
Oracle® Spatial

User’s Guide and Reference

Release 8.1.7

September 2000

Part Number A85337-01

Oracle Spatial User’s Guide and Reference

Part Number A85337-01

Release 8.1.7

Copyright © 1997, 2000, Oracle Corporation. All rights reserved.

Primary Author: Chuck Murray

Contributors: Dan Abugov, Bruce Blackwell, Dan Geringer, Ravi Kothuri, L.J. Qian, Siva Ravada, Jayant
Sharma, Frank Wang, Jack Wang, and Ran Wei

The Programs (which include both the software and documentation) contain proprietary information of
Oracle Corporation; they are provided under a license agreement containing restrictions on use and
disclosure and are also protected by copyright, patent, and other intellectual and industrial property
laws. Reverse engineering, disassembly, or decompilation of the Programs is prohibited.

The information contained in this document is subject to change without notice. If you find any problems
in the documentation, please report them to us in writing. Oracle Corporation does not warrant that this
document is error free. Except as may be expressly permitted in your license agreement for these
Programs, no part of these Programs may be reproduced or transmitted in any form or by any means,
electronic or mechanical, for any purpose, without the express written permission of Oracle Corporation.

If the Programs are delivered to the U.S. Government or anyone licensing or using the programs on
behalf of the U.S. Government, the following notice is applicable:

Restricted Rights Notice Programs delivered subject to the DOD FAR Supplement are "commercial
computer software" and use, duplication, and disclosure of the Programs, including documentation,
shall be subject to the licensing restrictions set forth in the applicable Oracle license agreement.
Otherwise, Programs delivered subject to the Federal Acquisition Regulations are "restricted computer
software" and use, duplication, and disclosure of the Programs shall be subject to the restrictions in FAR
52.227-19, Commercial Computer Software - Restricted Rights (June, 1987). Oracle Corporation, 500
Oracle Parkway, Redwood City, CA 94065.

The Programs are not intended for use in any nuclear, aviation, mass transit, medical, or other inherently
dangerous applications. It shall be the licensee's responsibility to take all appropriate fail-safe, backup,
redundancy, and other measures to ensure the safe use of such applications if the Programs are used for
such purposes, and Oracle Corporation disclaims liability for any damages caused by such use of the
Programs.

Oracle and SQL*Loader are registered trademarks, and Oracle7 and Oracle8i are trademarks of Oracle
Corporation. All other company or product names mentioned are used for identification purposes only
and may be trademarks of their respective owners.

Contents

Send Us Your Comments ... xix

Preface.. xxi

Audience ... xxi
Organization... xxi
Changes for Release 8.1.7... xxiii
Features Released Separately ... xxiv
Related Documents.. xxiv
Conventions... xxv

1 Spatial Concepts

1.1 What Is Oracle Spatial?... 1-1
1.2 Object-Relational and Relational Models... 1-1
1.2.1 Benefits of the Object-Relational Model ... 1-2
1.2.2 Benefits of the Relational Model .. 1-3
1.3 Introduction to Spatial Data .. 1-3
1.4 Geometric Types for Relational and Object-Relational Models 1-4
1.5 Data Model ... 1-6
1.5.1 Element .. 1-6
1.5.2 Geometry ... 1-7
1.5.3 Layer... 1-7
1.5.4 Tolerance ... 1-7
1.6 Query Model .. 1-8
1.7 Indexing of Spatial Data ... 1-9
 iii

1.7.1 R-tree Indexing ... 1-10
1.7.1.1 Before Creating an R-tree Index.. 1-11
1.7.2 Quadtree Indexing ... 1-12
1.7.2.1 Tessellation of a Layer During Indexing ... 1-13
1.7.2.2 Fixed Indexing ... 1-13
1.7.2.3 Hybrid Indexing.. 1-18
1.8 Spatial Relations and Filtering... 1-22
1.9 Partitioned Point Data .. 1-25
1.10 Examples... 1-25

Part I Object-Relational Model

2 The Object-Relational Schema

2.1 Simple Example: Inserting, Indexing, and Querying Spatial Data 2-1
2.2 SDO_GEOMETRY Object Type... 2-6
2.2.1 SDO_GTYPE.. 2-6
2.2.2 SDO_SRID ... 2-8
2.2.3 SDO_POINT.. 2-8
2.2.4 SDO_ELEM_INFO ... 2-8
2.2.5 SDO_ORDINATES... 2-12
2.2.6 Usage Considerations .. 2-13
2.3 Geometry Examples Using the Object-Relational Model .. 2-13
2.3.1 Rectangle.. 2-13
2.3.2 Polygon with a Hole .. 2-14
2.3.3 Compound Element ... 2-16
2.3.4 Compound Polygon... 2-17
2.4 Geometry Metadata Structure ... 2-18
2.4.1 TABLE_NAME ... 2-19
2.4.2 COLUMN_NAME.. 2-19
2.4.3 DIMINFO... 2-19
2.4.4 SRID.. 2-20
2.5 Spatial Index-Related Structure... 2-20
2.5.1 Spatial Index Views.. 2-20
2.5.2 Spatial Index Table Definition.. 2-22
2.5.3 R-Tree Index Sequence Object .. 2-23
iv

3 Loading and Indexing Spatial Object Types

3.1 Load Process... 3-1
3.1.1 Bulk Loading... 3-1
3.1.1.1 Bulk Loading the SDO_GEOMETRY Object... 3-2
3.1.1.2 Bulk Loading Point-Only Data in the SDO_GEOMETRY Object 3-3
3.1.2 Transactional Insert Using SQL ... 3-3
3.1.2.1 Polygon with Hole .. 3-4
3.1.2.2 Compound Line String... 3-6
3.1.2.3 Compound Polygon ... 3-7
3.1.2.4 Compound Polygon with Holes ... 3-9
3.1.2.5 Transactional Insert of Point-Only Data.. 3-10
3.2 Index Creation ... 3-11
3.2.1 Determining Index Creation Behavior (Quadtree Indexes)................................... 3-11
3.2.2 Spatial Indexing with Fixed-Size Tiles (Quadtree Indexes)................................... 3-12
3.2.3 Hybrid Spatial Indexing with Fixed-Size and Variable-Sized Tiles 3-15
3.2.4 R-tree Index Parameter Considerations.. 3-16
3.2.4.1 SDO_FANOUT.. 3-16
3.2.4.2 SDO_RTR_PCTFREE.. 3-16
3.2.5 Cross-Schema Index Creation .. 3-16

4 Querying Spatial Data

4.1 Query Model .. 4-1
4.2 Spatial Query ... 4-1
4.2.1 Primary Filter.. 4-4
4.2.2 Primary and Secondary Filters... 4-5
4.2.3 Within-Distance Operator... 4-7
4.2.4 Nearest Neighbor Operator.. 4-8
4.3 Spatial Join.. 4-9
4.4 Cross-Schema Operator Invocation.. 4-9

5 Indexing Statements

ALTER INDEX... 5-2

ALTER INDEX REBUILD .. 5-5

ALTER INDEX RENAME TO ... 5-8
v

CREATE INDEX .. 5-9

DROP INDEX... 5-14

6 Spatial Operators

SDO_FILTER .. 6-2

SDO_NN ... 6-6

SDO_RELATE .. 6-8

SDO_WITHIN_DISTANCE ... 6-13

7 Geometry Functions

SDO_GEOM.RELATE... 7-4

SDO_GEOM.SDO_AREA... 7-7

SDO_GEOM.SDO_BUFFER... 7-9

SDO_GEOM.SDO_CENTROID... 7-11

SDO_GEOM.SDO_CONVEXHULL ... 7-13

SDO_GEOM.SDO_DIFFERENCE... 7-15

SDO_GEOM.SDO_DISTANCE ... 7-18

SDO_GEOM.SDO_INTERSECTION .. 7-20

SDO_GEOM.SDO_LENGTH... 7-23

SDO_GEOM.SDO_POINTONSURFACE .. 7-25

SDO_GEOM.SDO_UNION.. 7-27

SDO_GEOM.SDO_XOR ... 7-30

SDO_GEOM.VALIDATE_GEOMETRY... 7-33

SDO_GEOM.VALIDATE_LAYER .. 7-36

SDO_GEOM.WITHIN_DISTANCE.. 7-39

8 Coordinate System Functions

SDO_CS.TRANSFORM .. 8-2

SDO_CS.TRANSFORM_LAYER ... 8-5
vi

9 Linear Referencing Functions

SDO_LRS.CLIP_GEOM_SEGMENT .. 9-5

SDO_LRS.CONCATENATE_GEOM_SEGMENTS.. 9-7

SDO_LRS.CONNECTED_GEOM_SEGMENTS ... 9-10

SDO_LRS.CONVERT_TO_LRS_DIM_ARRAY .. 9-12

SDO_LRS.CONVERT_TO_LRS_GEOM .. 9-14

SDO_LRS.CONVERT_TO_LRS_LAYER ... 9-16

SDO_LRS.CONVERT_TO_STD_DIM_ARRAY.. 9-18

SDO_LRS.CONVERT_TO_STD_GEOM.. 9-20

SDO_LRS.CONVERT_TO_STD_LAYER ... 9-22

SDO_LRS.DEFINE_GEOM_SEGMENT .. 9-24

SDO_LRS.DYNAMIC_SEGMENT.. 9-27

SDO_LRS.FIND_MEASURE.. 9-29

SDO_LRS.GEOM_SEGMENT_END_MEASURE... 9-31

SDO_LRS.GEOM_SEGMENT_END_PT.. 9-33

SDO_LRS.GEOM_SEGMENT_LENGTH .. 9-35

SDO_LRS.GEOM_SEGMENT_START_MEASURE... 9-37

SDO_LRS.GEOM_SEGMENT_START_PT.. 9-39

SDO_LRS.GET_MEASURE.. 9-41

SDO_LRS.IS_GEOM_SEGMENT_DEFINED.. 9-43

SDO_LRS.LOCATE_PT .. 9-45

SDO_LRS.MEASURE_RANGE ... 9-47

SDO_LRS.MEASURE_TO_PERCENTAGE... 9-49

SDO_LRS.PERCENTAGE_TO_MEASURE... 9-51

SDO_LRS.PROJECT_PT ... 9-53

SDO_LRS.REDEFINE_GEOM_SEGMENT ... 9-55

SDO_LRS.REVERSE_MEASURE.. 9-57

SDO_LRS.SCALE_GEOM_SEGMENT .. 9-59

SDO_LRS.SPLIT_GEOM_SEGMENT... 9-62

SDO_LRS.TRANSLATE_MEASURE.. 9-65

SDO_LRS.VALID_GEOM_SEGMENT .. 9-67
vii

SDO_LRS.VALID_LRS_PT... 9-69

SDO_LRS.VALID_MEASURE... 9-71

10 Migration Procedures

SDO_MIGRATE.FROM_815_TO_81X.. 10-2

SDO_MIGRATE.TO_734 .. 10-3

SDO_MIGRATE.TO_81X.. 10-5

SDO_MIGRATE.OGIS_METADATA_FROM... 10-8

SDO_MIGRATE.OGIS_METADATA_TO ... 10-9

11 Tuning Functions and Procedures

SDO_TUNE.AVERAGE_MBR... 11-2

SDO_TUNE.ESTIMATE_INDEX_PERFORMANCE ... 11-4

SDO_TUNE.ESTIMATE_TILING_LEVEL... 11-7

SDO_TUNE.ESTIMATE_TILING_TIME ... 11-9

SDO_TUNE.ESTIMATE_TOTAL_NUMTILES... 11-11

SDO_TUNE.EXTENT_OF .. 11-14

SDO_TUNE.HISTOGRAM_ANALYSIS .. 11-16

SDO_TUNE.MIX_INFO.. 11-18

Part II Relational Model

12 The Relational Schema

12.1 Database Structures for the Relational Implementation.. 12-1

13 Loading Spatial Data (Relational Model)

13.1 Load Model... 13-1
13.2 Load Process... 13-2
13.2.1 Bulk Loading... 13-2
13.2.2 Transactional Insert Using SQL.. 13-4
13.3 Index Creation.. 13-6
13.3.1 Choosing a Tessellation Algorithm ... 13-6
viii

13.3.2 Spatial Indexing with Fixed-Size Tiles .. 13-7
13.3.3 Hybrid Spatial Indexing with Fixed-Size and Variable-Sized Tiles 13-10

14 Querying Spatial Data (Relational Model)

14.1 Query Model .. 14-1
14.2 Spatial Index Data Structures .. 14-1
14.3 Spatial Query ... 14-4
14.3.1 Dynamic Query Window.. 14-5
14.3.2 Primary Filter Query.. 14-6
14.3.3 Secondary Filter Query .. 14-7
14.4 Spatial Join.. 14-8

15 Administrative Functions and Procedures for Relational Model

SDO_ADMIN.POPULATE_INDEX ... 15-3

SDO_ADMIN.POPULATE_INDEX_FIXED.. 15-5

SDO_ADMIN.POPULATE_INDEX_FIXED_POINTS... 15-8

SDO_ADMIN.SDO_CODE_SIZE ... 15-10

SDO_ADMIN.SDO_VERSION.. 15-11

SDO_ADMIN.UPDATE_INDEX .. 15-12

SDO_ADMIN.UPDATE_INDEX_FIXED... 15-14

SDO_ADMIN.VERIFY_LAYER .. 15-16

16 Tuning Functions and Procedures for Relational Model

SDO_TUNE.AVERAGE_MBR... 16-2

SDO_TUNE.ESTIMATE_INDEX_PERFORMANCE ... 16-3

SDO_TUNE.ESTIMATE_TILING_LEVEL .. 16-5

SDO_TUNE.ESTIMATE_TILING_TIME ... 16-8

SDO_TUNE.EXTENT_OF .. 16-9

SDO_TUNE.HISTOGRAM_ANALYSIS .. 16-10

SDO_TUNE.MIX_INFO ... 16-12
ix

17 Geometry Functions and Procedures for Relational Model

SDO_GEOM.RELATE... 17-2

SDO_GEOM.VALIDATE_GEOMETRY... 17-5

SDO_GEOM.VALIDATE_LAYER .. 17-6

18 Window Functions and Procedures for Relational Model

SDO_WINDOW.BUILD_WINDOW .. 18-3

SDO_WINDOW.BUILD_WINDOW_FIXED... 18-5

SDO_WINDOW.CLEAN_WINDOW... 18-7

SDO_WINDOW.CLEANUP_GID... 18-8

SDO_WINDOW.CREATE_WINDOW_LAYER.. 18-9

A Tuning Tips and Sample SQL Scripts

A.1 Tuning Tips .. A-1
A.1.1 Data Modeling .. A-1
A.1.2 Understanding the Tiling Level ... A-2
A.1.3 Using Hybrid Indexes (Object-Relational Model Only) ... A-3
A.1.4 Database Sizing... A-4
A.1.5 Visualizing the Spatial Index (Drawing Tiles) ... A-5
A.1.5.1 Drawing Tiles from the Object-Relational Model .. A-5
A.1.5.2 Drawing Tiles from the Relational Model ... A-7
A.1.6 Setting the SORT_AREA_SIZE Value ... A-9
A.1.7 Tuning Point Data with the Relational Model ... A-9
A.1.7.1 Efficient Queries for Relational Point Data ... A-9
A.1.7.2 Efficient Schema for Relational Point Layers .. A-10
A.1.7.3 Script for Using Table Partitioning with Relational Point Data A-11
A.1.8 Tuning Spatial Join Queries Using the Relational Model....................................... A-11
A.1.8.1 Using the NO_MERGE, INDEX, and USE_NL Hints...................................... A-11
A.1.8.2 Spatial Join Queries with Point Layers .. A-12
A.1.9 Using Customized Geometry Types in the Relational Model A-14
A.1.10 Partitioning Spatial Data Using the Relational Model.. A-14
A.1.11 Parallel Loading and Indexing of Spatial Data Using the Relational Model....... A-14
A.2 Scripts for Spatial Indexing Using the Relational Model... A-16
x

A.2.1 cr_spatial_index.sql Script .. A-16
A.2.2 crlayer.sql Script ... A-17
A.3 Tools and Related Products ... A-17
A.3.1 Oracle interMedia Locator.. A-17
A.3.1.1 Geocoding Support... A-17
A.3.1.2 Compatibility with Spatial Objects... A-18
A.3.1.3 Sample interMedia Locator Code .. A-18
A.3.2 Spatial Viewer on UNIX/Motif for Relational Model .. A-18
A.3.2.1 Installation and Setup... A-18
A.3.2.2 Connecting to a Database and Viewing Geometries A-19
A.3.2.3 Using the Sample Viewer .. A-20
A.3.3 Spatial Visualizer on Windows NT for the Object-Relational Model A-20
A.3.3.1 Compiling and Running the Sample Program ... A-20
A.3.3.2 Usage Notes ... A-21

B Installation, Compatibility, and Migration Issues

B.1 Introduction.. B-1
B.2 Installation Details... B-2
B.2.1 Changing from 8.1 to 8.0 Compatibility Mode .. B-2
B.3 Compatibility Details.. B-3
B.4 Data Migration Issues ... B-4
B.5 Migrating from Spatial Release 8.1.5 or 8.1.6 to Release 8.1.7... B-5
B.5.1 Migrating from Spatial Release 8.1.5 to Release 8.1.6 ... B-5
B.5.1.1 Data Migration to Release 8.1.6... B-6
B.5.1.2 Compatibility Between Releases 8.1.5 and 8.1.6 ... B-6
B.5.2 Migrating from Spatial Release 8.1.6 to Release 8.1.7 ... B-7

C Generic Geocoding Interface

C.1 Locator Implementation: Benefits and Limitations.. C-2
C.2 Generic Geocoding Client .. C-2
C.3 Geocoder Metadata ... C-3
C.3.1 Server Properties .. C-4
C.3.2 Geocoding Input and Output Specification ... C-5
C.3.2.1 Multiple Matches and Rejected Records ... C-9
C.4 Metadata Helper Class ... C-9
xi

C.5 Single-Record and Interactive Geocoding ... C-9
C.6 Java Geocoder Service Interface ... C-10
C.7 Enabling Third-Party Geocoders.. C-11

D Coordinate Systems (Spatial Reference Systems)

D.1 Why Integrate Coordinate System Information?.. D-1
D.2 Terms and Concepts.. D-2
D.2.1 Coordinate System (Spatial Reference System) ... D-2
D.2.2 Cartesian Coordinates ... D-2
D.2.3 Geodetic Coordinates (Geographic Coordinates).. D-2
D.2.4 Projected Coordinates.. D-2
D.2.5 Geodetic Datum.. D-2
D.2.6 Authalic Sphere .. D-3
D.2.7 Transformation (Datum Transformation)... D-3
D.3 Coordinate Systems Data Structures .. D-3
D.3.1 MDSYS.CS_SRS Table.. D-3
D.3.1.1 Well-Known Text (WKTEXT).. D-4
D.3.2 Other Objects... D-5
D.4 Coordinate Systems Functions and Procedures.. D-7
D.5 Restrictions and Problems in the Current Release.. D-7
D.5.1 Geometries with Longitude and Latitude Coordinates.. D-7
D.6 Example of Coordinate Systems.. D-8
D.7 Error Messages for Coordinate Systems ... D-14

E Linear Referencing System

E.1 Terms and Concepts.. E-1
E.1.1 Geometric Segments (LRS Segments).. E-2
E.1.2 Shape Points .. E-2
E.1.3 Direction of a Geometric Segment ... E-3
E.1.4 Measure (Linear Measure) .. E-3
E.1.5 Offset .. E-3
E.1.6 Measure Populating ... E-4
E.1.7 Measure Range of a Geometric Segment .. E-6
E.1.8 Projection ... E-6
E.1.9 LRS Point ... E-6
xii

E.1.10 Linear Features ... E-6
E.2 LRS Data Model... E-7
E.3 Indexing of LRS Data .. E-8
E.4 LRS Operations .. E-9
E.4.1 Defining a Geometric Segment .. E-9
E.4.2 Redefining a Geometric Segment .. E-10
E.4.3 Clipping a Geometric Segment .. E-11
E.4.4 Splitting a Geometric Segment... E-12
E.4.5 Concatenating Two Connected Geometric Segments... E-12
E.4.6 Scaling a Geometric Segment ... E-14
E.4.7 Locating a Point on a Geometric Segment.. E-15
E.4.8 Projecting a Point onto a Geometric Segment.. E-17
E.4.9 Converting Geometric Segments ... E-17
E.5 Example .. E-19
E.6 Error Messages for Linear Referencing System .. E-31

Glossary
xiii

xiv

List of Examples

2–1 Simple Example: Inserting, Indexing, and Querying Spatial Data 2-3
3–1 Control File for a Bulk Load... 3-2
3–2 Control File for a Bulk Load of Point-Only Data .. 3-3
3–3 Procedure to Perform Transactional Insert Operation... 3-4
3–4 PL/SQL Block Invoking Procedure to Insert a Geometry... 3-4
3–5 Creating a Fixed Index.. 3-14
3–6 Creating a Hybrid Index... 3-16
4–1 Primary Filter with a Temporary Query Window ... 4-4
4–2 Primary Filter with a Transient Instance of the Query Window.................................... 4-5
4–3 Primary Filter with a Stored Query Window.. 4-5
4–4 Secondary Filter Using a Temporary Query Window ... 4-6
4–5 Secondary Filter Using a Stored Query Window ... 4-6
13–1 Raw Data Format .. 13-2
13–2 Control File to Load Data into the Geometry Table ... 13-3
13–3 Raw Data Format... 13-3
13–4 Control File to Load from a Single Flat File... 13-4
13–5 Transactional Insert ... 13-4
13–6 Transactional Insert for a Large Geometry .. 13-5
15–1 Populate an Index.. 15-4
15–2 Populate an Index with Fixed-Size Tiles .. 15-7
15–3 Populate an Index with Fixed-Size Tiles Based on Point Data 15-9
15–4 Update an Index .. 15-13
15–5 Update an Index with Fixed-Size Tiles... 15-15
15–6 Verify a Layer... 15-16
16–1 Recommended Tile Level for One-Degree Latitude/Longitude Cells 16-6
16–2 Recommended Tile Level Based on the GIDs of All Geometries 16-6
16–3 Recommended Tile Level Based on Average Extent of All Geometries 16-7
A–1 View Fixed-Size Tiles for All Geometries .. A-6
A–2 View Variable-Sized Tiles for All Geometries... A-6
A–3 View Fixed-Size Tiles for One Geometry... A-6
A–4 View Variable-Sized Tiles for One Geometry ... A-7
A–5 View Fixed-Sized Tiles for All Geometries Using the Relational Model A-8
A–6 View Fixed-Size Tiles for a Specific Geometry Using the Relational Model A-8
B–1 Insert Trigger for Metadata Consistency ... B-7
D–1 Simplified Example of Coordinate Systems .. D-8
D–2 Output of SELECT Statements in Coordinate Systems Example D-11
E–1 Including LRS Measure Dimension in Spatial Metadata... E-7
E–2 Simplified Example: Highway... E-21
E–3 Simplified Example: Output of SELECT Statements.. E-26

List of Figures

1–1 Geometric Primitive Types .. 1-5
1–2 Additional Geometry Types Using the Object-Relational Model 1-6
1–3 Query Model .. 1-8
1–4 Quadtree Decomposition and Morton Codes ... 1-13
1–5 Fixed-Size Tiling with Many Small Tiles ... 1-15
1–6 Fixed-Size Tiling with Fewer Large Tiles .. 1-16
1–7 Tessellated Geometry ... 1-17
1–8 Variable-Sized Tile Spatial Indexing .. 1-20
1–9 Decomposition of the Geometry ... 1-21
1–10 The 9-Intersection Model.. 1-23
1–11 Distance Buffers for Points, Lines, and Polygons ... 1-25
2–1 Areas of Interest for Simple Example... 2-2
2–2 Rectangle... 2-13
2–3 Geometry with a Hole .. 2-14
2–4 Compound Element .. 2-16
2–5 Compound Polygon.. 2-17
3–1 Polygon with Hole .. 3-5
3–2 Line String Consisting of Arcs and Straight Line Segments ... 3-6
3–3 Compound Polygon.. 3-8
3–4 Compound Polygon with a Hole .. 3-9
3–5 Sample Domain ... 3-12
3–6 Fixed-Size Tiling at Level 1 .. 3-13
3–7 Fixed-Size Tiling at Level 2 .. 3-13
4–1 Tessellated Layer with Multiple Objects.. 4-2
4–2 Tessellated Layer with a Query Window .. 4-3
7–1 SDO_GEOM.SDO_DIFFERENCE... 7-16
7–2 SDO_GEOM.SDO_INTERSECTION.. 7-21
7–3 SDO_GEOM.SDO_UNION.. 7-28
7–4 SDO_GEOM.SDO_XOR ... 7-31
9–1 Reversing a Geometric Segment ... 9-58
9–2 Translating a Geometric Segment... 9-66
12–1 Complex Polygon .. 12-5
13–1 Sample GIS Domain ... 13-8
13–2 Fixed-Size Tiling at Level 1 .. 13-8
13–3 Fixed-Size Tiling at Level 2 ... 13-9
14–1 Tessellated Layer with Multiple Objects.. 14-2
14–2 Tessellated Layer with a Query Window .. 14-5
14–3 Spatial Join of Two Layers ... 14-8
C–1 Oracle Geocoding Framework .. C-3
E–1 Geometric Segment ... E-2
xv

E–2 Describing a Point Along a Segment with a Measure and an Offset E-4
E–3 Measures, Distances, and Their Mapping Relationship .. E-4
E–4 Measure Populating of a Geometric Segment ... E-5
E–5 Measure Populating With Disproportional Assigned Measures E-5
E–6 Linear Feature, Geometric Segments, and LRS Points... E-7
E–7 Creating a Geometric Segment .. E-8
E–8 Defining a Geometric Segment.. E-10
E–9 Redefining a Geometric Segment.. E-11
E–10 Clipping, Splitting, and Concatenating Geometric Segments E-12
E–11 Measure Assignment in Geometric Segment Operations.. E-13
E–12 Segment Direction with Concatenation ... E-14
E–13 Scaling a Geometric Segment... E-15
E–14 Locating a Point Along a Segment with a Measure and an Offset............................... E-16
E–15 Ambiguity in Location Referencing with Offsets .. E-16
E–16 Multiple Projection Points .. E-17
E–17 Conversion from Standard to LRS Line String.. E-19
E–18 Simplified LRS Example: Highway .. E-20
xvi

List of Tables

1–1 SDOINDEX Table Using Fixed-Size Tiles.. 1-18
1–2 Section of the SDOINDEX Table ... 1-22
2–1 Valid SDO_GTYPE Values... 2-7
2–2 Values and Semantics in SDO_ELEM_INFO .. 2-10
2–3 Columns in the xxx_SDO_INDEX_METADATA Views... 2-21
2–4 Columns in a Spatial Index Data Table .. 2-22
5–1 Spatial Index Creation and Usage Statements .. 5-1
5–2 SDO_LEVEL and SDO_NUMTILES Combinations... 5-12
6–1 Spatial Usage Operators ... 6-1
7–1 Geometric Functions for the Object-Relational Model .. 7-1
8–1 Functions and Procedures for Coordinate Systems ... 8-1
8–2 Table to Hold Transformed Layer .. 8-6
9–1 Functions for Creating and Editing Geometric Segments... 9-1
9–2 Functions for Querying Geometric Segments ... 9-2
9–3 Functions for Converting Geometric Segments.. 9-3
10–1 Migration Procedures ... 10-1
11–1 Tuning Functions and Procedures.. 11-1
12–1 <layername>_SDOLAYER Table .. 12-2
12–2 <layername>_SDODIM Table or View .. 12-2
12–3 <layername>_SDOGEOM Table or View.. 12-2
12–4 <layername>_SDOINDEX Table .. 12-2
13–1 <layername>_SDOLAYER Table .. 13-1
13–2 <layername>_SDODIM Table or View .. 13-1
13–3 <layername>_SDOGEOM Table or View.. 13-2
13–4 <layername>_SDOINDEX Table .. 13-2
13–5 Choosing a Tessellation Algorithm .. 13-7
14–1 <layername>_SDOLAYER Table .. 14-3
14–2 <layername>_SDOGEOM Table or View.. 14-3
14–3 <layername>_SDOINDEX Table .. 14-4
15–1 Administrative Procedures for Spatially Indexed Data... 15-1
16–1 Tuning Functions and Procedures.. 16-1
17–1 Geometric Functions and Procedures .. 17-1
18–1 Window Functions and Procedures ... 18-1
D–1 MDSYS.CS_SRS Table... D-3
D–2 Supported Map Projections ... D-5
D–3 Supported Ellipsoids... D-6
E–1 Highway Features and LRS Counterparts... E-20
xvii

xviii

Send Us Your Comments

Oracle Spatial User’s Guide and Reference, Release 8.1.7

Part Number A85337-01

Oracle Corporation welcomes your comments and suggestions on the quality and usefulness of this
publication. Your input is an important part of the information used for revision.

■ Did you find any errors?
■ Is the information clearly presented?
■ Do you need more information? If so, where?
■ Are the examples correct? Do you need more examples?
■ What features did you like most about this manual?

If you find any errors or have any other suggestions for improvement, please indicate the document
title and part number, and the chapter and section or page number (if available). You can send com-
ments to us in the following ways:

■ Electronic mail: nedc_doc@us.oracle.com
■ FAX: 603.897.3316 Attn: Spatial Documentation
■ Postal service:

Oracle Corporation
Oracle Spatial Documentation
One Oracle Drive
Nashua, NH 03062-2698
USA

If you would like a reply, please include your name and contact information.
 If you have problems with the software, please contact Oracle Support Services.
xix

xx

Preface

The Oracle Spatial User’s Guide and Reference provides user and reference information
for the Spatial product, and extensions to Oracle8i Enterprise Edition.

Spatial requires Oracle8i Enterprise Edition. Oracle8i and Oracle8i Enterprise
Edition have the same basic features. However, several advanced features, such as
extended data types, are available only with the Enterprise Edition, and some of
these features are optional. For example, to use Oracle8i table partitioning, you
must have the Enterprise Edition and the Partitioning Option.

For information about the differences between Oracle8i and Oracle8i Enterprise
Edition and the features and options that are available to you, see Getting to Know
Oracle8i.

Audience
This guide is intended for anyone who needs to store spatial data in an Oracle
database.

Organization
This guide is divided into two parts. Part I deals with the object-relational storage
model, and Part II describes the relational storage model. The following table lists
the elements in this guide:

Chapter 1 Introduces spatial data concepts.

Part I The following chapters describe the object-relational spatial model:

Chapter 2 Explains the object-relational schema.
xxi

Chapter 3 Explains loading and indexing spatial data.

Chapter 4 Explains methods for querying a spatial database.

Chapter 5 Provides the syntax and semantics for the indexing functions.

Chapter 6 Provides the syntax and semantics for operators used with the
spatial object data type.

Chapter 7 Provides the syntax and semantics for the geometric functions and
procedures.

Chapter 8 Provides the syntax and semantics for the linear referencing system
(LRS) functions.

Chapter 9 Provides the syntax and semantics for the migration functions.

Chapter 10 Provides the syntax and semantics for the migration functions.

Chapter 11 Provides the syntax and semantics for the tuning functions and
procedures.

Part II The following chapters describe the relational spatial model:

Chapter 12 Explains the relational schema.

Chapter 13 Explains spatial data loading.

Chapter 14 Explains methods for querying a spatial database.

Chapter 15 Provides the syntax and semantics for the administrative functions
and procedures.

Chapter 16 Provides the syntax and semantics for the tuning functions and
procedures.

Chapter 17 Provides the syntax and semantics for the geometric functions and
procedures.

Chapter 18 Provides the syntax and semantics for the window functions and
procedures.

Appendix A Describes sample SQL scripts and tuning tips.

Appendix B Describes installation, compatibility, and migration issues.

Appendix C Describes the Spatial Generic Geocoding Interface.

Appendix D Provides conceptual and usage information for using coordinate
systems (spatial reference systems) with Oracle Spatial.
xxii

Changes for Release 8.1.7
The following changes have been made to this guide for release 8.1.7:

■ Information about support for coordinate systems (spatial reference systems)
and the linear referencing system (LRS) has been added. This information
previously appeared in separate documents available through the Oracle
Technology Network (OTN).

■ Information about spatial R-tree indexes has been added. This information
previously appeared in a separate document available through the Oracle
Technology Network.

■ The behavior of the SDO_GEOM.VALIDATE_LAYER procedure (documented
in Chapter 7) has changed. Rows are written to the result table only for invalid
geometries, and no row is written if a geometry is valid. In the previous release,
a row was written to the result table for each geometry, and for valid geometries
the row contained the primary key value and the string TRUE. This change is
designed to minimize the size of the result table when the layer contains many
geometries.

■ The SDO_POLY_xxx functions, which were deprecated at release 8.1.6, have
been removed from this guide. You should use instead the corresponding
"generic" (not restricted to polygons) SDO_xxx functions documented in
Chapter 7: SDO_DIFFERENCE, SDO_INTERSECTION, SDO_UNION, and
SDO_XOR.

■ Minor corrections and clarifications have been made where necessary.

Appendix E Provides conceptual and usage information for using the Oracle
Spatial linear referencing system (LRS).

Glossary Provides definitions of terms used in this guide.

Note: The relational model (documented in Part II) will not be
included in future releases of this guide, but will instead be
provided in a separate document to be announced. You are
encouraged to use only the object-relational model (documented in
Part I) for Oracle Spatial applications.
xxiii

Features Released Separately
The following features or capabilities are of interest to spatial application
developers, but are not part of Oracle Spatial. Software and documentation for the
following are available through the Oracle Technology Network.

■ GeoImage

■ Workspace Management (long transactions)

To access the Oracle Technology Network, go to

http://technet.oracle.com

Related Documents
For more information, see the following documents:

■ Oracle interMedia Locator User’s Guide and Reference

■ Getting to Know Oracle8i

■ Oracle8i Administrator’s Guide

■ Oracle8i Application Developer’s Guide - Fundamentals

■ Oracle8i Error Messages - Spatial messages are in the range of 13000 to 13499;
however, for release 8.1.7 coordinate systems messages are in Section D.7 and
linear referencing system (LRS) messages are in Section E.6 of this guide.

■ Oracle8i Concepts

■ Oracle8i Performance Guide and Reference

■ Oracle8i Utilities

For additional information about Oracle Spatial, including white papers and other
collateral, visit the official Spatial Web site at

http://www.oracle.com/database/options/spatial/

If that Web address has changed since the publication of this guide, visit the Oracle
home page at

http://www.oracle.com/

and search for Spatial.
xxiv

Conventions
In examples, an implied carriage return occurs at the end of each line, unless
otherwise noted. You must press the Return key at the end of a line of input.

The following conventions are used in this guide:

Convention Meaning

 .
 .
 .

Vertical ellipsis points in an example mean that information
not directly related to the example has been omitted.

. . . Horizontal ellipsis points in statements or commands mean
that parts of the statement or command not directly related to
the example have been omitted

boldface text Boldface text indicates a term defined in the text, the glossary,
or in both locations.

< > Angle brackets enclose user-supplied names.

[] Brackets enclose optional clauses from which you can choose
one or none.

% The percent sign represents the system prompt on a UNIX
system.
xxv

xxvi

Spatial Con
1

Spatial Concepts

Oracle Spatial is an integrated set of functions and procedures that enables spatial
data to be stored, accessed, and analyzed quickly and efficiently in an Oracle8i
database.

Spatial data represents the essential location characteristics of real or conceptual
objects as those objects relate to the real or conceptual space in which they exist.

1.1 What Is Oracle Spatial?
Oracle Spatial, often referred to as Spatial, provides a SQL schema and functions
that facilitate the storage, retrieval, update, and query of collections of spatial
features in an Oracle8i database. Spatial consists of the following components:

■ A schema (MDSYS) that prescribes the storage, syntax, and semantics of
supported geometric data types

■ A spatial indexing mechanism

■ A set of operators and functions for performing area-of-interest queries and
spatial join queries

■ Administrative utilities

The spatial attribute of a spatial feature is the geometric representation of its shape
in some coordinate space. This is referred to as its geometry.

1.2 Object-Relational and Relational Models
Spatial supports two mechanisms, or models, for representing geometries:

■ The object-relational model uses a table with a single column of type
MDSYS.SDO_GEOMETRY and a single row per geometry instance.
cepts 1-1

Object-Relational and Relational Models
■ The relational model uses a table with a predefined set of columns of type
NUMBER and one or more rows for each geometry instance.

These models roughly correspond to two alternatives described in the OpenGIS
ODBC/SQL specification for geospatial features. The object-relational model
corresponds to a “SQL with Geometry Types” implementation of spatial feature
tables, and the relational model corresponds to an implementation of spatial feature
tables using numeric SQL types for geometry storage. Implementation-specific
details are described in Part I "Object-Relational Model" and Part II "Relational
Model" of this guide.

You should select the object-relational model in all cases except where the relational
model is necessary for current needs. Basically, the object-relational model is
preferable in cases where replication and distributed databases are not required.

1.2.1 Benefits of the Object-Relational Model
The following are some of the benefits of using the object-relational model, as
described in Part I of this guide:

■ Additional geometry types are supported: arcs, circles, compound polygons,
compound line strings, and optimized rectangles.

■ Ease of use is improved for creating and maintaining indexes and for
performing spatial queries.

■ Indexing is maintained by the Oracle8i database server.

■ Geometries are modeled in a single row, single column.

■ Performance is greatly improved.

Note: If read-only replication is acceptable: Oracle8i does not
currently provide database replication support for tables containing
one or more columns of an object data type. In many application
environments, however, it may be acceptable to have read-only
replicas that do not need to be perfectly up to date with the
production database. In these environments, users can take
advantage of the Oracle8i managed standby capability to get, in
effect, read-only replication of database instances or tablespaces,
and thus the object-relational model can be used.
1-2 Oracle Spatial User’s Guide and Reference

Introduction to Spatial Data
1.2.2 Benefits of the Relational Model
The following are some of the benefits of using the relational model, as described in
Part II of this guide:

■ Database replication is supported.

■ Distributed databases are supported.

■ Table partitioning and parallel index loading are supported.

When Oracle introduces replication and distributed support for objects in a future
release, there will be no benefits to using the relational model.

1.3 Introduction to Spatial Data
Oracle Spatial is designed to make spatial data management easier and more
natural to users of applications such as a Geographic Information System (GIS).
Once this data is stored in an Oracle database, it can be easily manipulated,
retrieved, and related to all the other data stored in the database.

A common example of spatial data can be seen in a road map. A road map is a
two-dimensional object that contains points, lines, and polygons that can represent
cities, roads, and political boundaries such as states or provinces. A road map is a
visualization of geographic information. The location of cities, roads, and political
boundaries that exist on the surface of the Earth are projected onto a
two-dimensional display or piece of paper, preserving the relative positions and
relative distances of the rendered objects.

The data that indicates the Earth location (latitude and longitude, or height and
depth) of these rendered objects is the spatial data. When the map is rendered, this
spatial data is used to project the locations of the objects on a two-dimensional piece
of paper. A GIS is often used to store, retrieve, and render this Earth-relative spatial
data.

Note: In the next release of Oracle Spatial, the relational model
will no longer be documented in this guide, but will instead be
documented in a separate document whose title and location will
be announced.

Spatial applications using the relational model will continue to
work; however, if you are not already using the object-relational
model for all Spatial applications, you are encouraged to do so
before the next release.
Spatial Concepts 1-3

Geometric Types for Relational and Object-Relational Models
Types of spatial data that can be stored using Spatial other than GIS data include
data from computer-aided design (CAD) and computer-aided manufacturing
(CAM) systems. Instead of operating on objects on a geographic scale, CAD/CAM
systems work on a smaller scale, such as for an automobile engine or printed circuit
boards.

The differences among these three systems are only in the scale of the data, not its
complexity. They might all actually involve the same number of data points. On a
geographic scale, the location of a bridge can vary by a few tenths of an inch
without causing any noticeable problems to the road builders. Whereas, if the
diameter of an engine’s pistons are off by a few tenths of an inch, the engine will not
run. A printed circuit board is likely to have many thousands of objects etched on
its surface that are no bigger than the smallest detail shown on a road builder’s
blueprints.

These applications all store, retrieve, update, or query some collection of features
that have both nonspatial and spatial attributes. Examples of nonspatial attributes
are name, soil_type, landuse_classification, and part_number. The spatial attribute
is a coordinate geometry, or vector-based representation of the shape of the feature.
The spatial attribute, referred to as the geometry, is an ordered sequence of vertices
that are connected by straight line segments or circular arcs. The semantics of the
geometry are determined by its type, which may be one of point, line string, or
polygon.

1.4 Geometric Types for Relational and Object-Relational Models
The relational model of Spatial supports three geometric primitive types and
geometries composed of collections of these types. The primitive types are as
follows:

■ 2-D point and point cluster

■ 2-D line strings

■ 2-D n-point polygons

2-D points are elements composed of two ordinates, X and Y, often corresponding
to longitude and latitude. Line strings are composed of one or more pairs of points
that define line segments. Polygons are composed of connected line strings that
form a closed ring and the interior of the polygon is implied. Figure 1–1 illustrates
the supported geometric primitive types.
1-4 Oracle Spatial User’s Guide and Reference

Geometric Types for Relational and Object-Relational Models
Figure 1–1 Geometric Primitive Types

Self-crossing polygons are not supported, although self-crossing line strings are
supported. If a line string crosses itself, it does not become a polygon. A
self-crossing line string does not have any implied interior.

Thus, the object-relational implementation supports the types listed in Figure 1–1,
as well as the types shown in Figure 1–2.

The object-relational model adds the following types to those previously listed:

■ 2-D arc line strings (All arcs are generated as circular arcs.)

■ 2-D arc polygons

■ 2-D compound polygons

■ 2-D compound line strings

■ 2-D circles

■ 2-D optimized rectangles

Thus, the object-relational implementation supports the types listed in Figure 1–1,
as well as the types shown in Figure 1–2.

 Point
 . . .

. .
.

.

. .

.Line String Polygon

Spatial Concepts 1-5

Data Model
Figure 1–2 Additional Geometry Types Using the Object-Relational Model

1.5 Data Model
The Spatial data model is a hierarchical structure consisting of elements, geometries,
and layers, which correspond to representations of spatial data. Layers are
composed of geometries, which in turn are made up of elements.

For example, a point might represent a building location, a line string might
represent a road or flight path, and a polygon might represent a state, city, zoning
district, or city block.

1.5.1 Element
An element is the basic building block of a geometry. The supported spatial element
types are points, line strings, and polygons. For example, elements might model
star constellations (point clusters), roads (line strings), and county boundaries
(polygons). Each coordinate in an element is stored as an X,Y pair. The exterior ring
and the interior ring of a polygon with holes are considered as two distinct elements
that together make up a complex polygon.

Point data consists of one coordinate. Line data consists of two coordinates
representing a line segment of the element. Polygon data consists of coordinate pair

.
.

.
.

. .

.
. . .

.
.

.

. .

.
.

.

Arc Line String

.
. .

.

.
Arc Polygon

.

.
Compound Line String

Compound Polygon

Circle Rectangle

1-6 Oracle Spatial User’s Guide and Reference

Data Model
values, one vertex pair for each line segment of the polygon. Coordinates are
defined in order around the polygon (counterclockwise for an exterior polygon
ring, clockwise for an interior polygon ring).

1.5.2 Geometry
A geometry (or geometry object) is the representation of a spatial feature, modeled
as an ordered set of primitive elements. In the relational model, each geometry is
required to be uniquely identified by a geometry identifier (GID) associating it with
the other attributes of the feature. This is not required in the object-relational model.

A geometry can consist of a single element, which is an instance of one of the
supported primitive types, or a homogeneous or heterogeneous collection of
elements. A multipolygon, such as one used to represent a set of islands, is a
homogeneous collection. A heterogeneous collection is one in which the elements
are of different types.

In the relational model, a complex geometry such as a polygon with holes would be
stored as a sequence of polygon elements. All subelements of a multielement
polygon are wholly contained within the outermost element. This is not required
using the object-relational model.

An example of a geometry might describe the buildable land in a town. This could
be represented as a polygon with holes where water or zoning prevents
construction.

1.5.3 Layer
A layer is a heterogeneous collection of geometries having the same attribute set.
For example, one layer in a GIS might include topographical features, while another
describes population density, and a third describes the network of roads and
bridges in the area (lines and points). Each layer’s geometries and associated spatial
index are stored in the database in standard tables.

1.5.4 Tolerance
Many Spatial functions accept a tolerance parameter. If the distance between two
points is less than or equal to the tolerance, Spatial considers the two points to be a
single point. Thus, tolerance is usually a reflection of how accurate or precise users
perceive their spatial data to be.

For example, assume that you want to know which restaurants are within 5
kilometers of your house. Assume also that Maria’s Pizzeria is 5.1 kilometers from
Spatial Concepts 1-7

Query Model
your house. If you ask, Find all restaurants within 5 kilometers and use a tolerance of 0.1
(or greater, such as 0.5), Maria’s Pizzeria will be included; however, if you specify a
tolerance less than 0.1 (such as 0.05), Maria’s Pizzeria will not be included.

Tolerance values for Spatial functions are typically very small, for example, 0.0005
(5E-4). With a tolerance of 5E-4 and the query in the preceding paragraph, a
restaurant 5.0005 kilometers away is returned but a restaurant 5.00051 kilometers
away is not returned.

1.6 Query Model
Spatial uses a two-tier query model to resolve spatial queries and spatial joins. The
term is used to indicate that two distinct operations are performed to resolve
queries. The output of both operations yields the exact result set.

The two operations are referred to as primary and secondary filter operations.

■ The primary filter permits fast selection of candidate records to pass along to
the secondary filter. The primary filter compares geometry approximations to
reduce computation complexity and is considered a lower-cost filter. Because
the primary filter compares geometric approximations, it returns a superset of
the exact result set.

■ The secondary filter applies exact computations to geometries that result from
the primary filter. The secondary filter yields an accurate answer to a spatial
query. The secondary filter operation is computationally expensive, but it is
only applied to the primary filter results, not the entire data set.

Figure 1–3 illustrates the relationship between the primary and secondary filters.

Figure 1–3 Query Model

Large
Input

Data
Set

 Secondary Primary

Smaller
Candidate

Set

Exact
Result

Set

 Filter Filter
1-8 Oracle Spatial User’s Guide and Reference

Indexing of Spatial Data
As shown in Figure 1–3, the primary filter operation on a large input data set
produces a smaller candidate set, which contains at least the exact result set and
may contain more records. The secondary filter operation on the smaller candidate
set produces the exact result set.

Spatial uses a linear quadtree-based spatial index to implement the primary filter.
This is described in detail in following sections.

The function SDO_GEOM.RELATE is used as a secondary filter. It evaluates the
topological relationship, such as whether two given geometries are touching,
covering each other, or have any interaction.

Spatial does not require the use of both the primary and secondary filters. In some
cases, just using the primary filter is sufficient. For example, a zoom feature in a
mapping application queries for data that overlaps a rectangle representing visible
boundaries. The primary filter very quickly returns a superset of the query. The
mapping application can then apply clipping routines to display the target area.

The purpose of the primary filter is to quickly create a subset of the data and reduce
the processing burden on the secondary filter. The primary filter therefore should be
as efficient (that is, selective yet fast) as possible. This is determined by the
characteristics of the spatial index on the data.

1.7 Indexing of Spatial Data
The introduction of spatial indexing capabilities into the Oracle database engine is a
key feature of the Spatial product. A spatial index, like any other index, provides a
mechanism to limit searches, but in this case based on spatial criteria such as
intersection and containment. A spatial index is needed to:

■ Find objects within an indexed data space that overlap a given point or area of
interest (window query)

■ Find pairs of objects from within two indexed data spaces that interact spatially
with each other (spatial join)

A spatial index is considered a logical index. The entries in the spatial index are
dependent on the location of the geometries in a coordinate space, but the index
values are in a different domain. Index entries take on values from a linearly
ordered integer domain, while the coordinates for a geometry may be pairs of
integer, floating-point, or double-precision numbers.

Oracle Spatial lets you use R-tree indexing (the default) or quadtree indexing, or
both. Each index type is appropriate in different situations. You can maintain both
an R-tree and quadtree index on the same geometry column, by using the add_index
Spatial Concepts 1-9

Indexing of Spatial Data
parameter with the ALTER INDEX statement (described in Chapter 5), and you can
choose which index to use for a query by specifying the idxtab1 and/or idxtab2
parameters with certain Spatial operators, such as SDO_RELATE, described in
Chapter 6.

In choosing whether to use an R-tree or quadtree index for a spatial application,
consider the following.

With R-tree indexes:

■ The approximation of geometries cannot be fine-tuned. (Spatial uses the
minimum bounding rectangles, as described in Section 1.7.1.)

■ Index creation and tuning are easier than with quadtree indexes.

■ Less storage is required than with quadtree indexes, except for point-only data,
where there is no significant difference.

■ If your application workload includes nearest-neighbor queries (SDO_NN
operator), R-tree indexes are faster.

■ If there is heavy update activity to the spatial column, an R-tree index may not
be a good choice.

With quadtree indexes:

■ The approximation of geometries can be fine-tuned by setting the tiling level
and number of tiles.

■ Tuning is more complex than with R-tree indexes, and setting the appropriate
tuning parameter values can affect performance significantly.

■ More storage is required than with R-tree indexes, except for point-only data,
where there is no significant difference.

■ Heavy update activity does not affect the performance of a quadtree index.

Testing of R-tree and quadtree indexes with many workloads and operators is
ongoing, and results and recommendations will be documented as they become
available. However, before choosing an index type for an application, you should
understand the concepts and options associated with both R-tree indexing
(described in Section 1.7.1) and quadtree indexing (described in Section 1.7.2).

1.7.1 R-tree Indexing
A spatial R-tree index can index spatial data of up to 4 dimensions. An R-tree index
approximates each geometry by a single rectangle that minimally encloses the
geometry (called the minimum bounding rectangle, or MBR). For a layer of
1-10 Oracle Spatial User’s Guide and Reference

Indexing of Spatial Data
geometries, an R-tree index consists of a hierarchical index on the MBRs of the
geometries in the layer. This R-tree index is stored in the spatial index table (SDO_
INDEX_TABLE in the USER_SDO_INDEX_METADATA view, described in
Section 2.5). The R-tree index also maintains a sequence number generator (SDO_
RTREE_SEQ_NAME in the USER_SDO_INDEX_METADATA view) to ensure that
simultaneous updates by concurrent users can be made to the index.

If you create a spatial index without specifying any indexing parameters, an R-tree
index is created. For example, the following statement creates a spatial R-tree index
named territory_idx using default values for parameters that apply to R-tree indexes:

CREATE INDEX territory_idx ON territories (territory_geom)
 INDEXTYPE IS MDSYS.SPATIAL_INDEX;

If you create a spatial index without specifying the SDO_LEVEL or SDO_
NUMTILES keyword in the PARAMETERS clause, an R-tree index is created. For
detailed information about options when creating a spatial index, see the
documentation for the CREATE INDEX statement in Chapter 5.

1.7.1.1 Before Creating an R-tree Index
If the rollback segment is not large enough, an attempt to create an R-tree index will
fail. The rollback segment should be 100*n bytes, where n is the number of rows of
data to be indexed. For example, if the table contains 1 million (1,000,000) rows, the
rollback segment size should be 100,000,000 (100 million bytes).

To ensure an adequate rollback segment, or if you have tried to create an R-tree
index and received an error that the system rollback segment cannot be extended,
place that rollback segment offline, create a public rollback segment of the
appropriate size, and place that rollback segment online. For information about
performing these operations on a rollback segment, see the Oracle8i
Administrator’s Guide.

The system parameter SORT_AREA_SIZE affects the amount of time required to
create the index. The SORT_AREA_SIZE value is the maximum amount, in bytes, of
memory to use for a sort operation. The optimal value depends on the database
size, but a good guideline is to make it at least 1 million bytes when you create an
R-tree index. To change the SORT_AREA_SIZE value, use the ALTER SESSION
statement. For example, to change the value to 20 million bytes:

ALTER SESSION SET SORT_AREA_SIZE = 20000000;
Spatial Concepts 1-11

Indexing of Spatial Data
For large databases (over 1 million rows), a temporary tablespace may be needed to
perform internal computations. The recommended size for this temporary
tablespace is 100*n bytes, where n is the number of rows in the table.

1.7.2 Quadtree Indexing
In the linear quadtree indexing scheme, the coordinate space (for the layer where all
geometric objects are located) is subjected to a process called tessellation, which
defines exclusive and exhaustive cover tiles for every stored geometry. Tessellation
is done by decomposing the coordinate space in a regular hierarchical manner. The
range of coordinates, the coordinate space, is viewed as a rectangle. At the first level
of decomposition, the rectangle is divided into halves along each coordinate
dimension generating four tiles. Each tile that interacts with the geometry being
tessellated is further decomposed into four tiles. This process continues until some
termination criteria, such as size of the tiles or the maximum number of tiles to
cover the geometry, is met.

Spatial can use either fixed-size or variable-sized tiles to cover a geometry:

■ Fixed-size tiles are controlled by tile resolution. If the resolution is the sole
controlling factor, then tessellation terminates when the coordinate space has
been decomposed a specific number of times. Therefore, each tile is of a fixed
size and shape.

■ Variable-sized tiling is controlled by the value supplied for the maximum
number of tiles. If the number of tiles per geometry, n, is the sole controlling
factor, the tessellation terminates when n tiles have been used to cover the given
geometry.

Fixed-size tile resolution and the number of variable-sized tiles used to cover a
geometry are user-selectable parameters called SDO_LEVEL and SDO_NUMTILES,
respectively. Smaller fixed-size tiles or more variable-sized tiles provides better
geometry approximations. The smaller the number of tiles, or the larger the tiles,
the coarser are the approximations.

Spatial supports two quadtree indexing types, reflecting two valid combinations of
SDO_LEVEL and SDO_NUMTILES values:

■ Fixed indexing: a non-null and non-zero SDO_LEVEL value and a null or zero
(0) SDO_NUMTILES value, resulting in fixed-sized tiles. Fixed indexing is
described in Section 1.7.2.2.

■ Hybrid indexing: non-null and non-zero values for SDO_LEVEL and SDO_
NUMTILES, resulting in two sets of tiles per geometry. One set contains
1-12 Oracle Spatial User’s Guide and Reference

Indexing of Spatial Data
fixed-size tiles and the other set contains variable-sized tiles. Hybrid indexing is
described in Section 1.7.2.3.

1.7.2.1 Tessellation of a Layer During Indexing
The process of determining which tiles cover a given geometry is called
tessellation. The tessellation process is a quadtree decomposition, where the
two-dimensional coordinate space is broken down into four covering tiles of equal
size. Successive tessellations divide those tiles that interact with the geometry down
into smaller tiles, and this process continues until the desired level or number of
tiles has been achieved. The results of the tessellation process on a geometry are
stored in a table, referred to as the SDOINDEX table.

The tiles at a particular level can be linearly sorted by systematically visiting tiles in
an order determined by a space-filling curve as shown in Figure 1–4. The tiles can
also be assigned unique numeric identifiers, known as Morton codes or z-values.
The terms tile and tile code will be used interchangeably in this and other sections
related to spatial indexing.

Figure 1–4 Quadtree Decomposition and Morton Codes

1.7.2.2 Fixed Indexing
Fixed-size tile spatial indexing is the preferred indexing method for the relational
model. This method uses tiles of equal size to cover a geometry. Because all the tiles
are the same size, they all have codes of the same length, and the standard SQL
equality operator (=) can be used to compare tiles during a join operation. This
results in excellent performance characteristics.

Two geometries are likely to interact, and hence pass the primary filter stage, if they
share one or more tiles. The SQL statement for the primary filter stage is:

0 1

2 3

00 01 10 11

02 03 12 13

20 21 30 31

22 23 32 33

Spatial Concepts 1-13

Indexing of Spatial Data
SELECT DISTINCT <select_list for geometry identifiers>
 FROM table1_sdoindex A, table2_sdoindex B
 WHERE A.sdo_code = B.sdo_code

The effectiveness and efficiency of this indexing method depends on the tiling level
and the variation in size of the geometries in the layer. If you select a small
fixed-size tile to cover small geometries and then try to use the same size tile to
cover a very large geometry, a large number of tiles would be required. However, if
the chosen tile size is large, so that fewer tiles are generated in the case of a large
geometry, then the index selectivity suffers because the large tiles do not
approximate the small geometries very well. Figure 1–5 and Figure 1–6 illustrate the
relationships between tile size, selectivity, and the number of cover tiles.

