUMBER data type)
column.

result_table
Result table to hold the validation results. A row is added to result_table for each
invalid geometry.

This procedure loads the result table with validation results. (VALIDATE_LAYER is
a procedure, not a function.)

An empty result table (result_table parameter) must be created before calling this
procedure. The format of the result table is: (pkey_column NUMBER, result
VARCHARZ2(10)). If result_table is not empty, you should truncate the table before

7-36 Oracle Spatial User's Guide and Reference



SDO_GEOM.VALIDATE_LAYER

Examples

calling the procedure; otherwise, the procedure appends rows to the existing data in
the table.

The result table contains one row for each invalid geometry. (A row is not written if
a geometry is valid.) In each row, the PKEY_COLUMN column contains the
primary key value of the row containing the invalid geometry, and the RESULT
column contains an Oracle error message number. You can then look up this error
message to determine the cause of the failure.

This procedure performs the following checks on each geometry in the layer (geom_
column):

« All the type consistency and geometry consistency checks that are performed by
the SDO_GEOM.VALIDATE_GEOMETRY function (see Usage Notes for that
function).

« If4-digit SDO_GTYPE values are used, the geometry’s SDO_GTYPE specifies
the same dimensionality as specified in the applicable DIMINFO column value
(from the USER_SDO_GEOM_METADATA view).

« The geometry’s SRID value (coordinate system) is the same as the one specified
in the applicable DIMINFO column value (from the USER_SDO_GEOM _
METADATA view).

As an alternative to using the VALIDATE_LAYER procedure, you can use a
PL/SQL procedure that calls the SDO_GEOM.VALIDATE_GEOMETRY function for
each input row and inserts rows in a result table for errors. With this approach, you
have more options in defining the result table; for example, the key field can be a
rowid or anything else that you choose.

The following example validates the geometry objects stored in the SHAPE column
of the COLA_MARKETS table. The example includes the creation of the result table.
(The example uses the definitions and data from Section 2.1.) In this case, no rows
are written to the result table because all the geometries are valid.

-- Is alayer valid? (First, create the result table.)

CREATE TABLE val _results (nkt_id nunber, result varchar2(10));

EXEQUTE SDO GEQM VALI DATE LAYER(' QA MARKETS " SHAPE ," MKT_I D, ' VAL RESULTS );
PL/ SQ procedure successfully conpl et ed.

SHECT * fromval results;

no rows sel ected

Geometry Functions 7-37



SDO_GEOM.VALIDATE_LAYER

Related Topics
. SDO_GEOM.VALIDATE_GEOMETRY

7-38 Oracle Spatial User’s Guide and Reference



SDO_GEOM.WITHIN_DISTANCE

SDO_GEOM.WITHIN_DISTANCE

Format

Description

Parameters

SDO_GEOM.WITHIN_DISTANCE(

or

geoml INMDSYS.SDO_GEOMETRY,
diml  INMDSYS.SDO_DIM_ARRAY,
distance IN NUMBER,
geom2 IN MDSYS.SDO_GEOMETRY,
dim2  INMDSYS.SDO_DIM_ARRAY
) RETURN VARCHAR?2;

SDO_GEOM.WITHIN_DISTANCE(

geoml INMDSYS.SDO_GEOMETRY,
distance IN NUMBER,
geom2  INMDSYS.SDO_GEOMETRY,
tolerance IN NUMBER
) RETURN VARCHAR?2;

Determines if two spatial objects are within some specified Euclidean distance from

each other.

geoml
Geometry object.

diml

Dimensional information array corresponding to geom1, usually selected from one

of the xxx_SDO_GEOM_METADATA views (see Section 2.4).

Geometry Functions 7-39



SDO_GEOM.WITHIN_DISTANCE

Usage Notes

Examples

Related Topics

distance
Euclidean distance value.

geom?2
Geometry object.

dim2
Dimensional information array corresponding to geom2, usually selected from one
of the xxx_SDO_GEOM_METADATA views (see Section 2.4).

tolerance
Tolerance value (see Section 1.5.4).

This function returns TRUE for object pairs that are within the specified distance,
and FALSE otherwise.

The distance between two extended objects (for example, nonpoint objects such as
lines and polygons) is defined as the minimum distance between these two objects.
Thus the distance between two adjacent polygons is zero.

If the function format with tolerance is used, all geometry objects must be defined
using 4-digit SDO_GTYPE values (explained in Section 2.2.1).

The following example checks if cola_b and cola_d are within 1 unit apart at the
shortest distance between them. (The example uses the definitions and data from
Section 2.1.)

-- Are two geonetries within 1 unit of distance apart?
SELECT SDO (EOMWTH N D STANCK(c_b. shape, mdi mnfo, 1,
c_d. shape, mdi n nf o)
FROM col a_narkets c_b, col a narkets c_d, user_sdo_geom net adata m
WHERE mtabl e_nane = ' GQOLA MARKETS AND m col unn_nane = ' SHAPE
AND ¢c_b.nanme = 'cola b’ ANDc_d.nane = 'cola d';

SDO GECM WTH N DI STANCK( C B. SHAPE, MO M NFQ 1, C D SHAPE, M O M NFOQ

« SDO_GEOM.SDO_DISTANCE

7-40 Oracle Spatial User’s Guide and Reference



8

Coordinate System Functions

The MDSYS.SDO_CS package contains functions and procedures for working with
coordinate systems. You can perform explicit coordinate transformations on a single
geometry or an entire layer of geometries (that is, all geometries in a specified
column in a table).

To use the functions and procedures in this chapter, you must understand the
conceptual information about coordinate systems in Appendix D.

Table 8-1 lists the coordinate systems functions and procedures.

Table 8-1 Functions and Procedures for Coordinate Systems

Function Description

SDO_CS.TRANSFORM Transforms a geometry representation using a
coordinate system (specified by SRID or name).

SDO_CS.TRANSFORM_LAYER Transforms an entire layer of geometries (that is,
all geometries in a specified column in a table).

The rest of this chapter provides reference information on the functions and
procedures, listed in alphabetical order.

Note: Error messages for coordinate system functions are
documented in Section D.7. (They are not included in the Oracle8i
Error Messages manual for release 8.1.7.)

Coordinate System Functions 8-1



SDO_CS.TRANSFORM

SDO_CS.TRANSFORM

Format

SDO_CS.TRANSFORM(

or

geom  INMDSYS.SDO_GEOMETRY,
dim_array IN MDSYS.SDO_DIM_ARRAY,
to_sid  INNUMBER

) RETURN MDSYS.SDO_GEOMETRY;

SDO_CS.TRANSFORM(

or

geom IN MDSYS.SDO_GEOMETRY,
dim_array IN MDSYS.SDO_DIM_ARRAY,
to_srname IN VARCHAR2

) RETURN MDSYS.SDO_GEOMETRY;

SDO_CS.TRANSFORM(

or

geom IN MDSYS.SDO_GEOMETRY,
tolerance IN NUMBER,

to_srid  INNUMBER

) RETURN MDSYS.SDO_GEOMETRY;

SDO_CS.TRANSFORM(

geom IN MDSYS.SDO_GEOMETRY,
tolerance  IN NUMBER,

to_srname IN VARCHAR2

) RETURN MDSYS.SDO_GEOMETRY;

8-2 Oracle Spatial User’s Guide and Reference



SDO_CS.TRANSFORM

Description

Parameters

Usage Notes

Examples

Transforms a geometry representation using a coordinate system (specified by SRID
or name).

geom
Geometry whose representation is to be transformed using another coordinate
system. The input geometry must have a valid non-null SRID, that is, a value in the
SRID column of the MDSYS.CS_SRS table (described in Section D.3.1).

dim_array
Dimensional information array corresponding to geom, usually selected from one of
the xxx_SDO_GEOM_METADATA views.

tolerance
Tolerance value (see Section 1.5.4).

to_srid
The SRID of the coordinate system to be used for the transformation. to_srid must be
a value in the SRID column of the MDSYS.CS_SRS table (described in Section D.3.1).

to_srname

The name of the coordinate system to be used for the transformation. to_srname
must be a value (specified exactly) in the CS_NAME column of the MDSYS.CS_SRS
table (described in Section D.3.1).

An exception is raised if geom, to_srid, or to_srname is invalid. For geom to be valid
for this function, its definition must include an SRID value matching a value in the
SRID column of the MDSYS.CS_SRS table (described in Section D.3.1).

The following example transforms the cola_c geometry to a representation that uses
SRID value 8199. (This example uses the definitions from the example in
Section D.6.)

-- Return the transformati on of cola c using to_srid 8199
SELECT c. nane, SDO CS TRANSFCRM c. shape, mdi ninfo, 8199)
FRCM col a_narkets ¢, user_sdo_geom netadata m
WHERE mtabl e_nane = ' GQOLA MARKETS AND m col unn_nane = ' SHAPE

Coordinate System Functions 8-3



SDO_CS.TRANSFORM

A\D c.nane = 'cola c’;

cola c

SDO GEOMETRY( 2003, 8199, NULL, SDO ELEM I NFO ARRAY(1, 1003, 1), SDO CGRO NATE ARR
AY(3.00074116, 3.00289624, 6.0006707, 3.00289431, 6.00067234, 5.00305745, 4.0007
1964, 5.00305956, 3.00074116, 3.00289624))

8-4 Oracle Spatial User’s Guide and Reference



SDO_CS.TRANSFORM_LAYER

SDO_CS.TRANSFORM_LAYER

Format

Description

Parameters

Usage Notes

SDO_CS.TRANSFORM_LAYER(
table_in  IN VARCHAR2,
column_in IN VARCHAR2,
table_out IN VARCHARZ2,
to_srid IN NUMBER);

Transforms an entire layer of geometries (that is, all geometries in a specified
column in a table).

table_in
Table containing the layer (column_in) whose geometries are to be transformed.

column_in
Column in table_in that contains the geometries to be transformed.

table_out
Table that will be created and that will contain the results of the transformation. See
the Usage Notes for information about the format of this table.

to_srid
The SRID of the coordinate system to be used for the transformation. to_srid must be
a value in the SRID column of the MDSYS.CS_SRS table (described in Section D.3.1).

An exception is raised if any of the following occurs:
« table_in does not exist, or column_in does not exist in the table.
« table_out already exists.

« to_srid isinvalid.

Coordinate System Functions 8-5



SDO_CS.TRANSFORM_LAYER

The table_out table is created by the procedure and is filled with one row for each
transformed geometry. This table has the columns shown in Table 8-2.

Table 8-2 Table to Hold Transformed Layer

Column
Name Data Type Description
SDO_ROWID ROWID Oracle ROWID (row address identifier). For

more information about the ROWID data type,
see the Oracle8i SQL Reference manual.

GEOMETRY  MDSYS.SDO_GEOMETRY Geometry object with coordinate values in the
specified (to_srid parameter) coordinate
system.

Examples

The following example transforms the geometries in the shape column in the
COLA_MARKETS table to a representation that uses SRID value 8199. The
transformed geometries are stored in the newly created table named COLA _
MARKETS_8199. (This example uses the definitions from the example in
Section D.6.)

-- Transformthe entire SHAPE | ayer and put results in the table
-- naned col a_narkets_8199, which the procedure wll create.
BEXEQUTE SDO CS. TRANSFCRM LAYER(' GOLA MARKETS |, SHAPE |, ' OOLA MARKETS 8199, 8199) ;

Example D-2 in Section D.6 includes a display of the geometry object coordinates in
both tables (COLA_MARKETS and COLA_MARKETS_8199).

8-6 Oracle Spatial User’s Guide and Reference



9

Linear Referencing Functions

The MDSYS.SDO_LRS package contains functions that create, modify, query, and
convert linear referencing elements. These functions do not change the state of the
database.

Note: Most Oracle LRS interfaces are functions. Any that are
procedures, such as DEFINE_GEOM_SEGMENT, are identified as
such. (Functions return a value; procedures do not return a value.)

The word functions is often used to refer to LRS interfaces (both
functions and procedures) collectively.

To use the functions in this chapter, you must understand the linear referencing
system (LRS) concepts and techniques described in Appendix E.

Table 9-1 lists functions related to creating and editing geometric segments.

Table 9-1 Functions for Creating and Editing Geometric Segments

Function Description

SDO_LRS.DEFINE_GEOM_SEGMENT Defines a geometric segment.
(procedure)

SDO_LRS.REDEFINE_GEOM_SEGMENT Populates the measures of all shape points of a

(procedure) geometric segment based on the start and end
measures, overriding any previously assigned
measures between the start point and end point.

SDO_LRS.CLIP_GEOM_SEGMENT Clips a geometric segment (synonym of SDO _
LRS.DYNAMIC_SEGMENT).

SDO_LRS.DYNAMIC_SEGMENT Clips a geometric segment (synonym of SDO _
LRS.CLIP_GEOM_SEGMENT).

Linear Referencing Functions 9-1



Table 9-1 Functions for Creating and Editing Geometric Segments (Cont.)

Function

Description

SDO_LRS.CONCATENATE_GEOM_
SEGMENTS

SDO_LRS.SCALE_GEOM_SEGMENT

SDO _LRS.SPLIT_GEOM_SEGMENT
(procedure)

SDO_LRS.REVERSE_MEASURE

SDO_LRS.TRANSLATE_MEASURE

Concatenates two geometric segments into one
segment.

Scales a geometric segment.

Splits a geometric segment into two segments.

Returns a new geometric segment by reversing
the original geometric segment.

Returns a new geometric segment by
translating the original geometric segment (that
is, shifting the start and end measures by a
specified value).

Table 9-2 lists functions related to querying geometric segments.

Table 9-2 Functions for Querying Geometric Segments

Function

Description

SDO_LRS.VALID_GEOM_SEGMENT
SDO_LRS.VALID_LRS_PT
SDO_LRS.VALID_MEASURE

SDO_LRS.CONNECTED_GEOM_
SEGMENTS

SDO_LRS.GEOM_SEGMENT_LENGTH
SDO_LRS.GEOM_SEGMENT_START_PT
SDO_LRS.GEOM_SEGMENT END_PT

SDO_LRS.GEOM_SEGMENT _START_
MEASURE

SDO_LRS.GEOM_SEGMENT END_
MEASURE

SDO_LRS.GET_MEASURE
SDO_LRS.MEASURE_RANGE

9-2 Oracle Spatial User’s Guide and Reference

Checks if a geometric segment is valid.
Checks if an LRS point is valid.

Checks if a measure falls within the measure
range of a geometric segment.

Checks if two geometric segments are
connected.

Returns the length of a geometric segment.
Returns the start point of a geometric segment.
Returns the end point of a geometric segment.

Returns the start measure of a geometric
segment.

Returns the end measure of a geometric
segment.

Returns the measure of an LRS point.

Returns the measure range of a geometric
segment, that is, the difference between the
start measure and end measure.



Table 9-2 Functions for Querying Geometric Segments (Cont.)

Function Description

SDO_LRS.MEASURE_TO_PERCENTAGE Returns the percentage (0 to 100) that a
specified measure is of the measure range of a
geometric segment.

SDO_LRS.PERCENTAGE_TO_MEASURE Returns the measure value of a specified
percentage (0 to 100) of the measure range of a
geometric segment.

SDO_LRS.LOCATE_PT Finds the location of a point described by a
measure and an offset on a geometric
segment.

SDO_LRS.PROJECT_PT Returns the projection point of a point on a

geometric segment.

Table 9-3 lists functions related to converting geometric segments.

Table 9-3 Functions for Converting Geometric Segments

Function Description
SDO_LRS.CONVERT_TO_LRS _DIM_ Converts a standard dimensional array to a
ARRAY Linear Referencing System dimensional array

by creating a measure dimension.

SDO_LRS.CONVERT_TO_LRS GEOM Converts a standard SDO_GEOMETRY line
string to a Linear Referencing System geometric
segment by adding measure information.

SDO_LRS.CONVERT_TO_LRS_LAYER Converts all geometry objects in a column of
type SDO_GEOMETRY from standard line
string geometries without measure information
to Linear Referencing System geometric
segments with measure information, and
updates the metadata.

SDO_LRS.CONVERT_TO_STD_DIM_  Converts a Linear Referencing System
ARRAY dimensional array to a standard dimensional
array by removing the measure dimension.

SDO_LRS.CONVERT_TO_STD_GEOM Converts a Linear Referencing System
geometric segment to a standard SDO_
GEOMETRY line string by removing measure
information.

Linear Referencing Functions 9-3



Table 9-3 Functions for Converting Geometric Segments (Cont.)

Function Description

SDO_LRS.CONVERT_TO_STD_LAYER Converts all geometry objects in a column of
type SDO_GEOMETRY from Linear
Referencing System geometric segments with
measure information to standard line string
geometries without measure information, and
updates the metadata.

For more information about conversion functions, see Section E.4.9.

The rest of this chapter provides reference information on the functions, listed in
alphabetical order.

Note: Error messages for linear referencing functions are
documented in Section E.6. (They are not included in the Oracle8i
Error Messages manual for release 8.1.7.)

9-4 Oracle Spatial User’s Guide and Reference



SDO_LRS.CLIP_GEOM_SEGMENT

SDO_LRS.CLIP_GEOM_SEGMENT

Format

Description

Parameters

Usage Notes

SDO_LRS.CLIP_GEOM_SEGMENT(
geom_segment IN MDSYS.SDO_GEOMETRY,
dim_array IN MDSYS.SDO_DIM_ARRAY,
start_measure IN NUMBER,
end_measure IN NUMBER
) RETURN MDSYS.SDO_GEOMETRY;

Returns the geometry object resulting from a clip operation on a geometric segment.

Note: CLIP_GEOM_SEGMENT and SDO_LRS.DYNAMIC_
SEGMENT are synonyms: both functions have the same
parameters, behavior, and return value.

geom_segment
Cartographic representation of a linear feature.

dim_array
Dimensional information array corresponding to geom_segment, usually selected
from one of the xxx_SDO_GEOM_METADATA views.

start_measure
Start measure of the geometric segment.

end_measure
End measure of the geometric segment.

An exception is raised if geom_segment, start_measure, or end_measure is invalid.

Linear Referencing Functions 9-5



SDO_LRS.CLIP_GEOM_SEGMENT

The direction and measures of the resulting geometric segment are preserved.

For more information about clipping geometric segments, see Section E.4.3

Examples

The following example clips the geometric segment representing Route 1, returning
the segment from measures 5 through 10. (This example uses the definitions from
the example in Section E.5.)

SELECT SDO LRS Al P_GEOM SEGVENT(a. route_geonetry, mdi mnfo, 5, 10)
FROM I rs_routes a, user_sdo _geomnetadata m
WHERE mtabl e nane = ' LRS ROUTES AND mcol umn_nanme = ' ROJTE GEOMETRY
A\D a.route_id = 1;

SDO LRS. QLI P_GEOM SEQVENT( A ROUTE_GEQMETRY, M O M NFQ 5, 10) (SDO GTYPE, SDO SR D,

SDO GECMETRY(3002, NULL, NULL, SDO ELEM I NFO ARRAY(1, 2, 1), SDO CRO NATE ARRAY(
5 4, 5 8 4, 8 10, 4, 10))

9-6 Oracle Spatial User’s Guide and Reference



SDO_LRS.CONCATENATE_GEOM_SEGMENTS

SDO_LRS.CONCATENATE_GEOM_SEGMENTS

Format

Description

Parameters

Usage Notes

SDO_LRS.CONCATENATE_GEOM_SEGMENTS(
geom_segment_1 IN MDSYS.SDO_GEOMETRY,

dim_array 1 IN MDSYS.SDO_DIM_ARRAY,
geom_segment_2 IN MDSYS.SDO_GEOMETRY,
dim_array 2 IN MDSYS.SDO_DIM_ARRAY

) RETURN MDSYS.SDO_GEOMETRY;

Returns the geometry object resulting from the concatenation of two geometric
segments.

geom_segment_1
First geometric segment to be concatenated.

dim_array_1
Dimensional information array corresponding to geom_segment_1, usually selected
from one of the xxx_SDO_GEOM_METADATA views.

geom_segment_2
Second geometric segment to be concatenated.

dim_array_2
Dimensional information array corresponding to geom_segment_2, usually selected
from one of the xxx_SDO_GEOM_METADATA views.

An exception is raised if geom_segment_1 or geom_segment_2 is invalid, or if the end
point of the first segment and the start point of the second segment are not spatially
connected.

Linear Referencing Functions 9-7



SDO_LRS.CONCATENATE_GEOM_SEGMENTS

The direction of the resulting geometric segment is preserved, and all measures of
the second segment are shifted so that its start measure is the same as the end
measure of the first segment.

For more information about concatenating geometric segments, see Section E.4.5

Examples

The following example defines the geometric segment, splits it into two segments,
then concatenates those segments. (This example uses the definitions from the
example in Section E.5. The definitions of result_geom_1, result_geom_2, and result_
geom_3 are displayed in Example E-3.)

DEQLARE

geom segrent  MOBYS. SDO GEOMETRY,
line_string MDSYS. SDO GEOMETRY;
di marray MBYS SDO O M ARRAY;
resul t_geom 1 MXSYS. SDO CEOMETRY;
resul t_geom?2 MXSYS. SDO GEOMETRY;
resul t_geom 3 MXSYS. SDO GEOMETRY;

BEAG N

SELECT a.route_geonetry into geomsegnent FROMIrs_routes a
WHERE a.route_nane = 'Routel’;
SELECT mdinminfo into dimarray from
user _sdo_geom net adata m
WHERE mtabl e nane = ' LRS ROUTES AND mcol unmm_nanme = ' ROJTE GEOMETRY ;

-- Define the LRS segnent for Routel.
SDO LRS. DEFI NE_GEQM SEGQMENT ( geom segnent ,

di marray,
0, -- Zero starting neasure: LRS segnent starts at start of route.
27); -- BEnd of LRS segnent is at neasure 27.

SELECT a.route_geonetry INTOline string FROMIrs_routes a
WHERE a.route_nane = 'Routel’;

-- Split Routel into two segnents.
SDO LRS. SPLIT_GEOM SEQVENT(| i ne_string, di marray, 5, resul t_geom 1, resul t _geom 2);

-- (oncatenate the segnents that were just split.

result_geom3 := SDO LRS. GCONCATENATE_CEQM SEGMENTS(resul t_geom 1, dimarray,
result_geom?2, dimarray);

9-8 Oracle Spatial User’s Guide and Reference



SDO_LRS.CONCATENATE_GEOM_SEGMENTS

-- Insert geonetries into table, to display later.

INSERT INTO I rs_routes VALUEY
11,
"result_geom1’,
result_geom1
);
INSERT INTO I rs_routes VALUEY
12,
"resul t_geom?2',
resul t_geom 2
);
INSERT INTO I rs_routes VALUEY
13,
"result_geom3',
result_geom3

)i

END,
/

Linear Referencing Functions 9-9



SDO_LRS.CONNECTED_GEOM_SEGMENTS

SDO_LRS.CONNECTED_GEOM_SEGMENTS

Format
SDO_LRS.CONNECTED_GEOM_SEGMENTS(

geom_segment_1 IN MDSYS.SDO_GEOMETRY,
dim_array 1 IN MDSYS.SDO_DIM_ARRAY,
geom_segment_2 IN MDSYS.SDO_GEOMETRY,
dim_array 2 IN MDSYS.SDO_DIM_ARRAY
) RETURN VARCHAR?2;

Description
Checks if two geometric segments are spatially connected.

Parameters

geom_segment_1
First of two geometric segments to be checked.

dim_array_1
Dimensional information array corresponding to geom_segment_1, usually selected
from one of the xxx_SDO_GEOM_METADATA views.

geom_segment_2
Second of two geometric segments to be checked.

dim_array_2
Dimensional information array corresponding to geom_segment_2, usually selected
from one of the xxx_SDO_GEOM_METADATA views.

Usage Notes

This function returns TRUE if the geometric segments are spatially connected and
FALSE if the geometric segments are not spatially connected.

An exception is raised if geom_segment_1 or geom_segment_2 is invalid.

9-10 Oracle Spatial User's Guide and Reference



SDO_LRS.CONNECTED_GEOM_SEGMENTS

Examples

The following example checks if two geometric segments (results of a previous split
operation) are spatially connected.

-- Areresult_geoml1 and result_geon? connected?
SELECT  SDO LRS. GCONNECTED (EQM SEGQMENTS( a. rout e_geonetry, mdi m nf o,
b. route_geonetry, mdini nfo)
FROMIrs_routes a, Irs_routes b, user_sdo_geom netadata m
WHERE mtabl e nane = ' LRS ROUTES AND mcol unn_nanme = ' ROJTE GEOMETRY
A\D a.route id = 1,

SDO RS, GCONNECTED GEQM SEGVENTS( A ROUTE_ GEQMETRY, M Dl M NFQ B, ROUTE_ GEOMETRY, M D

Linear Referencing Functions 9-11



SDO_LRS.CONVERT_TO_LRS_DIM_ARRAY

SDO_LRS.CONVERT _TO_LRS_DIM_ARRAY

Format

Description

Parameters

Usage Notes

SDO_LRS.CONVERT_TO_LRS_DIM_ARRAY(
dim_array IN MDSYS.SDO_DIM_ARRAY
[, lower_bound IN NUMBER,
upper_bound IN NUMBER,
tolerance IN NUMBER]
) RETURN MDSYS.SDO_DIM_ARRAY;

Converts a standard dimensional array to a Linear Referencing System dimensional
array by creating a measure dimension.

dim_array

Dimensional information array corresponding to the layer (column of geometries)
to be converted, usually selected from one of the xxx_ SDO_GEOM_METADATA
views.

lower_bound
Lower bound (SDO_LB value in the SDO_DIM_ELEMENT definition) of the
ordinate in the measure dimension.

upper_bound
Upper bound (SDO_UB value in the SDO_DIM_ELEMENT definition) of the
ordinate in the measure dimension.

tolerance
Tolerance (SDO_TOLERANCE value in the SDO_DIM_ELEMENT definition) of the
ordinate in the measure dimension.

This function converts a standard dimensional array to a Linear Referencing System
dimensional array by creating a measure dimension. Specifically, it adds an SDO _

9-12 Oracle Spatial User's Guide and Reference



SDO_LRS.CONVERT_TO_LRS_DIM_ARRAY

Examples

DIM_ELEMENT object at the end of the current SDO_DIM_ELEMENT objects in
the SDO_DIM_ARRAY for the diminfo, and sets the SDO_DIMNAME value in this
added SDO_DIM_ELEMENT to M. It sets the other values in the added SDO_DIM _
ELEMENT according to the values if the upper_bound, lower_bound, and tolerance
parameter values.

If dim_array already contains dimensional information, the dim_array is returned.

For more information about conversion functions, see Section E.4.9.

The following example converts the dimensional array for the LRS_ROUTES table
to Linear Referencing System format. (This example uses the definitions from the
example in Section E.5.)
SELECT SDO LRS. GCONVERT_TO LRS D M ARRAY( m di mi nf o)

FRCM user _sdo_geom net adata m

WHERE mtable nane = ' LRS ROUIES AND mcol umm_nane = ' ROJITE GEOMETRY

SDO LRS. GONVERT_TO LRS D M ARRAY( M D M NFQ (SDO D MNAME, SDO LB, SDO LB, SDO TQL

SDO DI M ARRAY(SDO DI M ELEMENT(’ X, 0, 20, .005), SDODMELEMENT(’Y, 0, 20, .00
5), SO DMELEMENT(’ M, 0, 20, .005))

Linear Referencing Functions 9-13



SDO_LRS.CONVERT _TO_LRS_GEOM

SDO_LRS.CONVERT _TO_LRS_GEOM

Format

Description

Parameters

Usage Notes

SDO_LRS.CONVERT_TO_LRS_GEOM(
standard_geom IN MDSYS.SDO_GEOMETRY,
dim_array IN MDSYS.SDO_DIM_ARRAY
[, start_measure IN NUMBER,
end_measure  IN NUMBER]

) RETURN MDSYS.SDO_GEOMETRY;

Converts a standard SDO_GEOMETRY line string to a Linear Referencing System
geometric segment by adding measure information.

standard_geom
Line string geometry that does not contain measure information.

dim_array
Dimensional information array corresponding to standard_geom, usually selected
from one of the xxx_SDO_GEOM_METADATA views.

start_measure
Distance measured from the start point of a geometric segment to the start point of
the linear feature. The default is 0.

end_measure

Distance measured from the end point of a geometric segment to the start point of
the linear feature. The default is the cartographic length (for example, 75 if the
cartographic length is 75 miles and the unit of measure is miles).

This function returns a Linear Referencing System geometric segment with measure
information, with measure information provided for all shape points.

9-14 Oracle Spatial User’s Guide and Reference



SDO_LRS.CONVERT TO_LRS_GEOM

Examples

An exception is raised if standard_geom is invalid or if start_measure or end_measure is
out of range.

For more information about conversion functions, see Section E.4.9.

The following example converts the geometric segment representing Route 1 to
Linear Referencing System format. (This example uses the definitions from the
example in Section E.5.)

SELECT SDO LRS. CO\VERT_TO LRS GECM a. rout e_geonet ry, mdi m nf o)
FROM | rs_routes a, user_sdo_geomnetadata m
WHERE mtabl e nane = ' LRS ROUTES AND mcol unmn_narme = ' ROJTE GEOMETRY
A\D a.route_id = 1;

SDO LRS. CONVERT_TO LRS GEOM A ROUTE_GEQMETRY, M D M NFQ) (SDO GTYPE, SDO SRD, SOO

SDO GECMETRY(3002, NULL, NULL, SDO EHLEM I N-O ARRAY(1, 2, 1), SDO CRO NATE ARRAY(
2, 2,0 2 4, 2, 8 4, 8 12, 4, 12, 12, 10, NALL, 8, 10, 22, 5 14, 27))

Linear Referencing Functions 9-15



SDO_LRS.CONVERT _TO_LRS_LAYER

SDO_LRS.CONVERT TO LRS_LAYER

Format

Description

Parameters

SDO_LRS.CONVERT_TO_LRS_LAYER(
table_name  IN VARCHAR?2,
column_name IN VARCHAR2
[, lower_bound IN NUMBER,
upper_bound IN NUMBER,
tolerance IN NUMBER]

) RETURN VARCHAR?2;

Converts all geometry objects in a column of type SDO_GEOMETRY (that is,
converts a layer) from standard line string geometries without measure information
to Linear Referencing System geometric segments with measure information, and
updates the metadata in the USER_SDO_GEOM_METADATA view.

table_name
Table containing the column with the SDO_GEOMETRY objects.

column_name
Column in table_name containing the SDO_GEOMETRY objects.

lower_bound
Lower bound (SDO_LB value in the SDO_DIM_ELEMENT definition) of the
ordinate in the measure dimension.

upper_bound
Upper bound (SDO_UB value in the SDO_DIM_ELEMENT definition) of the
ordinate in the measure dimension.

tolerance
Tolerance (SDO_TOLERANCE value in the SDO_DIM_ELEMENT definition) of the
ordinate in the measure dimension.

9-16 Oracle Spatial User’s Guide and Reference



SDO_LRS.CONVERT TO_LRS_LAYER

Usage Notes

Examples

This function returns TRUE if the conversion was successful or if the layer already
contains measure information, and the function returns an exception if the
conversion was not successful.

An exception is raised if the existing dimensional information for the table is
invalid.

The measure values are assigned based on a start measure of zero and an end
measure of the cartographic length.

For more information about conversion functions, see Section E.4.9.

The following example converts the geometric segments in the ROUTE_
GEOMETRY column of the LRS_ROUTES table to Linear Referencing System
format. (This example uses the definitions from the example in Section E.5.) The
SELECT statement shows that dimensional information has been added (that is,
SDO_DIM_ELEMENT(M’, NULL, NULL, NULL) included in the definition).

BEA N
I F (SDO LRS. GONVERT_TO LRS LAYER' LRS ROUTES , ' RAUTE (EOMETRY') = 'TRE)
THEN
DBVE QUTPUT. PUT_LI NE(* Gonver si on from STD LAYER to LRS LAYER succeeded’ );
BELSE

DBVE GUJTPUT. PUT_LI N’ Gonversi on from STD LAYER to LRS LAYER failed’);
END IF
BND

/
Gonversi on from STD_LAYER to LRS LAYER succeeded
PL/ SQL procedure successfully conpl et ed.

SQA> SHECT di minfo FROM user _sdo_geom net adat a WHERE tabl e_nane = ' LRS ROUTES
AND col unn_nane = ' ROUTE_ GEQMETRY' ;

DM NFQ(SDO D MNAME, SDO LB, SDO LB, SDO TQLERANCE)

SDO D M ARRAY(SDO D M ELEMENT(’ X, 0, 20, .005), SDODMELEMENT('Y, 0, 20, .00
5), SDODMEEMENT(’ M, NUL, NULL, NULL))

Linear Referencing Functions 9-17



SDO_LRS.CONVERT_TO_STD_DIM_ARRAY

SDO_LRS.CONVERT _TO_STD_DIM_ARRAY

Format

Description

Parameters

Usage Notes

Examples

SDO_LRS.CONVERT_TO_STD_DIM_ARRAY(
dim_array IN MDSYS.SDO_DIM_ARRAY
) RETURN MDSYS.SDO_DIM_ARRAY:

Converts a Linear Referencing System dimensional array to a standard dimensional
array by removing the measure dimension.

dim_array

Dimensional information array corresponding to the layer (column of geometries)
to be converted, usually selected from one of the xxx_ SDO_GEOM_METADATA
views.

This function converts a Linear Referencing System dimensional array to a standard
dimensional array by removing the measure dimension. Specifically, it removes the
SDO_DIM_ELEMENT object at the end of the current SDO_DIM_ELEMENT objects
in the SDO_DIM_ARRAY for the diminfo.

If dim_array is already a standard dimensional array (that is, does not contain
dimensional information), the dim_array is returned.

For more information about conversion functions, see Section E.4.9.

The following example converts the dimensional array for the LRS_ROUTES table
to standard format. (This example uses the definitions from the example in
Section E.5.)

SH ECT SDO LRS. CONVERT_TO STD D M ARRAY(m di mi nf 0)
FRCOM user_sdo_geom net adata m
WHERE mtable_nane = ' LRS RQUTES AND mcol unm_nane = ' ROUTE_ GEOMETRY ;

9-18 Oracle Spatial User’s Guide and Reference



SDO_LRS.CONVERT_TO_STD_DIM_ARRAY

SDO LRS. GONVERT_TO STD DI M ARRAY( M DI M NFO (SDO D MNAME, SDO LB, SDO LB, SDO TQL

SDO D M ARRAY(SDO D MELEMENT(® X, 0, 20, .005), SDODMELEMENT('Y, 0, 20, .00
5)

Linear Referencing Functions 9-19



SDO_LRS.CONVERT_TO_STD_GEOM

SDO_LRS.CONVERT _TO_STD_GEOM

Format

Description

Parameters

Usage Notes

Examples

SDO_LRS.CONVERT_TO_STD_GEOM(
Irs_geom IN MDSYS.SDO_GEOMETRY,
dim_array IN MDSYS.SDO_DIM_ARRAY
) RETURN MDSYS.SDO_GEOMETRY;

Converts a Linear Referencing System geometric segment to a standard SDO _
GEOMETRY line string by removing measure information.

Irs_geom
Linear Referencing System geometry that contains measure information.

dim_array
Dimensional information array corresponding to Irs_geom, usually selected from
one of the xxx_SDO_GEOM_METADATA views.

This function returns an SDO_GEOMETRY object in which all measure information
is removed.

For more information about conversion functions, see Section E.4.9.

The following example converts the geometric segment representing Route 1 to
standard format. (This example uses the definitions from the example in
Section E.5.)

SELECT SDO LRS. CO\VERT_TO STD GECM a. rout e_geonetry, mdi m nf o)
FROMIrs_routes a, user_sdo _geomnetadata m
WHERE mtabl e_nane = ' LRS ROUTES AND m col um_nane = ' ROUTE GEOMETRY'
A\D a.route id = 1,

9-20 Oracle Spatial User's Guide and Reference



SDO_LRS.CONVERT_TO_STD_GEOM

SDO LRS. GCONVERT_TO STD GEQOM A ROUTE_ GEQMETRY, M O M NFQ) (SDO GTYPE, SDO SR D, SDO

SDO GEQMETRY(2002, NULL, NULL, SDO ELEMINFO ARRAY(1, 2, 1), SDO GRD NATE ARRAY(
2,2 2 4, 8 4 12, 4, 12, 10, 8, 10, 5 14))

Linear Referencing Functions 9-21



SDO_LRS.CONVERT_TO_STD_LAYER

SDO_LRS.CONVERT TO STD LAYER

Format

Description

Parameters

Usage Notes

Examples

SDO_LRS.CONVERT_TO_STD_LAYER(
table_name  IN VARCHAR2,
column_name IN VARCHAR2
) RETURN VARCHAR?2;

Converts all geometry objects in a column of type SDO_GEOMETRY (that is,
converts a layer) from Linear Referencing System geometric segments with measure
information to standard line string geometries without measure information, and
updates the metadata in the USER_SDO_GEOM_METADATA view.

table_name
Table containing the column with the SDO_GEOMETRY objects.

column_name
Column in table_name containing the SDO_GEOMETRY objects.

This function returns TRUE if the conversion was successful or if the layer already
is a standard layer (that is, contains geometries without measure information), and
the function returns an exception if the conversion was not successful.

An exception is raised if the conversion failed.

For more information about conversion functions, see Section E.4.9.

The following example converts the geometric segments in the ROUTE_
GEOMETRY column of the LRS_ROUTES table to standard format. (This example
uses the definitions from the example in Section E.5.) The SELECT statement shows
that dimensional information has been removed (that is, no SDO_DIM_ELEMENT(M’,
NULL, NULL, NULL) included in the definition).

9-22 Oracle Spatial User’s Guide and Reference



SDO_LRS.CONVERT _TO_STD_LAYER

BEA N
I F (SDO LRS. GO\NVERT_TO STD LAYER(' LRS RAUTES , ' ROUTE (EOMETRY') = 'TRE)
THEN
DBVE_QUTPUT. PUT_LI NE(” Gonversion fromLRS LAYER t o STD LAYER succeeded’ ) ;
BH.SE

CBVE_ GQUTPUT. PUT_LI NE(” Gonversion from LRS LAYER to STD LAYER failed');
END IF
BEND,

/
Gonversi on fromLRS_LAYER to STD LAYER succeeded
PL/ SQL procedure successfully conpl et ed.

SELECT di mnfo FROM user _sdo_geom net adat a
WHERE tabl e nane = ' LRS ROUTES AND col uim_nane = ' ROUTE GECMETRY ;

DM NFQ(SDO D MNAME, SDO LB, SDO LB, SDO TQLERANCE)

SO0 O MARRAY(SDO D M BLEMENT(” X, O, 20, .005), SDODMHBEEMENT('Y, 0, 20, .00
5))

Linear Referencing Functions 9-23



SDO_LRS.DEFINE_GEOM_SEGMENT

SDO_LRS.DEFINE_GEOM_SEGMENT

Format

Description

Parameters

Usage Notes

SDO_LRS.DEFINE_GEOM_SEGMENT(
geom_segment IN OUT MDSYS.SDO_GEOMETRY,
dim_array IN MDSYS.SDO_DIM_ARRAY,
start_measure IN NUMBER,
end_measure  IN NUMBER);

Defines a geometric segment by assigning start and end measures to a geometric
segment. (This is a procedure, not a function.)

geom_segment
Cartographic representation of a linear feature.

dim_array
Dimensional information array corresponding to geom_segment, usually selected
from one of the xxx_ SDO_GEOM_METADATA views.

start_measure
Distance measured from the start point of a geometric segment to the start point of
the linear feature.

end_measure
Distance measured from the end point of a geometric segment to the start point of
the linear feature.

An exception is raised if geom_segment is invalid or if start_measure or end_measure is
out of range.

All unassigned measures of the geometric segment will be populated automatically.

For more information about defining a geometric segment, see Section E.4.1

9-24 Oracle Spatial User's Guide and Reference



SDO_LRS.DEFINE_GEOM_SEGMENT

Examples

The following example defines the geometric segment, splits it into two segments,
then concatenates those segments. (This example uses the definitions from the
example in Section E.5. The definitions of result_geom_1, result_geom_2, and result_
geom_3 are displayed in Example E-3.)

CEQLARE

geom segrent  MOBYS. SDO CEOMETRY;
line_string MDSYS. SDO GEOMETRY;
di marray MBYS SDO O M ARRAY;
result_geom1 MXSYS SDO GEOMETRY;
resul t_geom?2 MXSYS. SDO GEOMETRY;
resul t_geom 3 MXSYS. SDO GEOMETRY;

BEA N

SELECT a.route_geonetry into geomsegnent FROMIrs_routes a
WHERE a.route name = ' Routel’;
SELECT mdinminfo into dimarray from
user_sdo_geomnetadata m
WHERE mtabl e_nane = ' LRS ROUTES AND m col unm_nane = ' ROJTE_CGEOMETRY' ;

-- Define the LRS segnent for Routel.
SDO LRS. DEF NE_GEQM SEGMENT ( geom segnent ,

di marray,
0, -- Zero starting neasure: LRS segnent starts at start of route.
27); -- BEnd of LRS segnent is at neasure 27.

SELECT a.route_geonetry INTOline string FROMIrs_routes a
WHERE a.route name = ' Routel’;

-- Split Routel into two segnents.
SDO LRS. SPLIT_GEQM SEQMENT(l i ne_string, dimarray, 5, resul t_geom 1, resul t_geom 2);

-- (oncatenate the segnents that were just split.
result_geom3 := SDO LRS. GONCATENATE_ (EQM SEGMENTS(resul t_geom 1, dimarray,
result_geom?2, dimarray);

-- Insert geonetries into table, to display later.
INSERT INTO I rs_routes VALUEY

11,

"result_geom1’,

result_geom1

)i

Linear Referencing Functions 9-25



SDO_LRS.DEFINE_GEOM_SEGMENT

INSERT INTO I rs_routes VALUEY
12,
"result_geom?2',
result_geom2
);
INSERT INTO I rs_routes VALUEY
13,
"result_geom3',
result_geom3

)i

BEND,
/

9-26 Oracle Spatial User’s Guide and Reference



SDO_LRS.DYNAMIC_SEGMENT

SDO_LRS.DYNAMIC_SEGMENT

Format

Description

Parameters

Usage Notes

SDO_LRS.DYNAMIC_SEGMENT(
geom_segment IN MDSYS.SDO_GEOMETRY,
dim_array IN MDSYS.SDO_DIM_ARRAY,
start_measure IN NUMBER,
end_measure IN NUMBER
) RETURN MDSYS.SDO_GEOMETRY;

Returns the geometry object resulting from a clip operation on a geometric segment.

Note: SDO_LRS.CLIP_GEOM_SEGMENT and SDO_
LRS.DYNAMIC_SEGMENT are synonyms: both functions have the
same parameters, behavior, and return value.

geom_segment
Cartographic representation of a linear feature.

dim_array
Dimensional information array corresponding to geom_segment, usually selected
from one of the xxx_SDO_GEOM_METADATA views.

start_measure
Start measure of the geometric segment.

end_measure
End measure of the geometric segment.

An exception is raised if geom_segment, start_measure, or end_measure is invalid.

Linear Referencing Functions 9-27



SDO_LRS.DYNAMIC_SEGMENT

The direction and measures of the resulting geometric segment are preserved.

For more information about clipping a geometric segment, see Section E.4.3

Examples

The following example clips the geometric segment representing Route 1, returning
the segment from measures 5 through 10. (This example uses the definitions from
the example in Section E.5.)

SELECT SDO LRS. DYNAM C SEGVENT(a. rout e_geonetry, mdimnfo, 5, 10)
FROMIrs_routes a, user_sdo_geom netadata m
WHERE mtabl e nane = ' LRS ROUIES AND mcol umn_nane = ' ROUTE GEOMETRY
A\D a.route_id = 1;

SDO LRS. DYNAM C_SEQVENT( A ROUTE_GEQMETRY, M DI M NFQ 5, 10) (SDO GTYPE, SDO SR D,

SDO GECMETRY(3002, NULL, NULL, SDO ELEM I NFO ARRAY(1, 2, 1), SDO CRO NATE ARRAY(
5 4, 5 8 4, 8 10, 4, 10))

9-28 Oracle Spatial User’s Guide and Reference



SDO_LRS.FIND_MEASURE

SDO_LRS.FIND_MEASURE

Format

Description

Parameters

Usage Notes

SDO_LRS.FIND_MEASURE(
geom_segment IN MDSYS.SDO_GEOMETRY,
dim_array IN MDSYS.SDO_DIM_ARRAY,
point IN MDSYS.SDO_GEOMETRY
) RETURN NUMBER;

Returns the measure of the closest point on a segment to a specified projection
point.

geom_segment
Cartographic representation of a linear feature. This function returns the measure of
the point on this segment that is closest to the projection point.

dim_array
Dimensional information array corresponding to geom_segment, usually selected
from one of the xxx_SDO_GEOM_METADATA views.

point
Projection point. This function returns the measure of the point on geom_segment
that is closest to the projection point.

This function returns the measure of the point on geom_segment that is closest to the
projection point. For example, if the projection point represents a shopping mall, the
function could be used to find how far from the start of the highway is the point on
the highway that is closest to the shopping mall.

An exception is raised if geom_segment or point is invalid.

Linear Referencing Functions 9-29



SDO_LRS.FIND_MEASURE

Examples

The following example finds the measure for the point on the geometric segment
representing Route 1 that is closest to the point (10, 7). (This example uses the
definitions from the example in Section E.5.)

-- Fnd neasure for point on segnent closest to 10,7
-- Should return 15 (for point 12,7)
SELECT SDO LRS. FI ND_ MEASURE( a. rout e_geonet ry, mdi mi nfo,
MDSYS. SDO GEOMETRY( 3001, NULL, NULL,
MSYS. SDO HEM I NFO ARRAY( 1, 1, 1),
MDSYS. SDO CRO NATE ARRAY(10, 7, NULL)) )
FROMIrs _routes a, user_sdo_geom netadata m
WHERE mtable_nane = 'LRS RAUTES AND m col unm_nane = ' ROUTE_ GEOMETRY
A\D a.route_id = 1;

SO LRS. F ND_MEASURE( A ROUTE_GEQMETRY, M O M NFQ MDSYS. SDO GEOMETRY( 3001, NALL, NUL

9-30 Oracle Spatial User’s Guide and Reference



SDO_LRS.GEOM_SEGMENT_END_MEASURE

SDO_LRS.GEOM_SEGMENT_END_MEASURE

Format
SDO_LRS.GEOM_SEGMENT_END_MEASURE(
geom_segment IN MDSYS.SDO_GEOMETRY,
dim_array IN MDSYS.SDO_DIM_ARRAY
) RETURN NUMBER;
Description
Returns the end measure of a geometric segment.
Parameters

geom_segment
Geometric segment whose end measure is to be returned.

dim_array
Dimensional information array corresponding to geom_segment, usually selected
from one of the xxx_SDO_GEOM_METADATA views.

Usage Notes
This function returns the end measure of geom_segment.

An exception is raised if geom_segment is invalid.

Examples

The following example returns the end measure of the geometric segment
representing Route 1. (This example uses the definitions from the example in
Section E.5.)

SELECT SDO LRS. GEOM SEGVENT_END MEASURE( a. rout e_geonet ry, m di ni nf 0)
FROM|Irs_routes a, user_sdo_geomnetadata m
WHERE mtable_nane = 'LRS RAUTES AND m col unn_nane = ' ROUTE_ GEOMETRY
AND a.route id = 1;

Linear Referencing Functions 9-31



SDO_LRS.GEOM_SEGMENT_END_MEASURE

SDO LRS. GEQM SEQVENT_END MEASURE( A ROUTE. GEQMETRY, M DI M NFQ

9-32 Oracle Spatial User’s Guide and Reference



SDO_LRS.GEOM_SEGMENT_END_PT

SDO_LRS.GEOM_SEGMENT_END_PT

Format
SDO_LRS.GEOM_SEGMENT_END_PT(
geom_segment IN MDSYS.SDO_GEOMETRY,
dim_array IN MDSYS.SDO_DIM_ARRAY
) RETURN MDSYS.SDO_GEOMETRY;
Description
Returns the end point of a geometric segment.
Parameters

geom_segment
Geometric segment whose end point is to be returned.

dim_array
Dimensional information array corresponding to geom_segment, usually selected
from one of the xxx_SDO_GEOM_METADATA views.

Usage Notes
This function returns the end point of geom_segment.

An exception is raised if geom_segment is invalid.