With a small fixed-size tile as shown in Figure 1–5, selectivity is good, but a large
number of tiles is needed to cover large geometries. A window query would easily
identify geometries A and B, but would reject C.
1-14 Oracle Spatial User’s Guide and Reference

Indexing of Spatial Data
Figure 1–5 Fixed-Size Tiling with Many Small Tiles

With a large fixed-size tile as shown in Figure 1–6, fewer tiles are needed to cover
the geometries, but the selectivity is not as good. The same window query as in
Figure 1–5 would probably pick up all three geometries. Any object that shares tile
T1 or T2 would identify object C as a candidate, even though the objects may be far
apart, such as objects B and C are in Figure 1–6.

A

B

query window

C

Spatial Concepts 1-15

Indexing of Spatial Data
Figure 1–6 Fixed-Size Tiling with Fewer Large Tiles

The SDO_TUNE.ESTIMATE_TILING_LEVEL function helps determine an
appropriate tiling level for your data set.

Figure 1–7 illustrates geometry 1013 tessellated to three fixed-sized tiles at level 1.
The codes for these cover tiles are then stored in an SDOINDEX table.

A

B

C

T1

T2

query window

1-16 Oracle Spatial User’s Guide and Reference

Indexing of Spatial Data
Figure 1–7 Tessellated Geometry

Only three of the four tiles generated by the first tessellation interact with the
geometry. Only those tiles that interact with the geometry are stored in the
SDOINDEX table, as shown in Table 1–1. In this example, three fixed-size tiles are
used. The table structure is shown for illustrative purposes only. The column names
of this table differ depending on which implementation method, relational or
object-relational, is in use. In the relational model, you must directly access the

G2 G3

G4G1

P3 P4

P5

P6

P7P8

P1

P2

T2 T3

T0

Geometry 1013:
Element 0

Element 1 (Hole)

 T1

Spatial Concepts 1-17

Indexing of Spatial Data
index tables. In the object-relational model, this is both unnecessary and not
recommended.

All elements in a geometry are tessellated. In a multielement geometry like 1013,
Element 1 is already covered by tile T2 from the tessellation of Element 0. If,
however, the specified tiling resolution were such that tile T2 were further
subdivided and one of these smaller tiles were completely contained in Element 1,
then that tile would be excluded because it would not interact with the geometry.

1.7.2.3 Hybrid Indexing
Hybrid indexing uses a combination of fixed-size and variable-sized tiles for
spatially indexing a layer. Variable-sized tile spatial indexing uses tiles of different
sizes to approximate a geometry. For each geometry, you will have a set of
fixed-size tiles that fully cover the geometry, and also a set of variable-sized tiles
that fully cover the geometry.

For most applications, you should not use hybrid indexes, but should instead use
fixed indexes or R-tree indexes. The rare circumstances where hybrid indexes
should be considered are as follows:

■ When joins are required between layers whose optimal fixed index level (SDO_
LEVEL) values are significantly different (4 levels or more), it may be possible
to get better performance by bringing the layer with a higher optimal SDO_
LEVEL down to the lower SDO_LEVEL and adding the SDO_NUMTILES
parameter to ensure adequate tiling of the layer.

The best starting value for SDO_NUMTILES in the new hybrid layer can be
calculated by getting a count of the rows in the spatial index table and dividing
this number by the number of rows with geometries in the layer, then rounding
up. A spatial join (‘QUERYTYPE=JOIN’) is not a common requirement for
applications, and it is comparable to a spatial cross product where each of the
geometries in one layer will be compared with each of the geometries in the
other layer.

Table 1–1 SDOINDEX Table Using Fixed-Size Tiles

SDO_GID
<number>

SDO_CODE
<raw>

1013 T0

1013 T2

1013 T3
1-18 Oracle Spatial User’s Guide and Reference

Indexing of Spatial Data
■ When both of the following are true for a single layer, hybrid indexing may be
preferable: (1) the layer has a mixture of many geometries covering a very small
area and many polygons covering a very large area; and (2) the optimal fixed
tiling level for the very small geometries will result in an extremely large
number of tiles to be generated for the very large geometries, causing the
spatial index to grow to an unreasonable size.

If both of these conditions are true, it may be better to use the SDO_NUMTILES
parameter to get coverage for the smaller geometries, while keeping the fixed
tile size relatively large for the large geometries by using a smaller SDO_LEVEL
value.

In Figure 1–8, the variable-sized cover tiles closely approximate each geometry. This
results in good selectivity. The number of variable tiles needed to cover a geometry
is controlled using the SDO_NUMTILES parameter.
Spatial Concepts 1-19

Indexing of Spatial Data
Figure 1–8 Variable-Sized Tile Spatial Indexing

A variable tile is subdivided if it interacts with the geometry, and subdivision will
not result in tiles that are smaller than a predetermined size. This size, or tiling
resolution, is determined by a default SDO_MAXLEVEL value.

Figure 1–9 illustrates how geometry OBJ_1, represented using the object-relational
implementation, is approximated with hybrid indexing (SDO_LEVEL = 1 and SDO_
NUMTILES = 4). These are not recommended values for SDO_LEVEL and SDO_
NUMTILES; they were chosen to simplify this example. The cover tiles are stored in
the SDOINDEX table as shown in Table 1–2.

A

B

C

1-20 Oracle Spatial User’s Guide and Reference

Indexing of Spatial Data
Figure 1–9 Decomposition of the Geometry

In Figure 1–9, note that for simplicity the tiles have been numbered, and LL and UR
indicate lower left and upper right, respectively. For example, T2_LL indicates the
lower left corner of tile T2. (This designation scheme does not reflect the actual
format use in Spatial.)

In Figure 1–9, note which fixed-size tiles are associated with geometry OBJ_1. Only
three (T0, T2, T3) of the four large tiles (T0, T1, T2, T3) generated by the tessellation
actually interact with the geometry. Only those three are stored in the SDOINDEX
table. In examining which variable-sized tiles are used, tile T0 shows a further
tessellation to four smaller tiles, two of which (T02, T03) are used to cover a portion
of the geometry. The variable-sized tiles are stored in the SDO_CODE column in the

G4 G3

G2G1

P7 P6

P5

P4

P3P2

P1

P8

T2 T3

T0

Geometry OBJ_1:
Element 0

Element 1 (Hole)

T2_UR T3_UR

T0_UR

T0_LL

T2_LL

T3_LL

T00 T01

T02 T03

T1

Spatial Concepts 1-21

Spatial Relations and Filtering
Spatial index table. The fixed-size tiles are stored in the SDO_GROUPCODE
column. The spatial index structure is discussed in Section 2.5.

Table 1–2 shows the tiles from Figure 1–9 that are stored in the SDOINDEX table.

Table 1–2 Section of the SDOINDEX Table

As with the fixed-size tile model, all elements in a geometry are tessellated in one
step. In a multielement geometry like OBJ_1, Element 1 (the hole shown in
Figure 1–9) is covered by a redundant tile (T2) from the tessellation of Element 0,
but this tile is stored only once.

The SDO_TUNE package has some functions that help determine appropriate SDO_
LEVEL and SDO_NUMTILES values. Appendix A contains suggestions on when
hybrid indexing may be beneficial, and how to select values for the two required
parameters.

1.8 Spatial Relations and Filtering
Spatial uses filter methods to determine the spatial relationship between entities in
the database. The spatial relation is based on geometry locations. The most common
spatial relations are based on topology and distance. For example, the boundary of
an area consists of a set of curves that separates the area from the rest of the
coordinate space. The interior of an area consists of all points in the area that are not
on its boundary. Given this, two areas are said to be adjacent if they share part of a
boundary but do not share any points in their interior.

The distance between two spatial objects is the minimum distance between any
points in them. Two objects are said to be within a given distance of one another if
their distance is less than the given distance.

To determine spatial relations, Spatial has several secondary filter methods:

SDO_ROWID
<RAW>

SDO_CODE
<RAW>

SDO_
MAXCODE
<RAW>

SDO_
GROUPCODE
<RAW>

SDO_META
<RAW>

GID_OBJ_1 T02 <binary data> T0 <binary data>

GID_OBJ_1 T03 <binary data> T0 <binary data>

GID_OBJ_1 T2 <binary data> T2 <binary data>

GID_OBJ_1 T3 <binary data> T3 <binary data>
1-22 Oracle Spatial User’s Guide and Reference

Spatial Relations and Filtering
■ The SDO_RELATE operator evaluates topological criteria.

■ The SDO_WITHIN_DISTANCE operator determines if two spatial objects are
within a Euclidean distance of each other.

■ The SDO_NN operator identifies the nearest neighbors for a spatial object.

The syntax of these operators is given in Chapter 6.

The SDO_RELATE operator implements a 9-intersection model for categorizing
binary topological relations between points, lines, and polygons. Each spatial object
has an interior, a boundary, and an exterior. The boundary consists of points or lines
that separate the interior from the exterior. The boundary of a line consists of its end
points. The boundary of a polygon is the line that describes its perimeter. The
interior consists of points that are in the object but not on its boundary, and the
exterior consists of those points that are not in the object.

Given that an object A has 3 components (a boundary Ab, an interior Ai, and an
exterior Ae), any pair of objects has 9 possible interactions between their
components. Pairs of components have an empty (0) or a non-empty (1) set
intersection. The set of interactions between 2 geometries is represented by a
9-intersection matrix that specifies which pairs of components intersect and which
do not. Figure 1–10 shows the 9-intersection matrix for 2 polygons that are adjacent
to one another. This matrix yields the following bit mask, generated in row-major
form: “101001111”.

Figure 1–10 The 9-Intersection Model

Some of the topological relationships identified in the seminal work by Professor
Max Egenhofer (University of Maine, Orono) and colleagues have names associated
with them. Spatial uses the following names:

A
B

A TOUCH B 9-Intersection Matrix

i

e

eib

b 1 0 1

0 0 1

1 1 1

A

B
Spatial Concepts 1-23

Spatial Relations and Filtering
■ DISJOINT -- The boundaries and interiors do not intersect.

■ TOUCH -- The boundaries intersect but the interiors do not intersect.

■ OVERLAPBDYDISJOINT -- The interior of one object intersects the boundary
and interior of the other object, but the two boundaries do not intersect. This
relation occurs, for example, when a line originates outside a polygon and ends
inside that polygon.

■ OVERLAPBDYINTERSECT -- The boundaries and interiors of the two objects
intersect.

■ EQUAL -- The two objects have the same boundary and interior.

■ CONTAINS -- The interior and boundary of one object is completely contained
in the interior of the other object.

■ COVERS -- The interior of one object is completely contained in the interior of
the other object and their boundaries intersect.

■ INSIDE -- The opposite of CONTAINS. A INSIDE B implies B CONTAINS A.

■ COVEREDBY -- The opposite of COVERS. A COVEREDBY B implies B
COVERS A.

■ ANYINTERACT -- The objects are non-disjoint.

The SDO_WITHIN_DISTANCE operator determines if two spatial objects, A and B,
are within a Euclidean distance of one another. This operator first constructs a
distance buffer, Db, around the reference object B. It then checks that A and Db are
non-disjoint. The distance buffer of an object consists of all points within the given
distance from that object. Figure 1–11 shows the distance buffers for point, line, and
area objects. Notice how the buffer is rounded near the corners of the objects.
1-24 Oracle Spatial User’s Guide and Reference

Examples
Figure 1–11 Distance Buffers for Points, Lines, and Polygons

The SDO_NN operator returns a specified number of objects from a geometry
column that are closest to a specified geometry (for example, the five closest
restaurants to a city park). In determining how close two geometry objects are,
the shortest possible distance between any two points on the surface of each
object is used.

1.9 Partitioned Point Data
Point data, unlike line and polygon data, has the unique characteristic of always
using only one tile per point. For applications handling point data sets that are
several tens of gigabytes or larger, performance gains can be achieved by using
Oracle8i table partitioning features.

Table partitioning is available only with the Partitioning Option of Oracle8i
Enterprise Edition. If the Partitioning Option is available to you, the preferred
method is to use Oracle8i table partitioning in conjunction with spatial indexing
(using the relational model). See Oracle8i Concepts for a description of Oracle8i
partitioning. See Section A.1.7.3 for a description of a sample script that uses table
partitioning with point data.

1.10 Examples
Oracle Spatial provides examples that you can use to reinforce your learning and to
create models for coding certain operations. Several examples are provided in the
following directory:

Spatial Concepts 1-25

Examples
$ORACLE_HOME/md/demos/examples

The following files in that directory are helpful for applications that use the Oracle
Call Interface (OCI):

■ readgeom.c and readgeom.h

■ writegeom.c and writegeom.h

This guide also includes many examples in SQL and PL/SQL. One or more
examples are usually provided with the reference information for each function or
procedure, and several simplified examples are provided that illustrate table and
index creation, as well as several functions and procedures:

■ Inserting, indexing, and querying spatial data (Section 2.1)

■ Coordinate systems (spatial reference systems) (Section D.6)

■ Linear referencing system (LRS) (Section E.5)
1-26 Oracle Spatial User’s Guide and Reference

Part I

 Object-Relational Model

Oracle Spatial supports two models for representing geometries: relational and
object-relational. The two models are mutually exclusive. See Section 1.2 for a
description of how to choose the model best suited for your application.

You do not need prior knowledge of the relational model to use the newer
object-relational model.

This part of the User’s Guide and Reference contains the following chapters that
describe the object-relational model:

■ Chapter 2, "The Object-Relational Schema"

■ Chapter 3, "Loading and Indexing Spatial Object Types"

■ Chapter 4, "Querying Spatial Data"

■ Chapter 5, "Indexing Statements"

■ Chapter 6, "Spatial Operators"

■ Chapter 7, "Geometry Functions"

■ Chapter 8, "Coordinate System Functions"

■ Chapter 9, "Linear Referencing Functions"

■ Chapter 10, "Migration Procedures"

■ Chapter 11, "Tuning Functions and Procedures"

The Object-Relational S
2

The Object-Relational Schema

The object-relational implementation of Oracle Spatial consists of a set of object data
types, an index method type, and operators on these types. A geometry is stored as
an object, in a single row, in a column of type SDO_GEOMETRY. Spatial index
creation and maintenance is done using basic DDL (CREATE, ALTER, DROP) and
DML (INSERT, UPDATE, DELETE) statements.

2.1 Simple Example: Inserting, Indexing, and Querying Spatial Data
This section presents a simple example of creating a spatial table, inserting data,
creating the spatial index, and performing spatial queries. It refers to concepts that
were explained in Chapter 1 and that will be explained in other sections of this
chapter.

The scenario is a soft drink manufacturer that has identified geographical areas of
marketing interest for several products (colas). The colas could be those produced
by the company or by its competitors, or some combination. Each area of interest
could represent any user-defined criterion: for example, an area where that cola has
the majority market share, or where the cola is under competitive pressure, or
where the cola is believed to have significant growth potential. Each area could be a
neighborhood in a city, or a part of a state, province, or country.

Figure 2–1 shows the areas of interest for four colas.
chema 2-1

Simple Example: Inserting, Indexing, and Querying Spatial Data
Figure 2–1 Areas of Interest for Simple Example

Example 2–1 performs the following operations:

■ Creates a table (COLA_MARKETS) to hold the spatial data

■ Inserts rows for four areas of interest (cola_a, cola_b, cola_c, cola_d)

■ Updates the USER_SDO_GEOM_METADATA view to reflect the dimension of
the areas

■ Creates a spatial index (COLA_SPATIAL_IDX)

■ Performs some spatial queries

Many concepts and techniques in Example 2–1 are explained in detail in other
sections of this chapter.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 150 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

cola_a cola_b

cola_c

cola_d

2-2 Oracle Spatial User’s Guide and Reference

Simple Example: Inserting, Indexing, and Querying Spatial Data
Example 2–1 Simple Example: Inserting, Indexing, and Querying Spatial Data

-- Create a table for cola (soft drink) markets in a
-- given geography (such as city or state).
-- Each row will be an area of interest for a specific
-- cola (for example, where the cola is most preferred
-- by residents, where the manufacturer believes the
-- cola has growth potential, and so on).

CREATE TABLE cola_markets (
 mkt_id NUMBER PRIMARY KEY,
 name VARCHAR2(32),
 shape MDSYS.SDO_GEOMETRY);

-- The next INSERT statement creates an area of interest for
-- Cola A. This area happens to be a rectangle.
-- The area could represent any user-defined criterion: for
-- example, where Cola A is the preferred drink, where
-- Cola A is under competitive pressure, where Cola A
-- has strong growth potential, and so on.

INSERT INTO cola_markets VALUES(
 1,
 ’cola_a’,
 MDSYS.SDO_GEOMETRY(
 2003, -- 2-dimensional polygon
 NULL,
 NULL,
 MDSYS.SDO_ELEM_INFO_ARRAY(1,1003,3), -- one rectangle (1003 = exterior)
 MDSYS.SDO_ORDINATE_ARRAY(1,1, 5,7) -- only 2 points needed to
 -- define rectangle (lower left and upper right)
)
);

-- The next two INSERT statements create areas of interest for
-- Cola B and Cola C. These areas are simple polygons (but not
-- rectangles).

INSERT INTO cola_markets VALUES(
 2,
 ’cola_b’,
 MDSYS.SDO_GEOMETRY(
 2003, -- 2-dimensional polygon
 NULL,
 NULL,
The Object-Relational Schema 2-3

Simple Example: Inserting, Indexing, and Querying Spatial Data
 MDSYS.SDO_ELEM_INFO_ARRAY(1,1003,1), -- one polygon (exterior polygon ring)
 MDSYS.SDO_ORDINATE_ARRAY(5,1, 8,1, 8,6, 5,7, 5,1)
)
);

INSERT INTO cola_markets VALUES(
 3,
 ’cola_c’,
 MDSYS.SDO_GEOMETRY(
 2003, -- 2-dimensional polygon
 NULL,
 NULL,
 MDSYS.SDO_ELEM_INFO_ARRAY(1,1003,1), -- one polygon (exterior polygon ring)
 MDSYS.SDO_ORDINATE_ARRAY(3,3, 6,3, 6,5, 4,5, 3,3)
)
);

-- Now insert an area of interest for Cola D. This is a
-- circle with a radius of 2. It is completely outside the
-- first three areas of interest.

INSERT INTO cola_markets VALUES(
 4,
 ’cola_d’,
 MDSYS.SDO_GEOMETRY(
 2003, -- 2-dimensional polygon
 NULL,
 NULL,
 MDSYS.SDO_ELEM_INFO_ARRAY(1,1003,4), -- one circle
 MDSYS.SDO_ORDINATE_ARRAY(8,7, 10,9, 8,11)
)
);

-- UPDATE METADATA VIEW --

-- Update the USER_SDO_GEOM_METADATA view. This is required
-- before the Spatial index can be created. Do this only once for each
-- layer (that is, table-column combination; here: COLA_MARKETS and SHAPE).

INSERT INTO USER_SDO_GEOM_METADATA
 VALUES (
 ’cola_markets’,
 ’shape’,
 MDSYS.SDO_DIM_ARRAY(-- 20X20 grid, virtually zero tolerance
2-4 Oracle Spatial User’s Guide and Reference

Simple Example: Inserting, Indexing, and Querying Spatial Data
 MDSYS.SDO_DIM_ELEMENT(’X’, 0, 20, 0.005),
 MDSYS.SDO_DIM_ELEMENT(’Y’, 0, 20, 0.005)
),
 NULL -- SRID
);

-- CREATE THE SPATIAL INDEX --

CREATE INDEX cola_spatial_idx
ON cola_markets(shape)
INDEXTYPE IS MDSYS.SPATIAL_INDEX
PARAMETERS(’SDO_LEVEL = 8’);

-- PERFORM SOME SPATIAL QUERIES --

-- Return the topological intersection of two geometries.
SELECT SDO_GEOM.SDO_INTERSECTION(c_a.shape, m.diminfo, c_c.shape, m.diminfo)
 FROM cola_markets c_a, cola_markets c_c, user_sdo_geom_metadata m
 WHERE m.table_name = ’COLA_MARKETS’ AND m.column_name = ’SHAPE’
 AND c_a.name = ’cola_a’ AND c_c.name = ’cola_c’;

-- Do two geometries have any spatial relationship?
SELECT SDO_GEOM.RELATE(c_b.shape, m.diminfo, ’anyinteract’,
 c_d.shape, m.diminfo)
 FROM cola_markets c_b, cola_markets c_d, user_sdo_geom_metadata m
 WHERE m.table_name = ’COLA_MARKETS’ AND m.column_name = ’SHAPE’
 AND c_b.name = ’cola_b’ AND c_d.name = ’cola_d’;

-- Return the areas of all cola markets.
SELECT c.name, SDO_GEOM.SDO_AREA(c.shape, m.diminfo)
 FROM cola_markets c, user_sdo_geom_metadata m
 WHERE m.table_name = ’COLA_MARKETS’ AND m.column_name = ’SHAPE’;

-- Return the area of just cola_a.
SELECT c.name, SDO_GEOM.SDO_AREA(c.shape, m.diminfo)
 FROM cola_markets c, user_sdo_geom_metadata m
 WHERE m.table_name = ’COLA_MARKETS’ AND m.column_name = ’SHAPE’
 AND c.name = ’cola_a’;

-- Return the distance between two geometries.
SELECT SDO_GEOM.SDO_DISTANCE(c_b.shape, m.diminfo, c_d.shape, m.diminfo)
 FROM cola_markets c_b, cola_markets c_d, user_sdo_geom_metadata m
 WHERE m.table_name = ’COLA_MARKETS’ AND m.column_name = ’SHAPE’
The Object-Relational Schema 2-5

SDO_GEOMETRY Object Type
 AND c_b.name = ’cola_b’ AND c_d.name = ’cola_d’;

-- Is a geometry valid?
SELECT c.name, SDO_GEOM.VALIDATE_GEOMETRY(c.shape, m.diminfo)
 FROM cola_markets c, user_sdo_geom_metadata m
 WHERE m.table_name = ’COLA_MARKETS’ AND m.column_name = ’SHAPE’
 AND c.name = ’cola_c’;

-- Is a layer valid? (First, create the results table.)
CREATE TABLE validation_results (mkt_id number, result varchar2(10));
EXECUTE SDO_GEOM.VALIDATE_LAYER(’COLA_MARKETS’, ’SHAPE’, ’MKT_ID’,
 ’VALIDATION_RESULTS’);
SELECT * from validation_results;

2.2 SDO_GEOMETRY Object Type
In the Spatial object-relational model, the geometric description of a spatial object is
stored in a single row, in a single column of object type SDO_GEOMETRY in a
user-defined table. Any table that has a column of type SDO_GEOMETRY must
have another column, or set of columns, that defines a unique primary key for that
table. Tables of this sort are sometimes referred to as geometry tables.

Oracle Spatial defines the object type SDO_GEOMETRY as:

CREATE TYPE sdo_geometry AS OBJECT (
 SDO_GTYPE NUMBER,
 SDO_SRID NUMBER,
 SDO_POINT SDO_POINT_TYPE,
 SDO_ELEM_INFO MDSYS.SDO_ELEM_INFO_ARRAY,
 SDO_ORDINATES MDSYS.SDO_ORDINATE_ARRAY);

The sections that follow describe the semantics of each SDO_GEOMETRY attribute,
and then describe some usage considerations (Section 2.2.6).

2.2.1 SDO_GTYPE
SDO_GTYPE indicates the type of the geometry. Valid geometry types correspond
to those specified in the Geometry Object Model for the OGIS Simple Features for SQL
specification (with the exception of Surfaces.) The numeric values differ from those
given in the OGIS specification, but there is a direct correspondence between the
2-6 Oracle Spatial User’s Guide and Reference

SDO_GEOMETRY Object Type
names and semantics where applicable. Table 2–1 shows the valid SDO_GTYPE
values.

The d in the Value column of Table 2–1 is the number of dimensions: 2, 3, or 4. For
example, a value of 2003 indicates a 2-dimensional polygon.

The number of dimensions reflects the number of ordinates used to represent each
vertex (for example, X,Y for 2-dimensional objects). Points and lines are considered
2-dimensional objects. (However, see Section E.2 for dimension information about
LRS points.)

In any given layer (column), all geometries must have the same number of
dimensions. For example, you cannot mix 2-dimensional and 3-dimensional data in
the same layer.

Values d008-d099 are reserved for future use.

Table 2–1 Valid SDO_GTYPE Values

Value Geometry Type Description

d000 UNKNOWN_
GEOMETRY

Spatial ignores this geometry.

d001 POINT Geometry contains one point.

d002 LINESTRING Geometry contains one line string.

d003 POLYGON Geometry contains one polygon with or without holes.1

1 For a polygon with holes, enter the exterior boundary first, followed by any interior boundaries.

d004 COLLECTION Geometry is a heterogeneous collection of elements.2

2 All polygons in the collection must be disjoint.

d005 MULTIPOINT Geometry has multiple points.

d006 MULTILINESTRING Geometry has multiple line strings.

d007 MULTIPOLYGON Geometry has multiple, disjoint polygons (more than
one exterior boundary).

Note: The pre-release 8.1.6 format of a 1-digit value is still
supported. If a 1-digit value is used, however, Oracle Spatial
determines the number of dimensions and stores the appropriate
4-digit value in the DIMINFO column of the metadata views
described in Section 2.4.
The Object-Relational Schema 2-7

SDO_GEOMETRY Object Type
2.2.2 SDO_SRID
SDO_SRID can be used to identify a coordinate system (spatial reference system) to
be associated with the geometry. If SDO_SRID is null, no coordinate system is
associated with the geometry. If SDO_SRID is not null, it must contain a value from
the SRID column of the MDSYS.CS_SRS table (described in Section D.3.1), and this
value must be inserted into the SRID column of the USER_SDO_GEOM_
METADATA view (described in Section 2.4).

All geometries in a geometry column must have the same SDO_SRID value.

For information about coordinate systems, see Appendix D.

2.2.3 SDO_POINT
SDO_POINT is defined using an object type with attributes X, Y, and Z, all of type
NUMBER. If the SDO_ELEM_INFO and SDO_ORDINATES arrays are both null,
and the SDO_POINT attribute is non-null, then the X and Y values are considered
to be the coordinates for a point geometry. Otherwise the SDO_POINT attribute is
ignored by Spatial. You should store point geometries in the SDO_POINT attribute
for optimal storage; and if you have only point geometries in a layer, it is strongly
recommended that you store the point geometries in the SDO_POINT attribute.

2.2.4 SDO_ELEM_INFO
SDO_ELEM_INFO is defined using a varying length array of numbers. This
attribute lets you know how to interpret the ordinates stored in the SDO_
ORDINATES attribute (described in Section 2.2.5).

Each triplet set of numbers is interpreted as follows:

■ SDO_STARTING_OFFSET -- Indicates the offset within the SDO_ORDINATES
array where the first ordinate for this element is stored. Offset values start at 1
and not at 0. Thus, the first ordinate for the first element will be at SDO_
GEOMETRY.SDO_ORDINATES(1). If there is a second element, its first ordinate
will be at SDO_GEOMETRY.SDO_ORDINATES(n), where n reflects the position
within the SDO_ORDINATE_ARRAY definition (for example, 19 for the 19th
number, as in Figure 2–3 later in this chapter).

Note: Do not use the SDO_POINT attribute in defining a linear
referencing system (LRS) point. For information about LRS, see
Appendix E.
2-8 Oracle Spatial User’s Guide and Reference

SDO_GEOMETRY Object Type
■ SDO_ETYPE - Indicates the type of the element. Valid values are 0 through 5, as
well as the following: 1003 and 2003 (variants of 3), and 1005 and 2005 (variants
of 5).

SDO_ETYPE values 1, 2, and 3 are considered simple elements. They are defined
by a single triplet entry in the SDO_ELEM_INFO array. Moreover, the following
are considered variants of type 3, with the first digit indicating exterior (1) or
interior (2):

1003: exterior polygon ring (must be specified in counterclockwise order)

2003: interior polygon ring (must be specified in clockwise order)

You should specify an SDO_ETYPE value of 3 if you do not know if the simple
polygon is exterior or interior; otherwise, you should specify 1003 or 2003.

SDO_ETYPE values 4 and 5 are considered compound elements. They contain at
least one header triplet with a series of triplet values that belong to the
compound element. Moreover, the following are considered variants of type 5,
with the first digit indicating exterior (1) or interior (2):

1005: exterior polygon ring (must be specified in counterclockwise order)

2005: interior polygon ring (must be specified in clockwise order)

You should specify an SDO_ETYPE value of 5 if you do not know if the
compound polygon is exterior or interior; otherwise, you should specify 1005 or
2005.

The elements of a compound element are contiguous. The last point of a
subelement in a compound element is the first point of the next subelement.
The point is not repeated.

■ SDO_INTERPRETATION - Means one of two things, depending on whether or
not SDO_ETYPE is a compound element.

If SDO_ETYPE is a compound element (4 or 5), this field specifies how many
subsequent triplet values are part of the element.

If the SDO_ETYPE is not a compound element (1, 2, or 3), the interpretation
attribute determines how the sequence of ordinates for this element is

Note: For polygon ring elements in a single geometry, you can use
either 1-digit or 4-digit SDO_ETYPE values for all elements;
however, you cannot mix 1-digit and 4-digit SDO_ETYPE values.
The Object-Relational Schema 2-9

SDO_GEOMETRY Object Type
interpreted. For example, a line string or polygon boundary may be made up of
a sequence of connected straight line segments or circular arcs.

Descriptions of valid SDO_ETYPE and SDO_INTERPRETATION value pairs
are given in Table 2–2.

If a geometry consists of more than one element, then the last ordinate for an
element is always one less than the starting offset for the next element. The last
element in the geometry is described by the ordinates from its starting offset to the
end of the SDO_ORDINATES varying length array.

For compound elements (SDO_ETYPE values 4 and 5), a set of n triplets (one per
subelement) is used to describe the element. It is important to remember that
subelements of a compound element are contiguous. The last point of a subelement
is the first point of the next subelement. For subelements 1 through n-1, the end
point of one subelement is the same as the starting point of the next subelement.
The starting point for subelements 2...n-2 is the same as the end point of subelement
1...n-1. The last ordinate of subelement n is either the starting offset minus 1 of the
next element in the geometry, or the last ordinate in the SDO_ORDINATES varying
length array.

The current size of a varying length array can be determined by using the function
varray_variable.Count in PL/SQL or OCIColSize in the Oracle Call Interface (OCI).

The semantics of each SDO_ETYPE element and the relationship between the SDO_
ELEM_INFO and SDO_ORDINATES varying length arrays for each of these SDO_
ETYPE elements are given in Table 2–2.

Table 2–2 Values and Semantics in SDO_ELEM_INFO

SDO_
ETYPE

SDO_
INTERPRETATION Meaning

0 0 Unsupported element type. Ignored by the Spatial functions
and procedures.

1 1 Point type.

1 n > 1 Point cluster with n points.

2 1 Line string whose vertices are connected by straight line
segments.
2-10 Oracle Spatial User’s Guide and Reference

SDO_GEOMETRY Object Type
2 2 Line string made up of a connected sequence of circular arcs.

Each circular arc is described using three coordinates: the
arc’s starting point, any point on the arc, and the arc’s end
point. The coordinates for a point designating the end of one
arc and the start of the next arc are not repeated. For example,
five coordinates are used to describe a line string made up of
two connected circular arcs. Points 1, 2, and 3 define the first
arc, and points 3, 4, and 5 define the second arc, where point
3 is only stored once.

3 1 Simple polygon whose vertices are connected by straight line
segments. Note that you must specify a point for each vertex,
and the last point specified must be identical to the first (to
close the polygon). For example, for a 4-sided polygon,
specify 5 points, with point 5 the same as point 1.

3 2 Polygon made up of a connected sequence of circular arcs
that closes on itself. The end point of the last arc is the same
as the start point of the first arc.

Each circular arc is described using three coordinates: the
arc’s start point, any point on the arc, and the arc’s end point.
The coordinates for a point designating the end of one arc
and the start of the next arc are not repeated. For example,
five coordinates are used to describe a polygon made up of
two connected circular arcs. Points 1, 2, and 3 define the first
arc, and points 3, 4, and 5 define the second arc. The
coordinates for points 1 and 5 must be the same, and point 3
is not repeated.

3 3 Rectangle type. A bounding rectangle such that only two
points, the lower-left and the upper-right, are required to
describe it.

3 4 Circle type. Described by three points, all on the
circumference of the circle.

Table 2–2 Values and Semantics in SDO_ELEM_INFO (Cont.)

SDO_
ETYPE

SDO_
INTERPRETATION Meaning
The Object-Relational Schema 2-11

SDO_GEOMETRY Object Type
2.2.5 SDO_ORDINATES
SDO_ORDINATES is defined using a varying length array (1048576) of NUMBER
type that stores the coordinate values that make up the boundary of a spatial object.
This array must always be used in conjunction with the SDO_ELEM_INFO varying
length array. The values in the array are ordered by dimension. For example, a
polygon whose boundary has four 2-dimensional points is stored as {X1, Y1, X2, Y2,
X3, Y3, X4, Y4, X1, Y1}. If the points are 3-dimensional, then they are stored as {X1,
Y1, Z1, X2, Y2, Z2, X3, Y3, Z3, X4, Y4, Z4, X1, Y1, Z1}. Spatial index creation,
operators, and functions ignore the Z values because this release of the product
supports only 2-dimensional spatial objects. The number of dimensions associated
with each point is stored as metadata in the xxx_SDO_GEOM_METADATA views,
described in Section 2.4.

The values in the SDO_ORDINATES array must all be valid and non-null. There are
no special values used to delimit elements in a multielement geometry. The start
and end points for the sequence describing a specific element are determined by the

4 n > 1 Line string with some vertices connected by straight line
segments and some by circular arcs. The value, n, in the
Interpretation column specifies the number of contiguous
subelements that make up the line string.

The next n triplets in the SDO_ELEM_INFO array describe
each of these subelements. The subelements can only be of
SDO_ETYPE 2. The last point of a subelement is the first
point of the next subelement, and must not be repeated.

See Section 2.3 and Figure 2–4 for an example of a geometry
using this type.

5 n > 1 Compound polygon with some vertices connected by straight
line segments and some by circular arcs. The value, n, in the
Interpretation column specifies the number of contiguous
subelements that make up the polygon.

The next n triplets in the SDO_ELEM_INFO array describe
each of these subelements. The subelements can only be of
SDO_ETYPE 2. The end point of a subelement is the start
point of the next subelement, and it must not be repeated.
The start and end points of the polygon must be the same.

See Section 2.3.4 and Figure 2–5 for an example of a geometry
using this type.

Table 2–2 Values and Semantics in SDO_ELEM_INFO (Cont.)

SDO_
ETYPE

SDO_
INTERPRETATION Meaning
2-12 Oracle Spatial User’s Guide and Reference

Geometry Examples Using the Object-Relational Model
STARTING_OFFSET values for that element and the next element in the SDO_
ELEM_INFO array as explained previously. The offset values start at 1. SDO_
ORDINATES(1) is the first ordinate of the first point of the first element.

2.2.6 Usage Considerations
You should use the SDO_GTYPE values as shown in Table 2–1; however, Spatial
does not check or enforce all geometry consistency constraints. Spatial does check
the following:

■ For SDO_GTYPE values d001 and d005, any subelement not of SDO_ETYPE 1 is
ignored.

■ For SDO_GTYPE values d002 and d006, any subelement not of SDO_ETYPE 2 or
4 is ignored.

■ For SDO_GTYPE values d003 and d007, any subelement not of SDO_ETYPE 3 or
5 is ignored. (This includes SDO_ETYPE variants 1003, 2003, 1005, and 2005,
which are explained in Section 2.2.4).

The SDO_GEOM.VALIDATE_GEOMETRY function can be used to evaluate the
consistency of a single geometry object or all the instances of SDO_GEOMETRY in a
specified feature table.

2.3 Geometry Examples Using the Object-Relational Model
This section contains examples of several geometry types.

2.3.1 Rectangle
Figure 2–2 illustrates a rectangle.

Figure 2–2 Rectangle

Geometry RECT_1:

(12,24) (15,24)

(12,15) (15,15)

The Object-Relational Schema 2-13

Geometry Examples Using the Object-Relational Model
In the SDO_GEOMETRY definition of the geometry illustrated in Figure 2–2:

■ SDO_GTYPE = 2003. The 2 indicates two-dimensional, and the 3 indicates a
polygon.

■ SDO_SRID = NULL.

■ SDO_POINT = NULL.

■ SDL_ELEM_INFO = (1, 1003, 3). The final 3 in 1,1003,3 indicates that this is a
rectangle. Because it is a rectangle, only two ordinates are specified in SDO_
ORDINATES (lower-left and upper-right).

■ SDO_ORDINATES = (12,15,15,24). These identify the lower-left and upper-right
ordinates of the rectangle.

2.3.2 Polygon with a Hole
Figure 2–3 illustrates a polygon consisting of two elements: an exterior polygon ring
and an interior polygon ring. The inner element in this example is treated as a void
(a hole).

Figure 2–3 Geometry with a Hole

In the SDO_GEOMETRY definition of the geometry illustrated in Figure 2–3:

■ SDO_GTYPE = 2003. The 2 indicates two-dimensional, and the 3 indicates a
polygon.

(12,24) (15,24)

(15,15)(12,15)

(11,40) (19,40)

(25,35)

(25,15)

(20,10)(10,10)

P1=(6,15)

P8=(6,25)

Geometry OBJ_1:

2-14 Oracle Spatial User’s Guide and Reference

Geometry Examples Using the Object-Relational Model
■ SDO_SRID = NULL.

■ SDO_POINT = NULL.

■ SDO_ELEM_INFO = (1,1003,1, 19,2003,1). There are two triplet elements:
1,1003,1 and 19,2003,1.

1003 indicates that the element is an exterior polygon ring; 2003 indicates that
the element is an interior polygon ring.

19 indicates that the second element (the interior polygon ring) ordinate
specification starts at the 19th number in the SDO_ORDINATES array (that is,
12, meaning that the first point is 12,15).

■ SDO_ORDINATES = (6,15, 10,10, 20,10, 25,15, 25,35, 19,40, 11,40, 6,25, 6,15,
12,15, 12,24, 15,24, 15,15, 12,15)

■ The area (SDO_GEOM.SDO_AREA function) of the polygon is the area of the
exterior polygon minus the area of the interior polygon.

■ The perimeter (SDO_GEOM.SDO_LENGTH function) of the polygon is the
perimeter of the exterior polygon plus the perimeter of the interior polygon.

An example of such a "polygon with a hole" might be a land mass (such as a
country or an island) with a lake inside it. Of course, an actual land mass might
have many such interior polygons: each one would require a triplet element in
SDO_ELEM_INFO, plus the necessary ordinate specification.

Exterior and interior rings cannot be nested. For example, if a country has a lake
and there is an island in the lake (and perhaps a lake on the island), a separate
polygon must be defined for the island; the island cannot be defined as an interior
polygon ring within the interior polygon ring of the lake.

In a multipolygon (polygon collection), rings must be grouped by polygon, and the
first ring of each polygon must be the exterior ring. For example, consider a
polygon collection that contains two polygons (A and B):

■ Polygon A (one interior "hole"): exterior ring A0, interior ring A1

■ Polygon B (two interior "holes"): exterior ring B0, interior ring B1, interior ring
B2

The elements in SDO_ELEM_INFO and SDO_ORDINATES must be in one of the
following orders (depending on whether you specify Polygon A or Polygon B first):

■ A0, A1; B0, B1, B2

■ B0, B1, B2; A0, A1
The Object-Relational Schema 2-15

Geometry Examples Using the Object-Relational Model
2.3.3 Compound Element
Figure 2–4 illustrates a crescent-shaped object represented as a compound line
string made up of one straight line segment and one circular arc. Four points are
required to represent this shape. Points 1 and 2 describe the straight line segment
and points 2, 3, and 4 describe the circular arc. The SDO_ELEM_INFO array
contains 3 triplets for this compound line string. These are {(1,4,2), (1,2,1), (3,2,2)}.
The SDO_ORDINATES array contains (X1,Y1, X2, Y2, X3, Y3, X4,Y4).

Figure 2–4 Compound Element

The first triplet indicates that this element is a compound line string made up of
two line strings, which are described with the next two triplets.

The second triplet indicates that the line string is made up of straight line segments
and that the ordinates for this line string start at offset 1. The end point of this line
string is determined by the starting offset of the second line string, 3 in this instance.
Assuming the vertices are 2-dimensional, the coordinates for the end point of the
first line string are at ordinates 3 and 4.

The third triplet indicates that the second line string is made up of circular arcs with
ordinates starting at offset 3. The end point of this line string is determined by the
starting offset of the next element or the current length of the SDO_ORDINATES
array, if this is the last element.

x1,y1

x2,y2

x3,y3

x4,y41

2

3

4

NU-3746A-AI
2-16 Oracle Spatial User’s Guide and Reference

Geometry Examples Using the Object-Relational Model
2.3.4 Compound Polygon
Figure 2–5 illustrates an ice cream cone-shaped object represented as a compound
polygon made up of one straight line segment and one circular arc. Five points are
required to represent this shape. Points 1, 2, and 3 describe one acute angle-shaped
line string, and points 3, 4, and 5 describe the circular arc. Points 1 and 5 are the
same point. The SDO_ELEM_INFO array contains three triplets for this compound
line string. These triplets are {(1,1005,2), (1,2,1), (5,2,2)}.

Figure 2–5 Compound Polygon

The first triplet indicates that this element is a compound line string made up of
two line strings, which are described using the next two triplets.

The second triplet indicates that the line string is made up of straight line segments
and that the ordinates for this line string start at offset 1. The end point of this line
string is determined by the starting offset of the second line string, 5 in this instance.
Assuming the vertices are 2-dimensional, the coordinates for the end point of the
first line string are at ordinates 5 and 6.

The third triplet indicates that the second line string is made up of circular arcs with
ordinates starting at offset 5. The end point of this line string is determined by the
starting offset of the next element or the current length of the SDO_ORDINATES
array, if this is the last element.

x1,y1
x5,y5

x4,y4

x3,y3

x2,y2

1,5

2

3

4

NU-3747A-AI
The Object-Relational Schema 2-17

Geometry Metadata Structure
2.4 Geometry Metadata Structure
The geometry metadata describing the dimensions, lower and upper bounds, and
tolerance in each dimension is stored in a global table owned by MDSYS (which
users should never directly update). Each Spatial user has the following views
available in the schema associated with that user:

■ USER_SDO_GEOM_METADATA contains metadata information for all spatial
tables owned by the user (schema). This is the only view that you can update,
and it is the one in which Spatial users must insert metadata related to spatial
tables.

■ ALL_SDO_GEOM_METADATA contains metadata information for all spatial
tables on which the user has SELECT permission.

■ DBA_SDO_GEOM_METADATA contains metadata information for all spatial
tables on which the user has SELECT permission if the user has the DBA role.

Spatial users are responsible for populating these views. For each spatial column,
you must insert an appropriate row into the USER_SDO_GEOM_METADATA view.
Oracle Spatial ensures that the other two views (ALL_SDO_GEOM_METADATA
and DBA_SDO_GEOM_METADATA) are also updated to reflect the rows that you
insert into USER_SDO_GEOM_METADATA.

Each metadata view has the following definition:

(
 TABLE_NAME VARCHAR2(32),
 COLUMN_NAME VARCHAR2(32),
 DIMINFO MDSYS.SDO_DIM_ARRAY,
 SRID NUMBER
);

In addition, the ALL_SDO_GEOM_METADATA and DBA_SDO_GEOM_
METADATA views have an OWNER column identifying the schema that owns the
table specified in TABLE_NAME.

Note: These views were new for release 8.1.6. If you are migrating
from an earlier release of Spatial, see Appendix B.
2-18 Oracle Spatial User’s Guide and Reference

Geometry Metadata Structure
2.4.1 TABLE_NAME
The TABLE_NAME column contains the name of a feature table, such as ROADS or
PARKS, that has a column of type SDO_GEOMETRY.

2.4.2 COLUMN_NAME
The COLUMN_NAME column contains the name of the column of type SDO_
GEOMETRY. For the tables ROADS and PARKS, this column is called
THEGEOMETRY, and therefore the xxx_SDO_GEOM_METADATA views should
contain rows with values (ROADS, THEGEOMETRY, SOMEDIMINFO1, NULL) and
(PARKS, THEGEOMETRY, SOMEDIMINFO2, NULL).

2.4.3 DIMINFO
The DIMINFO column is a varying length array of an object type, ordered by
dimension, and has one entry per dimension. The SDO_DIM_ARRAY type is
defined as follows:

Create Type SDO_DIM_ARRAY as VARRAY(4) of SDO_DIM_ELEMENT;

The SDO_DIM_ELEMENT type is defined as:

Create Type SDO_DIM_ELEMENT as OBJECT (
 SDO_DIMNAME VARCHAR2(64),
 SDO_LB NUMBER,
 SDO_UB NUMBER,
 SDO_TOLERANCE NUMBER);

The SDO_DIM_ARRAY instance is of size n if there are n dimensions. That is,
DIMINFO contains 2 SDO_DIM_ELEMENT instances for 2-dimensional
geometries, 3 instances for 3-dimensional geometries, and 4 instances for
4-dimensional geometries. Each SDO_DIM_ELEMENT instance in the array must
have valid (not null) values for the SDO_LB, SDO_UB, and SDO_TOLERANCE
attributes.

Spatial assumes that the varying length array is ordered by dimension, and
therefore, in the ROADS and PARKS tables, SomeDimInfo1 is the SDO_DIM_

Note: The number of dimensions reflected in the DIMINFO
information must match the number of dimensions of each
geometry object in the layer.
The Object-Relational Schema 2-19

Spatial Index-Related Structure
ELEMENT for the first dimension and SomeDimInfo2 is the SDO_DIM_ELEMENT
for the second dimension. It is imperative that the DIMINFO varying length array is
ordered by dimension in the same way the ordinates for the points in SDO_
ORDINATES varying length array are ordered. That is, if the SDO_ORDINATES
varying length array contains {X1, Y1, ..., Xn, Yn}, then SomeDimInfo1 must define
the X dimension and SomeDimInfo2 must define the Y dimension.

Section 3.1.2 contains examples that show the use of the SDO_GEOMETRY and
SDO_DIM_ARRAY types. These examples demonstrate how various geometry
objects are represented, and how a feature table and the USER_SDO_GEOM_
METADATA view are populated with the data for those objects.

2.4.4 SRID
The SRID column should contain either of the following: the SRID value for the
coordinate system (see Appendix D) for all geometries in the column, or NULL if no
specific coordinate system should be associated with the geometries.

2.5 Spatial Index-Related Structure
This section describes the structure of the tables containing the spatial index data
and metadata. Concepts and usage notes for spatial indexing are explained in
Section 1.7. The spatial index data and metadata are stored in tables that are created
and maintained by the Spatial indexing routines. These tables are created in the
schema of the owner of the feature (underlying) table that has a spatial index
created on a column of type SDO_GEOMETRY.

2.5.1 Spatial Index Views
There are three metadata views per schema (user). These views are read-only to
users; they are created and maintained by the Spatial indexing routines.

■ USER_SDO_INDEX_METADATA contains index information for all spatial
tables owned by the user. (USER_SDO_INDEX_METADATA is the same as
SDO_INDEX_METADATA, which was the only metadata view for Oracle
Spatial release 8.1.5.)

■ ALL_SDO_INDEX_METADATA contains index information for all spatial
tables on which the user has SELECT permission.

■ DBA_SDO_INDEX_METADATA contains index information for all spatial
tables on which the user has SELECT permission if the user has the DBA role.
2-20 Oracle Spatial User’s Guide and Reference

Spatial Index-Related Structure
The USER_SDO_INDEX_METADATA, ALL_SDO_INDEX_METADATA, and DBA_
SDO_INDEX_METADATA views contain the same columns, as shown Table 2–3.
(The columns are listed in their order in the view definition.)

Note: These views were new for release 8.1.6. If you are migrating
from an earlier release of Spatial, see Appendix B.

Table 2–3 Columns in the xxx_SDO_INDEX_METADATA Views

Column Name Data Type Purpose

SDO_INDEX_OWNER VARCHAR2 The owner of the index.

SDO_INDEX_TYPE VARCHAR2 Contains QTREE (for a quadtree index) or
RTREE (for an R-tree index).

SDO_INDEX_NAME VARCHAR2 The name of the index.

SDO_INDEX_TABLE VARCHAR2 Name of the spatial index table (described in
Section 2.5.2).

SDO_INDEX_PRIMARY NUMBER Indicates if this is a primary or secondary index.
1 = primary, 2 = secondary.

SDO_TSNAME VARCHAR2 The schema name of the SDO_INDEX_TABLE.

SDO_COLUMN_NAME VARCHAR2 The column name on which this index is built.

SDO_RTREE_HEIGHT NUMBER Height of the R-tree (R-tree index).

SDO_RTREE_NUM_
NODES

NUMBER Number of nodes in the R-tree (R-tree index).

SDO_RTREE_
DIMENSIONALITY

NUMBER Number of dimensions indexed (R-tree index).

SDO_RTREE_FANOUT NUMBER Maximum number of children in each R-tree
node (R-tree index).

SDO_RTREE_ROOT VARCHAR2 Rowid corresponding to the root node of the
R-tree in the index table (R-tree index).

SDO_RTREE_SEQ_NAME VARCHAR2 Sequence name associated with the R-tree
(R-tree index).

SDO_LEVEL NUMBER The fixed tiling level at which to tile all objects
in the geometry column (quadtree index).

SDO_NUMTILES NUMBER Suggested number of tiles per object that should
be used to approximate the shape (quadtree
index).
The Object-Relational Schema 2-21

Spatial Index-Related Structure
2.5.2 Spatial Index Table Definition
Each quadtree spatial index table (each SDO_INDEX_TABLE entry as described in
Table 2–3 in Section 2.5.1) contains the columns shown in Table 2–4.

SDO_MAXLEVEL NUMBER The maximum level for any tile for any object
(quadtree index). It will always be greater than
the SDO_LEVEL value.

SDO_COMMIT_INTERVAL NUMBER The number of geometries (rows) to process,
during index creation, before committing the
insertion of spatial index entries into the
SDOINDEX table. See Section A.1.4 for more
information about SDO_COMMIT_INTERVAL.

SDO_FIXED_META RAW If applicable, this column contains the metadata
portion of the SDO_GROUPCODE or SDO_
CODE for a fixed-level index.

SDO_TABLESPACE VARCHAR2 Same as in the SQL CREATE TABLE statement.
Tablespace in which to create the SDOINDEX
table.

SDO_INITIAL_EXTENT NUMBER Same as in SQL CREATE TABLE statement.

SDO_NEXT_EXTENT NUMBER Same as in SQL CREATE TABLE statement.

SDO_PCTINCREASE NUMBER Same as in SQL CREATE TABLE statement.

SDO_MIN_EXTENTS NUMBER Same as in SQL CREATE TABLE statement.

SDO_MAX_EXTENTS NUMBER Same as in SQL CREATE TABLE statement.

Table 2–4 Columns in a Spatial Index Data Table

Column Name Data Type Purpose

SDO_CODE RAW Index entry for the object in the row identified by
SDO_ROWID.

SDO_ROWID ROWID Row ID of a row in a feature table containing the
indexed object.

SDO_STATUS VARCHAR2 Contains I if the tile is inside the geometry, or contains
B if the tile is on the boundary of the geometry.

SDO_GROUPCODE RAW Index entry at level SDO_LEVEL (hybrid indexes
only).

Table 2–3 Columns in the xxx_SDO_INDEX_METADATA Views (Cont.)

Column Name Data Type Purpose
2-22 Oracle Spatial User’s Guide and Reference

Spatial Index-Related Structure
The SDO_CODE, SDO_ROWID, and SDO_STATUS columns are always present.
The SDO_GROUPCODE column is present only when the selected index type is
HYBRID.

2.5.3 R-Tree Index Sequence Object
Each R-tree spatial index table has an associated sequence object (SDO_RTREE_
SEQ_NAME in the USER_SDO_INDEX_METADATA view, described in Table 2–3
in Section 2.5.1). The sequence is used to ensure that simultaneous updates can be
performed to the index by multiple concurrent users.

The sequence name is the index table name with the letter S as a suffix. For
example, if the index table name is E1_RT$, the sequence name is E1_RT$S.
The Object-Relational Schema 2-23

Spatial Index-Related Structure
2-24 Oracle Spatial User’s Guide and Reference

Loading and Indexing Spatial Objec
3

Loading and Indexing Spatial Object Types

This chapter describes how to load spatial data into a database, including storing
the data in a table with a column of type SDO_GEOMETRY and creating a spatial
index for it.

The following steps will enable you to query spatial data efficiently:

1. Load data into a column of type SDO_GEOMETRY.

2. Create spatial indexes on columns of type SDO_GEOMETRY.

3.1 Load Process
The process of loading data can be classified into two categories:

■ Bulk loading of data

This process is used to load large volumes of data into the database and uses
the SQL*Loader utility to load the data.

■ Transactional inserts

This process is used to insert relatively small amounts of data into the database
using the INSERT statement in SQL.

3.1.1 Bulk Loading
Bulk loading can import large amounts of ASCII data into an Oracle database. Bulk
loading is accomplished with the SQL*Loader utility. (For information about
SQL*Loader, see Oracle8i Utilities.)
t Types 3-1

Load Process
3.1.1.1 Bulk Loading the SDO_GEOMETRY Object
The following example assumes that a table named POLY_4PT was created as
follows:

CREATE TABLE POLY_4PT (GID VARCHAR2(32),
 GEOMETRY MDSYS.SDO_GEOMETRY);

Assume that the ASCII data consists of a file with delimited columns and separate
rows fixed by the limits of the table with the following format:

geometry rows: GID, GEOMETRY

The coordinates in the geometry column represent roads for a region. Example 3–1
shows the control file for loading the roads and attributes.

Example 3–1 Control File for a Bulk Load

LOAD DATA
 INFILE *
 TRUNCATE
 CONTINUEIF NEXT(1:1) = ’#’
 INTO TABLE POLY_4PT
 FIELDS TERMINATED BY ’|’
 TRAILING NULLCOLS (
 GID INTEGER EXTERNAL,
 GEOM COLUMN OBJECT
 (
 SDO_GTYPE INTEGER EXTERNAL,
 SDO_ELEM_INFO VARRAY TERMINATED BY ’|/’
 (X FLOAT EXTERNAL),
 SDO_ORDINATES VARRAY TERMINATED BY ’|/’
 (Y FLOAT EXTERNAL)
)
)
begindata
 1|2003|1|1003|1|/
#+
#-122.4215|37.7862|-122.422|37.7869|-122.421|37.789|-122.42|37.7866|
#-122.4215|37.7862|/
 2|2003|1|1003|1|/
#+
#-122.4019|37.8052|-122.4027|37.8055|-122.4031|37.806|-122.4012|37.8052|
#-122.4019|37.8052|/
 3|2003|1|1003|1|/
#-122.426|37.803|-122.4242|37.8053|-122.42355|37.8044|-122.4235|37.8025|
3-2 Oracle Spatial User’s Guide and Reference

Load Process
#-122.426|37.803|/

3.1.1.2 Bulk Loading Point-Only Data in the SDO_GEOMETRY Object
Example 3–2 shows a control file for loading a table with point data.

Example 3–2 Control File for a Bulk Load of Point-Only Data

LOAD DATA
 INFILE *
 TRUNCATE
 CONTINUEIF NEXT(1:1) = ’#’
 INTO TABLE POINT
 FIELDS TERMINATED BY ’|’
 TRAILING NULLCOLS (
 GID INTEGER EXTERNAL,
 GEOMETRY COLUMN OBJECT
 (
 SDO_GTYPE INTEGER EXTERNAL,
 SDO_POINT COLUMN OBJECT
 (X FLOAT EXTERNAL,
 Y FLOAT EXTERNAL)
)
)

BEGINDATA
 1| 2001| -122.4215| 37.7862|
 2| 2001| -122.4019| 37.8052|
 3| 2001| -122.426| 37.803|
 4| 2001| -122.4171| 37.8034|
 5| 2001| -122.416151| 37.8027228|

3.1.2 Transactional Insert Using SQL
Oracle Spatial uses standard Oracle8i tables that can be accessed or loaded with
standard SQL syntax. This section contains examples of transactional inserts into
columns of type SDO_GEOMETRY. Note that the INSERT statement in Oracle8i
SQL has a limit of 999 arguments. Therefore, you cannot create a variable-length
array of more than 999 elements using the SDO_GEOMETRY constructor inside a
transactional INSERT statement; however, you can insert a geometry using a host
variable, and the host variable can be built using the SDO_GEOMETRY constructor
with more than 999 values in the SDO_ORDINATE_ARRAY specification. (The host
variable is an OCI, PL/SQL, or Java program variable.)
Loading and Indexing Spatial Object Types 3-3

Load Process
To perform transactional insertions of geometries, you can create a procedure to
insert a geometry, and then invoke that procedure on each geometry to be inserted.
Example 3–3 creates a procedure to perform the insert operation.