Examples

The following example returns the end point of the geometric segment representing
Route 1. (This example uses the definitions from the example in Section E.5.)

SELECT SDO LRS. GEOM SEGVENT_END PT(a. rout e_geonetry, mdi mnf o)
FROMIrs_routes a, user_sdo_geomnetadata m
WHERE mtable_nane = 'LRS RAUTES AND m col unn_nane = ' ROUTE_ GEOMETRY
AND a.route id = 1;

Linear Referencing Functions 9-33



SDO_LRS.GEOM_SEGMENT_END_PT

SDO LRS. GEQM SEQVENT_END PT( A ROUTE._ GEQMETRY, M O M NFQ) (SDO GTYPE, SDO SR D, SDO

SDO GEQMETRY(3001, 0, NULL, SDO ELEMINFO ARRAY(1, 1, 1), SDO CRD NATE ARRAY(5,
14, 27))

9-34 Oracle Spatial User’s Guide and Reference



SDO_LRS.GEOM_SEGMENT_LENGTH

SDO_LRS.GEOM_SEGMENT_LENGTH

Format
SDO_LRS.GEOM_SEGMENT_LENGTH(
geom_segment IN MDSYS.SDO_GEOMETRY,
dim_array IN MDSYS.SDO_DIM_ARRAY
) RETURN NUMBER;
Description
Returns the length of a geometric segment.
Parameters

geom_segment
Geometric segment whose length is to be calculated.

dim_array
Dimensional information array corresponding to geom_segment, usually selected
from one of the xxx_SDO_GEOM_METADATA views.

Usage Notes

This function returns the length of geom_segment. The length is the geometric length,
which is not the same as the total of the measure unit values. To determine how
long a segment is in terms of measure units, subtract the result of an SDO _
LRS.GEOM_SEGMENT_START_MEASURE operation from the result of an SDO _
LRS.GEOM_SEGMENT_END_MEASURE operation.

SDO_LRS.GEOM_SEGMENT_LENGTH is an alias of the SDO_GEOM.SDO_
LENGTH Spatial function.

An exception is raised if geom_segment is invalid.

Examples

The following example returns the length of the geometric segment representing
Route 1. (This example uses the definitions from the example in Section E.5.)

SELECT SDO LRS. GEOM SEGVENT_LENGIH a. rout e_geonet ry, m di minf o)

Linear Referencing Functions 9-35



SDO_LRS.GEOM_SEGMENT_LENGTH

FROMIrs_routes a, user_sdo_geom netadata m
WHERE mtabl e nane = ' LRS ROUIES AND mcol umn_nane = ' ROUTE GECMETRY
A\D a.route_id = 1;

SDO LRS, GEOM SEQVENT_LENGTH A ROUTE_GEQMETRY, M DI M NFO

9-36 Oracle Spatial User’s Guide and Reference



SDO_LRS.GEOM_SEGMENT_START MEASURE

SDO_LRS.GEOM_SEGMENT_START_MEASURE

Format
SDO_LRS.GEOM_SEGMENT_START_MEASURE(
geom_segment IN MDSYS.SDO_GEOMETRY,
dim_array IN MDSYS.SDO_DIM_ARRAY
) RETURN NUMBER;
Description
Returns the start measure of a geometric segment.
Parameters

geom_segment
Geometric segment whose start measure is to be returned.

dim_array
Dimensional information array corresponding to geom_segment, usually selected
from one of the xxx_SDO_GEOM_METADATA views.

Usage Notes
This function returns the start measure of geom_segment.

An exception is raised if geom_segment is invalid.

Examples

The following example returns the start measure of the geometric segment
representing Route 1. (This example uses the definitions from the example in
Section E.5.)

SELECT  SDO LRS. GEOM SEGVENT_START_MEASURE( a. rout e_geonetry, mdi ni nf o)
FROM|Irs_routes a, user_sdo_geomnetadata m
HERE mtabl e_nane = ' LRS ROUTES AND mcol umm_nane = ' ROUTE_ GEOMETRY
AND a.route id = 1;

Linear Referencing Functions 9-37



SDO_LRS.GEOM_SEGMENT_START MEASURE

SO LRS. GECM SEGMENT_START_MEASURE( A, ROJTE_GEQMETRY, M D M NFO

9-38 Oracle Spatial User’s Guide and Reference



SDO_LRS.GEOM_SEGMENT_START_PT

SDO_LRS.GEOM_SEGMENT_START_PT

Format

Description

Parameters

Usage Notes

Examples

SDO_LRS.GEOM_SEGMENT_START_PT(
geom_segment IN MDSYS.SDO_GEOMETRY,
dim_array IN MDSYS.SDO_DIM_ARRAY
) RETURN MDSYS.SDO_GEOMETRY;

Returns the start point of a geometric segment.

geom_segment
Geometric segment whose start point is to be returned.

dim_array
Dimensional information array corresponding to geom_segment, usually selected
from one of the xxx_SDO_GEOM_METADATA views.

This function returns the start point of geom_segment.

An exception is raised if geom_segment is invalid.

The following example returns the start point of the geometric segment
representing Route 1. (This example uses the definitions from the example in
Section E.5.)

SELECT SDO LRS. GEOM SEGVENT_START _PT(a. rout e_geonetry, mdi m nf o)
FROMIrs_routes a, user_sdo geomnetadata m
WHERE mtabl e_nane = ' LRS ROUTES AND m col um_nane = ' ROUTE GEOMETRY'
A\D a.route id = 1,

Linear Referencing Functions 9-39



SDO_LRS.GEOM_SEGMENT_START PT

SDO LRS. GEQM SEQVENT_START_PT( A ROJTE_GEQMETRY, M DM NFQ (SDO GIYPE, SDOSRD, S

SDO GEQMETRY(3001, 0, NULL, SDO ELEMINFO ARRAY(1, 1, 1), SDO CRD NATE ARRAY(2,
2, 0)

9-40 Oracle Spatial User's Guide and Reference



SDO_LRS.GET_MEASURE

SDO_LRS.GET_MEASURE

Format

Description

Parameters

Usage Notes

Examples

SDO_LRS.GET_MEASURE(
point  IN MDSYS.SDO_GEOMETRY,
dim_array IN MDSYS.SDO_DIM_ARRAY
) RETURN NUMBER;

Returns the measure of a point on a geometric segment.

point
Point whose measure along its geometric segment is to be returned.

dim_array
Dimensional information array corresponding to point, usually selected from one of
the xxx_SDO_GEOM_METADATA views.

This function returns the measure of a point on the geometric segment.
If point is not valid, an “invalid LRS segment” exception is raised.

Contrast this function with SDO_LRS.PROJECT_PT, which accepts as input a point
that is not necessarily on the geometric segment, but which returns a point that is
on the geometric segment. As the following example shows, the SDO_LRS.GET _
MEASURE function can be used to return the measure of the projected point
returned by SDO_LRS.PROJECT_PT.

The following example returns the measure of a projected point. In this case, the
point resulting from the projection is 9 units from the start of the segment.

SQ > SHECT SDO LRS. GET_MEASLRY(
SDO LRS. PROJECT _PT(a. rout e_geonetry, mdi mnfo,

Linear Referencing Functions 9-41



SDO_LRS.GET_MEASURE

MDSYS. SDO GEOMETRY(3001, NULL, NULL,
MDSYS. SDO HEM | NFO ARRAY( 1, 1, 1),
MDSYS. SDO (RO NATE_ARRAY(9, 3, NULL)) ),
mdimnfo )
FROMIrs_routes a, user_sdo_geomnetadata m
WERE mtable nane = ' LRS ROUIES AND mcol umm_nane = ' ROUTE GECMETRY
A\D a.route id = 1,

SDO LRS. GET_MEASURE( SDO LRS. PRJECT_PT( A ROUTE_GEQMETRY, M DI M NFQ MDSYS. SDO GEOM

9-42 Oracle Spatial User’s Guide and Reference



SDO_LRS.IS_GEOM_SEGMENT_DEFINED

SDO_LRS.IS_GEOM_SEGMENT_DEFINED

Format

Description

Parameters

Usage Notes

Examples

SDO_LRS.IS_GEOM_SEGMENT_DEFINED(
geom_segment IN MDSYS.SDO_GEOMETRY,
dim_array IN MDSYS.SDO_DIM_ARRAY
) RETURN VARCHAR?2;

Checks if an LRS segment is defined correctly.

geom_segment
Geometric segment to be checked.

dim_array
Dimensional information array corresponding to geom_segment, usually selected
from one of the xxx_SDO_GEOM_METADATA views.

This function returns TRUE if geom_segment is defined correctly and FALSE if geom_
segment is not defined correctly.

The start and end measures of geom_segment must be defined (cannot be null), and
any measures assigned must be in an ascending order along the segment direction.

See also the SDO_LRS.VALID_GEOM_SEGMENT function.

The following example checks if the geometric segment representing Route 1 is
defined. (This example uses the definitions from the example in Section E.5.)

SELECT SDO LRS. | S GEQM SEGVENT_DEFI NEIX a. rout e_geonet ry, mdi ninf o)
FROM|Irs_routes a, user_sdo_geomnetadata m
WHERE mtable_nane = 'LRS RAUTES AND m col unn_nane = ' ROUTE_ GEOMETRY
AND a.route id = 1;

Linear Referencing Functions 9-43



SDO_LRS.IS_GEOM_SEGMENT_DEFINED

SO0 LRS. | S GECM SEQVENT_DEFl NED( A, ROJTE_GEQMETRY, M D M NFOQ

9-44 Oracle Spatial User's Guide and Reference



SDO_LRS.LOCATE_PT

SDO_LRS.LOCATE_PT

Format
SDO_LRS.LOCATE_PT(

geom_segment IN MDSYS.SDO_GEOMETRY,
dim_array IN MDSYS.SDO_DIM_ARRAY,
measure IN NUMBER,

offset IN NUMBER

) RETURN MDSYS.SDO_GEOMETRY;

Description

Returns the point located at a specified distance from the start of a geometric
segment.

Parameters

geom_segment
Geometric segment to be checked to see if it falls within the measure range of
measure.

dim_array
Dimensional information array corresponding to geom_segment, usually selected
from one of the xxx_SDO_GEOM_METADATA views.

measure
Distance to measure from the start point of geom_segment.

offset
Distance to measure perpendicularly from the point that is located at measure units
from the start point of geom_segment.

Usage Notes
This function returns the referenced point.

An exception is raised if geom_segment is invalid or if the location is out of range.

Linear Referencing Functions 9-45



SDO_LRS.LOCATE_PT

Examples

For more information about locating a point on a geometric segment, see
Section E.4.7.

The following example returns the point at measure 9 and on (that is, offset 0) the
geometric segment representing Route 1. (This example uses the definitions from
the example in Section E.5.)

SELECT SDO LRS LCCATE PT(a.route_geonetry, mdimnfo, 9, 0)
FROMIrs_routes a, user_sdo_geom netadata m
WHERE mtabl e nane = ' LRS ROUIES AND mcol umn_nane = ' ROUTE GEOMETRY
A\D a.route_id = 1;

SDO LRS, LOCATE PT( A ROJTE_GEQMETRY, M D M NFQ 9, 0) (SDO GTYPE, SDO SR D, SDO PO NT

SDO GECMETRY(3001, NULL, NULL, SDO EHLEMINO ARRAY(1, 1, 1), SDO CRO NATE ARRAY(
9, 4, 9)

9-46 Oracle Spatial User’s Guide and Reference



SDO_LRS.MEASURE_RANGE

SDO_LRS.MEASURE_RANGE

Format

Description

Parameters

Usage Notes

Examples

SDO_LRS.MEASURE_RANGE(
geom_segment IN MDSYS.SDO_GEOMETRY,
dim_array IN MDSYS.SDO_DIM_ARRAY
) RETURN NUMBER;

Returns the measure range of a geometric segment, that is, the difference between
the start measure and end measure.

geom_segment
Cartographic representation of a linear feature.

dim_array
Dimensional information array corresponding to geom_segment, usually selected
from one of the xxx_SDO_GEOM_METADATA views.

This function subtracts the start measure of geom_segment from the end measure of
geom_segment.

The following example returns the measure range of the geometric segment
representing Route 1. (This example uses the definitions from the example in
Section E.5.)

SELECT SDO LRS. MEASURE RANGE( a. rout e_geonetry, mdi m nf o)
FROMIrs_routes a, user_sdo geomnetadata m
WERE mtable_nane = ' LRS RQUTES AND mcol umm_nane = ' ROUTE_ GEOMETRY
AND a.route id = 1;

Linear Referencing Functions 9-47



SDO_LRS.MEASURE_RANGE

SO LRS. MEASURE RANGE( A ROUTE_GECMETRY, M O M NFQ

9-48 Oracle Spatial User’s Guide and Reference



SDO_LRS.MEASURE_TO_PERCENTAGE

SDO_LRS.MEASURE_TO_PERCENTAGE

Format

Description

Parameters

Usage Notes

SDO_LRS.MEASURE_TO_PERCENTAGE(
geom_segment IN MDSYS.SDO_GEOMETRY,
dim_array IN MDSYS.SDO_DIM_ARRAY,
measure IN NUMBER
) RETURN NUMBER;

Returns the percentage (0 to 100) that a specified measure is of the measure range of
a geometric segment.

geom_segment
Cartographic representation of a linear feature.

dim_array
Dimensional information array corresponding to geom_segment, usually selected
from one of the xxx_SDO_GEOM_METADATA views.

measure
Measure value. This function returns the percentage that this measure value is of
the measure range.

This function returns a number (0 to 100) that is the percentage of the measure
range that the specified measure represents. (The measure range is the end measure
minus the start measure.) For example, if the measure range of geom_segment is 50
and measure is 20, the function returns 40 (because 20/50 = 40%).

This function performs the reverse of the SDO_LRS.PERCENTAGE_TO_MEASURE
function, which returns the measure that corresponds to a percentage value.

An exception is raised if geom_segment or measure is invalid.

Linear Referencing Functions 9-49



SDO_LRS.MEASURE_TO_PERCENTAGE

Examples

The following example returns the percentage that 5 is of the measure range of
geometric segment representing Route 1. (This example uses the definitions from
the example in Section E.5.) The measure range of this segment is 27, and 5 is
approximately 18.5 percent of 27.

SELECT SDO LRS. MEASURE TO PERCENTAGK a. rout e_geonetry, mdi mnfo, 5)
FROMIrs_routes a, user_sdo geomnetadata m
WHERE mtabl e_nane = ' LRS ROUTES AND m col um_nane = ' ROUTE GEOMETRY'
A\D a.route_id = 1;

SO LRS. MEASURE TO PERCENTAGH A RQUTE_GECMETRY, M O M NFQ 5)

18. 5185185

9-50 Oracle Spatial User’s Guide and Reference



SDO_LRS.PERCENTAGE_TO_MEASURE

SDO_LRS.PERCENTAGE_TO_MEASURE

Format
SDO_LRS.PERCENTAGE_TO_MEASURE(
geom_segment IN MDSYS.SDO_GEOMETRY,
dim_array IN MDSYS.SDO_DIM_ARRAY,
percentage IN NUMBER
) RETURN NUMBER;

Description

Returns the measure value of a specified percentage (0 to 100) of the measure range
of a geometric segment.

Parameters

geom_segment
Cartographic representation of a linear feature.

dim_array
Dimensional information array corresponding to geom_segment, usually selected
from one of the xxx_SDO_GEOM_METADATA views.

percentage
Percentage value. Must be from 0 to 100. This function returns the measure value
corresponding to this percentage of the measure range.

Usage Notes

This function returns the measure value corresponding to this percentage of the
measure range. (The measure range is the end measure minus the start measure.)
For example, if the measure range of geom_segment is 50 and percentage is 40, the
function returns 20 (because 40% of 50 = 20).

This function performs the reverse of the SDO_LRS.MEASURE_TO_PERCENTAGE
function, which returns the percentage value that corresponds to a measure.

An exception is raised if geom_segment is invalid or if percentage is less than 0 or
greater than 100.

Linear Referencing Functions 9-51



SDO_LRS.PERCENTAGE_TO_MEASURE

Examples

The following example returns the measure that is 50 percent of the measure range
of geometric segment representing Route 1. (This example uses the definitions from
the example in Section E.5.) The measure range of this segment is 27, and 50 percent
of 17 is 13.5.

SELECT SDO LRS. PERCENTAGE TO MEASURE( a. rout e_geonetry, mdi minfo, 50)
FROMIrs_routes a, user_sdo geomnetadata m
HERE mtabl e_nane = ' LRS RAUTES AND mcol unm_nane = ' ROUTE_ GEQMETRY
A\D a.route_id = 1;

SO LRS. PERCENTACE_TO MEASURE( A RQUTE_GEQMETRY, M D M NFQ 50)

9-52 Oracle Spatial User’s Guide and Reference



SDO_LRS.PROJECT_PT

SDO_LRS.PROJECT_PT

Format
SDO_LRS.PROJECT_PT(
geom_segment IN MDSYS.SDO_GEOMETRY,
dim_array IN MDSYS.SDO_DIM_ARRAY,
point IN MDSYS.SDO_GEOMETRY
) RETURN MDSYS.SDO_GEOMETRY;
Description
Returns the projection point of a point on a geometric segment.
Parameters

geom_segment
Geometric segment to be checked.

dim_array
Dimensional information array corresponding to geom_segment, usually selected
from one of the xxx_SDO_GEOM_METADATA views.

point
Point to be projected.

Usage Notes

This function returns the projection point (including its measure) of a specified
point (point). The projection point is on the geometric segment.

If multiple projection points exist, the first projection point encountered from the
start point is returned.

An exception is raised if geom_segment is invalid.

For more information about projecting a point onto a geometric segment, see
Section E.4.8.

Linear Referencing Functions 9-53



SDO_LRS.PROJECT PT

Examples

The following example returns the point (9,4,9) on the geometric segment
representing Route 1 that is closest to the specified point (9,3,NULL). (This example
uses the definitions from the example in Section E.5.)

-- Point 9,3,NLL is off the road; should return 9,4,9
SELECT SDO LRS. PROJECT _PT(a. rout e_geonetry, mdi mnfo,
MDSYS. SDO GEOMETRY(3001, NULL, NULL,
MDSYS. SDO HEM | NFO ARRAY( 1, 1, 1),
MDSYS. SDO (RO NATE_ARRAY(9, 3, NULL)) )
FROMIrs_routes a, user_sdo_geom netadata m
HERE mtable nane = ' LRS ROUIES AND mcol umm_nane = ' ROJUTE GECMETRY
A\D a.route_id = 1;

SDO LRS. PROJECT_PT( A ROJTE_GEQMVETRY, M Dl M NFQ MSYS. SDO GEQMVETRY( 3001, NULL, NULL,

SDO GECMETRY(3001, NULL, NULL, SDO EHLEMINO ARRAY(1, 1, 1), SDO CRO NATE ARRAY(

9, 4, 9)

9-54 Oracle Spatial User’s Guide and Reference



SDO_LRS.REDEFINE_GEOM_SEGMENT

SDO_LRS.REDEFINE_GEOM_SEGMENT

Format

Description

Parameters

Usage Notes

SDO_LRS.REDEFINE_GEOM_SEGMENT(
geom_segment IN OUT MDSYS.SDO_GEOMETRY,
dim_array IN MDSYS.SDO_DIM_ARRAY
[, start_measure IN NUMBER,
end_measure  IN NUMBER));

Populates the measures of all shape points based on the start and end measures of a
geometric segment, overriding any previously assigned measures between the start
point and end point.

geom_segment
Cartographic representation of a linear feature.

dim_array
Dimensional information array corresponding to geom_segment, usually selected
from one of the xxx_SDO_GEOM_METADATA views.

start_measure
Distance measured from the start point of a geometric segment to the start point of
the linear feature. The default is 0.

end_measure
Distance measured from the end point of a geometric segment to the start point of
the linear feature. The default is the cartographic distance of the segment.

An exception is raised if geom_segment is invalid or if start_measure or end_measure is
out of range.

For more information about redefining a geometric segment, see Section E.4.2.

Linear Referencing Functions 9-55



SDO_LRS.REDEFINE_GEOM_SEGMENT

Examples

The following example redefines a geometric segment. (This example uses the
definitions from the example in Section E.5.)

DEQLARE
geom segrent MOBYS. SDO CEOMETRY,
di marray MBYS. SDO O M ARRAY;

BEG N

SELECT a.route_geonetry into geomsegnent FROMIrs_routes a
WHERE a.route_nane = 'Routel’;
SELECT mdininfo into dimarray from
user_sdo_geomnetadata m
WHERE mtabl e nane = ' LRS ROUTES AND mcol unmn_nanme = ' ROJUTE GEOMETRY ;

-- Define the LRS segnent for Routel.
SDO LRS. REDEF NE_GECM SEQVENT ( geom segnent

di marray,
0, -- Zero starting neasure: LRS segnent starts at start of route.
27); -- End of LRS segnent is at neasure 27.

BND,

/

9-56 Oracle Spatial User’s Guide and Reference



SDO_LRS.REVERSE_MEASURE

SDO_LRS.REVERSE_MEASURE

Format

Description

Parameters

Usage Notes

SDO_LRS.REVERSE_MEASURE(
geom_segment IN MDSYS.SDO_GEOMETRY,
dim_array IN MDSYS.SDO_DIM_ARRAY
) RETURN MDSYS.SDO_GEOMETRY;

Returns a new geometric segment by reversing the original geometric segment.

geom_segment
Cartographic representation of a linear feature.

dim_array
Dimensional information array corresponding to geom_segment, usually selected
from one of the xxx_SDO_GEOM_METADATA views.

This function reverses the start and end measures (and consequently the direction)
of geom_segment. That is, the start measure of geom_segment is the end measure of
the returned geometric segment, and the end measure of geom_segment is the start
measure of the returned geometric segment.

Figure 9-1 shows the reversal of the start and end measures and the segment
direction resulting from this function.

Linear Referencing Functions 9-57



SDO_LRS.REVERSE_MEASURE

Figure 9-1 Reversing a Geometric Segment

-
M=0 M=20 M=20 M=0
@ @ - — » O @
Reverse

An exception is raised if geom_segment is invalid.

Examples

The following example reverses the geometric segment representing route 1. (This
example uses the definitions from the example in Section E.5.)

SELECT SDO LRS. REVERSE MEASURE( a. rout e_geonetry, mdi m nf 0)
FROM I rs_routes a, user_sdo _geomnetadata m
WHERE mtabl e nane = ' LRS ROUTES AND mcol unm_nanme = ' ROJTE GEOMETRY
A\D a.route_id = 1;

SDO LRS. REVERSE MEASURE( A ROUTE_GEQMETRY, M DI M NFQ) (SDO GIYPE, SDO SR D, SDO PO

SDO GECMETRY(3002, NULL, NULL, SDO HLEMIN-O ARRAY(1, 2, 1), SDO CRO NATE ARRAY(
5 14, 0, 8, 10, 5 12, 10, 9, 12, 4, 15 8, 4, 19, 2, 4, 25, 2, 2, 27))

9-58 Oracle Spatial User’s Guide and Reference



SDO_LRS.SCALE_GEOM_SEGMENT

SDO_LRS.SCALE_GEOM_SEGMENT

Format

Description

Parameters

Usage Notes

SDO_LRS.SCALE_GEOM_SEGMENT(
geom_segment IN MDSYS.SDO_GEOMETRY,
dim_array IN MDSYS.SDO_DIM_ARRAY,
start_measure IN NUMBER,
end_measure IN NUMBER,
shift measure  IN NUMBER
) RETURN MDSYS.SDO_GEOMETRY;

Returns the geometry object resulting from the scaling of a geometric segment.

geom_segment
Geometric segment to be scaled.

dim_array
Dimensional information array corresponding to geom_segment, usually selected
from one of the xxx_SDO_GEOM_METADATA views.

start_measure
Start measure of the scaled geometric segment.

end_measure
End measure of the scaled geometric segment.

shift_measure
Shift measure of the scaled geometric segment.

This function performs a general scaling operation to the geometric segment. The
new start and end measures are assigned, and all measures are populated by a

Linear Referencing Functions 9-59



SDO_LRS.SCALE_GEOM_SEGMENT

linear mapping between old and new start and end measures. The shift measure is
applied to the segment after scaling.

Common uses of this function are:

« Shifting all measures by a specified amount (for example, to accommodate new
construction at the start of a road that causes the original start point to be n
measure units beyond the new start point)

= Reversing the direction of a segment (for example, to allow one road segment to
be concatenated with another coming from the opposite direction, because both
segments to be concatenated must have the same direction)

« Scaling the measure information without performing a shift (for example, to
change the measures from miles to kilometers)

The examples illustrate these uses.

An exception is raised if geom_segment is invalid or if start_measure or end_measure is
out of range.

For more information about scaling a geometric segment, see Section E.4.6.

Examples

The following examples illustrate the common SCALE_GEOM_ELEMENT uses
described in the Usage Notes. (These examples use the definitions from the example
in Section E.5.)

-- Shift by 5 (for exanple, 5-nile segment added before original start)
SELECT SDO LRS SCALE (ECM SEQVENT(a.rout e_geonetry, mdimnfo, 0, 27, 5)
FROMIrs _routes a, user_sdo_geom netadata m
WHERE mtable_nane = 'LRS RAUTES AND m col unn_nane = ' ROUTE_ GEOMETRY
A\D a.route_id = 1;

SO LRS. SCALE GEOM SEGVENT( A RQUTE_CEOMETRY, M D M NFQ 0, 27, 5) (SDO GI'YPE, SDO SR
SDO GEOMETRY(3002, NULL, NULL, SDO ELEM I NFO ARRAY(1, 2, 1), SDO CRO NATE ARRAY(
2, 2,5 2 4,7, 8 4, 13 12, 4, 17, 12, 10, 23, 8, 10, 27, 5 14, 32))

-- Reverse direction (for exanple, to concatenate wth another road)
SELECT SDO LRS SCALE (ECM SEGQVENT(a. rout e_geonetry, mdi mnfo, 27, 0, 0)
FROMIrs _routes a, user_sdo_geom netadata m
WHERE mtabl e nane = ' LRS ROUIES AND mcol umn_nane = ' ROUTE GEOMETRY
A\D a.route_id = 1;

SDO LRS. SCALE GECM SEQVENT( A ROUTE_GEQMETRY, M DO M NFQ 27, 0, 0) (SDO GIYPE, SDO SR

9-60 Oracle Spatial User’s Guide and Reference



SDO_LRS.SCALE_GEOM_SEGMENT

SDO GEOMETRY(3002, NULL, NULL, SDO ELEMINFO ARRAY(1, 2, 1), SDO GRD NATE ARRAY(
5 14, 0, 8 10, 5 12, 10, 9, 12, 4, 15 8, 4, 19, 2, 4, 25 2, 2, 27))

-- "onvert" mle neasures to kiloneters (27 * 1.609 = 43. 443)
SH ECT SO LRS. SCALE (EOVI SEQVENT( a. rout e_geonet ry, mdi m nf o,
0, 43.443, 0)
FROMIrs_routes a, user_sdo_geomnetadata m
WHERE mtable_nane = 'LRS ROUTES AND m col unn_nane = ' ROUTE_ GEOMETRY
A\D a.route_id = 1;

SDO LRS. SCALE. GEQM SEGVENT( A ROUTE_GECMETRY, M DI M NFQ 0, 43. 443, 0) ( SDO GTYPE, SDO
SDO GEQMETRY(3002, NULL, NULL, SDO ELEMINFO ARRAY(1, 2, 1), SDO CRD NATE ARRAY(
2,2, 0, 2 4 3.218 8 4, 12.872, 12, 4, 19.308, 12, 10, 28.962, 8, 10, 35.398
, 5, 14, 43.443))

Linear Referencing Functions 9-61



SDO_LRS.SPLIT_GEOM_SEGMENT

SDO_LRS.SPLIT_GEOM_SEGMENT

Format
SDO_LRS.SPLIT_GEOM_SEGMENT(

geom_segment  IN MDSYS.SDO_GEOMETRY,
dim_array IN MDSYS.SDO_DIM_ARRAY,
split_measure IN NUMBER,

geom_segment_1 OUT MDSYS.SDO_GEOMETRY,
geom_segment 2 OUT MDSYS.SDO_GEOMETRY);

Description

Splits a geometric segment into two geometric segments. (This is a procedure, not a
function.)

Parameters

geom_segment
Geometric segment to be split.

dim_array
Dimensional information array corresponding to geom_segment, usually selected
from one of the xxx_ SDO_GEOM_METADATA views.

split_measure
Distance measured from the start point of a geometric segment to the split point.

geom_segment_1
First geometric segment: from the start point of geom_segment to the split point.

geom_segment_2
Second geometric segment: from the split point to the end point of geom_segment.

Usage Notes
An exception is raised if geom_segment or split_measure is invalid.

The directions and measures of the resulting geometric segments are preserved.

9-62 Oracle Spatial User’s Guide and Reference



SDO_LRS.SPLIT_GEOM_SEGMENT

Examples

For more information about splitting a geometric segment, see Section E.4.4.

The following example defines the geometric segment, splits it into two segments,
then concatenates those segments. (This example uses the definitions from the
example in Section E.5. The definitions of result_geom_1, result_geom_2, and result_
geom_3 are displayed in Example E-3.)

DEQLARE

geom segrent  MOBYS. SDO GEOMETRY,
line_string MDSYS. SDO GEOMETRY;
dimarray MBYS SDO O M ARRAY;
resul t_geom 1 MXSYS. SDO CEOMETRY;
resul t_geom?2 MXSYS. SDO GEOMETRY;
resul t_geom 3 MXSYS. SDO GEOMETRY;

BEAG N

SELECT a.route_geonetry into geomsegnent FROMIrs_routes a
WHERE a.route_nane = 'Routel’;
SELECT mdinminfo into dimarray from
user _sdo_geom net adata m
WHERE mtabl e nane = ' LRS ROUTES AND mcol umn_nanme = ' ROJTE GEOMETRY ;

-- Define the LRS segnent for Routel.
SDO LRS. DEF NE_GEQM SEQMENT ( geom segnent ,

di marray,
0, -- Zero starting neasure: LRS segnent starts at start of route.
27); -- BEnd of LRS segnent is at neasure 27.

SELECT a.route_geonetry INTOline_string FROMIrs_routes a
WHERE a.route_nane = 'Routel’;

-- Split Routel into two segnents.
SDO LRS. SPLIT_GEOM SEQVENT(| i ne_string, di marray, 5, resul t_geom 1, resul t _geom 2);

-- (oncatenate the segnents that were just split.
result_geom3 := SDO LRS. GCONCATENATE_CGEQM SEGMENTS(resul t_geom 1, dimarray,
result_geom?2, dimarray);

-- Insert geonetries into table, to display later.
INSERT INTO I rs_routes VALUEY

11,

"result_geom1’,

Linear Referencing Functions 9-63



SDO_LRS.SPLIT_GEOM_SEGMENT

result_geom1
);
INSERT INTO I rs_routes VALUEY
12,
"result_geom?2',
resul t_geom2
);
INSERT INTO I rs_routes VALUEY
13,
"result_geom3',
result_geom3

)i

END,
/

9-64 Oracle Spatial User’s Guide and Reference



SDO_LRS.TRANSLATE_MEASURE

SDO_LRS.TRANSLATE_MEASURE

Format

Description

Parameters

Usage Notes

SDO_LRS.TRANSLATE_MEASURE(
geom_segment IN MDSYS.SDO_GEOMETRY,
dim_array IN MDSYS.SDO_DIM_ARRAY,
translate_m IN NUMBER
) RETURN MDSYS.SDO_GEOMETRY;

Returns a new geometric segment by translating the original geometric segment
(that is, shifting the start and end measures by a specified value).

geom_segment
Cartographic representation of a linear feature.

dim_array
Dimensional information array corresponding to geom_segment, usually selected
from one of the xxx_SDO_GEOM_METADATA views.

translate_m
Distance measured from the start point of a geometric segment to the start point of
the linear feature.

This function adds translate_m to the start and end measures of geom_segment. For
example, if geom_segment has a start measure of 50 and an end measure of 100, and
if translate_m is 10, the returned geometric segment has a start measure of 60 and an
end measure of 110, as shown in Figure 9-2.

Linear Referencing Functions 9-65



SDO_LRS.TRANSLATE_MEASURE

Examples

Figure 9-2 Translating a Geometric Segment

> >
M=50 M=100 M=60 M=110
@ ® - — >» & @
Trandate (10)

An exception is raised if geom_segment is invalid.

The following example translates (shifts) by 10 the geometric segment representing
Route 1. (This example uses the definitions from the example in Section E.5.)

SELECT SDO LRS. TRANSLATE MEASURE( a. rout e_geonetry, mdi ninfo, 10)
FROM I rs_routes a, user_sdo _geomnetadata m
WHERE mtabl e nane = ' LRS ROUTES AND mcol unm_nanme = ' ROJTE GEOMETRY
A\D a.route_id = 1;

SDO LRS. TRANSLATE_MEASLRE( A ROUTE_GEQMETRY, M O M NFQ 10) (SDO GTYPE, SDOSRD, SD

SDO GECMETRY(3002, NULL, NULL, SDO HLEMIN-O ARRAY(1, 2, 1), SDO CRO NATE ARRAY(
2, 2, 10, 2, 4, 12, 8, 4, 18, 12, 4, 22, 12, 10, 28, 8, 10, 32, 5 14, 37))

9-66 Oracle Spatial User’s Guide and Reference



SDO_LRS.VALID_GEOM_SEGMENT

SDO_LRS.VALID_GEOM_SEGMENT

Format

Description

Parameters

Usage Notes

Examples

SDO_LRS.VALID_GEOM_SEGMENT(
geom_segment IN MDSYS.SDO_GEOMETRY,
dim_array IN MDSYS.SDO_DIM_ARRAY
) RETURN VARCHAR?2;

Checks if a geometry object is a valid geometric segment.

geom_segment
Geometric segment to be checked for validity.

dim_array
Dimensional information array corresponding to geom_segment, usually selected
from one of the xxx_SDO_GEOM_METADATA views.

This function returns TRUE if geom_segment is valid and FALSE if geom_segment is
not valid.

Measure information is assumed to be stored in the last element of the SDO_DIM _
ARRAY in the Oracle Spatial metadata.

This function only checks for geometry type and number of dimensions of the
geometric segment. To further validate measure information, use the IS GEOM_
SEGMENT_DEFINED function.

The following example checks if the geometric segment representing Route 1 is
valid. (This example uses the definitions from the example in Section E.5.)

SELECT SDO LRS. VALI D GECM SEGMENT(a. rout e_geonetry, mdi m nf o)
FROM|Irs_routes a, user_sdo_geomnetadata m

Linear Referencing Functions 9-67



SDO_LRS.VALID_GEOM_SEGMENT

WHERE mtabl e nane = ' LRS ROUIES AND mcol umn_nane = ' ROUTE GEOMETRY
A\D a.route id = 1,

SDO LRS, VALl D GEOM SEGQVENT( A ROUTE_GEQMETRY, M DI M NFO)

9-68 Oracle Spatial User’s Guide and Reference



SDO_LRS.VALID_LRS_PT

SDO_LRS.VALID_LRS_PT

Format

Description

Parameters

Usage Notes

Examples

SDO_LRS.VALID_LRS_PT(
point  IN MDSYS.SDO_GEOMETRY,
dim_array IN MDSYS.SDO_DIM_ARRAY
) RETURN VARCHAR2;

Checks if an LRS point is valid.

point
Point to be checked for validity.

dim_array
Dimensional information array corresponding to point, usually selected from one of
the xxx_SDO_GEOM_METADATA views.

This function returns TRUE if point is valid and FALSE if point is not valid.

This function checks if point is a point with measure information, and it checks for
the geometry type and number of dimensions for the point geometry.

Ordinate information needs to be stored in SDO_ELEM_INFO_ARRAY and SDO _
ORDINATE_ARRAY. The SDO_POINT field in the SDO_GEOMETRY definition of
the point should not be used for LRS points, because SDO_POINT supports the
definition of only three attributes (X, Y, Z).

The following example checks if point (9,3,NULL) is a valid LRS point.

SELECT SDO LRS. VALI D LRS PT(
MSYS. SDO GEQMETRY(3001, NULL, NULL,
MSYS. SDO FLEM | NFO ARRAY(1, 1, 1),

Linear Referencing Functions 9-69



SDO_LRS.VALID_LRS_PT

MDBYS. SDO GRDI NATE ARRAY(9, 3, NULL)),

m di m nf o)

FROMIrs_routes a, user_sdo_geomnetadata m

WHERE mtable_nane = 'LRS ROUTES AND m col unn_nane = ' ROUTE_ GEOMETRY
A\D a.route_id = 1;

SO LRS. VALI D LRS PT(MDSYS. SDO GEOMETRY(3001, NULL, NJLL, MDSYS. SDO ELEM | NFO ARRAY

9-70 Oracle Spatial User’s Guide and Reference



SDO_LRS.VALID_MEASURE

SDO_LRS.VALID_MEASURE

Format
SDO_LRS.VALID_MEASURE(
geom_segment IN MDSYS.SDO_GEOMETRY,
dim_array IN MDSYS.SDO_DIM_ARRAY,
measure IN NUMBER
) RETURN VARCHAR?;
Description
Checks if a measure falls within the measure range of a geometric segment.
Parameters

geom_segment
Geometric segment to be checked to see if it falls within the measure range of
measure.

dim_array
Dimensional information array corresponding to geom_segment, usually selected
from one of the xxx_SDO_GEOM_METADATA views.

measure
Geometric segment to be checked to see if geom_segment falls within its measure
range.

Usage Notes

This function returns TRUE if measure falls within the measure range of geom_
segment and FALSE if measure does not fall within the measure range of geom_
segment.

An exception is raised if geom_segment is invalid.
Examples

The following example checks if 50 is a valid measure on the Route 1 segment. The
function returns FALSE because the measure range for that segment is 0 to 27. (For

Linear Referencing Functions 9-71



SDO_LRS.VALID_MEASURE

example, if the route is 27 miles long and there is a mile marker at one-mile
intervals, there is no 50-mile marker because the last marker is the 27-mile marker.)

SELECT SDO LRS VALID MEASLIRH a. rout e_geonetry, mdi mnfo, 50)
FROM I rs_routes a, user_sdo _geomnetadata m
WHERE mtabl e_nane = ' LRS ROUTES AND m col umm_nane = ' ROUTE GEOMETRY'
A\D a.route id =1

SO LRS. VALI D MEASURE A ROJTE_GECMETRY, M D M NFQ 50)

9-72 Oracle Spatial User’s Guide and Reference



10

Migration Procedures

The procedures described in this chapter let you upgrade geometry tables from
previous releases of Spatial Cartridge or Spatial Data Option.

This chapter contains descriptions of the migration procedures shown in Table 10-1.

Table 10-1 Migration Procedures

Procedure

Description

SDO_MIGRATE.FROM 815 _TO_81X
SDO_MIGRATE.TO_734
SDO_MIGRATE.TO_81X
SDO_MIGRATE.OGIS_METADATA

FROM
SDO_MIGRATE.OGIS_ METADATA_TO

Migrates data from Spatial release 8.1.5 to the
current release.

Migrates data from a previous release of Spatial
Data Option to release 7.3.4.

Migrates tables from Spatial Data Option 7.3.4
or Spatial Cartridge 8.0.4 to Oracle Spatial.

Generates a temporary table used when
migrating OGIS (OpenGIS) metadata tables.

Reads a temporary table used when migrating
OGIS metadata tables.

Migration Procedures 10-1



SDO_MIGRATE.FROM_815_TO_81X

SDO_MIGRATE.FROM_815 TO 81X

Format

Description

Parameters

Usage Notes

Examples

SDO_MIGRATE.FROM_815_TO_81X(
tabname IN VARCHAR?2);

Migrates data from Spatial release 8.1.5 to the current release.

tabname
Table with geometry objects.

See Section B.5 for important information about migrating from Spatial release 8.1.5.

All geometry objects in tabname will be migrated so that their SDO_GTYPE and
SDO_ETYPE values are in the release 8.1.6 format.

The following example changes the definitions of geometry objects in the ROADS
table from the release 8.1.5 format to the format of the current release.

SQL>execute sdo_migrate.from 815 to 81x(ROADS));

10-2 Oracle Spatial User's Guide and Reference



SDO_MIGRATE.TO_734

SDO_MIGRATE.TO_734

Format
SDO_MIGRATE.TO_734(
sn IN VARCHAR2,
layer IN VARCHAR?,
tess_type IN VARCHAR2,
param  IN INTEGER);
Description
Migrates data from a previous release of Spatial Data Option to release 7.3.4.
Parameters

sn
Schema name of the owner of layer.

layer
Name of the layer to be migrated.

tess_type
Type of tessellation (indexing) to be used: FIXED or VARIABLE.

param
Parameter whose significance depends on tess_type:

« Iftess typeis FIXED, param is the SDO_LEVEL value.
« Iftess_typeis VARIABLE, param is the SDO_NUMTILES value.

Usage Notes
None.

Examples
For fixed-size tessellation:

SQA > execute sdo_nmigrate.to 734(' HHRVAN , 'ROADS , 'FI XED, 10);

Migration Procedures 10-3



SDO_MIGRATE.TO 734

For variable-sized tessellation:
SQA> execute sdo_nmigrate to 734(' HHRVAN , ' ROADS , ' VAR ABLE , 4);

10-4 Oracle Spatial User's Guide and Reference



SDO_MIGRATE.TO_81X

SDO_MIGRATE.TO_81X

Format

Description

Parameters

SDO_MIGRATE.TO_81X(
layer IN VARCHAR?,
newtabname IN VARCHAR2,
gidcolumn  IN VARCHAR2,
geocolname IN VARCHAR?2,
layer_gtype IN VARCHAR2,
updateflag ~ IN VARCHAR2);

Migrates data from a previous release of Spatial Cartridge or Spatial Data Option to
the current release of Oracle Spatial.

layer
Name of the layer to be migrated.

newtabname
Name of the new table to which you are migrating the data.

gidcolumn
The name of the column in which to store the GID from the old table.

geocolname
Name of the column in the new table where the geometry objects will be inserted.

layer_gtype
One of the following values: POINT or NOTPOINT (default).

If the layer you are migrating is composed solely of point data, set this parameter to
POINT for optimal performance; otherwise, set this parameter to NOTPOINT.

Migration Procedures 10-5



SDO_MIGRATE.TO_81X

Usage Notes

Examples

updateflag
One of the following values: UPDATE or INSERT (default).

If you are migrating the layer into an existing populated attribute table, set this
parameter to UPDATE; otherwise, set this parameter to INSERT.

Consider the following when using this procedure:
= The new table must be created before calling this procedure.

= This procedure converts from Spatial Data Option release 7.3.4 or from Spatial
Cartridge releases 8.0.4 and 8.0.5.

= A commit operation is performed by this procedure.

« If any of the migration steps fails, nothing is migrated for the layer.
= layer is the underlying layer name, without the _SDOGEOM suffix.
« Theold SDO_GID is stored in gidcolumn.

« SDO_GTYPE values of 4 digits are created, using the format (d00n) shown in
Table 2-1 in Section 2.2.1.

« This procedure assigns SDO_GTYPE values of d001, d002, or d003. (See
Table 2-1 in Section 2.2.1 for the SDO_GTYPE values.) If the data has multiple
points, line strings, or disjoint polygons, then you should update the SDO _
GTYPE values to d005, d006, or d007, respectively, after migration.

Insert point-only data into new rows:
execute sdo_nmigrate.to 81x('raptor’, 'raptor’, 'sdo gid, 'feature’, 'point’);
Insert nonpoint data into new rows:

execute sdo_nmigrate.to 81x('BTU, 'BTU, 'sdo gid, 'feature’);

Update point-only data into existing rows:

execute sdo _nigrate.to 81x('raptor’, 'raptor’, 'sdo gid, 'feature’,
‘point’, 'update');

Update nonpoint data into existing rows:

execute sdo_nigrate.to 81x('BTU, 'BTU, ’'sdo gid, 'feature’,

10-6 Oracle Spatial User's Guide and Reference



SDO_MIGRATE.TO_81X

"notpoint’, 'update’);

Migration Procedures 10-7



SDO_MIGRATE.OGIS_METADATA_FROM

SDO_MIGRATE.OGIS_METADATA_FROM

Format
SDO_MIGRATE.OGIS_METADATA_FROM

Description
Called at the source database when migrating from one 8.1.5 database to another
8.1.5 database. The procedure migrates OGIS (OpenGIS) metadata entries from
schemas owned by MDSYS.

Parameters

None.

Usage Notes
Consider the following when using this procedure;

« The tables involved are strictly maintained by the user, and not by Spatial.
Details are available in the sdocat.sql file and the OpenGIS specification.

« Call this procedure once before migrating the data, and it will generate a
temporary table called SDO_GC_MIG. Export the temporary table to the new
database and call SDO_MIGRATE.OGIS_METADATA_TO to restore the data.

10-8 Oracle Spatial User's Guide and Reference



SDO_MIGRATE.OGIS_METADATA_TO

SDO_MIGRATE.OGIS_METADATA_TO

Format
SDO_MIGRATE.OGIS_METADATA_TO

Description
Used at the destination database when migrating from one 8.1.5 database to another
8.1.5 database. The procedure migrates OGIS (OpenGIS) metadata entries from
schemas owned by MDSYS.

Parameters

None.

Usage Notes
Consider the following when using this procedure:

« The tables involved are strictly maintained by the user, and not by Spatial.
Details are available in the sdocat.sql file and the OpenGIS specification.

« Call this procedure once after migrating the data. See SDO_MIGRATE.OGIS _
METADATA_FROM.

Migration Procedures 10-9



SDO_MIGRATE.OGIS_METADATA_TO

10-10 Oracle Spatial User's Guide and Reference



11

Tuning Functions and Procedures

This chapter contains descriptions of the tuning functions and procedures shown in

Table 11-1.

Table 11-1 Tuning Functions and Procedures

Function/Procedure

Description

SDO_TUNE.AVERAGE_MBR

SDO_TUNE.ESTIMATE_INDEX_
PERFORMANCE

SDO_TUNE.ESTIMATE_TILING_
LEVEL

SDO_TUNE.ESTIMATE_TILING_
TIME

SDO_TUNE.ESTIMATE_TOTAL_
NUMTILES

SDO_TUNE.EXTENT_OF

SDO_TUNE.HISTOGRAM_
ANALYSIS

SDO_TUNE.MIX_INFO

Calculates the average minimum bounding rectangle
for geometries in a layer.

Estimates the spatial index selectivity.

Determines an appropriate tiling level for creating
fixed-size index tiles.

Estimates the tiling time for a layer, in seconds.
Estimates the total number of spatial tiles for a layer.
Determines the minimum bounding rectangle of the
data in a layer.

Calculates statistical histograms for a spatial layer.

Calculates geometry type information for a spatial
layer, such as the percentage of each geometry type.

Tuning Functions and Procedures 11-1



SDO_TUNE.AVERAGE_MBR

SDO_TUNE.AVERAGE_MBR

Format

Description

Parameters

Usage Notes

SDO_TUNE.AVERAGE_MBR(
table_name  IN VARCHAR2,
column_name IN VARCHAR?2,
width OUT NUMBER,
height OUT NUMBERY);

Calculates the average minimum bounding rectangle (MBR) for a geometry object
column.

table_name
Geometry table.

column_name
Geometry column for which the average minimum bounding rectangle is to be
computed.

width
Width of the average minimum bounding rectangle.

height
Height of the average minimum bounding rectangle.

This procedure computes and stores the width and height of the average minimum
bounding rectangle for all geometries in a geometry table. It calculates the average
MBR by keeping track of the maximum and minimum X and Y values for all
geometries in a geometry table.

AVERAGE_MBR is a procedure, not a function. (Procedures do not return values.)

11-2 Oracle Spatial User's Guide and Reference



SDO_TUNE.AVERAGE_MBR

Examples

The following example calculates the minimum bounding rectangle for the SHAPE
column of the COLA_MARKETS table.