Example 3–3 Procedure to Perform Transactional Insert Operation

CREATE OR REPLACE PROCEDURE
 INSERT_GEOM(GEOM MDSYS.SDO_GEOMETRY)
IS

BEGIN
 INSERT INTO TEST_1 VALUES (GEOM);
 COMMIT;
END;
/

Using the procedure created in Example 3–3, you can insert data by using a
PL/SQL block, such as the one in Example 3–4, which loads a geometry into the
variable named geom and then invokes the INSERT_GEOM procedure to insert that
geometry.

Example 3–4 PL/SQL Block Invoking Procedure to Insert a Geometry

DECLARE
geom mdsys.sdo_geometry :=
 mdsys.sdo_geometry (2003, null, null,
 mdsys.sdo_elem_info_array (1,1003,3),
 mdsys.sdo_ordinate_array (-109,37,-102,40));
BEGIN
 INSERT_GEOM(geom);
 COMMIT;
END;
/

3.1.2.1 Polygon with Hole
The geometry to be stored can be a polygon with a hole, as shown in Figure 3–1.
3-4 Oracle Spatial User’s Guide and Reference

Load Process
Figure 3–1 Polygon with Hole

The coordinate values for Element 1 and Element 2 (the hole), shown in Figure 3–1,
are:

Element 1= [P1(6,15), P2(10,10), P3(20,10), P4(25,15), P5(25,35), P6(19,40),
 P7(11,40), P8(6,25), P1(6,15)]
Element 2= [H1(12,15), H2(15,24)]

The following example assumes that a table named PARKS was created as follows:

CREATE TABLE PARKS (NAME VARCHAR2(32),
 SHAPE MDSYS.SDO_GEOMETRY);

The SQL statement for inserting the data for geometry OBJ_1 is:

INSERT INTO PARKS
 VALUES (’OBJ_1’, MDSYS.SDO_GEOMETRY(2003, NULL,NULL,
 MDSYS.SDO_ELEM_INFO_ARRAY(1,1003,1, 19,2003,3),
 MDSYS.SDO_ORDINATE_ARRAY(6,15, 10,10, 20,10, 25,15, 25,35,
 19,40, 11,40, 6,25, 6,15, 12,15, 15,24)));

The SDO_GEOMETRY object type takes values and constructors for its attributes
SDO_GTYPE, SDO_ELEM_INFO, and SDO_ORDINATES. The SDO_GTYPE is
2003, and the SDO_ELEM_INFO has 2 triplet values because there are 2 elements.
Element 1 starts at offset 1, is of ETYPE 1003, and its interpretation value is 1
because the points are connected by straight line segments. Element 2 starts at offset
19, is of ETYPE 2003, and has an interpretation value of 3 (a rectangle). The SDO_

H2

H1

P7 P6

P5

P4

P3P2

P1

P8

Element 1

Element 2 (Hole)

Geometry OBJ_1:
Loading and Indexing Spatial Object Types 3-5

Load Process
ORDINATES varying length array has 22 values with SDO_ORDINATES(1...18)
describing element 1 and SDO_ORDINATES(19...22) describing element 2.

Assume that two dimensions are named X and Y, their bounds are 0 to 100, and the
tolerance for both dimensions is 0.005. The SQL statement for loading the
USER_SDO_GEOM_METADATA metadata view is:

INSERT INTO USER_SDO_GEOM_METADATA
 VALUES (’PARKS’, ’SHAPE’,
 MDSYS.SDO_DIM_ARRAY(MDSYS.SDO_DIM_ELEMENT(’X’, 0, 100, 0.005),
 MDSYS.SDO_DIM_ELEMENT(’Y’, 0, 100, 0.005)),
 NULL);

3.1.2.2 Compound Line String
A compound line string is a connected sequence of straight line segments and
circular arcs. Figure 3–2 is an example of a compound line string.

Figure 3–2 Line String Consisting of Arcs and Straight Line Segments

In Figure 3–2, the coordinate values for points P1..P7 that describe the line string
OBJ_2 are:

OBJ_2 = [P1(15,10), P2(25,10), P3(30,5), P4(38,5), P5(38,10),
 P6(35,15), P7(25,20)]

The SQL statement for inserting this compound line string in a feature table defined
as ROADS(GID Varchar2(32), Shape MDSYS.SDO_GEOMETRY) is:

INSERT INTO ROADS VALUES (’OBJ_2’, MDSYS.SDO_GEOMETRY(2002, NULL, NULL,

P7

P6

P5

P4P3

P2P1

Geometry OBJ_2:
3-6 Oracle Spatial User’s Guide and Reference

Load Process
 MDSYS.SDO_ELEM_INFO_ARRAY(1,4,2, 1,2,1, 9,2,2),
 MDSYS.SDO_ORDINATE_ARRAY(15,10, 25,10, 30,5, 38,5, 38,10, 35,15, 25,20)));

The SDO_GEOMETRY object type takes values and constructors for its attributes
SDO_GTYPE, SDO_ELEM_INFO, and SDO_ORDINATES. The SDO_GTYPE is
2002, and the SDO_ELEM_INFO_ARRAY has 9 values because there are 2
subelements for the compound line string. The first subelement starts at offset 1, is
of SDO_ETYPE 2, and its interpretation value is 1 because the points are connected
by straight line segments. Similarly, subelement 2 has a starting offset of 9. That is,
the first ordinate value is SDO_ORDINATES(9), is of SDO_ETYPE 2, and has an
interpretation value of 2 because the points describe a circular arc. The SDO_
ORDINATES_ARRAY varying length array has 14 values, with SDO_
ORDINATES(1..10) describing subelement 1, and SDO_ORDINATES(9..14)
describing subelement 2.

Assume that two dimensions are named X and Y, their bounds are 0 to 100, and
tolerance for both dimensions is 0.005. The SQL statement to insert the metadata
into the USER_SDO_GEOM_METADATA view is:

INSERT INTO USER_SDO_GEOM_METADATA VALUES (’ROADS’, ’SHAPE’,
 MDSYS.SDO_DIM_ARRAY(MDSYS.SDO_DIM_ELEMENT(’X’, 0, 100, 0.005),
 MDSYS.SDO_DIM_ELEMENT(’Y’, 0, 100, 0.005)),
 NULL);

3.1.2.3 Compound Polygon
A compound polygon’s boundary is a connected sequence of straight line segments
and circular arcs, whose first point is equal to its last point. Figure 3–3 is an example
of a compound polygon.
Loading and Indexing Spatial Object Types 3-7

Load Process
Figure 3–3 Compound Polygon

In Figure 3–3, the coordinate values for points P1 to P8 that describe the polygon
OBJ_3 are:

OBJ_3 = [P1(20,30), P2(11,30), P3(7,22), P4(7,15), P5(11,10), P6(21,10),
 P7(27,30), P8(25,27), P1(20,30)]

The following example assumes that a table named PARKS was created as follows:

CREATE TABLE PARKS (GID VARCHAR2(32), SHAPE MSSYS.SDO_GEOMETRY);

The SQL statement for inserting this compound polygon is:

INSERT INTO PARKS VALUES (’OBJ_3’, MDSYS.SDO_GEOMETRY(2003, NULL,NULL,
 MDSYS.SDO_ELEM_INFO_ARRAY(1,1005,2, 1,2,1, 13,2,2),
 MDSYS.SDO_ORDINATE_ARRAY(20,30, 11,30, 7,22, 7,15, 11,10, 21,10, 27,30,
 25,27, 20,30)));

The SDO_GEOMETRY object type takes values and constructors for its attributes
SDO_GTYPE, SDO_ELEM_INFO, and SDO_ORDINATES. The SDO_GTYPE is
2003, the SDO_ELEM_INFO has 3 triplet values. The first triplet (1,1005,2) identifies
the element as a compound polygon (ETYPE 1005) with two subelements. The first
subelement starts at offset 1, is of ETYPE 2, and its interpretation value is 1 because
the points are connected by straight line segments. Subelement 2 has a starting
offset of 13, is of ETYPE 2, and has an interpretation value of 2 because the points
describe a circular arc. The SDO_ORDINATES varying length array has 18 values,
with SDO_ORDINATES(1...14) describing subelement 1, and SDO_
ORDINATES(13...18) describing subelement 2.

P8

P7

P6P5

P4

P3

P2

Geometry OBJ_3:

P1

3-8 Oracle Spatial User’s Guide and Reference

Load Process
This example assumes the PARKS table was created as follows:

CREATE TABLE PARKS (GID VARCHAR2(32), SHAPE MSSYS.SDO_GEOMETRY);

Assume that two dimensions are named X and Y, their bounds are 0 to 100, and
tolerance for both dimensions is 0.005. The SQL statement to insert the metadata
into the USER_SDO_GEOM_METADATA view is:

INSERT INTO USER_SDO_GEOM_METADATA VALUES (’PARKS’, ’SHAPE’,
 MDSYS.SDO_DIM_ARRAY(MDSYS.SDO_DIM_ELEMENT(’X’, 0, 100, 0.005),
 MDSYS.SDO_DIM_ELEMENT(’Y’, 0, 100, 0.005)),
 NULL);

3.1.2.4 Compound Polygon with Holes
A compound polygon’s boundary is a connected sequence of straight line segments
and circular arcs. Figure 3–4 is an example of a geometry that contains a compound
polygon with a hole (or void).

Figure 3–4 Compound Polygon with a Hole

In Figure 3–4, the coordinate values for points P1 to P8 (Element 1) and C1 to C3
(Element 2) that describe the geometry OBJ_4 are:

Element 1 = [P1(20,30), P2(11,30), P3(7,22), P4(7,15), P5(11,10), P6(21,10),
 P7(27,30), P8(25,27), P1(20,30)]
Element 2 = [C1(10,17), C2(15,22), C3(20,17)]

The following example assumes that a table named PARKS was created as follows:

P8

P7

P6P5

P4

P3

P2

Geometry OBJ_4:

P1

Element 1

Element 1

C1 C3

C2

Element 1

Element 2

Subelement 2

Subelement 1

Loading and Indexing Spatial Object Types 3-9

Load Process
CREATE TABLE PARKS (GID VARCHAR2(32), SHAPE MSSYS.SDO_GEOMETRY);

The SQL statement for inserting this compound polygon with a hole is:

INSERT INTO Parks VALUES (’OBJ_4’, MDSYS.SDO_GEOMETRY(2003, NULL,NULL,
 MDSYS.SDO_ELEM_INFO_ARRAY(1,1005,2, 1,2,1, 13,2,2, 19,2003,4),
 MDSYS.SDO_ORDINATE_ARRAY(20,30, 11,30, 7,22, 7,15, 11,10, 21,10, 27,30,
 25,27, 20,30, 10,17, 15,22, 20,17)));

The SDO_GEOMETRY object type takes values and constructors for its attributes
SDO_GTYPE, SDO_ELEM_INFO, and SDO_ORDINATES. The SDO_GTYPE is
2003, the SDO_ELEM_INFO has 4 triplet values. The first 3 triplet values represent
element 1. The first triplet (1,1005,2) identifies this element as a compound element
with two subelements. The values in SDO_ELEM_INFO(1...9) pertain to element 1,
while SDO_ELEM_INFO(10...12) are for element 2.

The first subelement starts at offset 1, is of ETYPE 2, and its interpretation is 1
because the points are connected by straight line segments. Subelement 2 has a
starting offset of 13, is of ETYPE 2, and has an interpretation value of 2 because the
points describe a circular arc. The fourth triplet (19,2003,4) represents element 2.
Element 2 starts at offset 19, is of ETYPE 2003, and its interpretation value is 4,
indicating that it is a circle. The SDO_ORDINATES varying length array has 24
values, with SDO_ORDINATES(1...14) describing subelement 1, SDO_
ORDINATES(13...18) describing subelement 2, and SDO_ORDINATES(19...24)
describing element 2.

Assume that two dimensions are named X and Y, their bounds are 0 to 100, and
tolerance for both dimensions is 0.005. The SQL statement to insert the metadata
into the USER_SDO_GEOM_METADATA view is:

INSERT INTO USER_SDO_GEOM_METADATA VALUES (’PARKS’, ’SHAPE’,
 MDSYS.SDO_DIM_ARRAY(MDSYS.SDO_DIM_ELEMENT(’X’, 0, 100, 0.005),
 MDSYS.SDO_DIM_ELEMENT(’Y’, 0, 100, 0.005)),
 NULL);

3.1.2.5 Transactional Insert of Point-Only Data
A point-only geometry can be inserted with the following statement:

INSERT INTO PARKS VALUES (’OBJ_PT’,
 MDSYS.SDO_GEOMETRY(2001,NULL,
 MDSYS.SDO_POINT_TYPE(20,30,NULL),
 NULL, NULL)
);
3-10 Oracle Spatial User’s Guide and Reference

Index Creation
3.2 Index Creation
Once data has been loaded into the spatial tables through either bulk or
transactional loading, a spatial index must be created on the tables for efficient
access to the data. Each spatial index can be an R-tree index or a quadtree index. To
decide which type of index to use for a spatial application, you must understand the
concepts and guidelines discussed in Section 1.7.

3.2.1 Determining Index Creation Behavior (Quadtree Indexes)
With a quadtree index, the tessellation algorithm used by the CREATE INDEX
statement and by index maintenance routines on insert or update operations is
determined by the SDO_LEVEL and SDO_NUMTILES values, which are supplied
in the PARAMETERS clause of the CREATE INDEX statement. They are interpreted
as follows:

An explicit commit operation is executed after the tessellation of all the geometries
in a geometry column.

By default, spatial index creation requires a sizable amount of rollback space. To
reduce the amount of rollback space required you can supply the SDO_COMMIT_
INTERVAL parameter in the CREATE INDEX statement. This will perform a
database commit after every n geometries are indexed, where n is a user-defined
value.

If the index creation does not complete for any reason, the index is invalid and must
be deleted with the DROP INDEX <index_name> [FORCE] statement.

SDO_LEVEL SDO_NUMTILES Action

Not specified or 0. Not specified or 0. R-tree index.

>= 1 Not specified or 0. Fixed indexing (indexing with fixed-size tiles).

>= 1 >= 1 Hybrid indexing with fixed-size and
variable-sized tiles. The SDO_LEVEL column
defines the fixed tile size. The SDO_NUMTILES
column defines the number of variable tiles to
generate per geometry.

Not specified or 0. >= 1 Not supported (error).
Loading and Indexing Spatial Object Types 3-11

Index Creation
3.2.2 Spatial Indexing with Fixed-Size Tiles (Quadtree Indexes)
If you choose quadtree indexing for a spatial index, you should use fixed indexing
for most applications, except for the rare circumstances where hybrid indexing
should be considered. (These rare circumstances are explained in Section 1.7.2.3,
and hybrid indexing is discussed in Section 3.2.3. However, you should also
consider using R-tree indexing before deciding on hybrid indexing.)

The fixed-size tile algorithm is expressed as a level referring to the number of
tessellations performed. To use fixed-size tile indexing, omit the SDO_NUMTILES
parameter and set the SDO_LEVEL value to the desired tiling level. The
relationship between the tiling level and the resulting size of the tiles depends on
the domain of the layer.

The domain used for indexing is defined by the upper and lower boundaries of
each dimension stored in the DIMINFO column of the USER_SDO_GEOM_
METADATA view, which contains an entry for the table and geometry column to
spatially index. A typical domain could be -180 to 180 degrees for longitude,1 and
-90 to 90 degrees for latitude, as represented in Figure 3–5.

Figure 3–5 Sample Domain

If the SDO_LEVEL column is set to 1, then the tiles created by the indexing
mechanism are the same size as tiles at the first level of tessellation. Each tile would
be 180 degrees by 90 degrees as shown in Figure 3–6.

1 The transference of the domain onto a sphere or other projection is left up to an
application, unless a coordinate system is specified, as explained in Appendix D.)

-180 180

90

-90

3-12 Oracle Spatial User’s Guide and Reference

Index Creation
Figure 3–6 Fixed-Size Tiling at Level 1

The formula for the number of fixed-size tiles in a domain is 4n where n is the
number of tessellations, stored in the SDO_LEVEL column. In reality, tiles are only
generated where geometries exist, and not for the whole domain. Figure 3–7 shows
fixed-size tiling at level 2. In this figure, each tile is 90 degrees by 45 degrees.

Figure 3–7 Fixed-Size Tiling at Level 2

The size of a tile can be determined by applying the following formula to each
dimension:

length = (upper_bound - lower_bound) / 2 ^ sdo_level

The length refers to the length of the tile along the specified dimension. Applying
this formula to the tiling shown in Figure 3–7 yields the following sizes:

-180 0 180

90

-90

 0

-180 -90 0 90 180

90

-90

 0

Loading and Indexing Spatial Object Types 3-13

Index Creation
length for dimension X = (180 - (-180)) / 2^2
 = (360) / 4
 = 90
length for dimension Y = (90 - (-90)) / 2 2̂
 = (180) / 4
 = 45

At level 2, the tiles are 90 degrees by 45 degrees in size. As the number of levels
increases, the tiles become smaller and smaller. Smaller tiles provide a more precise
fit of the tiles over the geometry being indexed. However, because the number of
tiles generated is unbounded, you must take into account the performance
implications of using higher levels.

Besides the performance aspects related to selecting a fixed-size tile, tessellating the
geometry into fixed-size tiles might have benefits related to the type of data being
stored, such as using tiles sized to represent 1-acre farm plots, city blocks, or
individual pixels on a display. Data modeling, an important part of any database
design, is essential in a spatial database where the data often represents actual
physical locations.

In Example 3–5, assume that data has been loaded into a table called ROADS, and
the USER_SDO_GEOM_METADATA view has an entry for ROADS.SHAPE. You
can use the following SQL statement to create a fixed index named ROADS_FIXED.

Example 3–5 Creating a Fixed Index

CREATE INDEX ROADS_FIXED ON ROADS(SHAPE) INDEXTYPE IS MDSYS.SPATIAL_INDEX
 PARAMETERS(’SDO_LEVEL=8’);

The SDO_LEVEL value is used while tessellating objects. Increasing the level results
in smaller tiles and better geometry approximations.

Note: The Spatial Index Advisor component of Oracle Enterprise
Manager can be used to determine an appropriate level for
indexing with fixed-size tiles. The SDO_TUNE.ESTIMATE_
TILING_LEVEL function, described in Chapter 11, can also be used
for this purpose; however, this function performs less analysis than
the Spatial Index Advisor.
3-14 Oracle Spatial User’s Guide and Reference

Index Creation
3.2.3 Hybrid Spatial Indexing with Fixed-Size and Variable-Sized Tiles
This section describes hybrid indexing, which uses both fixed-size and
variable-sized tiles as a spatial indexing mechanism. For each geometry, you will
have a set of fixed-size tiles that fully covers the geometry, and a set of
variable-sized tiles that fully covers the geometry. The terms hybrid indexing,
hybrid tiling, and hybrid tessellation are used interchangeably in this section.

To use hybrid tiling, the SDO_LEVEL and SDO_NUMTILES keywords in the
PARAMETERS clause must contain valid values. Both SDO_LEVEL and SDO_
NUMTILES must be greater than 1.

The SDO_NUMTILES value determines the number of variable tiles that will be
used to fully cover a geometry being indexed. Typically this value is small. For
points, SDO_NUMTILES is always one. For other element types, you might set
SDO_NUMTILES to a value around 8. The larger the SDO_NUMTILES value, the
better the tiles will approximate the geometry being covered. A larger SDO_
NUMTILES value improves the selectivity of the primary filter, but it also increases
the number of index entries per geometry (see Section 4.2.1 and Section 4.2.2 for a
discussion of primary and secondary filters). The SDO_NUMTILES value should be
larger for long, linear spatial entities, such as major highways or rivers, than for
area-related spatial entities such as county or state boundaries.

The SDO_LEVEL value determines the size of the fixed tiles used to fully cover the
geometry being indexed. Setting the proper SDO_LEVEL value may appear more
like art than science. Performing some simple data analysis and testing puts the
process back in the realm of science. One approach would be to use the SDO_
TUNE.ESTIMATE_TILING_LEVEL function to determine an appropriate starting
SDO_LEVEL value, and then compare the performance with slightly higher or
lower values. This technique and others are described in Appendix A.

In Example 3–6, assume that data has been loaded into a table called ROADS, and
the USER_SDO_GEOM_METADATA view has an entry for ROADS.SHAPE.
(Assume also that no spatial index has already been created on the ROADS.SHAPE
column.) You can use the following SQL statement to create a hybrid index named
ROADS_HYBRID.

Note: With quadtree indexes, you should use fixed indexing for
most applications, except for the rare circumstances where hybrid
indexing should be considered. These rare circumstances are
explained in Section 1.7.2.3. You should also consider using R-tree
indexing (see Section 1.7) before deciding on hybrid indexing.
Loading and Indexing Spatial Object Types 3-15

Index Creation
Example 3–6 Creating a Hybrid Index

CREATE INDEX ROADS_HYBRID ON ROADS(SHAPE)
 INDEXTYPE IS MDSYS.SPATIAL_INDEX PARAMETERS(’SDO_LEVEL=6 SDO_NUMTILES=12’);

3.2.4 R-tree Index Parameter Considerations
This section describes considerations and recommendations for parameters related
to R-tree indexes. For basic information about all available parameters, see the
CREATE INDEX statement description in Chapter 5.

3.2.4.1 SDO_FANOUT
The default value for SDO_FANOUT is best for most applications. However, a
larger value of 60 for SDO_FANOUT is recommended for very large databases
(more than 1 million rows).

3.2.4.2 SDO_RTR_PCTFREE
The default value for SDO_RTR_PCTFREE is best for most applications. However, a
value of 0 for SDO_RTR_PCTFREE is recommended if no updates will be
performed to the geometry column.

3.2.5 Cross-Schema Index Creation
You can create a spatial index on a table that is not in your schema. Assume that
user B wants to create a spatial index on column geometry in table T1 under user A’s
schema. User B must perform the following steps:

1. Connect as user A (or have user A connect) and execute the following
statement:

GRANT select on T1 to B;

2. Connect as user B and execute a statement such as the following:

GRANT create table to A;
CREATE INDEX qtree on B.T1(geometry)
 INDEXTYPE IS mdsys.spatial_index
 PARAMETERS(’sdo_level=10 sdo_numtiles=4’);
3-16 Oracle Spatial User’s Guide and Reference

Querying Spati
4

Querying Spatial Data

This chapter describes how the structures of a Spatial layer in the object-relational
model are used to resolve spatial queries and spatial joins. For the sake of clarity,
the examples all use fixed-size tiling, but hybrid indexing is actually recommended
for the object-relational model.

4.1 Query Model
Spatial uses a two-tier query model to resolve spatial queries and spatial joins. The
term two-tier is used to indicate that two distinct operations are performed in order
to resolve queries. If both operations are performed, the exact result set is returned.

The two operations are referred to as primary filter and secondary filter operations.

■ The primary filter permits fast selection of candidate records to pass along to
the secondary filter. The primary filter uses geometry approximations (or index
tiles) to reduce computational complexity and is considered a lower-cost filter.

■ The secondary filter applies exact computational geometry to the result set of
the primary filter. These exact computations yield the exact answer to a query.
The secondary filter operations are computationally more expensive, but they
are applied only to the relatively small result set returned from the primary
filter.

4.2 Spatial Query
 An important concept in the spatial data model is that each geometry is
represented by a set of exclusive and exhaustive tiles. This means that no tiles
overlap each other (exclusive), and the tiles fully cover the object (exhaustive).
al Data 4-1

Spatial Query
Consider the following layer containing several objects in Figure 4–1. Each object is
labeled with its SDO_GID. The relevant tiles are labeled with ‘Tn’.

Figure 4–1 Tessellated Layer with Multiple Objects

1243

1013

T1 T2 T7

T3 T4

T6T5

61

T8 T9

501

12

4-2 Oracle Spatial User’s Guide and Reference

Spatial Query
A typical spatial query is to request all objects that lie within a defined fence or
window. A query window is shown in Figure 4–2 by the dotted-line box. A
dynamic query window refers to a fence that is not defined in the database, but that
must be defined before it is used.

Figure 4–2 Tessellated Layer with a Query Window

1243

12

1013

T1 T2 T7

T3 T4

T6T5

61

T8 T9

501

Querying Spatial Data 4-3

Spatial Query
4.2.1 Primary Filter
Spatial provides an operator named SDO_FILTER. This implements the primary
filter portion of the two-step process involved in the product’s query processing
model. The primary filter uses the index data only to determine a set of candidate
object pairs that may interact. The syntax is as follows:

SDO_FILTER(geometry1 MDSYS.SDO_GEOMETRY, geometry2 MDSYS.SDO_GEOMETRY,
 params VARCHAR2)

Where:

■ geometry1 is a column of type MDSYS.SDO_GEOMETRY in a table. geometry1
must be spatially indexed.

■ geometry2 is an object of type MDSYS.SDO_GEOMETRY. geometry2 may or may
not come from a table. If it comes from a table, it may or may not be spatially
indexed.

■ params is a quoted string of keyword value pairs that determine the behavior of
the operator. See the SDO_FILTER operator in Chapter 6 for a list of parameters.

The following examples perform a primary filter operation only. They will return all
the geometries shown in Figure 4–2 that have an index tile in common with one of
the index tiles that approximates the query window: tiles T1, T2, T3, and T4. The
result of the following examples are geometries with IDs 1013, 1243, 12, and 501.

Example 4–1 performs a primary filter operation without inserting the query
window into a table. The window will be indexed in memory and performance will
be very good.

Example 4–1 Primary Filter with a Temporary Query Window

SELECT A.Feature_ID FROM TARGET A
 WHERE sdo_filter(A.shape, mdsys.sdo_geometry(2003,NULL,NULL,
 mdsys.sdo_elem_info_array(1,1003,3),
 mdsys.sdo_ordinate_array(x1,y1, x2,y2)),
 ’querytype=window’) = ’TRUE’;

Note that (x1,y1) and (x2,y2) are the lower-left and upper-right corners of the query
window.

In Example 4–2, a transient instance of type SDO_GEOMETRY was constructed for
the query window instead of specifying the window parameters in the query itself.
4-4 Oracle Spatial User’s Guide and Reference

Spatial Query
Example 4–2 Primary Filter with a Transient Instance of the Query Window

SELECT A.Feature_ID FROM TARGET A
 WHERE sdo_filter(A.shape, :theWindow,’querytype=window’) = ’TRUE’;

Example 4–3 assumes the query window was inserted into a table called
WINDOWS, with an ID of WINS_1.

Example 4–3 Primary Filter with a Stored Query Window

SELECT A.Feature_ID FROM TARGET A, WINDOWS B
 WHERE B.ID = ’WINS_1’ AND
 sdo_filter(A.shape, B.shape,’querytype=window’) = ’TRUE’;

If the B.SHAPE column is not spatially indexed, the SDO_FILTER operator indexes
the query window in memory and performance is very good.

If the B.SHAPE column is spatially indexed with the same SDO_LEVEL value as the
A.SHAPE column, the SDO_FILTER operator reuses the existing index, and
performance is very good or better.

If the B.SHAPE column is spatially indexed with a different SDO_LEVEL value than
the A.SHAPE column, the SDO_FILTER operator reindexes B.SHAPE in the same
way as if there were no index on the column originally, and then performance is
very good.

4.2.2 Primary and Secondary Filters
The SDO_RELATE operator performs both the primary and secondary filter stages
when processing a query. The syntax of the operator is as follows:

 SDO_RELATE(geometry1 MDSYS.SDO_GEOMETRY,
 geometry2 MDSYS.SDO_GEOMETRY,
 params VARCHAR2)

Where:

■ geometry1 is a column of type MDSYS.SDO_GEOMETRY in a table. geometry1
must be spatially indexed.

■ geometry2 is an object of type MDSYS.SDO_GEOMETRY. geometry2 may or may
not come from a table. If it comes from a table, it may or may not be spatially
indexed.
Querying Spatial Data 4-5

Spatial Query
■ params is a quoted string of keyword value pairs that determine the behavior of
the operator. See the SDO_RELATE operator in Chapter 6 for a list of
parameters.

The following examples perform both primary and secondary filter operations.
They return all the geometries in Figure 4–2 that lie within or overlap the query
window. The result of these examples is objects 1243 and 1013.

Example 4–4 performs both primary and secondary filter operations without
inserting the query window into a table. The window will be indexed in memory
and performance will be very good.

Example 4–4 Secondary Filter Using a Temporary Query Window

SELECT A.Feature_ID FROM TARGET A
 WHERE sdo_relate(A.shape, mdsys.sdo_geometry(2003,NULL,NULL,
 mdsys.sdo_elem_info_array(1,1003,3),
 mdsys.sdo_ordinate_array(x1,y1, x2,y2)),
 ’mask=anyinteract querytype=window’) = ’TRUE’;

Note that (x1,y1) and (x2,y2) are the lower-left and upper-right corners of the query
window.

Example 4–5 assumes the query window was inserted into a table called
WINDOWS, with an ID of WINS_1.

Example 4–5 Secondary Filter Using a Stored Query Window

SELECT A.Feature_ID FROM TARGET A, WINDOWS B
 WHERE B.ID= ’WINS_1’ AND
 sdo_relate(A.shape, B.shape,
 ’mask=anyinteract querytype=window’) = ’TRUE’;

If the B.SHAPE column is not spatially indexed, the SDO_RELATE operator indexes
the query window in memory and performance is very good.

If the B.SHAPE column is spatially indexed with the same SDO_LEVEL value as the
A.SHAPE column, the SDO_RELATE operator reuses the existing index, and
performance is very good or better.

If the B.SHAPE column is spatially indexed with a different SDO_LEVEL value than
the A.SHAPE column, the SDO_FILTER operator reindexes B.SHAPE in the same
way as if there were no index on the column originally, and then performance is
very good.
4-6 Oracle Spatial User’s Guide and Reference

Spatial Query
4.2.3 Within-Distance Operator
The SDO_WITHIN_DISTANCE operator is used to determine the set of objects in a
table that are within n Euclidean distance units from a reference object aRefGeom.
The reference object may be a transient or persistent instance of MDSYS.SDO_
GEOMETRY (such as a temporary query window or a permanent geometry stored
in the database). The syntax is as follows:

SDO_WITHIN_DISTANCE(geometry1 MDSYS.SDO_GEOMETRY,
 aRefGeom MDSYS.SDO_GEOMETRY,
 params VARCHAR2)

Where:

■ geometry1 is a column of type MDSYS.SDO_GEOMETRY in a table.
geometry1 must be spatially indexed.

■ aRefGeom is an instance of type MDSYS.SDO_GEOMETRY.

■ params is a quoted string of keyword value pairs that determines the
behavior of the operator. See the SDO_WITHIN_DISTANCE operator in
Chapter 6 for a list of parameters.

The following example selects any objects within 1.35 distance units from the query
window:

SELECT A.Feature_ID
 FROM TARGET A
 WHERE SDO_WITHIN_DISTANCE(A.shape, :theWindow, ’distance=1.35’) = ’TRUE’;

The distance units are based on the geometry coordinate system in use. Spatial
treats the coordinate space as Cartesian. If your data consists of latitude and
longitude pairs, then you cannot use the SDO_WITHIN_DISTANCE operator to
provide correct results unless all your data is near the equator. If all the data is not
near the equator, you must project the latitude/longitude data into a
locally-conformal Cartesian plane before using the SDO_WITHIN_DISTANCE
operator.

The SDO_WITHIN_DISTANCE operator is not suitable for performing spatial joins.
That is, a query such as Find all parks that are within 10 distance units from coastlines
will not be processed as an index-based spatial join of the COASTLINES and
PARKS tables. Instead, it will be processed as a nested loop query in which each
COASTLINES instance is in turn a reference object that is buffered, indexed, and
evaluated against the PARKS table. Thus, the SDO_WITHIN_DISTANCE operation
is performed n times if there are n rows in the COASTLINES table.
Querying Spatial Data 4-7

Spatial Query
There is an efficient way to accomplish a spatial join that involves buffering all the
geometries of a layer. This method does not use the SDO_WITHIN_DISTANCE
operator. First, create a new table COSINE_BUFS as follows:

CREATE TABLE cosine_bufs UNRECOVERABLE AS
 SELECT SDO_BUFFER (A.SHAPE, B.DIMINFO, 1.35)
 FROM COSINE A, USER_SDO_GEOM_METADATA B
 WHERE TABLE_NAME=’COSINES’ AND COLUMN_NAME=’SHAPE’;

Next, create a spatial index on the SHAPE column of COSINE_BUFS. Then you can
perform the following query:

SELECT a.gif, b.gid FROM parks A cosine_bufs B
 WHERE SDO_Relate(A.shape, B.shape, ’mask=ANYINTERACT querytype=JOIN’) =’TRUE’;

4.2.4 Nearest Neighbor Operator
The SDO_NN operator is used to identify the nearest neighbors for a geometry. The
syntax is as follows:

SDO_NN(geometry1 MDSYS.SDO_GEOMETRY,
 geometry2 MDSYS.SDO_GEOMETRY,
 param VARCHAR2)

Where:

■ geometry1 is a column of type MDSYS.SDO_GEOMETRY in a table.
geometry1 must be spatially indexed.

■ geometry2 is an instance of type MDSYS.SDO_GEOMETRY.

■ param is a quoted string of a keyword value pair that determines how many
nearest neighbor geometries are returned by the operator. See the SDO_NN
operator in Chapter 6 for information about this parameter.

The following example finds the two objects from the SHAPE column in the COLA_
MARKETS table that are closest to a specified point (10,7). (Note the use of the
optimizer hint in the SELECT statement, as explained in the Usage Notes for the
SDO_NN operator in Chapter 6.)

SELECT /*+ INDEX(cola_markets cola_spatial_idx) */
 c.mkt_id, c.name FROM cola_markets c WHERE SDO_NN(c.shape,
 mdsys.sdo_geometry(2001, NULL, mdsys.sdo_point_type(10,7,NULL), NULL,
 NULL), ’sdo_num_res=2’) = ’TRUE’;
4-8 Oracle Spatial User’s Guide and Reference

Cross-Schema Operator Invocation
4.3 Spatial Join
A spatial join is the same as a regular join except that the predicate involves a
spatial operator. In Spatial, a spatial join takes place when you compare all the
geometries of one layer to all the geometries of another layer. This is unlike a query
window that only compares a single geometry to all geometries of a layer.

In a spatial join, all tables must have the same type of spatial index (that is, R-tree or
quadtree) defined on the geometry column; and if they have quadtree indexes, the
SDO_LEVEL value must be the same for all the indexes.

Spatial joins can be used to answer questions such as, Which highways cross national
parks?

The following table structures illustrate how the join would be accomplished for
this example:

PARKS(GID VARCHAR2(32), SHAPE MDSYS.SDO_GEOMETRY)
HIGHWAYS(GID VARCHAR2(32), SHAPE MDSYS.SDO_GEOMETRY)

The primary filter would identify pairs of GID values from the PARKS and
HIGHWAYS tables that interact in their index entries. The query that performs the
primary filter join is:

SELECT A.GID, B.GID
 FROM PARKS A, HIGHWAYS B
 WHERE sdo_filter(A.shape, B.shape, ’querytype=join’) = ’TRUE’;

The original question, asking about highways that cross national parks, requires the
secondary filter operator to find the exact relationship between highways and
parks.

The query that performs this join using both primary and secondary filters is:

SELECT A.GID, B.GID
 FROM parks A, highways B
 WHERE sdo_relate(A.shape, B.shape,
 ’mask=ANYINTERACT querytype=join’);

4.4 Cross-Schema Operator Invocation
You can invoke spatial operators on an indexed table that is not in your schema.
Assume that user A has a spatial table T1 (with index table IDX_TAB1) with a
spatial index defined, that user B has a spatial table T2 (with index table IDX_TAB2)
Querying Spatial Data 4-9

Cross-Schema Operator Invocation
with a spatial index defined, and that user C wants to invoke operators on tables in
one or both of the other schemas.

If user C wants to invoke an operator only on T1, user C must perform the
following steps:

1. Connect as user A and execute the following statements:

GRANT select on T1 to C;
GRANT select on idx_tab1 to C;

2. Connect as user C and execute a statement such as the following:

SELECT a.gid
 FROM T1 a
 WHERE sdo_filter(a.geometry, :theGeometry, ’querytype=WINDOW’) = ’TRUE’;

If user C wants to invoke an operator on both T1 and T2, user C must perform the
following steps:

1. Connect as user A and execute the following statements:

GRANT select on T1 to C;
GRANT select on idx_tab1 to C;

2. Connect as user B and execute the following statements:

GRANT select on T2 to C;
GRANT select on idx_tab2 to C;

3. Connect as user C and execute a statement such as the following:

SELECT a.gid
 FROM T1 a, T2 b
 WHERE b.gid = 5 AND
 sdo_filter(a.geometry, b.geometry, ’querytype=WINDOW’) = ’TRUE’;

4-10 Oracle Spatial User’s Guide and Reference

Indexing State
5

Indexing Statements

This chapter describes the statements used when working with the spatial object
data type. The statements are listed in Table 5–1.

Table 5–1 Spatial Index Creation and Usage Statements

Statement Description

ALTER INDEX Alters a spatial index on a column of type
MDSYS.SDO_GEOMETRY.

ALTER INDEX REBUILD Rebuilds a spatial index on a column of type
MDSYS.SDO_GEOMETRY.

ALTER INDEX RENAME TO Changes the name of a spatial index on a column
of type MDSYS.SDO_GEOMETRY.

CREATE INDEX Creates a spatial index on a column of type
MDSYS.SDO_GEOMETRY.

DROP INDEX Deletes a spatial index on a column of type
MDSYS.SDO_GEOMETRY
ments 5-1

ALTER INDEX
ALTER INDEX

Purpose
Alters specific parameters for a spatial index or rebuilds a spatial index.

Syntax
ALTER INDEX [schema.]index PARAMETERS (‘index_params [physical_storage_params]’)

Keywords and Parameters

INDEX_PARAMS Allows you to change the characteristics of the spatial index, and the
type (fixed or hybrid) of a quadtree index.

Keyword Description

add_index Specifies the name of the new index table to add.
Data type is VARCHAR2.

delete_index Specifies the name of the index table to delete. You can only delete
index tables that were created with the ALTER INDEX add_index
statement. The primary index table cannot be deleted with this
parameter. To delete the primary index table, use the DROP INDEX
statement.
Data type is VARCHAR2.

sdo_commit_
interval

Specifies the number of underlying table rows that are processed
between commit intervals for the index data. (Quadtree indexes only.)
The default behavior commits the index data only after all rows in the
underlying table have been processed. See the Usage Notes for further
details.
Data type is NUMBER.

sdo_fanout Specifies the fanout value, which reflects the node capacity of the
index tree. (R-tree indexes only.) If queries that use the index are likely
to return thousands of rows or more, you may want to specify a value
greater than the default, such as 50 or 60.
Data type is NUMBER. Default = 35.

sdo_indx_dims Specifies the number of dimensions to be indexed. (R-tree indexes
only.) For example, a value of 2 causes the first 2 dimensions to be
indexed. Must be less than or equal to the number of actual
dimensions (number of SDO_DIM_ELEMENT instances in the
dimensional array that describes the geometry objects in the column).
Data type is NUMBER. Default = number of actual dimensions.
5-2 Oracle Spatial User’s Guide and Reference

ALTER INDEX
sdo_level Specifies the desired fixed-size tiling level. (Quadtree indexes only.)
Data type is NUMBER.

sdo_numtiles Specifies the number of variable-sized tiles to be used in tessellating
an object. (Quadtree indexes only.)
Data type is NUMBER.

sdo_rtr_pctfree Specifies the minimum percentage of slots in each index tree node to
be left empty when the index is created. Slots that are left empty can
be filled later when new data is inserted into the table. (R-tree indexes
only.) The value can range from 0 to 50.
Data type is NUMBER. Default = 10.

PHYSICAL_
STORAGE_
PARAMS

Determines the storage parameters used for altering the spatial index
data table. A spatial index data table is a standard Oracle table with a
prescribed format. Not all physical storage parameters that are
allowed in the STORAGE clause of a CREATE TABLE statement are
supported. The following is a list of the supported subset.

Keyword Description

tablespace Specifies the tablespace in which the index data table is created. This
parameter is the same as TABLESPACE in the STORAGE clause of a
CREATE TABLE statement.

initial Is the same as INITIAL in the STORAGE clause of a CREATE TABLE
statement.

next Is the same as NEXT in the STORAGE clause of a CREATE TABLE
statement.

minextents Is the same as MINEXTENTS in the STORAGE clause of a CREATE
TABLE statement.

maxextents Is the same as MAXEXTENTS in the STORAGE clause of a CREATE
TABLE statement.

pctincrease Is the same as PCTINCREASE in the STORAGE clause of a CREATE
TABLE statement.

btree_initial Is the same as INITIAL in the STORAGE clause of a CREATE INDEX
statement in the case of a standard B-tree index. (Quadtree indexes
only.)

btree_next Is the same as NEXT in the STORAGE clause of a CREATE INDEX
statement in the case of a standard B-tree index. (Quadtree indexes
only.)

btree_pctincrease Is the same as PCTINCREASE in the STORAGE clause of a CREATE
INDEX statement in the case of a standard B-tree index. (Quadtree
indexes only.)
Indexing Statements 5-3

ALTER INDEX
Prerequisites
■ You must have EXECUTE privileges on the index type and its implementation

type.

■ The spatial index to be altered is not marked in-progress.

Usage Notes
This statement is used to change the parameters of an existing index. This is the
only way you can add or build multiple indexes on the same column.

See the Usage Notes for the CREATE INDEX statement for usage information about
many of the available parameters.

Examples
The following example adds a new index table named FIXED_INDEX$ to the index
named QTREE.

ALTER INDEX qtree PARAMETERS (’add_index=fixed_index$
 sdo_level=8
 initial=100M
 next=1M
 pctincrease=0
 btree_initial=5M
 btree_next=1M
 btree_pctincrease=0’);

Related Topics
■ ALTER INDEX REBUILD

■ ALTER INDEX RENAME TO

■ CREATE INDEX
5-4 Oracle Spatial User’s Guide and Reference

ALTER INDEX REBUILD
ALTER INDEX REBUILD

Syntax
ALTER INDEX [schema.]index REBUILD
 [PARAMETERS (‘rebuild_params [physical_storage_params]’)]

Purpose
Rebuilds a spatial index.

Keywords and Parameters

REBUILD_
PARAMS

Specifies in a command string the index parameters to use in
rebuilding the spatial index.

Keyword Description

layer_gtype Specifies special processing for point data.
If the layer you are indexing is all points, set this parameter to POINT
for optimal performance.
Data type is VARCHAR2.

rebuild_index Specifies the name of the spatial index table to be rebuilt.
Data type is VARCHAR2.

sdo_commit_
interval

Specifies the number of underlying table rows that are processed
between commit intervals for the index data. (Quadtree indexes only.)
The default behavior commits the index data only after all rows in the
underlying table have been processed. See the Usage Notes for further
details.
Data type is NUMBER.

sdo_fanout Specifies the fanout value, which reflects the node capacity of the
index tree. (R-tree indexes only.) If queries that use the index are likely
to return thousands of rows or more, you may want to specify a value
greater than the default, such as 50 or 60.
Data type is NUMBER. Default = 35.

sdo_indx_dims Specifies the number of dimensions to be indexed. (R-tree indexes
only.) For example, a value of 2 causes the first 2 dimensions to be
indexed. Must be less than or equal to the number of actual
dimensions (number of SDO_DIM_ELEMENT instances in the
dimensional array that describes the geometry objects in the column).
Data type is NUMBER. Default = number of actual dimensions.
Indexing Statements 5-5

ALTER INDEX REBUILD
sdo_level Specifies the desired fixed-size tiling level. (Quadtree indexes only.)
Data type is NUMBER.

sdo_numtiles Specifies the number of variable-sized tiles to be used in tessellating
an object. (Quadtree indexes only.)
Data type is NUMBER.

sdo_rtr_pctfree Specifies the minimum percentage of slots in each index tree node to
be left empty when the index is created. Slots that are left empty can
be filled later when new data is inserted into the table. (R-tree indexes
only.) The value can range from 0 to 50.
Data type is NUMBER. Default = 10.

PHYSICAL_
STORAGE_
PARAMS

Determines the storage parameters used for rebuilding the spatial
index data table. A spatial index data table is a regular Oracle table
with a prescribed format. Not all physical storage parameters that are
allowed in the STORAGE clause of a CREATE TABLE statement are
supported. The following is a list of the supported subset.

Keyword Description

tablespace Specifies the tablespace in which the index data table is created. Same
as TABLESPACE in the STORAGE clause of a CREATE TABLE
statement.

initial Is the same as INITIAL in the STORAGE clause of a CREATE TABLE
statement.

next Is the same as NEXT in the STORAGE clause of a CREATE TABLE
statement.

minextents Is the same as MINEXTENTS in the STORAGE clause of a CREATE
TABLE statement.

maxextents Is the same as MAXEXTENTS in the STORAGE clause of a CREATE
TABLE statement.

pctincrease Is the same as PCTINCREASE in the STORAGE clause of a CREATE
TABLE statement.

btree_initial Is the same as INITIAL in the STORAGE clause of a CREATE INDEX
statement in the case of a standard B-tree index. (Quadtree indexes
only.)

btree_next Is the same as NEXT in the STORAGE clause of a CREATE INDEX
statement in the case of a standard B-tree index. (Quadtree indexes
only.)

btree_pctincrease Is the same as PCTINCREASE in the STORAGE clause of a CREATE
INDEX statement in the case of a standard B-tree index. (Quadtree
indexes only.)
5-6 Oracle Spatial User’s Guide and Reference

ALTER INDEX REBUILD
Prerequisites
■ You must have EXECUTE privileges on the index type and its implementation

type.

■ The spatial index to be altered is not marked in-progress.

Usage Notes
An ALTER INDEX REBUILD ‘rebuild_params’ statement rebuilds the index using
supplied parameters. Spatial index creation involves creating and inserting index
data, for each row in the underlying table column being spatially indexed, into a
table with a prescribed format. The default, or normal, operation is that all rows in
the underlying table are processed before the insertion of index data is committed.
This requires adequate rollback segment space.

You may choose to commit index data after every n rows of the underlying table
have been processed. This is done by specifying SDO_COMMIT_INTERVAL = n.
The potential complication is that, if there is an error during index rebuild and if
periodic commit operations have taken place, then the spatial index will be in an
inconsistent state. The only recovery option is to use DROP INDEX (possibly with
the FORCE option) and CREATE INDEX statements after ensuring that the various
tablespaces are the required size and any other error conditions have been removed.

This statement does not use any previous parameters from the index creation. All
parameters should be specified for the index you want to rebuild.

See also the Usage Notes for the CREATE INDEX statement for usage information
about many of the available parameters.

Examples
The following example rebuilds OLDINDEX with an SDO_LEVEL value of 12.

ALTER INDEX oldindex REBUILD PARAMETERS(’sdo_level=12’);

Related Topics
■ CREATE INDEX

■ DROP INDEX
Indexing Statements 5-7

ALTER INDEX RENAME TO
ALTER INDEX RENAME TO

Syntax
ALTER INDEX [schema.]index RENAME TO <new_index_name>

Purpose
Alters the name of a spatial index.

Keywords and Parameters

Prerequisites
■ You must have EXECUTE privileges on the index type and its implementation

type.

■ The spatial index to be altered is not marked in-progress.

Usage Notes
The new_index_name string must not be longer than 18 characters.

Examples
The following example renames OLDINDEX to NEWINDEX.

ALTER INDEX oldindex RENAME TO newindex;

Related Topics
■ CREATE INDEX

■ DROP INDEX

new_index_name Specifies the new name of the index.
5-8 Oracle Spatial User’s Guide and Reference

CREATE INDEX
CREATE INDEX

Syntax
CREATE INDEX [schema.]<index_name> ON [schema.]<tableName> (column)

 INDEXTYPE IS MDSYS.SPATIAL_INDEX

 [PARAMETERS ‘index_params [physical_storage_params]’]);

Purpose
Creates a spatial index on a column of type MDSYS.SDO_GEOMETRY.

Keywords and Parameters

INDEX_PARAMS Determine the type (R-tree or quadtree; and for quadtree, fixed or
hybrid) and the characteristics of the spatial index.

Keyword Description

layer_gtype Specifies special processing for point data. (Quadtree indexes only.) If
the layer you are indexing is all points, set this parameter to POINT
for optimal performance.
Data type is VARCHAR2.

sdo_commit_
interval

Specifies the number of underlying table rows that are processed
between commit intervals for the index data. (Quadtree indexes only.)
The default behavior commits the index data only after all rows in the
underlying table have been processed. See the Usage Notes for further
details.
Data type is NUMBER.

sdo_fanout Specifies the fanout value, which reflects the node capacity of the
index tree. (R-tree indexes only.) If queries that use the index are likely
to return thousands of rows or more, you may want to specify a value
greater than the default, such as 50 or 60.
Data type is NUMBER. Default = 35.

sdo_indx_dims Specifies the number of dimensions to be indexed. (R-tree indexes
only.) For example, a value of 2 causes the first 2 dimensions to be
indexed. Must be less than or equal to the number of actual
dimensions (number of SDO_DIM_ELEMENT instances in the
dimensional array that describes the geometry objects in the column).
Data type is NUMBER. Default = number of actual dimensions.

sdo_level Specifies the desired fixed-size tiling level. (Quadtree indexes only.)
Data type is NUMBER.
Indexing Statements 5-9

CREATE INDEX
Prerequisites
■ All the current SQL CREATE INDEX prerequisites apply.

■ You must have EXECUTE privilege on the index type and its implementation
type.

sdo_numtiles Specifies the number of variable-sized tiles to be used in tessellating
an object. (Quadtree indexes only.)
Data type is NUMBER.

sdo_rtr_pctfree Specifies the minimum percentage of slots in each index tree node to
be left empty when the index is created. Slots that are left empty can
be filled later when new data is inserted into the table. (R-tree indexes
only.) The value can range from 0 to 50.
Data type is NUMBER. Default = 10.

PHYSICAL_
STORAGE_
PARAMS

Determines the storage parameters used for creating the spatial index
data table. A spatial index data table is a regular Oracle table with a
prescribed format. Not all physical_storage_params that are allowed
in the STORAGE clause of a CREATE TABLE statement are supported.
The following is a list of the supported subset.

Keyword Description

tablespace Specifies the tablespace in which the index data table is created. Same
as TABLESPACE in the STORAGE clause of a CREATE TABLE
statement.

initial Is the same as INITIAL in the STORAGE clause of a CREATE TABLE
statement.

next Is the same as NEXT in the STORAGE clause of a CREATE TABLE
statement.

minextents Is the same as MINEXTENTS in the STORAGE clause of a CREATE
TABLE statement.

maxextents Is the same as MAXEXTENTS in the STORAGE clause of a CREATE
TABLE statement.

pctincrease Is the same as PCTINCREASE in the STORAGE clause of a CREATE
TABLE statement.

btree_initial Is the same as INITIAL in the STORAGE clause of a CREATE INDEX
statement in the case of a standard B-tree index. (Quadtree indexes
only.)

btree_next Is the same as NEXT in the STORAGE clause of a CREATE INDEX
statement in the case of a standard B-tree index. (Quadtree indexes
only.)

btree_pctincrease Is the same as PCTINCREASE in the STORAGE clause of a CREATE
INDEX statement in the case of a standard B-tree index. (Quadtree
indexes only.)
5-10 Oracle Spatial User’s Guide and Reference

CREATE INDEX
■ The USER_SDO_GEOM_METADATA view must contain an entry with the
dimensions and coordinate boundary information for the table column to be
spatially indexed.

Usage Notes
For information about R-tree and quadtree indexes, see Section 1.7.

By default, an R-tree index is created if the index_params string does not contain the
sdo_level keyword or if the sdo_level value is zero (0). If the index_params string
contains the sdo_level keyword with a non-zero value, a quadtree index is created.
Some keywords apply only to R-tree or quadtree indexes, as noted in the Keywords
and Parameters section.

Before you create an R-tree index, be sure that the rollback segment size and the
SORT_AREA_SIZE parameter value are adequate, as described in Section 1.7.1.1.
See also the considerations and recommendations for certain R-tree index
parameters in Section 3.2.4.

For a quadtree index, the index_params string must contain either sdo_level or both
sdo_level and sdo_numtiles, and any values specified for these parameters must be
valid.

With an R-tree index on linear referencing system (LRS) data, the sdo_indx_dims
parameter must be used and must specify the number of dimensions minus one, so
as not to index the measure dimension. For example, if the dimensions are X, Y, and
M, specify sdo_indx_dims=2 to index only the X and Y dimensions, and not the
measure (M) dimension. (The LRS data model, including the measure dimension, is
explained in Section E.2.)

Other options available for regular indexes (such as ASC and DESC) are not
applicable for spatial indexes.

The index_name string must not be longer than 18 characters.

Default values for quadtree indexing:

■ sdo_numtiles must be supplied with a value greater than or equal to 1 to perform
hybrid indexing. If this parameter is not supplied, indexing with fixed-size tiles
is performed.

■ sdo_commit_interval does not allow spatial data to be committed at intervals.
Insertion of spatial index data is committed only at the end of the index creation
process. That is, it is committed after all rows in the underlying table have been
processed.
Indexing Statements 5-11

CREATE INDEX
The sdo_level value must be greater than zero.

If an sdo_numtiles value is specified, it might be overridden by the indexing
algorithm.

Spatial index creation involves creating and inserting index data, for each row in the
underlying table column being spatially indexed, into a table with a prescribed
format. The default, or normal, operation is that all rows in the underlying table are
processed before the insertion of index data is committed. This requires adequate
rollback segment space.

You may choose to commit index data after every n rows of the underlying table
have been processed. This is done by specifying SDO_COMMIT_INTERVAL = n.
The potential complication is that, if there is an error during index rebuild and if
periodic commit operations have taken place, then the spatial index will be in an
inconsistent state. The only recovery option is to use DROP INDEX (possibly with
the FORCE option) and CREATE INDEX statements after ensuring that the various
tablespaces are the required size and any other error conditions have been removed.

Interpretation of sdo_level and sdo_numtiles value combinations (quadtree indexing)
is shown in Table 5–2.

If a tablespace name is provided in the parameters clause, the user (underlying table
owner) must have appropriate privileges for that tablespace.

To determine if a CREATE INDEX statement for a spatial index has failed, check to
see if the DOMIDX_OPSTATUS column in the USER_INDEXES view is set to
FAILED. Note that this is different from the case of regular indexes, where you
check to see if the STATUS column in the USER_INDEXES view is set to FAILED.

Table 5–2 SDO_LEVEL and SDO_NUMTILES Combinations

SDO_LEVEL SDO_NUMTILES Action

Not specified or 0. Not specified or 0. R-tree index.

>= 1 Not specified or 0. Fixed indexing (indexing with fixed-size
tiles).

>= 1 >= 1 Hybrid indexing with fixed-size and
variable-sized tiles. The SDO_LEVEL
column defines the fixed tile size. The
SDO_NUMTILES column defines the
number of variable tiles to generate per
geometry.

Not specified or 0. >= 1 Not supported (error).
5-12 Oracle Spatial User’s Guide and Reference

CREATE INDEX
If the CREATE INDEX statement fails because of an invalid geometry, the ROWID
of the failed geometry is returned in an error message along with the reason for the
failure.

If the CREATE INDEX statement fails for any reason, then the DROP INDEX
statement must be used to clean up the partially built index and associated
metadata. If DROP INDEX does not work, add the FORCE parameter and try again.

Examples
The following example creates a spatial quadtree index named QTREE.

CREATE INDEX qtree ON POLY_4PT(geometry)
 INDEXTYPE IS MDSYS.SPATIAL_INDEX
 PARAMETERS(’sdo_numtiles=4 sdo_level=6
 sdo_commit_interval=500 tablespace=system initial=10K
 next=10K pctincrease=10 minextents=10 maxextents=20’);

Related Topics
■ ALTER INDEX

■ DROP INDEX
Indexing Statements 5-13

DROP INDEX
DROP INDEX

Syntax
DROP INDEX [schema.]index [FORCE]

Purpose
Deletes a spatial index.

Keywords and Parameters

Prerequisites
You must have EXECUTE privileges on the index type and its implementation type.

Usage Notes
Use DROP INDEX indexname FORCE to clean up after a failure in the CREATE
INDEX statement.

Examples
The following example deletes a spatial quadtree index named OLDINDEX and
forces the deletion to be performed even if the index is marked in-process or an
error occurs.

DROP INDEX oldindex FORCE

Related Topics
■ CREATE INDEX

FORCE Causes the spatial index to be deleted from the
system tables even if the index is marked
in-progress or some other error condition occurs.
5-14 Oracle Spatial User’s Guide and Reference

Spatial O
6

Spatial Operators

This chapter describes the operators used when working with the spatial object data
type. The operators are listed in Table 6–1.

Table 6–1 Spatial Usage Operators

Operator Description

SDO_FILTER Specifies which geometries may interact with a given
geometry.

SDO_NN Determines the nearest neighbor geometries to a geometry.

SDO_RELATE Determines whether or not two geometries interact in a
specified way.

SDO_WITHIN_DISTANCE Determines if two geometries are within a specified
Euclidean distance from one another.
perators 6-1

SDO_FILTER
SDO_FILTER

Format
SDO_FILTER(geometry1, geometry2, params);

Description
Uses the spatial index to identify either the set of spatial objects that are likely to
interact spatially with a given object (such as an area of interest), or pairs of spatial
objects that are likely to interact spatially. Objects interact spatially if they are not
disjoint.

This operator performs only a primary filter operation. The secondary filtering
operation, performed by the SDO_RELATE operator, can be used to determine with
certainty if objects interact spatially.

Keywords and Parameters

geometry1 Specifies a geometry column in a table. The column must be spatially indexed.
Data type is MDSYS.SDO_GEOMETRY.

geometry2 Specifies either a geometry from a table or a transient instance of a geometry.
(Specified using a bind variable or SDO_GEOMETRY constructor.)
Data type is MDSYS.SDO_GEOMETRY.

PARAMS Determines the behavior of the operator. Data type is VARCHAR2.

Keyword Description

querytype Specifies valid query types: WINDOW or JOIN. This is a required parameter.

WINDOW is recommended in almost all cases. WINDOW implies that a query
is performed for every geometry1 candidate geometry to be compared with
geometry2. WINDOW can be used to compare a single geometry (geometry2) to
all the geometries in a column (geometry1).

JOIN is rarely used. Use JOIN when you want to compare all the geometries of
a column to all the geometries of another column. JOIN implies that geometry2
refers to a table column that must have a spatial index built on it. (See the Usage
Notes for additional requirements.)

idxtab1 Specifies the name of the index table, if there are multiple spatial indexes, for
geometry1.

idxtab2 Specifies the name of the index table, if there are multiple spatial indexes, for
geometry2. Valid only if querytype is JOIN.
6-2 Oracle Spatial User’s Guide and Reference

SDO_FILTER
Returns
The expression SDO_FILTER(arg1, arg2, arg3) = ‘TRUE’ evaluates to TRUE for
object pairs that are non-disjoint, and FALSE otherwise.

Usage Notes
The operator must always be used in a WHERE clause and the condition that
includes the operator should be an expression of the form SDO_FILTER(arg1, arg2,
arg3) = ‘TRUE’.

If querytype is WINDOW, geometry2 can come from a table or be a transient SDO_
GEOMETRY object (such as a bind variable or SDO_GEOMETRY constructor).

■ If the geometry2 column is not spatially indexed, the operator indexes the query
window in memory and performance is very good.

■ If the geometry2 column is spatially indexed with the same SDO_LEVEL value
as the geometry1 column, the operator reuses the existing index, and
performance is very good or better.

■ If the geometry2 column is spatially indexed with a different SDO_LEVEL value
than the geometry1 column, the operator reindexes geometry2 in the same way as
if there were no index on the column originally, and then performance is very
good.

■ If two or more geometries from geometry2 are passed to the operator, the
ORDERED optimizer hint must be specified, and the table in geometry2 must be
specified first in the FROM clause.

If querytype is JOIN:

■ geometry2 must be a column in a table.

■ Both geometry1 and geometry2 must have the same type of index (R-tree or
quadtree). If the geometries have quadtree indexes, the indexes must have the
same sdo_level value.

layer_gtype Specifies special processing for point data.

If the columns you are comparing have only point data, set this parameter to
POINT for optimal performance.
Data type is VARCHAR2. Default = NOTPOINT.
Spatial Operators 6-3

SDO_FILTER
Examples
The following example selects the GID values from the POLYGONS table where the
GEOMETRY column objects are likely to interact spatially with the GEOMETRY
column object in the QUERY_POLYS table that has a GID value of 1.

SELECT A.gid
 FROM Polygons A, query_polys B
 WHERE B.gid = 1
 AND SDO_FILTER(A.Geometry, B.Geometry, ’querytype = WINDOW’) = ’TRUE’;

The following example selects the GID values from the POLYGONS table where the
GEOMETRY column object is likely to interact spatially with the geometry stored in
the aGeom variable.

Select A.Gid
 FROM Polygons A
 WHERE SDO_FILTER(A.Geometry, :aGeom, ’querytype=WINDOW’) = ’TRUE’;

The following example selects the GID values from the POLYGONS table where the
GEOMETRY column object is likely to interact spatially with the specified rectangle
having the lower-left coordinates (x1,y1) and the upper-right coordinates (x2, y2).

Select A.Gid
 FROM Polygons A
 WHERE SDO_FILTER(A.Geometry, mdsys.sdo_geometry(2003,NULL,NULL,
 mdsys.sdo_elem_info_array(1,1003,3),
 mdsys.sdo_ordinate_array(x1,y1,x2,y2)),
 ’querytype=WINDOW’) = ’TRUE’;

The following example selects the GID values from the POLYGONS table where the
GEOMETRY column object is likely to interact spatially with any GEOMETRY
column object in the QUERY_POLYS table. In this example, the ORDERED
optimizer hint is used and QUERY_POLYS (geometry2) table is specified first in the
FROM clause, because multiple geometries from geometry2 are involved (see the
Usage Notes)

SELECT /*+ ORDERED */
 A.gid
 FROM query_polys B, polygons A
 WHERE SDO_FILTER(A.Geometry, B.Geometry, ’querytype = WINDOW’) = ’TRUE’;

The following example selects the GID values from the POLYGONS table where the
GEOMETRY column object is likely to interact spatially with any GEOMETRY
column object in the QUERY_POLYS table. In this example, the QUERY_
POLYS.GEOMETRY column must be spatially indexed.
6-4 Oracle Spatial User’s Guide and Reference

SDO_FILTER
SELECT A.gid
 FROM Polygons A, query_polys B
 WHERE SDO_FILTER(A.Geometry, B.Geometry, ’querytype = JOIN’) = ’TRUE’;

Related Topics
■ SDO_RELATE
Spatial Operators 6-5

SDO_NN
SDO_NN

Format
SDO_NN(geometry1, geometry2, param);

Description
Uses the spatial index to identify the nearest neighbors for a geometry.

Keywords and Parameters

Returns
This operator returns the sdo_num_res number of objects from geometry1 that are
closest to geometry2 in the query. In determining how close two geometry objects
are, the shortest possible distance between any two points on the surface of each
object is used.

Usage Notes
The operator must always be used in a WHERE clause, and the condition that
includes the operator should be an expression of the form SDO_NN(arg1, arg2,
’sdo_num_res=<some_val>’) = ’TRUE’.

geometry1 Specifies a geometry column in a table. The column must be spatially
indexed.
Data type is MDSYS.SDO_GEOMETRY.

geometry2 Specifies either a geometry from a table or a transient instance of a
geometry. The nearest neighbor or neighbors to geometry2 will be
returned from geometry1. (geometry2 is specified using a bind variable or
SDO_GEOMETRY constructor.)
Data type is MDSYS.SDO_GEOMETRY.

PARAM Determines the behavior of the operator.
Data type is VARCHAR2.

Keyword Description

sdo_num_res Specifies the number of results (nearest neighbors). If not specified, the
default is 1.

For example: ’sdo_num_res=10’
6-6 Oracle Spatial User’s Guide and Reference

SDO_NN
You should not make any assumptions about the order of the returned results. For
example, the first of several returned objects is not guaranteed to be the one closest
to geometry2.

If two or more objects from geometry1 are an equal distance from geometry2, any of
the objects can be returned on any call to the function. For example, if item_a, item_b,
and item_c are closest to and equally distant from geometry2, and if SDO_NUM_
RES=2, two of those three objects are returned, but they can be any two of the three.

SDO_NN is not supported for spatial joins.

In some situations the SDN_NN operator will not use the spatial index unless an
optimizer hint forces the index to be used. This can occur when a query involves a
join; and if the optimizer hint is not used in such situations, an internal error occurs.
To prevent such errors, you should always specify an optimizer hint to use the
spatial index with the SDO_NN operator, regardless of how simple or complex the
query is. For example, the following excerpt from a query specifies to use the
COLA_SPATIAL_IDX index that is defined on the COLA_MARKETS table:

SELECT /*+ INDEX(cola_markets cola_spatial_idx) */
 c.mkt_id, c.name, ... FROM cola_markets c, ...;

For detailed information about using optimizer hints, see Oracle8i Performance
Guide and Reference.

Examples
The following example finds the two objects from the shape column in the COLA_
MARKETS table that are closest to a specified point (10,7). (The example uses the
definitions and data from Section 2.1.)

SELECT /*+ INDEX(cola_markets cola_spatial_idx) */
 c.mkt_id, c.name FROM cola_markets c WHERE SDO_NN(c.shape,
 mdsys.sdo_geometry(2001, NULL, mdsys.sdo_point_type(10,7,NULL), NULL,
 NULL), ’sdo_num_res=2’) = ’TRUE’;

 MKT_ID NAME
---------- --------------------------------
 4 cola_d
 2 cola_b

Related Topics
None.
Spatial Operators 6-7

SDO_RELATE
SDO_RELATE

Format
SDO_RELATE(geometry1, geometry2, params);

Description
Uses the spatial index to identify either the spatial objects that have a particular
spatial interaction with a given object such as an area of interest, or pairs of spatial
objects that have a particular spatial interaction.

This operator performs both primary and secondary filter operations.

Keywords and Parameters

geometry1 Specifies a geometry column in a table. The column must be spatially
indexed.
Data type is MDSYS.SDO_GEOMETRY.

geometry2 Specifies either a geometry from a table or a transient instance of a
geometry. (Specified using a bind variable or SDO_GEOMETRY
constructor.)
Data type is MDSYS.SDO_GEOMETRY.

PARAMS Determines the behavior of the operator.
Data type is VARCHAR2.

Keyword Description

mask Specifies the topological relation of interest. This is a required parameter.

Valid values are one or more of the following in the 9-intersection pattern:
TOUCH, OVERLAPBDYDISJOINT, OVERLAPBDYINTERSECT, EQUAL,
INSIDE, COVEREDBY, CONTAINS, COVERS, ANYINTERACT. Multiple
masks are combined with a the logical Boolean operator OR, for example,
’mask=inside+touch’; however, see the Usage Notes for an alternative
syntax using UNION ALL that may result in better performance. See
Section 1.8 for an explanation of the 9-intersection relationship pattern.
6-8 Oracle Spatial User’s Guide and Reference

SDO_RELATE
Returns
The expression SDO_RELATE(geometry1,geometry2, ’mask = <some_mask_val>
querytype = <some_querytype>’) = ’TRUE’ evaluates to TRUE for object pairs that
have the topological relationship specified by <some_mask_val>, and FALSE
otherwise.

Usage Notes
The operator must always be used in a WHERE clause, and the condition that
includes the operator should be an expression of the form SDO_RELATE(arg1, arg2,
’mask = <some_mask_val> querytype = <some_querytype>’) = ’TRUE’.

If querytype is WINDOW, geometry2 can come from a table or be a transient SDO_
GEOMETRY object (such as a bind variable or SDO_GEOMETRY constructor).

■ If the geometry2 column is not spatially indexed, the operator indexes the query
window in memory and performance is very good.

■ If the geometry2 column is spatially indexed with the same SDO_LEVEL value
as the geometry1 column, the operator reuses the existing index, and
performance is very good or better.

querytype Valid query types are: WINDOW or JOIN. This is a required parameter if
geometry2 is from another table, but it is not a required parameter if
geometry2 is a literal or a host variable.

WINDOW is recommended in almost all cases. WINDOW implies that a
query is performed for every geometry1 candidate geometry to be
compared with geometry2. WINDOW can be used to compare a single
geometry (geometry2) to all the geometries in a column (geometry1).

JOIN is rarely used. Use JOIN when you want to compare all the
geometries of a column to all the geometries of another column. JOIN
implies that geometry2 refers to a table column that must have a spatial
index built on it. (See the Usage Notes for additional requirements.)

idxtab1 Specifies the name of the index table, if there are multiple spatial indexes,
for geometry1.

idxtab2 Specifies the name of the index table, if there are multiple spatial indexes,
for geometry2. Only valid for ’querytype = JOIN’.

layer_gtype Specifies special processing for point data.

If the columns you are comparing have only point data, set this
parameter to POINT for optimal performance.
Data type is VARCHAR2. Default = NOTPOINT.
Spatial Operators 6-9

SDO_RELATE
■ If the geometry2 column is spatially indexed with a different SDO_LEVEL value
than the geometry1 column, the operator reindexes geometry2 in the same way as
if there were no index on the column originally, and then performance is very
good.

■ If two or more geometries from geometry2 are passed to the operator, the
ORDERED optimizer hint must be specified, and the table in geometry2 must be
specified first in the FROM clause.

If querytype is JOIN:

■ geometry2 must be a column in a table.

■ Both geometry1 and geometry2 must have the same type of index (R-tree or
quadtree). If the geometries have quadtree indexes, the indexes must have the
same sdo_level value.

Unlike with the SDO_GEOM.RELATE function, DISJOINT and DETERMINE masks
are not allowed in the relationship mask with the SDO_RELATE operator. This is
because SDO_RELATE uses the spatial index to find candidates that may interact,
and the information to satisfy DISJOINT or DETERMINE is not present in the
index.

Although multiple masks can be combined using the logical Boolean operator OR,
for example, ’mask=inside+coveredby’, better performance may result if the spatial
query specifies each mask individually and uses the UNION ALL syntax to
combine the results. This is due to internal optimizations that Spatial can apply
under certain conditions when masks are specified singly rather than grouped
within the same SDO_RELATE operator call. For example, the following query
using the logical Boolean operator OR to group multiple masks:

SELECT a.gid
 FROM polygons a, query_polys B
 WHERE B.gid = 1
 AND SDO_RELATE(A.Geometry, B.Geometry,
 ’mask=inside+coveredby querytype=WINDOW’) = ’TRUE’;

may result in better performance if it is expressed thus, using UNION ALL to
combine results of multiple SDO_RELATE operator calls, each with a single mask:

SELECT a.gid
 FROM polygons a, query_polys B
 WHERE B.gid = 1
 AND SDO_RELATE(A.Geometry, B.Geometry,
 ’mask=inside querytype=WINDOW’) = ’TRUE’
UNION ALL
6-10 Oracle Spatial User’s Guide and Reference

SDO_RELATE
SELECT a.gid
 FROM polygons a, query_polys B
 WHERE B.gid = 1
 AND SDO_RELATE(A.Geometry, B.Geometry,
 ’mask=coveredby querytype=WINDOW’) = ’TRUE’;

Examples
The following examples are similar to those for the SDO_FILTER operator; however,
they identify a specific type of interaction (using the mask parameter), and they
determine with certainty (not mere likelihood) if the spatial interaction occurs.

The following example selects the GID values from the POLYGONS table where the
GEOMETRY column objects have any spatial interaction with the GEOMETRY
column object in the QUERY_POLYS table that has a GID value of 1.

SELECT A.gid
 FROM Polygons A, query_polys B
 WHERE B.gid = 1
 AND SDO_RELATE(A.Geometry, B.Geometry,
 ’mask=ANYINTERACT querytype=WINDOW’) = ’TRUE’;

The following example selects the GID values from the POLYGONS table where a
GEOMETRY column object has any spatial interaction with the geometry stored in
the aGeom variable.

Select A.Gid
 FROM Polygons A
 WHERE SDO_RELATE(A.Geometry, :aGeom, ’mask=ANYINTERACT querytype=WINDOW’)
 = ’TRUE’;

The following example selects the GID values from the POLYGONS table where a
GEOMETRY column object has any spatial interaction with the specified rectangle
having the lower-left coordinates (x1,y1) and the upper-right coordinates (x2, y2).

Select A.Gid
 FROM Polygons A
 WHERE SDO_RELATE(A.Geometry, mdsys.sdo_geometry(2003,NULL,NULL,
 mdsys.sdo_elem_info_array(1,1003,3),
 mdsys.sdo_ordinate_array(x1,y1,x2,y2)),
 ’mask=ANYINTERACT querytype=WINDOW’) = ’TRUE’;

The following example selects the GID values from the POLYGONS table where the
GEOMETRY column object has any spatial interaction with any GEOMETRY
column object in the QUERY_POLYS table. In this example, the ORDERED
Spatial Operators 6-11

SDO_RELATE
optimizer hint is used and QUERY_POLYS (geometry2) table is specified first in the
FROM clause, because multiple geometries from geometry2 are involved (see the
Usage Notes).

SELECT /*+ ORDERED */
 A.gid
 FROM query_polys B, polygons A
 WHERE SDO_RELATE(A.Geometry, B.Geometry, ’querytype = WINDOW’) = ’TRUE’;

The following example selects the GID values from the POLYGONS table where a
GEOMETRY column object has any spatial interaction with any GEOMETRY
column object in the QUERY_POLYS table. In this example, the QUERY_
POLYS.GEOMETRY column must be spatially indexed.

SELECT A.gid
 FROM Polygons A, query_polys B
 WHERE SDO_RELATE(A.Geometry, B.Geometry,
 ’mask=ANYINTERACT querytype=JOIN’) = ’TRUE’;

Related Topics
■ SDO_FILTER

■ SDO_WITHIN_DISTANCE

■ SDO_GEOM.RELATE function
6-12 Oracle Spatial User’s Guide and Reference

SDO_WITHIN_DISTANCE
SDO_WITHIN_DISTANCE

Format
SDO_WITHIN_DISTANCE(T.column, aGeom, params);

Description
Uses the spatial index to identify the set of spatial objects that are within some
specified Euclidean distance of a given object (such as an area of interest or point of
interest).

Keywords and Parameters

T.column Specifies a geometry column in a table. The column has the set of
geometry objects that will be operated on to determine if they are
within the specified distance of the given object (aGeom). The column
must be spatially indexed.
Data type is MDSYS.SDO_GEOMETRY.

aGeom Specifies the object to be checked for distance against the geometry
objects in T.column. Specify either a geometry from a table (using a
bind variable) or a transient instance of a geometry (using the SDO_
GEOMETRY constructor).
Data type is MDSYS.SDO_GEOMETRY.

PARAMS Determines the behavior of the operator.
Data type is VARCHAR2.

Keyword Description

distance Specifies the Euclidean distance value. This is a required parameter.
Data type is NUMBER.

idxtab1 Specifies the name of the index table if there are multiple spatial index
tables for T.column.

querytype Set ’querytype=FILTER’ to perform only a primary filter operation. If
querytype is not specified, both primary and secondary filter
operations are performed (default).
Data type is VARCHAR2.

layer_gtype Allows special processing for point data.
If the objects in T.column have only point data, set this parameter to
POINT for optimal performance. Do not set this parameter to POINT
if T.column contains any n on-point objects.
Data type is VARCHAR2. Default = NOTPOINT.
Spatial Operators 6-13

SDO_WITHIN_DISTANCE
Returns
The expression SDO_WITHIN_DISTANCE(arg1, arg2, arg3) = ’TRUE’ evaluates to
TRUE for object pairs that are within the specified distance, and FALSE otherwise.

Usage Notes
Distance between two extended objects (nonpoint objects such as lines and
polygons) is defined as the minimum distance between these two objects. The
distance between two adjacent polygons is zero.

The operator must always be used in a WHERE clause and the condition that
includes the operator should be an expression of the form:

SDO_WITHIN_DISTANCE(arg1, arg2, ’distance = <some_dist_val>’) = ’TRUE’

T.column must have a spatial index built on it.

SDO_WITHIN_DISTANCE is not supported for spatial joins. See Section 4.2.3 for a
discussion on how to perform a spatial join within-distance operation.

Examples
The following example selects the GID values from the POLYGONS table where the
GEOMETRY column object is within 10 distance units of the geometry stored in the
aGeom variable.

SELECT A.GID
 FROM POLYGONS A
 WHERE
 SDO_WITHIN_DISTANCE(A.Geometry, :aGeom, ’distance = 10’) = ’TRUE’;

The following example selects the GID values from the POLYGONS table where the
GEOMETRY column object is within 10 distance units of the specified rectangle
having the lower-left coordinates (x1,y1) and the upper-right coordinates (x2, y2).

SELECT A.GID
 FROM POLYGONS A
 WHERE
 SDO_WITHIN_DISTANCE(A.Geometry, mdsys.sdo_geometry(2003,NULL,NULL,
 mdsys.sdo_elem_info_array(1,1003,3),
 mdsys.sdo_ordinate_array(x1,y1,x2,y2)),
 ’distance = 10’) = ’TRUE’;
6-14 Oracle Spatial User’s Guide and Reference

SDO_WITHIN_DISTANCE
The following example selects the GID values from the POLYGONS table where the
GID value in the QUERY_POINTS table is 1 and a POLYGONS.GEOMETRY object
is within 10 distance units of the QUERY_POINTS.GEOMETRY object.

SELECT A.GID
 FROM POLYGONS A, Query_Points B
 WHERE B.GID = 1 AND
 SDO_WITHIN_DISTANCE(A.Geometry, B.Geometry, ’distance = 10’) = ’TRUE’;

Related Topics
■ SDO_FILTER

■ SDO_RELATE
Spatial Operators 6-15

SDO_WITHIN_DISTANCE
6-16 Oracle Spatial User’s Guide and Reference

Geometry Fu
7

Geometry Functions

This chapter contains descriptions of the geometry functions, which can be grouped
into the following categories:

■ Relationship (True/False) between two objects: RELATE, WITHIN_DISTANCE

■ Validation: VALIDATE_GEOMETRY, VALIDATE_LAYER

■ Single-object operations: SDO_AREA, SDO_BUFFER, SDO_CENTROID, SDO_
CONVEXHULL, SDO_LENGTH, SDO_POINTONSURFACE

■ Two-object operations: SDO_DISTANCE, SDO_DIFFERENCE, SDO_
INTERSECTION, SDO_UNION, SDO_XOR

The geometry functions are listed Table 7–1, and some usage information follows
the table.

Table 7–1 Geometric Functions for the Object-Relational Model

Function Description

SDO_GEOM.RELATE Determines how two objects interact.

SDO_GEOM.SDO_AREA Computes the area of a two-dimensional
polygon.

SDO_GEOM.SDO_BUFFER Generates a buffer polygon around a geometry.

SDO_GEOM.SDO_CENTROID Returns the centroid of a polygon.

SDO_GEOM.SDO_CONVEXHULL Returns a polygon-type object that represents
the convex hull of a geometry object.

SDO_GEOM.SDO_DIFFERENCE Returns a geometry object that is the
topological difference (MINUS operation) of
two geometry objects.
nctions 7-1

The following usage information applies to the geometry functions. (See also the
Usage Notes under the reference information for each function.)

■ Certain combinations of input parameters and operations can return a null
value, that is, an empty geometry. For example, requesting the intersection of
two disjoint geometry objects returns a null value.

SDO_GEOM.SDO_DISTANCE Computes the distance between two geometry
objects.

SDO_GEOM.SDO_INTERSECTION Returns a geometry object that is the
topological intersection (AND operation) of
two geometry objects.

SDO_GEOM.SDO_LENGTH Computes the length or perimeter of a
geometry.

SDO_GEOM.SDO_POINTONSURFACE Returns a point that is guaranteed to be on the
surface of a polygon.

SDO_GEOM.SDO_UNION Returns a geometry object that is the
topological union (OR operation) of two
geometry objects.

SDO_GEOM.SDO_XOR Returns a geometry object that is the
topological symmetric difference (XOR
operation) of two geometry objects.

SDO_GEOM.VALIDATE_GEOMETRY Determines if a geometry is valid.

SDO_GEOM.VALIDATE_LAYER Determines if all the geometries stored in a
column are valid.

SDO_GEOM.WITHIN_DISTANCE Determines if two geometries are within a
specified Euclidean distance from one another.

Note: The SDO_POLY_xxx functions were deprecated at release
8.1.6 and have been removed from this guide. You should use
instead the corresponding generic (not restricted to polygons)
SDO_xxx functions: SDO_GEOM.SDO_DIFFERENCE, SDO_
GEOM.SDO_INTERSECTION, SDO_GEOM.SDO_UNION, and SDO_
GEOM.SDO_XOR.

Table 7–1 Geometric Functions for the Object-Relational Model (Cont.)

Function Description
7-2 Oracle Spatial User’s Guide and Reference

■ A null value (empty geometry) as an input parameter to a geometry function
(for example, SDO_GEOM.RELATE) produces an error.

■ Certain operations can return a geometry of a different type than one or both
input geometries. For example, the intersection of a line and an overlapping
polygon returns a line; the intersection of two lines returns a point; and the
intersection of two tangent polygons returns a line.
Geometry Functions 7-3

SDO_GEOM.RELATE
SDO_GEOM.RELATE

Format
SDO_GEOM.RELATE(

geom1 IN MDSYS.SDO_GEOMETRY,

dim1 IN MDSYS.SDO_DIM_ARRAY,

mask IN VARCHAR2,

geom2 IN MDSYS.SDO_GEOMETRY,

dim2 IN MDSYS.SDO_DIM_ARRAY

) RETURN VARCHAR2;

or

SDO_GEOM.RELATE(

geom1 IN MDSYS.SDO_GEOMETRY,

mask IN VARCHAR2,

geom2 IN MDSYS.SDO_GEOMETRY,

tolerance IN NUMBER

) RETURN VARCHAR2;

Description
Examines two geometry objects to determine their spatial relationship.

Parameters

geom1
Geometry object.

dim1
Dimensional information array corresponding to geom1, usually selected from one
of the xxx_SDO_GEOM_METADATA views (see Section 2.4).

mask
Specifies a list of relationships to check. See the list of keywords in the Usage Notes.
7-4 Oracle Spatial User’s Guide and Reference

SDO_GEOM.RELATE
geom2
Geometry object.

dim2
Dimensional information array corresponding to geom2, usually selected from one
of the xxx_SDO_GEOM_METADATA views (see Section 2.4).

tolerance
Tolerance value (see Section 1.5.4).

Usage Notes
The MDSYS.SDO_GEOM.RELATE function can return the following types of
answers:

■ If you pass a mask listing one or more relationships, the function returns the
name of the relationship if it is true for the pair of geometries. If all the
relationships are false, the procedure returns FALSE.

■ If you pass the DETERMINE keyword in mask, the function returns the one
relationship keyword that best matches the geometries. DETERMINE can only
be used when SDO_GEOM.RELATE is in the SELECT clause of the SQL
statement.

■ If you pass the ANYINTERACT keyword in mask, the function returns TRUE if
the two geometries are not disjoint.

The following mask relationships can be tested:

■ ANYINTERACT: Returns TRUE if the objects are not disjoint.

■ CONTAINS: Returns CONTAINS if the second object is entirely within the first
object and the object boundaries do not touch; otherwise, returns FALSE.

■ COVEREDBY: Returns COVEREDBY if the first object is entirely within the
second object and the object boundaries touch at one or more points; otherwise,
returns FALSE.

■ COVERS: Returns COVERS if the second object is entirely within the first object
and the boundaries touch in one or more places; otherwise, returns FALSE.

■ DISJOINT: Returns DISJOINT if the objects have no common boundary or
interior points; otherwise, returns FALSE.

■ EQUAL: Returns EQUAL if the objects share every point of their boundaries
and interior, including any holes in the objects; otherwise, returns FALSE.
Geometry Functions 7-5

SDO_GEOM.RELATE
■ INSIDE: Returns INSIDE if the first object is entirely within the second object
and the object boundaries do not touch; otherwise, returns FALSE.

■ OVERLAPBDYDISJOINT: Returns OVERLAPBDYDISJOINT if the objects
overlap, but their boundaries do not interact; otherwise, returns FALSE.

■ OVERLAPBDYINTERSECT: Returns OVERLAPBDYINTERSECT if the objects
overlap, and their boundaries intersect in one or more places; otherwise, returns
FALSE.

■ TOUCH: Returns TOUCH if the two objects share a common boundary point,
but no interior points; otherwise, returns FALSE.

Values for mask can be combined using the logical Boolean operator OR. For
example, ‘INSIDE + TOUCH’ returns ’INSIDE + TOUCH’ or ’FALSE’ depending on
the outcome of the test.

If the function format with tolerance is used, all geometry objects must be defined
using 4-digit SDO_GTYPE values (explained in Section 2.2.1).

Examples
The following example checks if there is any spatial interaction between geometry
objects cola_b and cola_d. (The example uses the definitions and data from
Section 2.1.)

SELECT SDO_GEOM.RELATE(
 c_b.shape, m.diminfo, ’anyinteract’, c_d.shape, m.diminfo)
 FROM cola_markets c_b, cola_markets c_d, user_sdo_geom_metadata m
 WHERE m.table_name = ’COLA_MARKETS’ AND m.column_name = ’SHAPE’
 AND c_b.name = ’cola_b’ AND c_d.name = ’cola_d’;

SDO_GEOM.RELATE(C_B.SHAPE,M.DIMINFO,’ANYINTERACT’,C_D.SHAPE,M.DIMINFO)
--
FALSE

Related Topics
 None.
7-6 Oracle Spatial User’s Guide and Reference

SDO_GEOM.SDO_AREA
SDO_GEOM.SDO_AREA

Format
SDO_GEOM.SDO_AREA(

geom IN MDSYS.SDO_GEOMETRY,

dim IN MDSYS.SDO_DIM_ARRAY

) RETURN NUMBER;

or

SDO_GEOM.SDO_AREA(

geom IN MDSYS.SDO_GEOMETRY,

tolerance IN NUMBER

) RETURN NUMBER;

Description
Returns the area of a two-dimensional polygon.

Parameters

geom
Geometry object.

dim
Dimensional information array corresponding to geom, usually selected from one of
the xxx_SDO_GEOM_METADATA views (see Section 2.4).

tolerance
Tolerance value (see Section 1.5.4).

Usage Notes
This function works with any polygon, including polygons with holes.

This function does not support the units parameter that is included with the
LOCATOR_WITHIN_DISTANCE operator of interMedia Locator, which is a
component of the Oracle interMedia product.
Geometry Functions 7-7

SDO_GEOM.SDO_AREA
If the function format with tolerance is used, all geometry objects must be defined
using 4-digit SDO_GTYPE values (explained in Section 2.2.1).

Examples
The following example returns the areas of geometry objects stored in the COLA_
MARKETS table. The first statement returns the areas all objects; the second returns
just the area of cola_a. (The example uses the definitions and data from Section 2.1.)

-- Return the areas of all cola markets.
SELECT c.name, SDO_GEOM.SDO_AREA(c.shape, m.diminfo)
 FROM cola_markets c, user_sdo_geom_metadata m
 WHERE m.table_name = ’COLA_MARKETS’ AND m.column_name = ’SHAPE’;

NAME SDO_GEOM.SDO_AREA(C.SHAPE,M.DIMINFO)
-------------------------------- ------------------------------------
cola_a 24
cola_b 16.5
cola_c 5
cola_d 12.5663706

-- Return the area of just cola_a.
SELECT c.name, SDO_GEOM.SDO_AREA(c.shape, m.diminfo)
 FROM cola_markets c, user_sdo_geom_metadata m
 WHERE m.table_name = ’COLA_MARKETS’ AND m.column_name = ’SHAPE’
 AND c.name = ’cola_a’;

NAME SDO_GEOM.SDO_AREA(C.SHAPE,M.DIMINFO)
-------------------------------- ------------------------------------
cola_a 24

Related Topics
None.
7-8 Oracle Spatial User’s Guide and Reference

SDO_GEOM.SDO_BUFFER
SDO_GEOM.SDO_BUFFER

Format
SDO_GEOM.SDO_BUFFER(

geom IN MDSYS.SDO_GEOMETRY,

dim IN MDSYS.SDO_DIM_ARRAY,

distance IN NUMBER,

) RETURN MDSYS.SDO_GEOMETRY;

or

SDO_GEOM.SDO_BUFFER(

geom IN MDSYS.SDO_GEOMETRY,

distance IN NUMBER,

tolerance IN NUMBER

) RETURN MDSYS.SDO_GEOMETRY;

Description
Generates a buffer polygon around a geometry object.

Parameters

geom
Geometry object.

dim
Dimensional information array corresponding to geom, usually selected from one of
the xxx_SDO_GEOM_METADATA views (see Section 2.4).

distance
Euclidean distance value.

tolerance
Tolerance value (see Section 1.5.4).
Geometry Functions 7-9

SDO_GEOM.SDO_BUFFER
Usage Notes
This function returns a geometry object representing the buffer polygon.

This function creates a rounded buffer around a point, line, or polygon. The buffer
within a void is also rounded, and is the same distance from the inner boundary as
the outer buffer is from the outer boundary. See Figure 1–11 for an illustration.

If the function format with tolerance is used, all geometry objects must be defined
using 4-digit SDO_GTYPE values (explained in Section 2.2.1).

This function does not support the units parameter that is included with the
LOCATOR_WITHIN_DISTANCE operator of interMedia Locator, which is a
component of the Oracle interMedia product.

Examples
The following example returns a polygon representing a buffer of 1 around cola_a.
Note the "rounded" corners (for example, at .292893219,.292893219) in the returned
polygon. (The example uses the definitions and data from Section 2.1.)

-- Generate a buffer of 1 unit around a geometry.
SELECT c.name, SDO_GEOM.SDO_BUFFER(c.shape, m.diminfo, 1)
 FROM cola_markets c, user_sdo_geom_metadata m
 WHERE m.table_name = ’COLA_MARKETS’ AND m.column_name = ’SHAPE’
 AND c.name = ’cola_a’;

NAME

SDO_GEOM.SDO_BUFFER(C.SHAPE,M.DIMINFO,1)(SDO_GTYPE, SDO_SRID, SDO_POINT(X, Y, Z)
--
cola_a
SDO_GEOMETRY(2003, NULL, NULL, SDO_ELEM_INFO_ARRAY(1, 1005, 8, 1, 2, 2, 5, 2, 1,
 7, 2, 2, 11, 2, 1, 13, 2, 2, 17, 2, 1, 19, 2, 2, 23, 2, 1), SDO_ORDINATE_ARRAY(
0, 1, .292893219, .292893219, 1, 0, 5, 0, 5.70710678, .292893219, 6, 1, 6, 7, 5.
70710678, 7.70710678, 5, 8, 1, 8, .292893219, 7.70710678, 0, 7, 0, 1))

Related Topics
■ SDO_TUNE.EXTENT_OF

■ SDO_GEOM.SDO_UNION

■ SDO_GEOM.SDO_INTERSECTION

■ SDO_GEOM.SDO_UNION

■ SDO_GEOM.SDO_XOR
7-10 Oracle Spatial User’s Guide and Reference

SDO_GEOM.SDO_CENTROID
SDO_GEOM.SDO_CENTROID

Format
SDO_GEOM.SDO_CENTROID(

geom IN MDSYS.SDO_GEOMETRY,

dim IN MDSYS.SDO_DIM_ARRAY

) RETURN MDSYS.SDO_GEOMETRY;

or

SDO_GEOM.SDO_CENTROID(

geom IN MDSYS.SDO_GEOMETRY,

tolerance IN NUMBER

) RETURN MDSYS.SDO_GEOMETRY;

Description
Returns the centroid of a polygon. (The centroid is also known as the "center of
gravity.")

Parameters

geom
Geometry object.

dim
Dimensional information array corresponding to geom, usually selected from one of
the xxx_SDO_GEOM_METADATA views (see Section 2.4).

tolerance
Tolerance value (see Section 1.5.4).

Usage Notes
This function returns a null value if geom is not a polygon or if geom is a
multipolygon.
Geometry Functions 7-11

SDO_GEOM.SDO_CENTROID
If the function format with tolerance is used, all geometry objects must be defined
using 4-digit SDO_GTYPE values (explained in Section 2.2.1).

Examples
The following example returns a geometry object that is the centroid of cola_c. (The
example uses the definitions and data from Section 2.1.)

-- Return the centroid of a geometry.
SELECT c.name, SDO_GEOM.SDO_CENTROID(c.shape, m.diminfo)
 FROM cola_markets c, user_sdo_geom_metadata m
 WHERE m.table_name = ’COLA_MARKETS’ AND m.column_name = ’SHAPE’
 AND c.name = ’cola_c’;

NAME

SDO_GEOM.SDO_CENTROID(C.SHAPE,M.DIMINFO)(SDO_GTYPE, SDO_SRID, SDO_POINT(X, Y, Z)
--
cola_c
SDO_GEOMETRY(2001, NULL, NULL, SDO_ELEM_INFO_ARRAY(1, 1, 1), SDO_ORDINATE_ARRAY(
4.73333333, 3.93333333))

Related Topics
None.
7-12 Oracle Spatial User’s Guide and Reference

SDO_GEOM.SDO_CONVEXHULL
SDO_GEOM.SDO_CONVEXHULL

 Format
SDO_GEOM.SDO_CONVEXHULL(

geom IN MDSYS.SDO_GEOMETRY,

dim IN MDSYS.SDO_DIM_ARRAY

) RETURN MDSYS.SDO_GEOMETRY;

or

SDO_GEOM.SDO_CONVEXHULL(

geom IN MDSYS.SDO_GEOMETRY,

tolerance IN NUMBER

) RETURN MDSYS.SDO_GEOMETRY;

Description
Returns a polygon-type object that represents the convex hull of a geometry object.

Parameters

geom
Geometry object.

dim
Dimensional information array corresponding to geom, usually selected from one of
the xxx_SDO_GEOM_METADATA views (see Section 2.4).

tolerance
Tolerance value (see Section 1.5.4).

Usage Notes
The convex hull is a simple convex polygon that completely encloses the geometry
object. Spatial uses as few straight-line sides as possible to create the smallest
polygon that completely encloses the specified object. A convex hull is a convenient
way to get an approximation of a complex geometry object.
Geometry Functions 7-13

SDO_GEOM.SDO_CONVEXHULL
The geometry object (geom) cannot be a circle.

This function returns a null value if geom is of point type or has fewer than three
points or vertices.

If the function format with tolerance is used, all geometry objects must be defined
using 4-digit SDO_GTYPE values (explained in Section 2.2.1).

Examples
The following example returns a geometry object that is the convex hull of cola_c
(The example uses the definitions and data from Section 2.1. This specific example,
however, does not produce useful output -- the returned polygon is identical to the
input polygon -- because the input polygon is already a simple convex polygon.)

-- Return the convex hull of a polygon.
SELECT c.name, SDO_GEOM.SDO_CONVEXHULL(c.shape, m.diminfo)
 FROM cola_markets c, user_sdo_geom_metadata m
 WHERE m.table_name = ’COLA_MARKETS’ AND m.column_name = ’SHAPE’
 AND c.name = ’cola_c’;

NAME

SDO_GEOM.SDO_CONVEXHULL(C.SHAPE,M.DIMINFO)(SDO_GTYPE, SDO_SRID, SDO_POINT(X, Y,
--
cola_c
SDO_GEOMETRY(2003, NULL, NULL, SDO_ELEM_INFO_ARRAY(1, 1003, 1), SDO_ORDINATE_ARR
AY(6, 3, 6, 5, 4, 5, 3, 3, 6, 3))

Related Topics
None.
7-14 Oracle Spatial User’s Guide and Reference

SDO_GEOM.SDO_DIFFERENCE
SDO_GEOM.SDO_DIFFERENCE

 Format
SDO_GEOM.SDO_DIFFERENCE(

geom1 IN MDSYS.SDO_GEOMETRY,

dim1 IN MDSYS.SDO_DIM_ARRAY,

geom2 IN MDSYS.SDO_GEOMETRY,

dim2 IN MDSYS.SDO_DIM_ARRAY

) RETURN MDSYS.SDO_GEOMETRY;

or

SDO_GEOM.SDO_DIFFERENCE(

geom1 IN MDSYS.SDO_GEOMETRY,

geom2 IN MDSYS.SDO_GEOMETRY,

tolerance IN NUMBER

) RETURN MDSYS.SDO_GEOMETRY;

Description
Returns a geometry object that is the topological difference (MINUS operation) of
two geometry objects.

Parameters

geom1
Geometry object.

dim1
Dimensional information array corresponding to geom1, usually selected from one
of the xxx_SDO_GEOM_METADATA views (see Section 2.4).

geom2
Geometry object.
Geometry Functions 7-15

SDO_GEOM.SDO_DIFFERENCE
dim2
Dimensional information array corresponding to geom2, usually selected from one
of the xxx_SDO_GEOM_METADATA views (see Section 2.4).

tolerance
Tolerance value (see Section 1.5.4).

Usage Notes
In Figure 7–1, the shaded area represents the polygon returned when SDO_
DIFFERENCE is used with a square (geom1) and another polygon (geom2).

Figure 7–1 SDO_GEOM.SDO_DIFFERENCE

If the function format with tolerance is used, all geometry objects must be defined
using 4-digit SDO_GTYPE values (explained in Section 2.2.1).

You should use this function instead of the deprecated function SDO_GEOM.SDO_
POLY_DIFFERENCE.

Examples
The following example returns a geometry object that is the topological difference
(MINUS operation) of cola_a and cola_c. (The example uses the definitions and data
from Section 2.1.)

-- Return the topological difference of two geometries.
SELECT SDO_GEOM.SDO_DIFFERENCE(c_a.shape, m.diminfo, c_c.shape, m.diminfo)
 FROM cola_markets c_a, cola_markets c_c, user_sdo_geom_metadata m
 WHERE m.table_name = ’COLA_MARKETS’ AND m.column_name = ’SHAPE’

geom1
geom2

7-16 Oracle Spatial User’s Guide and Reference

SDO_GEOM.SDO_DIFFERENCE
 AND c_a.name = ’cola_a’ AND c_c.name = ’cola_c’;

SDO_GEOM.SDO_DIFFERENCE(C_A.SHAPE,M.DIMINFO,C_C.SHAPE,M.DIMINFO)(SDO_GTYPE, SDO_
--
SDO_GEOMETRY(2003, NULL, NULL, SDO_ELEM_INFO_ARRAY(1, 1003, 1), SDO_ORDINATE_ARR
AY(1, 7, 1, 1, 5, 1, 5, 3, 3, 3, 4, 5, 5, 5, 5, 7, 1, 7)

Note that in the returned polygon, the SDO_ORDINATE_ARRAY starts and ends at
the same point (1, 7).

Related Topics
■ SDO_GEOM.SDO_INTERSECTION

■ SDO_GEOM.SDO_UNION

■ SDO_GEOM.SDO_XOR
Geometry Functions 7-17

SDO_GEOM.SDO_DISTANCE
SDO_GEOM.SDO_DISTANCE

 Format
SDO_GEOM.SDO_DISTANCE(

geom1 IN MDSYS.SDO_GEOMETRY,

dim1 IN MDSYS.SDO_DIM_ARRAY,

geom2 IN MDSYS.SDO_GEOMETRY,

dim2 IN MDSYS.SDO_DIM_ARRAY

) RETURN NUMBER;

or

SDO_GEOM.SDO_DISTANCE(

geom1 IN MDSYS.SDO_GEOMETRY,

geom2 IN MDSYS.SDO_GEOMETRY,

tolerance IN NUMBER

) RETURN NUMBER;

Description
Computes the distance between two geometry objects. The distance between two
geometry objects is the distance between the closest pair of points or segments of
the two objects.

Parameters

geom1
Geometry object whose distance from geom2 is to be computed.

dim1
Dimensional information array corresponding to geom1, usually selected from one
of the xxx_SDO_GEOM_METADATA views (see Section 2.4).

geom2
Geometry object whose distance from geom1 is to be computed.
7-18 Oracle Spatial User’s Guide and Reference

SDO_GEOM.SDO_DISTANCE
dim2
Dimensional information array corresponding to geom2, usually selected from one
of the xxx_SDO_GEOM_METADATA views (see Section 2.4).

tolerance
Tolerance value (see Section 1.5.4).

Usage Notes
This function does not support the units parameter that is included with the
LOCATOR_WITHIN_DISTANCE operator of interMedia Locator, which is a
component of the Oracle interMedia product.

If the function format with tolerance is used, all geometry objects must be defined
using 4-digit SDO_GTYPE values (explained in Section 2.2.1).

Examples
The following example returns the shortest distance between cola_b and cola_d. (The
example uses the definitions and data from Section 2.1.)

-- Return the distance between two geometries.
SELECT SDO_GEOM.SDO_DISTANCE(c_b.shape, m.diminfo, c_d.shape, m.diminfo)
 FROM cola_markets c_b, cola_markets c_d, user_sdo_geom_metadata m
 WHERE m.table_name = ’COLA_MARKETS’ AND m.column_name = ’SHAPE’
 AND c_b.name = ’cola_b’ AND c_d.name = ’cola_d’;

SDO_GEOM.SDO_DISTANCE(C_B.SHAPE,M.DIMINFO,C_D.SHAPE,M.DIMINFO)
--
 .846049894

Related Topics
■ SDO_GEOM.WITHIN_DISTANCE
Geometry Functions 7-19

SDO_GEOM.SDO_INTERSECTION
SDO_GEOM.SDO_INTERSECTION

 Format
SDO_GEOM.SDO_INTERSECTION(

geom1 IN MDSYS.SDO_GEOMETRY,

dim1 IN MDSYS.SDO_DIM_ARRAY,

geom2 IN MDSYS.SDO_GEOMETRY,

dim2 IN MDSYS.SDO_DIM_ARRAY

) RETURN MDSYS.SDO_GEOMETRY;

or

SDO_GEOM.SDO_INTERSECTION(

geom1 IN MDSYS.SDO_GEOMETRY,

geom2 IN MDSYS.SDO_GEOMETRY,

tolerance IN NUMBER

) RETURN MDSYS.SDO_GEOMETRY;

Description
Returns a geometry object that is the topological intersection (AND operation) of
two geometry objects.

Parameters

geom1
Geometry object.

dim1
Dimensional information array corresponding to geom1, usually selected from one
of the xxx_SDO_GEOM_METADATA views (see Section 2.4).

geom2
Geometry object.
7-20 Oracle Spatial User’s Guide and Reference

SDO_GEOM.SDO_INTERSECTION
dim2
Dimensional information array corresponding to geom2, usually selected from one
of the xxx_SDO_GEOM_METADATA views (see Section 2.4).

tolerance
Tolerance value (see Section 1.5.4).

Usage Notes
In Figure 7–2, the shaded area represents the polygon returned when SDO_
INTERSECTION is used with a square (geom1) and another polygon (geom2).

Figure 7–2 SDO_GEOM.SDO_INTERSECTION

If the function format with tolerance is used, all geometry objects must be defined
using 4-digit SDO_GTYPE values (explained in Section 2.2.1).

You should use this function instead of the deprecated function SDO_GEOM.SDO_
POLY_INTERSECTION.

Examples
The following example returns a geometry object that is the topological intersection
(AND operation) of cola_a and cola_c. (The example uses the definitions and data
from Section 2.1.)

-- Return the topological intersection of two geometries.
SELECT SDO_GEOM.SDO_INTERSECTION(c_a.shape, m.diminfo, c_c.shape, m.diminfo)
 FROM cola_markets c_a, cola_markets c_c, user_sdo_geom_metadata m
 WHERE m.table_name = ’COLA_MARKETS’ AND m.column_name = ’SHAPE’

geom1
geom2
Geometry Functions 7-21

SDO_GEOM.SDO_INTERSECTION
 AND c_a.name = ’cola_a’ AND c_c.name = ’cola_c’;

SDO_GEOM.SDO_INTERSECTION(C_A.SHAPE,M.DIMINFO,C_C.SHAPE,M.DIMINFO)(SDO_GTYPE, SD
--
SDO_GEOMETRY(2003, NULL, NULL, SDO_ELEM_INFO_ARRAY(1, 1003, 1), SDO_ORDINATE_ARR
AY(4, 5, 3, 3, 5, 3, 5, 5, 4, 5))

Note that in the returned polygon, the SDO_ORDINATE_ARRAY starts and ends at
the same point (4, 5).

Related Topics
■ SDO_GEOM.SDO_DIFFERENCE

■ SDO_GEOM.SDO_UNION

■ SDO_GEOM.SDO_XOR
7-22 Oracle Spatial User’s Guide and Reference

SDO_GEOM.SDO_LENGTH
SDO_GEOM.SDO_LENGTH

 Format
SDO_GEOM.SDO_LENGTH(

geom IN MDSYS.SDO_GEOMETRY,

dim IN MDSYS.SDO_DIM_ARRAY

) RETURN NUMBER;

or

SDO_GEOM.SDO_LENGTH(

geom IN MDSYS.SDO_GEOMETRY,

tolerance IN NUMBER

) RETURN NUMBER;

Description
Returns the length or perimeter of a geometry object.

Parameters

geom
Geometry object.

dim
Dimensional information array corresponding to geom, usually selected from one of
the xxx_SDO_GEOM_METADATA views (see Section 2.4).

tolerance
Tolerance value (see Section 1.5.4).

Usage Notes
If the input polygon contains one or more holes, this function calculates the
perimeters of the exterior boundary and all holes. It returns the sum of all the
perimeters.
Geometry Functions 7-23

SDO_GEOM.SDO_LENGTH
If the function format with tolerance is used, all geometry objects must be defined
using 4-digit SDO_GTYPE values (explained in Section 2.2.1).

This function does not support the units parameter that is included with the
LOCATOR_WITHIN_DISTANCE operator of interMedia Locator, which is a
component of the Oracle interMedia product.

Examples
The following example returns the perimeters of geometry objects stored in the
COLA_MARKETS table. The first statement returns the perimeters of all objects; the
second returns just the perimeter of cola_a. (The example uses the definitions and
data from Section 2.1.)

-- Return the perimeters of all cola markets.
SELECT c.name, SDO_GEOM.SDO_LENGTH(c.shape, m.diminfo)
 FROM cola_markets c, user_sdo_geom_metadata m
 WHERE m.table_name = ’COLA_MARKETS’ AND m.column_name = ’SHAPE’;

NAME SDO_GEOM.SDO_LENGTH(C.SHAPE,M.DIMINFO)
-------------------------------- --------------------------------------
cola_a 20
cola_b 17.1622777
cola_c 9.23606798
cola_d 12.5663706

-- Return the perimeter of just cola_a.
SELECT c.name, SDO_GEOM.SDO_LENGTH(c.shape, m.diminfo)
 FROM cola_markets c, user_sdo_geom_metadata m
 WHERE m.table_name = ’COLA_MARKETS’ AND m.column_name = ’SHAPE’
 AND c.name = ’cola_a’;

NAME SDO_GEOM.SDO_LENGTH(C.SHAPE,M.DIMINFO)
-------------------------------- --------------------------------------
cola_a 20

Related Topics
None.
7-24 Oracle Spatial User’s Guide and Reference

SDO_GEOM.SDO_POINTONSURFACE
SDO_GEOM.SDO_POINTONSURFACE

Format
SDO_GEOM.SDO_POINTONSURFACE(

geom IN MDSYS.SDO_GEOMETRY,

dim IN MDSYS.SDO_DIM_ARRAY

) RETURN MDSYS.SDO_GEOMETRY;

or

SDO_GEOM.SDO_POINTONSURFACE(

geom IN MDSYS.SDO_GEOMETRY,

tolerance IN NUMBER

) RETURN MDSYS.SDO_GEOMETRY;

Description
Returns a point that is guaranteed to be on the surface of a polygon geometry
object.

Parameters

geom
Polygon geometry object.

dim
Dimensional information array corresponding to geom, usually selected from one of
the xxx_SDO_GEOM_METADATA views (see Section 2.4).

tolerance
Tolerance value (see Section 1.5.4).

Usage Notes
This function returns a point geometry object representing a point that is
guaranteed to be on the surface of geom.
Geometry Functions 7-25

SDO_GEOM.SDO_POINTONSURFACE
The returned point can be any point on the surface. You should not make any
assumptions about where on the surface the returned point is, or about whether the
point is the same or different when the function is called multiple times with the
same input parameter values.

If the function format with tolerance is used, all geometry objects must be defined
using 4-digit SDO_GTYPE values (explained in Section 2.2.1).

Examples
The following example returns a geometry object that is a point on the surface of
cola_a. (The example uses the definitions and data from Section 2.1.)

-- Return a point on the surface of a geometry.
SELECT SDO_GEOM.SDO_POINTONSURFACE(c.shape, m.diminfo)
 FROM cola_markets c, user_sdo_geom_metadata m
 WHERE m.table_name = ’COLA_MARKETS’ AND m.column_name = ’SHAPE’
 AND c.name = ’cola_a’;

SDO_GEOM.SDO_POINTONSURFACE(C.SHAPE,M.DIMINFO)(SDO_GTYPE, SDO_SRID, SDO_POINT(X,
--
SDO_GEOMETRY(2001, NULL, NULL, SDO_ELEM_INFO_ARRAY(1, 1, 1), SDO_ORDINATE_ARRAY(
1, 1))

Related Topics
None.
7-26 Oracle Spatial User’s Guide and Reference

SDO_GEOM.SDO_UNION
SDO_GEOM.SDO_UNION

 Format
SDO_GEOM.SDO_UNION(

geom1 IN MDSYS.SDO_GEOMETRY,

dim1 IN MDSYS.SDO_DIM_ARRAY,

geom2 IN MDSYS.SDO_GEOMETRY,

dim2 IN MDSYS.SDO_DIM_ARRAY

) RETURN MDSYS.SDO_GEOMETRY;

or

SDO_GEOM.SDO_UNION(

geom1 IN MDSYS.SDO_GEOMETRY,

geom2 IN MDSYS.SDO_GEOMETRY,

tolerance IN NUMBER

) RETURN MDSYS.SDO_GEOMETRY;

Description
Returns a geometry object that is the topological union (OR operation) of two
geometry objects.

Parameters

geom1
Geometry object.

dim1
Dimensional information array corresponding to geom1, usually selected from one
of the xxx_SDO_GEOM_METADATA views (see Section 2.4).

geom2
Geometry object.
Geometry Functions 7-27

SDO_GEOM.SDO_UNION
dim2
Dimensional information array corresponding to geom2, usually selected from one
of the xxx_SDO_GEOM_METADATA views (see Section 2.4).

tolerance
Tolerance value (see Section 1.5.4).

Usage Notes
In Figure 7–3, the shaded area represents the polygon returned when SDO_UNION
is used with a square (geom1) and another polygon (geom2).

Figure 7–3 SDO_GEOM.SDO_UNION

If the function format with tolerance is used, all geometry objects must be defined
using 4-digit SDO_GTYPE values (explained in Section 2.2.1).

You should use this function instead of the deprecated function SDO_GEOM.SDO_
POLY_UNION.

Examples
The following example returns a geometry object that is the topological union (OR
operation) of cola_a and cola_c. (The example uses the definitions and data from
Section 2.1.)

-- Return the topological intersection of two geometries.
SELECT SDO_GEOM.SDO_UNION(c_a.shape, m.diminfo, c_c.shape, m.diminfo)
 FROM cola_markets c_a, cola_markets c_c, user_sdo_geom_metadata m
 WHERE m.table_name = ’COLA_MARKETS’ AND m.column_name = ’SHAPE’

geom1
geom2
7-28 Oracle Spatial User’s Guide and Reference

SDO_GEOM.SDO_UNION
 AND c_a.name = ’cola_a’ AND c_c.name = ’cola_c’;

SDO_GEOM.SDO_UNION(C_A.SHAPE,M.DIMINFO,C_C.SHAPE,M.DIMINFO)(SDO_GTYPE, SDO_SRID,
--
SDO_GEOMETRY(2003, NULL, NULL, SDO_ELEM_INFO_ARRAY(1, 1003, 1), SDO_ORDINATE_ARR
AY(5, 5, 5, 7, 1, 7, 1, 1, 5, 1, 5, 3, 6, 3, 6, 5, 5, 5))

Note that in the returned polygon, the SDO_ORDINATE_ARRAY starts and ends at
the same point (5, 5).

Related Topics
■ SDO_GEOM.SDO_DIFFERENCE

■ SDO_GEOM.SDO_INTERSECTION

■ SDO_GEOM.SDO_XOR
Geometry Functions 7-29

SDO_GEOM.SDO_XOR
SDO_GEOM.SDO_XOR

 Format
SDO_GEOM.SDO_XOR(

geom1 IN MDSYS.SDO_XOR,

dim1 IN MDSYS.SDO_DIM_ARRAY,

geom2 IN MDSYS.SDO_GEOMETRY,

dim2 IN MDSYS.SDO_DIM_ARRAY

) RETURN MDSYS.SDO_GEOMETRY;

or

SDO_GEOM.SDO_XOR(

geom1 IN MDSYS.SDO_GEOMETRY,

geom2 IN MDSYS.SDO_GEOMETRY,

tolerance IN NUMBER

) RETURN MDSYS.SDO_GEOMETRY;

Description
Returns a geometry object that is the topological symmetric difference (XOR
operation) of two geometry objects.