CEQLARE
table_nane VARCHAR2(32) :='QOLA MRKETS ;
colum_nane VARCHAR2(32) := 'SHAPE ;
width NUMBER
hei ght NUMBER
BEA N
SDO TUNE. AVERAGE. MBR(
t abl e_nane,
col unm_nane,
wi dt h,
hei ght ) ;
DBVE QUTPUT. PUT_LINE(' Wdth =" || width);
DBMVE QUTPUT. PUT_LINE(' Height = || height);
BEND,
/
Wdth = 3.5
Height = 4.5

Related Topics
SDO_TUNE.EXTENT_OF

Tuning Functions and Procedures 11-3



SDO_TUNE.ESTIMATE_INDEX_PERFORMANCE

SDO_TUNE.ESTIMATE_INDEX_PERFORMANCE

Format

Description

Parameters

SDO_TUNE.ESTIMATE_INDEX_PERFORMANCE(
table_name  IN VARCHAR2,
column_name IN VARCHAR?2,
sample_ratio IN INTEGER,
tiling_level IN INTEGER,
num_tiles IN INTEGER,
window_obj IN MDSYS.SDO_GEOMETRY,
tiling_time OUT NUMBER,
filter_time OUT NUMBER,
query time  OUT NUMBER
) RETURN NUMBER;

Estimates the spatial index performance such as query selectivity and window
query time for a column of type SDO_GEOMETRY.

table_name
Geometry table.

column_name
Geometry column for which the tiling time is to be estimated.

sample_ratio

Approximate ratio between the geometries in the original layer and those in the
sample layer (to be generated in order to perform the estimate). The default is 20:
that is, the sample layer will contain approximately 1/20 (5 percent) of the
geometries in the original layer. The larger the sample_ratio value, the faster the
function will run, but the less accurate will be the result (the estimate).

11-4 Oracle Spatial User's Guide and Reference



SDO_TUNE.ESTIMATE_INDEX_PERFORMANCE

Usage Notes

Examples

Note that Spatial obtains the sample by using the SAMPLE(sample_percent) feature
internally. For a description of this feature, see the sample_clause description in the
"SELECT and Subqueries" section of the Oracle8i SQL Reference.

tiling_level
Spatial index level at which the layer is to be tessellated.

num_tiles
Number of tiles for variable or hybrid tessellation. Should be 0 for fixed tessellation.
The default is 0.

window_obj
Window geometry object.

tiling_time
Estimated tiling time in seconds.

filter_time
Estimated spatial index filter time in seconds.

guery_time
Estimated window query time in seconds.

The function returns a number between 0.0 and 1.0 representing estimated spatial
index selectivity. The larger the number, the better the selectivity.

The sample_ratio parameter lets you control the trade-off between speed and
accuracy. Note that sample_ratio is not exact, but reflects an average. For example, a
sample_ratio value of 20 sometimes causes fewer than 5 percent of geometry objects
to be sampled and sometimes more than 5 percent, but over time an average of 5
percent will be sampled.

A return value of 0.0 indicates an error.

The following example calculates the minimum bounding rectangle for the SHAPE
column of the COLA_MARKETS table.

DEQLARE
table_nane VARCHAR2(32) :='QOOA MRKETS ;
col um_nane VARCHAR2(32) :='SHAPE ;

sanple_ratio |NIEGER : = 15;

Tuning Functions and Procedures 11-5



SDO_TUNE.ESTIMATE_INDEX_PERFORMANCE

tiling_level |INEER:= 4
numtiles |INEER := 10;

wi ndow obj MDSYS. SDO CEOMETRY : =
MDSYS. SDO GEOMETRY(

2003, -- 2-dinensional pol ygon

NLLL,

NLLL,

MDSYS. SDO H BEM | NFO ARRAY( 1, 1003, 1), -- one pol ygon
MDSYS. SDO (RO NATE_ARRAY(3,3, 6,3, 6,5 4,5 3,3

E
tiling_tine NJUMBER
filter _tine NUMER
query time NMBER
ret _nunber NUMBER
BEA N
ret _nuniber := SDO TUNE ESTI MATE | NDEX PERFCRVANCEH(
t abl e_nane,
col urm_nane,
sanpl e_rati o,
tiling_level,
numtil es,
w ndow obj ,
tiling_tine,
filter tine,
query tine

END,

11-6 Oracle Spatial User's Guide and Reference



SDO_TUNE.ESTIMATE_TILING_LEVEL

SDO_TUNE.ESTIMATE_TILING_LEVEL

Format

Description

Parameters

SDO_TUNE.ESTIMATE_TILING_LEVEL(

table_name IN VARCHAR?2,
column_name  IN VARCHAR2,
maxtiles IN INTEGER,

type_of estimate IN VARCHAR2 :='AVG_GID_EXTENT
) RETURN INTEGER;

Estimates the appropriate SDO_LEVEL value to use when indexing with hybrid or
fixed-size tiles.

table_name
Geometry table.

column_name
Geometry column for which the tiling level is to be estimated.

maxtiles
Maximum number of tiles that can be used to index the rectangle defined by type
of _estimate.

type_of_estimate
Keyword to specify the type of estimate:
« LAYER_EXTENT -- Uses the rectangle defined by your coordinate system.

« ALL _GID_EXTENT -- Uses the minimum bounding rectangle that encompasses
all the geometric objects in the column. This estimate is recommended for most
applications.

« AVG_GID _EXTENT -- Uses a rectangle representing the average size of the
individual geometric objects within the column. This option is the default and

Tuning Functions and Procedures 11-7



SDO_TUNE.ESTIMATE_TILING_LEVEL

performs the most analysis of the three types, but it takes the longest time to
complete.

Usage Notes

The function returns an integer representing the level to use when creating a spatial
index for the specified layer. The function returns NULL if the data is inconsistent.

If type_of estimate is ALL_GID_EXTENT, a maxtiles value of 10000 is recommended
for most applications.

Examples

The following example estimates the appropriate SDO_LEVEL value to use with the
SHAPE column of the COLA_MARKETS table.

SELECT SDO TUNE ESTI MATE_ T1 LI NG LEVEL(® CCLA MARKETS ,  * SHAPE |
10000, ' ALL_QG D EXTENT )
FROM DUAL;

SDO TUNE. ESTI MATE_TI LI NG LEVEL(’ GOLA MARKETS , * SHAPE , 10000, * ALL_Q D EXTENT )

Related Topics
. SDO_TUNE.EXTENT_OF

« Section A.1.2, "Understanding the Tiling Level"
= Section A.1.5, "Visualizing the Spatial Index (Drawing Tiles)"

11-8 Oracle Spatial User's Guide and Reference



SDO_TUNE.ESTIMATE_TILING_TIME

SDO_TUNE.ESTIMATE_TILING_TIME

Format

Description

Parameters

SDO_TUNE.ESTIMATE_TILING_TIME(
table_name  IN VARCHARZ2,
column_name IN VARCHAR?2,
sample_ratio IN INTEGER,
tiling_level IN INTEGER,
num_tiles IN INTEGER
) RETURN NUMBER;

Returns the estimated time (in seconds) to tessellate a column of type SDO _
GEOMETRY.

table_name
Geometry table.

column_name
Geometry column for which the tiling time is to be estimated.

sample_ratio

Approximate ratio between the geometries in the original layer and those in the
sample layer (to be generated to perform the estimate). The default is 20: that is, the
sample layer will contain approximately 1/20 (5 percent) of the geometries in the
original layer. The larger the sample_ratio value, the faster the function will run, but
the less accurate will be the result (the estimate).

Note that Spatial obtains the sample by using the SAMPLE(sample_percent) feature
internally. For a description of this feature, see the sample_clause description in the
"SELECT and Subqueries" section of the Oracle8i SQL Reference.

tiling_level
Spatial index level at which the layer is to be tessellated.

Tuning Functions and Procedures 11-9



SDO_TUNE.ESTIMATE_TILING_TIME

Usage Notes

Examples

num_tiles
Number of tiles for variable or hybrid tessellation. Should be 0 for fixed tessellation.
The default is 0.

A return value of 0 indicates an error.

The tiling time estimate is based on the tiling time of a small sample geometry table
that is automatically generated from the original table column. (This generated table
is deleted before the function completes.)

The sample_ratio parameter lets you control the trade-off between speed and
accuracy. Note that sample_ratio is not exact, but reflects an average. For example, a
sample_ratio value of 20 sometimes causes fewer than 5 percent of geometry objects
to be sampled and sometimes more than 5 percent, but over time an average of 5
percent will be sampled.

The CREATE TABLE privilege is required for using this function.

The following example estimates the tiling time to tessellate the REGIONS column
of the XYZ_MARKETS table.

DEQLARE
tabl e_nane VARCHAR2(32) :='XYZ MARKETS ;
col um_nane VARCHAR2(32) :='REA ON\S;

sanple_ratio |NIEGER : = 15;
tiling_level |INEER:=6;
numtiles |NEER := 10;
ret_number NUMBER
BEA N
ret _nunber := SDO TUNE ESTI MATE TI LI NG TI MK
tabl e _nane,
col unm_nane,
sanpl e_rati o,

tiling_level,
numtiles

)k

END,

11-10 Oracle Spatial User's Guide and Reference



SDO_TUNE.ESTIMATE_TOTAL_NUMTILES

SDO_TUNE.ESTIMATE_TOTAL_NUMTILES

Format

Description

Parameters

SDO_TUNE.ESTIMATE_TOTAL_NUMTILES(
table_name  IN VARCHAR?2,
column_name IN VARCHAR2,
sample_ratio  IN INTEGER,
tiling_level IN INTEGER,
num_tiles IN INTEGER,
num_largetiles OUT INTEGER
) RETURN INTEGER;

Estimates the total number of spatial tiles for a layer.

table_name
Geometry table.

column_name
Geometry column for which the total number of spatial tiles is to be estimated.

sample_ratio

Approximate ratio between the geometries in the original layer and those in the
sample layer (to be generated to perform the estimate). The default is 20: that is, the
sample layer will contain approximately 1/20 (5 percent) of the geometries in the
original layer. The larger the sample_ratio value, the faster the function will run, but
the less accurate will be the result (the estimate).

Note that Spatial obtains the sample by using the SAMPLE(sample_percent) feature
internally. For a description of this feature, see the sample_clause description in the
"SELECT and Subqueries" section of the Oracle8i SQL Reference.

tiling_level
Spatial index level at which the layer is to be tessellated.

Tuning Functions and Procedures 11-11



SDO_TUNE.ESTIMATE_TOTAL_NUMTILES

Usage Notes

Examples

num_tiles
Number of tiles for variable or hybrid tessellation. Should be 0 for fixed tessellation.
The default is 0.

num_largetiles

Output parameter to contain the number of spatial tiles that are of the same size as
group tiles for hybrid indexing. (For fixed indexing, num_largetiles will be the same
as the returned value: the total number of spatial tiles.)

The estimate is based on the total number of tiles for a small sample layer that is
automatically generated from the original layer. (This generated table is deleted
before the function completes.)

The sample_ratio parameter lets you control the trade-off between speed and
accuracy. Note that sample_ratio is not exact, but reflects an average. For example, a
sample_ratio value of 20 sometimes causes fewer than 5 percent of geometry objects
to be sampled and sometimes more than 5 percent, but over time an average of 5
percent will be sampled.

The CREATE TABLE privilege is required for using this function.

The following example estimates the total number of spatial tiles required to index
the REGIONS column of the XYZ_MARKETS table.

DEQLARE
tabl e_nane VARCHAR2(32) :='XYZ MARKETS ;
colum_nane VARCHAR2(32) = 'REA ON\S;

sanpl e_ratio |NEGER : = 15;
tiling_level |INEER:= 4
numtiles |INEER := 10;
num/|argetiles | NEER
ret_integer |NEER

BEA N

ret_integer := SDO TUNE ESTI MATE _TOTAL_NUMI LEY(
t abl e_nane,
col urm_nane,
sanpl e_rati o,
tiling_level,
numtil es,
num | argetiles

11-12 Oracle Spatial User's Guide and Reference



SDO_TUNE.ESTIMATE_TOTAL_NUMTILES

Tuning Functions and Procedures 11-13



SDO_TUNE.EXTENT_OF

SDO_TUNE.EXTENT_OF

Format

Description

Parameters

Usage Notes

Examples

SDO_TUNE.EXTENT_OF(
table_name  IN VARCHAR2,
column_name IN VARCHAR2
) RETURN MDSYS.SDO_GEOMETRY;

Returns the minimum bounding rectangle of all geometries in a column of type
SDO_GEOMETRY.

table_name
Geometry table.

column_name
Geometry column for which the minimum bounding rectangle is to be returned.

The function returns NULL if the data is inconsistent.

The following example calculates the minimum bounding rectangle for the objects
in the SHAPE column of the COLA_MARKETS table.

SELECT SDO TUNE EXTENT_CGF(’ COLA MARKETS ,  * SHAPE )
FROM DUAL;

SDO TUNE. EXTENT_CF(’ GOLA MARKETS ,* SHAPE ) (SDO GIYPE, SDO SRD SDO PANT(X, Y,
SDO GEQMETRY(2003, NULL, NULL, SDO ELEMINFO ARRAY(1, 1003, 3), SDO CRD NATE.
ARRAY(1, 1, 10, 11))

11-14 Oracle Spatial User's Guide and Reference



SDO_TUNE.EXTENT_OF

Related Topics
SDO_TUNE.ESTIMATE_TILING_LEVEL

SDO_TUNE.AVERAGE_MBR procedure

Tuning Functions and Procedures 11-15



SDO_TUNE.HISTOGRAM_ANALYSIS

SDO_TUNE.HISTOGRAM_ANALYSIS

Format
SDO_TUNE.HISTOGRAM_ANALYSIS(
table_name IN VARCHAR?2,
column_name IN VARCHAR2,
result_table IN VARCHAR?2,
type_of histogram IN VARCHAR2,
max_value IN NUMBER,
intervals IN INTEGER);
Description
Generates statistical histograms based on columns of type SDO_GEOMETRY.
Parameters

table_name
Geometry table.

column_name
Geometry object column for which the histogram is to be computed.

result_table
Result table to hold the histogram.

type_of_histogram
Keyword to specify the type of histogram:

« TILES VS _LEVEL -- Provides the number of tiles at different spatial index
levels. (Available only with hybrid indexes.) This histogram is the default, and
is used to evaluate the spatial index that is already built on the geometry
column.

« GEOMS_VS TILES -- Provides the number of geometries in different
number-of-tiles ranges. This histogram is used to evaluate the spatial index that
is already built on the geometry column.

11-16 Oracle Spatial User's Guide and Reference



SDO_TUNE.HISTOGRAM_ANALYSIS

« GEOMS_VS_AREA -- Provides the number of geometries in different size
ranges. The shape of this histogram could be helpful in choosing a proper index
type and index level

« GEOMS_VS_ VERTICES -- Provides a histogram of the geometry count against
the number of vertices. This histogram could help determine if spatial index
selectivity is important for the layer. Because the number of vertices determines
the performance of the secondary filter, selectivity of the primary filter could be
crucial for layers that contain many complicated geometries.

max_value
The upper limit of the histogram. That is, the histogram runs in range (0, max_
value).

intervals
Number of intervals between 0 and max_value.

Usage Notes

The procedure populates the result table with statistical histograms for a geometry
table. (HISTOGRAM_ANALYSIS is a procedure, not a function. Procedures do not
return values.)

Before calling this procedure, create the result table (result_table parameter) with
VALUE and COUNT columns. For example:

CREATE TABLE hi st ogram (val ue NUMBER count NUMBER);

Tuning Functions and Procedures 11-17



SDO_TUNE.MIX_INFO

SDO_TUNE.MIX_INFO

Format
SDO_TUNE.MIX_INFO(
table_name  IN VARCHAR?2,
column_name IN VARCHAR2
[, total_geom OUT INTEGER,
point_ geom  OUT INTEGER,
curve_geom  OUT INTEGER,
poly_geom OUT INTEGER,
complex_geom OUT INTEGER] );
Description
Provides information about each geometry type stored in a column of type SDO_
GEOMETRY.
Parameters
table_name

Geometry table.

column_name

Geometry object column for which the geometry type information is to be
calculated.

total_geom
Total number of geometry objects.

point_geom
Number of point geometry objects.

curve_geom
Number of curve string geometry objects.

poly_geom
Number of polygon geometry objects.

11-18 Oracle Spatial User's Guide and Reference



SDO_TUNE.MIX_INFO

Usage Notes

Examples

complex_geom
Number of complex geometry objects.

This procedure calculates geometry type information for the table. It calculates the
total number of geometries, as well as the number of point, curve string, polygon,
and complex geometries.

The following example displays information about the mix of geometry objects in
the SHAPE column of the COLA_MARKETS table.

BEXEQUTE SDO TUNE M X | NFQ(' LA MARKETS, " SHAPE )
Total nunber of geonetries: 4

Poi nt geonetri es: 0 (0%
Qurvestring geonetri es: 0 (0%
Pol ygon geonetri es: 4 (100%
Gonpl ex geonetri es: 0 (0%

Tuning Functions and Procedures 11-19



SDO_TUNE.MIX_INFO

11-20 Oracle Spatial User's Guide and Reference



Part |

Relational Model

Oracle Spatial supports two models for representing geometries: relational and
object-relational. The two models are mutually exclusive. See Section 1.2 for a
description of how to choose the model best suited for your application.

Note: In the next release of Oracle Spatial, the relational model
will no longer be documented in this guide, but will instead be
documented in a separate document whose title and location will
be announced.

Spatial applications using the relational model will continue to
work; however, if you are not already using the object-relational
model for all Spatial applications, you are encouraged to do so
before the next release.

This part of the User’s Guide and Reference contains the following chapters,
describing the relational model:

Chapter 12, "The Relational Schema"

Chapter 13, "Loading Spatial Data (Relational Model)"

Chapter 14, "Querying Spatial Data (Relational Model)"

Chapter 15, "Administrative Functions and Procedures for Relational Model"
Chapter 16, "Tuning Functions and Procedures for Relational Model"
Chapter 17, "Geometry Functions and Procedures for Relational Model"

Chapter 18, "Window Functions and Procedures for Relational Model"






12

The Relational Schema

Before release 8.1, the Spatial product always used four database tables to store and
index spatial data. This database structure is modeled on the first of three OpenGIS
Features for SQL Implementation options, namely, using numeric SQL types for
geometry storage. This schema is different from the spatial objects model
introduced in Spatial release 8.1 and described in Part Il of this guide. However,
there are still some advantages, discussed in Section 1.2.2, to using this model.

Note: In the next release of Oracle Spatial, the relational model
will no longer be documented in this guide, but will instead be
documented in a separate document whose title and location will
be announced.

Spatial applications using the relational model will continue to
work; however, if you are not already using the object-relational
model for all Spatial applications, you are encouraged to do so
before the next release.

12.1 Database Structures for the Relational Implementation

The four tables, used to store and index geometries, are collectively referred to as a
layer. A template SQL script is provided to facilitate the creation of these tables. See
Section A.2.2 for details.

Table 12-1 through Table 12-4 describe the schema of a Spatial layer.

The Relational Schema 12-1



Database Structures for the Relational Implementation

Table 12-1 <layername>_SDOLAYER Table

SDO_ORDCNT

SDO_LEVEL

SDO_NUMTILES

SDO_MAXLEVEL?

SDO_COORDSYS?

<number>

<number>

<number>

<number>

<varchar>

1 SDO_MAXLEVEL is an optional column.
2 3SDO_COORDSYS is an optional column.

Table 12-2 <layername>_SDODIM Table or View

SDO_DIMNUM

SDO_LB

SDO_UB

SDO_TOLERANCE

SDO_DIMNAME

<number>

<number>

<number>

<number>

K<varchar>

Table 12-3 <layername>_SDOGEOM Table or View

SDO_GID

SDO_ESEQ

SDO_ETYPE

SDO_SEQ

SDO_X1

SDO_Y1

. ISDO_Xn

SDO_Yn

<number>

<number>

<number>

<number>

<number>

<number> |..

<number>

<number>

Table 12-4 <layername>_SDOINDEX Table

SDO_GID

SDO_CODE

SDO_MAXCODE !

SDO_GROUPCODE ?

SDO_META

<number>

<raw>

<raw>

<raw>

<raw>

1 SDO_MAXCODE is not required for the recommended fixed-size tile indexing algorithm.
2 3SDO_GROUPCODE is not required for the recommended fixed-size tile indexing algorithm.

The columns of each table are defined as follows:

<layername>_SDOLAYER

SDO_ORDCNT: The SDO_ORDCNT column is the total number of ordinates
per row in the <layername>_SDOGEOM table. That is, the total number of
data value columns, and not the number of points or coordinates. SDO _

ORDCNT should not be multiplied by the total number of dimensions per

coordinate as it is already a total.

SDO _LEVEL: The SDO_LEVEL column stores the number of times the tiles
that interact with a geometry should be decomposed. It is the termination
criterion for fixed tiling. Use the SDO_TUNE.ESTIMATE_TILING_LEVEL

procedure to determine an appropriate tiling level for your data.

12-2 Oracle Spatial User's Guide and Reference




Database Structures for the Relational Implementation

SDO_NUMTI LES: The SDO_NUMTILES column is the number of
variable-sized tiles used to tessellate each object in the <layername>_
SDOGEOM table. This column must be set to NULL when using fixed-size
tiles.

SDO_MAXLEVEL: The SDO_MAXLEVEL column indicates the maximum
level to which a variable-sized tile can be decomposed. It is the termination
criterion for the variable component of hybrid tiling.

SDO_COORDSYS: The SDO_COORDSYS column is optional; you can
indicate the name of the coordinate system, using a standard such as POSC
or OGIS.

<layername>_SDODIM

SDO_DI MNUM The SDO_DIMNUM column is the dimension to which this
row refers, starting with 1 and increasing.

SDO LB: The SDO_LB column is the lower bound of the ordinate in this
dimension. For example, if the dimension is latitude, the lower bound
would be -90.

SDO_UB: The SDO_UB column is the upper bound of the ordinate in this
dimension. For example, if the dimension is latitude, the upper bound
would be 90.

SDO_TOLERANCE: The SDO_TOLERANCE column is the distance two
points can be apart and still be considered the same due to round-off errors.
Tolerance must be greater than zero. If you want zero tolerance, enter a
number such as 0.00005, where the number of zeros to the right of the
decimal point matches the precision of your data. The extra 5 will round up
to the last decimal digit.

SDO DI MNAME: The SDO_DIMNAME column is used for the usual name
applied to this dimension, such as longitude, latitude, X, or Y.

<layername>_SDOGEOM

SDO G D: The SDO_GID column is a unique numeric identifier for each
geometry in a layer.

SDO_ESEQ The SDO_ESEQ column enumerates each element in a
geometry, that is, the Element SEQuence number.

SDO_ETYPE: The SDO_ETYPE column is the geometric primitive type of
the element. For this release of Spatial, the valid values are SDO _

The Relational Schema 12-3



Database Structures for the Relational Implementation

GEOM.POINT_TYPE, SDO_GEOM.LINESTRING_TYPE, or SDO_
GEOM.POLYGON_TYPE (ETYPE values 1, 2, and 3, respectively). The
SDO_ETYPE values 4 and 5, supported in the object-relational schema, are
not supported. Setting the ETYPE to zero indicates that this element should
be ignored. See Section A.1.9 for information on ETYPE=0.

« SDO _SEQ The SDO_SEQ column records the order (the SEQuence number)
of each row of data making up the element.

« SDO X1: The X value of the first coordinate.
« SDO _Y1:The Y value of the first coordinate.
« SDO _Xn: The X value of the nth coordinate.
« SDO _Yn: The Y value of the nth coordinate.

<layername>_SDOINDEX

« SDO @ D: The SDO_GID column is a unique numeric identifier for each
geometry in a layer. This can be thought of as a foreign key back to the
<layername>_SDOGEOM table.

« SDO _CODE: The SDO_CODE column is the bit-interleaved ID of a tile that
covers SDO_GID. This column should be created as type RAW(255).

« SDO MAXCODE: The SDO_MAXCODE column describes a variable-sized
logical tile, which is the smallest tile (with the longest tile ID) in the current
quadrant. The SDO_MAXCODE column is SDO_CODE padded out one
place farther than the longest allowable code name for this index. This
column is not used for fixed-size tiles.

« SDO_GROUPCODE: The SDO_GROUPCODE column is a prefix of SDO _
CODE. It represents a variable-sized tile at level <layername>_
SDOLAYER.SDO_LEVEL that contains or is equal to the tile represented by
SDO_CODE. This column is not used for fixed-size tiles.

« SDO META: The SDO_META column is not required for spatial queries. It
provides information necessary to find the bounds of a tile. See
Section A.1.5 for one possible use of this column.

Spatial provides stored procedures that assume the existence of the layer schema as
described in this section. While layer tables may contain additional columns, they
are required to contain at least the columns described in this section with the same
column names and data types.

12-4 Oracle Spatial User's Guide and Reference



Database Structures for the Relational Implementation

Figure 12-1 illustrates how a geometry is stored in the database using Spatial and
the OGIS V1 schema model. The geometry to be stored is a complex polygon with a
hole in it.

Figure 12-1 Complex Polygon

Ceonetry 1013:

El ement O

<layername>_SDOLAYER

SDO_ORDCNT
(number)

4

<layername>_SDODIM

SDO_ SDO_ SDO_
DIMNUM SDO LB SDO_UB TOLERANCE DIMNAME
(number) (number) (number) (number) (varchar)
1 0 100 .05 X axis

2 0 100 .05 Y axis

The Relational Schema 12-5



Database Structures for the Relational Implementation

<layername>_SDOGEOM

SDO_GID SDO_ESEQ | SDO_ETYPE | SDO_SEQ SDO_X1 SDO_Y1 SDO_X2 SDO_Y2
(number) (number) (number) (number) (number) (number) (number) (number)
1013 0 3 0 P1(X) P1(Y) P2(X) P2(Y)
1013 0 3 1 P2(X) P2(Y) P3(X) P3(Y)
1013 0 3 2 P3(X) P3(Y) P4(X) P4(Y)
1013 0 3 3 P4(X) P4(Y) P5(X) P5(Y)
1013 0 3 4 P5(X) P5(Y) P6(X) P6(Y)
1013 0 3 5 P6(X) P6(Y) P7(X) P7(Y)
1013 0 3 6 P7(X) P7(Y) P8(X) P8(Y)
1013 0 3 7 P8(X) P8(Y) P1(X) P1(Y)
1013 1 3 0 G1(X) G1(Y) G2(X) G2(Y)
1013 1 3 1 G2(X) G2(Y) G3(X) G3(Y)
1013 1 3 2 G3(X) G3(Y) G4(X) GA4(Y)
1013 1 3 3 GA(X) GA(Y) G1(X) GL(Y)

In this example, the <layername>_ SDOGEOM table is shown as an 8-column table
with 4 ordinates per row. In actual usage, Spatial supports n-wide® tables. The
coordinates for the outer polygon in this example could have been loaded into a
single row containing values for coordinates P1 to P8, and then repeating P1 to close
the polygon. The coordinates would be stored in the SDO_X1 and SDO_Y1 through
SDO_X9 and SDO_Y9 columns.

The data in the <layername>_SDOINDEX table is described in further detail in
Section 1.7. The SDOINDEX table contains entries of the form [SDO_GID, SDO_
CODE] where each SDO_CODE represents a tile that interacts with a geometry
identified by SDO_GID. For a given SDO_GID value, there may be one or more
SDO_CODE values. Each SDO_CODE value may be associated with one or more
SDO_GID values.

1 A <layername>_SDOGEOM table can have up to 1000 columns. The maximum number of

data columns is T000, minus 4 for the other required spatial columns, and minus any other
user-defined columns. For polygons and line strings, storlng_ 16 to 20 ordinates per row is
suggested for performance reasons, but not required. The objective is to minimize the
number of null values stored in the <layername>_SDOGEOM table.

12-6 Oracle Spatial User's Guide and Reference




13

Loading Spatial Data (Relational Model)

13.1 Load

This chapter describes how to load spatial data into a database, including storing
the data in a table and creating a spatial index for it. This chapter refers to the
relational Spatial model only.

Model

There are two steps involved in loading raw data into a spatial database such that it
can be queried efficiently:

1. Loading the data into spatial tables

2. Creating or updating the index on the spatial tables

Table 13-1 through Table 13-4 show the format of the tables or views needed to
store and index spatial data. Note that these tables show the relational schema.

Table 13-1 <layername>_SDOLAYER Table

SDO_ORDCNT

SDO_LEVEL

SDO_NUMTILES

SDO_MAXLEVEL

ISDO_COORDSYS

<number>

<number>

<number>

<number>

K<varchar>

Table 13-2 <layername>_SDODIM Table or View

SDO_DIMNUM

SDO_LB [SDO_UB

SDO_TOLERANCE

SDO_DIMNAME

<number>

<number> <number>

<number>

<varchar>

Loading Spatial Data (Relational Model) 13-1



Load Process

Table 13-3 <layername>_SDOGEOM Table or View

SDO_GID

SDO_ESEQ

SDO_ETYPE

SDO_SEQ [SDO_X1

SDO_Y1

. SDO_Xn

SDO_Yn

<number>

<number>

<number>

<number> <number>

<number> |..

<number>

<number>

Table 13-4 <layername>_SDOINDEX Table

SDO_GID

SDO_CODE

SDO_MAXCODE

SDO_GROUPCODE

SDO_META

<number>

<raw=>

<raw>

<raw>

<raw>

13.2 Load Process

The process of loading data can be classified into two categories:

«  Bulk loading of data

This process is used to load large volumes of data into the database and uses

SQL*Loader to load the data.

= Transactional inserts

This process is used to insert relatively small amounts of data into the database

and is analogous to the INSERT statement in SQL.

13.2.1 Bulk Loading

Bulk loading can be used to import large amounts of legacy or ASCII data into a

spatial database. Bulk loading is accomplished using SQL*Loader.

Example 13-1 shows the format of the raw data and control file that would be

required to load the data into the SDOGEOM table with the layer name ROADS.

You can choose any format of ASCII data as long you can write a SQL*Loader

control file to load that data into the tables.

Assume that the ASCII data consists of a file with delimited columns and separate

rows fixed by the limits of the table, with the format shown in Example 13-1:

Example 13-1 Raw Data Format
A D ESEQ ETYPE SEQ LONL, LATL, LON2, LAT2

geonet ry rows:

13-2 Oracle Spatial User's Guide and Reference




Load Process

The coordinates in the geometry rows represent the end points of line segments,
which taken together, represent a polygon. Example 13-2 shows the control file for
loading the data into the geometry table.

Example 13-2 Control File to Load Data into the Geometry Table

LCAD DATA | NFI LE *

I NTO TABLE ROADS SDOEM

FI ELDS TERM NATED BY W4 TESPACE TRAI LI NG NLLLGOLS
(SDO @ D | NTEGER EXTERNAL,
SDO ESEQ | NTEGER EXTERWAL,
SDO ETYPE | NTEGER EXTER\AL,

SDO SEQ | NTEGER EXTERVAL

SDO X1 FLOAT EXTERNAL,
SDO Y1 FLOAT EXTERNAL,
SDO X2 FLOAT EXTERNAL,
SDO Y2 FLOAT EXTERNAL)

BEQ NDATA

10 3 0 -122.401200
10 31 -122. 401900
1 0 3 2 -122. 402400
1 0 3 3 -122. 403100
1 0 3 4 -122. 404400
11 3 0 -122. 405900
1131 -122. 407549
113 2-122.408300
11 3 3 -122.409100
2 0 2 0 -122. 410800
202 1-122 412300
202 2 -122. 414100
2 0 2 3 -122. 412300
3 010 -122.567474
301 1-126.345345

37.
37.
37.
37.
37.
37.
37.
37.
37.
37.
37.
37.
37.
38.
39.

805200 -122. 401900
805200 -122. 402400
805500 -122. 403100
806000 - 122. 404400
806800 -122. 401200
806600 -122. 407549
806394 -122. 408300
806300 -122. 409100
806200 - 122. 405900
806000 -122. 412300
805800 -122. 414100
805600 -122. 412300
805800 -122. 410800
643564

345345

37.
37.
37.
37.
37.
37.
37.
37.
37.
37.
37.
37.
37.

805200
805500
806000
806800
805200
806394
806300
806200
806600
805800
805600
805800
806000

Be sure that table ROADS_SDOGEOM exists in the schema before attempting

the load operation.

In Example 13-3, the data resides in a single flat file and the data set consists of
point, line string, and polygon data. The data uses fixed-position columns and

overloaded table rows.

Example 13-3 Raw Data Format
SO GA@D SDOESEQ SDOETYPE SDOSEQ SDOXI SDOY1L SDOX2 SDO Y2

Loading Spatial Data (Relational Model) 13-3



Load Process

The corresponding control file for this format of input data is shown in
Example 13-4.

Example 13-4 Control File to Load from a Single Flat File

LOAD DATA | NFI LE *
I NTO TABLE NEW SDOGECM
(SDO.@ D POSI TION (1:5) | NTEGER EXTERNAL,
SDO ESEQ PCSI TION (7: 10) | NTEGER EXTER\AL,
SDO ETYPE PCSI TI ON (12: 15) | NTEGER EXTER\AL,
SDO SEQ PCSI TI ON (17: 21) | NTEGER EXTERVAL,
SDO X1 POS T1 ON (23: 35) FLOAT EXTERNAL,

SDO Y1 PCS T1 ON (37: 48) FLOAT EXTERNAL,

SDO X2 POSI TI ON (50: 62) FLOAT EXTERNAL,

SDO Y2 PCS TI ON (64: 75) FLOAT EXTERNAL)

i
:

-122.401200 37.805200 -122.401900 37.805200
-122.401900 37.805200 -122.402400 37.805500
-122. 402400  37.805500 -122. 403100 37.806000
-122. 403100 37.806000 -122. 404400 37.806800
-122. 404400 37.806800 -122.401200 37.805200
-122.405900 37.806600 -122.407549 37.806394
-122.407549  37.806394  -122.408300 37.806300
-122.408300 37.806300 -122.409100 37.806200
-122. 409100 37.806200 -122. 405900 37.806600
-122. 410800 37.806000 -122.412300 37.805800
-122. 412300 37.805800 -122. 414100 37.805600
-122. 414100 37.805600 -122.412300 37.805800
-122.412300 37.805800 -122.410800  37. 806000
-122.567474  38. 643564

-126. 345345  39. 345345

WWNNNNRPRRRRRRERPRE
OCO0OO0OO0OO0OORRRLPRRLOOOOO
PRNONNMNNONWWWWWWWWW
POWNRFROWNRFRORMAWNERO

13.2.2 Transactional Insert Using SQL

Spatial uses standard Oracle8i tables that can be accessed or loaded with standard
SQL syntax. Example 13-5 loads data for a geometry (GID 17) consisting of a
polygon with four sides that contains both a hole and a point. Notice that the first
coordinate of the polygon (5, 20) is repeated at the end to close the polygon.

Example 13-5 Transactional Insert

I NSERT | NTO SAMPLE_SDOGECM (SDO @ D, SDO ESEQ  SDO ETYPE, SDO SEQ
SDO X1, SDOYL, SDOX2, SDO Y2, SDO X3,

13-4 Oracle Spatial User's Guide and Reference



Load Process

SDO Y3, SDO X4, SDO Y4, SDO X5, SDO Y5)
VALUES (17, 0, 3, 0, 5 20, 5 30, 10, 30, 10, 20, 5, 20);

-- hole
I NSERT | NTO SAMPLE SDOGEOM (SDO G D, SDO ESEQ  SDO ETYPE, SDO SEQ
SDO X1, SDO YL, SDO X2, SDO Y2, SDO X3,
SDO Y3, SDO X4, SDO Y4, SDO X5, SDO Y5)
VALUES (17, 1, 3, O, 8, 21, 8, 24, 9, 24, 9, 21, 8, 21);

-- point
| NSERT | NTO SAMPLE SDOFEOM (SDO @ D, SDO ESEQ  SDO ETYPE, SDO SEQ
SDO X1, SDO Y1)
VALUES (17, 2, 1, 0, 9, 29);

The SQL INSERT statement inserts one row of data per call. In Example 13-5, the
table had enough columns to store the polygon in a single row. However, if your
table had fewer columns (or your polygon had more points), you would have to
perform multiple inserts to match the table structure; the data would not wrap
automatically to the next row. To load a large geometry, repeat the SDO_GID, SDO _
ESEQ, and SDO_ETYPE, and increment the SDO_SEQ for each line as shown in
Example 13-6.

Example 13-6 Transactional Insert for a Large Geometry

| NSERT | NTO SAMPLE2_SDOGEOM (SDO @ D, SDO ESEQ  SDO ETYPE, SDO SEQ
SDO X1, SDO YL, SDOX2, SDO Y2, SDO X3,
SDO Y3, SDO X4, SDO Y4, SDO X5, SDO Y5)
VALUES (18, 0, 3, 0, 1, 15, 1, 16, 2, 17, 3, 17, 4, 18);

I NSERT | NTO SAMPLE2_SDOGECM (SDO @ D, SDO ESEQ  SDO ETYPE, SDO SEQ
SDO X1, SDO YL, SDOX2, SDO Y2, SDO X3,
SDO Y3, SDO X4, SDO Y4, SDO X5, SDO Y5)
VALUES (18, 0, 3, 1, 4, 18, 5, 18, 6, 19, 7, 18, 6, 17);

I NSERT | NTO SAMPLE2_SDOGECM (SDO @ D, SDO ESEQ  SDO ETYPE, SDO SEQ
SDO X1, SDO YL, SDOX2, SDO Y2, SDO X3,
SDO Y3, SDO X4, SDO Y4, SDO X5, SDO Y5)
VALUES (18, 0, 3, 2, 6, 17, 7, 16, 7, 15, 6, 14, 7, 13);

| NSERT | NTO SAMPLE2_SDOGECM (SDO @ D, SDO ESEQ  SDO ETYPE, SDO SEQ
SDO X1, SDO YL, SDOX2, SDO Y2, SDO X3,
SDO Y3, SDO X4, SDO Y4, SDO X5, SDO Y5)
VALUES (18, 0, 3, 3, 7, 13, 6, 12, 5, 13, 4, 13, 3, 14);

Loading Spatial Data (Relational Model) 13-5



Index Creation

I NSERT | NTO SAMPLE2_SDOGECM (SDO @ D, SDO ESEQ  SDO ETYPE, SDO SEQ
SDO X1, SDO YL, SDOX2, SDOY2, SDOX3, SO
Y3)
VALUES (18, 0, 3, 4, 3, 14, 2, 14, 1, 15);

13.3 Index Creation

Once data has been loaded into the spatial tables through either bulk or
transactional loading, a spatial index needs to be created on the tables for efficient
access to the data.

Create an Oracle table called <layername>_SDOINDEX as follows:

SQ> create tabl e <l ayer nane>_SDO NDEX
2 (
3 SDO @ D nunber,
4 SDO OCE raw( 255)
5 )

For a bulk load, you can call the SDO_ADMIN.POPULATE_INDEX procedure once
to tessellate the geometry table and add the generated tiles to the spatial index
table. The argument to this procedure is simply the name of the layer. The level to
which the geometry should be tessellated and whether to use the fixed or the
hybrid indexing technique is determined by values in the <layername>_
SDOLAYER table.

If data is updated in or deleted from a specific geometry table, you can call the
SDO_ADMIN.UPDATE_INDEX procedure to update the index for one SDO_GID.
The arguments to this procedure are the name of the layer and the SDO_GID of the
designated geometry.

See Chapter 15 for a complete description of the SDO_ADMIN.POPULATE_INDEX
and SDO_ADMIN.UPDATE_INDEX procedures.

13.3.1 Choosing a Tessellation Algorithm

Spatial provides two methods for spatial indexing, fixed and hybrid. Fixed indexing
is recommended for the relational Spatial model.

Which tessellation algorithm is used by the SDO_ADMIN.POPULATE_INDEX and
SDO_ADMIN.UPDATE_INDEX procedures is determined by the values of the

13-6 Oracle Spatial User's Guide and Reference



Index Creation

SDO_LEVEL and SDO_NUMTILES columns in the <layername>_SDOLAYER table
as shown in Table 13-5.

Table 13-5 Choosing a Tessellation Algorithm

SDO_LEVEL SDO_NUMTILES Action

NULL NULL Error.

>=1 NULL Fixed indexing with fixed-size tiles
(recommended).

>=1 >=1 Hybrid indexing with fixed-size and variable-sized

tiles. The SDO_LEVEL column defines the fixed
tile size. The SDO_NUMTILES column defines the
number of tiles to generate per geometry.

NULL >=1 Not supported.

13.3.2 Spatial Indexing with Fixed-Size Tiles

Fixed-size cover tiles are recommended for indexing a geometry stored using the
relational model.

The fixed-size tile algorithm is expressed as a level referring to the number of
tessellations performed. To use fixed-size tile indexing, set the SDO_NUMTILES
column in the <layername>_SDOLAYER table to NULL and the SDO_LEVEL
column to the desired tiling level. The relationship between the tiling level and the
resulting size of the tiles is dependent on the domain of the layer.

The domain used for indexing is defined by the upper and lower boundaries of
each dimension stored in the <layername>_SDODIM table. A typical domain in a
GIS application could be -90 to 90 degrees for latitude, and -180 to 180 degrees for
longitude,! as represented in Figure 13-1.

! The transference of the domain onto a sphere or Mercator projection is left to GIS (or other)
application programmers. Spatial treats the domain as a conventional X by Y rectangle.

Loading Spatial Data (Relational Model) 13-7



Index Creation

Figure 13-1 Sample GIS Domain
90

-90

-180 180

If the SDO_LEVEL column is set to 1, then the tiles created by the indexing
mechanism are the same size as the tiles at the first level of tessellation. Each tile
would be 180 degrees by 90 degrees as shown in Figure 13-2.

Figure 13-2 Fixed-Size Tiling at Level 1
90

-90

-180 0 180
The formula for the number of fixed-size tiles is 4" where n is the number of

tessellations stored in the SDO_LEVEL column. Figure 13-3 shows fixed-size tiling
at level 2. In this figure, each tile is 90 degrees by 45 degrees.

13-8 Oracle Spatial User's Guide and Reference



Index Creation

Figure 13-3 Fixed-Size Tiling at Level 2
90

-90
-180 -90 0 90 180

The size of a tile can be determined by applying the following formula to each
dimension:

length = (upper_bound - lower_bound) / 2 * sdo_level

The length refers to the length of the tile along the specified dimension. Applying
this formula to the tiling shown in Figure 13-3 yields the following sizes:

length for dinension X = (180 - (-180) ) / 2~2
=(360) / 4
=90

length for dinension Y = (90 - (-90) ) / 272
=(180) / 4
=45

Thus, at level 2 the tiles are 90x45 degrees in size. As the number of levels increases,
the tiles become smaller and smaller. Smaller tiles provide a more precise fit of the
tiles over the geometry being indexed. However, because the number of tiles
generated is unbounded, you must take into account the performance implications
of using higher levels. The SDO_TUNE.ESTIMATE_TILING_LEVEL function can
be used to determine an appropriate level for indexing with fixed-size tiles. See
Chapter 16 for a description of this procedure.

Besides the performance aspects related to selecting a fixed-size tile, tessellating the
geometry into fixed-size tiles might have benefits related to the type of data being
stored, such as using tiles sized to represent 1-acre farm plots, city blocks, or
individual pixels on a display. Data modeling, an important part any database
design, is essential in a spatial database where the data often represents actual
physical locations.

Loading Spatial Data (Relational Model) 13-9



Index Creation

In the following example, assume that data has been loaded into a layer called
ROADS, and you want to create a spatial index on that data. This is accomplished
by first creating a table ROADS_SDOINDEX and invoking the following procedure:

sdo_admin.populate_index(ROADS));

The value in the SDO_LEVEL column of the ROADS_SDOLAYER table can be used
as a tuning parameter while tessellating objects. Increasing the level increases the
number of tiles to provide a more precise fit of the tiles over the object. See the
description of the ESTIMATE_TILING_LEVEL function in Chapter 16 for
information on estimating the tiling level in several different ways.

After the SDO_ADMIN.POPULATE_INDEX procedure has been called to fill the
spatial index, you should also create a concatenated index using the SDO_CODE
and SDO_GID columns. The concatenated index helps the join to the <layername>_
SDOGEOM table during a query. The SDO_GID values from the primary filter will
come from the index instead of from the table.

If a geometry with an SDO_GID 5944 has been added to the spatial tables, update
the index with the following procedure:

sdo_admin.update_index(ROADS, 5944);

Like the CREATE INDEX statement in SQL, the SDO_ADMIN.POPULATE_INDEX
procedure performs an implicit commit operation. The SDO_ADMIN.UPDATE_
INDEX procedure, however, does not. Therefore, SDO_ADMIN.UPDATE_INDEX
transactions can be rolled back.

The SDO_ADMIN.POPULATE_INDEX procedure operates as a single transaction.
To reduce the amount of rollback space required to execute this procedure, you can
write a routine that loops and calls the SDO_ADMIN.UPDATE_INDEX procedure.
See Section A.2.1 for more information.

13.3.3 Hybrid Spatial Indexing with Fixed-Size and Variable-Sized Tiles

This section describes a variation on the linear quadtree (Morton encoding) scheme
that uses both fixed-size and variable-sized tiles as a spatial indexing mechanism.
The terms hybrid indexing, hybrid tiling, and hybrid tessellation will be used
interchangeably in this section. Spatial indexing with purely variable-sized tiles is
not recommended for production systems and is not supported in this release.

To use hybrid tiling, the SDO_LEVEL and SDO_NUMTILES columns in the
<layername>_SDOLAYER table must contain valid values. That is, both SDO_
LEVEL and SDO_NUMTILES must be greater than one.

13-10 Oracle Spatial User's Guide and Reference



Index Creation

The SDO_NUMTILES column determines the number of tiles that will be used to
cover a geometry being indexed. Typically, this value is small, such as 4 or 8 tiles.
However, the larger the number of tiles, the better the tiles will fit the geometry
being covered. This increases the selectivity of the primary filter, but also increases
the number of index entries per geometry. (See Section 14.3.2 and Section 14.3.3 for a
discussion of primary and secondary filters.) The SDO_NUMTILES value should be
larger for long linear spatial entities, such as major highways or rivers, than for
area-based spatial entities such as county or state boundaries.

The SDO_LEVEL column determines the size of the fixed tiles used in hybrid
indexing. Setting the proper SDO_LEVEL value may appear more like art than
science. Performing some simple data analysis and testing, however, puts the
process back in the realm of science. One approach would be use the SDO _
TUNE.ESTIMATE_TILING_LEVEL function to determine an appropriate starting
SDO_LEVEL value, and then compare the performance with slightly higher or
lower values. This and other techniques are described in Appendix A.

Assume that the ROADS layer has already been loaded. Furthermore, assume that
there is one row with valid values for the ROADS _SDOLAYER.SDO_LEVEL and
ROADS_SDOLAYER.SDO_NUMTILES columns. To create the spatial index on
ROADS, first create a table ROADS_SDOINDEX with appropriate columns:

SQ> create tabl e ROADS SDA NDEX
(
SDO @ D nunber,
SDO OCCE raw( 255),
SDO GRAUPAE raw( 255) ,
SDO MAXATE raw( 20),
SDO META raw( 255),

):

Then, invoke SDO_ADMIN.POPULATE_INDEX('ROADS") to build the spatial
index.

After the SDO_ADMIN.POPULATE_INDEX procedure has been called to fill the
spatial index, you should also create a concatenated index on the SDO_CODE and
SDO_GID columns. The concatenated index helps the join to the <layername>_
SDOGEOM table during a query. The SDO_GID values from the primary filter will
come from the index instead of from the table.

o~NOOThS WN

If a geometry with an SDO_GID 5944 has been added to the spatial tables, update
the index with the following procedure:

sdo_admin.update_index(ROADS, 5944);

Loading Spatial Data (Relational Model) 13-11



Index Creation

Like the CREATE INDEX statement in SQL, the SDO_ADMIN.POPULATE_INDEX
procedure performs an implicit commit operation. The SDO_ADMIN.UPDATE _
INDEX procedure, however, does not. Therefore, SDO_ADMIN.UPDATE_INDEX
transactions can be rolled back.

The SDO_ADMIN.POPULATE_INDEX procedure operates as a single transaction.
To reduce the amount of rollback space required to execute this procedure, you can
write a routine that loops and calls SDO_ADMIN.UPDATE_INDEX. See

Section A.2.1 for more information.

13-12 Oracle Spatial User's Guide and Reference



14

Querying Spatial Data (Relational Model)

This chapter describes how the structures of a Spatial layer are used to resolve
spatial queries and spatial joins. For the sake of clarity, the examples all use fixed
tiling. This chapter refers to the relational Spatial model only.

14.1 Query Model

Spatial uses a two-tier query model to resolve spatial queries and spatial joins. A
two-tier query means that two distinct operations are performed to resolve queries.
The output of both operations yields the exact result set.

The two operations are referred to as primary and secondary filter operations.