Parameters

geom1
Geometry object.

dim1
Dimensional information array corresponding to geom1, usually selected from one
of the xxx_SDO_GEOM_METADATA views (see Section 2.4).

geom2
Geometry object.
7-30 Oracle Spatial User’s Guide and Reference

SDO_GEOM.SDO_XOR
dim2
Dimensional information array corresponding to geom2, usually selected from one
of the xxx_SDO_GEOM_METADATA views (see Section 2.4).

tolerance
Tolerance value (see Section 1.5.4).

Usage Notes
In Figure 7–4, the shaded area represents the polygon returned when SDO_XOR is
used with a square (geom1) and another polygon (geom2).

Figure 7–4 SDO_GEOM.SDO_XOR

If the function format with tolerance is used, all geometry objects must be defined
using 4-digit SDO_GTYPE values (explained in Section 2.2.1).

You should use this function instead of the deprecated function SDO_GEOM.SDO_
POLY_XOR.

Examples
The following example returns a geometry object that is the topological symmetric
difference (XOR operation) of cola_a and cola_c. (The example uses the definitions
and data from Section 2.1.)

-- Return the topological symmetric difference of two geometries.
SELECT SDO_GEOM.SDO_XOR(c_a.shape, m.diminfo, c_c.shape, m.diminfo)
 FROM cola_markets c_a, cola_markets c_c, user_sdo_geom_metadata m
 WHERE m.table_name = ’COLA_MARKETS’ AND m.column_name = ’SHAPE’

geom1
geom2
Geometry Functions 7-31

SDO_GEOM.SDO_XOR
 AND c_a.name = ’cola_a’ AND c_c.name = ’cola_c’;

SDO_GEOM.SDO_XOR(C_A.SHAPE,M.DIMINFO,C_C.SHAPE,M.DIMINFO)(SDO_GTYPE, SDO_SRID, S
--
SDO_GEOMETRY(2007, NULL, NULL, SDO_ELEM_INFO_ARRAY(1, 1003, 1, 11, 1003, 1), SDO
_ORDINATE_ARRAY(5, 5, 5, 3, 6, 3, 6, 5, 5, 5, 1, 7, 1, 1, 5, 1, 5, 3, 3, 3, 4, 5
, 5, 5, 5, 7, 1, 7))

Note that in the returned polygon is a multipolygon (SDO_GTYPE = 2007), and the
SDO_ORDINATE_ARRAY describes two polygons: one starting and ending at (5, 5)
and the other starting and ending at (1, 7).

Related Topics
■ SDO_GEOM.SDO_DIFFERENCE

■ SDO_GEOM.SDO_INTERSECTION

■ SDO_GEOM.SDO_UNION
7-32 Oracle Spatial User’s Guide and Reference

SDO_GEOM.VALIDATE_GEOMETRY
SDO_GEOM.VALIDATE_GEOMETRY

Format
SDO_GEOM.VALIDATE_GEOMETRY(

geom IN MDSYS.SDO_GEOMETRY,

dim IN MDSYS.SDO_DIM_ARRAY

) RETURN VARCHAR2;

Description
Performs a consistency check for valid geometry types. The function checks the
representation of the geometry from the tables against the element definitions.

Parameters

geom
Geometry object.

dim
Dimensional information array corresponding to geom, usually selected from one of
the xxx_SDO_GEOM_METADATA views (see Section 2.4).

Usage Notes
If the geometry is valid, this function returns TRUE.

If the geometry is not valid, this function returns one of the following:

■ An Oracle error message number based on the specific reason the geometry is
invalid

■ FALSE if the geometry fails for some other reason

This function checks for type consistency and geometry consistency.

For type consistency, the function checks for the following:

■ The SDO_GTYPE is valid.

■ The SDO_ETYPE values are consistent with the SDO_GTYPE value. For
example, if the SDO_GTYPE is 2003, there should be at least one element of
type POLYGON in the geometry.
Geometry Functions 7-33

SDO_GEOM.VALIDATE_GEOMETRY
■ The SDO_ELEM_INFO_ARRAY has valid triplet values.

For geometry consistency, the function checks for the following, as appropriate for
the specific geometry type:

■ Polygons have at least four points, which includes the point that closes the
polygon. (The last point is the same as the first.)

■ Polygons are not self-crossing.

■ No two vertices on a line or polygon are the same.

■ Polygons are oriented correctly. (Exterior ring boundaries must be oriented
counterclockwise, and interior ring boundaries must be oriented clockwise.)

■ An interior polygon ring touches the exterior polygon ring at no more than one
point.

■ If two or more interior polygon rings are in an exterior polygon ring, the
interior polygon rings touch at no more than one point.

■ Line strings have at least two points.

■ 1-digit and 4-digit SDO_ETYPE values are not mixed (that is, both used) in
defining polygon ring elements.

■ Points on an arc are not colinear (that is, are not on a straight line) and are not
the same point.

■ Geometries are within the specified bounds of the applicable DIMINFO column
value (from the USER_SDO_GEOM_METADATA view).

■ Geometries are within the extent of the coordinate system.

In checking for geometry consistency, the function considers the geometry’s
tolerance value in determining if lines touch or if points are the same.

You can use this function in a PL/SQL procedure as an alternative to using the
SDO_GEOM.VALIDATE_LAYER procedure. See the Usage Notes for SDO_
GEOM.VALIDATE_LAYER for more information.

Examples
The following example validates the geometry of cola_c. (The example uses the
definitions and data from Section 2.1.)

-- Is a geometry valid?
SELECT c.name, SDO_GEOM.VALIDATE_GEOMETRY(c.shape, m.diminfo)
 FROM cola_markets c, user_sdo_geom_metadata m
7-34 Oracle Spatial User’s Guide and Reference

SDO_GEOM.VALIDATE_GEOMETRY
 WHERE m.table_name = ’COLA_MARKETS’ AND m.column_name = ’SHAPE’
 AND c.name = ’cola_c’;

NAME

SDO_GEOM.VALIDATE_GEOMETRY(C.SHAPE,M.DIMINFO)
--
cola_c
TRUE

Related Topics
■ SDO_GEOM.VALIDATE_LAYER
Geometry Functions 7-35

SDO_GEOM.VALIDATE_LAYER
SDO_GEOM.VALIDATE_LAYER

Format
SDO_GEOM.VALIDATE_LAYER(

geom_table IN VARCHAR2,

geom_column IN VARCHAR2,

pkey_column IN VARCHAR2,

result_table IN VARCHAR2);

Description
Examines a geometry column to determine if the stored geometries follow the
defined rules for geometry objects.

Parameters

geom_table
Geometry table.

geom_column
Geometry object column to be examined.

pkey_column
The primary key column. This must be a single numeric (NUMBER data type)
column.

result_table
Result table to hold the validation results. A row is added to result_table for each
invalid geometry.

Usage Notes
This procedure loads the result table with validation results. (VALIDATE_LAYER is
a procedure, not a function.)

An empty result table (result_table parameter) must be created before calling this
procedure. The format of the result table is: (pkey_column NUMBER, result
VARCHAR2(10)). If result_table is not empty, you should truncate the table before
7-36 Oracle Spatial User’s Guide and Reference

SDO_GEOM.VALIDATE_LAYER
calling the procedure; otherwise, the procedure appends rows to the existing data in
the table.

The result table contains one row for each invalid geometry. (A row is not written if
a geometry is valid.) In each row, the PKEY_COLUMN column contains the
primary key value of the row containing the invalid geometry, and the RESULT
column contains an Oracle error message number. You can then look up this error
message to determine the cause of the failure.

This procedure performs the following checks on each geometry in the layer (geom_
column):

■ All the type consistency and geometry consistency checks that are performed by
the SDO_GEOM.VALIDATE_GEOMETRY function (see Usage Notes for that
function).

■ If 4-digit SDO_GTYPE values are used, the geometry’s SDO_GTYPE specifies
the same dimensionality as specified in the applicable DIMINFO column value
(from the USER_SDO_GEOM_METADATA view).

■ The geometry’s SRID value (coordinate system) is the same as the one specified
in the applicable DIMINFO column value (from the USER_SDO_GEOM_
METADATA view).

As an alternative to using the VALIDATE_LAYER procedure, you can use a
PL/SQL procedure that calls the SDO_GEOM.VALIDATE_GEOMETRY function for
each input row and inserts rows in a result table for errors. With this approach, you
have more options in defining the result table; for example, the key field can be a
rowid or anything else that you choose.

Examples
The following example validates the geometry objects stored in the SHAPE column
of the COLA_MARKETS table. The example includes the creation of the result table.
(The example uses the definitions and data from Section 2.1.) In this case, no rows
are written to the result table because all the geometries are valid.

-- Is a layer valid? (First, create the result table.)
CREATE TABLE val_results (mkt_id number, result varchar2(10));
EXECUTE SDO_GEOM.VALIDATE_LAYER(’COLA_MARKETS’,’SHAPE’,’MKT_ID’,’VAL_RESULTS’);

PL/SQL procedure successfully completed.

SELECT * from val_results;

no rows selected
Geometry Functions 7-37

SDO_GEOM.VALIDATE_LAYER
Related Topics
■ SDO_GEOM.VALIDATE_GEOMETRY
7-38 Oracle Spatial User’s Guide and Reference

SDO_GEOM.WITHIN_DISTANCE
SDO_GEOM.WITHIN_DISTANCE

Format
SDO_GEOM.WITHIN_DISTANCE(

geom1 IN MDSYS.SDO_GEOMETRY,

dim1 IN MDSYS.SDO_DIM_ARRAY,

distance IN NUMBER,

geom2 IN MDSYS.SDO_GEOMETRY,

dim2 IN MDSYS.SDO_DIM_ARRAY

) RETURN VARCHAR2;

or

SDO_GEOM.WITHIN_DISTANCE(

geom1 IN MDSYS.SDO_GEOMETRY,

distance IN NUMBER,

geom2 IN MDSYS.SDO_GEOMETRY,

tolerance IN NUMBER

) RETURN VARCHAR2;

Description
Determines if two spatial objects are within some specified Euclidean distance from
each other.

Parameters

geom1
Geometry object.

dim1
Dimensional information array corresponding to geom1, usually selected from one
of the xxx_SDO_GEOM_METADATA views (see Section 2.4).
Geometry Functions 7-39

SDO_GEOM.WITHIN_DISTANCE
distance
Euclidean distance value.

geom2
Geometry object.

dim2
Dimensional information array corresponding to geom2, usually selected from one
of the xxx_SDO_GEOM_METADATA views (see Section 2.4).

tolerance
Tolerance value (see Section 1.5.4).

Usage Notes
This function returns TRUE for object pairs that are within the specified distance,
and FALSE otherwise.

The distance between two extended objects (for example, nonpoint objects such as
lines and polygons) is defined as the minimum distance between these two objects.
Thus the distance between two adjacent polygons is zero.

If the function format with tolerance is used, all geometry objects must be defined
using 4-digit SDO_GTYPE values (explained in Section 2.2.1).

Examples
The following example checks if cola_b and cola_d are within 1 unit apart at the
shortest distance between them. (The example uses the definitions and data from
Section 2.1.)

-- Are two geometries within 1 unit of distance apart?
SELECT SDO_GEOM.WITHIN_DISTANCE(c_b.shape, m.diminfo, 1,
 c_d.shape, m.diminfo)
 FROM cola_markets c_b, cola_markets c_d, user_sdo_geom_metadata m
 WHERE m.table_name = ’COLA_MARKETS’ AND m.column_name = ’SHAPE’
 AND c_b.name = ’cola_b’ AND c_d.name = ’cola_d’;

SDO_GEOM.WITHIN_DISTANCE(C_B.SHAPE,M.DIMINFO,1,C_D.SHAPE,M.DIMINFO)
--
TRUE

Related Topics
■ SDO_GEOM.SDO_DISTANCE
7-40 Oracle Spatial User’s Guide and Reference

Coordinate System Fun
8

Coordinate System Functions

The MDSYS.SDO_CS package contains functions and procedures for working with
coordinate systems. You can perform explicit coordinate transformations on a single
geometry or an entire layer of geometries (that is, all geometries in a specified
column in a table).

To use the functions and procedures in this chapter, you must understand the
conceptual information about coordinate systems in Appendix D.

Table 8–1 lists the coordinate systems functions and procedures.

The rest of this chapter provides reference information on the functions and
procedures, listed in alphabetical order.

Table 8–1 Functions and Procedures for Coordinate Systems

Function Description

SDO_CS.TRANSFORM Transforms a geometry representation using a
coordinate system (specified by SRID or name).

SDO_CS.TRANSFORM_LAYER Transforms an entire layer of geometries (that is,
all geometries in a specified column in a table).

Note: Error messages for coordinate system functions are
documented in Section D.7. (They are not included in the Oracle8i
Error Messages manual for release 8.1.7.)
ctions 8-1

SDO_CS.TRANSFORM
SDO_CS.TRANSFORM

Format
SDO_CS.TRANSFORM(

geom IN MDSYS.SDO_GEOMETRY,

dim_array IN MDSYS.SDO_DIM_ARRAY,

to_srid IN NUMBER

) RETURN MDSYS.SDO_GEOMETRY;

or

SDO_CS.TRANSFORM(

geom IN MDSYS.SDO_GEOMETRY,

dim_array IN MDSYS.SDO_DIM_ARRAY,

to_srname IN VARCHAR2

) RETURN MDSYS.SDO_GEOMETRY;

or

SDO_CS.TRANSFORM(

geom IN MDSYS.SDO_GEOMETRY,

tolerance IN NUMBER,

to_srid IN NUMBER

) RETURN MDSYS.SDO_GEOMETRY;

or

SDO_CS.TRANSFORM(

geom IN MDSYS.SDO_GEOMETRY,

tolerance IN NUMBER,

to_srname IN VARCHAR2

) RETURN MDSYS.SDO_GEOMETRY;
8-2 Oracle Spatial User’s Guide and Reference

SDO_CS.TRANSFORM
Description
Transforms a geometry representation using a coordinate system (specified by SRID
or name).

Parameters

geom
Geometry whose representation is to be transformed using another coordinate
system. The input geometry must have a valid non-null SRID, that is, a value in the
SRID column of the MDSYS.CS_SRS table (described in Section D.3.1).

dim_array
Dimensional information array corresponding to geom, usually selected from one of
the xxx_SDO_GEOM_METADATA views.

tolerance
Tolerance value (see Section 1.5.4).

to_srid
The SRID of the coordinate system to be used for the transformation. to_srid must be
a value in the SRID column of the MDSYS.CS_SRS table (described in Section D.3.1).

to_srname
The name of the coordinate system to be used for the transformation. to_srname
must be a value (specified exactly) in the CS_NAME column of the MDSYS.CS_SRS
table (described in Section D.3.1).

Usage Notes
An exception is raised if geom, to_srid, or to_srname is invalid. For geom to be valid
for this function, its definition must include an SRID value matching a value in the
SRID column of the MDSYS.CS_SRS table (described in Section D.3.1).

Examples
The following example transforms the cola_c geometry to a representation that uses
SRID value 8199. (This example uses the definitions from the example in
Section D.6.)

-- Return the transformation of cola_c using to_srid 8199
SELECT c.name, SDO_CS.TRANSFORM(c.shape, m.diminfo, 8199)
 FROM cola_markets c, user_sdo_geom_metadata m
 WHERE m.table_name = ’COLA_MARKETS’ AND m.column_name = ’SHAPE’
Coordinate System Functions 8-3

SDO_CS.TRANSFORM
 AND c.name = ’cola_c’;

NAME

SDO_CS.TRANSFORM(C.SHAPE,M.DIMINFO,8199)(SDO_GTYPE, SDO_SRID, SDO_POINT(X, Y, Z)
--
cola_c
SDO_GEOMETRY(2003, 8199, NULL, SDO_ELEM_INFO_ARRAY(1, 1003, 1), SDO_ORDINATE_ARR
AY(3.00074116, 3.00289624, 6.0006707, 3.00289431, 6.00067234, 5.00305745, 4.0007
1964, 5.00305956, 3.00074116, 3.00289624))
8-4 Oracle Spatial User’s Guide and Reference

SDO_CS.TRANSFORM_LAYER
SDO_CS.TRANSFORM_LAYER

Format
SDO_CS.TRANSFORM_LAYER(

table_in IN VARCHAR2,

column_in IN VARCHAR2,

table_out IN VARCHAR2,

to_srid IN NUMBER);

Description
Transforms an entire layer of geometries (that is, all geometries in a specified
column in a table).

Parameters

table_in
Table containing the layer (column_in) whose geometries are to be transformed.

column_in
Column in table_in that contains the geometries to be transformed.

table_out
Table that will be created and that will contain the results of the transformation. See
the Usage Notes for information about the format of this table.

to_srid
The SRID of the coordinate system to be used for the transformation. to_srid must be
a value in the SRID column of the MDSYS.CS_SRS table (described in Section D.3.1).

Usage Notes
An exception is raised if any of the following occurs:

■ table_in does not exist, or column_in does not exist in the table.

■ table_out already exists.

■ to_srid is invalid.
Coordinate System Functions 8-5

SDO_CS.TRANSFORM_LAYER
The table_out table is created by the procedure and is filled with one row for each
transformed geometry. This table has the columns shown in Table 8–2.

Examples
The following example transforms the geometries in the shape column in the
COLA_MARKETS table to a representation that uses SRID value 8199. The
transformed geometries are stored in the newly created table named COLA_
MARKETS_8199. (This example uses the definitions from the example in
Section D.6.)

-- Transform the entire SHAPE layer and put results in the table
-- named cola_markets_8199, which the procedure will create.
EXECUTE SDO_CS.TRANSFORM_LAYER(’COLA_MARKETS’,’SHAPE’,’COLA_MARKETS_8199’,8199);

Example D–2 in Section D.6 includes a display of the geometry object coordinates in
both tables (COLA_MARKETS and COLA_MARKETS_8199).

Table 8–2 Table to Hold Transformed Layer

Column
Name Data Type Description

SDO_ROWID ROWID Oracle ROWID (row address identifier). For
more information about the ROWID data type,
see the Oracle8i SQL Reference manual.

GEOMETRY MDSYS.SDO_GEOMETRY Geometry object with coordinate values in the
specified (to_srid parameter) coordinate
system.
8-6 Oracle Spatial User’s Guide and Reference

Linear Referencing Fun
9

Linear Referencing Functions

The MDSYS.SDO_LRS package contains functions that create, modify, query, and
convert linear referencing elements. These functions do not change the state of the
database.

To use the functions in this chapter, you must understand the linear referencing
system (LRS) concepts and techniques described in Appendix E.

Table 9–1 lists functions related to creating and editing geometric segments.

Note: Most Oracle LRS interfaces are functions. Any that are
procedures, such as DEFINE_GEOM_SEGMENT, are identified as
such. (Functions return a value; procedures do not return a value.)

The word functions is often used to refer to LRS interfaces (both
functions and procedures) collectively.

Table 9–1 Functions for Creating and Editing Geometric Segments

Function Description

SDO_LRS.DEFINE_GEOM_SEGMENT
(procedure)

Defines a geometric segment.

SDO_LRS.REDEFINE_GEOM_SEGMENT
(procedure)

Populates the measures of all shape points of a
geometric segment based on the start and end
measures, overriding any previously assigned
measures between the start point and end point.

SDO_LRS.CLIP_GEOM_SEGMENT Clips a geometric segment (synonym of SDO_
LRS.DYNAMIC_SEGMENT).

SDO_LRS.DYNAMIC_SEGMENT Clips a geometric segment (synonym of SDO_
LRS.CLIP_GEOM_SEGMENT).
ctions 9-1

Table 9–2 lists functions related to querying geometric segments.

SDO_LRS.CONCATENATE_GEOM_
SEGMENTS

Concatenates two geometric segments into one
segment.

SDO_LRS.SCALE_GEOM_SEGMENT Scales a geometric segment.

SDO_LRS.SPLIT_GEOM_SEGMENT
(procedure)

Splits a geometric segment into two segments.

SDO_LRS.REVERSE_MEASURE Returns a new geometric segment by reversing
the original geometric segment.

SDO_LRS.TRANSLATE_MEASURE Returns a new geometric segment by
translating the original geometric segment (that
is, shifting the start and end measures by a
specified value).

Table 9–2 Functions for Querying Geometric Segments

Function Description

SDO_LRS.VALID_GEOM_SEGMENT Checks if a geometric segment is valid.

SDO_LRS.VALID_LRS_PT Checks if an LRS point is valid.

SDO_LRS.VALID_MEASURE Checks if a measure falls within the measure
range of a geometric segment.

SDO_LRS.CONNECTED_GEOM_
SEGMENTS

Checks if two geometric segments are
connected.

SDO_LRS.GEOM_SEGMENT_LENGTH Returns the length of a geometric segment.

SDO_LRS.GEOM_SEGMENT_START_PT Returns the start point of a geometric segment.

SDO_LRS.GEOM_SEGMENT_END_PT Returns the end point of a geometric segment.

SDO_LRS.GEOM_SEGMENT_START_
MEASURE

Returns the start measure of a geometric
segment.

SDO_LRS.GEOM_SEGMENT_END_
MEASURE

Returns the end measure of a geometric
segment.

SDO_LRS.GET_MEASURE Returns the measure of an LRS point.

SDO_LRS.MEASURE_RANGE Returns the measure range of a geometric
segment, that is, the difference between the
start measure and end measure.

Table 9–1 Functions for Creating and Editing Geometric Segments (Cont.)

Function Description
9-2 Oracle Spatial User’s Guide and Reference

Table 9–3 lists functions related to converting geometric segments.

SDO_LRS.MEASURE_TO_PERCENTAGE Returns the percentage (0 to 100) that a
specified measure is of the measure range of a
geometric segment.

SDO_LRS.PERCENTAGE_TO_MEASURE Returns the measure value of a specified
percentage (0 to 100) of the measure range of a
geometric segment.

SDO_LRS.LOCATE_PT Finds the location of a point described by a
measure and an offset on a geometric
segment.

SDO_LRS.PROJECT_PT Returns the projection point of a point on a
geometric segment.

Table 9–3 Functions for Converting Geometric Segments

Function Description

SDO_LRS.CONVERT_TO_LRS_DIM_
ARRAY

Converts a standard dimensional array to a
Linear Referencing System dimensional array
by creating a measure dimension.

SDO_LRS.CONVERT_TO_LRS_GEOM Converts a standard SDO_GEOMETRY line
string to a Linear Referencing System geometric
segment by adding measure information.

SDO_LRS.CONVERT_TO_LRS_LAYER Converts all geometry objects in a column of
type SDO_GEOMETRY from standard line
string geometries without measure information
to Linear Referencing System geometric
segments with measure information, and
updates the metadata.

SDO_LRS.CONVERT_TO_STD_DIM_
ARRAY

Converts a Linear Referencing System
dimensional array to a standard dimensional
array by removing the measure dimension.

SDO_LRS.CONVERT_TO_STD_GEOM Converts a Linear Referencing System
geometric segment to a standard SDO_
GEOMETRY line string by removing measure
information.

Table 9–2 Functions for Querying Geometric Segments (Cont.)

Function Description
Linear Referencing Functions 9-3

For more information about conversion functions, see Section E.4.9.

The rest of this chapter provides reference information on the functions, listed in
alphabetical order.

SDO_LRS.CONVERT_TO_STD_LAYER Converts all geometry objects in a column of
type SDO_GEOMETRY from Linear
Referencing System geometric segments with
measure information to standard line string
geometries without measure information, and
updates the metadata.

Note: Error messages for linear referencing functions are
documented in Section E.6. (They are not included in the Oracle8i
Error Messages manual for release 8.1.7.)

Table 9–3 Functions for Converting Geometric Segments (Cont.)

Function Description
9-4 Oracle Spatial User’s Guide and Reference

SDO_LRS.CLIP_GEOM_SEGMENT
SDO_LRS.CLIP_GEOM_SEGMENT

Format
SDO_LRS.CLIP_GEOM_SEGMENT(

geom_segment IN MDSYS.SDO_GEOMETRY,

dim_array IN MDSYS.SDO_DIM_ARRAY,

start_measure IN NUMBER,

end_measure IN NUMBER

) RETURN MDSYS.SDO_GEOMETRY;

Description
Returns the geometry object resulting from a clip operation on a geometric segment.

Parameters

geom_segment
Cartographic representation of a linear feature.

dim_array
Dimensional information array corresponding to geom_segment, usually selected
from one of the xxx_SDO_GEOM_METADATA views.

start_measure
Start measure of the geometric segment.

end_measure
End measure of the geometric segment.

Usage Notes
An exception is raised if geom_segment, start_measure, or end_measure is invalid.

Note: CLIP_GEOM_SEGMENT and SDO_LRS.DYNAMIC_
SEGMENT are synonyms: both functions have the same
parameters, behavior, and return value.
Linear Referencing Functions 9-5

SDO_LRS.CLIP_GEOM_SEGMENT
The direction and measures of the resulting geometric segment are preserved.

For more information about clipping geometric segments, see Section E.4.3

Examples
The following example clips the geometric segment representing Route 1, returning
the segment from measures 5 through 10. (This example uses the definitions from
the example in Section E.5.)

SELECT SDO_LRS.CLIP_GEOM_SEGMENT(a.route_geometry, m.diminfo, 5, 10)
 FROM lrs_routes a, user_sdo_geom_metadata m
 WHERE m.table_name = ’LRS_ROUTES’ AND m.column_name = ’ROUTE_GEOMETRY’
 AND a.route_id = 1;

SDO_LRS.CLIP_GEOM_SEGMENT(A.ROUTE_GEOMETRY,M.DIMINFO,5,10)(SDO_GTYPE, SDO_SRID,
--
SDO_GEOMETRY(3002, NULL, NULL, SDO_ELEM_INFO_ARRAY(1, 2, 1), SDO_ORDINATE_ARRAY(
5, 4, 5, 8, 4, 8, 10, 4, 10))
9-6 Oracle Spatial User’s Guide and Reference

SDO_LRS.CONCATENATE_GEOM_SEGMENTS
SDO_LRS.CONCATENATE_GEOM_SEGMENTS

Format
SDO_LRS.CONCATENATE_GEOM_SEGMENTS(

geom_segment_1 IN MDSYS.SDO_GEOMETRY,

dim_array_1 IN MDSYS.SDO_DIM_ARRAY,

geom_segment_2 IN MDSYS.SDO_GEOMETRY,

dim_array_2 IN MDSYS.SDO_DIM_ARRAY

) RETURN MDSYS.SDO_GEOMETRY;

Description
Returns the geometry object resulting from the concatenation of two geometric
segments.

Parameters

geom_segment_1
First geometric segment to be concatenated.

dim_array_1
Dimensional information array corresponding to geom_segment_1, usually selected
from one of the xxx_SDO_GEOM_METADATA views.

geom_segment_2
Second geometric segment to be concatenated.

dim_array_2
Dimensional information array corresponding to geom_segment_2, usually selected
from one of the xxx_SDO_GEOM_METADATA views.

Usage Notes
An exception is raised if geom_segment_1 or geom_segment_2 is invalid, or if the end
point of the first segment and the start point of the second segment are not spatially
connected.
Linear Referencing Functions 9-7

SDO_LRS.CONCATENATE_GEOM_SEGMENTS
The direction of the resulting geometric segment is preserved, and all measures of
the second segment are shifted so that its start measure is the same as the end
measure of the first segment.

For more information about concatenating geometric segments, see Section E.4.5

Examples
The following example defines the geometric segment, splits it into two segments,
then concatenates those segments. (This example uses the definitions from the
example in Section E.5. The definitions of result_geom_1, result_geom_2, and result_
geom_3 are displayed in Example E–3.)

DECLARE
geom_segment MDSYS.SDO_GEOMETRY;
line_string MDSYS.SDO_GEOMETRY;
dim_array MDSYS.SDO_DIM_ARRAY;
result_geom_1 MDSYS.SDO_GEOMETRY;
result_geom_2 MDSYS.SDO_GEOMETRY;
result_geom_3 MDSYS.SDO_GEOMETRY;

BEGIN

SELECT a.route_geometry into geom_segment FROM lrs_routes a
 WHERE a.route_name = ’Route1’;
SELECT m.diminfo into dim_array from
 user_sdo_geom_metadata m
 WHERE m.table_name = ’LRS_ROUTES’ AND m.column_name = ’ROUTE_GEOMETRY’;

-- Define the LRS segment for Route1.
SDO_LRS.DEFINE_GEOM_SEGMENT (geom_segment,
 dim_array,
 0, -- Zero starting measure: LRS segment starts at start of route.
 27); -- End of LRS segment is at measure 27.

SELECT a.route_geometry INTO line_string FROM lrs_routes a
 WHERE a.route_name = ’Route1’;

-- Split Route1 into two segments.
SDO_LRS.SPLIT_GEOM_SEGMENT(line_string,dim_array,5,result_geom_1,result_geom_2);

-- Concatenate the segments that were just split.
result_geom_3 := SDO_LRS.CONCATENATE_GEOM_SEGMENTS(result_geom_1, dim_array,
result_geom_2, dim_array);
9-8 Oracle Spatial User’s Guide and Reference

SDO_LRS.CONCATENATE_GEOM_SEGMENTS
-- Insert geometries into table, to display later.
INSERT INTO lrs_routes VALUES(
 11,
 ’result_geom_1’,
 result_geom_1
);
INSERT INTO lrs_routes VALUES(
 12,
 ’result_geom_2’,
 result_geom_2
);
INSERT INTO lrs_routes VALUES(
 13,
 ’result_geom_3’,
 result_geom_3
);

END;
/

Linear Referencing Functions 9-9

SDO_LRS.CONNECTED_GEOM_SEGMENTS
SDO_LRS.CONNECTED_GEOM_SEGMENTS

Format
SDO_LRS.CONNECTED_GEOM_SEGMENTS(

geom_segment_1 IN MDSYS.SDO_GEOMETRY,

dim_array_1 IN MDSYS.SDO_DIM_ARRAY,

geom_segment_2 IN MDSYS.SDO_GEOMETRY,

dim_array_2 IN MDSYS.SDO_DIM_ARRAY

) RETURN VARCHAR2;

Description
Checks if two geometric segments are spatially connected.

Parameters

geom_segment_1
First of two geometric segments to be checked.

dim_array_1
Dimensional information array corresponding to geom_segment_1, usually selected
from one of the xxx_SDO_GEOM_METADATA views.

geom_segment_2
Second of two geometric segments to be checked.

dim_array_2
Dimensional information array corresponding to geom_segment_2, usually selected
from one of the xxx_SDO_GEOM_METADATA views.

Usage Notes
This function returns TRUE if the geometric segments are spatially connected and
FALSE if the geometric segments are not spatially connected.

An exception is raised if geom_segment_1 or geom_segment_2 is invalid.
9-10 Oracle Spatial User’s Guide and Reference

SDO_LRS.CONNECTED_GEOM_SEGMENTS
Examples
The following example checks if two geometric segments (results of a previous split
operation) are spatially connected.

-- Are result_geom_1 and result_geom2 connected?
SELECT SDO_LRS.CONNECTED_GEOM_SEGMENTS(a.route_geometry, m.diminfo,
 b.route_geometry, m.diminfo)
 FROM lrs_routes a, lrs_routes b, user_sdo_geom_metadata m
 WHERE m.table_name = ’LRS_ROUTES’ AND m.column_name = ’ROUTE_GEOMETRY’
 AND a.route_id = 1;

SDO_LRS.CONNECTED_GEOM_SEGMENTS(A.ROUTE_GEOMETRY,M.DIMINFO,B.ROUTE_GEOMETRY,M.DI
--
TRUE
Linear Referencing Functions 9-11

SDO_LRS.CONVERT_TO_LRS_DIM_ARRAY
SDO_LRS.CONVERT_TO_LRS_DIM_ARRAY

Format
SDO_LRS.CONVERT_TO_LRS_DIM_ARRAY(

dim_array IN MDSYS.SDO_DIM_ARRAY

[, lower_bound IN NUMBER,

upper_bound IN NUMBER,

tolerance IN NUMBER]

) RETURN MDSYS.SDO_DIM_ARRAY;

Description
Converts a standard dimensional array to a Linear Referencing System dimensional
array by creating a measure dimension.

Parameters

dim_array
Dimensional information array corresponding to the layer (column of geometries)
to be converted, usually selected from one of the xxx_SDO_GEOM_METADATA
views.

lower_bound
Lower bound (SDO_LB value in the SDO_DIM_ELEMENT definition) of the
ordinate in the measure dimension.

upper_bound
Upper bound (SDO_UB value in the SDO_DIM_ELEMENT definition) of the
ordinate in the measure dimension.

tolerance
Tolerance (SDO_TOLERANCE value in the SDO_DIM_ELEMENT definition) of the
ordinate in the measure dimension.

Usage Notes
This function converts a standard dimensional array to a Linear Referencing System
dimensional array by creating a measure dimension. Specifically, it adds an SDO_
9-12 Oracle Spatial User’s Guide and Reference

SDO_LRS.CONVERT_TO_LRS_DIM_ARRAY
DIM_ELEMENT object at the end of the current SDO_DIM_ELEMENT objects in
the SDO_DIM_ARRAY for the diminfo, and sets the SDO_DIMNAME value in this
added SDO_DIM_ELEMENT to M. It sets the other values in the added SDO_DIM_
ELEMENT according to the values if the upper_bound, lower_bound, and tolerance
parameter values.

If dim_array already contains dimensional information, the dim_array is returned.

For more information about conversion functions, see Section E.4.9.

Examples
The following example converts the dimensional array for the LRS_ROUTES table
to Linear Referencing System format. (This example uses the definitions from the
example in Section E.5.)

SELECT SDO_LRS.CONVERT_TO_LRS_DIM_ARRAY(m.diminfo)
 FROM user_sdo_geom_metadata m
 WHERE m.table_name = ’LRS_ROUTES’ AND m.column_name = ’ROUTE_GEOMETRY’;

SDO_LRS.CONVERT_TO_LRS_DIM_ARRAY(M.DIMINFO)(SDO_DIMNAME, SDO_LB, SDO_UB, SDO_TOL
--
SDO_DIM_ARRAY(SDO_DIM_ELEMENT(’X’, 0, 20, .005), SDO_DIM_ELEMENT(’Y’, 0, 20, .00
5), SDO_DIM_ELEMENT(’M’, 0, 20, .005))
Linear Referencing Functions 9-13

SDO_LRS.CONVERT_TO_LRS_GEOM
SDO_LRS.CONVERT_TO_LRS_GEOM

Format
SDO_LRS.CONVERT_TO_LRS_GEOM(

standard_geom IN MDSYS.SDO_GEOMETRY,

dim_array IN MDSYS.SDO_DIM_ARRAY

[, start_measure IN NUMBER,

end_measure IN NUMBER]

) RETURN MDSYS.SDO_GEOMETRY;

Description
Converts a standard SDO_GEOMETRY line string to a Linear Referencing System
geometric segment by adding measure information.

Parameters

standard_geom
Line string geometry that does not contain measure information.

dim_array
Dimensional information array corresponding to standard_geom, usually selected
from one of the xxx_SDO_GEOM_METADATA views.

start_measure
Distance measured from the start point of a geometric segment to the start point of
the linear feature. The default is 0.

end_measure
Distance measured from the end point of a geometric segment to the start point of
the linear feature. The default is the cartographic length (for example, 75 if the
cartographic length is 75 miles and the unit of measure is miles).

Usage Notes
This function returns a Linear Referencing System geometric segment with measure
information, with measure information provided for all shape points.
9-14 Oracle Spatial User’s Guide and Reference

SDO_LRS.CONVERT_TO_LRS_GEOM
An exception is raised if standard_geom is invalid or if start_measure or end_measure is
out of range.

For more information about conversion functions, see Section E.4.9.

Examples
The following example converts the geometric segment representing Route 1 to
Linear Referencing System format. (This example uses the definitions from the
example in Section E.5.)

SELECT SDO_LRS.CONVERT_TO_LRS_GEOM(a.route_geometry, m.diminfo)
 FROM lrs_routes a, user_sdo_geom_metadata m
 WHERE m.table_name = ’LRS_ROUTES’ AND m.column_name = ’ROUTE_GEOMETRY’
 AND a.route_id = 1;

SDO_LRS.CONVERT_TO_LRS_GEOM(A.ROUTE_GEOMETRY,M.DIMINFO)(SDO_GTYPE, SDO_SRID, SDO
--
SDO_GEOMETRY(3002, NULL, NULL, SDO_ELEM_INFO_ARRAY(1, 2, 1), SDO_ORDINATE_ARRAY(
2, 2, 0, 2, 4, 2, 8, 4, 8, 12, 4, 12, 12, 10, NULL, 8, 10, 22, 5, 14, 27))
Linear Referencing Functions 9-15

SDO_LRS.CONVERT_TO_LRS_LAYER
SDO_LRS.CONVERT_TO_LRS_LAYER

Format
SDO_LRS.CONVERT_TO_LRS_LAYER(

table_name IN VARCHAR2,

column_name IN VARCHAR2

[, lower_bound IN NUMBER,

upper_bound IN NUMBER,

tolerance IN NUMBER]

) RETURN VARCHAR2;

Description
Converts all geometry objects in a column of type SDO_GEOMETRY (that is,
converts a layer) from standard line string geometries without measure information
to Linear Referencing System geometric segments with measure information, and
updates the metadata in the USER_SDO_GEOM_METADATA view.

Parameters

table_name
Table containing the column with the SDO_GEOMETRY objects.

column_name
Column in table_name containing the SDO_GEOMETRY objects.

lower_bound
Lower bound (SDO_LB value in the SDO_DIM_ELEMENT definition) of the
ordinate in the measure dimension.

upper_bound
Upper bound (SDO_UB value in the SDO_DIM_ELEMENT definition) of the
ordinate in the measure dimension.

tolerance
Tolerance (SDO_TOLERANCE value in the SDO_DIM_ELEMENT definition) of the
ordinate in the measure dimension.
9-16 Oracle Spatial User’s Guide and Reference

SDO_LRS.CONVERT_TO_LRS_LAYER
Usage Notes
This function returns TRUE if the conversion was successful or if the layer already
contains measure information, and the function returns an exception if the
conversion was not successful.

An exception is raised if the existing dimensional information for the table is
invalid.

The measure values are assigned based on a start measure of zero and an end
measure of the cartographic length.

For more information about conversion functions, see Section E.4.9.

Examples
The following example converts the geometric segments in the ROUTE_
GEOMETRY column of the LRS_ROUTES table to Linear Referencing System
format. (This example uses the definitions from the example in Section E.5.) The
SELECT statement shows that dimensional information has been added (that is,
SDO_DIM_ELEMENT(’M’, NULL, NULL, NULL) included in the definition).

BEGIN
 IF (SDO_LRS.CONVERT_TO_LRS_LAYER(’LRS_ROUTES’, ’ROUTE_GEOMETRY’) = ’TRUE’)
 THEN
 DBMS_OUTPUT.PUT_LINE(’Conversion from STD_LAYER to LRS_LAYER succeeded’);
 ELSE
 DBMS_OUTPUT.PUT_LINE(’Conversion from STD_LAYER to LRS_LAYER failed’);
 END IF;
END;
.
/
Conversion from STD_LAYER to LRS_LAYER succeeded

PL/SQL procedure successfully completed.

SQL> SELECT diminfo FROM user_sdo_geom_metadata WHERE table_name = ’LRS_ROUTES’
AND column_name = ’ROUTE_GEOMETRY’;

DIMINFO(SDO_DIMNAME, SDO_LB, SDO_UB, SDO_TOLERANCE)
--
SDO_DIM_ARRAY(SDO_DIM_ELEMENT(’X’, 0, 20, .005), SDO_DIM_ELEMENT(’Y’, 0, 20, .00
5), SDO_DIM_ELEMENT(’M’, NULL, NULL, NULL))
Linear Referencing Functions 9-17

SDO_LRS.CONVERT_TO_STD_DIM_ARRAY
SDO_LRS.CONVERT_TO_STD_DIM_ARRAY

Format
SDO_LRS.CONVERT_TO_STD_DIM_ARRAY(

dim_array IN MDSYS.SDO_DIM_ARRAY

) RETURN MDSYS.SDO_DIM_ARRAY;

Description
Converts a Linear Referencing System dimensional array to a standard dimensional
array by removing the measure dimension.

Parameters

dim_array
Dimensional information array corresponding to the layer (column of geometries)
to be converted, usually selected from one of the xxx_SDO_GEOM_METADATA
views.

Usage Notes
This function converts a Linear Referencing System dimensional array to a standard
dimensional array by removing the measure dimension. Specifically, it removes the
SDO_DIM_ELEMENT object at the end of the current SDO_DIM_ELEMENT objects
in the SDO_DIM_ARRAY for the diminfo.

If dim_array is already a standard dimensional array (that is, does not contain
dimensional information), the dim_array is returned.

For more information about conversion functions, see Section E.4.9.

Examples
The following example converts the dimensional array for the LRS_ROUTES table
to standard format. (This example uses the definitions from the example in
Section E.5.)

SELECT SDO_LRS.CONVERT_TO_STD_DIM_ARRAY(m.diminfo)
 FROM user_sdo_geom_metadata m
 WHERE m.table_name = ’LRS_ROUTES’ AND m.column_name = ’ROUTE_GEOMETRY’;
9-18 Oracle Spatial User’s Guide and Reference

SDO_LRS.CONVERT_TO_STD_DIM_ARRAY
SDO_LRS.CONVERT_TO_STD_DIM_ARRAY(M.DIMINFO)(SDO_DIMNAME, SDO_LB, SDO_UB, SDO_TOL
--
SDO_DIM_ARRAY(SDO_DIM_ELEMENT(’X’, 0, 20, .005), SDO_DIM_ELEMENT(’Y’, 0, 20, .00
5))
Linear Referencing Functions 9-19

SDO_LRS.CONVERT_TO_STD_GEOM
SDO_LRS.CONVERT_TO_STD_GEOM

Format
SDO_LRS.CONVERT_TO_STD_GEOM(

lrs _geom IN MDSYS.SDO_GEOMETRY,

dim_array IN MDSYS.SDO_DIM_ARRAY

) RETURN MDSYS.SDO_GEOMETRY;

Description
Converts a Linear Referencing System geometric segment to a standard SDO_
GEOMETRY line string by removing measure information.

Parameters

lrs_geom
Linear Referencing System geometry that contains measure information.

dim_array
Dimensional information array corresponding to lrs_geom, usually selected from
one of the xxx_SDO_GEOM_METADATA views.

Usage Notes
This function returns an SDO_GEOMETRY object in which all measure information
is removed.

For more information about conversion functions, see Section E.4.9.

Examples
The following example converts the geometric segment representing Route 1 to
standard format. (This example uses the definitions from the example in
Section E.5.)

SELECT SDO_LRS.CONVERT_TO_STD_GEOM(a.route_geometry, m.diminfo)
 FROM lrs_routes a, user_sdo_geom_metadata m
 WHERE m.table_name = ’LRS_ROUTES’ AND m.column_name = ’ROUTE_GEOMETRY’
 AND a.route_id = 1;
9-20 Oracle Spatial User’s Guide and Reference

SDO_LRS.CONVERT_TO_STD_GEOM
SDO_LRS.CONVERT_TO_STD_GEOM(A.ROUTE_GEOMETRY,M.DIMINFO)(SDO_GTYPE, SDO_SRID, SDO
--
SDO_GEOMETRY(2002, NULL, NULL, SDO_ELEM_INFO_ARRAY(1, 2, 1), SDO_ORDINATE_ARRAY(
2, 2, 2, 4, 8, 4, 12, 4, 12, 10, 8, 10, 5, 14))
Linear Referencing Functions 9-21

SDO_LRS.CONVERT_TO_STD_LAYER
SDO_LRS.CONVERT_TO_STD_LAYER

Format
SDO_LRS.CONVERT_TO_STD_LAYER(

table_name IN VARCHAR2,

column_name IN VARCHAR2

) RETURN VARCHAR2;

Description
Converts all geometry objects in a column of type SDO_GEOMETRY (that is,
converts a layer) from Linear Referencing System geometric segments with measure
information to standard line string geometries without measure information, and
updates the metadata in the USER_SDO_GEOM_METADATA view.

Parameters

table_name
Table containing the column with the SDO_GEOMETRY objects.

column_name
Column in table_name containing the SDO_GEOMETRY objects.

Usage Notes
This function returns TRUE if the conversion was successful or if the layer already
is a standard layer (that is, contains geometries without measure information), and
the function returns an exception if the conversion was not successful.

An exception is raised if the conversion failed.

For more information about conversion functions, see Section E.4.9.

Examples
The following example converts the geometric segments in the ROUTE_
GEOMETRY column of the LRS_ROUTES table to standard format. (This example
uses the definitions from the example in Section E.5.) The SELECT statement shows
that dimensional information has been removed (that is, no SDO_DIM_ELEMENT(’M’,
NULL, NULL, NULL) included in the definition).
9-22 Oracle Spatial User’s Guide and Reference

SDO_LRS.CONVERT_TO_STD_LAYER
BEGIN
 IF (SDO_LRS.CONVERT_TO_STD_LAYER(’LRS_ROUTES’, ’ROUTE_GEOMETRY’) = ’TRUE’)
 THEN
 DBMS_OUTPUT.PUT_LINE(’Conversion from LRS_LAYER to STD_LAYER succeeded’);
 ELSE
 DBMS_OUTPUT.PUT_LINE(’Conversion from LRS_LAYER to STD_LAYER failed’);
 END IF;
END;
.
/
Conversion from LRS_LAYER to STD_LAYER succeeded

PL/SQL procedure successfully completed.

SELECT diminfo FROM user_sdo_geom_metadata
 WHERE table_name = ’LRS_ROUTES’ AND column_name = ’ROUTE_GEOMETRY’;

DIMINFO(SDO_DIMNAME, SDO_LB, SDO_UB, SDO_TOLERANCE)
--
SDO_DIM_ARRAY(SDO_DIM_ELEMENT(’X’, 0, 20, .005), SDO_DIM_ELEMENT(’Y’, 0, 20, .00
5))
Linear Referencing Functions 9-23

SDO_LRS.DEFINE_GEOM_SEGMENT
SDO_LRS.DEFINE_GEOM_SEGMENT

Format
SDO_LRS.DEFINE_GEOM_SEGMENT(

geom_segment IN OUT MDSYS.SDO_GEOMETRY,

dim_array IN MDSYS.SDO_DIM_ARRAY,

start_measure IN NUMBER,

end_measure IN NUMBER);

Description
Defines a geometric segment by assigning start and end measures to a geometric
segment. (This is a procedure, not a function.)

Parameters

geom_segment
Cartographic representation of a linear feature.

dim_array
Dimensional information array corresponding to geom_segment, usually selected
from one of the xxx_SDO_GEOM_METADATA views.

start_measure
Distance measured from the start point of a geometric segment to the start point of
the linear feature.

end_measure
Distance measured from the end point of a geometric segment to the start point of
the linear feature.

Usage Notes
An exception is raised if geom_segment is invalid or if start_measure or end_measure is
out of range.

All unassigned measures of the geometric segment will be populated automatically.

For more information about defining a geometric segment, see Section E.4.1
9-24 Oracle Spatial User’s Guide and Reference

SDO_LRS.DEFINE_GEOM_SEGMENT
Examples
The following example defines the geometric segment, splits it into two segments,
then concatenates those segments. (This example uses the definitions from the
example in Section E.5. The definitions of result_geom_1, result_geom_2, and result_
geom_3 are displayed in Example E–3.)

DECLARE
geom_segment MDSYS.SDO_GEOMETRY;
line_string MDSYS.SDO_GEOMETRY;
dim_array MDSYS.SDO_DIM_ARRAY;
result_geom_1 MDSYS.SDO_GEOMETRY;
result_geom_2 MDSYS.SDO_GEOMETRY;
result_geom_3 MDSYS.SDO_GEOMETRY;

BEGIN

SELECT a.route_geometry into geom_segment FROM lrs_routes a
 WHERE a.route_name = ’Route1’;
SELECT m.diminfo into dim_array from
 user_sdo_geom_metadata m
 WHERE m.table_name = ’LRS_ROUTES’ AND m.column_name = ’ROUTE_GEOMETRY’;

-- Define the LRS segment for Route1.
SDO_LRS.DEFINE_GEOM_SEGMENT (geom_segment,
 dim_array,
 0, -- Zero starting measure: LRS segment starts at start of route.
 27); -- End of LRS segment is at measure 27.

SELECT a.route_geometry INTO line_string FROM lrs_routes a
 WHERE a.route_name = ’Route1’;

-- Split Route1 into two segments.
SDO_LRS.SPLIT_GEOM_SEGMENT(line_string,dim_array,5,result_geom_1,result_geom_2);

-- Concatenate the segments that were just split.
result_geom_3 := SDO_LRS.CONCATENATE_GEOM_SEGMENTS(result_geom_1, dim_array,
result_geom_2, dim_array);

-- Insert geometries into table, to display later.
INSERT INTO lrs_routes VALUES(
 11,
 ’result_geom_1’,
 result_geom_1
);
Linear Referencing Functions 9-25

SDO_LRS.DEFINE_GEOM_SEGMENT
INSERT INTO lrs_routes VALUES(
 12,
 ’result_geom_2’,
 result_geom_2
);
INSERT INTO lrs_routes VALUES(
 13,
 ’result_geom_3’,
 result_geom_3
);

END;
/

9-26 Oracle Spatial User’s Guide and Reference

SDO_LRS.DYNAMIC_SEGMENT
SDO_LRS.DYNAMIC_SEGMENT

Format
SDO_LRS.DYNAMIC_SEGMENT(

geom_segment IN MDSYS.SDO_GEOMETRY,

dim_array IN MDSYS.SDO_DIM_ARRAY,

start_measure IN NUMBER,

end_measure IN NUMBER

) RETURN MDSYS.SDO_GEOMETRY;

Description
Returns the geometry object resulting from a clip operation on a geometric segment.

Parameters

geom_segment
Cartographic representation of a linear feature.

dim_array
Dimensional information array corresponding to geom_segment, usually selected
from one of the xxx_SDO_GEOM_METADATA views.

start_measure
Start measure of the geometric segment.

end_measure
End measure of the geometric segment.

Usage Notes
An exception is raised if geom_segment, start_measure, or end_measure is invalid.

Note: SDO_LRS.CLIP_GEOM_SEGMENT and SDO_
LRS.DYNAMIC_SEGMENT are synonyms: both functions have the
same parameters, behavior, and return value.
Linear Referencing Functions 9-27

SDO_LRS.DYNAMIC_SEGMENT
The direction and measures of the resulting geometric segment are preserved.

For more information about clipping a geometric segment, see Section E.4.3

Examples
The following example clips the geometric segment representing Route 1, returning
the segment from measures 5 through 10. (This example uses the definitions from
the example in Section E.5.)

SELECT SDO_LRS.DYNAMIC_SEGMENT(a.route_geometry, m.diminfo, 5, 10)
 FROM lrs_routes a, user_sdo_geom_metadata m
 WHERE m.table_name = ’LRS_ROUTES’ AND m.column_name = ’ROUTE_GEOMETRY’
 AND a.route_id = 1;

SDO_LRS.DYNAMIC_SEGMENT(A.ROUTE_GEOMETRY,M.DIMINFO,5,10)(SDO_GTYPE, SDO_SRID,
--
SDO_GEOMETRY(3002, NULL, NULL, SDO_ELEM_INFO_ARRAY(1, 2, 1), SDO_ORDINATE_ARRAY(
5, 4, 5, 8, 4, 8, 10, 4, 10))
9-28 Oracle Spatial User’s Guide and Reference

SDO_LRS.FIND_MEASURE
SDO_LRS.FIND_MEASURE

Format
SDO_LRS.FIND_MEASURE(

geom_segment IN MDSYS.SDO_GEOMETRY,

dim_array IN MDSYS.SDO_DIM_ARRAY,

point IN MDSYS.SDO_GEOMETRY

) RETURN NUMBER;

Description
Returns the measure of the closest point on a segment to a specified projection
point.

Parameters

geom_segment
Cartographic representation of a linear feature. This function returns the measure of
the point on this segment that is closest to the projection point.

dim_array
Dimensional information array corresponding to geom_segment, usually selected
from one of the xxx_SDO_GEOM_METADATA views.

point
Projection point. This function returns the measure of the point on geom_segment
that is closest to the projection point.

Usage Notes
This function returns the measure of the point on geom_segment that is closest to the
projection point. For example, if the projection point represents a shopping mall, the
function could be used to find how far from the start of the highway is the point on
the highway that is closest to the shopping mall.

An exception is raised if geom_segment or point is invalid.
Linear Referencing Functions 9-29

SDO_LRS.FIND_MEASURE
Examples
The following example finds the measure for the point on the geometric segment
representing Route 1 that is closest to the point (10, 7). (This example uses the
definitions from the example in Section E.5.)

-- Find measure for point on segment closest to 10,7
-- Should return 15 (for point 12,7)
SELECT SDO_LRS.FIND_MEASURE(a.route_geometry, m.diminfo,
 MDSYS.SDO_GEOMETRY(3001, NULL, NULL,
 MDSYS.SDO_ELEM_INFO_ARRAY(1, 1, 1),
 MDSYS.SDO_ORDINATE_ARRAY(10, 7, NULL)))
 FROM lrs_routes a, user_sdo_geom_metadata m
 WHERE m.table_name = ’LRS_ROUTES’ AND m.column_name = ’ROUTE_GEOMETRY’
 AND a.route_id = 1;

SDO_LRS.FIND_MEASURE(A.ROUTE_GEOMETRY,M.DIMINFO,MDSYS.SDO_GEOMETRY(3001,NULL,NUL
--
 15
9-30 Oracle Spatial User’s Guide and Reference

SDO_LRS.GEOM_SEGMENT_END_MEASURE
SDO_LRS.GEOM_SEGMENT_END_MEASURE

Format
SDO_LRS.GEOM_SEGMENT_END_MEASURE(

geom_segment IN MDSYS.SDO_GEOMETRY,

dim_array IN MDSYS.SDO_DIM_ARRAY

) RETURN NUMBER;

Description
Returns the end measure of a geometric segment.

Parameters

geom_segment
Geometric segment whose end measure is to be returned.

dim_array
Dimensional information array corresponding to geom_segment, usually selected
from one of the xxx_SDO_GEOM_METADATA views.

Usage Notes
This function returns the end measure of geom_segment.

An exception is raised if geom_segment is invalid.

Examples
The following example returns the end measure of the geometric segment
representing Route 1. (This example uses the definitions from the example in
Section E.5.)

SELECT SDO_LRS.GEOM_SEGMENT_END_MEASURE(a.route_geometry, m.diminfo)
 FROM lrs_routes a, user_sdo_geom_metadata m
 WHERE m.table_name = ’LRS_ROUTES’ AND m.column_name = ’ROUTE_GEOMETRY’
 AND a.route_id = 1;
Linear Referencing Functions 9-31

SDO_LRS.GEOM_SEGMENT_END_MEASURE
SDO_LRS.GEOM_SEGMENT_END_MEASURE(A.ROUTE_GEOMETRY,M.DIMINFO)
--
 27
9-32 Oracle Spatial User’s Guide and Reference

SDO_LRS.GEOM_SEGMENT_END_PT
SDO_LRS.GEOM_SEGMENT_END_PT

Format
SDO_LRS.GEOM_SEGMENT_END_PT(

geom_segment IN MDSYS.SDO_GEOMETRY,

dim_array IN MDSYS.SDO_DIM_ARRAY

) RETURN MDSYS.SDO_GEOMETRY;

Description
Returns the end point of a geometric segment.

Parameters

geom_segment
Geometric segment whose end point is to be returned.

dim_array
Dimensional information array corresponding to geom_segment, usually selected
from one of the xxx_SDO_GEOM_METADATA views.

Usage Notes
This function returns the end point of geom_segment.

An exception is raised if geom_segment is invalid.

Examples
The following example returns the end point of the geometric segment representing
Route 1. (This example uses the definitions from the example in Section E.5.)

SELECT SDO_LRS.GEOM_SEGMENT_END_PT(a.route_geometry, m.diminfo)
 FROM lrs_routes a, user_sdo_geom_metadata m
 WHERE m.table_name = ’LRS_ROUTES’ AND m.column_name = ’ROUTE_GEOMETRY’
 AND a.route_id = 1;
Linear Referencing Functions 9-33

SDO_LRS.GEOM_SEGMENT_END_PT
SDO_LRS.GEOM_SEGMENT_END_PT(A.ROUTE_GEOMETRY,M.DIMINFO)(SDO_GTYPE, SDO_SRID, SDO
--
SDO_GEOMETRY(3001, 0, NULL, SDO_ELEM_INFO_ARRAY(1, 1, 1), SDO_ORDINATE_ARRAY(5,
14, 27))
9-34 Oracle Spatial User’s Guide and Reference

SDO_LRS.GEOM_SEGMENT_LENGTH
SDO_LRS.GEOM_SEGMENT_LENGTH

Format
SDO_LRS.GEOM_SEGMENT_LENGTH(

geom_segment IN MDSYS.SDO_GEOMETRY,

dim_array IN MDSYS.SDO_DIM_ARRAY

) RETURN NUMBER;

Description
Returns the length of a geometric segment.

Parameters

geom_segment
Geometric segment whose length is to be calculated.

dim_array
Dimensional information array corresponding to geom_segment, usually selected
from one of the xxx_SDO_GEOM_METADATA views.

Usage Notes
This function returns the length of geom_segment. The length is the geometric length,
which is not the same as the total of the measure unit values. To determine how
long a segment is in terms of measure units, subtract the result of an SDO_
LRS.GEOM_SEGMENT_START_MEASURE operation from the result of an SDO_
LRS.GEOM_SEGMENT_END_MEASURE operation.

SDO_LRS.GEOM_SEGMENT_LENGTH is an alias of the SDO_GEOM.SDO_
LENGTH Spatial function.

An exception is raised if geom_segment is invalid.

Examples
The following example returns the length of the geometric segment representing
Route 1. (This example uses the definitions from the example in Section E.5.)

SELECT SDO_LRS.GEOM_SEGMENT_LENGTH(a.route_geometry, m.diminfo)
Linear Referencing Functions 9-35

SDO_LRS.GEOM_SEGMENT_LENGTH
 FROM lrs_routes a, user_sdo_geom_metadata m
 WHERE m.table_name = ’LRS_ROUTES’ AND m.column_name = ’ROUTE_GEOMETRY’
 AND a.route_id = 1;

SDO_LRS.GEOM_SEGMENT_LENGTH(A.ROUTE_GEOMETRY,M.DIMINFO)

 27
9-36 Oracle Spatial User’s Guide and Reference

SDO_LRS.GEOM_SEGMENT_START_MEASURE
SDO_LRS.GEOM_SEGMENT_START_MEASURE

Format
SDO_LRS.GEOM_SEGMENT_START_MEASURE(

geom_segment IN MDSYS.SDO_GEOMETRY,

dim_array IN MDSYS.SDO_DIM_ARRAY

) RETURN NUMBER;

Description
Returns the start measure of a geometric segment.

Parameters

geom_segment
Geometric segment whose start measure is to be returned.

dim_array
Dimensional information array corresponding to geom_segment, usually selected
from one of the xxx_SDO_GEOM_METADATA views.

Usage Notes
This function returns the start measure of geom_segment.

An exception is raised if geom_segment is invalid.

Examples
The following example returns the start measure of the geometric segment
representing Route 1. (This example uses the definitions from the example in
Section E.5.)

SELECT SDO_LRS.GEOM_SEGMENT_START_MEASURE(a.route_geometry, m.diminfo)
 FROM lrs_routes a, user_sdo_geom_metadata m
 HERE m.table_name = ’LRS_ROUTES’ AND m.column_name = ’ROUTE_GEOMETRY’
 AND a.route_id = 1;
Linear Referencing Functions 9-37

SDO_LRS.GEOM_SEGMENT_START_MEASURE
SDO_LRS.GEOM_SEGMENT_START_MEASURE(A.ROUTE_GEOMETRY,M.DIMINFO)
--
 0
9-38 Oracle Spatial User’s Guide and Reference

SDO_LRS.GEOM_SEGMENT_START_PT
SDO_LRS.GEOM_SEGMENT_START_PT

Format
SDO_LRS.GEOM_SEGMENT_START_PT(

geom_segment IN MDSYS.SDO_GEOMETRY,

dim_array IN MDSYS.SDO_DIM_ARRAY

) RETURN MDSYS.SDO_GEOMETRY;

Description
Returns the start point of a geometric segment.

Parameters

geom_segment
Geometric segment whose start point is to be returned.

dim_array
Dimensional information array corresponding to geom_segment, usually selected
from one of the xxx_SDO_GEOM_METADATA views.

Usage Notes
This function returns the start point of geom_segment.

An exception is raised if geom_segment is invalid.

Examples
The following example returns the start point of the geometric segment
representing Route 1. (This example uses the definitions from the example in
Section E.5.)

SELECT SDO_LRS.GEOM_SEGMENT_START_PT(a.route_geometry, m.diminfo)
 FROM lrs_routes a, user_sdo_geom_metadata m
 WHERE m.table_name = ’LRS_ROUTES’ AND m.column_name = ’ROUTE_GEOMETRY’
 AND a.route_id = 1;
Linear Referencing Functions 9-39

SDO_LRS.GEOM_SEGMENT_START_PT
SDO_LRS.GEOM_SEGMENT_START_PT(A.ROUTE_GEOMETRY,M.DIMINFO)(SDO_GTYPE, SDO_SRID, S
--
SDO_GEOMETRY(3001, 0, NULL, SDO_ELEM_INFO_ARRAY(1, 1, 1), SDO_ORDINATE_ARRAY(2,
2, 0))
9-40 Oracle Spatial User’s Guide and Reference

SDO_LRS.GET_MEASURE
SDO_LRS.GET_MEASURE

Format
SDO_LRS.GET_MEASURE(

point IN MDSYS.SDO_GEOMETRY,

dim_array IN MDSYS.SDO_DIM_ARRAY

) RETURN NUMBER;

Description
Returns the measure of a point on a geometric segment.

Parameters

point
Point whose measure along its geometric segment is to be returned.

dim_array
Dimensional information array corresponding to point, usually selected from one of
the xxx_SDO_GEOM_METADATA views.

Usage Notes
This function returns the measure of a point on the geometric segment.

If point is not valid, an “invalid LRS segment” exception is raised.

Contrast this function with SDO_LRS.PROJECT_PT, which accepts as input a point
that is not necessarily on the geometric segment, but which returns a point that is
on the geometric segment. As the following example shows, the SDO_LRS.GET_
MEASURE function can be used to return the measure of the projected point
returned by SDO_LRS.PROJECT_PT.

Examples
The following example returns the measure of a projected point. In this case, the
point resulting from the projection is 9 units from the start of the segment.

SQL> SELECT SDO_LRS.GET_MEASURE(
 SDO_LRS.PROJECT_PT(a.route_geometry, m.diminfo,
Linear Referencing Functions 9-41

SDO_LRS.GET_MEASURE
 MDSYS.SDO_GEOMETRY(3001, NULL, NULL,
 MDSYS.SDO_ELEM_INFO_ARRAY(1, 1, 1),
 MDSYS.SDO_ORDINATE_ARRAY(9, 3, NULL))),
 m.diminfo)
 FROM lrs_routes a, user_sdo_geom_metadata m
 WHERE m.table_name = ’LRS_ROUTES’ AND m.column_name = ’ROUTE_GEOMETRY’
 AND a.route_id = 1;

SDO_LRS.GET_MEASURE(SDO_LRS.PROJECT_PT(A.ROUTE_GEOMETRY,M.DIMINFO,MDSYS.SDO_GEOM
--
 9
9-42 Oracle Spatial User’s Guide and Reference

SDO_LRS.IS_GEOM_SEGMENT_DEFINED
SDO_LRS.IS_GEOM_SEGMENT_DEFINED

Format
SDO_LRS.IS_GEOM_SEGMENT_DEFINED(

geom_segment IN MDSYS.SDO_GEOMETRY,

dim_array IN MDSYS.SDO_DIM_ARRAY

) RETURN VARCHAR2;

Description
Checks if an LRS segment is defined correctly.

Parameters

geom_segment
Geometric segment to be checked.

dim_array
Dimensional information array corresponding to geom_segment, usually selected
from one of the xxx_SDO_GEOM_METADATA views.

Usage Notes
This function returns TRUE if geom_segment is defined correctly and FALSE if geom_
segment is not defined correctly.

The start and end measures of geom_segment must be defined (cannot be null), and
any measures assigned must be in an ascending order along the segment direction.

See also the SDO_LRS.VALID_GEOM_SEGMENT function.

Examples
The following example checks if the geometric segment representing Route 1 is
defined. (This example uses the definitions from the example in Section E.5.)

SELECT SDO_LRS.IS_GEOM_SEGMENT_DEFINED(a.route_geometry, m.diminfo)
 FROM lrs_routes a, user_sdo_geom_metadata m
 WHERE m.table_name = ’LRS_ROUTES’ AND m.column_name = ’ROUTE_GEOMETRY’
 AND a.route_id = 1;
Linear Referencing Functions 9-43

SDO_LRS.IS_GEOM_SEGMENT_DEFINED
SDO_LRS.IS_GEOM_SEGMENT_DEFINED(A.ROUTE_GEOMETRY,M.DIMINFO)
--
TRUE
9-44 Oracle Spatial User’s Guide and Reference

SDO_LRS.LOCATE_PT
SDO_LRS.LOCATE_PT

Format
SDO_LRS.LOCATE_PT(

geom_segment IN MDSYS.SDO_GEOMETRY,

dim_array IN MDSYS.SDO_DIM_ARRAY,

measure IN NUMBER,

offset IN NUMBER

) RETURN MDSYS.SDO_GEOMETRY;

Description
Returns the point located at a specified distance from the start of a geometric
segment.

Parameters

geom_segment
Geometric segment to be checked to see if it falls within the measure range of
measure.

dim_array
Dimensional information array corresponding to geom_segment, usually selected
from one of the xxx_SDO_GEOM_METADATA views.

measure
Distance to measure from the start point of geom_segment.

offset
Distance to measure perpendicularly from the point that is located at measure units
from the start point of geom_segment.

Usage Notes
This function returns the referenced point.

An exception is raised if geom_segment is invalid or if the location is out of range.
Linear Referencing Functions 9-45

SDO_LRS.LOCATE_PT
For more information about locating a point on a geometric segment, see
Section E.4.7.

Examples
The following example returns the point at measure 9 and on (that is, offset 0) the
geometric segment representing Route 1. (This example uses the definitions from
the example in Section E.5.)

SELECT SDO_LRS.LOCATE_PT(a.route_geometry, m.diminfo, 9, 0)
 FROM lrs_routes a, user_sdo_geom_metadata m
 WHERE m.table_name = ’LRS_ROUTES’ AND m.column_name = ’ROUTE_GEOMETRY’
 AND a.route_id = 1;

SDO_LRS.LOCATE_PT(A.ROUTE_GEOMETRY,M.DIMINFO,9,0)(SDO_GTYPE, SDO_SRID, SDO_POINT
--
SDO_GEOMETRY(3001, NULL, NULL, SDO_ELEM_INFO_ARRAY(1, 1, 1), SDO_ORDINATE_ARRAY(
9, 4, 9))
9-46 Oracle Spatial User’s Guide and Reference

SDO_LRS.MEASURE_RANGE
SDO_LRS.MEASURE_RANGE

Format
SDO_LRS.MEASURE_RANGE(

geom_segment IN MDSYS.SDO_GEOMETRY,

dim_array IN MDSYS.SDO_DIM_ARRAY

) RETURN NUMBER;

Description
Returns the measure range of a geometric segment, that is, the difference between
the start measure and end measure.

Parameters

geom_segment
Cartographic representation of a linear feature.

dim_array
Dimensional information array corresponding to geom_segment, usually selected
from one of the xxx_SDO_GEOM_METADATA views.

Usage Notes
This function subtracts the start measure of geom_segment from the end measure of
geom_segment.

Examples
The following example returns the measure range of the geometric segment
representing Route 1. (This example uses the definitions from the example in
Section E.5.)

SELECT SDO_LRS.MEASURE_RANGE(a.route_geometry, m.diminfo)
 FROM lrs_routes a, user_sdo_geom_metadata m
 WHERE m.table_name = ’LRS_ROUTES’ AND m.column_name = ’ROUTE_GEOMETRY’
 AND a.route_id = 1;
Linear Referencing Functions 9-47

SDO_LRS.MEASURE_RANGE
SDO_LRS.MEASURE_RANGE(A.ROUTE_GEOMETRY,M.DIMINFO)

 27
9-48 Oracle Spatial User’s Guide and Reference

SDO_LRS.MEASURE_TO_PERCENTAGE
SDO_LRS.MEASURE_TO_PERCENTAGE

Format
SDO_LRS.MEASURE_TO_PERCENTAGE(

geom_segment IN MDSYS.SDO_GEOMETRY,

dim_array IN MDSYS.SDO_DIM_ARRAY,

measure IN NUMBER

) RETURN NUMBER;

Description
Returns the percentage (0 to 100) that a specified measure is of the measure range of
a geometric segment.

Parameters

geom_segment
Cartographic representation of a linear feature.

dim_array
Dimensional information array corresponding to geom_segment, usually selected
from one of the xxx_SDO_GEOM_METADATA views.

measure
Measure value. This function returns the percentage that this measure value is of
the measure range.

Usage Notes
This function returns a number (0 to 100) that is the percentage of the measure
range that the specified measure represents. (The measure range is the end measure
minus the start measure.) For example, if the measure range of geom_segment is 50
and measure is 20, the function returns 40 (because 20/50 = 40%).

This function performs the reverse of the SDO_LRS.PERCENTAGE_TO_MEASURE
function, which returns the measure that corresponds to a percentage value.

An exception is raised if geom_segment or measure is invalid.
Linear Referencing Functions 9-49

SDO_LRS.MEASURE_TO_PERCENTAGE
Examples
The following example returns the percentage that 5 is of the measure range of
geometric segment representing Route 1. (This example uses the definitions from
the example in Section E.5.) The measure range of this segment is 27, and 5 is
approximately 18.5 percent of 27.

SELECT SDO_LRS.MEASURE_TO_PERCENTAGE(a.route_geometry, m.diminfo, 5)
 FROM lrs_routes a, user_sdo_geom_metadata m
 WHERE m.table_name = ’LRS_ROUTES’ AND m.column_name = ’ROUTE_GEOMETRY’
 AND a.route_id = 1;

SDO_LRS.MEASURE_TO_PERCENTAGE(A.ROUTE_GEOMETRY,M.DIMINFO,5)

 18.5185185
9-50 Oracle Spatial User’s Guide and Reference

SDO_LRS.PERCENTAGE_TO_MEASURE
SDO_LRS.PERCENTAGE_TO_MEASURE

Format
SDO_LRS.PERCENTAGE_TO_MEASURE(

geom_segment IN MDSYS.SDO_GEOMETRY,

dim_array IN MDSYS.SDO_DIM_ARRAY,

percentage IN NUMBER

) RETURN NUMBER;

Description
Returns the measure value of a specified percentage (0 to 100) of the measure range
of a geometric segment.

Parameters

geom_segment
Cartographic representation of a linear feature.

dim_array
Dimensional information array corresponding to geom_segment, usually selected
from one of the xxx_SDO_GEOM_METADATA views.

percentage
Percentage value. Must be from 0 to 100. This function returns the measure value
corresponding to this percentage of the measure range.

Usage Notes
This function returns the measure value corresponding to this percentage of the
measure range. (The measure range is the end measure minus the start measure.)
For example, if the measure range of geom_segment is 50 and percentage is 40, the
function returns 20 (because 40% of 50 = 20).

This function performs the reverse of the SDO_LRS.MEASURE_TO_PERCENTAGE
function, which returns the percentage value that corresponds to a measure.

An exception is raised if geom_segment is invalid or if percentage is less than 0 or
greater than 100.
Linear Referencing Functions 9-51

SDO_LRS.PERCENTAGE_TO_MEASURE
Examples
The following example returns the measure that is 50 percent of the measure range
of geometric segment representing Route 1. (This example uses the definitions from
the example in Section E.5.) The measure range of this segment is 27, and 50 percent
of 17 is 13.5.

SELECT SDO_LRS.PERCENTAGE_TO_MEASURE(a.route_geometry, m.diminfo, 50)
 FROM lrs_routes a, user_sdo_geom_metadata m
 HERE m.table_name = ’LRS_ROUTES’ AND m.column_name = ’ROUTE_GEOMETRY’
 AND a.route_id = 1;

SDO_LRS.PERCENTAGE_TO_MEASURE(A.ROUTE_GEOMETRY,M.DIMINFO,50)
--
 13.5
9-52 Oracle Spatial User’s Guide and Reference

SDO_LRS.PROJECT_PT
SDO_LRS.PROJECT_PT

Format
SDO_LRS.PROJECT_PT(

geom_segment IN MDSYS.SDO_GEOMETRY,

dim_array IN MDSYS.SDO_DIM_ARRAY,

point IN MDSYS.SDO_GEOMETRY

) RETURN MDSYS.SDO_GEOMETRY;

Description
Returns the projection point of a point on a geometric segment.

Parameters

geom_segment
Geometric segment to be checked.

dim_array
Dimensional information array corresponding to geom_segment, usually selected
from one of the xxx_SDO_GEOM_METADATA views.

point
Point to be projected.

Usage Notes
This function returns the projection point (including its measure) of a specified
point (point). The projection point is on the geometric segment.

If multiple projection points exist, the first projection point encountered from the
start point is returned.

An exception is raised if geom_segment is invalid.

For more information about projecting a point onto a geometric segment, see
Section E.4.8.
Linear Referencing Functions 9-53

SDO_LRS.PROJECT_PT
Examples
The following example returns the point (9,4,9) on the geometric segment
representing Route 1 that is closest to the specified point (9,3,NULL). (This example
uses the definitions from the example in Section E.5.)

-- Point 9,3,NULL is off the road; should return 9,4,9
SELECT SDO_LRS.PROJECT_PT(a.route_geometry, m.diminfo,
 MDSYS.SDO_GEOMETRY(3001, NULL, NULL,
 MDSYS.SDO_ELEM_INFO_ARRAY(1, 1, 1),
 MDSYS.SDO_ORDINATE_ARRAY(9, 3, NULL)))
 FROM lrs_routes a, user_sdo_geom_metadata m
 HERE m.table_name = ’LRS_ROUTES’ AND m.column_name = ’ROUTE_GEOMETRY’
 AND a.route_id = 1;

SDO_LRS.PROJECT_PT(A.ROUTE_GEOMETRY,M.DIMINFO,MDSYS.SDO_GEOMETRY(3001,NULL,NULL,
--
SDO_GEOMETRY(3001, NULL, NULL, SDO_ELEM_INFO_ARRAY(1, 1, 1), SDO_ORDINATE_ARRAY(
9, 4, 9))
9-54 Oracle Spatial User’s Guide and Reference

SDO_LRS.REDEFINE_GEOM_SEGMENT
SDO_LRS.REDEFINE_GEOM_SEGMENT

Format
SDO_LRS.REDEFINE_GEOM_SEGMENT(

geom_segment IN OUT MDSYS.SDO_GEOMETRY,

dim_array IN MDSYS.SDO_DIM_ARRAY

[, start_measure IN NUMBER,

end_measure IN NUMBER]);

Description
Populates the measures of all shape points based on the start and end measures of a
geometric segment, overriding any previously assigned measures between the start
point and end point.

Parameters

geom_segment
Cartographic representation of a linear feature.

dim_array
Dimensional information array corresponding to geom_segment, usually selected
from one of the xxx_SDO_GEOM_METADATA views.

start_measure
Distance measured from the start point of a geometric segment to the start point of
the linear feature. The default is 0.

end_measure
Distance measured from the end point of a geometric segment to the start point of
the linear feature. The default is the cartographic distance of the segment.

Usage Notes
An exception is raised if geom_segment is invalid or if start_measure or end_measure is
out of range.

For more information about redefining a geometric segment, see Section E.4.2.
Linear Referencing Functions 9-55

SDO_LRS.REDEFINE_GEOM_SEGMENT
Examples
The following example redefines a geometric segment. (This example uses the
definitions from the example in Section E.5.)

DECLARE
geom_segment MDSYS.SDO_GEOMETRY;
dim_array MDSYS.SDO_DIM_ARRAY;

BEGIN

SELECT a.route_geometry into geom_segment FROM lrs_routes a
 WHERE a.route_name = ’Route1’;
SELECT m.diminfo into dim_array from
 user_sdo_geom_metadata m
 WHERE m.table_name = ’LRS_ROUTES’ AND m.column_name = ’ROUTE_GEOMETRY’;

-- Define the LRS segment for Route1.
SDO_LRS.REDEFINE_GEOM_SEGMENT (geom_segment,
 dim_array,
 0, -- Zero starting measure: LRS segment starts at start of route.
 27); -- End of LRS segment is at measure 27.
END;
/

9-56 Oracle Spatial User’s Guide and Reference

SDO_LRS.REVERSE_MEASURE
SDO_LRS.REVERSE_MEASURE

Format
SDO_LRS.REVERSE_MEASURE(

geom_segment IN MDSYS.SDO_GEOMETRY,

dim_array IN MDSYS.SDO_DIM_ARRAY

) RETURN MDSYS.SDO_GEOMETRY;

Description
Returns a new geometric segment by reversing the original geometric segment.

Parameters

geom_segment
Cartographic representation of a linear feature.

dim_array
Dimensional information array corresponding to geom_segment, usually selected
from one of the xxx_SDO_GEOM_METADATA views.

Usage Notes
This function reverses the start and end measures (and consequently the direction)
of geom_segment. That is, the start measure of geom_segment is the end measure of
the returned geometric segment, and the end measure of geom_segment is the start
measure of the returned geometric segment.

Figure 9–1 shows the reversal of the start and end measures and the segment
direction resulting from this function.
Linear Referencing Functions 9-57

SDO_LRS.REVERSE_MEASURE

Figure 9–1 Reversing a Geometric Segment

An exception is raised if geom_segment is invalid.

Examples
The following example reverses the geometric segment representing route 1. (This
example uses the definitions from the example in Section E.5.)

SELECT SDO_LRS.REVERSE_MEASURE(a.route_geometry, m.diminfo)
 FROM lrs_routes a, user_sdo_geom_metadata m
 WHERE m.table_name = ’LRS_ROUTES’ AND m.column_name = ’ROUTE_GEOMETRY’
 AND a.route_id = 1;

SDO_LRS.REVERSE_MEASURE(A.ROUTE_GEOMETRY,M.DIMINFO)(SDO_GTYPE, SDO_SRID, SDO_POI
--
SDO_GEOMETRY(3002, NULL, NULL, SDO_ELEM_INFO_ARRAY(1, 2, 1), SDO_ORDINATE_ARRAY(
5, 14, 0, 8, 10, 5, 12, 10, 9, 12, 4, 15, 8, 4, 19, 2, 4, 25, 2, 2, 27))

 Reverse

M=0 M=20 M=20 M=0
9-58 Oracle Spatial User’s Guide and Reference

SDO_LRS.SCALE_GEOM_SEGMENT
SDO_LRS.SCALE_GEOM_SEGMENT

Format
SDO_LRS.SCALE_GEOM_SEGMENT(

geom_segment IN MDSYS.SDO_GEOMETRY,

dim_array IN MDSYS.SDO_DIM_ARRAY,

start_measure IN NUMBER,

end_measure IN NUMBER,

shift_measure IN NUMBER

) RETURN MDSYS.SDO_GEOMETRY;

Description
Returns the geometry object resulting from the scaling of a geometric segment.

Parameters

geom_segment
Geometric segment to be scaled.

dim_array
Dimensional information array corresponding to geom_segment, usually selected
from one of the xxx_SDO_GEOM_METADATA views.

start_measure
Start measure of the scaled geometric segment.

end_measure
End measure of the scaled geometric segment.

shift_measure
Shift measure of the scaled geometric segment.

Usage Notes
This function performs a general scaling operation to the geometric segment. The
new start and end measures are assigned, and all measures are populated by a
Linear Referencing Functions 9-59

SDO_LRS.SCALE_GEOM_SEGMENT
linear mapping between old and new start and end measures. The shift measure is
applied to the segment after scaling.

Common uses of this function are:

■ Shifting all measures by a specified amount (for example, to accommodate new
construction at the start of a road that causes the original start point to be n
measure units beyond the new start point)

■ Reversing the direction of a segment (for example, to allow one road segment to
be concatenated with another coming from the opposite direction, because both
segments to be concatenated must have the same direction)

■ Scaling the measure information without performing a shift (for example, to
change the measures from miles to kilometers)

The examples illustrate these uses.

An exception is raised if geom_segment is invalid or if start_measure or end_measure is
out of range.

For more information about scaling a geometric segment, see Section E.4.6.

Examples
The following examples illustrate the common SCALE_GEOM_ELEMENT uses
described in the Usage Notes. (These examples use the definitions from the example
in Section E.5.)

-- Shift by 5 (for example, 5-mile segment added before original start)
SELECT SDO_LRS.SCALE_GEOM_SEGMENT(a.route_geometry, m.diminfo, 0, 27, 5)
 FROM lrs_routes a, user_sdo_geom_metadata m
 WHERE m.table_name = ’LRS_ROUTES’ AND m.column_name = ’ROUTE_GEOMETRY’
 AND a.route_id = 1;

SDO_LRS.SCALE_GEOM_SEGMENT(A.ROUTE_GEOMETRY,M.DIMINFO,0,27,5)(SDO_GTYPE, SDO_SRI
--
SDO_GEOMETRY(3002, NULL, NULL, SDO_ELEM_INFO_ARRAY(1, 2, 1), SDO_ORDINATE_ARRAY(
2, 2, 5, 2, 4, 7, 8, 4, 13, 12, 4, 17, 12, 10, 23, 8, 10, 27, 5, 14, 32))

-- Reverse direction (for example, to concatenate with another road)
SELECT SDO_LRS.SCALE_GEOM_SEGMENT(a.route_geometry, m.diminfo,27, 0, 0)
 FROM lrs_routes a, user_sdo_geom_metadata m
 WHERE m.table_name = ’LRS_ROUTES’ AND m.column_name = ’ROUTE_GEOMETRY’
 AND a.route_id = 1;

SDO_LRS.SCALE_GEOM_SEGMENT(A.ROUTE_GEOMETRY,M.DIMINFO,27,0,0)(SDO_GTYPE, SDO_SRI
9-60 Oracle Spatial User’s Guide and Reference

SDO_LRS.SCALE_GEOM_SEGMENT
--
SDO_GEOMETRY(3002, NULL, NULL, SDO_ELEM_INFO_ARRAY(1, 2, 1), SDO_ORDINATE_ARRAY(
5, 14, 0, 8, 10, 5, 12, 10, 9, 12, 4, 15, 8, 4, 19, 2, 4, 25, 2, 2, 27))

-- "Convert" mile measures to kilometers (27 * 1.609 = 43.443)
SELECT SDO_LRS.SCALE_GEOM_SEGMENT(a.route_geometry, m.diminfo,
 0, 43.443, 0)
 FROM lrs_routes a, user_sdo_geom_metadata m
 WHERE m.table_name = ’LRS_ROUTES’ AND m.column_name = ’ROUTE_GEOMETRY’
 AND a.route_id = 1;

SDO_LRS.SCALE_GEOM_SEGMENT(A.ROUTE_GEOMETRY,M.DIMINFO,0,43.443,0)(SDO_GTYPE, SDO
--
SDO_GEOMETRY(3002, NULL, NULL, SDO_ELEM_INFO_ARRAY(1, 2, 1), SDO_ORDINATE_ARRAY(
2, 2, 0, 2, 4, 3.218, 8, 4, 12.872, 12, 4, 19.308, 12, 10, 28.962, 8, 10, 35.398
, 5, 14, 43.443))
Linear Referencing Functions 9-61

SDO_LRS.SPLIT_GEOM_SEGMENT
SDO_LRS.SPLIT_GEOM_SEGMENT

Format
SDO_LRS.SPLIT_GEOM_SEGMENT(

geom_segment IN MDSYS.SDO_GEOMETRY,

dim_array IN MDSYS.SDO_DIM_ARRAY,

split_measure IN NUMBER,

geom_segment_1 OUT MDSYS.SDO_GEOMETRY,

geom_segment_2 OUT MDSYS.SDO_GEOMETRY);

Description
Splits a geometric segment into two geometric segments. (This is a procedure, not a
function.)

Parameters

geom_segment
Geometric segment to be split.

dim_array
Dimensional information array corresponding to geom_segment, usually selected
from one of the xxx_SDO_GEOM_METADATA views.

split_measure
Distance measured from the start point of a geometric segment to the split point.

geom_segment_1
First geometric segment: from the start point of geom_segment to the split point.

geom_segment_2
Second geometric segment: from the split point to the end point of geom_segment.

Usage Notes
An exception is raised if geom_segment or split_measure is invalid.

The directions and measures of the resulting geometric segments are preserved.
9-62 Oracle Spatial User’s Guide and Reference

SDO_LRS.SPLIT_GEOM_SEGMENT
For more information about splitting a geometric segment, see Section E.4.4.

Examples
The following example defines the geometric segment, splits it into two segments,
then concatenates those segments. (This example uses the definitions from the
example in Section E.5. The definitions of result_geom_1, result_geom_2, and result_
geom_3 are displayed in Example E–3.)

DECLARE
geom_segment MDSYS.SDO_GEOMETRY;
line_string MDSYS.SDO_GEOMETRY;
dim_array MDSYS.SDO_DIM_ARRAY;
result_geom_1 MDSYS.SDO_GEOMETRY;
result_geom_2 MDSYS.SDO_GEOMETRY;
result_geom_3 MDSYS.SDO_GEOMETRY;

BEGIN

SELECT a.route_geometry into geom_segment FROM lrs_routes a
 WHERE a.route_name = ’Route1’;
SELECT m.diminfo into dim_array from
 user_sdo_geom_metadata m
 WHERE m.table_name = ’LRS_ROUTES’ AND m.column_name = ’ROUTE_GEOMETRY’;

-- Define the LRS segment for Route1.
SDO_LRS.DEFINE_GEOM_SEGMENT (geom_segment,
 dim_array,
 0, -- Zero starting measure: LRS segment starts at start of route.
 27); -- End of LRS segment is at measure 27.

SELECT a.route_geometry INTO line_string FROM lrs_routes a
 WHERE a.route_name = ’Route1’;

-- Split Route1 into two segments.
SDO_LRS.SPLIT_GEOM_SEGMENT(line_string,dim_array,5,result_geom_1,result_geom_2);

-- Concatenate the segments that were just split.
result_geom_3 := SDO_LRS.CONCATENATE_GEOM_SEGMENTS(result_geom_1, dim_array,
result_geom_2, dim_array);

-- Insert geometries into table, to display later.
INSERT INTO lrs_routes VALUES(
 11,
 ’result_geom_1’,
Linear Referencing Functions 9-63

SDO_LRS.SPLIT_GEOM_SEGMENT
 result_geom_1
);
INSERT INTO lrs_routes VALUES(
 12,
 ’result_geom_2’,
 result_geom_2
);
INSERT INTO lrs_routes VALUES(
 13,
 ’result_geom_3’,
 result_geom_3
);

END;
/

9-64 Oracle Spatial User’s Guide and Reference

SDO_LRS.TRANSLATE_MEASURE
SDO_LRS.TRANSLATE_MEASURE

Format
SDO_LRS.TRANSLATE_MEASURE(

geom_segment IN MDSYS.SDO_GEOMETRY,

dim_array IN MDSYS.SDO_DIM_ARRAY,

translate_m IN NUMBER

) RETURN MDSYS.SDO_GEOMETRY;

Description
Returns a new geometric segment by translating the original geometric segment
(that is, shifting the start and end measures by a specified value).

Parameters

geom_segment
Cartographic representation of a linear feature.

dim_array
Dimensional information array corresponding to geom_segment, usually selected
from one of the xxx_SDO_GEOM_METADATA views.

translate_m
Distance measured from the start point of a geometric segment to the start point of
the linear feature.

Usage Notes
This function adds translate_m to the start and end measures of geom_segment. For
example, if geom_segment has a start measure of 50 and an end measure of 100, and
if translate_m is 10, the returned geometric segment has a start measure of 60 and an
end measure of 110, as shown in Figure 9–2.
Linear Referencing Functions 9-65

SDO_LRS.TRANSLATE_MEASURE

Figure 9–2 Translating a Geometric Segment

An exception is raised if geom_segment is invalid.

Examples
The following example translates (shifts) by 10 the geometric segment representing
Route 1. (This example uses the definitions from the example in Section E.5.)

SELECT SDO_LRS.TRANSLATE_MEASURE(a.route_geometry, m.diminfo, 10)
 FROM lrs_routes a, user_sdo_geom_metadata m
 WHERE m.table_name = ’LRS_ROUTES’ AND m.column_name = ’ROUTE_GEOMETRY’
 AND a.route_id = 1;

SDO_LRS.TRANSLATE_MEASURE(A.ROUTE_GEOMETRY,M.DIMINFO,10)(SDO_GTYPE, SDO_SRID, SD
--
SDO_GEOMETRY(3002, NULL, NULL, SDO_ELEM_INFO_ARRAY(1, 2, 1), SDO_ORDINATE_ARRAY(
2, 2, 10, 2, 4, 12, 8, 4, 18, 12, 4, 22, 12, 10, 28, 8, 10, 32, 5, 14, 37))

 Translate (10)

M=50 M=100 M=60 M=110
9-66 Oracle Spatial User’s Guide and Reference

SDO_LRS.VALID_GEOM_SEGMENT
SDO_LRS.VALID_GEOM_SEGMENT

Format
SDO_LRS.VALID_GEOM_SEGMENT(

geom_segment IN MDSYS.SDO_GEOMETRY,

dim_array IN MDSYS.SDO_DIM_ARRAY

) RETURN VARCHAR2;

Description
Checks if a geometry object is a valid geometric segment.

Parameters

geom_segment
Geometric segment to be checked for validity.

dim_array
Dimensional information array corresponding to geom_segment, usually selected
from one of the xxx_SDO_GEOM_METADATA views.

Usage Notes
This function returns TRUE if geom_segment is valid and FALSE if geom_segment is
not valid.

Measure information is assumed to be stored in the last element of the SDO_DIM_
ARRAY in the Oracle Spatial metadata.

This function only checks for geometry type and number of dimensions of the
geometric segment. To further validate measure information, use the IS_GEOM_
SEGMENT_DEFINED function.

Examples
The following example checks if the geometric segment representing Route 1 is
valid. (This example uses the definitions from the example in Section E.5.)

SELECT SDO_LRS.VALID_GEOM_SEGMENT(a.route_geometry, m.diminfo)
 FROM lrs_routes a, user_sdo_geom_metadata m
Linear Referencing Functions 9-67

SDO_LRS.VALID_GEOM_SEGMENT
 WHERE m.table_name = ’LRS_ROUTES’ AND m.column_name = ’ROUTE_GEOMETRY’
 AND a.route_id = 1;

SDO_LRS.VALID_GEOM_SEGMENT(A.ROUTE_GEOMETRY,M.DIMINFO)
--
TRUE
9-68 Oracle Spatial User’s Guide and Reference

SDO_LRS.VALID_LRS_PT
SDO_LRS.VALID_LRS_PT

Format
SDO_LRS.VALID_LRS_PT(

point IN MDSYS.SDO_GEOMETRY,

dim_array IN MDSYS.SDO_DIM_ARRAY

) RETURN VARCHAR2;

Description
Checks if an LRS point is valid.

Parameters

point
Point to be checked for validity.

dim_array
Dimensional information array corresponding to point, usually selected from one of
the xxx_SDO_GEOM_METADATA views.

Usage Notes
This function returns TRUE if point is valid and FALSE if point is not valid.

This function checks if point is a point with measure information, and it checks for
the geometry type and number of dimensions for the point geometry.

Ordinate information needs to be stored in SDO_ELEM_INFO_ARRAY and SDO_
ORDINATE_ARRAY. The SDO_POINT field in the SDO_GEOMETRY definition of
the point should not be used for LRS points, because SDO_POINT supports the
definition of only three attributes (X, Y, Z).

Examples
The following example checks if point (9,3,NULL) is a valid LRS point.

SELECT SDO_LRS.VALID_LRS_PT(
 MDSYS.SDO_GEOMETRY(3001, NULL, NULL,
 MDSYS.SDO_ELEM_INFO_ARRAY(1, 1, 1),
Linear Referencing Functions 9-69

SDO_LRS.VALID_LRS_PT
 MDSYS.SDO_ORDINATE_ARRAY(9, 3, NULL)),
 m.diminfo)
 FROM lrs_routes a, user_sdo_geom_metadata m
 WHERE m.table_name = ’LRS_ROUTES’ AND m.column_name = ’ROUTE_GEOMETRY’
 AND a.route_id = 1;

SDO_LRS.VALID_LRS_PT(MDSYS.SDO_GEOMETRY(3001,NULL,NULL,MDSYS.SDO_ELEM_INFO_ARRAY
--
TRUE
9-70 Oracle Spatial User’s Guide and Reference

SDO_LRS.VALID_MEASURE
SDO_LRS.VALID_MEASURE

Format
SDO_LRS.VALID_MEASURE(

geom_segment IN MDSYS.SDO_GEOMETRY,

dim_array IN MDSYS.SDO_DIM_ARRAY,

measure IN NUMBER

) RETURN VARCHAR2;

Description
Checks if a measure falls within the measure range of a geometric segment.

Parameters

geom_segment
Geometric segment to be checked to see if it falls within the measure range of
measure.

dim_array
Dimensional information array corresponding to geom_segment, usually selected
from one of the xxx_SDO_GEOM_METADATA views.

measure
Geometric segment to be checked to see if geom_segment falls within its measure
range.

Usage Notes
This function returns TRUE if measure falls within the measure range of geom_
segment and FALSE if measure does not fall within the measure range of geom_
segment.

An exception is raised if geom_segment is invalid.

Examples
The following example checks if 50 is a valid measure on the Route 1 segment. The
function returns FALSE because the measure range for that segment is 0 to 27. (For
Linear Referencing Functions 9-71

SDO_LRS.VALID_MEASURE
example, if the route is 27 miles long and there is a mile marker at one-mile
intervals, there is no 50-mile marker because the last marker is the 27-mile marker.)

SELECT SDO_LRS.VALID_MEASURE(a.route_geometry, m.diminfo, 50)
 FROM lrs_routes a, user_sdo_geom_metadata m
 WHERE m.table_name = ’LRS_ROUTES’ AND m.column_name = ’ROUTE_GEOMETRY’
 AND a.route_id = 1

SDO_LRS.VALID_MEASURE(A.ROUTE_GEOMETRY,M.DIMINFO,50)
--
FALSE
9-72 Oracle Spatial User’s Guide and Reference

Migration Proc
10

Migration Procedures

The procedures described in this chapter let you upgrade geometry tables from
previous releases of Spatial Cartridge or Spatial Data Option.

This chapter contains descriptions of the migration procedures shown in Table 10–1.

Table 10–1 Migration Procedures

Procedure Description

SDO_MIGRATE.FROM_815_TO_81X Migrates data from Spatial release 8.1.5 to the
current release.

SDO_MIGRATE.TO_734 Migrates data from a previous release of Spatial
Data Option to release 7.3.4.

SDO_MIGRATE.TO_81X Migrates tables from Spatial Data Option 7.3.4
or Spatial Cartridge 8.0.4 to Oracle Spatial.

SDO_MIGRATE.OGIS_METADATA_
FROM

Generates a temporary table used when
migrating OGIS (OpenGIS) metadata tables.

SDO_MIGRATE.OGIS_METADATA_TO Reads a temporary table used when migrating
OGIS metadata tables.
edures 10-1

SDO_MIGRATE.FROM_815_TO_81X
SDO_MIGRATE.FROM_815_TO_81X

 Format
SDO_MIGRATE.FROM_815_TO_81X(

tabname IN VARCHAR2);

Description
Migrates data from Spatial release 8.1.5 to the current release.

Parameters

tabname
Table with geometry objects.

Usage Notes
See Section B.5 for important information about migrating from Spatial release 8.1.5.

All geometry objects in tabname will be migrated so that their SDO_GTYPE and
SDO_ETYPE values are in the release 8.1.6 format.

Examples
The following example changes the definitions of geometry objects in the ROADS
table from the release 8.1.5 format to the format of the current release.

SQL> execute sdo_migrate.from_815_to_81x(’ROADS’);
10-2 Oracle Spatial User’s Guide and Reference

SDO_MIGRATE.TO_734
SDO_MIGRATE.TO_734

 Format
SDO_MIGRATE.TO_734(

sn IN VARCHAR2,

layer IN VARCHAR2,

tess_type IN VARCHAR2,

param IN INTEGER);

Description
Migrates data from a previous release of Spatial Data Option to release 7.3.4.

Parameters

sn
Schema name of the owner of layer.

layer
Name of the layer to be migrated.

tess_type
Type of tessellation (indexing) to be used: FIXED or VARIABLE.

param
Parameter whose significance depends on tess_type:

■ If tess_type is FIXED, param is the SDO_LEVEL value.

■ If tess_type is VARIABLE, param is the SDO_NUMTILES value.

Usage Notes
None.

Examples
For fixed-size tessellation:

SQL> execute sdo_migrate.to_734(’HERMAN’, ’ROADS’, ’FIXED’, 10);
Migration Procedures 10-3

SDO_MIGRATE.TO_734
For variable-sized tessellation:

SQL> execute sdo_migrate_to_734(’HERMAN’, ’ROADS’, ’VARIABLE’,4);
10-4 Oracle Spatial User’s Guide and Reference

SDO_MIGRATE.TO_81X
SDO_MIGRATE.TO_81X

 Format
SDO_MIGRATE.TO_81X(

layer IN VARCHAR2,

newtabname IN VARCHAR2,

gidcolumn IN VARCHAR2,

geocolname IN VARCHAR2,

layer_gtype IN VARCHAR2,

updateflag IN VARCHAR2);

Description
Migrates data from a previous release of Spatial Cartridge or Spatial Data Option to
the current release of Oracle Spatial.

Parameters

layer
Name of the layer to be migrated.

newtabname
Name of the new table to which you are migrating the data.

gidcolumn
The name of the column in which to store the GID from the old table.

geocolname
Name of the column in the new table where the geometry objects will be inserted.

layer_gtype
One of the following values: POINT or NOTPOINT (default).

If the layer you are migrating is composed solely of point data, set this parameter to
POINT for optimal performance; otherwise, set this parameter to NOTPOINT.
Migration Procedures 10-5

SDO_MIGRATE.TO_81X
updateflag
One of the following values: UPDATE or INSERT (default).

If you are migrating the layer into an existing populated attribute table, set this
parameter to UPDATE; otherwise, set this parameter to INSERT.

Usage Notes
Consider the following when using this procedure:

■ The new table must be created before calling this procedure.

■ This procedure converts from Spatial Data Option release 7.3.4 or from Spatial
Cartridge releases 8.0.4 and 8.0.5.

■ A commit operation is performed by this procedure.

■ If any of the migration steps fails, nothing is migrated for the layer.

■ layer is the underlying layer name, without the _SDOGEOM suffix.

■ The old SDO_GID is stored in gidcolumn.

■ SDO_GTYPE values of 4 digits are created, using the format (d00n) shown in
Table 2–1 in Section 2.2.1.

■ This procedure assigns SDO_GTYPE values of d001, d002, or d003. (See
Table 2–1 in Section 2.2.1 for the SDO_GTYPE values.) If the data has multiple
points, line strings, or disjoint polygons, then you should update the SDO_
GTYPE values to d005, d006, or d007, respectively, after migration.

Examples
Insert point-only data into new rows:

execute sdo_migrate.to_81x(’raptor’, ’raptor’, ’sdo_gid’, ’feature’, ’point’);

Insert nonpoint data into new rows:

execute sdo_migrate.to_81x(’BTU’, ’BTU’, ’sdo_gid’, ’feature’);

Update point-only data into existing rows:

execute sdo_migrate.to_81x(’raptor’, ’raptor’, ’sdo_gid’, ’feature’,
 ’point’, ’update’);

Update nonpoint data into existing rows:

execute sdo_migrate.to_81x(’BTU’, ’BTU’, ’sdo_gid’, ’feature’,
10-6 Oracle Spatial User’s Guide and Reference

SDO_MIGRATE.TO_81X
 ’notpoint’, ’update’);
Migration Procedures 10-7

SDO_MIGRATE.OGIS_METADATA_FROM
SDO_MIGRATE.OGIS_METADATA_FROM

Format
SDO_MIGRATE.OGIS_METADATA_FROM

Description
Called at the source database when migrating from one 8.1.5 database to another
8.1.5 database. The procedure migrates OGIS (OpenGIS) metadata entries from
schemas owned by MDSYS.

Parameters
None.

Usage Notes
Consider the following when using this procedure:

■ The tables involved are strictly maintained by the user, and not by Spatial.
Details are available in the sdocat.sql file and the OpenGIS specification.

■ Call this procedure once before migrating the data, and it will generate a
temporary table called SDO_GC_MIG. Export the temporary table to the new
database and call SDO_MIGRATE.OGIS_METADATA_TO to restore the data.
10-8 Oracle Spatial User’s Guide and Reference

SDO_MIGRATE.OGIS_METADATA_TO
SDO_MIGRATE.OGIS_METADATA_TO

Format
SDO_MIGRATE.OGIS_METADATA_TO

Description
Used at the destination database when migrating from one 8.1.5 database to another
8.1.5 database. The procedure migrates OGIS (OpenGIS) metadata entries from
schemas owned by MDSYS.

Parameters
None.

Usage Notes
Consider the following when using this procedure:

■ The tables involved are strictly maintained by the user, and not by Spatial.
Details are available in the sdocat.sql file and the OpenGIS specification.

■ Call this procedure once after migrating the data. See SDO_MIGRATE.OGIS_
METADATA_FROM.
Migration Procedures 10-9

SDO_MIGRATE.OGIS_METADATA_TO
10-10 Oracle Spatial User’s Guide and Reference

Tuning Functions and Proc
11

Tuning Functions and Procedures

This chapter contains descriptions of the tuning functions and procedures shown in
Table 11–1.

Table 11–1 Tuning Functions and Procedures

Function/Procedure Description

SDO_TUNE.AVERAGE_MBR Calculates the average minimum bounding rectangle
for geometries in a layer.

SDO_TUNE.ESTIMATE_INDEX_
PERFORMANCE

Estimates the spatial index selectivity.

SDO_TUNE.ESTIMATE_TILING_
LEVEL

Determines an appropriate tiling level for creating
fixed-size index tiles.

SDO_TUNE.ESTIMATE_TILING_
TIME

Estimates the tiling time for a layer, in seconds.

SDO_TUNE.ESTIMATE_TOTAL_
NUMTILES

Estimates the total number of spatial tiles for a layer.

SDO_TUNE.EXTENT_OF Determines the minimum bounding rectangle of the
data in a layer.

SDO_TUNE.HISTOGRAM_
ANALYSIS

Calculates statistical histograms for a spatial layer.

SDO_TUNE.MIX_INFO Calculates geometry type information for a spatial
layer, such as the percentage of each geometry type.
edures 11-1

SDO_TUNE.AVERAGE_MBR
SDO_TUNE.AVERAGE_MBR

 Format
SDO_TUNE.AVERAGE_MBR(

table_name IN VARCHAR2,

column_name IN VARCHAR2,

width OUT NUMBER,

height OUT NUMBER);

Description
Calculates the average minimum bounding rectangle (MBR) for a geometry object
column.

Parameters

table_name
Geometry table.

column_name
Geometry column for which the average minimum bounding rectangle is to be
computed.

width
Width of the average minimum bounding rectangle.

height
Height of the average minimum bounding rectangle.

Usage Notes
This procedure computes and stores the width and height of the average minimum
bounding rectangle for all geometries in a geometry table. It calculates the average
MBR by keeping track of the maximum and minimum X and Y values for all
geometries in a geometry table.

AVERAGE_MBR is a procedure, not a function. (Procedures do not return values.)
11-2 Oracle Spatial User’s Guide and Reference

SDO_TUNE.AVERAGE_MBR
Examples
The following example calculates the minimum bounding rectangle for the SHAPE
column of the COLA_MARKETS table.

DECLARE
 table_name VARCHAR2(32) := ’COLA_MARKETS’;
 column_name VARCHAR2(32) := ’SHAPE’;
 width NUMBER;
 height NUMBER;
BEGIN
SDO_TUNE.AVERAGE_MBR(
 table_name,
 column_name,
 width,
 height);
DBMS_OUTPUT.PUT_LINE(’Width = ’ || width);
DBMS_OUTPUT.PUT_LINE(’Height = ’ || height);
END;
/
Width = 3.5
Height = 4.5

Related Topics
SDO_TUNE.EXTENT_OF
Tuning Functions and Procedures 11-3

SDO_TUNE.ESTIMATE_INDEX_PERFORMANCE
SDO_TUNE.ESTIMATE_INDEX_PERFORMANCE

Format
SDO_TUNE.ESTIMATE_INDEX_PERFORMANCE(

table_name IN VARCHAR2,

column_name IN VARCHAR2,

sample_ratio IN INTEGER,

tiling_level IN INTEGER,

num_tiles IN INTEGER,

window_obj IN MDSYS.SDO_GEOMETRY,

tiling_time OUT NUMBER,

filter_time OUT NUMBER,

query_time OUT NUMBER

) RETURN NUMBER;

Description
Estimates the spatial index performance such as query selectivity and window
query time for a column of type SDO_GEOMETRY.

Parameters

table_name
Geometry table.

column_name
Geometry column for which the tiling time is to be estimated.

sample_ratio
Approximate ratio between the geometries in the original layer and those in the
sample layer (to be generated in order to perform the estimate). The default is 20:
that is, the sample layer will contain approximately 1/20 (5 percent) of the
geometries in the original layer. The larger the sample_ratio value, the faster the
function will run, but the less accurate will be the result (the estimate).
11-4 Oracle Spatial User’s Guide and Reference

SDO_TUNE.ESTIMATE_INDEX_PERFORMANCE
Note that Spatial obtains the sample by using the SAMPLE(sample_percent) feature
internally. For a description of this feature, see the sample_clause description in the
"SELECT and Subqueries" section of the Oracle8i SQL Reference.

tiling_level
Spatial index level at which the layer is to be tessellated.

num_tiles
Number of tiles for variable or hybrid tessellation. Should be 0 for fixed tessellation.
The default is 0.

window_obj
Window geometry object.

tiling_time
Estimated tiling time in seconds.

filter_time
Estimated spatial index filter time in seconds.

query_time
Estimated window query time in seconds.

Usage Notes
The function returns a number between 0.0 and 1.0 representing estimated spatial
index selectivity. The larger the number, the better the selectivity.

The sample_ratio parameter lets you control the trade-off between speed and
accuracy. Note that sample_ratio is not exact, but reflects an average. For example, a
sample_ratio value of 20 sometimes causes fewer than 5 percent of geometry objects
to be sampled and sometimes more than 5 percent, but over time an average of 5
percent will be sampled.

A return value of 0.0 indicates an error.

Examples
The following example calculates the minimum bounding rectangle for the SHAPE
column of the COLA_MARKETS table.

DECLARE
 table_name VARCHAR2(32) := ’COLA_MARKETS’;
 column_name VARCHAR2(32) := ’SHAPE’;
 sample_ratio INTEGER := 15;
Tuning Functions and Procedures 11-5

SDO_TUNE.ESTIMATE_INDEX_PERFORMANCE
 tiling_level INTEGER := 4;
 num_tiles INTEGER := 10;
 window_obj MDSYS.SDO_GEOMETRY :=
 MDSYS.SDO_GEOMETRY(
 2003, -- 2-dimensional polygon
 NULL,
 NULL,
 MDSYS.SDO_ELEM_INFO_ARRAY(1,1003,1), -- one polygon
 MDSYS.SDO_ORDINATE_ARRAY(3,3, 6,3, 6,5, 4,5, 3,3)
);
 tiling_time NUMBER;
 filter_time NUMBER;
 query_time NUMBER;
 ret_number NUMBER;
BEGIN
ret_number := SDO_TUNE.ESTIMATE_INDEX_PERFORMANCE(
 table_name,
 column_name,
 sample_ratio,
 tiling_level,
 num_tiles,
 window_obj,
 tiling_time,
 filter_time,
 query_time
);
END;
/

11-6 Oracle Spatial User’s Guide and Reference

SDO_TUNE.ESTIMATE_TILING_LEVEL
SDO_TUNE.ESTIMATE_TILING_LEVEL

Format
SDO_TUNE.ESTIMATE_TILING_LEVEL(

table_name IN VARCHAR2,

column_name IN VARCHAR2,

maxtiles IN INTEGER,

type_of_estimate IN VARCHAR2 := ’AVG_GID_EXTENT’

) RETURN INTEGER;

Description
Estimates the appropriate SDO_LEVEL value to use when indexing with hybrid or
fixed-size tiles.

Parameters

table_name
Geometry table.

column_name
Geometry column for which the tiling level is to be estimated.

maxtiles
Maximum number of tiles that can be used to index the rectangle defined by type_
of_estimate.

type_of_estimate
Keyword to specify the type of estimate:

■ LAYER_EXTENT -- Uses the rectangle defined by your coordinate system.

■ ALL_GID_EXTENT -- Uses the minimum bounding rectangle that encompasses
all the geometric objects in the column. This estimate is recommended for most
applications.

■ AVG_GID_EXTENT -- Uses a rectangle representing the average size of the
individual geometric objects within the column. This option is the default and
Tuning Functions and Procedures 11-7

SDO_TUNE.ESTIMATE_TILING_LEVEL
performs the most analysis of the three types, but it takes the longest time to
complete.

Usage Notes
The function returns an integer representing the level to use when creating a spatial
index for the specified layer. The function returns NULL if the data is inconsistent.

If type_of_estimate is ALL_GID_EXTENT, a maxtiles value of 10000 is recommended
for most applications.

Examples
The following example estimates the appropriate SDO_LEVEL value to use with the
SHAPE column of the COLA_MARKETS table.

SELECT SDO_TUNE.ESTIMATE_TILING_LEVEL(’COLA_MARKETS’, ’SHAPE’,
 10000, ’ALL_GID_EXTENT’)
 FROM DUAL;

SDO_TUNE.ESTIMATE_TILING_LEVEL(’COLA_MARKETS’,’SHAPE’,10000,’ALL_GID_EXTENT’)

 7

Related Topics
■ SDO_TUNE.EXTENT_OF

■ Section A.1.2, "Understanding the Tiling Level"

■ Section A.1.5, "Visualizing the Spatial Index (Drawing Tiles)"
11-8 Oracle Spatial User’s Guide and Reference

SDO_TUNE.ESTIMATE_TILING_TIME
SDO_TUNE.ESTIMATE_TILING_TIME

Format
SDO_TUNE.ESTIMATE_TILING_TIME(

table_name IN VARCHAR2,

column_name IN VARCHAR2,

sample_ratio IN INTEGER,

tiling_level IN INTEGER,

num_tiles IN INTEGER

) RETURN NUMBER;

Description
Returns the estimated time (in seconds) to tessellate a column of type SDO_
GEOMETRY.

Parameters

table_name
Geometry table.

column_name
Geometry column for which the tiling time is to be estimated.

sample_ratio
Approximate ratio between the geometries in the original layer and those in the
sample layer (to be generated to perform the estimate). The default is 20: that is, the
sample layer will contain approximately 1/20 (5 percent) of the geometries in the
original layer. The larger the sample_ratio value, the faster the function will run, but
the less accurate will be the result (the estimate).

Note that Spatial obtains the sample by using the SAMPLE(sample_percent) feature
internally. For a description of this feature, see the sample_clause description in the
"SELECT and Subqueries" section of the Oracle8i SQL Reference.

tiling_level
Spatial index level at which the layer is to be tessellated.
Tuning Functions and Procedures 11-9

SDO_TUNE.ESTIMATE_TILING_TIME
num_tiles
Number of tiles for variable or hybrid tessellation. Should be 0 for fixed tessellation.
The default is 0.

Usage Notes
A return value of 0 indicates an error.

The tiling time estimate is based on the tiling time of a small sample geometry table
that is automatically generated from the original table column. (This generated table
is deleted before the function completes.)

The sample_ratio parameter lets you control the trade-off between speed and
accuracy. Note that sample_ratio is not exact, but reflects an average. For example, a
sample_ratio value of 20 sometimes causes fewer than 5 percent of geometry objects
to be sampled and sometimes more than 5 percent, but over time an average of 5
percent will be sampled.

The CREATE TABLE privilege is required for using this function.

Examples
The following example estimates the tiling time to tessellate the REGIONS column
of the XYZ_MARKETS table.

DECLARE
 table_name VARCHAR2(32) := ’XYZ_MARKETS’;
 column_name VARCHAR2(32) := ’REGIONS’;
 sample_ratio INTEGER := 15;
 tiling_level INTEGER := 6;
 num_tiles INTEGER := 10;
 ret_number NUMBER;
BEGIN
ret_number := SDO_TUNE.ESTIMATE_TILING_TIME(
 table_name,
 column_name,
 sample_ratio,
 tiling_level,
 num_tiles
);
END;
/

11-10 Oracle Spatial User’s Guide and Reference

SDO_TUNE.ESTIMATE_TOTAL_NUMTILES
SDO_TUNE.ESTIMATE_TOTAL_NUMTILES

 Format
SDO_TUNE.ESTIMATE_TOTAL_NUMTILES(

table_name IN VARCHAR2,

column_name IN VARCHAR2,

sample_ratio IN INTEGER,

tiling_level IN INTEGER,

num_tiles IN INTEGER,

num_largetiles OUT INTEGER

) RETURN INTEGER;

Description
Estimates the total number of spatial tiles for a layer.