« The primary filter permits fast selection of a small number of candidate records
to pass along to the secondary filter. The primary filter uses approximations in
order to reduce computational complexity and is considered a lower-cost filter.

« The secondary filter applies exact computational geometry to the result set of
the primary filter. These exact computations yield the final answer to a query.
The secondary filter operations are computationally more expensive, but they
are applied only to the relatively small result set from the primary filter.

14.2 Spatial Index Data Structures

An important concept in the spatial data model is that each element is represented
in the <layername>_SDOINDEX table by a set of exclusive and exhaustive tiles.
This means that no tiles overlap each other (exclusive), and that the tiles fully cover
the object (exhaustive).

Consider the following layer containing several objects in Figure 14-1. Each object is
labeled with its SDO_GID. The relevant tiles are labeled with Tn.

Querying Spatial Data (Relational Model) 14-1



Spatial Index Data Structures

Figure 14-1 Tessellated Layer with Multiple Objects

T1 T2 T7
1013
501

T3 T4

\\\ 12

AN

T5 T6 T8 T9

1243

61

The Spatial layer tables would have the following information stored in them for
these geometries, as shown in Table 14-1, Table 14-2, and Table 14-3.

14-2 Oracle Spatial User's Guide and Reference



Spatial Index Data Structures

Table 14-1 <layername>_SDOLAYER Table

SDO_ORDCNT | SDO_LEVEL SDO_NUMTILES
(number) (number) (number)

4 2 NULL

Table 14-2 <layername>_SDOGEOM Table or View

SDO_GID SDO_ESEQ | SDO_ETYPE | SDO_SEQ SDO_X1 SDO_Y1 SDO_X2 SDO_Y2
(number) (number) (number) (number) (number) | (number) | (number) | (number)
1013 0 3 0 P1(X) P1(Y) P2(X) P2(Y)
1013 0 3 1 P2(X) P2(Y) P3(X) P3(Y)
1013 0 3 2 P3(X) P3(Y) P4(X) P4(Y)
1013 0 3 3 PA(X) PA(Y) P5(X) P5(Y)
1013 0 3 4 P5(X) P5(Y) P6(X) P6(Y)
1013 0 3 5 P6(X) P6(Y) P7(X) P7(Y)
1013 0 3 6 P7(X) P7(Y) P8(X) P8(Y)
1013 0 3 7 P8(X) P8(Y) P1(X) P1(Y)
1013 1 3 0 G1(X) G1(Y) G2(X) G2(Y)
1013 1 3 1 G2(X) G2(Y) G3(X) G3(Y)
1013 1 3 2 G3(X) G3(Y) G4(X) GA(Y)
1013 1 3 3 G4(X) GA(Y) G1(X) G1(Y)
501 0 3 0 AL(X) ALY) A2(X) A2(Y)
501 0 3 1 A2(X) A2(Y) A3(X) A3(Y)
501 0 3 2 A3(X) A3(Y) A4(X) A4(Y)
501 0 3 3 A4(X) A4(Y) AL(X) AL(Y)
1243 0 3 0 B1(X) B1(Y) B2(X) B2(Y)
1243 0 3 1 B2(X) B2(Y) B3(X) B3(Y)
1243 0 3 2 B3(X) B3(Y) B1(X) B1(Y)
12 0 2 0 D1(X) D1(Y) D2(X) D2(Y)
61 0 3 0 C1(X) C1(Y) C2(X) c2(Y)
61 0 3 1 C2(X) c2(Y) C3(X) c3(Y)
61 0 3 2 C3(X) C3(Y) C4(X) CA(Y)
61 0 3 3 C4(X) CA(Y) C5(X) C5(Y)
61 0 3 4 C5(X) C5(Y) C1(X) c1(Y)

Querying Spatial Data (Relational Model) 14-3



Spatial Query

Table 14-3 <layername>_SDOINDEX Table

SDO_GID SDO_CODE
(number) (raw)
1013 T1
1013 T2
1013 T3
1013 T4
501 T2
501 T7
1243 T3
1243 T4
1243 T5
1243 T6
12 T3
12 T4
61 T8
61 T9

14.3 Spatial Query

A typical spatial query is to request all objects that lie within a defined fence or
window. A query window is shown in Figure 14-2 by the dotted-line box. A
dynamic query window refers to a fence that is not defined in the database, but that
must be defined and indexed before it is used.

14-4 Oracle Spatial User's Guide and Reference



Spatial Query

Figure 14-2 Tessellated Layer with a Query Window

T1 T2 T7

501

T4

T5 T6 T8 T9

1243

61

14.3.1 Dynamic Query Window

If a query window does not already exist in the database, you must first insert it

Querying Spatial Data (Relational Model) 14-5



Spatial Query

and create an index for it. Because not all Oracle users necessarily have insert
privileges, Spatial includes the SDO_WINDOW PL*SQL package. See Chapter 18,
"Window Functions and Procedures for Relational Model", for more information.

The SDO_WINDOW package is not automatically installed when you install
Spatial. This allows a DBA to control the schema under which this package
operates. Choose an Oracle user who has insert privilege and compile the SDO _
WINDOW package under that user. For example, you could choose the MDSYS
Oracle user:

sql pl us masys/ passwor d
SQ> @RACLE_ HOME nad/ admi n/ sdowi n. sgl
SQA> @GORACLE HOWE nd/ admi n/ prvtwi n. pl b

After compiling, the routines are available for use. When you call a routine in this
package, and the routine performs an INSERT operation, the insertion will occur
under the MDSYS schema. Note that it is not a requirement to use the MDSYS
account. You can select any Oracle user with insert privileges.

If you need to perform other INSERT, UPDATE, or DELETE operations, and you
cannot guarantee that the user of your application has those privileges, you can
write your own PL*SQL package similar to the SDO_WINDOW package. You will
have to compile your package under a user with the required database privileges.

14.3.2 Primary Filter Query

To resolve the window query shown in Figure 14-2, build a layer for the query
fence if it is not already defined:

1> BXEQUTE MOSYS. SDO W NDON CREATE. WNDOW LAYER (f encel ayer, D MMM, LBL,

WBl, TALERANCEL, D MNAMEL, DI MNUME, LB2, UR2, TAERANCE2, D MNAME?);

Next, insert the ordinates for the query fence into the layer tables:

Q> BEXEQUTE DBMS_QUTPUT. PUT_LI NE( MDSYS. SDO WNDOW BU LD WNDOW FI XELD conp_user ,
fencel ayer, SDO ETYPE TILE SIZE Xi,Y1, X2,Y2, X3,Y3, X4,Y4, XiY1));

Query SDO_LEVEL from the <fencelayer>_SDOLAYER table to pass the correct

TILE_SIZE to the SDO_WINDOW.BUILD_WINDOW_FIXED procedure.

Now you can construct a query that joins the index of the query window to the
appropriate layer index and determines all elements that have these tiles in
common. The following SQL query form is used:

SHECT DSTINCT ASDO QD

14-6 Oracle Spatial User's Guide and Reference



Spatial Query

FROM <l ayer 1> SDA NDEX A, <fencel ayer > SDO NDEX B
WHERE A SDO GCCE = B. SDO G
AND B SDOAD = {A@Dreturned from SDO WNDONBU LD WNDON FIl XE} ;

The result set of this query is the primary filter set. In this case, the result set is:
{ 1013,501, 1243, 12 }

14.3.3 Secondary Filter Query

The secondary filter performs exact geometry calculations of the tiles selected by the
primary filter. The following example shows the primary and secondary filters:

SHECT SDO X1, SDOY1, SDO X2, SO Y2, SO X3, SDO VY3, SDO X4, SDO Y4
FROM <l ayer 1> SDOECM

(
SELECT SLO@D@nt

FROM (
SHECT DSTINCT ASDOAD
FROM <l ayer 1> SDQO NDEX A
<f encel ayer > _SDO NCEX B
WHERE A SDO OCCE = B. SDO ODE
AND B.SDOAD = {A@Dreturned from SDO WNDONBU LD WNDON Fl XED}

)
WHERE SDO_GEOM RELATE(<layerl>, SDO_GID, ANYINTERACT, '<fence>', 1) =

TRUE

)
WHERE SDO_GID =GID1;

This query would return all the geometry IDs that lie within or overlap the window.
In this example, the results of the secondary filter would be:

{1243,1013}

The example in this section uses the SDO_GEOM.RELATE secondary filter. For
better performance, use the overloaded version of this function, which explicitly

lists the coordinates of the query window whenever possible. See Chapter 17 for
details on using this function.

Querying Spatial Data (Relational Model) 14-7



Spatial Join

14.4 Spatial Join

A spatial join is the same as a regular join except that the predicate involves a
spatial operator. In Spatial, a spatial join takes place between two layers; specifically,
two <layername>_SDOINDEX tables are joined.

Spatial joins can be used to answer questions such as, Which highways cross national
parks?

This query could be resolved by joining a layer that stores national park geometries
with one that stores highway geometries. Figure 14-3 illustrates how the join would

be accomplished for this example using the OGIS V1 schema model.

Figure 14-3 Spatial Join of Two Layers

User -
Defined A PARKS:

Actribute | [Nave|a Dfcavesi TE#|. ..
Tabl es

H GHWAYS;
[nave | G D|woTH| .

Spati al
Dat a PARKS_SDODI M
Structures |um|u3 |UB |TO|_|NA|\/E|

PARKS_SDOGEOM
| ap [eseq| ETvPE[sEQ [x1 |v1 |

PARKS_SDOl NDEX:
v| G D |CODE|NAX |

HI GHWAYS_SDODI M
| D|M|LB |UB |TOL|NA|\/E|

H GHWAYS SDOGEOM
| @b [EeseQ| Ervre[seq [xa [v1]

HI GHWAYS_SDO NDEX:
| @D |CODE||\/Ax |

The primary filter would identify pairs of park GIDs and highway GIDs that cross
in the index. The query that performs the primary filter join (assuming fixed-size

tile indexing) is as follows:

SELECT DI STINCT A SO @D, B.SDO @ D

FRCOM PARKS _SDA NDEX A H GAWAYS _SDAO NDEX B

WHERE A SDO GCCE = B. SDO GE

14-8 Oracle Spatial User's Guide and Reference



Spatial Join

The result set of the primary filter must be passed through the secondary filter to
get the exact set of parks/highways GID pairs that cross. The full query is shown in
the following example:

SELECT DISTINCT GID_B —
FROM (
SELECT /*+ index(a PARKS_SDOINDEX_SDO_CODE_INDEX)
index(b HIGHWAYS_SDOINDEX_SDO_CODE_INDEX)
use_nl(a b) Filter
no_merge */
DISTINCT A.SDO_GID GID_A, B.SDO_CODE GID_B
FROM PARKS_SDOINDEX A, HIGHWAYS_SDOINDEX B
WHERE A.SDO_CODE =B.SDO_CODE -

)
WHERE SDO_GEOM.RELATE ('PARKS’, GID_A, -+
"ANYINTERACT’, Secondary
'HIGHWAYS’, GID_B) <>'FALSE’; -g—1 Filter

Primary

Suppose the original query had asked, Which 4-lane highways cross national parks?
You could modify the preceding SQL statement to join back to the HIGHWAYS
table where HIGHWAYS.WIDTH=4. This combination of spatial and relational
attributes in a single query is one of the essential reasons for using Spatial.

Querying Spatial Data (Relational Model) 14-9



Spatial Join

14-10 Oracle Spatial User's Guide and Reference



15

Administrative Functions and Procedures

for Relational Model

The SDO_ADMIN procedures create and maintain spatial structures in the
database, and they are used to perform the following tasks:

« Tessellate entries in a geometry table and place them in a spatial index table

« \erify spatial index information

This chapter contains descriptions of the administrative functions and procedures
used for working with spatially indexed geometric data. This chapter refers to the

relational Spatial model only.

Table 15-1 lists the administrative functions and procedures for working with
spatially indexed geometry-based data.

Table 15-1 Administrative Procedures for Spatially Indexed Data

Procedure or Function

Description

SDO_ADMIN.POPULATE_INDEX

Generates a spatial index for the geometry table

SDO_ADMIN.POPULATE_INDEX_
FIXED

SDO_ADMIN.POPULATE_INDEX_
FIXED_POINTS

SDO_ADMIN.SDO_CODE_SIZE

SDO_ADMIN.SDO_VERSION

Administrative Functions and Procedures for Relational Model

using either a set number of tiles or a fixed-size tile.

Generates a spatial index using fixed-size tiles. This
is a deprecated procedure.

Generates a spatial index using fixed-size tiles for a
layer composed solely of point data.

Determines the required sizes for SDO_CODE and
SDO_MAXCODE.

Returns the release number of the installed version
of Spatial.

15-1



Table 15-1 Administrative Procedures for Spatially Indexed Data (Cont.)

Procedure or Function Description

SDO_ADMIN.UPDATE_INDEX Updates the spatial index based on changes to the
geometry table.

SDO_ADMIN.UPDATE_INDEX _ Updates a spatial index with fixed-size tiles. This is a

FIXED deprecated procedure.

SDO_ADMIN.VERIFY_LAYER Checks for the existence of geometry and spatial
index tables.

15-2 Oracle Spatial User's Guide and Reference



SDO_ADMIN.POPULATE_INDEX

SDO_ADMIN.POPULATE_INDEX

Format
SDO_ADMIN.POPULATE_INDEX (layername)

Description

Tessellates a list of geometric objects created by selecting all the entries in the
geometry table that do not have corresponding entries in the spatial index table.

This procedure can generate either fixed-size or variable-sized tiles depending on
values stored in the <layername>_SDOLAYER table.

Keywords and Parameters

layername Specifies the name of the data set layer. The layer name is used to construct
the names of the geometry and spatial index tables.
Data type is VARCHAR?2.

Usage Notes
Consider the following when using this procedure;
« The <layername>_SDOINDEX table must be created before calling this

procedure. Use the SQL CREATE TABLE statement to create the spatial index
table.

« For performance reasons, create an index on the SDO_GID column in the
<layername>_SDOGEOM table before calling this procedure.

« This procedure generates either fixed-size or variable-sized tiles depending on
values stored in the <layername>_SDOLAYER table as follows:

SDO_LEVEL SDO_NUMTILES  Action
NULL NULL Error.

>=1 NULL Perform fixed-size tiling (recommended for
relational model).

Administrative Functions and Procedures for Relational Model 15-3



SDO_ADMIN.POPULATE_INDEX

Related Topics

SDO_LEVEL SDO_NUMTILES Action

>=1

>=1 Perform hybrid indexing. The SDO_LEVEL
column defines the partition bucket size. The
SDO_NUMTILES column defines the number
of tiles to generate per geometry.

Note: Hybrid indexing is for experimentation
purposes only in the relational model.

NULL >=1 Not supported.

If the <layername>_SDOINDEX table is empty, the procedure selects all the
geometries in the geometry table and generates index entries for them. If the
index table is not empty, the procedure determines which entries in the
geometry table do not have index entries, and generates them.

SDO_ADMIN.POPULATE_INDEX behaves similarly to the CREATE INDEX
statement in SQL. An implicit commit operation is executed after the procedure
is called.

SDO_ADMIN.POPULATE_INDEX operates as a single transaction. To reduce
the number of rollback operations required to execute this procedure, you can
write a routine that loops and calls SDO_ADMIN.UPDATE_INDEX repeatedly.
See Section A.2.1 for more information.

Example 15-1 tessellates all the geometric objects in the LAYER1 SDOGEOM table

and

adds the generated tiles to the LAYER1 _SDOINDEX table.

Example 15-1 Populate an Index

SQL>EXECUTE SDO_ADMIN.POPULATE_INDEX(layerl);
SQL>COMMIT;

SDO_ADMIN.UPDATE_INDEX

15-4 Oracle Spatial User's Guide and Reference



SDO_ADMIN.POPULATE_INDEX_FIXED

SDO_ADMIN.POPULATE_INDEX_FIXED

Format

SDO_ADMIN.POPULATE_INDEX_FIXED (layername, tile_size, [synch_flag,] [sdo tile flag,]
[sdo_maxcode_flag])

Description

Provided for compatibility with Spatial Cartridge release 8.0.3 tables, but it has been
replaced by enhanced features in the SDO_ADMIN.POPULATE_INDEX procedure,
in order to support schema changes as shown in Section 12.1.

This procedure tessellates a list of geometric objects created by selecting all the
entries in the geometry table that do not have corresponding entries in the spatial
index table. This procedure can also tessellate all the geometric objects in a
geometry table or view and add the tiles to the spatial index table.

Use this procedure to tessellate the geometries into fixed-size tiles.

Keywords and Parameters

layername

tile_size

synch_flag

sdo_tile_flag

sdo_
maxcode_flag

Specifies the name of the data set layer. The layer name is used to construct
the name of the geometry and spatial index tables.
Data type is VARCHAR2.

Specifies the number of tessellations required to achieve the desired tile size
(see the Usage Notes).
Data type is INTEGER.

Specifies whether to tessellate every geometric object in the geometry table, or
only those that do not have corresponding entries in the spatial index table. If
TRUE, only those geometric objects in the geometry table that do not have
any corresponding tiles in the spatial index table are tessellated. If FALSE, all
the geometric objects in the geometry table are tessellated, and new tiles are
added to the spatial index table.

Data type is BOOLEAN. Default = TRUE.

For internal use only. Not supported in this release.
Default = FALSE.

Specifies whether or not the SDO_MAXCODE column is populated. If TRUE,
SDO_MAXCODE is populated. If FALSE, the column is not populated. Set
this flag to FALSE for the recommended fixed-size tiling.

Data type is BOOLEAN. Default = TRUE.

Administrative Functions and Procedures for Relational Model 15-5



SDO_ADMIN.POPULATE_INDEX_FIXED

Usage Notes

Note: This procedure is likely to be removed in a future release of
Spatial.

Consider the following when using this procedure;

« The SQL CREATE TABLE statement is used to create the spatial index table,
<layername>_SDOINDEX, before calling this procedure.

« The layer is tessellated into equal-sized tiles based on the number passed in the
tile_size parameter. The value of tile_size specifies how many times to tessellate
the layer. See Section 13.3.2.

« For performance reasons, set the synch_flag to FALSE when the spatial index
table contains zero rows.

« For performance reasons, create an index on the SDO_GID column in the
<layername>_SDOGEOM table before calling this procedure.

« SDO_ADMIN.POPULATE_INDEX_FIXED behaves similarly to the CREATE
INDEX statement in SQL. An implicit commit operation is executed after the
procedure is called.

« SDO_ADMIN.POPULATE_INDEX_FIXED operates as a single transaction. To
reduce the number of rollback operations required to execute this procedure,
you can write a routine that loops and calls SDO_ADMIN.UPDATE_INDEX_
FIXED repeatedly. See Section A.2.1 for more information.

Example 15-2 tessellates all the geometric objects in the LAYERL SDOGEOM table
using fixed-size tiles, and adds the generated tiles to the LAYER1 SDOINDEX table.

15-6 Oracle Spatial User's Guide and Reference



SDO_ADMIN.POPULATE_INDEX_FIXED

Example 15-2 Populate an Index with Fixed-Size Tiles
SQL>EXECUTE SDO_ADMIN.POPULATE_INDEX_FIXED(layerl',4,FALSE FALSE,FALSE);

Related Topics
. SDO_ADMIN.UPDATE_INDEX_FIXED

« SDO_TUNE.ESTIMATE_TILING_LEVEL

Administrative Functions and Procedures for Relational Model 15-7



SDO_ADMIN.POPULATE_INDEX_FIXED_POINTS

SDO_ADMIN.POPULATE_INDEX_FIXED_POINTS

Format
SDO_ADMIN.POPULATE_INDEX_FIXED_POINTS (layername, sdo_tile_flag, commit_count)

Description

Builds an index with fixed-size tiles for a geometry layer consisting solely of point
data. Because a point is indexed using a single tile, special optimizations are
possible.

Keywords and Parameters

layername Specifies the name of the data set layer.
Data type is VARCHAR?2.

sdo_tile_flag Specifies whether or not to generate the SDO_TILE column.
Data type is BOOLEAN. Default = FALSE.

commit_count Specifies how many points to index before updating and committing the
data.
Data type is NUMBER. Default = 50.

Usage Notes
Consider the following when using this procedure;

« The <layername>_ SDOLAYER, <layername>_SDOGEOM, and <layername>_
SDODIM tables must be populated before calling this procedure.

« The <layername>_SDOINDEX table must be created before calling this
procedure. Use the SQL CREATE TABLE statement to create the spatial index
table.

« For performance reasons, create an index on the SDO_GID column in the
<layername>_SDOGEOM table before calling this procedure.

« Ifthe <layername>_ SDOINDEX table is empty, the procedure selects all the
geometries in the geometry table and generates index entries for them. If the
index table is not empty, the procedure determines which entries in the
geometry table do not have index entries, and generates them.

15-8 Oracle Spatial User's Guide and Reference



SDO_ADMIN.POPULATE_INDEX_FIXED_POINTS

Example 15-3 tessellates all the points in the LAYER1 SDOGEOM table and adds
the generated tiles to the LAYER1 SDOINDEX table. This example commits after
every 100 points.

Example 15-3 Populate an Index with Fixed-Size Tiles Based on Point Data
SQL>EXECUTE SDO_ADMIN.POPULATE_INDEX_FIXED_POINTS(layerl’, FALSE, 100);

Related Topics
. SDO_ADMIN.UPDATE_INDEX

Administrative Functions and Procedures for Relational Model 15-9



SDO_ADMIN.SDO_CODE_SIZE

SDO_ADMIN.SDO_CODE_SIZE

Format
SDO_ADMIN.SDO_CODE_SIZE (layername)

Description

Determines the size that the SDO_MAXCODE column should be in the
<layername>_SDOINDEX table.

Keywords and Parameters

layername Specifies the name of the data set layer.
Data type is VARCHAR2.

Returns

This function returns the required size in bytes for the SDO_MAXCODE column.
Data type is INTEGER.

Usage Notes

The SDO_CODE column is used to store the bit-interleaved cell ID of a tile that
covers a geometry. The SDO_MAXCODE column is SDO_CODE padded out one
place farther than the longest allowable code name for the index. Both columns are
defined as RAW data types, with a maximum of 255 bytes. Use the SDO_ADMIN.
SDO_CODE_SIZE function to fine-tune the size of the column.

Always declare the SDO_CODE column to raw(255).

Related Topics
None.

15-10 Oracle Spatial User's Guide and Reference



SDO_ADMIN.SDO_VERSION

SDO_ADMIN.SDO_VERSION

Format
SDO_ADMIN.SDO_VERSION

Description
Returns the current installed version of Spatial.

Keywords and Parameters
None.

Returns

This function returns a string describing the version of Spatial installed on the local
system.
Data type is VARCHAR2.

Usage Notes
The following version strings can be returned:

8.0.5.0.0
8.1.0.0.0
8.1.3.0.0
8.1.5.0.0
8.1.6.0.0

This information is useful when migrating data between systems, or when
upgrading. See Appendix B for more information about migration.

Related Topics
None.

Administrative Functions and Procedures for Relational Model 15-11



SDO_ADMIN.UPDATE_INDEX

SDO_ADMIN.UPDATE_INDEX

Format
SDO_ADMIN.UPDATE_INDEX (/ayername, GID)

Description

Tessellates a single geometric object in a geometry table or view and adds the tiles
to the spatial index table. If the object already exists and has index entries, those
entries are deleted and replaced by the newly generated tiles.

Keywords and Parameters

layername Specifies the name of the data set layer. The layer name is used to
construct the name of the geometry table.
Data type is VARCHAR?2.

GID Specifies the geometric object identifier.
Data type is NUMBER.

Usage Notes
Consider the following when using this procedure:

« The <layername>_SDOINDEX table must exist before calling this procedure.
Use the SQL CREATE TABLE statement to create the spatial index table.

« For performance reasons, create an index on the SDO_GID column in the
<layername>_SDOGEOM table before calling this procedure.

« The values of the SDO_LEVEL and SDO_NUMTILES columns must be set in
the <layername>_SDOLAYER table before calling this procedure. This
procedure generates either fixed-size or hybrid tiles depending on values stored
in the <layername>_SDOLAYER table as follows:

SDO_LEVEL SDO_NUMTILES Action
NULL NULL Error.
>=1 NULL Perform indexing with fixed-size tiles

(recommended for the relational model).

15-12 Oracle Spatial User's Guide and Reference



SDO_ADMIN.UPDATE_INDEX

Related Topics

SDO_LEVEL SDO_NUMTILES Action

>=1 >=1 Perform hybrid indexing. The SDO_LEVEL
column defines the partition bucket size. The
SDO_NUMTILES column defines the number
of tiles to generate per geometry.
Note: Hybrid indexing is for experimentation
purposes only in the relational model.

NULL >=1 Not supported.

« SDO_ADMIN.UPDATE_INDEX does not perform an implicit commit operation
after it executes; therefore, the transaction can be rolled back.

Example 15-4 tessellates the polygon for geometry 25 and adds the generated tiles
to the LAYER1_SDOINDEX table.

Example 15-4 Update an Index

SQL> EXECUTE SDO_ADMIN.UPDATE_INDEX(layer’, 25);
SQL>COMMIT;

« SDO_ADMIN.POPULATE_INDEX

Administrative Functions and Procedures for Relational Model 15-13



SDO_ADMIN.UPDATE_INDEX_FIXED

SDO_ADMIN.UPDATE_INDEX_FIXED

Format

SDO_ADMIN.UPDATE_INDEX_FIXED (layername, GID, tile_size, [replace_flag,] [sdo_tile_flag] [sdo
maxcode_flag])

Description

Provided for compatibility with Spatial Cartridge release 8.0.3 tables, but it has been
replaced by enhanced features in the SDO_ADMIN.UPDATE_INDEX procedure to
support schema changes as shown in Section 12.1.

This procedure tessellates a single geometric object in a geometry table or view and
adds the fixed-sized tiles to the spatial index table. By default, these tiles will
replace existing ones for the same geometry; or optionally, existing tiles can be left
alone.

Keywords and Parameters

layername Specifies the name of the data set layer. The layer name is used to
construct the name of the geometry table.
Data type is VARCHAR2.

GID Specifies the geometric object identifier.
Data type is NUMBER.

tile_size Specifies the number of tessellations required to achieve the desired
fixed-size tiles. Each tessellation subdivides the tiles from the previous
level into four smaller tiles.
Data type is INTEGER.

replace_flag Specifies whether or not to delete tiles for the GID before adding new
ones. If TRUE, tiles are deleted before new entries are inserted into the
spatial index table. If FALSE, new tiles are added to the spatial index

table.
Data type is BOOLEAN. Default = TRUE.
sdo_tile_flag For internal use only. Not supported in this release.

Data type is BOOLEAN. Default = FALSE.

sdo_maxcode_flag Specifies whether or not the SDO_MAXCODE column is populated. If
TRUE, SDO_MAXCODE is populated. If FALSE, the column is not
populated. Set this flag to FALSE for the recommended indexing with
fixed-size tiles.
Data type is BOOLEAN. Default = TRUE.

15-14 Oracle Spatial User's Guide and Reference



SDO_ADMIN.UPDATE_INDEX_FIXED

Usage Notes

Note: This procedure is likely to be removed in a future release of
Spatial.

Consider the following when using this procedure;

« For performance reasons, set the replace_flag to FALSE when the spatial index
table contains no entries for the specified GID.

« For performance reasons, create an index on the SDO_GID column in the
<layername>_SDOGEOM table before calling this procedure.

« SDO_ADMIN.UPDATE_INDEX_ FIXED does not perform an implicit commit
operation after it executes; therefore, this transaction can be rolled back.

Example 15-5 tessellates the polygon for geometry 25 and adds the generated tiles
to the LAYER1_SDOINDEX table.

Example 15-5 Update an Index with Fixed-Size Tiles
SQL>EXECUTE SDO_ADMIN.UPDATE_INDEX_FIXED (layerl’,254,FALSE FALSE FALSE);

Related Topics
. SDO_ADMIN.POPULATE_INDEX_FIXED

« SDO_TUNE.ESTIMATE_TILING_LEVEL

Administrative Functions and Procedures for Relational Model 15-15



SDO_ADMIN.VERIFY_LAYER

SDO_ADMIN.VERIFY_LAYER

Format
SDO_ADMIN.VERIFY_LAYER (layername,[maxtiles])

Description
Checks for the existence of the geometry and spatial index tables.

Keywords and Parameters

layername  Specifies the name of the data set layer. The layer name is used to
construct the name of the geometry and spatial index tables.
Data type is VARCHAR?2.

maxtiles For internal use only. Not supported in this release.

Usage Notes

If this procedure does not find the geometry and spatial index tables, it generates
the following error: SDO 13113 (Oracle table does not exist.)

Example 15-6 verifies the LAYER1 data set layer.

Example 15-6 \Verify a Layer
SQL> EXECUTE SDO_ADMIN.VERIFY_LAYER(layerl’);

Related Topics
None.

15-16 Oracle Spatial User's Guide and Reference



16

Tuning Functions and Procedures for

Relational Model

This chapter contains descriptions of the tuning functions and procedures shown in
Table 16-1. This chapter refers to the relational Spatial model only.

Table 16—1 Tuning Functions and Procedures

Function/Procedure

Description

SDO_TUNE.AVERAGE_MBR
SDO_TUNE.ESTIMATE_INDEX_
PERFORMANCE
SDO_TUNE.ESTIMATE_TILING_LEVEL

SDO_TUNE.ESTIMATE_TILING_TIME
SDO_TUNE.EXTENT_OF

SDO_TUNE.HISTOGRAM_ANALYSIS

SDO_TUNE.MIX_INFO

Calculates the average minimum bounding
rectangle for geometries in a layer.

Estimates the spatial index selectivity.

Determines an appropriate tiling level for
creating fixed-size index tiles.

Estimates the tiling time for a layer, in seconds.

Determines the minimum bounding rectangle
of the data in a layer.

Calculates statistical histograms for a spatial
layer.

Calculates geometry type information for a
spatial layer, such as the percentage of each

geometry type.

Tuning Functions and Procedures for Relational Model 16-1



SDO_TUNE.AVERAGE_MBR

SDO_TUNE.AVERAGE_MBR

Format
SDO_TUNE.AVERAGE_MBR (layername, width, height)

Description
Calculates the average minimum bounding rectangle (MBR) for all geometries in a

layer.

Keywords and Parameters

layername Specifies the name of the data set layer to examine.
Data type is VARCHAR2.

width Returns the width of the average MBR.
Data type is OUT NUMBER.

height Returns the height of the average MBR.

Data type is OUT NUMBER.

Returns

This function returns the width and height of the average MBR for all geometries in
a layer.

Usage Notes

This function calculates the average MBR by keeping track of the maximum and
minimum X and Y values for all geometries in a layer.

16-2 Oracle Spatial User's Guide and Reference



SDO_TUNE.ESTIMATE_INDEX_PERFORMANCE

SDO_TUNE.ESTIMATE_INDEX_PERFORMANCE

Format

SDO_TUNE.ESTIMATE_INDEX_PERFORMANCE (layername, sample_ratio, tiling_level,
num_tiles, window _layer, window _gid, tiling_time, filter_time, query_time)

Description

Estimates the spatial index performance such as query selectivity and window
query time for a layer.

Keywords and Parameters

layername

sample_ratio

tiling_level
num_tiles

window_layer

window_gid
tiling_time
filter_time

query_time

Returns

Specifies the name of the data set layer to examine.
Data type is VARCHAR2.

Specifies the size ratio between the original layer and the sample layer
to be generated.

Data type is INTEGER.

Default is 20.

Specifies the spatial index level at which the layer is to be tessellated.
Data type is INTEGER.

Specifies the number of tiles for variable or hybrid tessellation.
Data type is INTEGER.

Specifies the name of the spatial layer in which the window geometry
is stored.
Data type is VARCHAR2.

Specifies the window geometry ID.
Data type is NUMBER.

Returns the estimated tiling time in seconds.
Data type is OUT NUMBER.

Returns the estimated spatial index filter time in seconds.
Data type is OUT NUMBER.

Returns the estimated window query time in seconds.
Data type is OUT NUMBER.

This function returns a number between 0.0 and 1.0 representing estimated spatial
index selectivity. It also returns the estimated tiling time, filter time, and query time.

Tuning Functions and Procedures for Relational Model 16-3



SDO_TUNE.ESTIMATE_INDEX_PERFORMANCE

Data type for these variables is NUMBER.

Usage Notes

« Alarger selectivity number indicates better selectivity. A selectivity of 0.0
indicates an error.

« Alarger sample_ratio means faster but less accurate estimation.

16-4 Oracle Spatial User's Guide and Reference



SDO_TUNE.ESTIMATE_TILING_LEVEL

SDO_TUNE.ESTIMATE_TILING_LEVEL

Format

SDO_TUNE.ESTIMATE_TILING_LEVEL (layername, maxtiles, type_of estimate)

Description

Estimates the appropriate tiling level to use when indexing with fixed-size tiles.

Keywords and Parameters

layername

maxtiles

type_of estimate

Returns

Specifies the name of the data set layer to examine.
Data type is VARCHAR2.

Specifies the maximum number of tiles that can be used to index the
rectangle defined by the type_of_estimate parameter.
Data type is INTEGER.

Indicates by keyword one of three different models. Specify the type
of estimate with one of the following keywords:

= LAYER_EXTENT -- Use the rectangle defined by your coordinate
system.

e ALL_GID_EXTENT -- Use the minimum bounding rectangle that
encompasses all the geometric objects within the layer. Recom-
mended for most applications.

= AVG_GID_EXTENT -- Use a rectangle representing the average
size of the individual geometries within the layer. This option per-
forms the most extensive analysis of the three types.

This function returns an integer representing the level to use when creating a spatial
index for the specified layer.

Usage Notes

The SDO_ADMIN.POPULATE_INDEX and SDO_ADMIN.UPDATE_INDEX
procedures are used to create or update the spatial index using fixed-size or hybrid
indexing. Store the value returned by the SDO_TUNE.ESTIMATE_TILING_LEVEL
function in the SDO_LEVEL column of the <layername>_SDOLAYER table before
building the spatial index.

Tuning Functions and Procedures for Relational Model 16-5



SDO_TUNE.ESTIMATE_TILING_LEVEL

The maxtiles parameter specifies the maximum number of tiles that should be used
to define a grid covering the rectangular extent of interest. This extent could be:

« Defined in the <layername>_SDODIM table, which defines the bounds of the
coordinate system

« Defined by the minimum and maximum coordinates for the given data set (as
returned by the SDO_TUNE.EXTENT_OF procedure)

« Defined by computing the average bounds of the objects in the
<layername>_SDOGEOM table

The code shown in Example 16-1 generates a recommendation based on the extent
of the defined coordinate system (-90 to +90 latitude and -180 to +180 longitude).
This example returns a level whose tiles are not smaller than one-degree cells.

Example 16-1 Recommended Tile Level for One-Degree Latitude/Longitude Cells

set serverout put on
decl are
tiling_level integer;

begi n

tiing_level :=mdsys.sdo_tune.estimate_tiing_level(WORLD_CITIES,

360180, LAYER_EXTENT);

dbms_outputput_line(VALUE is || tiing_level);

end;

For most applications, however, it is more effective to call the SDO _
TUNE.ESTIMATE_TILING_LEVEL function using the ALL_GID_EXTENT estimate
type with a maxtiles value of 10,000. In Example 16-2, assume the data set consists of
block groups for San Francisco and that the <layername>_SDODIM table defines
the extent to be one that covers all of California. Because the data set is localized to
a small subregion of this extent, ALL_GID_EXTENT is the appropriate estimate
type. The recommended tiling level in this case will be such that at most, 10,000 tiles
will be required to completely cover the extent of San Francisco block groups.

Example 16-2 Recommended Tile Level Based on the GIDs of All Geometries

set serveroutput on
decl are
tiling_level integer;
begi n
tiing_level= mdsys.sdo_tune.estimate _tiing level(SF_BLOCK_GROUPS,,
10000,’ALL._GID_EXTENT);
doms_outputput_line(VALUE is' || tiing_level);

16-6 Oracle Spatial User's Guide and Reference



SDO_TUNE.ESTIMATE_TILING_LEVEL

Related Topics

end;

The third type of estimate helps determine the tiling level that should be used such
that on average, the maxtiles parameter defines the number of tiles to cover the
extent of a single geometry in the layer. This estimate type requires the most
computation of the three because the bounding rectangle of every geometry is used
in calculating the average extent. In Example 16-3, eight tiles on average are used to
cover any block group in San Francisco.

Example 16-3 Recommended Tile Level Based on Average Extent of All Geometries

set serverout put on
decl are
tiling_level integer;
begi n
tiing_level :=mdsys.sdo_tune.estimate_tiling _level(SF_BLOCK_GROUPS, 8,
'AVG_GID_EXTENTY;
doms_outputput_line(Tiling level value is’ || tiing_level);
end;

« SDO_ADMIN.POPULATE_INDEX

« SDO_ADMIN.UPDATE_INDEX

. SDO_TUNE.EXTENT_OF

« Section A.1.2, "Understanding the Tiling Level"

= Section A.1.5, "Visualizing the Spatial Index (Drawing Tiles)"

Tuning Functions and Procedures for Relational Model 16-7



SDO_TUNE.ESTIMATE_TILING_TIME

SDO_TUNE.ESTIMATE_TILING_TIME

Format
SDO_TUNE.ESTIMATE_TILING_TIME (layername, sample_ratio, tiling_level, num_tiles)

Description
Returns the estimated time to tessellate a layer.

Keywords and Parameters

layername Specifies the name of the data set layer to examine.
Data type is VARCHAR2.
sample_ratio Specifies the size ratio between the original layer

and the sample layer to be generated.
Data type is INTEGER.
Default is 20.

tiling_level Specifies the spatial index level at which the layer
is to be tessellated.
Data type is INTEGER.

num_tiles Specifies the number of tiles for variable or hybrid
tessellation.
Data type is INTEGER.

Returns

This function returns the estimated tiling time in seconds. A return of 0 indicates an
error.

Data type is NUMBER.

Usage Notes
None.

16-8 Oracle Spatial User's Guide and Reference



SDO_TUNE.EXTENT_OF

SDO_TUNE.EXTENT_OF

Format
SDO_TUNE.EXTENT_OF (layername, min_X, max_X, min_Y, max_Y)

Description

Determines the extent of all geometries in a layer.

Keywords and Parameters

layername Specifies the name of the data set layer. The layer
name is used to construct the name of the
geometry and spatial index tables.
Data type is VARCHAR2.

min_X Minimum X value of the bounding rectangle.
Data type is NUMBER.

max_X Maximum X value of the bounding rectangle.
Data type is NUMBER.

min_Y Minimum Y value of the bounding rectangle.
Data type is NUMBER.

max_Y Maximum Y value of the bounding rectangle.

Data type is NUMBER.

Returns

This function returns the coordinates of the minimum bounding rectangle for all
geometric data in a layer.

Data type is NUMBER for the four return values.

Usage Notes
None.

Related Topics
. SDO_TUNE.ESTIMATE_TILING_LEVEL function

Tuning Functions and Procedures for Relational Model 16-9



SDO_TUNE.HISTOGRAM_ANALYSIS

SDO_TUNE.HISTOGRAM_ANALYSIS

Format

SDO_TUNE.HISTOGRAM_ANALYSIS (layername, result_table, type_of_histogram,

max_value, intervals)

Description

Generates statistical histograms based on a layer.

Keywords and Parameters

layername

result_table

type_of_histogram

max_value

intervals

Returns

Specifies the name of the spatial data set layer to examine.
Data type is VARCHAR2.

Specifies the name of the result table where the histogram will
be stored.
Data type is VARCHAR2.

Specifies one of the following types of histograms:
e TILES VS_LEVEL (default)

e GEOMS_VS_AREA

e GEOMS_VS TILES

e GEOMS_VS_VERTICES

Data type is VARCHAR2.

Specifies the upper limit of the histogram.
Data type is NUMBER.

Specifies the number of intervals between 0 and max_value.
Data type is INTEGER.

This procedure populates the result table with statistical histograms for a spatial

layer.

Usage Notes

You must create the result table before calling this procedure. The table has the

following format:

CREATE TABLE hi st ogram (val ue NUMBER count NUMBER);

16-10 Oracle Spatial User's Guide and Reference



SDO_TUNE.HISTOGRAM_ANALYSIS

The following types of histograms are available:

TILES VS _LEVEL Provides the number of tiles at different spatial index
levels. (Available only with hybrid indexes.) This
histogram is used to evaluate the spatial index that is
already built on the layer.

GEOMS_VS_AREA Provides the number of geometries in different size
ranges. The shape of this histogram could be helpful in
choosing a proper index type and index level.

GEOMS_VS TILES Provides the number of geometries in different
number-of-tiles ranges. This histogram is used to
evaluate the spatial index that is already built on the
geometry column.

GEOMS_VS VERTICES Provides a histogram of the geometry count against the
number of vertices. This histogram could help determine
if spatial index selectivity is important for the layer.
Because the number of vertices determines the
performance of the secondary filter, selectivity of the
primary filter could be crucial for layers that contain
many complicated geometries.

Tuning Functions and Procedures for Relational Model 16-11



SDO_TUNE.MIX_INFO

SDO_TUNE.MIX_INFO

Format
SDO_TUNE.MIX_INFO (layername)

Description
Provides the number of geometries of each type stored in the layer.

Keywords and Parameters

layername Specifies the name of the spatial data set layer to
examine.
Data type is VARCHAR2.

Returns

This function calculates geometry type information for the layer. It returns the
number of geometries of different type, as well as the percentages of points, line
strings, polygons, and complex geometries.

Usage Notes
None.

16-12 Oracle Spatial User's Guide and Reference



17

Geometry Functions and Procedures for
Relational Model

This chapter contains descriptions of the geometric functions and procedures
shown in Table 17-1. This chapter refers to the relational Spatial model only.

Table 17-1 Geometric Functions and Procedures

Function/Procedure Description

SDO_GEOM.RELATE Determines how two objects interact.
SDO_GEOM.VALIDATE_GEOMETRY Determines if a geometry is valid.
SDO_GEOM.VALIDATE_LAYER Determines if all geometries in a layer are valid.

Geometry Functions and Procedures for Relational Model 17-1



SDO_GEOM.RELATE

SDO_GEOM.RELATE

Format

SDO_GEOM.RELATE (layernamel, SDO_GID1, mask, [layernameZ2,] SDO_GID2)
SDO_GEOM.RELATE (layernamel, SDO_GID1, mask, X_tolerance, Y_tolerance,

Description

SDO_ETYPE, num_ordinates, X_ordinatel, Y_ordinatel [,...,Xn, Yn]
[,SDO_ETYPE, num_ordinates, X_ordinatel, Y_ordinatel [.....Xn, Yn]])

Examines two geometry objects to determine their spatial relationship. This
function is available in two forms. See the Usage Notes for more information.

Keywords and Parameters

layernamel,
layername2

SDO_GID1,
SDO_GID2

mask

X _tolerance,
Y tolerance

SDO _ETYPE

Specifies the name of the data set layer. The layer name is used to
construct the name of the geometry and spatial index tables.
Data type is VARCHAR2.

Specifies the geometry object identifier.
Data type is NUMBER.

Specifies a list of relationships to check. See the list of keywords in the
Usage Notes.

Specifies the distance two points can be apart and still be considered
the same due to rounding errors. Tolerance must be greater than zero.
If you want zero tolerance, enter a number such as 0.000005, where the
number of zeros to the right of the decimal point matches the
precision of your data.

Data type is NUMBER.

Specifies the type of geometry element.
Data type is INTEGER, corresponding to the following constants:

1 SDO_GEOM.POINT_TYPE
2 SDO_GEOM.LINESTRING_TYPE
3 SDO_GEOM.POLYGON_TYPE

17-2 Oracle Spatial User's Guide and Reference



SDO_GEOM.RELATE

Returns

Usage Notes

num_ordinates Specifies the number of ordinates for this element. Data type is
NUMBER.

X_ordinateN, Specifies the X and Y values of a vertex (coordinate pair) in a

Y ordinateN geometry.

Data type is NUMBER.

The SDO_GEOM.RELATE function can return three types of answers:

1. If you pass a mask listing one or more relationships, the function returns the
name of the relationship if it is true for the pair of geometries. If all the
relationships are false, the function returns FALSE.

2. If you pass the DETERMINE keyword in the mask, the function returns the one
relationship keyword that best matches the geometries. The DETERMINE
keyword can only be used when SDO_GEOM.RELATE is in the SELECT clause
of the SQL statement.

3. If you pass the ANYINTERACT keyword in the mask, the function returns
TRUE if the two geometries are not disjoint.

The data type is VARCHAR?2.

Use the first form of the function to examine two stored geometric objects.

Use the second form of the function to compare a stored object against a
user-defined object. You can specify up to 123 vertices for a single-element
geometry. If the geometry has multiple elements, the total number of arguments
passed, including SDO_ETYPE, num_ordinates, and the list of vertex coordinates,
cannot exceed 255 values.

The following relationships can be tested:
« ANYINTERACT - Returns TRUE if the objects are not disjoint.

=«  CONTAINS - Returns CONTAINS if the second object is entirely within the
first object and the object boundaries do not touch; otherwise, returns
FALSE.

« COVEREDBY - Returns COVEREDBY if the first object is entirely within
the second object and the object boundaries touch at one or more points;
otherwise, returns FALSE.

Geometry Functions and Procedures for Relational Model 17-3



SDO_GEOM.RELATE

« COVERS - Returns COVERS if the second object is entirely within the first
object and the boundaries touch in one or more places; otherwise, returns
FALSE.

« DISJOINT - Returns DISJOINT if the objects have ho common boundary or
interior points; otherwise, returns FALSE.

« EQUAL - Returns EQUAL if the objects share every point of their
boundaries and interior, including any holes in the objects; otherwise,
returns FALSE.

« INSIDE - Returns INSIDE if the first object is entirely within the second
object and the object boundaries do not touch; otherwise, returns FALSE.

« OVERLAPBDYDISIOINT - Returns OVERLAPBDYDISJOINT if the objects
overlap, but their boundaries do not interact; otherwise, returns FALSE.

« OVERLAPBDYINTERSECT - Returns OVERLAPBDYINTERSECT if the
objects overlap, and their boundaries intersect in one or more places;
otherwise, returns FALSE.

« TOUCH - Returns TOUCH if the two objects share a common boundary
point, but no interior points; otherwise, returns FALSE.

Mask values can be combined using the logical Boolean operator OR. For example,
‘INSIDE + TOUCH '’ returns 'INSIDE + TOUCH’ or 'FALSE’ depending on the
outcome of the test.

Related Topics
None.

17-4 Oracle Spatial User's Guide and Reference



SDO_GEOM.VALIDATE_GEOMETRY

SDO_GEOM.VALIDATE_GEOMETRY

Format
SDO_GEOM.VALIDATE_GEOMETRY (layername,SDO_GID)

Description

Provides a consistency check for valid geometry types. This function checks the
representation of the geometry from the tables against the element definitions.

Keywords and Parameters

layername Specifies the name of the data set layer. The layer name is used to
construct the name of the geometry and spatial index tables.
Data type is VARCHAR2.

SDO _GID Specifies the geometric object identifier.
Data type is NUMBER.

Returns
This function returns one of the following:

« TRUE if the geometry is valid.

« FALSE if the geometry is invalid for some unknown reason.

« An Oracle error number indicating the problem with the geometry.
The data type is VARCHAR2.

Usage Notes
This function checks for the following:

« Polygons must have at least three points and must be closed.
« Line strings must have at least two points.

= When an SDO_ESEQ spans multiple rows, the last point of the previous row
must be the first point on the next row.

Related Topics
None.

Geometry Functions and Procedures for Relational Model 17-5



SDO_GEOM.VALIDATE_LAYER

SDO_GEOM.VALIDATE_LAYER

Format
SDO_GEOM.VALIDATE_LAYER (layername, result_table)

Description
Examines a layer to determine if the stored geometries follow the defined rules for

geometric objects.

Keywords and Parameters

layername Specifies the name of the layer to examine.
Data type is VARCHAR2.
result_table Specifies the name of the result table.

Data type is VARCHAR2.

Returns
This function fills the result table with validation results.

Usage Notes

Create an empty result table before calling this function. The format of the result
table is: (sdo_gid number, result varchar2).

This function checks for the following:
« Polygons must have at least three points and must be closed.
« Line strings must have at least two points.

«  When an SDO_ESEQ spans multiple rows, the last point of the previous row
must be the first point on the next row.

Related Topics
None.

17-6 Oracle Spatial User's Guide and Reference



18

Window Functions and Procedures for
Relational Model

If a query window does not already exist in the database, you must first insert it
and create an index for it. The SDO_WINDOW functions and procedures are used
to create temporary geometry objects to be used in comparisons with stored
geometries. You can create query windows with any number of coordinates.

Because not all Oracle users may have insert privileges, the SDO_WINDOW
package is not automatically installed when you install Spatial. This allows a DBA
to control the schema under which these functions and procedures operate. Choose
an Oracle user who has insert privilege and compile the SDO_WINDOW package
under that user. For example, you could choose the MDSYS Oracle user:

%sql pl us misys/ passwor d
SQ> @RACLE_ HOME nd/ admi n/ sdowi n. sgl
QA > @CRACLE HOME nd/ admi n/ prvtwi n. pl b

This chapter contains descriptions of the window functions and procedures listed in
Table 18-1. This chapter refers to the relational Spatial model only.

Table 18-1 Window Functions and Procedures

Function/Procedures Description
SDO_WINDOW.BUILD_WINDOW Builds a query window.
SDO_WINDOW.BUILD_WINDOW _FIXED Builds a query window using fixed-size tiles.
SDO_WINDOW.CLEAN_WINDOW Removes the tables used for a query window.
SDO_WINDOW.CLEANUP_GID Removes the query window without

removing the tables.

Window Functions and Procedures for Relational Model 18-1



Table 18-1 Window Functions and Procedures

Function/Procedures Description
SDO_WINDOW.CREATE_WINDOW_ Creates the tables needed for a query window
LAYER layer.

18-2 Oracle Spatial User's Guide and Reference



SDO_WINDOW.BUILD_WINDOW

SDO_WINDOW.BUILD_WINDOW

Format

Description

SDO_WINDOW.BUILD_WINDOW(comp_name, layername, SDO_ETYPE, SDO_NUMTILES,

X1, Y1, [.Xn, Yn)

Builds the window for the query and returns an SDO_GID that serves as a handle.
The window is tessellated into hybrid tiles. Hybrid indexing is not recommended
for the relational Spatial model.

Keywords and Parameters

Returns

comp_name

layername

SDO_ETYPE

SDO_NUMTILES

X ordinateN,
Y ordinateN

Specifies the name of the user who compiled this package. This user
must have appropriate privileges to read and write into the database.
Data type is VARCHAR?2.

Specifies the name of the window layer into which the coordinates will
be inserted.
Data type is VARCHAR?2.

Specifies the type of geometry objects.
Data type is INTEGER, corresponding to the following constants:

1 or SDO_GEOM.POINT_TYPE
2 or SDO_GEOM.LINESTRING_TYPE
3 or SDO_GEOM.POLYGON_TYPE

Value must be NULL for Spatial release 8.0.4 and later.
Data type is NUMBER.

Specifies the X and Y values of a vertex (coordinate pair) in a geometry.
Up to 125 pairs may be added in a single call.
Data type is NUMBER.

This function returns the SDO_GID of the new geometry.
Data type is NUMBER.

Window Functions and Procedures for Relational Model 18-3



SDO_WINDOW.BUILD_WINDOW

Usage Notes

This function inserts the coordinates into the <layername>_SDOGEOM table,
tessellates the geometry (creates the index), and returns a unique SDO_GID
corresponding to the geometry.

You do not need special privileges to execute this function. However, the user who
compiles it does need appropriate privileges to read and write into the database.

When working with Spatial release 8.0.3 tables, the SDO_NUMTILES parameter
indicates the number of tiles into which the window should be tessellated. For
release 8.0.4 or later, the function reads that information automatically from the
<layername>_SDOLAYER table.

Related Topics
SDO_WINDOW.BUILD_WINDOW_FIXED

18-4 Oracle Spatial User's Guide and Reference



SDO_WINDOW.BUILD_WINDOW_FIXED

SDO_WINDOW.BUILD_WINDOW_FIXED

Format

Description

SDO_WINDOW.BUILD_WINDOW_FIXED (comp_name, layername, SDO_ETYPE, SDO_TILESIZE,

X1, Y1, [.Xn, Yn))

Builds the window for the query and returns an SDO_GID that serves as a handle.
The window is tessellated into fixed-size tiles.

Keywords and Parameters

Returns

comp_name

layername

SDO_ETYPE

SDO _TILESIZE

X ordinateN,
Y ordinateN

Specifies the name of the user who compiled this package. This user
must have appropriate privileges to read and write into the database.
Data type is VARCHAR?2.

Specifies the name of the window layer into which the coordinates will
be inserted.
Data type is VARCHAR?2.

Specifies the type of geometry element.
Data type is INTEGER, corresponding to the following constants:

1 or SDO_GEOM.POINT_TYPE
2 or SDO_GEOM.LINESTRING_TYPE
3 or SDO_GEOM.POLYGON_TYPE

Specifies the number of tessellations required to achieve the desired
fixed-size tiles.
Data type is NUMBER.

Specifies the X and Y values of a vertex (coordinate pair) in a geometry.
Up to 125 pairs may be added in a single call.
Data type is NUMBER.

This function returns the SDO_GID of the new geometry.
Data type is NUMBER.

Window Functions and Procedures for Relational Model 18-5



SDO_WINDOW.BUILD_WINDOW_FIXED

Usage Notes

This function inserts the coordinates into the <layername>_SDOGEOM table,
tessellates the geometry (creates the index), and returns a unique SDO_GID
corresponding to the geometry.

You do not need special privileges to execute this function. However, the user who
compiles it does need appropriate privileges to read and write into the database.

Query SDO_LEVEL from the <layername> SDOLAYER table to pass the correct
SDO_TILE_SIZE value to this function.

Related Topics
None.

18-6 Oracle Spatial User's Guide and Reference



SDO_WINDOW.CLEAN_WINDOW

SDO_WINDOW.CLEAN_WINDOW

Format
SDO_WINDOW.CLEAN_WINDOW (layername);

Description
Removes the four tables created in the layer for the query window.

Keywords and Parameters

layername Specifies the name of the window layer that must
be removed.
Data type is VARCHAR?2.

Usage Notes

Typically, you would build a layer once, and then build multiple windows and
perform multiple queries using that layer. After finishing all queries, you can
execute the SDO_WINDOW.CLEAN_WINDOW procedure to remove the tables.

Related Topics
SDO_WINDOW.CLEANUP_GID

Window Functions and Procedures for Relational Model 18-7



SDO_WINDOW.CLEANUP_GID

SDO_WINDOW.CLEANUP_GID

Format
SDO_WINDOW.CLEANUP_GID (gid, layer, do_commit);

Description
Removes the query window from the layer tables.

Keywords and Parameters

gid Specifies the geometric object identifier of the
query window.
Data type is NUMBER.

layer Specifies the name of the window layer associated
with the query window.
Data type is VARCHAR?2.

do_commit Specifies whether a commit operation is
performed (TRUE) or is not performed (FALSE,
the default) after the cleanup.
Data type is BOOLEAN.

Usage Notes

Typically, you would create a query layer once, and then build multiple query
windows and perform multiple queries using that layer. The SDO_
WINDOW.CLEANUP_GID procedure removes a single query window from the
layer. Use this procedure to avoid the overhead of removing and re-creating the
tables repeatedly.

After finishing all queries, you can execute the SDO_WINDOW.CLEAN_WINDOW
procedure to remove the tables.

Related Topics
SDO_WINDOW.CLEAN_WINDOW

18-8 Oracle Spatial User's Guide and Reference



SDO_WINDOW.CREATE_WINDOW_LAYER

SDO_WINDOW.CREATE_WINDOW_LAYER

Format

Description

SDO_WINDOW.CREATE_WINDOW_LAYER (layername, SDO_LEVEL, SDO_NUMTILES,
SDO_DIMNUM1, SDO_LB1, SDO_UB1, SDO_TOLERANCE1, SDO_DIMNAME1,
SDO_DIMNUM2, SDO_LB2, SDO_UB2, SDO_TOLERANCEZ2, SDO_DIMNAME?2)

Creates the necessary tables that constitute a layer used for defining a query

window.

Keywords and Parameters

Usage Notes

layername

SDO_LEVEL

SDO_NUMTILES

SDO_DIMNUML,
SDO_DIMNUMZ2

SDO_LB1, SDO_UBL,
SDO_LB2, SDO_UB2

SDO_TOLERANCELI,
SDO_TOLERANCE2

SDO_DIMNAMEL,
SDO_DIMNAMEZ

Specifies the name of the window layer to be created. The layer name
is used to construct the four tables associated with the layer.
Data type is VARCHAR2.

Specifies the number of times the layer should be tessellated during
the indexing phase.
Data type is INTEGER.

Specifies the number of tiles to generate during indexing.
Data type is INTEGER.

Specifies the number of the dimension, starting with 1.
Data type is NUMBER.

Specifies the lower and upper bounds of this dimension.
Data type is NUMBER.

Specifies the allowable variance of ordinate values within each
dimension.
Data type is NUMBER.

Specifies the name of the dimension.
Data type is VARCHAR2.

Because the <layername>_SDODIM table is initialized with the dimension and the
bound information, only those queries that are in the same dimension should be
queried against this layer. If you wish to issue a query with respect to a different
dimension, you must create a new layer.

Window Functions and Procedures for Relational Model 18-9



SDO_WINDOW.CREATE_WINDOW_LAYER

Related Topics
None.

18-10 Oracle Spatial User's Guide and Reference



A

Tuning Tips and Sample SQL Scripts

This appendix provides supplemental information to help you set up, maintain, and
tune a spatial database. The scripts and tuning suggestions provided are intended
as guidelines that can be adapted to the specific needs of your database.

For a description of the Oracle Spatial models (object-relational and relational) and
guidelines for choosing a model, see Section 1.2.

A.1 Tuning Tips

The following information can be used as a guideline for tuning a spatial database.
Unless otherwise specified, the following sections refer to both the object-relational
and relational models.

A.1.1 Data Modeling

Data modeling is very important when designing a spatial database. You should
group geometries into layers based on the similarity of their attributes. Assume
your data model uses line strings to represent both roads and rivers. The attributes
of a road and the attributes of a river are different. Therefore, these geometries
should be modeled in two different layers.

In practice, however, if the user of your application will always ask to see both the
roads and rivers in a particular region (area of interest), then it may be appropriate
to model roads and rivers in the same layer with a common set of attributes.

It is equally important to understand how the data in the various layers will be
queried. If the user of your application is interested in querying the data based on a
relationship between the layers, then you should index the layers with the same
fixed-size tiling level. For example, a query such as Which roads cross rivers? can
achieve better performance if the roads and rivers layers are tiled at the same level.

Tuning Tips and Sample SQL Scripts A-1



Tuning Tips

On the other hand, if two layers are indexed with different SDO_LEVEL values, a
spatial join of these two layers will not result in optimal query performance. For
example, if ROADS is indexed using (SDO_LEVEL=8 SDO_NUMTILES=12) and
COUNTIES is indexed using (SDO_LEVEL=10 SDO_NUMTILES =6), the following
query has less than optimal performance;

SH ECT a. nane fromRoads a, Gounties b WERE
MDSYS. SDO RELATH a. geonetry, b. geonetry,
" MASK=ANY! NTERACT QUERYTYPE=JA N ) = TRUE ;

If the layers are frequently used in a spatial join, then they should be indexed using
the same SDO_LEVEL value. In the preceding example, better performance results
if both layers are indexed with the same SDO_LEVEL value (for example, SDO_
LEVEL=8).

A.1.2 Understanding the Tiling Level

The following example explains how tiling is used in Spatial.

Assume you want to find all the roads (line strings) that overlap a county boundary
(polygon) in a spatial database containing 10 million roads. Ignoring Spatial
features for a moment, in purely mathematical terms, the problem translates into
comparing all the line segments that make up each road to the line segments and
area of the county boundary;, to see if there is any intersection. This
geometry-to-geometry comparison is very expensive.

Spatial simplifies this calculation by approximating each geometry with tiles. The
primary filter in Spatial translates the problem to show all the roads that have a tile
equal to a tile that approximates the polygon. The result of this is a superset of the
final answer.

The secondary filter (a true geometry-to-geometry comparison) can now be
applied to the candidates that returned from the Spatial primary filter, instead of to
every road in the database.

Picking the correct tile size for fixed-size tiling is one of the most important factors
in attaining good performance. If the tile size you select is too small, you could end
up generating thousands of tiles per geometry. Also, the process of tiling a query
window may become very time consuming.

At the same time, you do not want to choose tiles that are too big. This would defeat
the purpose of the Spatial primary filter. If the tiles are too big, then too many
geometries are returned from the primary filter and are sent to the more costly
secondary filter.

A-2 Oracle Spatial User’s Guide and Reference



Tuning Tips

Keep in mind that the tile size you choose should also depend on whether or not
the query window (area of interest) is already defined in the database. If the query
window is defined in the database (that is, if the spatial tables and spatial indexes
already exist), then you should choose a smaller tile size (that is, use a larger value
for SDO_LEVEL). Assume that the state and highway layers are already defined in
the database. You could perform a spatial join query, such as Which interstate
highways go through the state?, without incurring the overhead of tiling because the
query window is already defined in the database. If, on the other hand, you are
creating the query window dynamically, you have to factor in the time it takes to
define and index the query window. In this case, you should choose a larger tile size
(that is, a smaller value for SDO_LEVEL) to reduce the time it takes to define and
index the query window.

The SDO_TUNE.ESTIMATE_TILING_LEVEL function can be used on your data set
to get an initial tiling level estimate. This may not be your final answer, but it will be
a good level for starting your analysis. In general, it is recommended that you take a
random sample of your data and check the query performance at different levels of
tiling. This will give an indication of what is the best tiling level for the total data
set.

A.1.3 Using Hybrid Indexes (Object-Relational Model Only)

Note: For most applications, you should not use hybrid indexes,
but should instead use fixed indexes or R-tree indexes. The rare
circumstances where hybrid indexes should be considered are
described in Section 1.7.2.3.

Before deciding on the type of index to use for a spatial application,
be sure you understand the indexing concepts and guidelines
discussed in Section 1.7.

Hybrid indexing allows indexes to be built using the tiling mechanism by
specifying the SDO_LEVEL. Additionally, hybrid indexing introduces the ability to
specify the minimum number of tiles to be created for each geometry during the
indexing process by specifying the indexing parameter SDO_NUMTILES.

If the number of tiles created for a geometry using the SDO_LEVEL value is less
then the value specified by the SDO_NUMTILES value, then the indexing process
continues by creating more tiles for the geometry until the SDO_NUMTILES value
has been reached. The ability to specify the minimum number of tiles for each
geometry is important for a number of reasons:

Tuning Tips and Sample SQL Scripts A-3



Tuning Tips

It ensures that all geometries will have at least as many index entries as the
value of SDO_NUMTILES, regardless of the tiling level.

It can reduce (as compared to fixed indexing) the space required for index data
to get full indexing coverage of all geometries.

Special performance enhancing algorithms have been coded within Spatial to
make use of hybrid indexes.

If hybrid indexing is used and if the layer being indexed is point-only data, the
SDO_NUMTILES value should be set to 1.

A.1.4 Database Sizing

Properly choosing rollback segments and tablespaces is important for getting good
performance from Spatial. Therefore, it is very important to read the Oracle8i
Administrator’s Guide and understand the concepts of tablespaces and rollbacks.

Here are some general guidelines to consider:

Always make sure that you have enough rollback space to create a spatial
index.

Create separate tablespaces for data layers, indexes, and rollback segments.

Properly define initial extents, next extents, and pctincrease values for data
layer tables.

Use the SDO_GEOM.VALIDATE_GEOMETRY function to ensure correctness of
geometries in the data sets. Entering incorrect data may lead to unexpected
behavior in index creation and in the SDO_GEOM.RELATE function.

Visualizing the indexing tiles, as described in Section A.1.5, can lead to a greater
understanding of the tuning process with respect to the size of the tiles.

As values of SDO_LEVEL and SDO_NUMTILES are increased, so are the
storage requirements for the index table and the indexes associated with it, as
well as the size of the rollback segment required for the CREATE INDEX
statement if SDO_COMMIT_INTERVAL is not specified.

The following guidelines refer to only the relational model:

Define the initial extent to be as small as possible when you create the
<layername>_SDOLAYER and the <layername>_SDODIM tables. These tables
contain a few rows each, and a small initial extent will reduce the amount of
wasted space.

A-4 Oracle Spatial User’s Guide and Reference



Tuning Tips

« Always build a B-tree index on the SDO_GID column of the <layername>_
SDOGEOM table before attempting to call the SDO_ADMIN.POPULATE_
INDEX_FIXED, SDO_ADMIN.UPDATE_INDEX_FIXED, SDO_
ADMIN.POPULATE_INDEX, or SDO_ADMIN.UPDATE_INDEX procedure.

« For fixed-size tiling, always build a B-tree index on the SDO_CODE column of
the <layername>_SDOINDEX table before trying any queries using this table.

« Always build a B-tree index on the SDO_GID column of the <layername>_
SDOINDEX table if individual SDO_GID values will be used as query windows
for other Spatial layers.

« Forvariable-sized tiling, always build a B-tree index on the SDO_GROUPCODE
column of the <layername>_SDOINDEX table before trying any queries using
this table.

A.1.5 Visualizing the Spatial Index (Drawing Tiles)

To select an appropriate tiling level, it may help to visualize the tiles covering your
geometries. Through visualization, you can determine how many tiles are used for
each object, the size of the tiles, and how well the edges of your geometry are
covered. The basic algorithm is:

1. Select the edges of the tiles represented by the index entries.
2. Plot the tiles on a two-dimensional grid.

3. Plot your geometries on the same grid.

A.1.5.1 Drawing Tiles from the Object-Relational Model

Two Spatial internal functions have been made visible to describe the tiles. These
functions were part of a previous release of Oracle Spatial Data Option, and are
currently reserved for internal use only. These functions are not recommended for
general use, except for this visualization example. Use the following syntax for the
internal functions:

hhcellbndry (sdo_code || substrb(sdo_code,-1,1)]["020000”,
sdo_dimnum, sdo _Ib, sdo_ub,
hhlength(sdo_code || substrb(sdo_code,-1,1)[|"020000”) {MIN' | MAXT)

Note that in ”020000” two pairs of single quotation marks are used, not two double
quotation marks.

Tuning Tips and Sample SQL Scripts A-5



Tuning Tips

In the following examples, the dimension boundaries were assumed to be -180 to
180, and -90 and 90. Also, an index named TEST_INDEX_ HL2N6 and a table named
TEST are used in the examples.

The SQL queries shown in Example A-1 and Example A-2 can be used to decode
all the index entries in an index table. The examples return the coordinates of the
lower-left and upper-right corners of each tile.

Example A-1 View Fixed-Size Tiles for All Geometries

SELECT HHCHLLBNDRY( sdo_groupcode || sdo_fixed_neta, 1,-180.0, 180.0,
HH_LENGTH sdo_groupcode || sdo fixed_neta), 'MN) mn_x,
HHCELLBNDRY( sdo_groupcode || sdo_fixed_neta, 1,-180.0, 180.0,
HHLENGTH sdo_groupcode || sdo fixed_neta), 'MAX ) nax_x,
HHCELLBNDRY( sdo_groupcode || sdo_fixed neta, 2, -90.0, 90.0,
HHLENGTH sdo_groupcode || sdo fixed neta), "MN) nmin_y,
HHCELLBNDRY( sdo_groupcode || sdo_fixed_neta, 2, -90.0, 90.0,
HHLENGTH sdo_groupcode || sdo_fixed_neta), 'MAX ) nmax_y
FROM ( SELECT di stinct sdo_groupcode, sdo_fixed neta
FROM TEST_| NDEX H.2N6$ a,
SDO | NCEX_METADATA b
WHERE b. sdo_i ndex_tabl e = ' TEST_| NDEX H.2N6$' ) ;

Example A-2 View Variable-Sized Tiles for All Geometries

SH ECT
HHCELLBNDRY (sdo_code || substrb(sdo_code -1,1)|["020000, 1,-180.0, 180.0,
HHLENGTH(sdo_code || substrb(sdo_code,-1,1)[|"020000), MIN') min_x,
HHCELLBNDRY (sdo_code || substrb(sdo_code -1,1)|["0200007, 1,-180.0, 180.0,
HHLENGTH(sdo_code || substrb(sdo_code,-1,1)|["020000"), MAX) max_Xx,
HHCELLBNDRY (sdo_code || substrb(sdo_code -1,1)||"020000", 2,-90.0, 90.0,
HHLENGTH(sdo_code || substrb(sdo_code,-1,1)]["020000"), 'MIN) min_y,
HHCELLBNDRY (sdo_code || substrb(sdo_code -1,1)|["020000%, 2,-90.0, 90.0,
HHLENGTH(sdo_code || substrb(sdo_code,-1,1)]["020000"), MAX) max_y
FROM (SELECT distinct sdo_code, sdo_meta
FROM TEST_INDEX_HL2N6$ a);

The SQL queries shown in Example A-3 and Example A-4 can be used to decode
the index entries for a specific geometry stored in an index table.

Example A-3 View Fixed-Size Tiles for One Geometry

SELECT HHCELLBNDRY( sdo_groupcode || sdo_fixed_neta, 1,-180.0, 180.0,
HHLENGTH sdo_groupcode || sdo fixed neta), "MN) mn_x,
HHCELLBNDRY( sdo_groupcode || sdo_fixed_neta, 1,-180.0, 180.0,

A-6 Oracle Spatial User’s Guide and Reference



Tuning Tips

HHLENGTH sdo_groupcode || sdo fixed_neta), 'MAX ) nax_x,
HHCELLBNDRY( sdo_groupcode || sdo_fixed neta, 2, -90.0, 90.0,
HHLENGTH sdo_groupcode || sdo fixed neta), "MN) nmin_y,
HHCELLBNDRY( sdo_groupcode || sdo_fixed neta, 2, -90.0, 90.0,
HHLENGTH sdo_groupcode || sdo_fixed_neta), 'MAX ) nmax_y
FROM (SELECT di stinct sdo_groupcode, sdo_fixed_neta
FROM TEST_| NDEX HL.2N6$ a,
SDO | NDEX_METADATA b
WHERE b. sdo_i ndex_tabl e = ' TEST_| NDEX H.2N6$'
AND a. sdo_rowi d = ' AAAASOAAFAAZ AZAMA ) ;

Example A—4 View Variable-Sized Tiles for One Geometry

SHECT
HHCELLBNDRY(sdo_code || substrb(sdo_code,-1,1)||"'020000", 1.-180.0, 180.0,
HHLENGTH(sdo_code || substrb(sdo_code,-1,1)[|"020000%), MIN) min_x,
HHCELLBNDRY(sdo_code || substrb(sdo_code;-1,1)["'020000", 1,-180.0, 180.0,
HHLENGTH(sdo_code || substrb(sdo_code,-1,1)|["020000"), MAX) max_x,
HHCELLBNDRY(sdo_code || substrb(sdo_code,-1,1)||"'020000", 2,-90.0, 90.0,
HHLENGTH(sdo_code || substrb(sdo_code,-1,1)]["020000"), 'MIN) min_y,
HHCELLBNDRY(sdo_code || substrb(sdo_code,-1,1)||"'020000", 2,-90.0, 90.0,
HHLENGTH(sdo_code || substrb(sdo_code,-1,1)]["020000"), MAX) max_y
FROMTEST_INDEX_HL2N6$
WHERE sdo_rowid ='AAAAS9AAFAADZAZAAA;

A.1.5.2 Drawing Tiles from the Relational Model

The spatial index is represented internally as a linear quadtree. The structure used
to represent the linear quadtree is composed of two components: a data component
and a metadata component. The data component of the linear quadtree is stored in
the SDO_CODE column, and the metadata component is stored in the SDO_META
column.

The SDO_META column is not required for spatial queries. However, by combining
the SDO_META column with the SDO_CODE column, the tiles of any geometry or
of the entire data set can be decoded. This capability allows the tiles to be
visualized.

Two Spatial internal functions have been made visible to describe the tiles. These
functions were part of a previous release of Oracle Spatial Data Option, and are
currently reserved for internal use only. The functions are not recommended for
general use, except for this visualization example. Use the following syntax for the
internal functions:

hhcellondry (sdo_code || sdo_meta, sdo_dimnum, sdo_Ib, sdo_ub,

Tuning Tips and Sample SQL Scripts A-7



Tuning Tips

hhiength(sdo_code || sdo_meta) {MIN' | MAXY)

In the following examples, the dimension boundaries were assumed to be -180 to
180, and -90 and 90. The dimensional information is stored in the <layername>_
SDODIM table.

If you used SDO_ADMIN.UPDATE_INDEX_FIXED or SDO_ADMIN.POPULATE_
INDEX_FIXED to generate your spatial index, replace sdo_code || sdo_neta
with sdo_ti | e in the SQL statements that follow.

The SQL query shown in Example A-5 can be used to decode all the index entries in
a <layername>_SDOINDEX table. The example returns the coordinates of the
lower-left and upper-right corners of each tile.

Example A-5 View Fixed-Sized Tiles for All Geometries Using the Relational Model

SELECT hhcel | bndry (sdo_code || sdo_neta, 1, -180.000000000, 180. 000000000,
hhl ength (sdo_code || sdo_neta), "MN) nmin_x,
hhcel | bndry (sdo_code || sdo_neta, 1, -180.000000000, 180. 000000000,
hhl ength (sdo_code || sdo_neta), 'MAX ) nax_x,
hhcel I bndry (sdo_code || sdo_neta, 2, -90. 000000000, 90.000000000,
hhl ength (sdo_code || sdo_neta), "MN) nin_y,
hhcel I bndry (sdo_code || sdo_neta, 2, -90. 000000000, 90.000000000,
hhl ength (sdo_code || sdo neta), 'MAX) nax_y
FROM (SELECT D STI NCT sdo_code, sdo_neta FROM <l ayer nane>_sdoi ndex) ;

The SQL query shown in Example A-6 can be used to decode the index entries for a
specific geometry stored in a <layername>_SDOINDEX table.

Example A-6 View Fixed-Size Tiles for a Specific Geometry Using the Relational
Model

SELECT hhcel | bndry (sdo_code |
hhl engt h (sdo_code |

| sdo_neta, 1, -180.000000000, 180. 000000000,
| sdo_neta), 'MN) nin_x,
hhcel I bndry (sdo_code || sdo_neta, 1, -180.000000000, 180. 000000000,
hhl ength (sdo_code || sdo_neta), 'MAX ) nax_x,
hhcel | bndry (sdo_code || sdo_neta, 2, -90. 000000000, 90.000000000,
hhl ength (sdo_code || sdo_neta), 'MN) nin_y,
hhcel I bndry (sdo_code || sdo_neta, 2, -90. 000000000, 90.000000000,
hhl ength (sdo_code || sdo_neta), ' MAX) nax_y
FROM <l ayer nane>_sdoi ndex
WHERE sdo_gid = <geonetry id>;

See Section A.3.2.3 for another method of viewing tiles.

A-8 Oracle Spatial User’s Guide and Reference



Tuning Tips

A.1.6 Setting the SORT_AREA_SIZE Value

When the Oracle8i database server processes SQL statements that require sorting,
such as statements containing an ORDER BY or DISTINCT clause, the database
server stores the result set in a temporary storage area. The result set is then sorted.
If the SORT_AREA_SIZE value is insufficient for holding the result set in memory,
then some data may be written to disk and an entry is written in the redo log.

Many Spatial operators issue SQL statements internally that contain DISTINCT and
ORDER BY clauses. If the SORT_AREA_SIZE initialization parameter is too small
for processing the secondary filters, then some sorting may occur on disk, which
causes entries to be written in the redo log. This may affect performance. For better
performance, increase the SORT_AREA_SIZE parameter to force sorting to occur in
memory.

To determine if sort operations associated with Spatial are happening in memory or
on disk, execute the following SQL statement before and after running spatial
gueries on an otherwise inactive database:

SH ECT nane, val ue
FROM v$sysst at
WERE nane IN (’sorts (nenory)’, 'sorts (disk)’);

If the value associated with disk sort operations is higher after the queries, then the
slower (costlier) disk sorting is being used.

A.1.7 Tuning Point Data with the Relational Model

Point data, unlike line and polygon data, has the unique characteristic of containing
one tile per point. This section describes how to improve the performance of queries
on point data.

A.1.7.1 Efficient Queries for Relational Point Data

When querying point data with a rectangular query window, you can take
advantage of the nature of these geometries to improve performance.

A rectangle can be defined by its lower-left and upper-right coordinates (Xmin,
Ymin and Xmax, Ymax). A point has a single set of coordinates (Px, Py). When your
area of interest is a rectangle, instead of using the SDO_GEOM.RELATE function in
the secondary filter, you can use simple SQL comparison operators as follows:

SELECT sdo_gi d, sdo_x1, sdo yl
FROM ci ti es_sdogeom
(SELECT a.sdo_gid gidl

Tuning Tips and Sample SQL Scripts A-9



Tuning Tips

FROM ci ti es_sdoi ndex a,
w ndow sdoi ndex b
WHERE b.sdo gid = [area of interest id]
AND a. sdo_code = h. sdo_code)
WHERE sdo_gid = gidl
AND sdo x1 BETVEEEN Xmi n AND Xnax
AND sdo_yl BETVEEN Yni n AND Ynax.

The DISTINCT clause is not necessary in the primary filter of the query because a
point contains only a single tile in the spatial index.

A.1.7.2 Efficient Schema for Relational Point Layers

Because a point is always referenced by only one tile in a spatial index, for
improved performance you can place the columns normally found in the
<layername>_SDOINDEX table in the <layername>_SDOGEOM table. This will
save you the cost of joining the <layername>_SDOINDEX and <layername>_
SDOGEOM tables.

You still need to create an updatable view for the <layername>_ SDOINDEX table
that selects the appropriate columns from the <layername>_SDOGEOM table. This
is because functions such as SDO_ADMIN.UPDATE_INDEX_FIXED and SDO _
ADMIN.POPULATE_INDEX_FIXED expect a <layername>_SDOINDEX table to
exist. Create the view using INSTEAD OF triggers for insert, delete, and update
operations such that the appropriate columns in the <layername>_SDO_GEOM
table are updated. The following example shows how to use INSTEAD OF triggers:

CREATE (R REPLACE TR GER nytri g | NSTEAD GF | NSERT ON poi nt s_sdoi hdex
REFERENG NG new AS n
FCR EACH ROV
BEAQ N
UPDATE poi nt s_sdogeom SET poi nt s_sdogeom sdo_code = : n.sdo_gid
WHERE sdo_gid = :n.sdo_gid;
END
CREATE (R REPLACE TR GER nydel trig | NSTEAD CF DELETE ON poi nts_sdoi ndex
REFERENO NG ol d AS n
FCR EACH ROV
BEG N
UPDATE poi nt s_sdogeom SET poi nt s_sdogeom sdo_code = NULL
WHERE poi nt s_sdogeom sdo_gid = :n.sdo_gid;
END,

The following example shows a window query of a layer containing point data
when the window layer contains one rectangle:

A-10 Oracle Spatial User's Guide and Reference



Tuning Tips

SELECT a. sdo_gid, sdo x1, sdo yl
FROM poi nt s_sdogeom a,
w ndow sdoi ndex b
WHERE b.sdo gid = [area of interest id]
AND a. sdo_code = b. sdo_code
AND sdo x1 BETVEEEN Xmi n AND Xnax
AND sdo_y1 BETVEEN Yri n AND Ynax;

A.1.7.3 Script for Using Table Partitioning with Relational Point Data

Because point data is always indexed using a single tile, it is well suited for
partitioning. The following script shows an example of using the Oracle8i
partitioning feature with Spatial point data:

CRACLE_ HOWH MO deno/ exanpl es/ scri pts/partition_points. sql

A.1.8 Tuning Spatial Join Queries Using the Relational Model

There are some helpful hints you can place in your spatial join queries to improve
performance. The remainder of this section describes some of the hints you can use.
For more information on hints, see Oracle8i Tuning.

A.1.8.1 Using the NO_MERGE, INDEX, and USE_NL Hints

A spatial join takes place between two layers. When the two layers being joined are
line or polygon layers, the spatial join query contains two DISTINCT clauses: one in
the inner SELECT clause and the other in the outer SELECT clause. The Oracle
optimizer ignores the inner DISTINCT clause to save on the cost of sorting.
However, if the inner DISTINCT clause is ignored, the secondary filter gets

called many more times than it needs to be. This can have a significant impact on
performance because the secondary filter is an expensive operation. Use the NO_
MERGE hint to prevent the optimizer from ignoring the inner DISTINCT clause.

In a spatial join, all the tiles from one layer are compared to all the tiles from
another layer. The Oracle database server performs a full table scan on one
<layername>_SDOINDEX table, (preferably the smaller of the two), and an index
lookup on the other <layername>_SDOINDEX table. Use the INDEX and USE_NL
hints to force the optimizer to perform the full table scan on the smaller of the two
<layername>_SDOINDEX tables being compared.

The following example shows a spatial join between line (road) and polygon
(county) data. The query answers the question, Which counties intersect major roads?

SHLECT /*+ cost
ordered use_nl (GQONTY_sdogeomn)

Tuning Tips and Sample SQL Scripts A-11



Tuning Tips

i ndex (GOUNTY_sdogeom NAME CF_SDO G D | NDEX)
*/
QANTY_sdogeom SDO @ D,
QANTY_sdogeom SDO ESEQ
QANTY_sdogeom SDO SEQ
QONTY_sdogeom SDO X1, GANTY_sdogeom SDO Y1,
QONTY_sdogeom SDO X2, GANTY_sdogeom SDO Y2,
QONTY_sdogeom SDO X3, GANTY_sdogeom SDO Y3,
QANTY_sdogeom SDO X4, GANTY_sdogeom SDO Y4,
QANTY_sdogeom SDO X5, GANTY_sdogeom SDO Y5,
QANTY_sdogeom SDO X6, GAUNTY_sdogeom SDO Y6,
QONTY_sdogeom SDO X7, GANTY_sdogeom SDO Y7,
QONTY_sdogeom SDO X8, GAUNTY_sdogeom SDO Y8
FROM (SELECT D STINCT gid_a gidl
FROM (SELECT /*+ i ndex (a NAME CF_SDO GCCE | NDEX)
i ndex (b NAME CF_SDO ODE | NDEX)
use_nl (a b)
no_nerge */
D STINCT a.sdo _gid gid_a,
b.sdo gid gid b
FROM GOUNTY_SDA NDEX a,
MAJCGR ROAD SDA NDEX b
WHERE a. sdo_code = b. sdo_code)
WHERE sdo_geomrel ate(’ GONTY , gid a, 'ANYI NTERACT ,
"MAJCR ROAD , gid b) <> 'FALSE),
QAUNTY_sdogeom
WHERE GQOUNTY_sdogeom sdo_gi d = gi d1;

A.1.8.2 Spatial Join Queries with Point Layers

The following example shows a spatial join between line (road) and point (street
address) data. The query answers the question, Which addresses are on a major road?

SHLECT /*+ cost
ordered use_nl (STREET_ADDRESS sdogeon)
i ndex (STREET_ADDRESS sdogeom NAME CF_SDO A D | NDEX)
*/
STREET_ADDRESS sdogeom SDO G D,
STREET_ADDRESS sdogeom SDO X1,
STREET_ADDRESS sdogeom SDO Y1
FROM (SELECT DI STINCT gid_a gidl
FROM (SELECT /*+ index (a NAME_CF_SDO ODE | NDEX)
i ndex (b NAME CF SDO OCTE | NDEX)
use nl (a b) */
a.sdo gid gid a,

A-12 Oracle Spatial User's Guide and Reference



Tuning Tips

b.sdo gid gid b
FROM STREET_ADDRESS SDA NDEX a,
MAJCR ROAD SDA NDEX b
WHERE a. sdo_code = b. sdo_code)
WHERE sdo_geomrel ate(’ STREET_ADDRESS , gid_a, ' ANYI NTERACT ,
"MAJCGR ROAD , gid b) <> 'FALSE),
QAUNTY_sdogeom
WHERE GQOUNTY_sdogeom sdo_gi d = gi d1;

The inner DISTINCT clause is not necessary for spatial joins where one of the layers
contains point data. Therefore, the NO_MERGE hint is not necessary. This is
because points contain only one tile in the spatial index.

The following example shows a spatial join between polygon (county) and point
(street address) data. The query generates a report that displays how many
addresses are associated with each county.

If you can assume that each street address is associated with a single county, you
can significantly speed up this query. Because points contain only a single tile in the
spatial index, any street address tile that matches only one county tile in the
primary filter does not need to go through the expensive secondary filter.

SELECT county_gi d, count(street_gid)
FROM (SELECT poly.sdo_gid county gid, street.sdo gid street_gid
FROM STREET_ADDRESS sdoi ndex street,
(SELECT sdo_code county_sdo_code,
count (sdo_gid) interacts
FRCOM CENSUS_GOUNTY_sdoi ndex
GROP by sdo_code
) counts,
CENSUS_QOUNTY_sdoi ndex pol y
WHERE street. sdo_code = counts. county_sdo_code
AND pol y. sdo_code = street.sdo_code
AND (counts.interacts = 1
R
sdo_geomrel at e(’ STREET_ADDRESS , street. sdo_gi d,
" ANYI NTERACT ,
" CENSUS_GONTY , pol y.sdo_gid) <> ' FALSE
)
)
GROP BY county_gi d;

Tuning Tips and Sample SQL Scripts A-13



Tuning Tips

A.1.9 Using Customized Geometry Types in the Relational Model

The relational spatial model supports three geometry types: points, lines, and
polygons. If your data contains another type, such as a circle or arc, then you must
choose the supported type that best approximates your desired type (or upgrade to
the object-relational model). For example, in the relational model, a circle can be
defined as a multisided polygon. Obviously, the more coordinates in the element,
the better the approximation will be.

Although customized types are not supported, you do not have to lose the
information about customized types. After storing the approximated element, create
another element in that geometry with SDO_ETYPE=0. Spatial ignores elements of
SDO_ETYPE=0. You can then write your own routines to handle your specialized
geometry type.

A.1.10 Partitioning Spatial Data Using the Relational Model

The Oracle8i partitioning feature lets you spread out your spatial data and create
spatial indexes in a very controlled manner. Such control allows a database
administrator to isolate data that may be causing I/0 performance issues. Note that
this optimization works only for the relational implementation.

The most obvious way to partition relational spatial data is to base the partitions on
the geometry ID (GID) column. Select the full list of available GIDs in a given layer
and sort them to produce an ordered list. Next, examine the list to determine
whether or not the GIDs would provide a good set of balanced partitions. In cases
where one or two GIDs dominate the layer, partitioning by GID will not yield a
balanced distribution. In such cases, you may want to consider adding a new
alphanumeric column to the layer, and use this column to create balanced
partitions. Although this requires an extra effort, it may result in significant
performance improvements.

For more information, including examples and sample parsing times, see the online
text file: ORACLE_HOME/md/demo/examples/scripts/parallel.doc.

A.1.11 Parallel Loading and Indexing of Spatial Data Using the Relational Model

On a multiprocessor system, you can use parallel execution to improve both loading
times and spatial index creation times. Note that this optimization works only for
the relational implementation.

When using partitioned tables, as described in Section A.1.10, you can achieve
further performance gains by loading and indexing geometries in parallel. The
partitioned tables can be loaded by selecting from nonpartitioned source tables, or

A-14 Oracle Spatial User's Guide and Reference



Tuning Tips

using the SQL*Loader utility. Parallel threads (one for each partition) can be
submitted to load the partitioned table. For information on parallel loading, see the
description of the SQL*Loader utility in Oracle8i Utilities.

You can also create spatial indexes in parallel by creating a number of views or
layers. Create each layer with a range of GIDs, with corresponding <layername>_
SDOLAYER and <layername>_SDODIM tables. For example, the following
statements create the necessary views for the first 300 GIDs in a table.

CREATE M EVa_sdogeom AS SHLECT * FROM a_sdogeom
WHERE sdo_gi d BETVEEN 1 and 300;

CREATE M EWa_sdodi m AS SH ECT * FROM a_sdodi m

CREATE M EWa_sdol ayer AS SELECT * FROM a_sdol ayer ;

Next, create the index table as a partitioned table. Create a partition for each range
of GIDs for which you created a view.

CREATE TABLE a_sdoi ndex
(sdo_gid NUMBER
sdo_code RAW?255),
sdo_neta RAW255))
I N TRANS 4
STCRACE (initial 2M
next M
pctincrease 0
freelist groups 12
freelists 19)
PARTI TI ON BY RANCE (sdo_gi d)
(PARTI TION a_i dx1 VALUES LESS THAN (300)
TABLESPACE sdo_data

- )
To create the index, submit commands to execute the SDO_ADMIN.POPULATE_
INDEX procedure for each of the partitions. The threads will independently build

their corresponding indexes, with significant performance improvements over the
nonpartitioned, single-threaded model.

For more information, including examples and sample parsing times, see the online
text file: ORACLE_HOME/md/demo/examples/scripts/parallel.doc.

Tuning Tips and Sample SQL Scripts A-15



Scripts for Spatial Indexing Using the Relational Model

A.2 Scripts for Spatial Indexing Using the Relational Model

Spatial provides sample SQL script files to show how to use dynamic SQL in a
PL/SQL block to create layer tables for spatially indexed data. The scripts are
available after installation in the ORACLE_HOME/md/admin directory.

The following sections describe the cr_spatial_index.sgl and crlayer.sql scripts.

A.2.1 cr_spatial_index.sql Script

The cr_spatial_index.sql script file shows an example of updating the spatial index
for a layer, and executing a commit operation after every 50 GIDs have been
entered.

The procedures SDO_ADMIN.POPULATE_INDEX and SDO_ADMIN.POPULATE_
INDEX_FIXED operate as a single transaction. To reduce the number of rollback
operations required to execute these procedures, you can write a routine similar to
that in cr_spatial_index.sql. This script loops and calls SDO_ADMIN.UPDATE_
INDEX_FIXED for each GID, committing after every 50 GIDs.

-- cr_spatial _i ndex. sql
-- Note: if geonetries do not span nore than 1 row, you can renove
-- the DSTINCT qualifier fromthe SHECT statenent.

decl are
cursor cl is SELECT D STINCT sdo_gi d from POLYGIN SDOEM
gi d nunber;
i nunber ;
begi n
i :=0;
for r in cl |oop
begi n

gid: = r.sdo_gid;
sdo_admi n. updat e_i ndex_fi xed(’ PALYGIN, gid, 15, FALSE FALSE FALSH);
exception when others then
dbns_output.put _line(’error for gid ||to char(gid)||’: ’'||SQLERRM);
end,
ir= 0+ 1
if i =50 then
commt;
i:=0;
end if;
end | oop;
commt;

A-16 Oracle Spatial User's Guide and Reference



Tools and Related Products

end;
/

When you call the SDO_ADMIN.UPDATE_INDEX_FIXED procedure for a large
data set, you may get a "snapshot too old" error message from the Oracle database
server. You can avoid this error by creating more or larger rollback segments. You
can also try to increase the number of GIDs before committing the transaction.

Note: The cr_spatial_index.sqgl script is not available in your
ORACLE_HOME/md/admin directory after installation. You must
create this script yourself.

A.2.2 crlayer.sql Script

The crlayer.sql script file is a template used to create all the tables for a layer and
populate the metadata in the <layername>_SDODIM and <layername>_
SDOLAYER tables.

A.3 Tools and Related Products

The following sections describe sample programs and related products that, while
not required for the storage or maintenance of spatial data, can make those tasks
simpler.

A.3.1 Oracle interMedia Locator

Oracle interMedia Locator is a related product that supports online Internet-based
geocoding facilities for location-aware applications and proximity queries.

A.3.1.1 Geocoding Support

Geocoding is the process for converting a nonstandardized street address or postal
code into a standardized address (optionally certified by the USPS), with latitude
and longitude information. In addition, census information such as block groups,
postal carrier routes, and block codes can be retrieved as a result of this process.

The interMedia Locator option provides an interface to the online geocoding service
provided by Qualitative Marketing Service, Inc. (QMS). You can use PL/SQL stored
procedures to geocode an address, and record and fetch all the information into two
predefined objects from the QMS Web site. The first object is of type SDO _

GEOMETRY, and it contains the spatial longitude and latitude information stored as

Tuning Tips and Sample SQL Scripts A-17



Tools and Related Products

point data. The second object returned is GEOCODE_RESULT, which contains text
fields of a standardized address and other fields mentioned previously, such as
postal carrier route or block code.

For more information about this online service, see the following Web site:
http://ww. centrus-software. conforacle

For more information about interMedia Locator, see the Oracle interMedia Locator
User’s Guide and Reference.

A.3.1.2 Compatibility with Spatial Objects

interMedia Locator is a subset of Oracle Spatial and, therefore, is completely
compatible with Spatial objects. The index uses the same set of metadata tables, for
instance. One difference is that interMedia Locator locates only points, while Spatial
supports multiple geometry types.

The LOCATOR_WITHIN_DISTANCE operator is similar to the SDO _
GEOM.WITHIN_DISTANCE operator.

The interMedia Locator version of the WITHIN_DISTANCE operator takes a new
parameter in the last string: units=[mile,meter,ft]. This allows you to search by units.
The Spatial version uses only an estimate on the surface of the Earth, and not exact
distance or driving distance.

A.3.1.3 Sample interMedia Locator Code

Sample scripts are available in the following directory after you install Oracle
interMedia Locator:

$CARACLE_ HOME nul/ deno/ geocoder

To migrate data between products, type oci m g, and prompts will guide you
through the process, which is similar to using SQL*Loader or the Export/Import
utilities.

A.3.2 Spatial Viewer on UNIX/Motif for Relational Model

A sample geometry viewer, sdodemo, is available for UNIX systems using a Motif
interface. This viewer displays geometries stored using the relational model.

A.3.2.1 Installation and Setup
The following steps are required to set up and run the Motif application:

A-18 Oracle Spatial User's Guide and Reference



Tools and Related Products

Set the environment variables:

setenv MD M BWER <ful | _pat hnane>/ sdo_noti f _deno/ src
setenv XBENV RONVENT $MD M EVWERY app- def aul t s/ resource_fil e
al i as sdodeno $MD M BER bi n/ deno

Run the following as MDSYS:

$CRACLE_ HOME ndl/ adni n/ sdowi n. sql
$CARACLE_ HOME nu/ adni n/ prvtwi n. pl b
$MD M BEVER sql _scri pt s/ ny_w ndow sq
$MD M BVER sql _scri pt s/ ny_wi n. sql

If you are using a Sun Solaris system, a compiled version of $MD_
VIEWER/bin/demo has been shipped with Spatial. Go to step 4.

If you are using a UNIX operating system other than Solaris, you need to
recompile the viewer. A makefile is included only for Sun Solaris systems. You
may need to make some system-specific modifications.

cd $VD M BAR
nmake -f nakefile8.sun cl ean
nake -f makefil e8. sun

Create an alias for the sample program:
alias sdodeno $MD M EVWER bi n/ deno

Run the sample program:

sdodeno

A.3.2.2 Connecting to a Database and Viewing Geometries

When you run the sample sdodemo program, you will be prompted for an Oracle
user name, password, and alias if the database resides on a remote machine.

Two windows appear, one where geometries are drawn, and a second with several
buttons. Click CHOOSE LAYER and select a layer.

The extent of the map will initially be the values stored in the <layername>_
SDODIM table for the current layer. You can then click ZOOM TO EXTENT, and
the map extent will be set to the true extent of your data. Note that the time it takes
to perform ZOOM TO EXTENT depends on the amount of data in your
<layername>_SDOGEOM table.

Tuning Tips and Sample SQL Scripts A-19



Tools and Related Products

A.3.2.3 Using the Sample Viewer

The text for all queries is displayed in the UNIX shell where you are running the
sdodemo program.

There are three radio buttons at the top of the control panel. These buttons
determine which query is executed when you click PERFORM QUERY:

« PRIM & SEC: Performs a primary and secondary filter.
« PRIMARY FILTER ONLY: Performs a primary filter only query.

« DRAW ALL: Selects everything in the <layername>_SDOGEOM table. This
does not perform a spatial query.

To perform a spatial query:
1. Click either PRIM & SEC or PRIMARY FILTER ONLY.

2. Click SELECT BOX, SELECT CIRCLE, or SELECT POLYGON, and draw the
area of interest on the map.

3. Click PERFORM QUERY. The geometries will be displayed on the base map.

You can look at individual geometries by clicking SHOW GID. You can also click
SHOW ALL TILES to look at index tiles. This can help you tune your spatial index.
See Section A.1.5 for another method of drawing tiles.