Parameters

table_name
Geometry table.

column_name
Geometry column for which the total number of spatial tiles is to be estimated.

sample_ratio
Approximate ratio between the geometries in the original layer and those in the
sample layer (to be generated to perform the estimate). The default is 20: that is, the
sample layer will contain approximately 1/20 (5 percent) of the geometries in the
original layer. The larger the sample_ratio value, the faster the function will run, but
the less accurate will be the result (the estimate).

Note that Spatial obtains the sample by using the SAMPLE(sample_percent) feature
internally. For a description of this feature, see the sample_clause description in the
"SELECT and Subqueries" section of the Oracle8i SQL Reference.

tiling_level
Spatial index level at which the layer is to be tessellated.
Tuning Functions and Procedures 11-11

SDO_TUNE.ESTIMATE_TOTAL_NUMTILES
num_tiles
Number of tiles for variable or hybrid tessellation. Should be 0 for fixed tessellation.
The default is 0.

num_largetiles
Output parameter to contain the number of spatial tiles that are of the same size as
group tiles for hybrid indexing. (For fixed indexing, num_largetiles will be the same
as the returned value: the total number of spatial tiles.)

Usage Notes
The estimate is based on the total number of tiles for a small sample layer that is
automatically generated from the original layer. (This generated table is deleted
before the function completes.)

The sample_ratio parameter lets you control the trade-off between speed and
accuracy. Note that sample_ratio is not exact, but reflects an average. For example, a
sample_ratio value of 20 sometimes causes fewer than 5 percent of geometry objects
to be sampled and sometimes more than 5 percent, but over time an average of 5
percent will be sampled.

The CREATE TABLE privilege is required for using this function.

Examples
The following example estimates the total number of spatial tiles required to index
the REGIONS column of the XYZ_MARKETS table.

DECLARE
 table_name VARCHAR2(32) := ’XYZ_MARKETS’;
 column_name VARCHAR2(32) := ’REGIONS’;
 sample_ratio INTEGER := 15;
 tiling_level INTEGER := 4;
 num_tiles INTEGER := 10;
 num_largetiles INTEGER;
 ret_integer INTEGER;
BEGIN
ret_integer := SDO_TUNE.ESTIMATE_TOTAL_NUMTILES(
 table_name,
 column_name,
 sample_ratio,
 tiling_level,
 num_tiles,
 num_largetiles
);
11-12 Oracle Spatial User’s Guide and Reference

SDO_TUNE.ESTIMATE_TOTAL_NUMTILES
END;
/

Tuning Functions and Procedures 11-13

SDO_TUNE.EXTENT_OF
SDO_TUNE.EXTENT_OF

 Format
SDO_TUNE.EXTENT_OF(

table_name IN VARCHAR2,

column_name IN VARCHAR2

) RETURN MDSYS.SDO_GEOMETRY;

Description
Returns the minimum bounding rectangle of all geometries in a column of type
SDO_GEOMETRY.

Parameters

table_name
Geometry table.

column_name
Geometry column for which the minimum bounding rectangle is to be returned.

Usage Notes
The function returns NULL if the data is inconsistent.

Examples
The following example calculates the minimum bounding rectangle for the objects
in the SHAPE column of the COLA_MARKETS table.

SELECT SDO_TUNE.EXTENT_OF(’COLA_MARKETS’, ’SHAPE’)
 FROM DUAL;

SDO_TUNE.EXTENT_OF(’COLA_MARKETS’,’SHAPE’)(SDO_GTYPE, SDO_SRID, SDO_POINT(X, Y,
--
SDO_GEOMETRY(2003, NULL, NULL, SDO_ELEM_INFO_ARRAY(1, 1003, 3), SDO_ORDINATE_
ARRAY(1, 1, 10, 11))
11-14 Oracle Spatial User’s Guide and Reference

SDO_TUNE.EXTENT_OF
Related Topics
SDO_TUNE.ESTIMATE_TILING_LEVEL

SDO_TUNE.AVERAGE_MBR procedure
Tuning Functions and Procedures 11-15

SDO_TUNE.HISTOGRAM_ANALYSIS
SDO_TUNE.HISTOGRAM_ANALYSIS

Format
SDO_TUNE.HISTOGRAM_ANALYSIS(

table_name IN VARCHAR2,

column_name IN VARCHAR2,

result_table IN VARCHAR2,

type_of_histogram IN VARCHAR2,

max_value IN NUMBER,

intervals IN INTEGER);

Description
Generates statistical histograms based on columns of type SDO_GEOMETRY.

Parameters

table_name
Geometry table.

column_name
Geometry object column for which the histogram is to be computed.

result_table
Result table to hold the histogram.

type_of_histogram
Keyword to specify the type of histogram:

■ TILES_VS_LEVEL -- Provides the number of tiles at different spatial index
levels. (Available only with hybrid indexes.) This histogram is the default, and
is used to evaluate the spatial index that is already built on the geometry
column.

■ GEOMS_VS_TILES -- Provides the number of geometries in different
number-of-tiles ranges. This histogram is used to evaluate the spatial index that
is already built on the geometry column.
11-16 Oracle Spatial User’s Guide and Reference

SDO_TUNE.HISTOGRAM_ANALYSIS
■ GEOMS_VS_AREA -- Provides the number of geometries in different size
ranges. The shape of this histogram could be helpful in choosing a proper index
type and index level

■ GEOMS_VS_VERTICES -- Provides a histogram of the geometry count against
the number of vertices. This histogram could help determine if spatial index
selectivity is important for the layer. Because the number of vertices determines
the performance of the secondary filter, selectivity of the primary filter could be
crucial for layers that contain many complicated geometries.

max_value
 The upper limit of the histogram. That is, the histogram runs in range (0, max_
value).

intervals
Number of intervals between 0 and max_value.

Usage Notes
The procedure populates the result table with statistical histograms for a geometry
table. (HISTOGRAM_ANALYSIS is a procedure, not a function. Procedures do not
return values.)

Before calling this procedure, create the result table (result_table parameter) with
VALUE and COUNT columns. For example:

CREATE TABLE histogram (value NUMBER, count NUMBER);
Tuning Functions and Procedures 11-17

SDO_TUNE.MIX_INFO
SDO_TUNE.MIX_INFO

Format
SDO_TUNE.MIX_INFO(

table_name IN VARCHAR2,

column_name IN VARCHAR2

[, total_geom OUT INTEGER,

point_geom OUT INTEGER,

curve_geom OUT INTEGER,

poly_geom OUT INTEGER,

complex_geom OUT INTEGER]);

Description
Provides information about each geometry type stored in a column of type SDO_
GEOMETRY.

Parameters

table_name
Geometry table.

column_name
Geometry object column for which the geometry type information is to be
calculated.

total_geom
Total number of geometry objects.

point_geom
Number of point geometry objects.

curve_geom
Number of curve string geometry objects.

poly_geom
Number of polygon geometry objects.
11-18 Oracle Spatial User’s Guide and Reference

SDO_TUNE.MIX_INFO
complex_geom
Number of complex geometry objects.

Usage Notes
This procedure calculates geometry type information for the table. It calculates the
total number of geometries, as well as the number of point, curve string, polygon,
and complex geometries.

Examples
The following example displays information about the mix of geometry objects in
the SHAPE column of the COLA_MARKETS table.

EXECUTE SDO_TUNE.MIX_INFO(’COLA_MARKETS’, ’SHAPE’);
Total number of geometries: 4
Point geometries: 0 (0%)
Curvestring geometries: 0 (0%)
Polygon geometries: 4 (100%)
Complex geometries: 0 (0%)
.

Tuning Functions and Procedures 11-19

SDO_TUNE.MIX_INFO
11-20 Oracle Spatial User’s Guide and Reference

Part II

 Relational Model

Oracle Spatial supports two models for representing geometries: relational and
object-relational. The two models are mutually exclusive. See Section 1.2 for a
description of how to choose the model best suited for your application.
.

This part of the User’s Guide and Reference contains the following chapters,
describing the relational model:

■ Chapter 12, "The Relational Schema"

■ Chapter 13, "Loading Spatial Data (Relational Model)"

■ Chapter 14, "Querying Spatial Data (Relational Model)"

■ Chapter 15, "Administrative Functions and Procedures for Relational Model"

■ Chapter 16, "Tuning Functions and Procedures for Relational Model"

■ Chapter 17, "Geometry Functions and Procedures for Relational Model"

■ Chapter 18, "Window Functions and Procedures for Relational Model"

Note: In the next release of Oracle Spatial, the relational model
will no longer be documented in this guide, but will instead be
documented in a separate document whose title and location will
be announced.

Spatial applications using the relational model will continue to
work; however, if you are not already using the object-relational
model for all Spatial applications, you are encouraged to do so
before the next release.

The Relational S
12

The Relational Schema

Before release 8.1, the Spatial product always used four database tables to store and
index spatial data. This database structure is modeled on the first of three OpenGIS
Features for SQL Implementation options, namely, using numeric SQL types for
geometry storage. This schema is different from the spatial objects model
introduced in Spatial release 8.1 and described in Part II of this guide. However,
there are still some advantages, discussed in Section 1.2.2, to using this model.
.

12.1 Database Structures for the Relational Implementation
The four tables, used to store and index geometries, are collectively referred to as a
layer. A template SQL script is provided to facilitate the creation of these tables. See
Section A.2.2 for details.

Table 12–1 through Table 12–4 describe the schema of a Spatial layer.

Note: In the next release of Oracle Spatial, the relational model
will no longer be documented in this guide, but will instead be
documented in a separate document whose title and location will
be announced.

Spatial applications using the relational model will continue to
work; however, if you are not already using the object-relational
model for all Spatial applications, you are encouraged to do so
before the next release.
chema 12-1

Database Structures for the Relational Implementation
Table 12–1 <layername>_SDOLAYER Table

Table 12–2 <layername>_SDODIM Table or View

Table 12–3 <layername>_SDOGEOM Table or View

Table 12–4 <layername>_SDOINDEX Table

The columns of each table are defined as follows:

<layername>_SDOLAYER
■ SDO_ORDCNT: The SDO_ORDCNT column is the total number of ordinates

per row in the <layername>_SDOGEOM table. That is, the total number of
data value columns, and not the number of points or coordinates. SDO_
ORDCNT should not be multiplied by the total number of dimensions per
coordinate as it is already a total.

■ SDO_LEVEL: The SDO_LEVEL column stores the number of times the tiles
that interact with a geometry should be decomposed. It is the termination
criterion for fixed tiling. Use the SDO_TUNE.ESTIMATE_TILING_LEVEL
procedure to determine an appropriate tiling level for your data.

SDO_ORDCNT SDO_LEVEL SDO_NUMTILES SDO_MAXLEVEL1

1 SDO_MAXLEVEL is an optional column.

SDO_COORDSYS2

2 SDO_COORDSYS is an optional column.

<number> <number> <number> <number> <varchar>

SDO_DIMNUM SDO_LB SDO_UB SDO_TOLERANCE SDO_DIMNAME

<number> <number> <number> <number> <varchar>

SDO_GID SDO_ESEQ SDO_ETYPE SDO_SEQ SDO_X1 SDO_Y1 ... SDO_Xn SDO_Yn

<number> <number> <number> <number> <number> <number> ... <number> <number>

SDO_GID SDO_CODE SDO_MAXCODE 1

1 SDO_MAXCODE is not required for the recommended fixed-size tile indexing algorithm.

SDO_GROUPCODE 2

2 SDO_GROUPCODE is not required for the recommended fixed-size tile indexing algorithm.

SDO_META

<number> <raw> <raw> <raw> <raw>
12-2 Oracle Spatial User’s Guide and Reference

Database Structures for the Relational Implementation
■ SDO_NUMTILES: The SDO_NUMTILES column is the number of
variable-sized tiles used to tessellate each object in the <layername>_
SDOGEOM table. This column must be set to NULL when using fixed-size
tiles.

■ SDO_MAXLEVEL: The SDO_MAXLEVEL column indicates the maximum
level to which a variable-sized tile can be decomposed. It is the termination
criterion for the variable component of hybrid tiling.

■ SDO_COORDSYS: The SDO_COORDSYS column is optional; you can
indicate the name of the coordinate system, using a standard such as POSC
or OGIS.

<layername>_SDODIM
■ SDO_DIMNUM: The SDO_DIMNUM column is the dimension to which this

row refers, starting with 1 and increasing.

■ SDO_LB: The SDO_LB column is the lower bound of the ordinate in this
dimension. For example, if the dimension is latitude, the lower bound
would be -90.

■ SDO_UB: The SDO_UB column is the upper bound of the ordinate in this
dimension. For example, if the dimension is latitude, the upper bound
would be 90.

■ SDO_TOLERANCE: The SDO_TOLERANCE column is the distance two
points can be apart and still be considered the same due to round-off errors.
Tolerance must be greater than zero. If you want zero tolerance, enter a
number such as 0.00005, where the number of zeros to the right of the
decimal point matches the precision of your data. The extra 5 will round up
to the last decimal digit.

■ SDO_DIMNAME: The SDO_DIMNAME column is used for the usual name
applied to this dimension, such as longitude, latitude, X, or Y.

<layername>_SDOGEOM
■ SDO_GID: The SDO_GID column is a unique numeric identifier for each

geometry in a layer.

■ SDO_ESEQ: The SDO_ESEQ column enumerates each element in a
geometry, that is, the Element SEQuence number.

■ SDO_ETYPE: The SDO_ETYPE column is the geometric primitive type of
the element. For this release of Spatial, the valid values are SDO_
The Relational Schema 12-3

Database Structures for the Relational Implementation
GEOM.POINT_TYPE, SDO_GEOM.LINESTRING_TYPE, or SDO_
GEOM.POLYGON_TYPE (ETYPE values 1, 2, and 3, respectively). The
SDO_ETYPE values 4 and 5, supported in the object-relational schema, are
not supported. Setting the ETYPE to zero indicates that this element should
be ignored. See Section A.1.9 for information on ETYPE=0.

■ SDO_SEQ: The SDO_SEQ column records the order (the SEQuence number)
of each row of data making up the element.

■ SDO_X1: The X value of the first coordinate.

■ SDO_Y1: The Y value of the first coordinate.

■ SDO_Xn: The X value of the nth coordinate.

■ SDO_Yn: The Y value of the nth coordinate.

<layername>_SDOINDEX
■ SDO_GID: The SDO_GID column is a unique numeric identifier for each

geometry in a layer. This can be thought of as a foreign key back to the
<layername>_SDOGEOM table.

■ SDO_CODE: The SDO_CODE column is the bit-interleaved ID of a tile that
covers SDO_GID. This column should be created as type RAW(255).

■ SDO_MAXCODE: The SDO_MAXCODE column describes a variable-sized
logical tile, which is the smallest tile (with the longest tile ID) in the current
quadrant. The SDO_MAXCODE column is SDO_CODE padded out one
place farther than the longest allowable code name for this index. This
column is not used for fixed-size tiles.

■ SDO_GROUPCODE: The SDO_GROUPCODE column is a prefix of SDO_
CODE. It represents a variable-sized tile at level <layername>_
SDOLAYER.SDO_LEVEL that contains or is equal to the tile represented by
SDO_CODE. This column is not used for fixed-size tiles.

■ SDO_META: The SDO_META column is not required for spatial queries. It
provides information necessary to find the bounds of a tile. See
Section A.1.5 for one possible use of this column.

Spatial provides stored procedures that assume the existence of the layer schema as
described in this section. While layer tables may contain additional columns, they
are required to contain at least the columns described in this section with the same
column names and data types.
12-4 Oracle Spatial User’s Guide and Reference

Database Structures for the Relational Implementation
Figure 12–1 illustrates how a geometry is stored in the database using Spatial and
the OGIS V1 schema model. The geometry to be stored is a complex polygon with a
hole in it.

Figure 12–1 Complex Polygon

<layername>_SDOLAYER

<layername>_SDODIM

SDO_ORDCNT
(number)

4

SDO_
DIMNUM
(number)

SDO_LB
(number)

SDO_UB
(number)

SDO_
TOLERANCE
(number)

SDO_
DIMNAME
(varchar)

1 0 100 .05 X axis

2 0 100 .05 Y axis

G2 G3

G4G1

P3 P4

P5

P6

P7P8

P1

P2

Element 0

Element 1 (Hole)

 Geometry 1013:
The Relational Schema 12-5

Database Structures for the Relational Implementation
<layername>_SDOGEOM

In this example, the <layername>_SDOGEOM table is shown as an 8-column table
with 4 ordinates per row. In actual usage, Spatial supports n-wide1 tables. The
coordinates for the outer polygon in this example could have been loaded into a
single row containing values for coordinates P1 to P8, and then repeating P1 to close
the polygon. The coordinates would be stored in the SDO_X1 and SDO_Y1 through
SDO_X9 and SDO_Y9 columns.

The data in the <layername>_SDOINDEX table is described in further detail in
Section 1.7. The SDOINDEX table contains entries of the form [SDO_GID, SDO_
CODE] where each SDO_CODE represents a tile that interacts with a geometry
identified by SDO_GID. For a given SDO_GID value, there may be one or more
SDO_CODE values. Each SDO_CODE value may be associated with one or more
SDO_GID values.

SDO_GID
(number)

SDO_ESEQ
(number)

SDO_ETYPE
(number)

SDO_SEQ
(number)

SDO_X1
(number)

SDO_Y1
(number)

SDO_X2
(number)

SDO_Y2
(number)

1013 0 3 0 P1(X) P1(Y) P2(X) P2(Y)

1013 0 3 1 P2(X) P2(Y) P3(X) P3(Y)

1013 0 3 2 P3(X) P3(Y) P4(X) P4(Y)

1013 0 3 3 P4(X) P4(Y) P5(X) P5(Y)

1013 0 3 4 P5(X) P5(Y) P6(X) P6(Y)

1013 0 3 5 P6(X) P6(Y) P7(X) P7(Y)

1013 0 3 6 P7(X) P7(Y) P8(X) P8(Y)

1013 0 3 7 P8(X) P8(Y) P1(X) P1(Y)

1013 1 3 0 G1(X) G1(Y) G2(X) G2(Y)

1013 1 3 1 G2(X) G2(Y) G3(X) G3(Y)

1013 1 3 2 G3(X) G3(Y) G4(X) G4(Y)

1013 1 3 3 G4(X) G4(Y) G1(X) G1(Y)

1 A <layername>_SDOGEOM table can have up to 1000 columns. The maximum number of
data columns is 1000, minus 4 for the other required spatial columns, and minus any other
user-defined columns. For polygons and line strings, storing 16 to 20 ordinates per row is
suggested for performance reasons, but not required. The objective is to minimize the
number of null values stored in the <layername>_SDOGEOM table.
12-6 Oracle Spatial User’s Guide and Reference

Loading Spatial Data (Relational
13

Loading Spatial Data (Relational Model)

This chapter describes how to load spatial data into a database, including storing
the data in a table and creating a spatial index for it. This chapter refers to the
relational Spatial model only.

13.1 Load Model
There are two steps involved in loading raw data into a spatial database such that it
can be queried efficiently:

1. Loading the data into spatial tables

2. Creating or updating the index on the spatial tables

Table 13–1 through Table 13–4 show the format of the tables or views needed to
store and index spatial data. Note that these tables show the relational schema.

Table 13–1 <layername>_SDOLAYER Table

Table 13–2 <layername>_SDODIM Table or View

SDO_ORDCNT SDO_LEVEL SDO_NUMTILES SDO_MAXLEVEL SDO_COORDSYS

<number> <number> <number> <number> <varchar>

SDO_DIMNUM SDO_LB SDO_UB SDO_TOLERANCE SDO_DIMNAME

<number> <number> <number> <number> <varchar>
 Model) 13-1

Load Process
Table 13–3 <layername>_SDOGEOM Table or View

Table 13–4 <layername>_SDOINDEX Table

13.2 Load Process
The process of loading data can be classified into two categories:

■ Bulk loading of data

This process is used to load large volumes of data into the database and uses
SQL*Loader to load the data.

■ Transactional inserts

This process is used to insert relatively small amounts of data into the database
and is analogous to the INSERT statement in SQL.

13.2.1 Bulk Loading
Bulk loading can be used to import large amounts of legacy or ASCII data into a
spatial database. Bulk loading is accomplished using SQL*Loader.

Example 13–1 shows the format of the raw data and control file that would be
required to load the data into the SDOGEOM table with the layer name ROADS.
You can choose any format of ASCII data as long you can write a SQL*Loader
control file to load that data into the tables.

Assume that the ASCII data consists of a file with delimited columns and separate
rows fixed by the limits of the table, with the format shown in Example 13–1:

Example 13–1 Raw Data Format

geometry rows: GID, ESEQ, ETYPE, SEQ, LON1, LAT1, LON2, LAT2

SDO_GID SDO_ESEQ SDO_ETYPE SDO_SEQ SDO_X1 SDO_Y1 ... SDO_Xn SDO_Yn

<number> <number> <number> <number> <number> <number> ... <number> <number>

SDO_GID SDO_CODE SDO_MAXCODE SDO_GROUPCODE SDO_META

<number> <raw> <raw> <raw> <raw>
13-2 Oracle Spatial User’s Guide and Reference

Load Process
The coordinates in the geometry rows represent the end points of line segments,
which taken together, represent a polygon. Example 13–2 shows the control file for
loading the data into the geometry table.

Example 13–2 Control File to Load Data into the Geometry Table

LOAD DATA INFILE *
INTO TABLE ROADS_SDOGEOM
FIELDS TERMINATED BY WHITESPACE TRAILING NULLCOLS
(SDO_GID INTEGER EXTERNAL,
SDO_ESEQ INTEGER EXTERNAL,
SDO_ETYPE INTEGER EXTERNAL,
SDO_SEQ INTEGER EXTERNAL,
SDO_X1 FLOAT EXTERNAL,
SDO_Y1 FLOAT EXTERNAL,
SDO_X2 FLOAT EXTERNAL,
SDO_Y2 FLOAT EXTERNAL)

BEGINDATA
1 0 3 0 -122.401200 37.805200 -122.401900 37.805200
1 0 3 1 -122.401900 37.805200 -122.402400 37.805500
1 0 3 2 -122.402400 37.805500 -122.403100 37.806000
1 0 3 3 -122.403100 37.806000 -122.404400 37.806800
1 0 3 4 -122.404400 37.806800 -122.401200 37.805200
1 1 3 0 -122.405900 37.806600 -122.407549 37.806394
1 1 3 1 -122.407549 37.806394 -122.408300 37.806300
1 1 3 2 -122.408300 37.806300 -122.409100 37.806200
1 1 3 3 -122.409100 37.806200 -122.405900 37.806600
2 0 2 0 -122.410800 37.806000 -122.412300 37.805800
2 0 2 1 -122.412300 37.805800 -122.414100 37.805600
2 0 2 2 -122.414100 37.805600 -122.412300 37.805800
2 0 2 3 -122.412300 37.805800 -122.410800 37.806000
3 0 1 0 -122.567474 38.643564
3 0 1 1 -126.345345 39.345345

Be sure that table ROADS_SDOGEOM exists in the schema before attempting
the load operation.

In Example 13–3, the data resides in a single flat file and the data set consists of
point, line string, and polygon data. The data uses fixed-position columns and
overloaded table rows.

Example 13–3 Raw Data Format

SDO_GID SDO_ESEQ SDO_ETYPE SDO_SEQ SDO_X1 SDO_Y1 SDO_X2 SDO_Y2
Loading Spatial Data (Relational Model) 13-3

Load Process
The corresponding control file for this format of input data is shown in
Example 13–4.

Example 13–4 Control File to Load from a Single Flat File

LOAD DATA INFILE *
INTO TABLE NEW_SDOGEOM
(SDO_GID POSITION (1:5) INTEGER EXTERNAL,
SDO_ESEQ POSITION (7:10) INTEGER EXTERNAL,
SDO_ETYPE POSITION (12:15) INTEGER EXTERNAL,
SDO_SEQ POSITION (17:21) INTEGER EXTERNAL,
SDO_X1 POSITION (23:35) FLOAT EXTERNAL,
SDO_Y1 POSITION (37:48) FLOAT EXTERNAL,
SDO_X2 POSITION (50:62) FLOAT EXTERNAL,
SDO_Y2 POSITION (64:75) FLOAT EXTERNAL)

BEGINDATA
1 0 3 0 -122.401200 37.805200 -122.401900 37.805200
1 0 3 1 -122.401900 37.805200 -122.402400 37.805500
1 0 3 2 -122.402400 37.805500 -122.403100 37.806000
1 0 3 3 -122.403100 37.806000 -122.404400 37.806800
1 0 3 4 -122.404400 37.806800 -122.401200 37.805200
1 1 3 0 -122.405900 37.806600 -122.407549 37.806394
1 1 3 1 -122.407549 37.806394 -122.408300 37.806300
1 1 3 2 -122.408300 37.806300 -122.409100 37.806200
1 1 3 3 -122.409100 37.806200 -122.405900 37.806600
2 0 2 0 -122.410800 37.806000 -122.412300 37.805800
2 0 2 1 -122.412300 37.805800 -122.414100 37.805600
2 0 2 2 -122.414100 37.805600 -122.412300 37.805800
2 0 2 3 -122.412300 37.805800 -122.410800 37.806000
3 0 1 0 -122.567474 38.643564
3 0 1 1 -126.345345 39.345345

13.2.2 Transactional Insert Using SQL
Spatial uses standard Oracle8i tables that can be accessed or loaded with standard
SQL syntax. Example 13–5 loads data for a geometry (GID 17) consisting of a
polygon with four sides that contains both a hole and a point. Notice that the first
coordinate of the polygon (5, 20) is repeated at the end to close the polygon.

Example 13–5 Transactional Insert

INSERT INTO SAMPLE_SDOGEOM (SDO_GID, SDO_ESEQ, SDO_ETYPE, SDO_SEQ,
 SDO_X1, SDO_Y1, SDO_X2, SDO_Y2, SDO_X3,
13-4 Oracle Spatial User’s Guide and Reference

Load Process
 SDO_Y3, SDO_X4, SDO_Y4, SDO_X5, SDO_Y5)
 VALUES (17, 0, 3, 0, 5, 20, 5, 30, 10, 30, 10, 20, 5, 20);

 -- hole
INSERT INTO SAMPLE_SDOGEOM (SDO_GID, SDO_ESEQ, SDO_ETYPE, SDO_SEQ,
 SDO_X1, SDO_Y1, SDO_X2, SDO_Y2, SDO_X3,
 SDO_Y3, SDO_X4, SDO_Y4, SDO_X5, SDO_Y5)
 VALUES (17, 1, 3, 0, 8, 21, 8, 24, 9, 24, 9, 21, 8, 21);

 -- point
INSERT INTO SAMPLE_SDOGEOM (SDO_GID, SDO_ESEQ, SDO_ETYPE, SDO_SEQ,
 SDO_X1, SDO_Y1)
 VALUES (17, 2, 1, 0, 9, 29);

The SQL INSERT statement inserts one row of data per call. In Example 13–5, the
table had enough columns to store the polygon in a single row. However, if your
table had fewer columns (or your polygon had more points), you would have to
perform multiple inserts to match the table structure; the data would not wrap
automatically to the next row. To load a large geometry, repeat the SDO_GID, SDO_
ESEQ, and SDO_ETYPE, and increment the SDO_SEQ for each line as shown in
Example 13–6.

Example 13–6 Transactional Insert for a Large Geometry

INSERT INTO SAMPLE2_SDOGEOM (SDO_GID, SDO_ESEQ, SDO_ETYPE, SDO_SEQ,
 SDO_X1, SDO_Y1, SDO_X2, SDO_Y2, SDO_X3,
 SDO_Y3, SDO_X4, SDO_Y4, SDO_X5, SDO_Y5)
 VALUES (18, 0, 3, 0, 1, 15, 1, 16, 2, 17, 3, 17, 4, 18);

INSERT INTO SAMPLE2_SDOGEOM (SDO_GID, SDO_ESEQ, SDO_ETYPE, SDO_SEQ,
 SDO_X1, SDO_Y1, SDO_X2, SDO_Y2, SDO_X3,
 SDO_Y3, SDO_X4, SDO_Y4, SDO_X5, SDO_Y5)
 VALUES (18, 0, 3, 1, 4, 18, 5, 18, 6, 19, 7, 18, 6, 17);

INSERT INTO SAMPLE2_SDOGEOM (SDO_GID, SDO_ESEQ, SDO_ETYPE, SDO_SEQ,
 SDO_X1, SDO_Y1, SDO_X2, SDO_Y2, SDO_X3,
 SDO_Y3, SDO_X4, SDO_Y4, SDO_X5, SDO_Y5)
 VALUES (18, 0, 3, 2, 6, 17, 7, 16, 7, 15, 6, 14, 7, 13);

INSERT INTO SAMPLE2_SDOGEOM (SDO_GID, SDO_ESEQ, SDO_ETYPE, SDO_SEQ,
 SDO_X1, SDO_Y1, SDO_X2, SDO_Y2, SDO_X3,
 SDO_Y3, SDO_X4, SDO_Y4, SDO_X5, SDO_Y5)
 VALUES (18, 0, 3, 3, 7, 13, 6, 12, 5, 13, 4, 13, 3, 14);
Loading Spatial Data (Relational Model) 13-5

Index Creation
INSERT INTO SAMPLE2_SDOGEOM (SDO_GID, SDO_ESEQ, SDO_ETYPE, SDO_SEQ,
 SDO_X1, SDO_Y1, SDO_X2, SDO_Y2, SDO_X3, SDO_
Y3)
 VALUES (18, 0, 3, 4, 3, 14, 2, 14, 1, 15);

13.3 Index Creation
Once data has been loaded into the spatial tables through either bulk or
transactional loading, a spatial index needs to be created on the tables for efficient
access to the data.

Create an Oracle table called <layername>_SDOINDEX as follows:

SQL> create table <layername>_SDOINDEX
 2 (
 3 SDO_GID number,
 4 SDO_CODE raw(255)
 5);

For a bulk load, you can call the SDO_ADMIN.POPULATE_INDEX procedure once
to tessellate the geometry table and add the generated tiles to the spatial index
table. The argument to this procedure is simply the name of the layer. The level to
which the geometry should be tessellated and whether to use the fixed or the
hybrid indexing technique is determined by values in the <layername>_
SDOLAYER table.

 If data is updated in or deleted from a specific geometry table, you can call the
SDO_ADMIN.UPDATE_INDEX procedure to update the index for one SDO_GID.
The arguments to this procedure are the name of the layer and the SDO_GID of the
designated geometry.

See Chapter 15 for a complete description of the SDO_ADMIN.POPULATE_INDEX
and SDO_ADMIN.UPDATE_INDEX procedures.

13.3.1 Choosing a Tessellation Algorithm
Spatial provides two methods for spatial indexing, fixed and hybrid. Fixed indexing
is recommended for the relational Spatial model.

Which tessellation algorithm is used by the SDO_ADMIN.POPULATE_INDEX and
SDO_ADMIN.UPDATE_INDEX procedures is determined by the values of the
13-6 Oracle Spatial User’s Guide and Reference

Index Creation
SDO_LEVEL and SDO_NUMTILES columns in the <layername>_SDOLAYER table
as shown in Table 13–5.

13.3.2 Spatial Indexing with Fixed-Size Tiles
Fixed-size cover tiles are recommended for indexing a geometry stored using the
relational model.

The fixed-size tile algorithm is expressed as a level referring to the number of
tessellations performed. To use fixed-size tile indexing, set the SDO_NUMTILES
column in the <layername>_SDOLAYER table to NULL and the SDO_LEVEL
column to the desired tiling level. The relationship between the tiling level and the
resulting size of the tiles is dependent on the domain of the layer.

The domain used for indexing is defined by the upper and lower boundaries of
each dimension stored in the <layername>_SDODIM table. A typical domain in a
GIS application could be -90 to 90 degrees for latitude, and -180 to 180 degrees for
longitude,1 as represented in Figure 13–1.

Table 13–5 Choosing a Tessellation Algorithm

SDO_LEVEL SDO_NUMTILES Action

NULL NULL Error.

>= 1 NULL Fixed indexing with fixed-size tiles
(recommended).

>= 1 >= 1 Hybrid indexing with fixed-size and variable-sized
tiles. The SDO_LEVEL column defines the fixed
tile size. The SDO_NUMTILES column defines the
number of tiles to generate per geometry.

NULL >= 1 Not supported.

1 The transference of the domain onto a sphere or Mercator projection is left to GIS (or other)
application programmers. Spatial treats the domain as a conventional X by Y rectangle.
Loading Spatial Data (Relational Model) 13-7

Index Creation
Figure 13–1 Sample GIS Domain

If the SDO_LEVEL column is set to 1, then the tiles created by the indexing
mechanism are the same size as the tiles at the first level of tessellation. Each tile
would be 180 degrees by 90 degrees as shown in Figure 13–2.

Figure 13–2 Fixed-Size Tiling at Level 1

The formula for the number of fixed-size tiles is 4n where n is the number of
tessellations stored in the SDO_LEVEL column. Figure 13–3 shows fixed-size tiling
at level 2. In this figure, each tile is 90 degrees by 45 degrees.

-180 180

90

-90

-180 0 180

90

-90

 0

13-8 Oracle Spatial User’s Guide and Reference

Index Creation
Figure 13–3 Fixed-Size Tiling at Level 2

The size of a tile can be determined by applying the following formula to each
dimension:

length = (upper_bound - lower_bound) / 2 ^ sdo_level

The length refers to the length of the tile along the specified dimension. Applying
this formula to the tiling shown in Figure 13–3 yields the following sizes:

length for dimension X = (180 - (-180)) / 2^2
 = (360) / 4
 = 90
length for dimension Y = (90 - (-90)) / 2 2̂
 = (180) / 4
 = 45

Thus, at level 2 the tiles are 90x45 degrees in size. As the number of levels increases,
the tiles become smaller and smaller. Smaller tiles provide a more precise fit of the
tiles over the geometry being indexed. However, because the number of tiles
generated is unbounded, you must take into account the performance implications
of using higher levels. The SDO_TUNE.ESTIMATE_TILING_LEVEL function can
be used to determine an appropriate level for indexing with fixed-size tiles. See
Chapter 16 for a description of this procedure.

Besides the performance aspects related to selecting a fixed-size tile, tessellating the
geometry into fixed-size tiles might have benefits related to the type of data being
stored, such as using tiles sized to represent 1-acre farm plots, city blocks, or
individual pixels on a display. Data modeling, an important part any database
design, is essential in a spatial database where the data often represents actual
physical locations.

-180 -90 0 90 180

90

-90

 0

Loading Spatial Data (Relational Model) 13-9

Index Creation
In the following example, assume that data has been loaded into a layer called
ROADS, and you want to create a spatial index on that data. This is accomplished
by first creating a table ROADS_SDOINDEX and invoking the following procedure:

sdo_admin.populate_index(’ROADS’);

The value in the SDO_LEVEL column of the ROADS_SDOLAYER table can be used
as a tuning parameter while tessellating objects. Increasing the level increases the
number of tiles to provide a more precise fit of the tiles over the object. See the
description of the ESTIMATE_TILING_LEVEL function in Chapter 16 for
information on estimating the tiling level in several different ways.

After the SDO_ADMIN.POPULATE_INDEX procedure has been called to fill the
spatial index, you should also create a concatenated index using the SDO_CODE
and SDO_GID columns. The concatenated index helps the join to the <layername>_
SDOGEOM table during a query. The SDO_GID values from the primary filter will
come from the index instead of from the table.

If a geometry with an SDO_GID 5944 has been added to the spatial tables, update
the index with the following procedure:

sdo_admin.update_index(’ROADS’, 5944);

Like the CREATE INDEX statement in SQL, the SDO_ADMIN.POPULATE_INDEX
procedure performs an implicit commit operation. The SDO_ADMIN.UPDATE_
INDEX procedure, however, does not. Therefore, SDO_ADMIN.UPDATE_INDEX
transactions can be rolled back.

The SDO_ADMIN.POPULATE_INDEX procedure operates as a single transaction.
To reduce the amount of rollback space required to execute this procedure, you can
write a routine that loops and calls the SDO_ADMIN.UPDATE_INDEX procedure.
See Section A.2.1 for more information.

13.3.3 Hybrid Spatial Indexing with Fixed-Size and Variable-Sized Tiles
This section describes a variation on the linear quadtree (Morton encoding) scheme
that uses both fixed-size and variable-sized tiles as a spatial indexing mechanism.
The terms hybrid indexing, hybrid tiling, and hybrid tessellation will be used
interchangeably in this section. Spatial indexing with purely variable-sized tiles is
not recommended for production systems and is not supported in this release.

To use hybrid tiling, the SDO_LEVEL and SDO_NUMTILES columns in the
<layername>_SDOLAYER table must contain valid values. That is, both SDO_
LEVEL and SDO_NUMTILES must be greater than one.
13-10 Oracle Spatial User’s Guide and Reference

Index Creation
The SDO_NUMTILES column determines the number of tiles that will be used to
cover a geometry being indexed. Typically, this value is small, such as 4 or 8 tiles.
However, the larger the number of tiles, the better the tiles will fit the geometry
being covered. This increases the selectivity of the primary filter, but also increases
the number of index entries per geometry. (See Section 14.3.2 and Section 14.3.3 for a
discussion of primary and secondary filters.) The SDO_NUMTILES value should be
larger for long linear spatial entities, such as major highways or rivers, than for
area-based spatial entities such as county or state boundaries.

The SDO_LEVEL column determines the size of the fixed tiles used in hybrid
indexing. Setting the proper SDO_LEVEL value may appear more like art than
science. Performing some simple data analysis and testing, however, puts the
process back in the realm of science. One approach would be use the SDO_
TUNE.ESTIMATE_TILING_LEVEL function to determine an appropriate starting
SDO_LEVEL value, and then compare the performance with slightly higher or
lower values. This and other techniques are described in Appendix A.

Assume that the ROADS layer has already been loaded. Furthermore, assume that
there is one row with valid values for the ROADS_SDOLAYER.SDO_LEVEL and
ROADS_SDOLAYER.SDO_NUMTILES columns. To create the spatial index on
ROADS, first create a table ROADS_SDOINDEX with appropriate columns:

SQL> create table ROADS_SDOINDEX
 2 (
 3 SDO_GID number,
 4 SDO_CODE raw(255),
 5 SDO_GROUPCODE raw(255),
 6 SDO_MAXCODE raw(20),
 7 SDO_META raw(255),
 8);

Then, invoke SDO_ADMIN.POPULATE_INDEX(’ROADS’) to build the spatial
index.

After the SDO_ADMIN.POPULATE_INDEX procedure has been called to fill the
spatial index, you should also create a concatenated index on the SDO_CODE and
SDO_GID columns. The concatenated index helps the join to the <layername>_
SDOGEOM table during a query. The SDO_GID values from the primary filter will
come from the index instead of from the table.

If a geometry with an SDO_GID 5944 has been added to the spatial tables, update
the index with the following procedure:

sdo_admin.update_index(’ROADS’, 5944);
Loading Spatial Data (Relational Model) 13-11

Index Creation
Like the CREATE INDEX statement in SQL, the SDO_ADMIN.POPULATE_INDEX
procedure performs an implicit commit operation. The SDO_ADMIN.UPDATE_
INDEX procedure, however, does not. Therefore, SDO_ADMIN.UPDATE_INDEX
transactions can be rolled back.

The SDO_ADMIN.POPULATE_INDEX procedure operates as a single transaction.
To reduce the amount of rollback space required to execute this procedure, you can
write a routine that loops and calls SDO_ADMIN.UPDATE_INDEX. See
Section A.2.1 for more information.
13-12 Oracle Spatial User’s Guide and Reference

Querying Spatial Data (Relational
14

Querying Spatial Data (Relational Model)

This chapter describes how the structures of a Spatial layer are used to resolve
spatial queries and spatial joins. For the sake of clarity, the examples all use fixed
tiling. This chapter refers to the relational Spatial model only.

14.1 Query Model
Spatial uses a two-tier query model to resolve spatial queries and spatial joins. A
two-tier query means that two distinct operations are performed to resolve queries.
The output of both operations yields the exact result set.

The two operations are referred to as primary and secondary filter operations.

■ The primary filter permits fast selection of a small number of candidate records
to pass along to the secondary filter. The primary filter uses approximations in
order to reduce computational complexity and is considered a lower-cost filter.

■ The secondary filter applies exact computational geometry to the result set of
the primary filter. These exact computations yield the final answer to a query.
The secondary filter operations are computationally more expensive, but they
are applied only to the relatively small result set from the primary filter.

14.2 Spatial Index Data Structures
An important concept in the spatial data model is that each element is represented
in the <layername>_SDOINDEX table by a set of exclusive and exhaustive tiles.
This means that no tiles overlap each other (exclusive), and that the tiles fully cover
the object (exhaustive).

Consider the following layer containing several objects in Figure 14–1. Each object is
labeled with its SDO_GID. The relevant tiles are labeled with Tn.
 Model) 14-1

Spatial Index Data Structures
Figure 14–1 Tessellated Layer with Multiple Objects

The Spatial layer tables would have the following information stored in them for
these geometries, as shown in Table 14–1, Table 14–2, and Table 14–3.

1243

1013

T1 T2 T7

T3 T4

T6T5

61

T8 T9

501

12

14-2 Oracle Spatial User’s Guide and Reference

Spatial Index Data Structures
Table 14–1 <layername>_SDOLAYER Table

Table 14–2 <layername>_SDOGEOM Table or View

SDO_ORDCNT
(number)

SDO_LEVEL
(number)

SDO_NUMTILES
(number)

4 2 NULL

SDO_GID
(number)

SDO_ESEQ
(number)

SDO_ETYPE
(number)

SDO_SEQ
(number)

SDO_X1
(number)

SDO_Y1
(number)

SDO_X2
(number)

SDO_Y2
(number)

1013 0 3 0 P1(X) P1(Y) P2(X) P2(Y)

1013 0 3 1 P2(X) P2(Y) P3(X) P3(Y)

1013 0 3 2 P3(X) P3(Y) P4(X) P4(Y)

1013 0 3 3 P4(X) P4(Y) P5(X) P5(Y)

1013 0 3 4 P5(X) P5(Y) P6(X) P6(Y)

1013 0 3 5 P6(X) P6(Y) P7(X) P7(Y)

1013 0 3 6 P7(X) P7(Y) P8(X) P8(Y)

1013 0 3 7 P8(X) P8(Y) P1(X) P1(Y)

1013 1 3 0 G1(X) G1(Y) G2(X) G2(Y)

1013 1 3 1 G2(X) G2(Y) G3(X) G3(Y)

1013 1 3 2 G3(X) G3(Y) G4(X) G4(Y)

1013 1 3 3 G4(X) G4(Y) G1(X) G1(Y)

501 0 3 0 A1(X) A1(Y) A2(X) A2(Y)

501 0 3 1 A2(X) A2(Y) A3(X) A3(Y)

501 0 3 2 A3(X) A3(Y) A4(X) A4(Y)

501 0 3 3 A4(X) A4(Y) A1(X) A1(Y)

1243 0 3 0 B1(X) B1(Y) B2(X) B2(Y)

1243 0 3 1 B2(X) B2(Y) B3(X) B3(Y)

1243 0 3 2 B3(X) B3(Y) B1(X) B1(Y)

12 0 2 0 D1(X) D1(Y) D2(X) D2(Y)

61 0 3 0 C1(X) C1(Y) C2(X) C2(Y)

61 0 3 1 C2(X) C2(Y) C3(X) C3(Y)

61 0 3 2 C3(X) C3(Y) C4(X) C4(Y)

61 0 3 3 C4(X) C4(Y) C5(X) C5(Y)

61 0 3 4 C5(X) C5(Y) C1(X) C1(Y)
Querying Spatial Data (Relational Model) 14-3

Spatial Query
Table 14–3 <layername>_SDOINDEX Table

14.3 Spatial Query
A typical spatial query is to request all objects that lie within a defined fence or
window. A query window is shown in Figure 14–2 by the dotted-line box. A
dynamic query window refers to a fence that is not defined in the database, but that
must be defined and indexed before it is used.

SDO_GID
(number)

SDO_CODE
(raw)

1013 T1

1013 T2

1013 T3

1013 T4

501 T2

501 T7

1243 T3

1243 T4

1243 T5

1243 T6

12 T3

12 T4

61 T8

61 T9
14-4 Oracle Spatial User’s Guide and Reference

Spatial Query
Figure 14–2 Tessellated Layer with a Query Window

14.3.1 Dynamic Query Window
If a query window does not already exist in the database, you must first insert it

1243

12

1013

T1 T2 T7

T3 T4

T6T5

61

T8 T9

501

Querying Spatial Data (Relational Model) 14-5

Spatial Query
and create an index for it. Because not all Oracle users necessarily have insert
privileges, Spatial includes the SDO_WINDOW PL*SQL package. See Chapter 18,
"Window Functions and Procedures for Relational Model", for more information.

The SDO_WINDOW package is not automatically installed when you install
Spatial. This allows a DBA to control the schema under which this package
operates. Choose an Oracle user who has insert privilege and compile the SDO_
WINDOW package under that user. For example, you could choose the MDSYS
Oracle user:

sqlplus mdsys/password
SQL> @$ORACLE_HOME/md/admin/sdowin.sql
SQL> @$ORACLE_HOME/md/admin/prvtwin.plb

After compiling, the routines are available for use. When you call a routine in this
package, and the routine performs an INSERT operation, the insertion will occur
under the MDSYS schema. Note that it is not a requirement to use the MDSYS
account. You can select any Oracle user with insert privileges.

If you need to perform other INSERT, UPDATE, or DELETE operations, and you
cannot guarantee that the user of your application has those privileges, you can
write your own PL*SQL package similar to the SDO_WINDOW package. You will
have to compile your package under a user with the required database privileges.

14.3.2 Primary Filter Query
To resolve the window query shown in Figure 14–2, build a layer for the query
fence if it is not already defined:

SQL> EXECUTE MDSYS.SDO_WINDOW.CREATE_WINDOW_LAYER (fencelayer, DIMNUM1, LB1,
UB1, TOLERANCE1, DIMNAME1, DIMNUM2, LB2, UB2, TOLERANCE2, DIMNAME2);

Next, insert the ordinates for the query fence into the layer tables:

SQL> EXECUTE DBMS_OUTPUT.PUT_LINE(MDSYS.SDO_WINDOW.BUILD_WINDOW_FIXED(comp_user,
 fencelayer, SDO_ETYPE, TILE_SIZE, X1,Y1, X2,Y2, X3,Y3, X4,Y4, X1,Y1));

Query SDO_LEVEL from the <fencelayer>_SDOLAYER table to pass the correct
TILE_SIZE to the SDO_WINDOW.BUILD_WINDOW_FIXED procedure.

Now you can construct a query that joins the index of the query window to the
appropriate layer index and determines all elements that have these tiles in
common. The following SQL query form is used:

SELECT DISTINCT A.SDO_GID
14-6 Oracle Spatial User’s Guide and Reference

Spatial Query
FROM <layer1>_SDOINDEX A, <fencelayer>_SDOINDEX B
WHERE A.SDO_CODE = B.SDO_CODE
 AND B.SDO_GID = {GID returned from SDO_WINDOW.BUILD_WINDOW_FIXED};

The result set of this query is the primary filter set. In this case, the result set is:

 { 1013,501,1243,12 }

14.3.3 Secondary Filter Query
The secondary filter performs exact geometry calculations of the tiles selected by the
primary filter. The following example shows the primary and secondary filters:

SELECT SDO_X1, SDO_Y1, SDO_X2, SDO_Y2, SDO_X3, SDO_Y3, SDO_X4, SDO_Y4
FROM <layer1>_SDOGEOM,
(
SELECT SDO_GID GID1
 FROM (
 SELECT DISTINCT A.SDO_GID
 FROM <layer1>_SDOINDEX A,
 <fencelayer>_SDOINDEX B
 WHERE A.SDO_CODE = B.SDO_CODE
 AND B.SDO_GID = {GID returned from SDO_WINDOW.BUILD_WINDOW_FIXED}

)
 WHERE SDO_GEOM.RELATE(’<layer1>’, SDO_GID, ’ANYINTERACT’, ’<fence>’, 1) =
’TRUE’
)
WHERE SDO_GID = GID1;

This query would return all the geometry IDs that lie within or overlap the window.
In this example, the results of the secondary filter would be:

{1243,1013}

The example in this section uses the SDO_GEOM.RELATE secondary filter. For
better performance, use the overloaded version of this function, which explicitly
lists the coordinates of the query window whenever possible. See Chapter 17 for
details on using this function.
Querying Spatial Data (Relational Model) 14-7

Spatial Join
14.4 Spatial Join
A spatial join is the same as a regular join except that the predicate involves a
spatial operator. In Spatial, a spatial join takes place between two layers; specifically,
two <layername>_SDOINDEX tables are joined.

Spatial joins can be used to answer questions such as, Which highways cross national
parks?

This query could be resolved by joining a layer that stores national park geometries
with one that stores highway geometries. Figure 14–3 illustrates how the join would
be accomplished for this example using the OGIS V1 schema model.

Figure 14–3 Spatial Join of Two Layers

The primary filter would identify pairs of park GIDs and highway GIDs that cross
in the index. The query that performs the primary filter join (assuming fixed-size
tile indexing) is as follows:

SELECT DISTINCT A.SDO_GID,B.SDO_GID
 FROM PARKS_SDOINDEX A, HIGHWAYS_SDOINDEX B
 WHERE A.SDO_CODE = B.SDO_CODE

User-

Defined

Attribute

Tables

Spatial

Data

PARKS_SDOINDEX:

CODE

Structures

PARKS:

PARKS_SDODIM:

PARKS_SDOGEOM:

GID

DIM LB UB

NAME GID CAMPSITE# ...

HIGHWAYS:

HIGHWAYS_SDODIM:

ESEQ ETYPE SEQ X1

HIGHWAYS_SDOGEOM:

HIGHWAYS_SDOINDEX:

GID

NAME GID WIDTH ...

MAX CODEGID MAX

Y1 GID ESEQ ETYPE SEQ X1 Y1

TOL NAME DIM LB UB TOL NAME

14-8 Oracle Spatial User’s Guide and Reference

Spatial Join
The result set of the primary filter must be passed through the secondary filter to
get the exact set of parks/highways GID pairs that cross. The full query is shown in
the following example:

Suppose the original query had asked, Which 4-lane highways cross national parks?
You could modify the preceding SQL statement to join back to the HIGHWAYS
table where HIGHWAYS.WIDTH=4. This combination of spatial and relational
attributes in a single query is one of the essential reasons for using Spatial.

SELECT DISTINCT GID_B
 FROM (
 SELECT /*+ index(a PARKS_SDOINDEX_SDO_CODE_INDEX)
 index(b HIGHWAYS_SDOINDEX_SDO_CODE_INDEX)
 use_nl(a b)
 no_merge */
 DISTINCT A.SDO_GID GID_A, B.SDO_CODE GID_B
 FROM PARKS_SDOINDEX A, HIGHWAYS_SDOINDEX B
 WHERE A.SDO_CODE = B.SDO_CODE
)
 WHERE SDO_GEOM.RELATE (’PARKS’, GID_A,
 ’ANYINTERACT’,
 ’HIGHWAYS’, GID_B) <> ’FALSE’;

Primary

Secondary

Filter

Filter

Querying Spatial Data (Relational Model) 14-9

Spatial Join
14-10 Oracle Spatial User’s Guide and Reference

Administrative Functions and Procedures for Relational M
15

Administrative Functions and Procedures

for Relational Model

The SDO_ADMIN procedures create and maintain spatial structures in the
database, and they are used to perform the following tasks:

■ Tessellate entries in a geometry table and place them in a spatial index table

■ Verify spatial index information

This chapter contains descriptions of the administrative functions and procedures
used for working with spatially indexed geometric data. This chapter refers to the
relational Spatial model only.

Table 15–1 lists the administrative functions and procedures for working with
spatially indexed geometry-based data.

Table 15–1 Administrative Procedures for Spatially Indexed Data

Procedure or Function Description

SDO_ADMIN.POPULATE_INDEX Generates a spatial index for the geometry table
using either a set number of tiles or a fixed-size tile.

SDO_ADMIN.POPULATE_INDEX_
FIXED

Generates a spatial index using fixed-size tiles. This
is a deprecated procedure.

SDO_ADMIN.POPULATE_INDEX_
FIXED_POINTS

Generates a spatial index using fixed-size tiles for a
layer composed solely of point data.

SDO_ADMIN.SDO_CODE_SIZE Determines the required sizes for SDO_CODE and
SDO_MAXCODE.

SDO_ADMIN.SDO_VERSION Returns the release number of the installed version
of Spatial.
odel 15-1

SDO_ADMIN.UPDATE_INDEX Updates the spatial index based on changes to the
geometry table.

SDO_ADMIN.UPDATE_INDEX_
FIXED

Updates a spatial index with fixed-size tiles. This is a
deprecated procedure.

SDO_ADMIN.VERIFY_LAYER Checks for the existence of geometry and spatial
index tables.

Table 15–1 Administrative Procedures for Spatially Indexed Data (Cont.)

Procedure or Function Description
15-2 Oracle Spatial User’s Guide and Reference

SDO_ADMIN.POPULATE_INDEX
SDO_ADMIN.POPULATE_INDEX

Format
SDO_ADMIN.POPULATE_INDEX (layername)

Description
Tessellates a list of geometric objects created by selecting all the entries in the
geometry table that do not have corresponding entries in the spatial index table.

This procedure can generate either fixed-size or variable-sized tiles depending on
values stored in the <layername>_SDOLAYER table.

Keywords and Parameters

Usage Notes
Consider the following when using this procedure:

■ The <layername>_SDOINDEX table must be created before calling this
procedure. Use the SQL CREATE TABLE statement to create the spatial index
table.

■ For performance reasons, create an index on the SDO_GID column in the
<layername>_SDOGEOM table before calling this procedure.

■ This procedure generates either fixed-size or variable-sized tiles depending on
values stored in the <layername>_SDOLAYER table as follows:

layername Specifies the name of the data set layer. The layer name is used to construct
the names of the geometry and spatial index tables.
Data type is VARCHAR2.

SDO_LEVEL SDO_NUMTILES Action

NULL NULL Error.

>= 1 NULL Perform fixed-size tiling (recommended for
relational model).
Administrative Functions and Procedures for Relational Model 15-3

SDO_ADMIN.POPULATE_INDEX
■ If the <layername>_SDOINDEX table is empty, the procedure selects all the
geometries in the geometry table and generates index entries for them. If the
index table is not empty, the procedure determines which entries in the
geometry table do not have index entries, and generates them.

■ SDO_ADMIN.POPULATE_INDEX behaves similarly to the CREATE INDEX
statement in SQL. An implicit commit operation is executed after the procedure
is called.

■ SDO_ADMIN.POPULATE_INDEX operates as a single transaction. To reduce
the number of rollback operations required to execute this procedure, you can
write a routine that loops and calls SDO_ADMIN.UPDATE_INDEX repeatedly.
See Section A.2.1 for more information.

Example 15–1 tessellates all the geometric objects in the LAYER1_SDOGEOM table
and adds the generated tiles to the LAYER1_SDOINDEX table.

Example 15–1 Populate an Index

SQL> EXECUTE SDO_ADMIN.POPULATE_INDEX(’layer1’);
SQL> COMMIT;

Related Topics
■ SDO_ADMIN.UPDATE_INDEX

>= 1 >= 1 Perform hybrid indexing. The SDO_LEVEL
column defines the partition bucket size. The
SDO_NUMTILES column defines the number
of tiles to generate per geometry.

Note: Hybrid indexing is for experimentation
purposes only in the relational model.

NULL >= 1 Not supported.

SDO_LEVEL SDO_NUMTILES Action
15-4 Oracle Spatial User’s Guide and Reference

SDO_ADMIN.POPULATE_INDEX_FIXED
SDO_ADMIN.POPULATE_INDEX_FIXED

Format
SDO_ADMIN.POPULATE_INDEX_FIXED (layername, tile_size, [synch_flag,] [sdo_tile_flag,]
 [sdo_maxcode_flag])

Description
Provided for compatibility with Spatial Cartridge release 8.0.3 tables, but it has been
replaced by enhanced features in the SDO_ADMIN.POPULATE_INDEX procedure,
in order to support schema changes as shown in Section 12.1.

This procedure tessellates a list of geometric objects created by selecting all the
entries in the geometry table that do not have corresponding entries in the spatial
index table. This procedure can also tessellate all the geometric objects in a
geometry table or view and add the tiles to the spatial index table.

Use this procedure to tessellate the geometries into fixed-size tiles.