A.3.3 Spatial Visualizer on Windows NT for the Object-Relational Model

The Spatial Visualizer is a sample program used to demonstrate two things. First, it
is an example of using dynamic linking libraries to wrap Oracle Call Interface (OCI)
and Spatial functions into C++ classes. Second, the program provides a simple
visualizer that can display Spatial objects.

A.3.3.1 Compiling and Running the Sample Program

To compile the Spatial Visualizer sample program, first unzip the following file into
your work directory: ORACLE_ HOME/md/demos/NT/DEMO_Visualizer.zip.
This creates the following subdirectories:

« include: Contains header files.
= binand lib; Contain output files.
« SDOConnCur: Contains a project for creating a dynamic link library (DLL).

« VisualSDO: Contains another project for creating an executable (EXE) file.

A-20 Oracle Spatial User's Guide and Reference



Tools and Related Products

Next, make sure your Visual C++ IDE has the correct directory settings for using
OCI and common header files. To ensure this, click Tools > Options > Directories,
and then perform the following tasks:

1.

Click Include files to add the OCI include path (for example,
C:\ORANT\OCI80\include) and the common include path for your projects
(for example, Myprojects\include).

Click Library files to add the OCI library path (for example,
C:\ORANT\OCI80\lib\msvc) and the common library path for your projects
(for example, Myprojects\lib).

Type SDOConnCur \ SDOConnCur . dswand click Open to compile
SDOConnCur.dll.

Type Vi sual SDO\ Vi sual SDO. dswand click Open to create VisualSDO.exe.

A.3.3.2 Usage Notes
Consider the following when using this sample program:

’SDOConnCur’: This project creates a DLL (SDOConnCur.dll) to wrap OCI and
SDO functions into C++ classes, so that users of this DLL can benefit from
Oracle Call Interface (OCI) without knowing how to make OCI calls.

'VisualSDO’: This project creates an executable file (VisualSDO.exe) based on
SDOConnCur.dll. It is a simple visualizer that can display Oracle Spatial
geometry objects.

All the files and directories under ORACLE_ HOME/md/demos/NT are
components of the Spatial Visualizer demonstration program. They should be
used for demonstration purposes only.

The workspaces are created with Visual C++ 6.0, and might not be compatible
with previous versions.

The ZIP file (DEMO_Visualizer.zip) contains all the contents under this
directory. Due to system dependencies, copy the ZIP file only to a Windows NT
system.

Tuning Tips and Sample SQL Scripts A-21



Tools and Related Products

A-22 Oracle Spatial User's Guide and Reference



B

Installation, Compatibility, and Migration
Issues

This appendix provides information concerning installation, compatibility, and
migration between various Oracle Spatial product releases.

Beginning with Spatial Data Option 7.3.3, all interfaces are supported in each
subsequent release. A spatial application built for and using the 7.3.3 Spatial Data
Option interfaces will work with a release 8.0.4, 8.0.5, 8.1.6, or 8.1.7 database server.
The implementations of these interfaces have changed, and therefore PL/SQL
packages from prior releases of the Spatial cartridge will not work with later
releases of the Oracle8i database server. Therefore, you must upgrade both the
database server and Spatial at the same time if you wish to use older spatial
applications with an Oracle8i release of Spatial.

Spatial must always be synchronized with the Oracle8i database server on upgrade
or downgrade. In both cases, Spatial must be reinstalled.

B.1 Introduction

Spatial release 8.1 requires Oracle8i Enterprise Edition and the Objects Option.
Spatial release 8.1 was redesigned to use various Oracle8i object and extensibility
features. Many of the Spatial release 8.1 features depend on new features in release
8.1 of the database server. Therefore, there are many compatibility and migration
issues that need to be addressed in this release of Spatial. This appendix outlines the
database and application compatibility issues.

Database compatibility issues exist because Spatial uses extensible indexing and
object types in release 8.1; and therefore if a release 8.1 database instance is
downgraded to release 8.0.5, the spatial objects must be deleted and re-created. In
this case, the data must be exported and imported into the release 8.0.5 database.

Installation, Compatibility, and Migration Issues B-1



Installation Details

This, and other requirements, result in application incompatibility. A release 8.1
Spatial application will likely use the new spatial operators and therefore will not
work with a release 8.0.5 instance unless it can identify the Spatial version and
dynamically change its spatial queries.

An upgrade or downgrade of the database server version requires a corresponding
upgrade or downgrade of Spatial. If a release 8.0.5 database server is upgraded to
release 8.1, Spatial must also be upgraded. The reason has to do with using dynamic
SQL in PL/SQL and with invoker’s rights in release 8.1. Similarly, if a release 8.1
server is downgraded, Spatial must be downgraded too. Lastly, if a release 8.1
server is running in release 8.0 compatibility mode, Spatial will experience various
failures unless it is reconfigured for release 8.0.5. You can reconfigure the product
by running the downgrade script: ¢813d805.sq]l.

In summary:
« The Spatial release and the Oracle8i database server release must match.

« Upgrade and downgrade scripts must be run when upgrading or downgrading
between releases 8.0.5 and 8.1.

« Spatial will work in release 8.0 compatibility mode for a release 8.1 database
server if, and only if, the downgrade script is run and users or applications
attempt to use only the relational implementation of the product.

B.2 Installation Details

To install Spatial, the script catmd.sql in the ORACLE_ HOME/md/admin directory
must be run as user MDSYS. The MDSYS user should be created with the set of
privileges listed in ORACLE_ HOME/MD/mdprivs.sql, and with both default and
temporary tablespaces.

Installation of Spatial requires that the COMPATIBLE init.ora parameter is set to
8.1.0.0.0 or higher. This is required for the creation and definition of Spatial index
types and operators. Thus, if the database was created with a compatibility
parameter value of 8.0.n.n.n, the DBA must shut down the database and restart
with COMPATIBLE=8.1.n.n.n.

B.2.1 Changing from 8.1 to 8.0 Compatibility Mode

If Spatial has been installed and the database compatibility needs to be reset to
8.0.n.n.n from 8.1.n.n.n, do the following:

B-2 Oracle Spatial User's Guide and Reference



Compatibility Details

Determine if there is any user data that contains instances of the type
MDSYS.SDO_GEOMETRY. That is, determine if any user table has a column of
type MDSYS.SDO_GEOMETRY and has data in it.

If there are instances, delete all spatial indexes on these columns. Delete the
data in these columns or delete these columns and tables. If there are no
instances, go on to the next step.

Run the script ¢813d805.sql in ORACLE_HOME/md/admin. This will delete all
spatial objects that require 8.1 compatibility. That is, all the object-relational
implementation objects for Oracle Spatial will be deleted. The relational
implementation available in release 8.0.n.n.n will remain installed and
accessible.

While connected as SYSTEM, enter the following:

ALTER DATABASE RESET GOMPATI BI LI TY

SHUTDOM

Change the init.ora paraneter GOMPATIBLE=8.0.0.0.0
STARTUP

After running ORACLE_HOME/MD/c813d805.sq]l, resetting the database
compatibility to 8.1.n.n.n from 8.0.n.n.n requires running the script ORACLE_
HOME/MD/c805u813.sgl to reinstall and enable the object-relational
implementation of Spatial.

B.3 Compatibility Details

All releases of the Spatial product provide a set of predefined spatial data types,
topological operators such as RELATE, and a spatial indexing mechanism. The
Oracle8i (release 8.1.5) Spatial release differed from pre-Oracle8i releases in that it:

Used object types (a varray-based type called SDO_GEOMETRY to store
ordinates)

Supported new spatial data types, namely arcs and circles

Had new spatial operators (SDO_WITHIN_DISTANCE) and functions (SDO _
POLY_UNION, SDO_BUFFER, SDO_POLY_INTERSECT, and SDO_POLY_
XOR)

Utilized dynamic SQL in PL/SQL
Allowed invoker’s rights

Tessellated a geometry as a whole rather than one element at a time

Installation, Compatibility, and Migration Issues B-3



Data Migration Issues

All interfaces preceding Oracle8i are maintained, but the package bodies have been
changed to use the preceding features. Thus, for Oracle8i, the Spatial packages must
be reinstalled to use these interfaces even if the compatibility parameter is set to 8.0.

No data migration is needed, and the 7.3.4/8.0.4 spatial applications will work
without modification. Any OCI-specific migration issues must be handled in the
same manner as they would have to be for any OCI application.

The release 7.3.4/8.0.4 to 8.1.5 upgrade requirements are the same. Upgrade both
Oracle8i and Spatial. Perform all the necessary steps for an upgrade. Your spatial
applications will continue to work as before.

Downgrading from 8.0.5 or earlier releases to a previous release of the database
server and Spatial requires no special steps specific to the Spatial implementation.
However, this situation is different for Oracle8i. In Oracle8i, Spatial uses objects and
extensible indexing. Therefore, it creates database objects specific to Oracle8i that
are not compatible with previous releases of the database server. When you
downgrade the database server and Spatial from Oracle8i to release 8.0.5, a
spatial-specific downgrade script must be executed to remove all the spatial
geometry type, index type, and spatial operator definitions.

B.4 Data Migration Issues

Beginning with release 7.3.3, all subsequent releases can work with spatial data
from previous releases. That is, no data migration is required. The situation is
different in Oracle8i because Spatial now allows two storage mechanisms. If you
want the features specific to Oracle8i, such as extensible indexing and spatial
operators, you must migrate your spatial data from the release 7.3.3
columns-of-numbers style to the SDO_GEOMETRY storage scheme. Spatial
provides a stored procedure and sample code that demonstrates one way of
migrating data and metadata.

Migrating data on downgrades is more complex. Spatial provides OCI
demonstration programs to read SDO_GEOMETRY instances and store them in a
release 8.0.5 spatial schema for comparable data. The demo also addresses issues
related to the changes in the way metadata is stored in Oracle8i compared to
previous releases. The complexity arises from the following:

« From release 7.3.4 onward, Spatial has an UNSUPPORTED_GEOMETRY type
that is always used in conjunction with a bounding box or polygon, which is
used for indexing purposes and which encloses the spatial object. This did not
exist in release 7.3.3.

B-4 Oracle Spatial User's Guide and Reference



Migrating from Spatial Release 8.1.5 or 8.1.6 to Release 8.1.7

« From release 8.1.5 onward, Spatial supports arcs, circles, arc strings, and
geometries made up of a mixture of arc and line segments.

You cannot store arcs and circles in any release earlier than Oracle8i, and you cannot
use data from a release 7.3.4 or later spatial layer in release 7.3.3 if it contains
instances of type UNSUPPORTED_GEOMETRY (etype=0).

B.5 Migrating from Spatial Release 8.1.5 or 8.1.6 to Release 8.1.7

To migrate from Spatial release 8.1.5 to release 8.1.7, you must first migrate from
release 8.1.5 to release 8.1.6, as described in Section B.5.1, and then migrate to
release 8.1.7, as described in Section B.5.2. Be sure that you perform any actions
needed for data migration and compatibility for release 8.1.6 before migrating to
release 8.1.7.

To migrate from Spatial release 8.1.6 to release 8.1.7, run the ¢816u817.sql script, as
described in Section B.5.2.

B.5.1 Migrating from Spatial Release 8.1.5 to Release 8.1.6

Spatial release 8.1.5 uses objects and index types to create spatial indexes. However,
currently there is no tool to convert release 8.1.5 spatial indexes to the new format
for release 8.1.6. Therefore, you must delete all the spatial indexes built in release
8.1.5 database and re-create them in a release 8.1.6 database.

Follow these steps to upgrade from release 8.1.5 to release 8.1.6 of Spatial:
1. Make sure that the Oracle RDBMS is upgraded to release 8.1.6.

2. Find out how the current spatial indexes are built (including what the index
parameters are), so that you can re-create all the indexes after the upgrade.

To see which users have spatial indexes and the spatial index parameters, enter
the following SQL statement:

SELECT PARAMETERS, | NDEX_ NAME FRCM user _i ndexes,
sdo_i ndex_netadata tabl e
WHERE | NDEX_ NAME = SDO | NDEX_NAME,

Save this information before upgrading to Spatial 8.1.6.
3. Run the following script: ORACLE_ HOME/md/c815u816.sql

This script deletes all the spatial indexes and installs types and packages related
to Spatial 8.1.6. It also migrates the data from all the SDO_GEOM_METADATA

Installation, Compatibility, and Migration Issues B-5



Migrating from Spatial Release 8.1.5 or 8.1.6 to Release 8.1.7

tables in each user’s schema to the new xxx_SDO_GEOM_METADATA views
managed by Spatial.

However, this metadata migration is done only for those layers that have a
spatial index built on them. If you need to do this metadata migration
separately, you can use the following SQL statement (once for each user with
spatial data):

I NSERT | NTO USER_SDO GECM METADATA
SELECT TABLE NAVE, GCLUMN NAME, DIMNFQ NULL
FROM SDO GEQM METADATA,

For example, if you connect as user Herman and execute that statement, it
migrates all the metadata in user Herman’s SDO_GEOM_METADATA table.

4. Migrate the geometry objects to release 8.1.6-style types by executing the SDO _
MIGRATE.FROM_815 TO_81X procedure on each table that has geometry data.
(This step is strongly recommended, as explained in Section B.5.1.1.)

5. Manually re-create all the spatial indexes that are required.

B.5.1.1 Data Migration to Release 8.1.6

Spatial release 8.1.6 introduced new SDO_GTYPE and SDO_ETYPE values to better
manage the geometry data. To take advantage of these benefits, it is strongly
recommended that the data be migrated to the new SDO_GTYPE and SDO_ETYPE
values.

To initiate this data migration, execute the SDO_MIGRATE.FROM_815 TO_81X
procedure on each table that has geometry data. This procedure updates all the
geometries to set the SDO_GTYPE and SDO_ETYPE values.

B.5.1.2 Compatibility Between Releases 8.1.5 and 8.1.6

Spatial release 8.1.6 changed the way the geometry metadata is managed. In release
8.1.5, the metadata is managed by the users by keeping the metadata in SDO _
GEOM_METADATA tables in each user’s schema. In release 8.1.6, the metadata is
centrally managed under the MDSYS schema, and the user can access and
manipulate the metadata through metadata views.

A release 8.1.5 Spatial application will fail against a release 8.1.6 database if it tries
to access the metadata. Therefore, if you need to run a release 8.1.5 application with
a release 8.1.6 database, you need to keep the SDO_GEOM_METADATA table and
make sure that the USER_SDO_GEOM_METADATA view and the SDO_GEOM _
METADATA table are consistent all the time.

B-6 Oracle Spatial User's Guide and Reference



Migrating from Spatial Release 8.1.5 or 8.1.6 to Release 8.1.7

A recommended method for ensuring consistency is to create SQL triggers on the
SDO_GEOM_METADATA table to perform a corresponding insert, update, or
delete operation on USER_SDO_GEOM_METADATA for each such operation on
SDO_GEOM_METADATA. For example, if user SCOTT has spatial data and needs
to keep the SDO_GEOM_METADATA table consistent with the new metadata
views, SCOTT can create a trigger (shown in Example B-1) that inserts data into the
USER_SDO_GEOM_METADATA view whenever SCOTT inserts data into the
SDO_GEOM_METADATA table.

Example B-1 Insert Trigger for Metadata Consistency

CREATE TR GEER scott_sdo_neta_ins_trig
bef ore insert on sdo_geom net adat a

ref erenci ng new as n

FCR EACH ROV

BEA N

I NSERT | NTO user _sdo_geom net adat a

VALLES(: n. tabl e_nane, :n.colum_nane, :n.dimnfo, NJULL);
END,
/

User SCOTT can create similar triggers for delete and update operations on the
SDO_GEOM_METADATA table.

B.5.2 Migrating from Spatial Release 8.1.6 to Release 8.1.7

To migrate from Spatial release 8.1.6 to release 8.1.7, run the following script:
ORACLE_HOME/md/c816u817.sql

Installation, Compatibility, and Migration Issues B-7



Migrating from Spatial Release 8.1.5 or 8.1.6 to Release 8.1.7

B-8 Oracle Spatial User's Guide and Reference



C

Generic Geocoding Interface

This appendix describes a generic interface to third-party geocoding software that
lets users geocode their address information stored in database tables and obtain
standardized addresses and corresponding location information as instances of
predefined object types. This interface is part of the geocoding framework in the
Oracle Spatial and Oracle interMedia Locator products.

A geocoding service is used for converting tables of address data into standardized
address, location, and possibly other data. Given a geocoded address, one can then
perform proximity or location queries using a spatial engine, such as Oracle Spatial
or Oracle interMedia Locator, or demographic analysis using tools and data from
Oracle’s business partners.

Once data has been geocoded, users can perform location queries on this data. In
addition, geocoded data can be used with other spatial data such as block group,
postal code, and county code for association with demographic information. It is
now possible for decision support, customer relationship management, supply
chain analysis, and other applications to use spatial analyses as part of their
information gathering and processing functions. Results of analyses or queries can
be presented as maps, in addition to tabular formats, using third-party software
integrated with Oracle interMedia Locator.

This chapter describes a set of interfaces and metadata schema that enables
geocoding of an entire address table or a single row. It also describes the procedures
for inserting or updating standardized address and spatial point data into another
table (or the same table). The third-party geocoding service is assumed to have been
installed on a local network and to be accessible through standard communication
protocols, such as sockets or HTTP.

Generic Geocoding Interface C-1



Locator Implementation; Benefits and Limitations

C.1 Locator Implementation: Benefits and Limitations

Oracle interMedia Locator contains a set of application programming interface (API)
functions that allows the integration of Oracle Spatial with third-party geocoding
products and Web-based geocoding services. A database user can issue a standard
SQL call or construct PL/SQL routines to geocode an address, and retrieve the
spatial and standardized address objects, both of which are defined as Oracle
database object types. Users have the option of storing these in the database, or
using the spatial objects in Locator functions for Euclidean within-distance queries.

The APIs offer great flexibility in extracting information from existing relational
databases. Data conversion procedures are minimal. A geocode result also returns
an additional set of information; there is no requirement to use all the information,
and the application can decide which fields to extract and where to store them.
However, to use the full range of features of Oracle Spatial or Oracle interMedia
Locator, it is recommended that the Spatial object be stored as returned.

The existing Locator service is Web-based and requests are formatted in HTTP.
Thus, each request in SQL must contain the URL of the Web site, proxy for the
firewall (if any), and user account information on the service provider’s Web site.
An HTTP approach potentially limits the utility or practicality of the service when
dealing with large tables or undertaking frequent updates to the base address
information. In such situations, use a batch geocoding service made available
within an intranet or local area network. The following sections describe the
interface for a facility that can include the existing HTTP-based solution.

C.2 Generic Geocoding Client

A fast, scalable, highly available, and secure Java Virtual Machine (Java VM, or
JVM) is integrated in the Oracle8i database server. The Java VM provides an ideal
platform on which to deploy enterprise applications written in Java as Java Stored
Procedures (JSPs), Enterprise Java Beans (EJBs), or Java Methods of Oracle8i object

types.

Therefore, any client geocoder component written in Java can be embedded in the
Oracle8i database as a JSP. This JSP interface can perform either
one-record-at-a-time or batch geocoding. Java stored procedures are published
using PL/SQL interfaces; thus, the generic geocoding interface can be compatible
with existing Locator APIs.

The stored procedures have an interface, oracle.spatial.geocoder, that must be
implemented by each vendor whose geocoder is integrated with Oracle Spatial and
Oracle interMedia Locator. The procedures also require certain object types to be

C-2 Oracle Spatial User's Guide and Reference



Geocoder Metadata

defined and metadata tables to be populated. The object types, metadata schema,
and the geocoder interface are described in further detail in the following sections.

Although the database user MDSYS oversees all data types, operators, and schema
objects for Oracle Spatial and Oracle interMedia Locator, the geocoding metadata
must exist in each user’s schema. Each user of the geocoder service must have
tables that implement the metadata schema.

The third-party geocoding service must be installed on a local network and be
accessible through standard communication protocols such as sockets, HTTP, or
CORBA.

Figure C-1 shows the Oracle geocoding framework.

Figure C-1 Oracle Geocoding Framework

Spatial/Locator Objects
Multimatch &
tadata Reject Tables I
Tables

JVIM

Java Geocoder Compaoneant

Geocode Interface
Code

Communication Method G -
Java Client e g | Geoco
Implementation HTTP Sarver
Sockets
CORBA

C.3 Geocoder Metadata

The metadata describes the properties of the geocoding server, the location and
structure of the address data to be geocoded, and the nature and storage location of

Generic Geocoding Interface C-3



Geocoder Metadata

the geocoding results. Other relevant information may include the name of the
server machine, the port to which to connect, and so on. Together, these constitute
the initialization parameters and are stored in metadata tables under the user’s own
schema. At client initialization, a data dictionary lookup is performed to locate the
necessary metadata.

Batch geocoding lets the user simultaneously geocode many records from one table.
Batch geocoding requires the following:

« Geocoding server setup, instructing the client where and how to connect to the
geocoding service.

« Associating input fields and output fields with columns in the database tables.
This is called the schema setup.

« Specifying how to handle geocoding situations such as rejects, multiple
matches, or exceptions.

Thus, the metadata table consists of a task ID, geocoding information, and schema
information. The task ID is a primary key that identifies the initialization
parameters for a particular geocoding task. For example, geocoding a table of
customers is one task, while geocoding a table of customer inquiries is a separate
task.

The metadata is stored in a table named GEOCODE_TASK_METADATA, which is
defined as follows:

CQeate tabl e geocode_t ask_net adat a (

task id NMBER -- prinmary key

geocoder _info MYSYS. GEOODE_SERVER PRCPERTY_TYPE,
schena_i nfo MXSYS. GEOODE_SCHEVA PRCPERTY_TYPE
)

Note the following about the GEOCODE_TASK_METADATA table:

« The metadata is divided into a server object (described in Section C.3.1) and a
schema object (described in Section C.3.2).

« Each object is identified by a unique task_id value.

C.3.1 Server Properties

The GEOCODER_INFO property column of the GEOCODE_TASK_METADATA
table contains information describing the characteristics of the server, including
machines, ports, and vendor-specific information.

The GEOCODE_SERVER_PROPERTY_TYPE type is defined as follows:

C-4 Oracle Spatial User's Guide and Reference



Geocoder Metadata

create type geocode val ue_array as
varray(1024) of varchar2(64)
/
creat e type geocode_server_property type as obj ect

(

servers geocode_val ue_array,
protocol varchar2(32),

property name geocode_val ue_array,
property val ue geocode val ue_array,
reject_level integer,

bat ch_si ze integer

)
/

Note the following about the GEOCODE_SERVER_PROPERTY_TYPE definition:

« SERVERS is an array of character strings each in the form Machine:Port that
uniquely identifies the geocoding service on the network. This also supports
multiple services on the same network by providing an array of servers. Some
geocoders, for example, can switch to secondary servers in the case of failures.

« PROTOCOL allows different transport mechanisms, such as HTTP or socket.

« Additional PROPERTY_NAME and PROPERTY_VALUE arrays allow
customization for unique geocoder processing options. They are not intended to
be used for name or password information, because a local geocoding service
usually does not require this information.

« REJECT_LEVEL is a vendor-specific value that defines the criteria for rejecting a
record. It is up to the implementation of the Java interface to interpret the value.

« BATCH_SIZE indicates how many records to send to the geocoder at one time.

C.3.2 Geocoding Input and Output Specification

The SCHEMA _INFO property column of the GEOCODE_TASK_METADATA table
specifies the set of columns that makes up an address in the table to be geocoded,
the table and columns into which the geocoded results are stored, and where
rejected record data and multiple matches are stored.

The GEOCODE_SCHEMA_PROPERTY_TYPE type uses columns of type
GEOCODE_TABLE_COLUMN_TYPE to describe the address fields in the input
(table to be geocoded) and output (table containing geocoded results). The two
types are defined as follows:

creat e type geocode_tabl e_col um_type as obj ect

Generic Geocoding Interface C-5



Geocoder Metadata

firm varchar2(32),

street varchar2(32),

street2 varchar2(32),
cty_subdi vi sion varchar2(32),
city varchar2(2332),
country_subdivision varchar2(32), --state
country varchar2(32),

postal _code varchar2(32),

post al _addon_code var char 2(32),
lastline varchar2(32),

col _nane geocode_val ue_array,
col _val ue geocode_val ue_array

)
/

create type geocode_schena property_type as obj ect
(
| anguage varchar2(32),
character_set varchar2(32),
in_table varchar2(32),
in_table cols geocode_table _col um_type,
out_table varchar2(32),
out_table cols geocode_tabl e _col um_type,
out _sdo_geom varchar2(32),
out_geo _result varchar2(32),
in_primary_key varchar2(32),
out_foreign_key varchar2(32),
DM__option varchar2(16),
mul ti _match table varchar?2(32),
reject_table varchar2(32),
bat ch_cormit  varchar 2(5)

)
/

Note the following about the GEOCODE_TABLE_COLUMN_TYPE and
GEOCODE_SCHEMA_PROPERTY_TYPE definitions:

« LANGUAGE and CHARACTER_SET are for internationalization.

« IN_TABLE identifies the name of the input address table (for example,
CUSTOMERS).

« IN_TABLE_COLS identifies the standard set of fields for geocoding. The fields
in the object are standard, and LASTLINE is redundant with the combination of
CITY, STATE, POSTAL_CODE, and POSTAL_ADDON_CODE. Only one

C-6 Oracle Spatial User's Guide and Reference



Geocoder Metadata

(LASTLINE, or the combination of CITY, STATE, POSTAL_CODE, and
POSTAL_ADDON_CODE) should be specified.

OUT_TABLE and OUT_TABLE_COLS have the same meaning as IN_TABLE
and IN_TABLE_COLS, except that these are the column names where the
results are stored. Either a subset or all the OUT_TABLE_COLS fields can be
null. OUT_TABLE_COLS and GEOCODE_RESULT contain similar information,
that is, the standardized (corrected) address in case of successful geocoding.
Users can choose to store the standardized address in two forms, expanded into
a set of columns or as a single object.

If the actual address definition differs from the fields in the GEOCODE_
TABLE_COLUMN_TYPE definition, adjust the field mappings and insert null
values as needed. For example, assume an input table CUSTOMERS defined as
follows:

(custnane varchar2(32),
conpany varchar2(32),
street varchar2(64),
city varchar2(32),
state varchar2(32),
country varchar2(32),
zip varchar2(9))

In the GEOCODE_SCHEMA _PROPERTY_TYPE column definition, the IN_
TABLE_COLS attribute value would be specified as: GEOCODE_TABLE _
COLUMN_TYPE(‘COMPANY’, ‘STREET’, NULL, NULL, ‘CITY’, ‘STATE’,
‘COUNTRY’, ‘ZIP’, NULL, NULL, NULL, NULL).

The COL_NAME and COL_VALUE information will be used for feature
enhancement for individual geocoding services.

OUT_SDO_GEOM and OUT_GEO_RESULT: SDO_GEOMETRY and
GEOCODE_RESULT are the two database objects for storing a standard set of
geocoded results, including standardized address and latitude/longitude
information. If you are using Oracle Spatial, it is required that SDO _
GEOMETRY objects be stored in the database. MDSYS.GEOCODE_RESULT
exists in the current Locator implementation and is defined as follows:

Qeate type geocode result as object (
nmat chcode var char 2(16),
firmmane varchar?2(512),
addrline varchar2(512),
addrline2 varchar2(512),
city varchar2(512),

Generic Geocoding Interface C-7



Geocoder Metadata

state varchar2(512),
zip varchar2(5),

zi p4 varchar2(4),
lastline varchar2(512),
county varchar?2(32),
bl ock varchar?2(32),

| occode varchar?2(16),
cart varchar?2(16),
dpbc varchar2(16),

| ot code vrchar2(16),
| ot num var char 2( 16)

)

« IN_PRIMARY_KEY and OUT_FOREIGN_KEY designate a primary key and
foreign key, respectively. Using a primary key and foreign key pair is a way to
associate the input records to the output records, and is essential when the
database stores the output results. Even if the input table and output table are
the same, a primary key and foreign key pair (essentially the same column: for
example, ID or ROWID) must be specified. There is no restriction on the data
type, because no manipulation of the data is needed.

« DML_OPTION specifies whether to insert geocoded data into a new row in the
result table (INSERT) or update existing rows in the table (UPDATE). If IN_
TABLE is the same as OUT_TABLE, then DML_OPTION must be UPDATE,
because adding new rows in an existing table is unnecessary. If IN_TABLE is
different from OUT_TABLE and if UPDATE is specified, OUT_TABLE must
have partial records available for primary and foreign key lookup. This permits
the service to locate the exact row to update with the new objects.

« MULTI_MATCH_TABLE and REJECT_TABLE are table names where the
primary key of the multiple matches and rejected records are stored. If these
tables do not exist, they will be created automatically. Automatic creation is the
preferred approach due to the fixed structure. The REJECT_TABLE table will be
created with a primary key column type in the input table, a match code
column, and an optional error message column. The MULTI_MATCH_TABLE
table will contain a primary key, SDO_GEOMETRY, and GEO_RESULT. If these
fields are null, no table will be created and no multiple matches will be
returned.

« BATCH_COMMIT is a string containing TRUE or FALSE, indicating if a commit
operation should be performed after each batch. If FALSE is specified, a large
rollback segment will be needed for large address table geocoding.

C-8 Oracle Spatial User's Guide and Reference



Single-Record and Interactive Geocoding

C.3.2.1 Multiple Matches and Rejected Records

Tables can be specified to store multiple matches (MULTI_MATCH_TABLE) and
rejected records (REJECT_TABLE) during batch geocoding. The primary key will be
a user-specified field from the original table. Hence, any single column can be used.
Currently, no composite primary keys are supported.

If a single address results in multiple matches, after the batch processing you can
examine MULTI_MATCH_TABLE and select the correct entries for the original data
rows. For example, you can create a table in the following format:

create tabl e <user-defined multinatch table> (
pk <sane data type as in input table>,

l ocati on nusys. sdo_geonet ry,

std_addr rmsys. geocode_resul t

)i

The match code in the geocode result object indicates the failure during geocoding.
The rejection level is used in determining if a record has failed the geocoding. If a
record has failed and REJECT_TABLE is defined, the primary key (specified by the
user) is inserted into a rejection table. The interpretation of rejection level is left to
the programmer. REJECT_TABLE can be defined in the following format:

create tabl e <user-defined reject table> (
pk <sane data type as in input table>,
nmat chcode var char 2(64),
errcode varchar2(128)

E

C.4 Metadata Helper Class

The geocoder metadata is comprehensive. To accelerate development and
deployment, Oracle offers a sample class, oracle.spatial.geocoder.Metadata, to allow
easy access (read and write) to these objects. Also, SELECT and INSERT SQL
statements are constructed automatically for the caller. See the class implementation
code for details.

C.5 Single-Record and Interactive Geocoding

Geocoding a row in a table is required when updating or inserting data in the
address table. One way to maintain consistency between the base address table and
the table of geocoded results is to use a trigger to call the geocoding function. The
Java interface method geocodel( ) will take the primary key to perform the

Generic Geocoding Interface C-9



Java Geocoder Service Interface

geocoding task and insert or update the geocoded information into the specified
table.

The GEOCODER_HTTP package functions are still supported for single-record
geocoding. In addition, you are able to pass an address in as a parameter, and get
back an array of matches. The Java interface takes a metadata structure (see the
GEOCODE_SCHEMA _PROPERTY_TYPE definition in Section C.3.2) and an
address structure, and returns an array of this same address structure:

create type geocode_record_type as obj ect
(

firm varchar2(40),

street varchar?2(40),

street2 varchar2(40),
city_subdivision varchar?2(40),
city varchar?2(40),

count ry_subdi vi sion varchar 2(40),
country varchar2(40),

postal _code varchar2(40),

post al _addon_code var char 2(40),
lastline varchar2(80),

|atitude nunber,

| ongi tude nunber

)i

After performing geocoding, it will return an array (SQL collection type) of such
structures as possible matches. With this method, no database table or schema is
accessed. This method can enable interactive applications such as store locators.

C.6 Java Geocoder Service Interface

Each geocoder independent software vendor (ISV) must implement the following
geocoder interface to integrate their products with Oracle Spatial and Oracle
interMedia Locator.

The interface is defined as follows:

/1 Geocoder Interface
package oracl e. spati al . geocoder ;

public interface Geocoderlnterface {
publ i c void geocode(int taskl d)
throws oracl e. spati al . geocoder . Gesocoder Excepti on, java. sql . SQLExcepti on;
publ i c void geocodel(int taskld, B gDecinal pkval)
throws oracl e. spati al . geocoder . Gesocoder Excepti on, java. sgl . SQLExcepti on;

C-10 Oracle Spatial User's Guide and Reference



Enabling Third-Party Geocoders

Il ... other geocodel functions with different pkVal types

public ARRAY interactive_geocode(STRUCT meta, STRUCT inAddr)
throws oracle.spatial.geocoder.GeocoderException, java.sql. SQLException;
}

I Geocoder Exception Class
package oracle.spatial.geocoder;

public class GeocoderException extends javalang.Exception {
public GeocoderException() {}
public GeocoderException(String mesg)
{
super(mesg);

}

Further details, including some of the actual implementation, will be provided to
developers.

C.7 Enabling Third-Party Geocoders

For customers to implement an Oracle solution with any vendor’s Java client, they
will have to download a copy of the Java client from the geocoder vendor’s Web
site, link the geocoder interface package with the vendor’s code, and then upload
the resulting JSP into the Oracle JVM. Once enabled, the Java client resides on the
vendor’s server and can provide the required services.

To load a client into the database, invoke the Oracle8i loadjava utility, and the Java
geocoding method will be exposed as a SQL function call.

The vendor-specific geocoder interface implementation can be owned by any
schema, such as MDSYS, a DBA account, or an account determined by the customer
or vendor. The owner must grant the appropriate EXECUTE privileges to PUBLIC
or some set of users of the service.

Generic Geocoding Interface C-11



Enabling Third-Party Geocoders

C-12 Oracle Spatial User's Guide and Reference



D

Coordinate Systems (Spatial Reference
Systems)

This appendix describes the coordinate system transformation capabilities of Oracle
Spatial. The coordinate systems application programming interface (API) integrates
support into Oracle8i for storing and manipulating SDO_GEOMETRY objects in a
variety of coordinate systems. (Coordinate systems are sometimes called spatial
reference systems.)

For reference information about coordinate systems functions and procedures, see
Chapter 8.

D.1 Why Integrate Coordinate System Information?

Before Oracle Spatial release 8.1.6, geometries (objects of type SDO_GEOMETRY)
were stored as strings of coordinates without reference to any specific coordinate
system. For definitions of SDO_GEOMETRY objects, users were instructed to set the
SDO_SRID value (intended for future coordinate system support use) to a null
value, and in fact this instruction appeared in the Oracle8i Spatial User’s Guide and
Reference for release 8.1.6. The Spatial functions and operators always assumed a
coordinate system that had the properties of an orthogonal Cartesian system. With
such a system, if Earth-based geometries are stored in latitude and longitude
coordinates, Spatial functions and operators sometimes do not provide correct
results in these coordinates.

With coordinate system support in Oracle Spatial, you can freely convert data from
one coordinate system to another coordinate system, and Spatial functions,
operators, and utilities provide correct and unambiguous results in whatever
coordinate system the data is stored, particularly relating to measurements on the
Earth’s surface. Moreover, Spatial operators for queries and joins perform accurate

Coordinate Systems (Spatial Reference Systems) D-1



Terms and Concepts

computations with data that uses different coordinate systems. (However, see
Section D.5 for any restrictions and problems in the current release.)

D.2 Terms and Concepts

This section explains important terms and concepts related to coordinate systems
support in Oracle Spatial.

D.2.1 Coordinate System (Spatial Reference System)

A coordinate system (also called a spatial reference system) is a means of assigning
coordinates to a location and establishing relationships between sets of such
coordinates. It enables the interpretation of a set of coordinates as a representation
of a position in a real world space.

D.2.2 Cartesian Coordinates

Cartesian coordinates are coordinates that measure the position of a point from a
defined origin along axes that are perpendicular in the represented
two-dimensional or three-dimensional space.

D.2.3 Geodetic Coordinates (Geographic Coordinates)

Geodetic coordinates (sometimes called geographic coordinates) are angular
coordinates (longitude and latitude), closely related to spherical polar coordinates,
and are defined relative to a particular Earth geodetic datum (described in

Section D.2.5).

D.2.4 Projected Coordinates

Projected coordinates are planar Cartesian coordinates that result from performing
a mathematical mapping from a point on the Earth’s surface to a plane. There are
many such mathematical mappings, each used for a particular purpose.

D.2.5 Geodetic Datum

A geodetic datum is a means of representing the figure of the Earth, usually as an
oblate ellipsoid of revolution, that approximates the surface of the Earth locally or
globally, and is the reference for the system of geodetic coordinates.

D-2 Oracle Spatial User's Guide and Reference



Coordinate Systems Data Structures

D.2.6 Authalic Sphere

An authalic sphere is a sphere that has the same surface area as a particular oblate
ellipsoid of revolution representing the figure of the Earth.

D.2.7 Transformation (Datum Transformation)

Transformation, specifically datum transformation, is the conversion of geodetic
coordinates from one geodetic datum to another geodetic datum, usually involving
changes in the shape, orientation, and center position of the reference ellipsoid.

D.3 Coordinate Systems Data Structures

The coordinate systems functions and procedures use information provided in a
table and other objects supplied with Oracle Spatial:

« Atable, MDSYS.CS_SRS, defines the valid coordinate systems.
«  Other data structures define the valid map projections and ellipsoids.

The MDSYS.CS_SRS table associates each coordinate system with its well-known
text description, which is in conformance with the standard published by the
OpenGlIS Consortium (ht t p: / / ww. opengi s. or g).

D.3.1 MDSYS.CS_SRS Table

The MDSYS.CS_SRS reference table is included with Oracle Spatial, and it is used
by coordinate systems functions and procedures. This table contains over 900 rows,
one for each valid coordinate system.

Note: You should not modify, delete, or add any information in
the MDSYS.CS_SRS table. (Support is planned for user-defined
coordinate systems in a future release.)

The MDSYS.CS_SRS table contains the columns shown in Table D-1.

Table D-1 MDSYS.CS_SRS Table

Column
Name Data Type Description

CS_NAME VARCHAR2(68) A well-known name, often mnemonic, by which a
user can refer to the coordinate system.

Coordinate Systems (Spatial Reference Systems) D-3



Coordinate Systems Data Structures

Table D-1 MDSYS.CS_SRS Table (Cont.)

Column

Name Data Type Description

SRID INTEGER The unique ID number (Spatial Reference ID) for a
coordinate system.

AUTH_SRID INTEGER An optional ID number that can be used to indicate

how the entry was derived; it might be a foreign key
into another coordinate table, for example.

AUTH_NAME VARCHAR2(256)  An authority name for the coordinate system.
Contains 'Oracle’ in the supplied table. Users
can specify any value in any rows that they add.

WKTEXT VARCHAR2(2046) The well-known text (WKT) description of the SRS, as
defined by the OpenGIS Consortium. For more
information, see Section D.3.1.1.

CS_BOUNDS MDSYS.SDO_ Optional SDO_GEOMETRY object that is a polygon
GEOMETRY with WGS-84 longitude and latitude vertices,
representing the spheroidal polygon description of
the zone of validity for a projected coordinate system.
Must be null for a geographic or non-Earth coordinate
system. Is null in all supplied rows.

D.3.1.1 Well-Known Text (WKTEXT)

The WKTEXT column of the MDSYS.CS_SRS table contains the well-known text
(WKT) description of the SRS, as defined by the OpenGIS Consortium. An example
of the WKT for a geodetic (geographic) coordinate system is:

'GEOGCS [ "Longjtude / Laiitude (Old Hawaiian)", DATUM ['Old Hawaiian”, SPHEROID
['Clarke 1866", 6378206.400000, 294.978698], PRIMEM [ "Greenwich'’, 0.000000],
UNIT ['Decimal Degree”, 0.01745329251994330]

The WKT definition of the coordinate system is hierarchically nested. The Old
Hawaiian geographic coordinate system (GEOGCS) is composed of a named datum
(DATUM), a prime meridian (PRIMEM), and a unit definition (UNIT). The datum is
in turn composed of a named spheroid and its parameters of semimajor axis and
inverse flattening.

An example of the WKT for a projected coordinate system (a Wyoming state plane)
is:

'PROJCS[ Wyoming 4901, Eastemn Zone (1983, meters)’, GEOGCS [ "GRS 80", DATUM
['GRS 80", SPHEROID ['GRS 80", 6378137.000000, 298.257222]), PRIMEM [
"Greenwich”, 0000000, UNIT ['Decimal Degree”, 0.01745329251994330],

D-4 Oracle Spatial User's Guide and Reference



Coordinate Systems Data Structures

PROJIECTI ON [ " Transverse Mercator"], PARAMETER ["Scal e_Factor”, 0.999938],
PARAMETER ["Central _Meri di an", -105.166667], PARAMETER ["Latitude OF_Qrigin",
40. 500000] , PARAMETER [ "Fal se_Easting", 200000.000000], UNT ["Meter",

1. 000000000000] ]*

The projected coordinate system contains a nested geographic coordinate system as
its basis, as well as parameters that control the projection.

Oracle Spatial supports all the common geodetic datums and map projections.

D.3.2 Other Objects

Underlying the CS_SRS table are data and code to represent the ellipsoids and
projections in common use around the world. Table D-2 lists the supported map
projections.

Table D—2 Supported Map Projections

ID Projection Name ID Projection Name
0 Geographic (longitude/latitude) 3 Albers Conical Equal Area
4 Lambert Conformal Conic 5 Mercator
7 Polyconic 8 Equidistant Conic
9 Transverse Mercator 10 Stereographic
11 Lambert Azimuthal Equal Area 12 Azimuthal Equidistant
13 Gnomonic 14 Orthographic
15 General Vertical Near-Side 16 Sinusiodal
Perspective
17 Equirectangular 18 Miller Cylindrical
19 Van der Grinten 20 Hotine Oblique Mercator
21 Robinson 22 Space Oblique Mercator
23 Alaska Conformal 24 Interrupted Goode Homolosine
25 Mollweide 26 Interrupted Mollweide
27 Hammer 28 Wagner IV
29 Wagner VII 30 Oblated Equal Area
31 Non-Earth 32 Transverse Mercator Danish System
45 Bornholm

Coordinate Systems (Spatial Reference Systems) D-5



Coordinate Systems Data Structures

Table D—2 Supported Map Projections (Cont.)

ID Projection Name ID Projection Name

33 Transverse Mercator Danish System 34 Transverse Mercator Sjaelland
34 Jylland-Fyn

35 Transverse Mercator Finnish KKJ 36 Eckert IV

37 Eckert VI 38 Gall

39 Lambert Conformal Conic (Belgium 40 New Zealand Map Grid
1972)

41 Cylindrical Equal Area 42 Swiss Oblique Mercator

43 Bonne 44 Cassini

Table D-3 lists the supported ellipsoids.

Table D-3 Supported Ellipsoids

ID Ellipsoid Name ID Ellipsoid Name

0 Clarke 1866 1 WGS 72

2 Australian 3 Krassovsky

4 International 1924 5 Hayford

6 Clarke 1880 7 GRS 80

8 Clarke 1866 (Michigan) 9 Airy 1930

10 Bessel 1841 1 Everest

12 Sphere 13 Airy 1930 (Ireland 1965)

14 Bessel 1841 (Schwarzeck) 15 Clarke 1880 (Arc 1950)

16 Clarke 1880 (Merchich) 17 Everest (Kertau)

18 Fischer 1960 (Mercury) 19 Fischer 1960 (South Asia)

20 Fischer 1968 21 GRS 67

22 Helmert 1906 23 Hough

24 South American 1969 25 War Office

26 WGS 60 27 WGS 66

28 WGS 84 29 Clarke 1880 (IGN)

30 IAG 75 31 MERIT 83

D-6 Oracle Spatial User's Guide and Reference



Restrictions and Problems in the Current Release

Table D-3 Supported Ellipsoids (Cont.)

ID Ellipsoid Name ID Ellipsoid Name

32 New International 1967 33 Walbeck

34 Bessel 1841 (NGO 1948) 35 Clarke 1858

36 Clarke 1880 (Jamaica) 37 Clarke 1880 (Palestine)
38 Everest (Timbalai) 39 Everest (Kalianpur)

40 Indonesian 41 NWL 9D

42 NWL 10D 43 OSUS86F

44 OSU91A 45 Plessis 1817

46 Struve 1860 48 Sphere (Unity)

D.4 Coordinate Systems Functions and Procedures

The current release of Oracle Spatial includes the following functions and
procedures:

SDO_CS.TRANSFORM function: Transforms a geometry representation using a
coordinate system (specified by SRID or name).

SDO_CS.TRANSFORM_LAYER procedure: Transforms an entire layer of
geometries (that is, all geometries in a specified column in a table).

Reference information about these functions and procedures is in Chapter 8.

Support for additional functions and procedures is planned for future releases of
Oracle Spatial.

D.5 Restrictions and Problems in the Current Release

The current release of Oracle Spatial provides the first phase of support for
coordinate systems. Further support is planned for future releases.

The following restrictions and problems apply to the current release.

D.5.1 Geometries with Longitude and Latitude Coordinates

In the current release, Spatial functions and operators do not necessarily return
precisely correct results with geometries whose coordinates are expressed as
longitude and latitude values. For example, a query asking if Stockholm, Sweden

Coordinate Systems (Spatial Reference Systems) D-7



Example of Coordinate Systems

and Helsinki, Finland are within a specified distance may return an incorrect result
if the specified distance is close to the actual measured distance.

As a workaround, first transform the geometries of interest to a projection
coordinate system that is conformant to the local space of the geometries. Then, use
the Spatial functions and operators with the transformed geometries.

In a future release, support is planned for correct results in all cases with Spatial
functions and operators using geometries with longitude/latitude coordinates.

D.6 Example of Coordinate Systems

This section presents a simplified example that uses coordinate system functions
and procedures. It refers to concepts that were explained in this appendix and uses
functions documented in Chapter 8.

Example D-1 uses the same geometry data (cola markets) as in Section 2.1, except
that instead of null SRID values, the SRID value 8307 is used. That is, the geometries
are defined as using the coordinate system whose SRID is 8307 and whose
well-known name is "Longitude / Latitude (WGS 84)". This is probably the most
widely used coordinate system, and it is the one used for global positioning system
(GPS) devices. The geometries are then transformed using the coordinate system
whose SRID is 8199 and whose well-known name is "Longitude / Latitude (Arc
1950)".

Example D-1 uses the geometries illustrated in Figure 2-1 in Section 2.1.
Example D-1 does the following:
« Creates a table (cola_markets) to hold the spatial data

= Inserts rows for four areas of interest (cola_a, cola_b, cola_c, cola_d), using the
SRID value 8307

« Updates the USER_SDO_GEOM_METADATA view to reflect the dimension of
the areas, using the SRID value 8307

« Creates a spatial index (cola_spatial_idx)
« Performs some transformation operations (single geometry and entire layer)

Example D-2 includes the output of the SELECT statements in Example D-1.

Example D—1 Simplified Example of Coordinate Systems

CREATE TABLE col a_narkets (
nkt_id NUMBER PR MARY KEY,

D-8 Oracle Spatial User's Guide and Reference



Example of Coordinate Systems

nane VARCHAR2(32),
shape MXSYS. SDO GEOMETRY) ;

The next | NSERT statenent creates an area of interest for
Gla A This area happens to be a rectangl e.

The area coul d represent any user-defined criterion: for
exanpl e, where Gola Ais the preferred drink, where

Qla Ais under conpetitive pressure, where Gola A

has strong grow h potential, and so on.

I NSERT | NTO col a_narkets VALUEY
1,

)

’

cola a’,
MDSYS. SDO CEOMETRY(
2003, -- 2-dinensional pol ygon
8307, -- SRIDfor 'Longitude / Latitude (WES 84)' coordi nate system
NULL,
MDSYS. SDO H BEM | NFO ARRAY( 1, 1003, 3), -- one rectangl e (1003 = exterior)

)

MDSYS. SDO (RD NATE_ ARRAY( 1,1, 5,7) -- only 2 points needed to
-- define rectangl e (lower left and upper right)

-- The next two | NSERT statenents create areas of interest for
-- la Band la C These areas are sinple pol ygons (but not
-- rectangl es).

I NSERT | NTO col a_narkets VALUEY(
2,

)

"cola b,

MBYS. SDO GEQMETRY(
2003, -- 2-dinensional pol ygon
8307,
NULL,

)

MDSYS. SDO H EM | NFO ARRAY( 1, 1003, 1), -- one pol ygon (exterior pol ygon ring)
MDSYS. SDO (RD NATE_ARRAY(5,1, 8,1, 8,6, 5,7, 51)

I NSERT | NTO col a_nmarkets VALUEY
3,

"cola c’,

MBBYS. SDO GEQMETRY(
2003, -- 2-dinensional pol ygon
8307,

Coordinate Systems (Spatial Reference Systems) D-9



Example of Coordinate Systems

NULL,
MDSYS. SDO H BEM | NFO ARRAY( 1, 1003, 1), --one pol ygon (exterior pol ygon ring)
MDSYS. SDO RO NATE_ARRAY(3,3, 6,3, 6,5 4,5 3,3)
)
)
-- Nowinsert an area of interest for Gola D Thisis a
-- circlewth aradius of 2. It is conpletely outside the

-- first three areas of interest.

I NSERT | NTO col a_narkets VALUEY(

4,
"cola d',
MDSYS. SDO CEOMETRY(
2003, -- 2-dinensional pol ygon
8307,
NULL,
MDSYS. SDO H BEM | NFO ARRAY( 1, 1003,4), -- one circle
MDSYS. SDO (RO NATE_ARRAY(8, 7, 10,9, 8,11)
)

-- UWpdat e the USER SDO GEOM METADATA view This is required
-- before the Spatial index can be created. Do this only once for each
-- layer (i.e., table-col um conbi nation; here: cola narkets and shape).

I NSERT | NTO USER _SDO GECM METADATA
VALUES (
"col a markets’,
' shape’ ,
MXSYS SDO D MARRAY(  -- 20X20 grid, virtually zero tol erance
MDSYS. SDO D M ELBEMENT(’ X, 0, 20, 0.005),
MSYS. SDODMBEBVENT(' Y, 0, 20, 0.005)
),
8307 -- SRDfor ''Longitude / Latitude (WG 84)’ coordinate system
);

CREATE | NCEX col a_spati al _i dx
N col a_nar ket s(shape)

D-10 Oracle Spatial User's Guide and Reference



Example of Coordinate Systems

| NDEXTYPE |'S MDSYS, SPATI AL_| NDEX
PARAVETERS(’ SDO LEVEL = 8');

-- Return the transfornati on of cola c using to_srid 8199

-- ("Longitude / Latitude (Arc 1950)")

SELECT c. nane, SDO CS TRANSFCRM c. shape, mdi ninfo, 8199)
FROM col a_narkets c, user_sdo_geomnetadata m
WHERE mtabl e nane = ' COLA MARKETS AND mcol umm_nane = ' SHAPE
AND c.nane = 'cola c’;

-- Sane as preceding, but using to_srnane paraneter.
SELECT c. nane, SDO CS TRANSFCRM c. shape, mdi minfo, 'Longitude / Latitude (Arc
1950) ")

FROM col a_narkets ¢, user_sdo_geom netadata m

WHERE mtabl e nane = ' COLA MARKETS AND mcol umm_nane = ' SHAPE

A\D c.nane = 'cola c’;

-- Transformthe entire SHAPE | ayer and put results in the table
-- naned col a_narkets_8199, which the procedure wll create.
EXEQUTE SDO CS. TRANSFCRM LAYER(' GOLA MARKETS |’ SHAPE |’ GOLA MARKETS 8199’ , 8199) ;

-- Select all fromthe old (existing) table.
SELECT * fromcol a_narkets;

-- Select all fromthe new (layer transforned) table.
SHECT * fromcol a narkets_8199;

-- Show netadata for the new (| ayer transforned) table.
CESCR BE col a_nar ket s_8199;

Example D-2 shows the output of the SELECT statements in Example D-1. Notice
the slight differences between the coordinates in the original geometries (SRID 8307)
and the transformed coordinates (SRID 8199) -- for example, (1, 1, 5, 7) and
(1.00078606, 1.00272755, 5.00069866, 7.00321633) for cola_a.

Example D-2 Output of SELECT Statements in Coordinate Systems Example

SQA> -- Return the transfornation of cola c using to_srid 8199 (' Longitude /
Latitude (Arc 1950)’)
SQA > SHECT c. name, SDO CS TRANSFCRM c. shape, mdi minfo, 8199)

2 FROM col a_narkets c, user_sdo_geomnetadata m

Coordinate Systems (Spatial Reference Systems) D-11



Example of Coordinate Systems

3 WHERE mtabl e nane = ' COLA MARKETS AND m col umm_nane = ' SHAPE
4 AND c.nane = 'cola ¢’;

cola c

SDO GEOMETRY(2003, 8199, NULL, SDO HEMINO ARRAY(1, 1003, 1), SDO CRD NATE ARR
AY(3. 00074116, 3.00289624, 6.0006707, 3.00289431, 6.00067234, 5.00305745, 4.0007
1964, 5.00305956, 3.00074116, 3.00289624))

Q>
Q> -- Sane as preceding, but using to_srnane paraneter.
SQA> SHECT c. nane, SDO CS TRANSFCRM c. shape, mdimnfo, 'Longitude / Latitude
(Arc 1950)")
2 FROM col a_narkets ¢, user_sdo_geom netadata m
3 WHERE mtabl e nane = ' COA MMRKETS AND m col umm_nane = ' SHAPE
4 AND c.nane = 'cola ¢’;

cola c

SDO GEOMETRY(2003, 8199, NULL, SDO HEMINO ARRAY(1, 1003, 1), SDO CRD NATE ARR
AY(3. 00074116, 3.00289624, 6.0006707, 3.00289431, 6.00067234, 5.00305745, 4.0007
1964, 5.00305956, 3.00074116, 3.00289624))

SQA> -- Transformthe entire SHAPE | ayer and put results in the table
SQA> -- naned col a_narkets 8199, which the procedure wll create.

SQ> EXEQUTE SDO CS. TRANSFCRV LAYER’ OOLA MARKETS , ' SHAPE, * GOLA MARKETS.
8199', 8199);

PL/ SQL procedure successfully conpl et ed.

Q>
Q> -- Select all fromthe ol d (existing) table.
SQ> SHECT * fromcol a narkets;

D-12 Oracle Spatial User's Guide and Reference



Example of Coordinate Systems

SHAPE(SDO GI'YPE, SDOSR D, SDOPANI(X, Y, 2), SDOEHEMINQ SDO CRO NATES)

1l colaa
SDO GEOMETRY( 2003, 8307, NULL, SDO ELEM | NFO ARRAY(1, 1003, 3), SDO CRO NATE ARR
AY(1, 1, 5 7))

2 colab
SDO GEOMETRY(2003, 8307, NULL, SDO HEMINFO ARRAY(1, 1003, 1), SDO CRD NATE ARR
AY(5 1, 8, 1, 8 6, 5 7, 5 1))

3 colac

SDO GEQVETRY(2003, 8307, NULL, SDO ELEM | NFO ARRAY(1, 1003, 1), SDO CRDI NATE ARR
AY(3, 3, 6, 3, 6, 5 4, 5 3, 3)

4 cola d
SDO GECOMETRY( 2003, 8307, NULL, SDO ELEM | NFO ARRAY(1, 1003, 4), SDO CRO NATE ARR
AY(8, 7, 10, 9, 8, 11))

Q>
SQA> -- Select all fromthe new (1l ayer transforned) table.

SQA> SHECT * fromcol a_narkets_8199;

AAANLBAABAAACCHAAA
SDO GEQMETRY(2003, 8199, NULL, SDO ELEM|NFO ARRAY(1, 1003, 3), SDO CRDI NATE ARR
AY( 1. 00078606, 1.00272755, 5.00069866, 7.00321633))

AAAATBAABAAACCHAAB
SO0 GEOMETRY(2003, 8199, NULL, SDO HEMIN-O ARRAY(1, 1003, 1), SDO CRO NATE ARR

AY(5. 00069355, 1.00272665, 8.00062193, 1.00272605, 8.00062526, 6.00313458, 5. 000
69866, 7.00321633, 5.00069355, 1.00272665))

Coordinate Systems (Spatial Reference Systems) D-13



Error Messages for Coordinate Systems

GEQVETRY(SDO GTYPE, SDOSRD, SDOPANT(X Y, 2), SDOELEMINGQ SDO CRDI NATES)
AAAALBAABAAACCHAAC

SDO GEQVETRY(2003, 8199, NULL, SDO ELEM | NFO ARRAY(1, 1003, 1), SDO CRDI NATE ARR
AY(3.00074116, 3.00289624, 6.0006707, 3.00289431, 6.00067234, 5.00305745, 4.0007
1964, 5.00305956, 3.00074116, 3.00289624))

ML BAABAACE HAAD
SDO GEQMETRY(2003, 8199, NULL, SDO ELEM|NFO ARRAY(1, 1003, 4), SDO GRDI NATE ARR
AY( 8. 00062651, 7.00321213, 10.0005803, 9.00335882, 8.00063347, 11.0035044))

SQA> -- Show netadata for the new (Il ayer transforned) table.
SQ > DESCR BE col a_narkets_8199;

Nane Nul | ? Type
SDO ROND ROND
CEQMETRY MXSYS. SDO (EOMETRY

D.7 Error Messages for Coordinate Systems

This section lists the coordinate systems error messages, including the cause and
recommended user action for each.

ORA-13276 internal error [%s] in coordinate transformation
Cause: OCI internal error.
Action: Contact Oracle Support Services with the exact error message text.

ORA-13278 failure to convert SRID to native format
Cause: OCI internal error.

Action: Contact Oracle Support Services with the exact error message text.

ORA-13281 failure in execution of sqgl statement to retrieve WKT
Cause: OCI internal error or SRID does not match a table entry.

Action: Check that a valid SRID is being used.

ORA-13282 failure on initialization of coordinate transformation

Cause: Parsing error on source or destination coordinate system WKT or
incompatible coordinate systems.

Action: Check validity of WKT for table entries and the legitimacy of the
requested transformation.

D-14 Oracle Spatial User's Guide and Reference



Error Messages for Coordinate Systems

ORA-13283 failure to get new geometry object for conversion in place
Cause: OCI internal error.

Action: Contact Oracle Support Services with the exact error message text.

ORA-13284 failure to copy geometry object for conversion in place
Cause: OCI internal error.

Action: Contact Oracle Support Services with the exact error message text.

ORA-13285 Geometry coordinate transformation error
Cause: A coordinate pair was out of valid range for a conversion/projection.

Action: Check that data to be transformed is consistent with the desired con-
version/projection.

ORA-13287 can’t transform unknown gtype

Cause: A geometry with an SDO_GTYPE value of <= 0 was specified for
transformation. Only an SDO_GTYPE value >=1 is allowed.

Action: Specify an appropriate SDO_GTYPE value.

ORA-13288 Point coordinate transformation error
Cause: An internal error occurred while transforming points.

Action: Check the accompanying error messages.

ORA-13294 Cannot transform geometry containing circular arcs

Cause: It is impossible to transform a 3-point representation of a circular arc
without distortion.

Action: Make sure a geometry does not contain circular arcs.

ORA-13300 Single point transform error
Cause: Low-level coordinate transformation error trap.

Action: Check the accompanying error messages.

ORA-13303 failure to retrieve a geometry object from a table
Cause: OCl internal error.

Action: Contact Oracle Support Services with the exact error message text.

ORA-13304 failure to insert a transformed geometry object in a table
Cause: OCl internal error.

Action: Contact Oracle Support Services with the exact error message text.

Coordinate Systems (Spatial Reference Systems) D-15



Error Messages for Coordinate Systems

D-16 Oracle Spatial User's Guide and Reference



E

Linear Referencing System

Linear referencing is a natural and convenient means to associate attributes or
events to locations or portions of a linear feature. It has been widely used in
transportation applications (such as for highways, railroads, and transit routes) and
utilities applications (such as for gas and oil pipelines). The major advantage of
linear referencing is its capability of locating attributes and events along a linear
feature with only one parameter (usually known as measure) instead of two (such as
latitude/longitude or x/y in Cartesian space). Sections of a linear feature can be
referenced and created dynamically by indicating the start and end locations along
the feature without explicitly storing them.

The linear referencing system (LRS) application programming interface (API) in
Oracle Spatial provides server-side LRS capabilities at the cartographic level. The
linear measure information is directly integrated into the Oracle Spatial geometry
structure. The Oracle Spatial LRS API provides support for dynamic segmentation,
and it serves as a groundwork for third-party or middle-tier application
development virtually for any linear referencing methods and models in any
coordinate systems.

For an example of LRS, see Section E.5. However, you may want to read the rest of
this appendix first, to understand the concepts that the example illustrates.

For reference information about LRS functions, see Chapter 9.

E.1 Terms and Concepts

This section explains important terms and concepts related to linear referencing
support in Oracle Spatial.

Linear Referencing System E-1



Terms and Concepts

E.1.1 Geometric Segments (LRS Segments)

Geometric segments are basic LRS elements in Oracle Spatial. They are Oracle line
string geometries. An Oracle line string is an ordered, non-branching, and
continuous geometry. A geometric segment must contain at least start and end
measures for its start and end points. Measures of points of interest (such as
highway exits) on the geometric segments can also be assigned. These measures are
either assigned by users or derived from existing geometric segments. Figure E-1
shows a geometric segment with four line segments and one arc. Points on the
geometric segment are represented by triplets (x, y, m), where x and y describe the
location and m denotes the measure (with each measure value underlined in

Figure E-1).

Figure E-1 Geometric Segment

end point
(55, 20, 60.950)

line segments

start point
(5, 10, 0)

~
-

—~ — _(15,5,11.180) (40, 5, 38.171) -
T~ — — _ _ segment direction -

E.1.2 Shape Points

Shape points are points that are specified when an LRS segment is constructed, and
that are assigned measure information. In Oracle Spatial, a line segment is
represented by its start and end points, and an arc is represented by three points:
start, middle, and end points of the arc. You must specify these points as shape
points, but you can also specify other points as shape points if you need measure
information stored for these points (for example, an exit in the middle of a straight
part of the highway).

E-2 Oracle Spatial User's Guide and Reference



Terms and Concepts

Thus, shape points can serve one or both of the following purposes: to indicate the
direction of the segment (for example, a turn or curve), and to identify a point of
interest for which measure information is to be stored.

Shape points might not directly relate to mileposts or reference posts in LRS; they
are used as internal reference points. The measure information of shape points is
automatically populated when the LRS segment is defined.

E.1.3 Direction of a Geometric Segment

The direction of a geometric segment is indicated from the start point of the
geometric segment to the end point. Measures of points on a geometric segment
always increase along the direction of the geometric segment.

E.1.4 Measure (Linear Measure)

The measure of a point along a geometric segment is the linear distance (in the
measure dimension) measured from the start point of the geometric segment. The
measure information does not necessarily have to be of the same scale as their
Euclidean distance. However, the linear mapping relationship between measure
and distance is always preserved.

Some LRS functions use offset instead of measure to represent measured distance
along linear features. Although some other linear referencing systems might use
offset to mean what the Oracle Spatial LRS refers to as measure, offset has a
different meaning in Oracle Spatial from measure, as explained in Section E.1.5.

E.1.5 Offset

The offset of a point along a geometric segment is the perpendicular distance
between the point and the geometric segment. Offsets are positive if points are on
the left side along the segment direction and are negative if they are on the right
side. Points are on a geometric segment if their offsets to the segment are zero.

Figure E-2 shows how a point can be located along a geometric segment with
measure and offset information. By assigning an offset together with a measure, it is
possible to locate not only points that are on the geometric segment, but also points
that are perpendicular to the geometric segment.

Linear Referencing System E-3



Terms and Concepts

Figure E-2 Describing a Point Along a Segment with a Measure and an Offset

segment direction

start point

Positive offset )
end point

Negative offset Me

measure offset value

point to be located

E.1.6 Measure Populating

Any unassigned measures of a geometric segment are automatically populated
based upon their distance distribution. This is done before any LRS operations for
geometric segments with unknown measures (NULL in Oracle Spatial). The
resulting geometric segments from any LRS operations return the measure
information associated with geometric segments. The measure of a point on the
geometric segment can be obtained based upon a linear mapping relationship
between its previous and next known measures or locations. See the algorithm
representation in Figure E-3 and the example in Figure E-4.

Figure E-3 Measures, Distances, and Their Mapping Relationship

M e =20 M =60 M e=100
o ~ Measure
PW(O'O) P(50,0) P, et(100,0)

P P =050 Distance
-< prev >

Pprevpnext = 100
M, = P M M .)+M
PP ) ( next prev) prev
prev’ next

E-4 Oracle Spatial User's Guide and Reference



Terms and Concepts

Figure E-4 Measure Populating of a Geometric Segment
60 90 120

Before measur e populating

assigned

60 20 120 measures
15 30 45 70 80 100 110 populated
measur es

After measure populating

Measures are evenly spaced between assigned measures. However, the assigned
measures for points of interest on a geometric segment do not need to be evenly
spaced. This could eliminate the problem of error accumulation and account for
inaccuracy of data source.

Moreover, the assigned measures do not even need to reflect actual distances; they
can be any valid values within the measure range. For example, Figure E-5 shows
the measure population that results when assigned measure values are not
proportional and reflect widely varying gaps.

Figure E-5 Measure Populating With Disproportional Assigned Measures

88 97 100
O @ © O O @

Before measure populating

assigned
88 97 100 Measures
22 44 66 a1 94 98 99 populated

measur es

After measure populating

In all cases, measure populating is done in an incremental fashion along the
segment direction. This improves the performance of current and subsequent LRS

operations.

Linear Referencing System E-5



Terms and Concepts

E.1.7 Measure Range of a Geometric Segment

The start and end measures of a geometric segment define the linear measure range
of the geometric segment. Any valid LRS measures of a geometric segment must fall
within its linear measure range.

E.1.8 Projection

The projection of a point along a geometric segment is the point on the geometric
segment with the minimum distance to the point. The measure information of the
resulting point is also returned in the point geometry.

E.1.9 LRS Point

LRS points are points with linear measure information along a geometric segment.
A valid LRS point is a point geometry with measure information.

E.1.10 Linear Features

Linear features are any spatial objects that can be treated as a logical set of linear
segments. Examples of linear features are highways in transportation applications
and pipelines in utility industry applications. The relationship of linear features,
geometric segments, and LRS points is shown in Figure E-6.

E-6 Oracle Spatial User's Guide and Reference



LRS Data Model

Figure E-6 Linear Feature, Geometric Segments, and LRS Points

Linear Feature

A
y_

! [

LRS points | | |
M | I M
. M| | V_'
| - |M2 M2 | | - - — |
| \\\\\\ - |_S“ § - Direction |
| Direction — — — | Direction | | |
'- > > - >

Geometric Segment 1 Geometric Segment 2 Geometric Segment 3

E.2 LRS Data Model

The Oracle Spatial LRS data model incorporates measure information into its
geometry representation at the point level. The measure information is directly
integrated into the Oracle Spatial model. To accomplish this, an additional measure
dimension must be added to the Oracle Spatial metadata.

Oracle Spatial LRS support affects the Spatial metadata and data (the geometries).
Example E-1 shows how a measure dimension can be added to 2-dimensional
geometries in the Spatial metadata. The measure dimension must be the last
element of the SDO_DIM_ARRAY in a spatial object definition (shown in bold in
Example E-1).

Example E-1 Including LRS Measure Dimension in Spatial Metadata

I NSERT | NTO user _sdo_geom net adat a VALUES(

'LRS_ROUTES,

'‘GEOMETRY’,

MDSYS.SDO_DIM_ARRAY (
MDSYS.SDO_DIM_ELEMENT(X', 0, 100, 0.005),
MDSYS.SDO_DIM_ELEMENT(Y, 0, 100, 0.005),

MDSYS.SDO_DIM_ELEMENT(M; 0, 100, 0.005) ),
NULL) ;

Linear Referencing System E-7



Indexing of LRS Data

After adding the new measure dimension, geometries with measure information
such as geometric segments and LRS points can be represented. An example of
creating a geometric segment with three line segments is shown in Figure E-7.

Figure E-7 Creating a Geometric Segment

start measure end measure
(510.0) (35,10,NULL) ?(55,10,&0)
. end point
start point
(20,5,NULL)

In Figure E-7, the geometric segment has the following definition (with measure
values underlined):

SDO GEQVETRY(3002, NULL, NULL,
MDSYS. SDO ELEM | NFO ARRAY( 1, 2, 1),
MDSYS. SDO CRD NATE ARRAY(5, 10,0, 20,5, NULL, 35,10, NILL, 55, 10, 100))

Whenever a geometric segment is defined or created, its start and end measures
must be defined or derived from some existing geometric segment. The unsigned
measures of all shape points on a geometric segment will be automatically
populated.

The LRS API supports the object-relational model of Oracle Spatial. The LRS API
works with geometries in formats of Oracle Spatial before release 8.1.6, but the
resulting geometries will be converted to the Oracle Spatial release 8.1.6 or higher
format, specifically with 4-digit SDO_GTYPE and SDO_ETYPE values.

For example, in Oracle Spatial release 8.1.6 and higher, the geometry type (SDO_
GTYPE) of a spatial object includes the number of dimensions of the object as the
first digit of the SDO_GTYPE value. Thus, the SDO_GTYPE value of a pointis 1in
the pre-release 8.1.6 format but 2001 in the release 8.1.6 format (the number of
dimensions of the point is 2). However, an LRS point (which includes measure
information) has 3 dimensions, and thus the SDO_GTYPE of any point geometry
used with an LRS function must be 3001.

E.3 Indexing of LRS Data

When LRS data is indexed using a spatial quadtree index, only the first two
dimensions are indexed; the measure dimension and values are not indexed.

E-8 Oracle Spatial User's Guide and Reference



LRS Operations

When LRS data is indexed using a spatial R-tree index, you must use the SDO _
INDX_DIMS keyword in the CREATE INDEX statement in order to limit the
number of dimensions to be indexed (for example, SDO_INDX_DIMS=2 to index
only the X and Y dimensions and not the measure dimension, or SDO_INDX_
DIMS=3 to index only the X, Y, and Z dimensions and not the measure dimension).
There is no benefit to including the measure dimension in a spatial index, and there
is additional processing overhead; therefore, you should use the SDO_INDX_DIMS
keyword when spatially indexing LRS data.

Information about the CREATE INDEX statement and its parameters and keywords
is in Chapter 5.

E.4 LRS Operations

This section describes several linear referencing operations supported by the Oracle
Spatial LRS API.

E.4.1 Defining a Geometric Segment
There are two ways to create a geometric segment with measure information:
« Construct a geometric segment and assign measures explicitly.

« Define a geometric segment with specified start and end, and/or any other
measures, in an ascending order. Measures of shape points with unknown
(unassigned) measures (null values) in the geometric segment will be
automatically populated according to their locations and distance distribution.

Figure E-8 shows different ways of defining a geometric segment.

Linear Referencing System E-9



LRS Operations

Figure E-8 Defining a Geometric Segment

(35,20,NULL) éSS,lO,NULL)
start point end point

(20,5,NULL)

a. Geometric segment with no measures assigned

end measure
start‘measure

0 (35,10,NULL) CSSS,lO,g))

start point end point

(20,5,NULL)
b. Geometric segment with start/end measures

(35,10,61.257) 555,10, 100)

end point

(20,5,30.628)

c¢. Populating measures of shape pointsin a geometric segment

An LRS segment must be defined before any LRS operations can proceed. That is,
the start, end, and any other assigned measures must be present to derive the
location from a specified measure. The measure information of intermediate shape
points will automatically be populated if they are not assigned.

E.4.2 Redefining a Geometric Segment

You can redefine a geometric segment to replace the existing measures of all shape
points between the start and end point with automatically calculated measures.
Redefining a segment can be useful if errors have been made in one or more explicit
measure assignments, and you want to start over with proportionally assigned
measures.

Figure E-9 shows the redefinition of a segment where the existing (before) assigned
measure values are not proportional and reflect widely varying gaps.

E-10 Oracle Spatial User's Guide and Reference



LRS Operations

Figure E-9

Redefining a Geometric Segment

assigned

0 88 97 100 easures
@ O O O @ O O @ O O @
populated
22 4 66 91 94 98 99 measur es
Befor e segment redefinition
assigned

0 100 measures

e © o - e ° © it populated

10 20 30 40 50 60 70 80 0 measur es

After segment redefinition

After the segment redefinition in Figure E-9, the populated measures reflect
proportional distances along the segment.

E.4.3 Clipping a Geometric Segment

You can clip a geometric segment to create a new geometric segment out of an
existing geometric segment (Figure E-10, part a).

Linear Referencing System E-11



LRS Operations

Figure E-10 Clipping, Splitting, and Concatenating Geometric Segments
| |
start point| l segment direction

segment direction _
\| end point start point \ _
M L ™ N end point

| e >
Me M,

' ! a. Segment clipping

\l» — \—\ T
\ N segment 1 \-
b. Segment splitting segment 2

segment 1
segment 2 €. Segment concatenation

E.4.4 Splitting a Geometric Segment

You can create two new geometric segments by splitting a geometric segment
(Figure E-10, part b).

Note: In Figure E-10 and several that follow, small gaps between
segments are used in illustrations of segment splitting and
concatenation. Each gap simply reinforces the fact that two
different segments are involved. However, the two segments (such
as segment 1 and segment 2 in Figure E-10, parts b and c) are
actually connected. The tolerance (see Section 1.5.4) is considered in
determining whether or not segments are connected.

E.4.5 Concatenating Two Connected Geometric Segments

You can create a new geometric segment by concatenating two geometric segments

(Figure E-10, part c). Note that the geometric segments must be spatially connected.
The measures of the second geometric segment are shifted so that the end measure

of the first segment is the same as the start measure of the second segment.

E-12 Oracle Spatial User's Guide and Reference



LRS Operations

Measure assignments for the clipping, splitting, and concatenating operations in
Figure E-10 are shown in Figure E-11. Measure information and segment direction
are preserved in a consistent manner. The assignment is done automatically when

the operations have completed.

Figure E-11 Measure Assignment in Geometric Segment Operations

= |
M=0 | M=25 M=70
| |
| M=100 M=0 | :
v M=50 | M=100
M=50 |
soment & M=100 M=25 '
segment 2 M=70
a. Segment splitting b. Segment clipping
Second segment
M=0 measure shifted by 20

——z%0 M:ON
M=50
- M=80
segment 1 M —N — M=100

segment 2
Continuous measures for segment concatenation
€. Segment concatenation
The direction of the geometric segment resulting from concatenation is always the

direction of the first segment (geom_segment1 in the call to the SDO _
LRS.CONCATENATE_GEOM_SEGMENTS function), as shown in Figure E-12.

Linear Referencing System E-13



LRS Operations

Figure E-12 Segment Direction with Concatenation

Directions of segments Concatenate Direction of resulting segment
(always same as first segment)
| | |
- — _>
—_— - >
- — _>
- | -
- — _>
- - -
- — _>

geom_segmentl geom_segment2

E.4.6 Scaling a Geometric Segment

You can create a new geometric segment by performing a linear scaling on a
geometric segment. Figure E-13 shows the mapping relationship for geometric
segment scaling.

E-14 Oracle Spatial User's Guide and Reference



LRS Operations

Figure E-13 Scaling a Geometric Segment

— g Mgy shift measure

segment direction (new start measure)
M’

MS
. M M’ (new end measure)
start point Mg — g start point M.

end point end point

(Mle - MIS)

M = (M_MS)XM

+ Mg+ Mgpigg

_ _ 4 . Scaling Factor
Linear Mapping Relationship

In general, scaling a geometric segment only involves rearranging measures of the
newly created geometric segment. However, if the scaling factor is negative, the
order of the shape points needs to be reversed so that measures will increase along
the geometric segment’s direction (which is defined by the order of the shape
points).

A scale operation can perform any combination of the following operations:

« Translating (shifting) measure information. (For example, add the same value to
Ms and Me to get M’s and M’e.)

« Reversing measure information. (Let M’s = Me, M’e = Ms, and Mshift =0.)
« Performing simple scaling of measure information. (Let Mshift = 0.)

For examples of these operations, see usage notes and examples for the SDO _
LRS.SCALE_GEOM_SEGMENT function in Chapter 9.

E.4.7 Locating a Point on a Geometric Segment

You can find the position of a point described by a measure and an offset on a
geometric segment (see Figure E-14).

Linear Referencing System E-15



LRS Operations

Figure E-14 Locating a Point Along a Segment with a Measure and an Offset

segment direction

start point

projection point

J

— offset (positiveif to left along segment direction;
negative if to right)

+ offsets

end point

measure
point to be located

There is always a unique a location with a specific measure on a geometric segment.
Ambiguity arises when offsets are given and the points described by the measures
fall on shape points of the geometric segment (see Figure E-15).

Figure E-15 Ambiguity in Location Referencing with Offsets

(5,10,0) (35,10,61.257) '(55,10,&0)

(20,5,30.628)

g (m, 0)
one-to-one mapping

(35,10,61.257) {F510.100)

(20,5,30.628)

shape point on the geometric segment

o]
many-to-one mapping

VA— offset arc

As shown in Figure E-15, an offset arc of a shape point on a geometric segment is an
arc on which all points have the same minimum distance to the shape point. As a

middle pt

E-16 Oracle Spatial User's Guide and Reference



LRS Operations

result, all points on the offset arc are represented by the same (measure, offset) pair.
To resolve this one-to-many mapping problem, the middle point on the offset arc is
returned.

E.4.8 Projecting a Point onto a Geometric Segment

You can find the projection point of a point with respect to a geometric segment.
The point to be projected can be on or off the segment. If the point is on the
segment, the point and its projection point are the same.

Projection is a reverse operation of the point-locating operation shown in

Figure E-14. Similar to a point-locating operation, all points on the offset arc of a
shape point will have the same projection point (that is, the shape point itself),
measure, and offset (see Figure E-15). If there are multiple projection points for a
point, the first one from the start point is returned (projection pt 1 in both
illustrations in Figure E-16).

Figure E-16 Multiple Projection Points

T TN -
, pm{ectlon pt1 | segment projectionpt 1 —~ N
\ direction \ ~
/ | A‘ Y \ segment
* | 4 \ direction
| Ly,
| v L7y
| projection pt 2 | )
R p®
point to be projected point to be projected

E.4.9 Converting Geometric Segments

You can convert geometric segments from standard line string format to Linear
Referencing System format, and vice versa. The main use of conversion functions
will probably occur if you have a large amount of existing line string data, in which
case conversion is a convenient alternative to creating all of the LRS segments
manually. However, if you need to convert LRS segments to standard line strings
for certain applications, that capability is provided also.

Functions are provided to convert:

Linear Referencing System E-17



LRS Operations

Individual line strings

For conversion from standard format to LRS format, a measure dimension
(named M by default) is added, and measure information is provided for each
point. For conversion from LRS format to standard format, the measure
dimension and information are removed. In both cases, the dimensional
information (DIMINFO) metadata in the USER_SDO_GEOM_METADATA
view is not affected.

Layers (all line strings in a column)

For conversion from standard format to LRS format, a measure dimension
(named M by default) is added, but no measure information is provided for
each point. For conversion from LRS format to standard format, the measure
dimension and information are removed. In both cases, the dimensional
information (DIMINFO) metadata in the USER_SDO_GEOM_METADATA
view is modified as needed.

Dimensional information (DIMINFO)

The dimensional information (DIMINFO) metadata in the USER_SDO_GEOM _
METADATA view is modified as needed. For example, converting a standard

dimensional array with X and Y dimensions (SDO_DIM_ELEMENT) to an LRS
dimensional array causes an M dimension (SDO_DIM_ELEMENT) to be added.

Figure E-17 shows the addition of measure information when a standard line string
is converted to an LRS line string (using the SDO_LRS.CONVERT_TO_LRS_GEOM
function). The measure dimension values are underlined in Figure E-17.

E-18 Oracle Spatial User's Guide and Reference



Example

Figure E-17 Conversion from Standard to LRS Line String

Standard Line String

@ O @
(0,0 (10,0) (20,0)

LRSLine String (After Conversion)

e O )
(009 (10,0,10) (20,0,20)

The conversion functions are listed in Table 9-3 in Chapter 9. See also the reference

information in Chapter 9 about each conversion function.

E.5 Example

This section presents a simplified example that uses LRS functions. It refers to
concepts that were explained in this chapter and uses functions documented in

Chapter 9.

This example uses the road that is illustrated in Figure E-18.

Linear Referencing System E-19



Example

Figure E-18 Simplified LRS Example: Highway

15' Routel (end)
14 ®
13| Exit 6
»
12 N\ segment
11 \ \direction
9 E.t5 _____ .:
9 X I
8 I
7 I
I

6 I
5 I

Exit 2 Exit 3 Exit4 |
4 o ® o
3 r- T -1/ 7T 71T

Exit1 !
2 )
11 Routel (start)
0 1 23456 7 8 9101112 1314 15

In Figure E-18, the highway (Route 1) starts at point 2,2 and ends at point 5,14,
follows the path shown, and has six entrance-exit points (Exit 1 through Exit 6). For
simplicity, each unit on the graph represents one unit of measure, and thus the
measure from start to end is 27 (the segment from Exit 5 to Exit 6 being the
hypotenuse of a 3-4-5 right triangle).

Each row in Table E-1 lists an actual highway-related feature and the LRS feature
that corresponds to it or that can be used to represent it.

Table E-1 Highway Features and LRS Counterparts

Highway Feature LRS Feature

Named route, road, or street LRS segment, or linear feature (logical set
of segments)

Mile or kilometer marker Measure

E-20 Oracle Spatial User's Guide and Reference



Example

Table E-1 Highway Features and LRS Counterparts (Cont.)

Highway Feature LRS Feature

Accident reporting and location tracking SDO_LRS.LOCATE_PT function

Construction zone (portion of a road) SDO_LRS.CLIP_GEOM_SEGMENT
function

Road extension (adding at the beginning or SDO_LRS.CONCATENATE_GEOM_

end) or combination (designating or renaming SEGMENTS function
two roads that meet as one road)

Road reconstruction or splitting (resulting in SDO_LRS.SPLIT_GEOM_SEGMENT
two named roads from one named road) function

Finding the closest point on the road to a point  SDO_LRS.PROJECT_PT function
off the road (such as a building)

Example E-2 does the following:

« Creates a table to hold the segment

= Inserts the definition of the highway into the table

« Inserts the necessary metadata into the USER_SDO_GEOM_METADATA view

« Uses PL/SQL and SQL statements to define the segment and perform
operations on it

Example E-3 includes the output of the SELECT statements in Example E-2.

Example E-2 Simplified Example: Highway

-- GQreate a table for routes (hi ghways).
CREATE TABLE I rs_routes (
route id NUMBER PR MARY KEY,
route_nane VARCHAR2(32),
route_geonetry MBYS SDO GEOMETRY);

-- Populate table with just one route for this exanpl e.
INSERT INTO I rs_routes VALUEY

1,
"Routel’,
MBYS. SDO GEQMETRY(
3002, -- line string, 3 dinensions: XY, M
NULL,
NULL,
MDSYS. SDO HEM | NFO ARRAY(1, 2, 1), -- one line string, straight segnents

Linear Referencing System E-21



Example

MDSYS. SDO CRDI NATE_ARRAY(

2,2,0, -- Start point - Exitl;, Ois neasure fromstart.
2,4,2, -- &it2, 2is neasure fromstart.
8,4,8, -- Eit3; 8 is neasure fromstart.
12,4,12, -- Exit4; 12 is neasure fromstart.
12,10, NLL, -- Not an exit; neasure will be automatically cal cul ated and
filled.
8,10,22, -- Eit5; 22 is neasure fromstart.
5,14,27) -- BEnd point (Exit6); 27 is neasure fromstart.
)
)

-- Wdate the Spatial netadata.
I NSERT | NTO USER_SDO GECM METADATA
VALUES (
"Irs_routes’,
"route_geonetry’,
MSYS. SDO D MARRAY(  -- 20X20 grid
MDSYS. SDO DM BELBMENT(’ X, 0, 20, 0.005),
MSYS. SDODMBEBVENT(' Y, 0, 20, 0.005),
MDSYS. SDO O M ELEMENT(' M, 0, 20, 0.005) -- Measure di nensi on
)
NLL -- SR D (reserved for future Spatial rel eases)
);

-- Test the LRS procedures.
CEQLARE

geom segrent  MOBYS. SDO CEOMETRY;
line_string MDSYS. SDO GEOMETRY;
dimarray MXBYS SDO O M ARRAY;
result_geom1 MXSYS SDO CEOMETRY;
resul t_geom?2 MXSYS. SDO GEOMETRY;
resul t_geom 3 MXSYS. SDO CGEOMETRY;

BEA N

SELECT a.route_geonetry into geomsegnent FROMIrs_routes a
WHERE a.route name = ' Routel’;

SELECT mdininfo into dimarray from
user_sdo_geomnetadata m
WHERE mtabl e_nane = ' LRS ROUTES ;

-- Define the LRS segnent for Routel.

SDO LRS. DEF NE_GEQM SEGMENT ( geom segnent ,
di marray,

E-22 Oracle Spatial User's Guide and Reference



Example

0, -- Zero starting neasure: LRS segnent starts at start of route.
27); -- BEnd of LRS segnent is at nmeasure 27.

SELECT a.route_geonetry INTOline_string FROMIrs_routes a
WHERE a.route name = ' Routel’;

-- Split Routel into two segnents.
SDO LRS. SPLIT_GEQM SEQMENT(| i ne_string, dimarray, 5, resul t_geom 1, resul t_geom2);

-- (oncatenate the segnents that were just split.
result_geom3 := SDO LRS. GCONCATENATE_CEQM SEGMENTS(resul t_geom 1, dimarray,
result_geom?2, dimarray);

-- Insert geonetries into table, to display later.
INSERT INTO I rs_routes VALUEY
11,
"result_geom1’,
result_geom1
);
INSERT INTO I rs_routes VALUEY
12,
"result_geom?2',
result_geom2
);
INSERT INTO I rs_routes VALUEY
13,
"result_geom3',
result_geom3

)i

END,
/

-- First, display the data in the LRS tabl e.
SELECT route_id, route_nane, route_geonetry fromlrs_routes;

-- Areresult_geom1 and result_geon? connected?
SELECT SDO LRS. GCONNECTED (EQM SEQMENTS( a. rout e_geonetry, mdi m nf o,
b. route_geonetry, mdini nfo)
FROMIrs_routes a, Irs_routes b, user_sdo_geom netadata m
WHERE mtable_nane = 'LRS ROUTES AND a.route_id = 11 AND b.route_id = 12;

-- Is the Routel segnent valid?

SELECT SDO LRS VALI D GECM SEGVENT( a. rout e_geonet ry, mdi m nf o)
FROMIrs_routes a, user_sdo geomnetadata m

Linear Referencing System E-23



Example

WHERE mtable nane = 'LRS ROUTES A\D a.route id = 1;

-- Is 50 a valid neasure on Routel? (Shoul d return FALSE hi ghest Routel neasure
is 27.)
SELECT SDO LRS VALI D MEASURH a. rout e_geonetry, mdi minfo, 50)

FROM I rs_routes a, user_sdo_geomnetadata m

WHERE mtable nane = 'LRS RUUTES AND a.route id = 1;

-- |Is the Routel segnent defined?

SELECT SDO LRS. IS GEOM SEGVENT_DEFI NEI) a. rout e_geonetry, mdi i nf 0)
FROMIrs_routes a, user_sdo geomnetadata m
WHERE mtable nane = 'LRS RUUTES AND a.route id = 1;

-- Hbwlong is Routel?

SELECT SDO LRS. GEOM SEGVENT_LENGIH a. rout e_geongt ry, m di minf o)
FROMIrs_routes a, user_sdo geomnetadata m
WHERE mtable_nane = 'LRS ROUTES AND a.route_id = 1;

-- Wat is the start neasure of Routel?

SELECT SDO LRS. GEOM SEGVENT_START_MEASURE( a. rout e_geonetry, m di ni nf o)
FROMIrs_routes a, user_sdo _geomnetadata m
WHERE mtable_nane = 'LRS ROUTES AND a.route_id = 1;

-- Wat is the end neasure of Routel?

SELECT SDO LRS. GEOM SEGVENT_END MEASURE( a. rout e_geonet ry, m di ni nf o)
FROM | rs_routes a, user_sdo _geomnetadata m
WHERE mtable_nane = 'LRS ROUTES AND a.route_id = 1;

-- Wat is the start point of Routel?

SELECT SDO LRS. (GEOM SEGVENT_START_PT(a. rout e_geonetry, mdi m nf o)
FROM | rs_routes a, user_sdo geomnetadata m
WHERE mtable nane = 'LRS RUUTES A\D a.route id = 1;

-- Wiat is the end point of Routel?

SELECT SDO LRS. GEOM SEGVENT_END PT(a. rout e_geonetry, mdi mnf o)
FROM | rs_routes a, user_sdo _geomnetadata m
WHERE mtable nane = 'LRS ROUTES A\D a.route id = 1;

-- Shift by 5 (for exanple, 5-nile segnent added before original start)
SELECT SDO LRS SCALE (ECM SEQMENT(a. rout e_geonetry, mdimnfo, 0, 27, 5)
FROMIrs_routes a, user_sdo geomnetadata m
WHERE mtable nane = 'LRS RUUTES A\D a.route id = 1;

-- Reverse direction (for exanple, to concatenate wth another road)
SELECT SDO LRS. SCALE (GEQM SEGMENT(a. rout e_geonetry, mdi mnfo, 27, 0, 0)

E-24 Oracle Spatial User's Guide and Reference



Example

FROM | rs_routes a, user_sdo _geomnetadata m
WHERE mtable_nane = 'LRS ROUTES AND a.route_id = 1;

-- "Convert" nile neasures to kiloneters (27 * 1.609 = 43. 443)
SH ECT S0 LRS. SCALE (EOMVI SEQVENT( a. rout e_geonet ry, mdi m nf o,
0, 43.443, 0)
FROMIrs _routes a, user_sdo_geom netadata m
WHERE mtable nane = 'LRS ROUTES AND a.route_id = 1,

-- Qip a piece of Routel.

SELECT SDO LRS QLI P_GEOM SEGVENT(a. route_geonetry, mdimnfo, 5, 10)
FROM | rs_routes a, user_sdo _geomnetadata m
WHERE mtable nane = 'LRS ROUTES AND a.route id = 1;

-- Point (9,3, NLL) is off the road;, should return (9,4,9).
SELECT SDO LRS. PROJECT PT(a. rout e_geonetry, mdi mnfo,
MDSYS. SDO GEOMETRY(' 3001, NULL, NULL,
MSYS. SDO HEM I NFO ARRAY( 1, 1, 1),
MDSYS. SDO RO NATE ARRAY(9, 3, NLL)) )
FROM I rs_routes a, user_sdo _geomnetadata m
WHERE mtable_nane = 'LRS ROUTES AND a.route_id = 1;

-- Return the neasure of the projected point.

SHECT SDO LRS. GET_MEASURY

SDO LRS. PROJIECT_PT(a. route_geonetry, mdi mnfo,

MDSYS. SDO GEOMETRY(3001, NULL, NULL,

MBYS. SDO H BEM | NFO ARRAY( 1, 1, 1),
MDBYS. SDO RO NATE_ARRAY(9, 3, NULL)) ),

mdimnfo )

FROMIrs _routes a, user_sdo_geom netadata m

WHERE mtable nane = 'LRS RIUTES AND a.route id = 1;

-- Is point (9,3,NLL) a valid LRS point? (Should return TRE )
SALECT SDO LRS VALI D LRS PT(
MDSYS. SDO GEOMETRY('3001, NULL, NULL,
MDSYS SDO ELEM | NFO ARRAY(1, 1, 1),
MDSYS. SDO CRDI NATE ARRAY(9, 3, NULL)),
m di m nf o)
FROMIrs_routes a, user_sdo geomnetadata m
WHERE mtable_nane = 'LRS ROUTES AND a.route_id = 1;

-- Locate the point on Routel at neasure 9, offset O.
SELECT SDO LRS LOCATE PT(a.route_geonetry, mdinmnfo, 9, 0)
FROM I rs_routes a, user_sdo _geomnetadata m
WHERE mtable_nane = 'LRS ROUTES AND a.route_id = 1;

Linear Referencing System E-25



Example

Example E-3 shows the output of the SELECT statements in Example E-2.

Example E-3 Simplified Example: Output of SELECT Statements

SQA> -- First, display the data in the LRS tabl e.
SQA> SHECT route_id, route _nane, route_geonetry fromlrs_routes;

1 Routel
SDO GEOMETRY( 3002, NULL, NULL, SDO HEMINO ARRAY(1, 2, 1), SDO CRO NATE ARRAY(
2,2, 0 2 4, 2, 8 4, 8 12, 4, 12, 12, 10, NULL, 8, 10, 22, 5, 14, 27))

11 result_geom1
SDO GEOMETRY( 3002, NULL, NULL, SDO HEMINO ARRAY(1, 2, 1), SDO CRO NATE ARRAY(
2, 2,0 2 4, 2,5 4,5)

12 result_geom?2

SDO GEOMETRY(3002, NULL, NULL, SDO ELEMINFO ARRAY(1, 2, 1), SDO GRD NATE ARRAY(
5 4, 5 8 4 8 12, 4, 12, 12, 10, 18, 8, 10, 22, 5 14, 27))

13 result_geom 3
SDO GEOMETRY( 3002, NULL, NULL, SDO HEMINO ARRAY(1, 2, 1), SDO CRO NATE ARRAY(
2, 2,0 2 4, 2,5 4,5, 8 4,8, 12, 4, 12, 12, 10, 18, 8, 10, 22, 5, 14, 27)
)

Q>
SQA> -- Areresult_geoml1 and result_geon? connect ed?
SQ> SHECT SDO LRS. GONNECTED (GEQM SEGQMENTS( a. rout e_geonet ry, mdi ninfo,
2 b. rout e_geonetry, mdi ninfo)
3 FROMIrs_routes a, Irs_routes b, user_sdo _geomnetadata m
4 WHERE mtable nane = 'LRS ROUIES AND a.route id = 11 AND b.route id =
12;

SDO LRS. GCONNECTED GEQM SEGVENTS( A ROUTE. GEQMETRY, M Dl M NFQ B, ROUTE_ GEOMETRY, M D

E-26 Oracle Spatial User's Guide and Reference



Example

TRE

Q>

SQA> -- |Is the Routel segnent valid?

SQA> SHECT SDO LRS. VALI D GECM SEQVENT( a. rout e_geonetry, mdi m nf o)
2 FROMIrs_routes a, user_sdo_geomnetadata m
3 WHERE mtable nane = 'LRS RIUTES AND a.route id = 1;

SDO LRS. VALI D GEOM SEQVENT( A ROUTE_GEQMETRY, M DI M NFO)

Q>
SQA> -- Is 50 a valid neasure on Routel? (Should return FALSE highest Routel
neasure is 27.)
SQA> SHECT SDO LRS. VALI D MEASURE(a.rout e_geonetry, mdimnfo, 50)
2 FROMIrs_routes a, user_sdo_geomnetadata m
3 WHERE mtable nane = 'LRS RIUTES AND a.route id = 1;

SO LRS. VALI D MEASURE A ROJTE_GECMETRY, M D M NFQ 50)

Q>

SQA> -- Is the Routel segnent defi ned?

SQA> SHECT SDO LRS. IS GEOM SEGVENT_DEFI NEY a. rout e_geonet ry, mdi ni nf o)
2 FROMIrs_routes a, user_sdo_geomnetadata m
3 WHERE mtable nane = 'LRS RAUTES AND a.route_id = 1,

SDO LRS. | S GECM SEQVENT_DEFl NED( A ROJTE_GEQMETRY, M D M NFOQ

Q>

Q> -- Howlong is Routel?

SQA> SHECT SDO LRS GEOM SEGVENT_LENGIH a. rout e_geonetry, m di n nf o)
2 FROMIrs_routes a, user_sdo_geomnetadata m
3 WHERE mtable nane = 'LRS RIUTES AND a.route id = 1;

SDO LRS. GEOM SEQVENT_LENGTH A ROUTE_GEQMETRY, M DI M NFO

>
SQA> -- Wat is the start neasure of Routel?

Linear Referencing System E-27



Example

SQA> SHECT SDO LRS. GEOM SEGVENT_START_MEASURE( a. rout e_geonetry, mdi ni nf o)
2 FROMIrs_routes a, user_sdo_geomnetadata m
3 WHERE mtable nane = 'LRS RAUTES AND a.route_id = 1,

SDO LRS. GEOM SEQVENT_START_MEASURE( A ROUTE_GEQMVETRY, M DI M NFO

Q>

SQA> -- Wat is the end neasure of Routel?

Q> SHECT SDO LRS. GEOM SEGVENT_END MEASURE( a. rout e_geonet ry, mdi m nf 0)
2 FROMIrs_routes a, user_sdo_geomnetadata m
3 WHERE mtable nane = 'LRS RIUTES AND a.route id = 1;

SDO LRS, GEOM SEQVENT_END MEASURE( A ROUTE. GEQMETRY, M D M NFQ

Q>

SQA> -- Wat is the start point of Routel?

SQ> SHECT SDO LRS. GEOM SEGVENT_START_PT(a. rout e_geonetry, mdi nm nf o)
2 FROMIrs_routes a, user_sdo_geomnetadata m
3 WHERE mtable nane = 'LRS RAUTES AND a.route_id = 1,

SDO LRS. GEOM SEQVENT_START_PT( A ROUTE_GEQMETRY, M DI M NFQ (SDO GIYPE, SDOSR D, S
SDO GEOMETRY(3001, 0, NULL, SDO ELEMINFO ARRAY(1, 1, 1), SDO CRDI NATE ARRAY(2,
2, 0)

Q>

SQA> -- Wat is the end point of Routel?

SQA> SHECT SDO LRS. GEOM SEGVENT_END PT(a. rout e_geonetry, mdi ninf o)
2 FROMIrs_routes a, user_sdo_geomnetadata m
3 WHERE mtable nane = 'LRS RAUTES AND a.route_id = 1,

SDO LRS. GEQM SEQVENT_END PT( A ROUTE._ GEQMETRY, M O M NFQ) (SDO GTYPE, SDO SR D, SDO

SDO GEQMETRY(3001, 0, NULL, SDO ELEMINFO ARRAY(1, 1, 1), SDO CRD NATE ARRAY(5,
14, 27))

Q>
SQA> -- shift by 5 (for exanple, 5-nle segnent added before original start)
Q> SHECT SDO LRS SCALE GECM SEQMENT(a. rout e_geonetry, mdimnfo, 0, 27, 5)

E-28 Oracle Spatial User's Guide and Reference



Example

2 FROMIrs_routes a, user_sdo_geom netadata m
3 WHERE mtable nane = 'LRS RAUTES AND a.route_id = 1,

SDO LRS. SCALE_ GECM SEQVENT( A ROUTE_GEQMETRY, M DO M NFQ 0, 27, 5) (SDO GIYPE, SDO SR
DO GEQMETRY(3002, NULL, NULL, SDO ELEMINFO ARRAY(1, 2, 1), SDO GRD NATE ARRAY(
2,2, 5 2 4 7, 8 4, 13 12, 4, 17, 12, 10, 23, 8, 10, 27, 5, 14, 32))

Q>
SQA> -- Reverse direction (for exanple, to concatenate wth another road)
SQ> SHECT SDO LRS SCALE GECM SEQVENT(a. rout e_geonetry, mdi minfo, 27, 0, 0)
2 FROMIrs_routes a, user_sdo_geom netadata m
3 WHERE mtable nane = 'LRS RIUTES AND a.route id = 1;

SDO LRS. SCALE_ GECM SEQVENT( A ROUTE_GEQMETRY, M O M NFQ 27, 0, 0) (SDO GIYPE, SDO SR
DO GEQMETRY(3002, NULL, NULL, SDO ELEMINFO ARRAY(1, 2, 1), SDO GRD NATE ARRAY(
5 14, 0, 8 10, 5 12, 10, 9, 12, 4, 15 8, 4, 19, 2, 4, 25 2, 2, 27))

SQA> -- "onvert” nile neasures to kiloneters (27 * 1.609 = 43. 443)
SQA> SHECT SDO LRS. SCALE (GEQM SEQVENT(a. rout e_geonetry, mdimnfo, 0, 43.44
3, 0

2 FROMIrs_routes a, user_sdo_geomnetadata m

3 WHERE mtable nane = 'LRS RIUTES AND a.route id = 1;

SDO LRS. SCALE. GECM SEQVENT( A ROUTE_GEQMETRY, M DI M NFQ 0, 43. 443, 0) (SDO GIYPE, SDO
SO0 GEQMETRY(3002, NULL, NULL, SDO ELEMINFO ARRAY(1, 2, 1), SDO CRD NATE ARRAY(
2,2, 0, 2 4 3.218, 8 4, 12.872, 12, 4, 19.308, 12, 10, 28.962, 8, 10, 35.398
, 5, 14, 43.443))

Q>

SQA>-- dip a piece of Routel.

SQA> SHECT SDO LRS Al P_GEOM SEQVENT(a. route_geonetry, mdi mnfo, 5, 10)
2 FROMIrs_routes a, user_sdo_geom netadata m
3 WHERE mtable nane = 'LRS RIUTES AND a.route id = 1;

SDO LRS. QLI P_GEOM SEQVENT( A ROUTE_GEQMETRY, M O M NFQ 5, 10) (SDO GTYPE, SDO SR D,

SDO GECMETRY(3002, NULL, NULL, SDO EHLEMINO ARRAY(1, 2, 1), SDO CRO NATE ARRAY(
5 4, 5 8, 4, 8 10, 4, 10))

Linear Referencing System E-29



Example

Q>

SQA> -- Point (9,3,NLL) is off the road; should return (9,4,9).
SQ> SHECT SDO LRS. PROJECT PT(a. route_geonetry, mdim nfo,
MDSYS. SDO GEOMETRY(3001, NULL, NULL,

MDSYS. SDO ELEM | NFO ARRAY( 1, 1, 1),

MDSYS. SDO CRO NATE_ARRAY(9, 3, NULL)) )

FROMIrs_routes a, user_sdo_geom netadata m

WHERE mtable nane = 'LRS RIUTES AND a.route id = 1;

OOk wWN

SDO LRS. PROECT_PT( A ROJTE_GEQMVETRY, M Dl M NFQ MSYS. SDO GEQMVETRY( 3001, NULL, NULL,

SDO GECMETRY(3001, NULL, NULL, SDO HLEMINO ARRAY(1, 1, 1), SDO CRO NATE ARRAY(

9, 4, 9)

Q>

SQA> -- Return the neasure of the projected point.

SQA> SHECT SDO LRS. GET_MEASURY(

SDO LRS. PROJECT_PT(a. route_geonet ry, mdi nm nf o,
MDSYS. SDO GEOMETRY(3001, NULL, NULL,

MDSYS. SDO ELEM | NFO ARRAY( 1, 1, 1),

MDSYS. SDO CRO NATE_ARRAY(9, 3, NULL)) ),

mdimnfo )

FROMIrs_routes a, user_sdo_geomnetadata m

WERE mtable nane = 'LRS ROUTES AND a.route id = 1;

O~NO O WN

SDO LRS. GET_MEASURE( SDO LRS. PROJECT_PT( A ROUTE_GEQMETRY, M DI M NFQ MDSYS. SDO GEOM

Q>

SQA>-- Is point (9,3,NLL) a valid LRS point? (Should return TRE )
SQA> SHECT SDO LRS VALID LRS PT(

MDSYS. SDO GEOMETRY(3001, NULL, NULL,

MDSYS. SDO ELEM | NFO ARRAY( 1, 1, 1),

MDSYS. SDO CRO NATE_ARRAY(9, 3, NULL)),

m di m nf o)

FROMIrs_routes a, user_sdo_geom netadata m

WHERE mtable nane = 'LRS RIUTES AND a.route id = 1;

~NOoO bk WN

SDO LRS. VALI D LRS PT(MDSYS. SDO GEQMETRY( 3001, NULL, NULL, MDSYS, SDO ELEM | NFO ARRAY

>
SQ> -- Locate the point on Routel at neasure 9, offset 0.

E-30 Oracle Spatial User's Guide and Reference



Error Messages for Linear Referencing System

SQA> SHECT SDO LRS LCCATE PT(a.route_geonetry, mdimnfo, 9, 0)
2 FROMIrs_routes a, user_sdo_geomnetadata m
3 WHERE mtable nane = 'LRS RAUTES AND a.route_id = 1,

SO LRS. LACATE PT(A ROJTE_ GEOMETRY, MO M NFQ 9, 0) (SDO GI'YPE, SDO SR D, SDO PA Nr

SDO GECMETRY(3001, NULL, NULL, SDO EHLEMINO ARRAY(1, 1, 1), SDO CRO NATE ARRAY(

9 4, 9)

E.6 Error Messages for Linear Referencing System

This section lists the LRS error messages, including the cause and recommended
user action for each.

ORA-13331 invalid LRS segment
Cause: The given LRS segment was not a valid line string.

Action: A valid LRS geometric segment is a line string geometry in Oracle Spa-
tial. It could be a simple or compound line string (made of lines or arcs, or
both). The dimension information must include the measure dimension as the
last element in Oracle Spatial metadata. Currently, the number of dimensions
for an LRS segment must be greater than 2 (x/y or latitude/longitude plus mea-
sure).

ORA-13332 invalid LRS point
Cause: The given LRS point was not a valid LRS point.
Action: A valid LRS point is a point geometry in Oracle Spatial with additional
measure dimension. The dimension information must include the measure
dimension as the last element in the Spatial metadata. Currently, the number of
dimensions for an LRS segment must be greater than 2 (x/y or latitude/longi-
tude plus measure).

ORA-13333 invalid LRS measure
Cause: The given measure for linear referencing was out of linear measure
range.

Action: The start and end measures of a geometric segment define the measure
range of the segment. Any valid measures for a geometric segment must be
within its measure range. The measures are always in an ascending order from
the start to the end point.

ORA-13334 LRS segments not connected
Cause: The given geometric segments were not connected.

Linear Referencing System E-31



Error Messages for Linear Referencing System

Action: For concatenating two geometric segments, the two segments must be
spatially connected. That is, the end point of the first ssgment must be the same
as the start point of the second segment.

ORA-13335 LRS segment is not defined
Cause: The given start or end measures are not defined, or some assigned
measures in between are not in an ascending order.

Action: An LRS geometric segment is defined if its start and end measure are
assigned (non-null). Any other measures assigned on the segment must be in an
ascending order.

ORA-13336 LRS conversion failure
Cause: The conversion of an LRS geometry or layer was not successful.
Action: Check the following to see if they are valid: the geometry type for a
geometry conversion, or the geometry type and dimensional information (dim-

info) for a layer conversion. For example, polygon geometries are invalid as
input to LRS functions.

E-32 Oracle Spatial User's Guide and Reference



Glossary

area
An extent or region of dimensional space.

attribute

Descriptive information characterizing a geographical feature such as a point, line,
or area.

attribute data

Nondimensional data that provides additional descriptive information about
multidimensional data, for example a class or feature such as a bridge or a road.
batch geocoding

An operation that simultaneously geocodes many records from one table. See also
geocoding.

boundary

1. The lower or upper extent of the range of a dimension, expressed by a numeric
value.

2. The line representing the outline of a polygon.

Cartesian coordinate system

A coordinate system in which the location of a point in n-dimensional space is
defined by distances from the point to the reference plane. Distances are measured
parallel to the planes intersecting a given reference plane. See also coordinate
system.

Glossary-1



Glossary-2

contain

To describe a geometric relationship where one object encompasses another and the
inner object does not touch any boundaries of the outer. The outer object contains
the inner object. See also inside.

convex hull

A simple convex polygon that completely encloses the associated geometry object.

coordinate
A set of values uniquely defining a point in an n-dimensional coordinate system.

coordinate system

A reference system for the unique definition for the location of a point in
n-dimensional space. Also called a spatial reference system.

cover

To describe a geometric relationship in which one object encompasses another and
the inner object touches the boundary of the outer object in one or more places.
data dictionary

A repository of information about data. A data dictionary stores relational
information on all the objects in a database.

decompose

To separate or resolve into constituent parts or elements, or into simpler
compounds.

dimensional data

Data that has one or more dimensional components and is described by multiple
values.

direction

The direction of an LRS geometric segment is indicated from the start point of the
geometric segment to the end point. Measures of points on a geometric segment
always increase along the direction of the geometric segment.

disjoint
A geometric relationship where two objects do not interact in any way. Two disjoint
objects do not share any element or piece of their geometry.



equal

A geometric relationship in which two objects are considered to represent the same
geometric figure. The two objects must be composed of the same number of points,
however, the ordering of the points defining the two objects’ geometries may differ
(clockwise or counterclockwise).

extent

A rectangle bounding a map, the size of which is determined by the minimum and
maximum map coordinates.

feature

An object with a distinct set of characteristics in a spatial database.

geocoding

The process of converting tables of address data into standardized address, location,
and possibly other data.

geographical information system (GIS)

A computerized database management system used for the capture, conversion,
storage, retrieval, analysis, and display of spatial data.

geographically referenced data

See spatiotemporal data.

geometry

The geometric representation of the shape of a spatial feature in some coordinate
space.

georeferenced data

See spatiotemporal data.

GIS
See geographical information system (GIS).

grid
A data structure composed of points located at the nodes of an imaginary grid. The
spacing of the nodes is constant in both the horizontal and vertical directions.

Glossary-3



HHCODE

A data type representing the intersection point of multiple dimensions. It encodes
these multiple dimensions into a unique, linear value. The HHCODE data types
were used for both spatial indexing and partitioned point data in previous releases
of Spatial.

high-water mark

Expressed in number of records and associated with the deprecated Spatial
partitioned table structure, it defines the maximum number of records to store in a
table before decomposing another level. The high-water mark determines the
maximum size of a partition within the Spatial table. Partitioned tables were an
alternative to spatial indexing.

hole

A polygon can include subelements that negate sections of its interior. For example,
consider a polygon representing a map of buildable land with an inner polygon (a
hole) representing where a lake is located.

homogeneous
Spatial data of one feature type such as points, lines, or regions.

hyperspatial data

In mathematics, any space having more than the three standard x, y, and z
dimensions, also referred to as multidimensional data.

index

Identifier that is not part of a database and used to access stored information.
inside

To describe a geometric relationship where one object is surrounded by a larger

object and the inner object does not touch the boundary of the outer. The smaller
object is inside the larger. See also contain.

key
A field in a database used to obtain access to stored information.

keyword
Synonym for reserved word.

Glossary-4



latitude

North/South position of a point on the Earth defined as the angle between the
normal to the Earth’s surface at that point and the plane of the equator.

line
A geometric object represented by a series of points, or inferred as existing between
two coordinate points.

linear feature
Any spatial object that can be treated as a logical set of linear segments.

longitude

East/West position of a point on the Earth defined as the angle between the plane of
a reference meridian and the plane of a meridian passing through an arbitrary
point.

measure

The linear distance (in the LRS measure dimension) measured from the start point
of the geometric segment.

measure range
The measure values at the start and end measures of a geometric segment.

multidimensional data
See hyperspatial data.

offset

The perpendicular distance between a point along a geometric segment and the
geometric segment. Offsets are positive if points are on the left side along the
segment direction and are negative if they are on the right side. Points are on a
geometric segment if their offsets to the segment are zero.

partition
1. The spatial table that contains data only for a unique bounded n-dimensional
space.

2. The process of grouping data into partitions that maintain the dimensional
organization of the data.

Glossary-5



Glossary-6

partition key column

The primary HHCODE column that is used to dimensionally partition the data.
One HHCODE data type column must be identified as the partition key for the
table to be registered as partitionable in the Spatial data dictionary. There can be
only one partition key per spatial table. Note that this is only used for the
deprecated partitioned point data model, and not for spatially indexed data.

partitioned table

The spatial logical table structure that contains one or more partitions. Use
partitioned tables only if you are dealing with a very large amount of legacy point
data (over 50 gigabytes).

polygon

A class of spatial objects having a nonzero area and perimeter, and representing a
closed boundary region of uniform characteristics.

primary filter

The operation that permits fast selection of candidate records to pass along to the
secondary filter. The primary filter compares geometry approximations to reduce
computation complexity and is considered a lower-cost filter. Because the primary
filter compares geometric approximations, it returns a superset of the exact result
set. See also secondary filter and two-tier query model.

projection

The point on the LRS geometric segment with the minimum distance to the
specified point.

proximity

A measure of inter-object distance.

query

A set of conditions or questions that form the basis for the retrieval of information
from a database.

query window

Area within which the retrieval of spatial information and related attributes is
performed.

RDBMS

See Relational Database Management System (RDBMS).



recursion

A process, function, or routine that executes continuously until a specified condition
is met.

region

An extent or area of multidimensional space.

Relational Database Management System (RDBMS)

A computer program designed to store and retrieve shared data. In a relational
system, data is stored in tables consisting of one or more rows, each containing the
same set of columns. Oracle8i is an object-relational database management system.
Other types of database systems are called hierarchical or network database
systems.

resolution
The number of subdivision levels of data.

scale

1. The number of digits to the right of the decimal point in a number representing
the level of resolution of an HHCODE instance.

2. The ratio of the distance on a map, photograph, or image to the corresponding
image on the ground, all expressed in the same units.

SD*Converter

A utility used with previous releases of Spatial Data Option to prepare data for
loading into spatial tables. Loading is now accomplished through SQL*Loader.

secondary filter

The operation that applies exact computations to geometries that result from the
primary filter. The secondary filter yields an accurate answer to a spatial query. The
secondary filter operation is computationally expensive, but it is only applied to the
primary filter results, not the entire data set. See also primary filter and two-tier
query model.

shape points

Points that are specified when an LRS segment is constructed, and that are assigned
measure information.

Glossary-7



Glossary-8

SLF
See Spatial Load Format (SLF).

sort

The operation of arranging a set of items according to a key that determines the
sequence and precedence of items.

spatial
A generic term used to reference the mathematical concept of n-dimensional data.

spatial data

Data that is referenced by its location in n-dimensional space. The position of spatial
data is described by multiple values. See also hyperspatial data.

spatial database
A database containing information indexed by location.

spatial data model
A model of how objects are located on a spatial context.

Spatial data dictionary

An extension of the Oracle8i data dictionary. It keeps track of the number of
partitions created in a spatial table. The Spatial data dictionary is owned by user
MDSYS. The data dictionary is used only by the deprecated partitioned point
routines.

spatial data structures

A class of data structures designed to store spatial information and facilitate its
manipulation.

spatial join
A query in which each of the geometries in one layer is compared with each of the
geometries in the other layer. Comparable to a spatial cross product.

Spatial Load Format (SLF)

The format used to load data into spatial tables in a previous release of Spatial Data
Option. Loading is now accomplished with the standard SQL*Loader.



spatial query

A query that includes criteria for which selected features must meet location
conditions.

spatial reference system
See coordinate system.

spatiotemporal data

Data that contains time and/or location components as one of its dimensions, also
referred to as geographically referenced data or georeferenced data.

SQL*Loader
A utility to load formatted data into spatial tables.

tessellation

The process of covering a geometry with rectangular tiles without gaps or overlaps.
tiling

See tessellation.

touch

A geometric relationship where two objects share a common point on their
boundaries, but their interiors do not intersect.

two-tier query model

The query model used by Spatial to resolve spatial queries and spatial joins. Two
distinct filtering operations (primary and secondary) are performed to resolve
queries. The output of both operations yields the exact result set. See also primary
filter and secondary filter.

Glossary-9



Glossary-10



Numerics

8.1.7
changes to this guide for release 8.1.7, xxiii
migrating to release 8.1.7, 10-5
migrating to release 8.1.7 from release
8.1.5, 10-2

A

administrative procedures, 15-1
ALL_SDO_GEOM_METADATA view, 2-18
ALL_SDO_INDEX_METADATA view, 2-20
ALTER INDEX, 5-2

REBUILD, 5-5

RENAME TO, 5-8
ANYINTERACT, 7-5,17-3
arcs, A-14
area, 7-7
authalic sphere, D-3
average minimum bounding rectangle, 11-2
AVERAGE_MBR, 11-2,16-2

B

batch geocoding, C-4
bounding rectangle

minimum, 11-14
buffer area, 7-9
BUILD_WINDOW, 18-3
BUILD_WINDOW_FIXED, 18-5
bulk loading, 3-1, 13-2

Index

C

C language examples (using OCI), 1-26
Cartesian coordinates, D-2
center of gravity (centroid), 7-11
centroid, 7-11
circle, 2-11, A-14
CLEAN_WINDOW, 18-7
CLEANUP_GID, 18-8
clip, E-11
CLIP_GEOM_SEGMENT, 9-5
COLUMN_NAME (in USER_SDO_GEOM_
METADATA), 2-19
compound element, 2-9
CONCATENATE_GEOM_SEGMENT, 9-59
concatenating geometric segments, E-12
CONNECTED_GEOM_SEGMENTS, 9-10
consistency check, 7-33, 17-5
CONTAINS, 7-5,17-3
control file, 13-2
CONVERT_TO_LRS_DIM_ARRAY, 09-12
CONVERT_TO_LRS_GEOM, 9-14
CONVERT_TO_LRS_LAYER, 9-16
CONVERT_TO_STD_DIM_ARRAY, 9-18
CONVERT_TO_STD_GEOM, 9-20
CONVERT_TO_STD_LAYER, 9-22
converting geometric segments
functions for, 9-3
overview, E-17
convex hull, 7-13
coordinate systems
conceptual and usage information, D-1
error messages, D-14
example, D-8

Index-1



coordinates

Cartesian, D-2

geodetic, D-2

geographic, D-2

projected, D-2
COVEREDBY, 7-5,17-3
COVERS, 7-5,17-4
cr_spatial_index.sql, A-16
CREATE INDEX, 5-9
CREATE_WINDOW_LAYER, 18-9
creating geometric segments

functions for, 9-1
creating layer tables, A-17
crlayer.sgl, A-17
CS_SRStable, D-3
customized geometry types, A-14

D
data model, 1-6, A-1
LRS, E-7
datum
geodetic, D-2

transformation, D-3
DBA_SDO_GEOM_METADATA view, 2-18
DBA_SDO_INDEX_METADATA view, 2-20
DEFINE_GEOM_SEGMENT, 9-24
difference, 7-15
dimension (in SDO_GTYPE), 2-7
DIMINFO (in USER_SDO_GEOM _

METADATA), 2-19
direction of geometric segment, E-3

concatenation result, E-13
disjoint, 7-5,17-4
displaying geometries, A-18, A-20
distance, 7-39
DROP INDEX, 5-14
dynamic query window, 4-3, 14-4
DYNAMIC_SEGMENT, 9-27

E

editing geometric segments
functions for, 9-1
ELEM_INFO (SDO_ELEM_INFO), 2-8

Index-2

element, 1-6
ellipsoids
list of supported, D-6
enabling third-party geocoders, C-11
EQUAL, 7-5,17-4
error messages, Xxiv
coordinate systems, D-14
linear referencing system, E-31

ESTIMATE_INDEX_PERFORMANCE, 11-4,16-3

ESTIMATE_TILING_LEVEL, 11-7,16-5
ESTIMATE_TILING_TIME, 11-9, 16-8
ESTIMATE_TOTAL_NUMTILES, 11-11
ETYPE (SDO_ETYPE), 2-9
examples
C, 1-26
coordinate systems, D-8
creating, indexing, and querying spatial
data, 2-1
directory, 1-25
Linear Referencing System (LRS), E-19
OCI (Oracle Call Interface), 1-26
PL/SQL, 1-26
SQL, 1-26
extent, 16-9
EXTENT_OF, 11-14,16-9
exterior polygon rings, 2-7,2-9, 2-14, 2-15

F

features
linear, E-6

filter, 14-6

FIND_MEASURE, 9-29

fixed indexing, 1-13

fixed-size tiles, 3-12, 13-7, 15-5, 15-14

FROM 815 TO 81x, 10-2

functions
CLIP_GEOM_SEGMENT, 9-5
CONCATENATE_GEOM_SEGMENT, 9-59
CONNECTED_GEOM_SEGMENTS, 9-10
CONVERT_TO_LRS DIM_ARRAY, 09-12
CONVERT_TO_LRS GEOM, 9-14
CONVERT_TO_LRS LAYER, 9-16
CONVERT_TO_STD_DIM_ARRAY, 9-18
CONVERT_TO_STD_GEOM, 9-20



CONVERT_TO_STD_LAYER, 9-22
DEFINE_GEOM_SEGMENT procedure, 9-24
DYNAMIC_SEGMENT, 9-27
FIND_MEASURE, 9-29
GEOM_SEGMENT_END_MEASURE, 9-41
GEOM_SEGMENT_END_PT, 9-33
GEOM_SEGMENT_LENGTH, 9-35
GEOM_SEGMENT_START_MEASURE, 9-37
GEOM_SEGMENT_START_PT, 9-39
GET_MEASURE, 9-41
IS_GEOM_SEGMENT_DEFINED, 9-69
LOCATE_PT, 9-45

MEASURE_RANGE, 9-47
MEASURE_TO_PERCENTAGE, 9-49
PERCENTAGE_TO_MEASURE, 9-51
PROJECT_PT, 9-53
REDEFINE_GEOM_SEGMENT, 9-55
REVERSE_MEASURE, 9-57
SCALE_GEOM_SEGMENT, 9-59
SPLIT_GEOM_SEGMENT procedure, 9-62
TRANSLATE_MEASURE, 9-65
VALID_GEOM_SEGMENT, 9-67
VALID_LRS_PT, 9-69
VALID_MEASURE, 9-71

G

generic geocoding interface, C-1
GEOCODE_SCHEMA_PROPERTY_TYPE, C-5
GEOCODE_SERVER_PROPERTY_TYPE, C-4
GEOCODE_TABLE_COLUMN_TYPE, C-5
GEOCODE_TASK_METADATA, C-4
geocoder metadata, C-3
GEOCODER_HTTP package, C-10
geocoding

generic interface, C-1
geocoding support

interMedia Locator, A-17
geodetic coordinates, D-2
geodetic datum, D-2
geographic coordinates, D-2
Geolmage feature, xxiv
GEOM_SEGMENT_END_MEASURE, 9-41
GEOM_SEGMENT_END_PT, 9-33
GEOM_SEGMENT_LENGTH, 9-35

GEOM_SEGMENT_START_MEASURE, 9-37
GEOM_SEGMENT_START_PT, 9-39
geometric primitive, 1-4
geometric segment
clipping, E-11
concatenating, E-12
converting (functions for), 9-3
converting (overview), E-17
creating (functions for), 9-1
direction, E-3
direction with concatenation, E-13
editing (functions for), 9-1
locating pointon, E-15
projecting point onto, E-17
querying (functions for), 9-2
scaling, E-14
splitting, E-12
geometric segments, E-2
geometry types, 1-4
custom, A-14
object-relational, 2-6
relational, 12-3
GET_MEASURE, 9-41
GIs, 1-3
GTYPE (SDO_GTYPE), 2-6

H

HISTOGRAM_ANALYSIS, 11-16, 16-10
hybrid indexing, 1-18

index
creation, 3-11
creation (cross-schema), 3-16
creation in parallel, A-14
description of Spatial indexing, 1-9
performance, 11-4,16-3
quadtree, 1-12
R-tree, 1-10
R-tree (requirements before creating), 1-11
inserting spatial data, 13-4
INSIDE, 7-6,17-4
INTEPRETATION (SDO_INTERPRETATION),

2-9

Index-3



interaction, 7-5, 17-3

interior polygon rings, 2-7, 2-9, 2-14, 2-15
interMedia Locator, A-17

intersection, 7-20

IS GEOM_SEGMENT_DEFINED, 9-69

J

Java Virtual Machine, C-2
JVM (Java Virtual Machine), C-2

L

layer, 1-7, A-17
transforming, 8-5
validating, 7-36

length (SDO_LENGTH), 7-23

line, 2-12
length, 7-23
line data, 1-6

linear features, E-6
linear measure, E-3
Linear Referencing System (LRS)
conceptual and usage information, E-1
data model, E-7
error messages, E-31
example, E-19
function reference information, 9-1
limiting indexing to X and Y dimensions, E-8
LRS point, E-6
segments, E-2
loading process, 3-1, 13-2
in parallel, A-14
LOCATE_PT, 09-45
location, 1-3
Locator (interMedia), A-17
long transactions (Workspace Management), xxiv
LRS
See Linear Referencing System (LRS)
LRS point, E-6

M

map projections
list of supported, D-5

Index-4

MDSYS schema, 1-1
MDSYS.CS_SRS table, D-3
measure, E-3
measure populating, E-4
measure range, E-6
MEASURE_RANGE, 9-47
MEASURE_TO_PERCENTAGE, 9-49
metadata for geocoding, C-3
migration
OGIS, 10-8,10-9
to current Spatial release, 10-5
to current Spatial release from 8.1.5, 10-2
to release 7.3.4, 10-3
minimum bounding rectangle, 11-2, 11-14, 16-2,
16-9
average, 11-2
MIX_INFO, 11-18,16-12
multimatch table, C-9
multiple matches, C-9
multipolygon, 2-15

N

nearest neighbor (SDO_NN), 6-6

@)

object-relational model
schema, 2-1
OCI (Oracle Call Interface) examples, 1-26
offset, E-3
OGIS_METADATA_FROM, 10-8
OGIS_METADATA _TO, 10-9
operators
cross-schema invocation, 4-9
SDO_FILTER, 6-2
SDO_NN, 6-6
SDO_RELATE, 6-8
SDO_WITHIN_DISTANCE, 6-13
Oracle Call Interface (OCI) examples, 1-26
Oracle Technology Network (OTN), xxiv
oracle.spatial.geocoder.Metadata, C-9
OVERLAPBDYDISIOINT, 7-6,17-4
OVERLAPBDYINTERSECT, 7-6,17-4



P

parallel load, A-14
partitioned tables, 1-25, A-14
PERCENTAGE_TO_MEASURE, 9-51
plotting tiles, A-5
PL/SQL and SQL examples, 1-26
point
locating on geometric segment, E-15
LRS, E-6
shape, E-2
pointdata, 1-6,15-8, A-9
point on surface of polygon, 7-25
polygon
areaof, 7-7
centroid, 7-11

exterior and interior rings, 2-7, 2-9, 2-14, 2-15

point on surface, 7-25
polygon collection, 2-15
polygon data, 1-6
POPULATE_INDEX, 15-3
POPULATE_INDEX_FIXED, 15-5
POPULATE_INDEX_FIXED_POINTS, 15-8
populating
measure, E-4
primary filter, 14-6
primitive, 1-4
problems in current release, D-7
procedures
DEFINE_GEOM_SEGMENT, 9-24
SPLIT_GEOM_SEGMENT, 9-62
PROJECT_PT, 9-53
projected coordinates, D-2
projection, E-6
point onto geometric segment, E-17
PROJECT_PT function, 9-53

Q
quadtree indexes, 1-12
query, 1-8

query window, 4-3, 14-4
guerying geometric segments
functions for, 9-2

R

range
measure, E-6
rectangle, 2-11
minimum bounding, 11-14
REDEFINE_GEOM_SEGMENT, 9-55
rejected records, C-9
RELATE, 7-4,17-2
relational model
schema, 12-1
release 8.1.7
changes to this guide, xxiii
migrating to release 8.1.7, 10-5
migrating to release 8.1.7 from release
8.1.5, 10-2
restrictions in current release, D-7
REVERSE_MEASURE, 9-57
rollback segment
R-tree index creation, 1-11
R-tree indexes, 1-10
before creating, 1-11
sequence object, 2-23

S

sample program, A-18, A-20
SCALE_GEOM_SEGMENT, 9-59
scaling a geometric segment, E-14
schema, 12-1
creating index on table in another schema,
invoking operators on table in another
schema, 4-9
object-relational model, 2-1
relational model, 12-1
SDO_AREA, 7-7
SDO_BUFFER, 7-9
SDO_CENTROID, 7-11
SDO_CODE, 2-22
SDO_CODE_SIZE, 15-10
SDO_CONVEXHULL, 7-13
SDO_DIFFERENCE, 7-15
SDO_DISTANCE, 7-18
SDO_ELEM_INFO, 2-8
SDO_ETYPE, 2-9

3-16

Index-5



SDO_FILTER operator, 6-2
SDO_GEOMETRY object type, 2-6
SDO_GROUPCODE, 2-22
SDO_GTYPE, 2-6
SDO_INDEX_TABLE, 2-22
SDO_INDX_DIMS, E-8
SDO_INTERPRETATION, 2-9
SDO_INTERSECTION, 7-20
SDO_LENGTH, 7-23
SDO_LEVEL, 1-12
SDO_NN

optimizer hint, 6-7
SDO_NN operator, 6-6
SDO_NUMTILES, 1-12
SDO_ORDINATES, 2-12
SDO_POINT, 2-8
SDO_POINTONSURFACE, 7-25
SDO_POLY_xxx functions (deprecated and

removed), 7-2
SDO_RELATE operator, 6-8
SDO_ROWID, 2-22
SDO_RTREE_SEQ_NAME, 2-23
SDO_SRID, 2-8
SDO_STARTING_OFFSET, 2-8
SDO_STATUS, 2-22
SDO_UNION, 7-27
SDO_VERSION, 15-11
SDO_WITHIN_DISTANCE operator, 6-13
SDO_XOR, 7-30
secondary filter, 14-7
segments

geometric, E-2
sequence object for R-tree index, 2-23
shape point, E-2
simple element, 2-9
SORT_AREA_SIZE parameter

R-tree index creation, 1-11
spatial data structures

object-relational model, 2-1

relational model, 12-1
spatial database

sizing, A-4
spatial index

See index
Spatial Index Advisor

Index-6

using to determine best tiling level, 3-14

spatial indexing

fixed, 1-13
hybrid, 1-18

spatial join, 4-9, 14-8, A-11
spatial query, 4-3,14-4
spatial reference systems

conceptual and usage information, D-1
example, D-8

sphere

authalic, D-3

SPLIT_GEOM_SEGMENT, 9-62
splitting a geometric segment, E-12
SQL and PL/SQL examples, 1-26
SQL script, A-16

SQL*Loader, 3-1,13-2

SRID

T

in USER_SDO_GEOM_METADATA, 2-20
SDO_SRID in SDO_GEOMETRY, 2-8

table partitioning, 1-25
TABLE_NAME (in USER_SDO_GEOM_

METADATA), 2-19

tessellation, 1-13, 13-6

tile, 1-12,4-1,14-1

tiling, 11-7, 15-14, 16-5, A-2
TO_734, 10-3

TO_81x, 10-5

tolerance, 1-7

TOUCH, 7-6,17-4
transactional insert, 3-3, 13-4
TRANSFORM (function), 8-2
TRANSFORM_LAYER (procedure), 8-5
Transform_Layer (procedure)

table for transformed layer, 8-6

transformation, D-3
TRANSLATE_MEASURE, 9-65
two-tier query, 1-8,4-1, 14-1

U

union, 7-27
UPDATE_INDEX, 15-12



UPDATE_INDEX_FIXED, 15-14
USER_SDO_GEOM_METADATA view, 2-18
USER_SDO_INDEX_METADATA view, 2-20

Vv

VALID_GEOM_SEGMENT, 9-67
VALID_LRS PT, 9-69
VALID_MEASURE, 9-71
VALIDATE_GEOMETRY, 7-33,17-5
VALIDATE_LAYER, 7-36
VERIFY_LAYER, 15-16
visualizing geometries, A-18, A-20
visualizing tiles, A-5, A-20

wW

well-known text (WKTEXT), D-4
WITHIN_DISTANCE, 7-39
WKTEXT, D-4

Workspace Management, xxiv

X
XOR, 7-30

Index-7



Index-8



	PDF Directory
	List of Examples
	List of Figures
	List of Tables
	Send Us Your Comments
	Preface
	Audience
	Organization
	Changes for Release 8.1.7
	Features Released Separately
	Related Documents
	Conventions

	1 Spatial Concepts
	1.1� What Is Oracle Spatial?
	1.2� Object-Relational and Relational Models
	1.2.1� Benefits of the Object-Relational Model
	1.2.2� Benefits of the Relational Model

	1.3� Introduction to Spatial Data
	1.4� Geometric Types for Relational and Object-Relational Models
	1.5� Data Model
	1.5.1� Element
	1.5.2� Geometry
	1.5.3� Layer
	1.5.4� Tolerance

	1.6� Query Model
	1.7� Indexing of Spatial Data
	1.7.1� R-tree Indexing
	1.7.2� Quadtree Indexing

	1.8� Spatial Relations and Filtering
	1.9� Partitioned Point Data
	1.10� Examples

	Part I� Object-Relational Model
	2 The Object-Relational Schema
	2.1� Simple Example: Inserting, Indexing, and Querying Spatial Data
	2.2� SDO_GEOMETRY Object Type
	2.2.1� SDO_GTYPE
	2.2.2� SDO_SRID
	2.2.3� SDO_POINT
	2.2.4� SDO_ELEM_INFO
	2.2.5� SDO_ORDINATES
	2.2.6� Usage Considerations

	2.3� Geometry Examples Using the Object-Relational Model
	2.3.1� Rectangle
	2.3.2� Polygon with a Hole
	2.3.3� Compound Element
	2.3.4� Compound Polygon

	2.4� Geometry Metadata Structure
	2.4.1� TABLE_NAME
	2.4.2� COLUMN_NAME
	2.4.3� DIMINFO
	2.4.4� SRID

	2.5� Spatial Index-Related Structure
	2.5.1� Spatial Index Views
	2.5.2� Spatial Index Table Definition
	2.5.3� R-Tree Index Sequence Object


	3 Loading and Indexing Spatial Object Types
	3.1� Load Process
	3.1.1� Bulk Loading
	3.1.2� Transactional Insert Using SQL

	3.2� Index Creation
	3.2.1� Determining Index Creation Behavior (Quadtree Indexes)
	3.2.2� Spatial Indexing with Fixed-Size Tiles (Quadtree Indexes)
	3.2.3� Hybrid Spatial Indexing with Fixed-Size and Variable-Sized Tiles
	3.2.4� R-tree Index Parameter Considerations
	3.2.5� Cross-Schema Index Creation


	4 Querying Spatial Data
	4.1� Query Model
	4.2� Spatial Query
	4.2.1� Primary Filter
	4.2.2� Primary and Secondary Filters
	4.2.3� Within-Distance Operator
	4.2.4� Nearest Neighbor Operator

	4.3� Spatial Join
	4.4� Cross-Schema Operator Invocation

	5 Indexing Statements
	ALTER INDEX
	ALTER INDEX REBUILD
	ALTER INDEX RENAME TO
	CREATE INDEX
	DROP INDEX

	6 Spatial Operators
	SDO_FILTER
	SDO_NN
	SDO_RELATE
	SDO_WITHIN_DISTANCE

	7 Geometry Functions
	SDO_GEOM.RELATE
	SDO_GEOM.SDO_AREA
	SDO_GEOM.SDO_BUFFER
	SDO_GEOM.SDO_CENTROID
	SDO_GEOM.SDO_CONVEXHULL
	SDO_GEOM.SDO_DIFFERENCE
	SDO_GEOM.SDO_DISTANCE
	SDO_GEOM.SDO_INTERSECTION
	SDO_GEOM.SDO_LENGTH
	SDO_GEOM.SDO_POINTONSURFACE
	SDO_GEOM.SDO_UNION
	SDO_GEOM.SDO_XOR
	SDO_GEOM.VALIDATE_GEOMETRY
	SDO_GEOM.VALIDATE_LAYER
	SDO_GEOM.WITHIN_DISTANCE

	8 Coordinate System Functions
	SDO_CS.TRANSFORM
	SDO_CS.TRANSFORM_LAYER

	9 Linear Referencing Functions
	SDO_LRS.CLIP_GEOM_SEGMENT
	SDO_LRS.CONCATENATE_GEOM_SEGMENTS
	SDO_LRS.CONNECTED_GEOM_SEGMENTS
	SDO_LRS.CONVERT_TO_LRS_DIM_ARRAY
	SDO_LRS.CONVERT_TO_LRS_GEOM
	SDO_LRS.CONVERT_TO_LRS_LAYER
	SDO_LRS.CONVERT_TO_STD_DIM_ARRAY
	SDO_LRS.CONVERT_TO_STD_GEOM
	SDO_LRS.CONVERT_TO_STD_LAYER
	SDO_LRS.DEFINE_GEOM_SEGMENT
	SDO_LRS.DYNAMIC_SEGMENT
	SDO_LRS.FIND_MEASURE
	SDO_LRS.GEOM_SEGMENT_END_MEASURE
	SDO_LRS.GEOM_SEGMENT_END_PT
	SDO_LRS.GEOM_SEGMENT_LENGTH
	SDO_LRS.GEOM_SEGMENT_START_MEASURE
	SDO_LRS.GEOM_SEGMENT_START_PT
	SDO_LRS.GET_MEASURE
	SDO_LRS.IS_GEOM_SEGMENT_DEFINED
	SDO_LRS.LOCATE_PT
	SDO_LRS.MEASURE_RANGE
	SDO_LRS.MEASURE_TO_PERCENTAGE
	SDO_LRS.PERCENTAGE_TO_MEASURE
	SDO_LRS.PROJECT_PT
	SDO_LRS.REDEFINE_GEOM_SEGMENT
	SDO_LRS.REVERSE_MEASURE
	SDO_LRS.SCALE_GEOM_SEGMENT
	SDO_LRS.SPLIT_GEOM_SEGMENT
	SDO_LRS.TRANSLATE_MEASURE
	SDO_LRS.VALID_GEOM_SEGMENT
	SDO_LRS.VALID_LRS_PT
	SDO_LRS.VALID_MEASURE

	10 Migration Procedures
	SDO_MIGRATE.FROM_815_TO_81X
	SDO_MIGRATE.TO_734
	SDO_MIGRATE.TO_81X
	SDO_MIGRATE.OGIS_METADATA_FROM
	SDO_MIGRATE.OGIS_METADATA_TO

	11 Tuning Functions and Procedures
	SDO_TUNE.AVERAGE_MBR
	SDO_TUNE.ESTIMATE_INDEX_PERFORMANCE
	SDO_TUNE.ESTIMATE_TILING_LEVEL
	SDO_TUNE.ESTIMATE_TILING_TIME
	SDO_TUNE.ESTIMATE_TOTAL_NUMTILES
	SDO_TUNE.EXTENT_OF
	SDO_TUNE.HISTOGRAM_ANALYSIS
	SDO_TUNE.MIX_INFO

	Part II� Relational Model
	12 The Relational Schema
	12.1� Database Structures for the Relational Implementation

	13 Loading Spatial Data (Relational Model)
	13.1� Load Model
	13.2� Load Process
	13.2.1� Bulk Loading
	13.2.2� Transactional Insert Using SQL

	13.3� Index Creation
	13.3.1� Choosing a Tessellation Algorithm
	13.3.2� Spatial Indexing with Fixed-Size Tiles
	13.3.3� Hybrid Spatial Indexing with Fixed-Size and Variable-Sized Tiles


	14 Querying Spatial Data (Relational Model)
	14.1� Query Model
	14.2� Spatial Index Data Structures
	14.3� Spatial Query
	14.3.1� Dynamic Query Window
	14.3.2� Primary Filter Query
	14.3.3� Secondary Filter Query

	14.4� Spatial Join

	15 Administrative Functions and Procedures for Relational Model
	SDO_ADMIN.POPULATE_INDEX
	SDO_ADMIN.POPULATE_INDEX_FIXED
	SDO_ADMIN.POPULATE_INDEX_FIXED_POINTS
	SDO_ADMIN.SDO_CODE_SIZE
	SDO_ADMIN.SDO_VERSION
	SDO_ADMIN.UPDATE_INDEX
	SDO_ADMIN.UPDATE_INDEX_FIXED
	SDO_ADMIN.VERIFY_LAYER

	16 Tuning Functions and Procedures for Relational Model
	SDO_TUNE.AVERAGE_MBR
	SDO_TUNE.ESTIMATE_INDEX_PERFORMANCE
	SDO_TUNE.ESTIMATE_TILING_LEVEL
	SDO_TUNE.ESTIMATE_TILING_TIME
	SDO_TUNE.EXTENT_OF
	SDO_TUNE.HISTOGRAM_ANALYSIS
	SDO_TUNE.MIX_INFO

	17 Geometry Functions and Procedures for Relational Model
	SDO_GEOM.RELATE
	SDO_GEOM.VALIDATE_GEOMETRY
	SDO_GEOM.VALIDATE_LAYER

	18 Window Functions and Procedures for Relational Model
	SDO_WINDOW.BUILD_WINDOW
	SDO_WINDOW.BUILD_WINDOW_FIXED
	SDO_WINDOW.CLEAN_WINDOW
	SDO_WINDOW.CLEANUP_GID
	SDO_WINDOW.CREATE_WINDOW_LAYER

	A Tuning Tips and Sample SQL Scripts
	A.1� Tuning Tips
	A.1.1� Data Modeling
	A.1.2� Understanding the Tiling Level
	A.1.3� Using Hybrid Indexes (Object-Relational Model Only)
	A.1.4� Database Sizing
	A.1.5� Visualizing the Spatial Index (Drawing Tiles)
	A.1.6� Setting the SORT_AREA_SIZE Value
	A.1.7� Tuning Point Data with the Relational Model
	A.1.8� Tuning Spatial Join Queries Using the Relational Model
	A.1.9� Using Customized Geometry Types in the Relational Model
	A.1.10� Partitioning Spatial Data Using the Relational Model
	A.1.11� Parallel Loading and Indexing of Spatial Data Using the Relational Model

	A.2� Scripts for Spatial Indexing Using the Relational Model
	A.2.1� cr_spatial_index.sql Script
	A.2.2� crlayer.sql Script

	A.3� Tools and Related Products
	A.3.1� Oracle interMedia Locator
	A.3.2� Spatial Viewer on UNIX/Motif for Relational Model
	A.3.3� Spatial Visualizer on Windows NT for the Object-Relational Model


	B Installation, Compatibility, and Migration Issues
	B.1� Introduction
	B.2� Installation Details
	B.2.1� Changing from 8.1 to 8.0 Compatibility Mode

	B.3� Compatibility Details
	B.4� Data Migration Issues
	B.5� Migrating from Spatial Release 8.1.5 or 8.1.6 to Release 8.1.7
	B.5.1� Migrating from Spatial Release 8.1.5 to Release 8.1.6
	B.5.2� Migrating from Spatial Release 8.1.6 to Release 8.1.7


	C Generic Geocoding Interface
	C.1� Locator Implementation: Benefits and Limitations
	C.2� Generic Geocoding Client
	C.3� Geocoder Metadata
	C.3.1� Server Properties
	C.3.2� Geocoding Input and Output Specification

	C.4� Metadata Helper Class
	C.5� Single-Record and Interactive Geocoding
	C.6� Java Geocoder Service Interface
	C.7� Enabling Third-Party Geocoders

	D Coordinate Systems (Spatial Reference Systems)
	D.1� Why Integrate Coordinate System Information?
	D.2� Terms and Concepts
	D.2.1� Coordinate System (Spatial Reference System)
	D.2.2� Cartesian Coordinates
	D.2.3� Geodetic Coordinates (Geographic Coordinates)
	D.2.4� Projected Coordinates
	D.2.5� Geodetic Datum
	D.2.6� Authalic Sphere
	D.2.7� Transformation (Datum Transformation)

	D.3� Coordinate Systems Data Structures
	D.3.1� MDSYS.CS_SRS Table
	D.3.2� Other Objects

	D.4� Coordinate Systems Functions and Procedures
	D.5� Restrictions and Problems in the Current Release
	D.5.1� Geometries with Longitude and Latitude Coordinates

	D.6� Example of Coordinate Systems
	D.7� Error Messages for Coordinate Systems

	E Linear Referencing System
	E.1� Terms and Concepts
	E.1.1� Geometric Segments (LRS Segments)
	E.1.2� Shape Points
	E.1.3� Direction of a Geometric Segment
	E.1.4� Measure (Linear Measure)
	E.1.5� Offset
	E.1.6� Measure Populating
	E.1.7� Measure Range of a Geometric Segment
	E.1.8� Projection
	E.1.9� LRS Point
	E.1.10� Linear Features

	E.2� LRS Data Model
	E.3� Indexing of LRS Data
	E.4� LRS Operations
	E.4.1� Defining a Geometric Segment
	E.4.2� Redefining a Geometric Segment
	E.4.3� Clipping a Geometric Segment
	E.4.4� Splitting a Geometric Segment
	E.4.5� Concatenating Two Connected Geometric Segments
	E.4.6� Scaling a Geometric Segment
	E.4.7� Locating a Point on a Geometric Segment
	E.4.8� Projecting a Point onto a Geometric Segment
	E.4.9� Converting Geometric Segments

	E.5� Example
	E.6� Error Messages for Linear Referencing System

	Glossary
	Index