Keywords and Parameters

layername Specifies the name of the data set layer. The layer name is used to construct
the name of the geometry and spatial index tables.
Data type is VARCHAR2.

tile_size Specifies the number of tessellations required to achieve the desired tile size
(see the Usage Notes).
Data type is INTEGER.

synch_flag Specifies whether to tessellate every geometric object in the geometry table, or
only those that do not have corresponding entries in the spatial index table. If
TRUE, only those geometric objects in the geometry table that do not have
any corresponding tiles in the spatial index table are tessellated. If FALSE, all
the geometric objects in the geometry table are tessellated, and new tiles are
added to the spatial index table.
Data type is BOOLEAN. Default = TRUE.

sdo_tile_flag For internal use only. Not supported in this release.
Default = FALSE.

sdo_
maxcode_flag

Specifies whether or not the SDO_MAXCODE column is populated. If TRUE,
SDO_MAXCODE is populated. If FALSE, the column is not populated. Set
this flag to FALSE for the recommended fixed-size tiling.
Data type is BOOLEAN. Default = TRUE.
Administrative Functions and Procedures for Relational Model 15-5

SDO_ADMIN.POPULATE_INDEX_FIXED
Usage Notes

Consider the following when using this procedure:

■ The SQL CREATE TABLE statement is used to create the spatial index table,
<layername>_SDOINDEX, before calling this procedure.

■ The layer is tessellated into equal-sized tiles based on the number passed in the
tile_size parameter. The value of tile_size specifies how many times to tessellate
the layer. See Section 13.3.2.

■ For performance reasons, set the synch_flag to FALSE when the spatial index
table contains zero rows.

■ For performance reasons, create an index on the SDO_GID column in the
<layername>_SDOGEOM table before calling this procedure.

■ SDO_ADMIN.POPULATE_INDEX_FIXED behaves similarly to the CREATE
INDEX statement in SQL. An implicit commit operation is executed after the
procedure is called.

■ SDO_ADMIN.POPULATE_INDEX_FIXED operates as a single transaction. To
reduce the number of rollback operations required to execute this procedure,
you can write a routine that loops and calls SDO_ADMIN.UPDATE_INDEX_
FIXED repeatedly. See Section A.2.1 for more information.

Example 15–2 tessellates all the geometric objects in the LAYER1_SDOGEOM table
using fixed-size tiles, and adds the generated tiles to the LAYER1_SDOINDEX table.

Note: This procedure is likely to be removed in a future release of
Spatial.
15-6 Oracle Spatial User’s Guide and Reference

SDO_ADMIN.POPULATE_INDEX_FIXED
Example 15–2 Populate an Index with Fixed-Size Tiles

SQL> EXECUTE SDO_ADMIN.POPULATE_INDEX_FIXED(’layer1’,4,FALSE,FALSE,FALSE);

Related Topics
■ SDO_ADMIN.UPDATE_INDEX_FIXED

■ SDO_TUNE.ESTIMATE_TILING_LEVEL
Administrative Functions and Procedures for Relational Model 15-7

SDO_ADMIN.POPULATE_INDEX_FIXED_POINTS
SDO_ADMIN.POPULATE_INDEX_FIXED_POINTS

Format
SDO_ADMIN.POPULATE_INDEX_FIXED_POINTS (layername, sdo_tile_flag, commit_count)

Description
Builds an index with fixed-size tiles for a geometry layer consisting solely of point
data. Because a point is indexed using a single tile, special optimizations are
possible.

Keywords and Parameters

Usage Notes
Consider the following when using this procedure:

■ The <layername>_SDOLAYER, <layername>_SDOGEOM, and <layername>_
SDODIM tables must be populated before calling this procedure.

■ The <layername>_SDOINDEX table must be created before calling this
procedure. Use the SQL CREATE TABLE statement to create the spatial index
table.

■ For performance reasons, create an index on the SDO_GID column in the
<layername>_SDOGEOM table before calling this procedure.

■ If the <layername>_SDOINDEX table is empty, the procedure selects all the
geometries in the geometry table and generates index entries for them. If the
index table is not empty, the procedure determines which entries in the
geometry table do not have index entries, and generates them.

layername Specifies the name of the data set layer.
Data type is VARCHAR2.

sdo_tile_flag Specifies whether or not to generate the SDO_TILE column.
Data type is BOOLEAN. Default = FALSE.

commit_count Specifies how many points to index before updating and committing the
data.
Data type is NUMBER. Default = 50.
15-8 Oracle Spatial User’s Guide and Reference

SDO_ADMIN.POPULATE_INDEX_FIXED_POINTS
Example 15–3 tessellates all the points in the LAYER1_SDOGEOM table and adds
the generated tiles to the LAYER1_SDOINDEX table. This example commits after
every 100 points.

Example 15–3 Populate an Index with Fixed-Size Tiles Based on Point Data

SQL> EXECUTE SDO_ADMIN.POPULATE_INDEX_FIXED_POINTS(’layer1’, FALSE, 100);

Related Topics
■ SDO_ADMIN.UPDATE_INDEX
Administrative Functions and Procedures for Relational Model 15-9

SDO_ADMIN.SDO_CODE_SIZE
SDO_ADMIN.SDO_CODE_SIZE

 Format
SDO_ADMIN.SDO_CODE_SIZE (layername)

Description
Determines the size that the SDO_MAXCODE column should be in the
<layername>_SDOINDEX table.

Keywords and Parameters

Returns
This function returns the required size in bytes for the SDO_MAXCODE column.
Data type is INTEGER.

Usage Notes
The SDO_CODE column is used to store the bit-interleaved cell ID of a tile that
covers a geometry. The SDO_MAXCODE column is SDO_CODE padded out one
place farther than the longest allowable code name for the index. Both columns are
defined as RAW data types, with a maximum of 255 bytes. Use the SDO_ADMIN.
SDO_CODE_SIZE function to fine-tune the size of the column.

Always declare the SDO_CODE column to raw(255).

Related Topics
None.

layername Specifies the name of the data set layer.
Data type is VARCHAR2.
15-10 Oracle Spatial User’s Guide and Reference

SDO_ADMIN.SDO_VERSION
SDO_ADMIN.SDO_VERSION

 Format
SDO_ADMIN.SDO_VERSION

Description
Returns the current installed version of Spatial.

Keywords and Parameters
None.

Returns
This function returns a string describing the version of Spatial installed on the local
system.
Data type is VARCHAR2.

Usage Notes
The following version strings can be returned:

8.0.5.0.0
8.1.0.0.0
8.1.3.0.0
8.1.5.0.0
8.1.6.0.0

This information is useful when migrating data between systems, or when
upgrading. See Appendix B for more information about migration.

Related Topics
None.
Administrative Functions and Procedures for Relational Model 15-11

SDO_ADMIN.UPDATE_INDEX
SDO_ADMIN.UPDATE_INDEX

Format
SDO_ADMIN.UPDATE_INDEX (layername, GID)

Description
Tessellates a single geometric object in a geometry table or view and adds the tiles
to the spatial index table. If the object already exists and has index entries, those
entries are deleted and replaced by the newly generated tiles.

Keywords and Parameters

Usage Notes
Consider the following when using this procedure:

■ The <layername>_SDOINDEX table must exist before calling this procedure.
Use the SQL CREATE TABLE statement to create the spatial index table.

■ For performance reasons, create an index on the SDO_GID column in the
<layername>_SDOGEOM table before calling this procedure.

■ The values of the SDO_LEVEL and SDO_NUMTILES columns must be set in
the <layername>_SDOLAYER table before calling this procedure. This
procedure generates either fixed-size or hybrid tiles depending on values stored
in the <layername>_SDOLAYER table as follows:

layername Specifies the name of the data set layer. The layer name is used to
construct the name of the geometry table.
Data type is VARCHAR2.

GID Specifies the geometric object identifier.
Data type is NUMBER.

SDO_LEVEL SDO_NUMTILES Action

NULL NULL Error.

>= 1 NULL Perform indexing with fixed-size tiles
(recommended for the relational model).
15-12 Oracle Spatial User’s Guide and Reference

SDO_ADMIN.UPDATE_INDEX
■ SDO_ADMIN.UPDATE_INDEX does not perform an implicit commit operation
after it executes; therefore, the transaction can be rolled back.

Example 15–4 tessellates the polygon for geometry 25 and adds the generated tiles
to the LAYER1_SDOINDEX table.

Example 15–4 Update an Index

SQL> EXECUTE SDO_ADMIN.UPDATE_INDEX(’layer1’, 25);
SQL> COMMIT;

Related Topics
■ SDO_ADMIN.POPULATE_INDEX

>= 1 >= 1 Perform hybrid indexing. The SDO_LEVEL
column defines the partition bucket size. The
SDO_NUMTILES column defines the number
of tiles to generate per geometry.
Note: Hybrid indexing is for experimentation
purposes only in the relational model.

NULL >= 1 Not supported.

SDO_LEVEL SDO_NUMTILES Action
Administrative Functions and Procedures for Relational Model 15-13

SDO_ADMIN.UPDATE_INDEX_FIXED
SDO_ADMIN.UPDATE_INDEX_FIXED

Format
SDO_ADMIN.UPDATE_INDEX_FIXED (layername, GID, tile_size, [replace_flag,] [sdo_tile_flag] [sdo_
maxcode_flag])

Description
Provided for compatibility with Spatial Cartridge release 8.0.3 tables, but it has been
replaced by enhanced features in the SDO_ADMIN.UPDATE_INDEX procedure to
support schema changes as shown in Section 12.1.

This procedure tessellates a single geometric object in a geometry table or view and
adds the fixed-sized tiles to the spatial index table. By default, these tiles will
replace existing ones for the same geometry; or optionally, existing tiles can be left
alone.

Keywords and Parameters

layername Specifies the name of the data set layer. The layer name is used to
construct the name of the geometry table.
Data type is VARCHAR2.

GID Specifies the geometric object identifier.
Data type is NUMBER.

tile_size Specifies the number of tessellations required to achieve the desired
fixed-size tiles. Each tessellation subdivides the tiles from the previous
level into four smaller tiles.
Data type is INTEGER.

replace_flag Specifies whether or not to delete tiles for the GID before adding new
ones. If TRUE, tiles are deleted before new entries are inserted into the
spatial index table. If FALSE, new tiles are added to the spatial index
table.
Data type is BOOLEAN. Default = TRUE.

sdo_tile_flag For internal use only. Not supported in this release.
Data type is BOOLEAN. Default = FALSE.

sdo_maxcode_flag Specifies whether or not the SDO_MAXCODE column is populated. If
TRUE, SDO_MAXCODE is populated. If FALSE, the column is not
populated. Set this flag to FALSE for the recommended indexing with
fixed-size tiles.
Data type is BOOLEAN. Default = TRUE.
15-14 Oracle Spatial User’s Guide and Reference

SDO_ADMIN.UPDATE_INDEX_FIXED
Usage Notes

Consider the following when using this procedure:

■ For performance reasons, set the replace_flag to FALSE when the spatial index
table contains no entries for the specified GID.

■ For performance reasons, create an index on the SDO_GID column in the
<layername>_SDOGEOM table before calling this procedure.

■ SDO_ADMIN.UPDATE_INDEX_FIXED does not perform an implicit commit
operation after it executes; therefore, this transaction can be rolled back.

Example 15–5 tessellates the polygon for geometry 25 and adds the generated tiles
to the LAYER1_SDOINDEX table.

Example 15–5 Update an Index with Fixed-Size Tiles

SQL> EXECUTE SDO_ADMIN.UPDATE_INDEX_FIXED (’layer1’,25,4,FALSE,FALSE,FALSE);

Related Topics
■ SDO_ADMIN.POPULATE_INDEX_FIXED

■ SDO_TUNE.ESTIMATE_TILING_LEVEL

Note: This procedure is likely to be removed in a future release of
Spatial.
Administrative Functions and Procedures for Relational Model 15-15

SDO_ADMIN.VERIFY_LAYER
SDO_ADMIN.VERIFY_LAYER

Format
SDO_ADMIN.VERIFY_LAYER (layername,[maxtiles])

Description
Checks for the existence of the geometry and spatial index tables.

Keywords and Parameters

Usage Notes
If this procedure does not find the geometry and spatial index tables, it generates
the following error: SDO 13113 (Oracle table does not exist.)

Example 15–6 verifies the LAYER1 data set layer.

Example 15–6 Verify a Layer

SQL> EXECUTE SDO_ADMIN.VERIFY_LAYER(’layer1’);

Related Topics
None.

layername Specifies the name of the data set layer. The layer name is used to
construct the name of the geometry and spatial index tables.
Data type is VARCHAR2.

maxtiles For internal use only. Not supported in this release.
15-16 Oracle Spatial User’s Guide and Reference

Tuning Functions and Procedures for Relational M
16

Tuning Functions and Procedures for

Relational Model

This chapter contains descriptions of the tuning functions and procedures shown in
Table 16–1. This chapter refers to the relational Spatial model only.

Table 16–1 Tuning Functions and Procedures

Function/Procedure Description

SDO_TUNE.AVERAGE_MBR Calculates the average minimum bounding
rectangle for geometries in a layer.

SDO_TUNE.ESTIMATE_INDEX_
PERFORMANCE

Estimates the spatial index selectivity.

SDO_TUNE.ESTIMATE_TILING_LEVEL Determines an appropriate tiling level for
creating fixed-size index tiles.

SDO_TUNE.ESTIMATE_TILING_TIME Estimates the tiling time for a layer, in seconds.

SDO_TUNE.EXTENT_OF Determines the minimum bounding rectangle
of the data in a layer.

SDO_TUNE.HISTOGRAM_ANALYSIS Calculates statistical histograms for a spatial
layer.

SDO_TUNE.MIX_INFO Calculates geometry type information for a
spatial layer, such as the percentage of each
geometry type.
odel 16-1

SDO_TUNE.AVERAGE_MBR
SDO_TUNE.AVERAGE_MBR

Format
SDO_TUNE.AVERAGE_MBR (layername, width, height)

Description
Calculates the average minimum bounding rectangle (MBR) for all geometries in a
layer.

Keywords and Parameters

Returns
This function returns the width and height of the average MBR for all geometries in
a layer.

Usage Notes
This function calculates the average MBR by keeping track of the maximum and
minimum X and Y values for all geometries in a layer.

layername Specifies the name of the data set layer to examine.
Data type is VARCHAR2.

width Returns the width of the average MBR.
Data type is OUT NUMBER.

height Returns the height of the average MBR.
Data type is OUT NUMBER.
16-2 Oracle Spatial User’s Guide and Reference

SDO_TUNE.ESTIMATE_INDEX_PERFORMANCE
SDO_TUNE.ESTIMATE_INDEX_PERFORMANCE

Format
SDO_TUNE.ESTIMATE_INDEX_PERFORMANCE (layername, sample_ratio, tiling_level,
 num_tiles, window_layer, window_gid, tiling_time, filter_time, query_time)

Description
Estimates the spatial index performance such as query selectivity and window
query time for a layer.

Keywords and Parameters

Returns
This function returns a number between 0.0 and 1.0 representing estimated spatial
index selectivity. It also returns the estimated tiling time, filter time, and query time.

layername Specifies the name of the data set layer to examine.
Data type is VARCHAR2.

sample_ratio Specifies the size ratio between the original layer and the sample layer
to be generated.
Data type is INTEGER.
Default is 20.

tiling_level Specifies the spatial index level at which the layer is to be tessellated.
Data type is INTEGER.

num_tiles Specifies the number of tiles for variable or hybrid tessellation.
Data type is INTEGER.

window_layer Specifies the name of the spatial layer in which the window geometry
is stored.
Data type is VARCHAR2.

window_gid Specifies the window geometry ID.
Data type is NUMBER.

tiling_time Returns the estimated tiling time in seconds.
Data type is OUT NUMBER.

filter_time Returns the estimated spatial index filter time in seconds.
Data type is OUT NUMBER.

query_time Returns the estimated window query time in seconds.
Data type is OUT NUMBER.
Tuning Functions and Procedures for Relational Model 16-3

SDO_TUNE.ESTIMATE_INDEX_PERFORMANCE
Data type for these variables is NUMBER.

Usage Notes
■ A larger selectivity number indicates better selectivity. A selectivity of 0.0

indicates an error.

■ A larger sample_ratio means faster but less accurate estimation.
16-4 Oracle Spatial User’s Guide and Reference

SDO_TUNE.ESTIMATE_TILING_LEVEL
SDO_TUNE.ESTIMATE_TILING_LEVEL

Format
SDO_TUNE.ESTIMATE_TILING_LEVEL (layername, maxtiles, type_of_estimate)

Description
Estimates the appropriate tiling level to use when indexing with fixed-size tiles.

Keywords and Parameters

Returns
This function returns an integer representing the level to use when creating a spatial
index for the specified layer.

Usage Notes
The SDO_ADMIN.POPULATE_INDEX and SDO_ADMIN.UPDATE_INDEX
procedures are used to create or update the spatial index using fixed-size or hybrid
indexing. Store the value returned by the SDO_TUNE.ESTIMATE_TILING_LEVEL
function in the SDO_LEVEL column of the <layername>_SDOLAYER table before
building the spatial index.

layername Specifies the name of the data set layer to examine.
Data type is VARCHAR2.

maxtiles Specifies the maximum number of tiles that can be used to index the
rectangle defined by the type_of_estimate parameter.
Data type is INTEGER.

type_of_estimate Indicates by keyword one of three different models. Specify the type
of estimate with one of the following keywords:

• LAYER_EXTENT -- Use the rectangle defined by your coordinate
system.

• ALL_GID_EXTENT -- Use the minimum bounding rectangle that
encompasses all the geometric objects within the layer. Recom-
mended for most applications.

• AVG_GID_EXTENT -- Use a rectangle representing the average
size of the individual geometries within the layer. This option per-
forms the most extensive analysis of the three types.
Tuning Functions and Procedures for Relational Model 16-5

SDO_TUNE.ESTIMATE_TILING_LEVEL
The maxtiles parameter specifies the maximum number of tiles that should be used
to define a grid covering the rectangular extent of interest. This extent could be:

■ Defined in the <layername>_SDODIM table, which defines the bounds of the
coordinate system

■ Defined by the minimum and maximum coordinates for the given data set (as
returned by the SDO_TUNE.EXTENT_OF procedure)

■ Defined by computing the average bounds of the objects in the
<layername>_SDOGEOM table

The code shown in Example 16–1 generates a recommendation based on the extent
of the defined coordinate system (-90 to +90 latitude and -180 to +180 longitude).
This example returns a level whose tiles are not smaller than one-degree cells.

Example 16–1 Recommended Tile Level for One-Degree Latitude/Longitude Cells

set serveroutput on
declare
 tiling_level integer;
begin
 tiling_level := mdsys.sdo_tune.estimate_tiling_level(’WORLD_CITIES’,
 360*180, ’LAYER_EXTENT’);
 dbms_output.put_line(’VALUE is ’|| tiling_level);
end;

For most applications, however, it is more effective to call the SDO_
TUNE.ESTIMATE_TILING_LEVEL function using the ALL_GID_EXTENT estimate
type with a maxtiles value of 10,000. In Example 16–2, assume the data set consists of
block groups for San Francisco and that the <layername>_SDODIM table defines
the extent to be one that covers all of California. Because the data set is localized to
a small subregion of this extent, ALL_GID_EXTENT is the appropriate estimate
type. The recommended tiling level in this case will be such that at most, 10,000 tiles
will be required to completely cover the extent of San Francisco block groups.

Example 16–2 Recommended Tile Level Based on the GIDs of All Geometries

set serveroutput on
declare
 tiling_level integer;
begin
 tiling_level:= mdsys.sdo_tune.estimate_tiling_level(’SF_BLOCK_GROUPS’,
 10000, ’ALL_GID_EXTENT’);
 dbms_output.put_line(’VALUE is’ ,|| tiling_level);
16-6 Oracle Spatial User’s Guide and Reference

SDO_TUNE.ESTIMATE_TILING_LEVEL
end;

The third type of estimate helps determine the tiling level that should be used such
that on average, the maxtiles parameter defines the number of tiles to cover the
extent of a single geometry in the layer. This estimate type requires the most
computation of the three because the bounding rectangle of every geometry is used
in calculating the average extent. In Example 16–3, eight tiles on average are used to
cover any block group in San Francisco.

Example 16–3 Recommended Tile Level Based on Average Extent of All Geometries

set serveroutput on
declare
 tiling_level integer;
begin
 tiling_level := mdsys.sdo_tune.estimate_tiling_level(’SF_BLOCK_GROUPS’, 8,
 ’AVG_GID_EXTENT’);
 dbms_output.put_line(’Tiling level value is ’ || tiling_level);
end;

Related Topics
■ SDO_ADMIN.POPULATE_INDEX

■ SDO_ADMIN.UPDATE_INDEX

■ SDO_TUNE.EXTENT_OF

■ Section A.1.2, "Understanding the Tiling Level"

■ Section A.1.5, "Visualizing the Spatial Index (Drawing Tiles)"
Tuning Functions and Procedures for Relational Model 16-7

SDO_TUNE.ESTIMATE_TILING_TIME
SDO_TUNE.ESTIMATE_TILING_TIME

Format
SDO_TUNE.ESTIMATE_TILING_TIME (layername, sample_ratio, tiling_level, num_tiles)

Description
Returns the estimated time to tessellate a layer.

Keywords and Parameters

Returns
This function returns the estimated tiling time in seconds. A return of 0 indicates an
error.

Data type is NUMBER.

Usage Notes
None.

layername Specifies the name of the data set layer to examine.
Data type is VARCHAR2.

sample_ratio Specifies the size ratio between the original layer
and the sample layer to be generated.
Data type is INTEGER.
Default is 20.

tiling_level Specifies the spatial index level at which the layer
is to be tessellated.
Data type is INTEGER.

num_tiles Specifies the number of tiles for variable or hybrid
tessellation.
Data type is INTEGER.
16-8 Oracle Spatial User’s Guide and Reference

SDO_TUNE.EXTENT_OF
SDO_TUNE.EXTENT_OF

Format
SDO_TUNE.EXTENT_OF (layername, min_X, max_X, min_Y, max_Y)

Description
Determines the extent of all geometries in a layer.

Keywords and Parameters

Returns
This function returns the coordinates of the minimum bounding rectangle for all
geometric data in a layer.

Data type is NUMBER for the four return values.

Usage Notes
None.

Related Topics
■ SDO_TUNE.ESTIMATE_TILING_LEVEL function

layername Specifies the name of the data set layer. The layer
name is used to construct the name of the
geometry and spatial index tables.
Data type is VARCHAR2.

min_X Minimum X value of the bounding rectangle.
Data type is NUMBER.

max_X Maximum X value of the bounding rectangle.
Data type is NUMBER.

min_Y Minimum Y value of the bounding rectangle.
Data type is NUMBER.

max_Y Maximum Y value of the bounding rectangle.
Data type is NUMBER.
Tuning Functions and Procedures for Relational Model 16-9

SDO_TUNE.HISTOGRAM_ANALYSIS
SDO_TUNE.HISTOGRAM_ANALYSIS

Format
SDO_TUNE.HISTOGRAM_ANALYSIS (layername, result_table, type_of_histogram,
 max_value, intervals)

Description
Generates statistical histograms based on a layer.

Keywords and Parameters

Returns
This procedure populates the result table with statistical histograms for a spatial
layer.

Usage Notes
You must create the result table before calling this procedure. The table has the
following format:

CREATE TABLE histogram (value NUMBER, count NUMBER);

layername Specifies the name of the spatial data set layer to examine.
Data type is VARCHAR2.

result_table Specifies the name of the result table where the histogram will
be stored.
Data type is VARCHAR2.

type_of_histogram Specifies one of the following types of histograms:

• TILES_VS_LEVEL (default)

• GEOMS_VS_AREA

• GEOMS_VS_TILES

• GEOMS_VS_VERTICES

Data type is VARCHAR2.

max_value Specifies the upper limit of the histogram.
Data type is NUMBER.

intervals Specifies the number of intervals between 0 and max_value.
Data type is INTEGER.
16-10 Oracle Spatial User’s Guide and Reference

SDO_TUNE.HISTOGRAM_ANALYSIS
The following types of histograms are available:

TILES_VS_LEVEL Provides the number of tiles at different spatial index
levels. (Available only with hybrid indexes.) This
histogram is used to evaluate the spatial index that is
already built on the layer.

GEOMS_VS_AREA Provides the number of geometries in different size
ranges. The shape of this histogram could be helpful in
choosing a proper index type and index level.

GEOMS_VS_TILES Provides the number of geometries in different
number-of-tiles ranges. This histogram is used to
evaluate the spatial index that is already built on the
geometry column.

GEOMS_VS_VERTICES Provides a histogram of the geometry count against the
number of vertices. This histogram could help determine
if spatial index selectivity is important for the layer.
Because the number of vertices determines the
performance of the secondary filter, selectivity of the
primary filter could be crucial for layers that contain
many complicated geometries.
Tuning Functions and Procedures for Relational Model 16-11

SDO_TUNE.MIX_INFO
SDO_TUNE.MIX_INFO

Format
SDO_TUNE.MIX_INFO (layername)

Description
Provides the number of geometries of each type stored in the layer.

Keywords and Parameters

Returns
This function calculates geometry type information for the layer. It returns the
number of geometries of different type, as well as the percentages of points, line
strings, polygons, and complex geometries.

Usage Notes
None.

layername Specifies the name of the spatial data set layer to
examine.
Data type is VARCHAR2.
16-12 Oracle Spatial User’s Guide and Reference

Geometry Functions and Procedures for Relational M
17

Geometry Functions and Procedures for

Relational Model

This chapter contains descriptions of the geometric functions and procedures
shown in Table 17–1. This chapter refers to the relational Spatial model only.

Table 17–1 Geometric Functions and Procedures

Function/Procedure Description

SDO_GEOM.RELATE Determines how two objects interact.

SDO_GEOM.VALIDATE_GEOMETRY Determines if a geometry is valid.

SDO_GEOM.VALIDATE_LAYER Determines if all geometries in a layer are valid.
odel 17-1

SDO_GEOM.RELATE
SDO_GEOM.RELATE

Format
SDO_GEOM.RELATE (layername1, SDO_GID1, mask, [layername2,] SDO_GID2)

SDO_GEOM.RELATE (layername1, SDO_GID1, mask, X_tolerance, Y_tolerance,
 SDO_ETYPE, num_ordinates, X_ordinate1, Y_ordinate1 [,...,Xn, Yn]
 [,SDO_ETYPE, num_ordinates, X_ordinate1, Y_ordinate1 [,...,Xn, Yn]])

Description
Examines two geometry objects to determine their spatial relationship. This
function is available in two forms. See the Usage Notes for more information.

Keywords and Parameters

layername1,
layername2

Specifies the name of the data set layer. The layer name is used to
construct the name of the geometry and spatial index tables.
Data type is VARCHAR2.

SDO_GID1,
SDO_GID2

Specifies the geometry object identifier.
Data type is NUMBER.

mask Specifies a list of relationships to check. See the list of keywords in the
Usage Notes.

X_tolerance,

Y_tolerance

Specifies the distance two points can be apart and still be considered
the same due to rounding errors. Tolerance must be greater than zero.
If you want zero tolerance, enter a number such as 0.000005, where the
number of zeros to the right of the decimal point matches the
precision of your data.
Data type is NUMBER.

SDO_ETYPE Specifies the type of geometry element.
Data type is INTEGER, corresponding to the following constants:

 1 SDO_GEOM.POINT_TYPE

 2 SDO_GEOM.LINESTRING_TYPE

 3 SDO_GEOM.POLYGON_TYPE
17-2 Oracle Spatial User’s Guide and Reference

SDO_GEOM.RELATE
Returns
The SDO_GEOM.RELATE function can return three types of answers:

1. If you pass a mask listing one or more relationships, the function returns the
name of the relationship if it is true for the pair of geometries. If all the
relationships are false, the function returns FALSE.

2. If you pass the DETERMINE keyword in the mask, the function returns the one
relationship keyword that best matches the geometries. The DETERMINE
keyword can only be used when SDO_GEOM.RELATE is in the SELECT clause
of the SQL statement.

3. If you pass the ANYINTERACT keyword in the mask, the function returns
TRUE if the two geometries are not disjoint.

The data type is VARCHAR2.

Usage Notes
Use the first form of the function to examine two stored geometric objects.

Use the second form of the function to compare a stored object against a
user-defined object. You can specify up to 123 vertices for a single-element
geometry. If the geometry has multiple elements, the total number of arguments
passed, including SDO_ETYPE, num_ordinates, and the list of vertex coordinates,
cannot exceed 255 values.

The following relationships can be tested:

■ ANYINTERACT - Returns TRUE if the objects are not disjoint.

■ CONTAINS - Returns CONTAINS if the second object is entirely within the
first object and the object boundaries do not touch; otherwise, returns
FALSE.

■ COVEREDBY - Returns COVEREDBY if the first object is entirely within
the second object and the object boundaries touch at one or more points;
otherwise, returns FALSE.

num_ordinates Specifies the number of ordinates for this element. Data type is
NUMBER.

X_ordinateN,

Y_ordinateN

Specifies the X and Y values of a vertex (coordinate pair) in a
geometry.
Data type is NUMBER.
Geometry Functions and Procedures for Relational Model 17-3

SDO_GEOM.RELATE
■ COVERS - Returns COVERS if the second object is entirely within the first
object and the boundaries touch in one or more places; otherwise, returns
FALSE.

■ DISJOINT - Returns DISJOINT if the objects have no common boundary or
interior points; otherwise, returns FALSE.

■ EQUAL - Returns EQUAL if the objects share every point of their
boundaries and interior, including any holes in the objects; otherwise,
returns FALSE.

■ INSIDE - Returns INSIDE if the first object is entirely within the second
object and the object boundaries do not touch; otherwise, returns FALSE.

■ OVERLAPBDYDISJOINT - Returns OVERLAPBDYDISJOINT if the objects
overlap, but their boundaries do not interact; otherwise, returns FALSE.

■ OVERLAPBDYINTERSECT - Returns OVERLAPBDYINTERSECT if the
objects overlap, and their boundaries intersect in one or more places;
otherwise, returns FALSE.

■ TOUCH - Returns TOUCH if the two objects share a common boundary
point, but no interior points; otherwise, returns FALSE.

Mask values can be combined using the logical Boolean operator OR. For example,
‘INSIDE + TOUCH’ returns ’INSIDE + TOUCH’ or ’FALSE’ depending on the
outcome of the test.

Related Topics
None.
17-4 Oracle Spatial User’s Guide and Reference

SDO_GEOM.VALIDATE_GEOMETRY
SDO_GEOM.VALIDATE_GEOMETRY

Format
SDO_GEOM.VALIDATE_GEOMETRY (layername,SDO_GID)

Description
Provides a consistency check for valid geometry types. This function checks the
representation of the geometry from the tables against the element definitions.

Keywords and Parameters

Returns
This function returns one of the following:

■ TRUE if the geometry is valid.

■ FALSE if the geometry is invalid for some unknown reason.

■ An Oracle error number indicating the problem with the geometry.

The data type is VARCHAR2.

Usage Notes
This function checks for the following:

■ Polygons must have at least three points and must be closed.

■ Line strings must have at least two points.

■ When an SDO_ESEQ spans multiple rows, the last point of the previous row
must be the first point on the next row.

Related Topics
None.

layername Specifies the name of the data set layer. The layer name is used to
construct the name of the geometry and spatial index tables.
Data type is VARCHAR2.

SDO_GID Specifies the geometric object identifier.
Data type is NUMBER.
Geometry Functions and Procedures for Relational Model 17-5

SDO_GEOM.VALIDATE_LAYER
SDO_GEOM.VALIDATE_LAYER

Format
SDO_GEOM.VALIDATE_LAYER (layername, result_table)

Description
Examines a layer to determine if the stored geometries follow the defined rules for
geometric objects.

Keywords and Parameters

Returns
This function fills the result table with validation results.

Usage Notes
Create an empty result table before calling this function. The format of the result
table is: (sdo_gid number, result varchar2).

This function checks for the following:

■ Polygons must have at least three points and must be closed.

■ Line strings must have at least two points.

■ When an SDO_ESEQ spans multiple rows, the last point of the previous row
must be the first point on the next row.

Related Topics
None.

layername Specifies the name of the layer to examine.
Data type is VARCHAR2.

result_table Specifies the name of the result table.
Data type is VARCHAR2.
17-6 Oracle Spatial User’s Guide and Reference

Window Functions and Procedures for Relationa
18

Window Functions and Procedures for

Relational Model

If a query window does not already exist in the database, you must first insert it
and create an index for it. The SDO_WINDOW functions and procedures are used
to create temporary geometry objects to be used in comparisons with stored
geometries. You can create query windows with any number of coordinates.

Because not all Oracle users may have insert privileges, the SDO_WINDOW
package is not automatically installed when you install Spatial. This allows a DBA
to control the schema under which these functions and procedures operate. Choose
an Oracle user who has insert privilege and compile the SDO_WINDOW package
under that user. For example, you could choose the MDSYS Oracle user:

% sqlplus mdsys/password
SQL> @$ORACLE_HOME/md/admin/sdowin.sql
SQL> @$ORACLE_HOME/md/admin/prvtwin.plb

This chapter contains descriptions of the window functions and procedures listed in
Table 18–1. This chapter refers to the relational Spatial model only.

Table 18–1 Window Functions and Procedures

Function/Procedures Description

SDO_WINDOW.BUILD_WINDOW Builds a query window.

SDO_WINDOW.BUILD_WINDOW_FIXED Builds a query window using fixed-size tiles.

SDO_WINDOW.CLEAN_WINDOW Removes the tables used for a query window.

SDO_WINDOW.CLEANUP_GID Removes the query window without
removing the tables.
l Model 18-1

SDO_WINDOW.CREATE_WINDOW_
LAYER

Creates the tables needed for a query window
layer.

Table 18–1 Window Functions and Procedures

Function/Procedures Description
18-2 Oracle Spatial User’s Guide and Reference

SDO_WINDOW.BUILD_WINDOW
SDO_WINDOW.BUILD_WINDOW

 Format
SDO_WINDOW.BUILD_WINDOW(comp_name, layername, SDO_ETYPE, SDO_NUMTILES,
 X1, Y1, [...Xn, Yn])

Description
Builds the window for the query and returns an SDO_GID that serves as a handle.
The window is tessellated into hybrid tiles. Hybrid indexing is not recommended
for the relational Spatial model.

Keywords and Parameters

Returns
This function returns the SDO_GID of the new geometry.

Data type is NUMBER.

comp_name Specifies the name of the user who compiled this package. This user
must have appropriate privileges to read and write into the database.
Data type is VARCHAR2.

layername Specifies the name of the window layer into which the coordinates will
be inserted.
Data type is VARCHAR2.

SDO_ETYPE Specifies the type of geometry objects.
Data type is INTEGER, corresponding to the following constants:

 1 or SDO_GEOM.POINT_TYPE

 2 or SDO_GEOM.LINESTRING_TYPE

 3 or SDO_GEOM.POLYGON_TYPE

SDO_NUMTILES Value must be NULL for Spatial release 8.0.4 and later.
 Data type is NUMBER.

X ordinateN,

Y ordinateN

Specifies the X and Y values of a vertex (coordinate pair) in a geometry.
Up to 125 pairs may be added in a single call.
Data type is NUMBER.
Window Functions and Procedures for Relational Model 18-3

SDO_WINDOW.BUILD_WINDOW
Usage Notes
This function inserts the coordinates into the <layername>_SDOGEOM table,
tessellates the geometry (creates the index), and returns a unique SDO_GID
corresponding to the geometry.

You do not need special privileges to execute this function. However, the user who
compiles it does need appropriate privileges to read and write into the database.

When working with Spatial release 8.0.3 tables, the SDO_NUMTILES parameter
indicates the number of tiles into which the window should be tessellated. For
release 8.0.4 or later, the function reads that information automatically from the
<layername>_SDOLAYER table.

Related Topics
SDO_WINDOW.BUILD_WINDOW_FIXED
18-4 Oracle Spatial User’s Guide and Reference

SDO_WINDOW.BUILD_WINDOW_FIXED
SDO_WINDOW.BUILD_WINDOW_FIXED

 Format
SDO_WINDOW.BUILD_WINDOW_FIXED (comp_name, layername, SDO_ETYPE, SDO_TILESIZE,
 X1, Y1, [...Xn, Yn])

Description
Builds the window for the query and returns an SDO_GID that serves as a handle.
The window is tessellated into fixed-size tiles.

Keywords and Parameters

Returns
This function returns the SDO_GID of the new geometry.

Data type is NUMBER.

comp_name Specifies the name of the user who compiled this package. This user
must have appropriate privileges to read and write into the database.
Data type is VARCHAR2.

layername Specifies the name of the window layer into which the coordinates will
be inserted.
Data type is VARCHAR2.

SDO_ETYPE Specifies the type of geometry element.
Data type is INTEGER, corresponding to the following constants:

 1 or SDO_GEOM.POINT_TYPE

 2 or SDO_GEOM.LINESTRING_TYPE

 3 or SDO_GEOM.POLYGON_TYPE

SDO_TILESIZE Specifies the number of tessellations required to achieve the desired
fixed-size tiles.
Data type is NUMBER.

X ordinateN,

Y ordinateN

Specifies the X and Y values of a vertex (coordinate pair) in a geometry.
Up to 125 pairs may be added in a single call.
Data type is NUMBER.
Window Functions and Procedures for Relational Model 18-5

SDO_WINDOW.BUILD_WINDOW_FIXED
Usage Notes
This function inserts the coordinates into the <layername>_SDOGEOM table,
tessellates the geometry (creates the index), and returns a unique SDO_GID
corresponding to the geometry.

You do not need special privileges to execute this function. However, the user who
compiles it does need appropriate privileges to read and write into the database.

Query SDO_LEVEL from the <layername>_SDOLAYER table to pass the correct
SDO_TILE_SIZE value to this function.

Related Topics
None.
18-6 Oracle Spatial User’s Guide and Reference

SDO_WINDOW.CLEAN_WINDOW
SDO_WINDOW.CLEAN_WINDOW

 Format
SDO_WINDOW.CLEAN_WINDOW (layername);

Description
Removes the four tables created in the layer for the query window.

Keywords and Parameters

Usage Notes
Typically, you would build a layer once, and then build multiple windows and
perform multiple queries using that layer. After finishing all queries, you can
execute the SDO_WINDOW.CLEAN_WINDOW procedure to remove the tables.

Related Topics
SDO_WINDOW.CLEANUP_GID

layername Specifies the name of the window layer that must
be removed.
Data type is VARCHAR2.
Window Functions and Procedures for Relational Model 18-7

SDO_WINDOW.CLEANUP_GID
SDO_WINDOW.CLEANUP_GID

 Format
SDO_WINDOW.CLEANUP_GID (gid, layer, do_commit);

Description
Removes the query window from the layer tables.

Keywords and Parameters

Usage Notes
Typically, you would create a query layer once, and then build multiple query
windows and perform multiple queries using that layer. The SDO_
WINDOW.CLEANUP_GID procedure removes a single query window from the
layer. Use this procedure to avoid the overhead of removing and re-creating the
tables repeatedly.

After finishing all queries, you can execute the SDO_WINDOW.CLEAN_WINDOW
procedure to remove the tables.

Related Topics
SDO_WINDOW.CLEAN_WINDOW

gid Specifies the geometric object identifier of the
query window.
Data type is NUMBER.

layer Specifies the name of the window layer associated
with the query window.
Data type is VARCHAR2.

do_commit Specifies whether a commit operation is
performed (TRUE) or is not performed (FALSE,
the default) after the cleanup.
Data type is BOOLEAN.
18-8 Oracle Spatial User’s Guide and Reference

SDO_WINDOW.CREATE_WINDOW_LAYER
SDO_WINDOW.CREATE_WINDOW_LAYER

 Format
SDO_WINDOW.CREATE_WINDOW_LAYER (layername, SDO_LEVEL, SDO_NUMTILES,
 SDO_DIMNUM1, SDO_LB1, SDO_UB1, SDO_TOLERANCE1, SDO_DIMNAME1,
 SDO_DIMNUM2, SDO_LB2, SDO_UB2, SDO_TOLERANCE2, SDO_DIMNAME2)

Description
Creates the necessary tables that constitute a layer used for defining a query
window.

Keywords and Parameters

Usage Notes
Because the <layername>_SDODIM table is initialized with the dimension and the
bound information, only those queries that are in the same dimension should be
queried against this layer. If you wish to issue a query with respect to a different
dimension, you must create a new layer.

layername Specifies the name of the window layer to be created. The layer name
is used to construct the four tables associated with the layer.
Data type is VARCHAR2.

SDO_LEVEL Specifies the number of times the layer should be tessellated during
the indexing phase.
Data type is INTEGER.

SDO_NUMTILES Specifies the number of tiles to generate during indexing.
Data type is INTEGER.

SDO_DIMNUM1,
SDO_DIMNUM2

Specifies the number of the dimension, starting with 1.
Data type is NUMBER.

SDO_LB1, SDO_UB1,
SDO_LB2, SDO_UB2

Specifies the lower and upper bounds of this dimension.
Data type is NUMBER.

SDO_TOLERANCE1,
SDO_TOLERANCE2

Specifies the allowable variance of ordinate values within each
dimension.
Data type is NUMBER.

SDO_DIMNAME1,
SDO_DIMNAME2

Specifies the name of the dimension.
Data type is VARCHAR2.
Window Functions and Procedures for Relational Model 18-9

SDO_WINDOW.CREATE_WINDOW_LAYER
Related Topics
None.
18-10 Oracle Spatial User’s Guide and Reference

Tuning Tips and Sample SQL S
A

Tuning Tips and Sample SQL Scripts

This appendix provides supplemental information to help you set up, maintain, and
tune a spatial database. The scripts and tuning suggestions provided are intended
as guidelines that can be adapted to the specific needs of your database.

For a description of the Oracle Spatial models (object-relational and relational) and
guidelines for choosing a model, see Section 1.2.

A.1 Tuning Tips
The following information can be used as a guideline for tuning a spatial database.
Unless otherwise specified, the following sections refer to both the object-relational
and relational models.

A.1.1 Data Modeling
Data modeling is very important when designing a spatial database. You should
group geometries into layers based on the similarity of their attributes. Assume
your data model uses line strings to represent both roads and rivers. The attributes
of a road and the attributes of a river are different. Therefore, these geometries
should be modeled in two different layers.

In practice, however, if the user of your application will always ask to see both the
roads and rivers in a particular region (area of interest), then it may be appropriate
to model roads and rivers in the same layer with a common set of attributes.

It is equally important to understand how the data in the various layers will be
queried. If the user of your application is interested in querying the data based on a
relationship between the layers, then you should index the layers with the same
fixed-size tiling level. For example, a query such as Which roads cross rivers? can
achieve better performance if the roads and rivers layers are tiled at the same level.
cripts A-1

Tuning Tips
On the other hand, if two layers are indexed with different SDO_LEVEL values, a
spatial join of these two layers will not result in optimal query performance. For
example, if ROADS is indexed using (SDO_LEVEL=8 SDO_NUMTILES=12) and
COUNTIES is indexed using (SDO_LEVEL=10 SDO_NUMTILES =6), the following
query has less than optimal performance:

SELECT a.name from Roads a, Counties b WHERE
 MDSYS.SDO_RELATE(a.geometry, b.geometry,
 ’MASK=ANYINTERACT QUERYTYPE=JOIN’)=’TRUE’;

If the layers are frequently used in a spatial join, then they should be indexed using
the same SDO_LEVEL value. In the preceding example, better performance results
if both layers are indexed with the same SDO_LEVEL value (for example, SDO_
LEVEL=8).

A.1.2 Understanding the Tiling Level
The following example explains how tiling is used in Spatial.

Assume you want to find all the roads (line strings) that overlap a county boundary
(polygon) in a spatial database containing 10 million roads. Ignoring Spatial
features for a moment, in purely mathematical terms, the problem translates into
comparing all the line segments that make up each road to the line segments and
area of the county boundary, to see if there is any intersection. This
geometry-to-geometry comparison is very expensive.

Spatial simplifies this calculation by approximating each geometry with tiles. The
primary filter in Spatial translates the problem to show all the roads that have a tile
equal to a tile that approximates the polygon. The result of this is a superset of the
final answer.

The secondary filter (a true geometry-to-geometry comparison) can now be
applied to the candidates that returned from the Spatial primary filter, instead of to
every road in the database.

Picking the correct tile size for fixed-size tiling is one of the most important factors
in attaining good performance. If the tile size you select is too small, you could end
up generating thousands of tiles per geometry. Also, the process of tiling a query
window may become very time consuming.

At the same time, you do not want to choose tiles that are too big. This would defeat
the purpose of the Spatial primary filter. If the tiles are too big, then too many
geometries are returned from the primary filter and are sent to the more costly
secondary filter.
A-2 Oracle Spatial User’s Guide and Reference

Tuning Tips
Keep in mind that the tile size you choose should also depend on whether or not
the query window (area of interest) is already defined in the database. If the query
window is defined in the database (that is, if the spatial tables and spatial indexes
already exist), then you should choose a smaller tile size (that is, use a larger value
for SDO_LEVEL). Assume that the state and highway layers are already defined in
the database. You could perform a spatial join query, such as Which interstate
highways go through the state?, without incurring the overhead of tiling because the
query window is already defined in the database. If, on the other hand, you are
creating the query window dynamically, you have to factor in the time it takes to
define and index the query window. In this case, you should choose a larger tile size
(that is, a smaller value for SDO_LEVEL) to reduce the time it takes to define and
index the query window.

The SDO_TUNE.ESTIMATE_TILING_LEVEL function can be used on your data set
to get an initial tiling level estimate. This may not be your final answer, but it will be
a good level for starting your analysis. In general, it is recommended that you take a
random sample of your data and check the query performance at different levels of
tiling. This will give an indication of what is the best tiling level for the total data
set.

A.1.3 Using Hybrid Indexes (Object-Relational Model Only)

Hybrid indexing allows indexes to be built using the tiling mechanism by
specifying the SDO_LEVEL. Additionally, hybrid indexing introduces the ability to
specify the minimum number of tiles to be created for each geometry during the
indexing process by specifying the indexing parameter SDO_NUMTILES.

If the number of tiles created for a geometry using the SDO_LEVEL value is less
then the value specified by the SDO_NUMTILES value, then the indexing process
continues by creating more tiles for the geometry until the SDO_NUMTILES value
has been reached. The ability to specify the minimum number of tiles for each
geometry is important for a number of reasons:

Note: For most applications, you should not use hybrid indexes,
but should instead use fixed indexes or R-tree indexes. The rare
circumstances where hybrid indexes should be considered are
described in Section 1.7.2.3.

Before deciding on the type of index to use for a spatial application,
be sure you understand the indexing concepts and guidelines
discussed in Section 1.7.
Tuning Tips and Sample SQL Scripts A-3

Tuning Tips
■ It ensures that all geometries will have at least as many index entries as the
value of SDO_NUMTILES, regardless of the tiling level.

■ It can reduce (as compared to fixed indexing) the space required for index data
to get full indexing coverage of all geometries.

■ Special performance enhancing algorithms have been coded within Spatial to
make use of hybrid indexes.

If hybrid indexing is used and if the layer being indexed is point-only data, the
SDO_NUMTILES value should be set to 1.

A.1.4 Database Sizing
Properly choosing rollback segments and tablespaces is important for getting good
performance from Spatial. Therefore, it is very important to read the Oracle8i
Administrator’s Guide and understand the concepts of tablespaces and rollbacks.

Here are some general guidelines to consider:

■ Always make sure that you have enough rollback space to create a spatial
index.

■ Create separate tablespaces for data layers, indexes, and rollback segments.

■ Properly define initial extents, next extents, and pctincrease values for data
layer tables.

■ Use the SDO_GEOM.VALIDATE_GEOMETRY function to ensure correctness of
geometries in the data sets. Entering incorrect data may lead to unexpected
behavior in index creation and in the SDO_GEOM.RELATE function.

■ Visualizing the indexing tiles, as described in Section A.1.5, can lead to a greater
understanding of the tuning process with respect to the size of the tiles.

■ As values of SDO_LEVEL and SDO_NUMTILES are increased, so are the
storage requirements for the index table and the indexes associated with it, as
well as the size of the rollback segment required for the CREATE INDEX
statement if SDO_COMMIT_INTERVAL is not specified.

The following guidelines refer to only the relational model:

■ Define the initial extent to be as small as possible when you create the
<layername>_SDOLAYER and the <layername>_SDODIM tables. These tables
contain a few rows each, and a small initial extent will reduce the amount of
wasted space.
A-4 Oracle Spatial User’s Guide and Reference

Tuning Tips
■ Always build a B-tree index on the SDO_GID column of the <layername>_
SDOGEOM table before attempting to call the SDO_ADMIN.POPULATE_
INDEX_FIXED, SDO_ADMIN.UPDATE_INDEX_FIXED, SDO_
ADMIN.POPULATE_INDEX, or SDO_ADMIN.UPDATE_INDEX procedure.

■ For fixed-size tiling, always build a B-tree index on the SDO_CODE column of
the <layername>_SDOINDEX table before trying any queries using this table.

■ Always build a B-tree index on the SDO_GID column of the <layername>_
SDOINDEX table if individual SDO_GID values will be used as query windows
for other Spatial layers.

■ For variable-sized tiling, always build a B-tree index on the SDO_GROUPCODE
column of the <layername>_SDOINDEX table before trying any queries using
this table.

A.1.5 Visualizing the Spatial Index (Drawing Tiles)
To select an appropriate tiling level, it may help to visualize the tiles covering your
geometries. Through visualization, you can determine how many tiles are used for
each object, the size of the tiles, and how well the edges of your geometry are
covered. The basic algorithm is:

1. Select the edges of the tiles represented by the index entries.

2. Plot the tiles on a two-dimensional grid.

3. Plot your geometries on the same grid.

A.1.5.1 Drawing Tiles from the Object-Relational Model
Two Spatial internal functions have been made visible to describe the tiles. These
functions were part of a previous release of Oracle Spatial Data Option, and are
currently reserved for internal use only. These functions are not recommended for
general use, except for this visualization example. Use the following syntax for the
internal functions:

hhcellbndry (sdo_code || substrb(sdo_code,-1,1)||’’020000’’,
 sdo_dimnum, sdo_lb, sdo_ub,
 hhlength(sdo_code || substrb(sdo_code,-1,1)||’’020000’’) {’MIN’ | ’MAX’})

Note that in ’’020000’’ two pairs of single quotation marks are used, not two double
quotation marks.
Tuning Tips and Sample SQL Scripts A-5

Tuning Tips
In the following examples, the dimension boundaries were assumed to be -180 to
180, and -90 and 90. Also, an index named TEST_INDEX_HL2N6 and a table named
TEST are used in the examples.

The SQL queries shown in Example A–1 and Example A–2 can be used to decode
all the index entries in an index table. The examples return the coordinates of the
lower-left and upper-right corners of each tile.

Example A–1 View Fixed-Size Tiles for All Geometries

SELECT HHCELLBNDRY(sdo_groupcode || sdo_fixed_meta, 1,-180.0, 180.0,
 HHLENGTH(sdo_groupcode || sdo_fixed_meta), ’MIN’) min_x,
 HHCELLBNDRY(sdo_groupcode || sdo_fixed_meta, 1,-180.0, 180.0,
 HHLENGTH(sdo_groupcode || sdo_fixed_meta), ’MAX’) max_x,
 HHCELLBNDRY(sdo_groupcode || sdo_fixed_meta, 2, -90.0, 90.0,
 HHLENGTH(sdo_groupcode || sdo_fixed_meta), ’MIN’) min_y,
 HHCELLBNDRY(sdo_groupcode || sdo_fixed_meta, 2, -90.0, 90.0,
 HHLENGTH(sdo_groupcode || sdo_fixed_meta), ’MAX’) max_y
FROM (SELECT distinct sdo_groupcode, sdo_fixed_meta
 FROM TEST_INDEX_HL2N6$ a,
 SDO_INDEX_METADATA b
 WHERE b.sdo_index_table = ’TEST_INDEX_HL2N6$’);

Example A–2 View Variable-Sized Tiles for All Geometries

SELECT
 HHCELLBNDRY(sdo_code || substrb(sdo_code,-1,1)||’’020000’’, 1,-180.0, 180.0,
 HHLENGTH(sdo_code || substrb(sdo_code,-1,1)||’’020000’’), 'MIN') min_x,
 HHCELLBNDRY(sdo_code || substrb(sdo_code,-1,1)||’’020000’’, 1,-180.0, 180.0,
 HHLENGTH(sdo_code || substrb(sdo_code,-1,1)||’’020000’’), 'MAX') max_x,
 HHCELLBNDRY(sdo_code || substrb(sdo_code,-1,1)||’’020000’’, 2, -90.0, 90.0,
 HHLENGTH(sdo_code || substrb(sdo_code,-1,1)||’’020000’’), 'MIN') min_y,
 HHCELLBNDRY(sdo_code || substrb(sdo_code,-1,1)||’’020000’’, 2, -90.0, 90.0,
 HHLENGTH(sdo_code || substrb(sdo_code,-1,1)||’’020000’’), 'MAX') max_y
FROM (SELECT distinct sdo_code, sdo_meta
 FROM TEST_INDEX_HL2N6$ a);

The SQL queries shown in Example A–3 and Example A–4 can be used to decode
the index entries for a specific geometry stored in an index table.

Example A–3 View Fixed-Size Tiles for One Geometry

SELECT HHCELLBNDRY(sdo_groupcode || sdo_fixed_meta, 1,-180.0, 180.0,
 HHLENGTH(sdo_groupcode || sdo_fixed_meta), ’MIN’) min_x,
 HHCELLBNDRY(sdo_groupcode || sdo_fixed_meta, 1,-180.0, 180.0,
A-6 Oracle Spatial User’s Guide and Reference

Tuning Tips
 HHLENGTH(sdo_groupcode || sdo_fixed_meta), ’MAX’) max_x,
 HHCELLBNDRY(sdo_groupcode || sdo_fixed_meta, 2, -90.0, 90.0,
 HHLENGTH(sdo_groupcode || sdo_fixed_meta), ’MIN’) min_y,
 HHCELLBNDRY(sdo_groupcode || sdo_fixed_meta, 2, -90.0, 90.0,
 HHLENGTH(sdo_groupcode || sdo_fixed_meta), ’MAX’) max_y
 FROM (SELECT distinct sdo_groupcode, sdo_fixed_meta
 FROM TEST_INDEX_HL2N6$ a,
 SDO_INDEX_METADATA b
 WHERE b.sdo_index_table = ’TEST_INDEX_HL2N6$’
 AND a.sdo_rowid = ’AAAA59AAFAADzAZAAA’);

Example A–4 View Variable-Sized Tiles for One Geometry

SELECT
 HHCELLBNDRY(sdo_code || substrb(sdo_code,-1,1)||’’020000’’, 1,-180.0, 180.0,
 HHLENGTH(sdo_code || substrb(sdo_code,-1,1)||’’020000’’), 'MIN') min_x,
 HHCELLBNDRY(sdo_code || substrb(sdo_code,-1,1)||’’020000’’, 1,-180.0, 180.0,
 HHLENGTH(sdo_code || substrb(sdo_code,-1,1)||’’020000’’), 'MAX') max_x,
 HHCELLBNDRY(sdo_code || substrb(sdo_code,-1,1)||’’020000’’, 2, -90.0, 90.0,
 HHLENGTH(sdo_code || substrb(sdo_code,-1,1)||’’020000’’), 'MIN') min_y,
 HHCELLBNDRY(sdo_code || substrb(sdo_code,-1,1)||’’020000’’, 2, -90.0, 90.0,
 HHLENGTH(sdo_code || substrb(sdo_code,-1,1)||’’020000’’), 'MAX') max_y
FROM TEST_INDEX_HL2N6$
WHERE sdo_rowid = 'AAAA59AAFAADzAZAAA';

A.1.5.2 Drawing Tiles from the Relational Model
The spatial index is represented internally as a linear quadtree. The structure used
to represent the linear quadtree is composed of two components: a data component
and a metadata component. The data component of the linear quadtree is stored in
the SDO_CODE column, and the metadata component is stored in the SDO_META
column.

The SDO_META column is not required for spatial queries. However, by combining
the SDO_META column with the SDO_CODE column, the tiles of any geometry or
of the entire data set can be decoded. This capability allows the tiles to be
visualized.

Two Spatial internal functions have been made visible to describe the tiles. These
functions were part of a previous release of Oracle Spatial Data Option, and are
currently reserved for internal use only. The functions are not recommended for
general use, except for this visualization example. Use the following syntax for the
internal functions:

hhcellbndry (sdo_code || sdo_meta, sdo_dimnum, sdo_lb, sdo_ub,
Tuning Tips and Sample SQL Scripts A-7

Tuning Tips
 hhlength(sdo_code || sdo_meta) {’MIN’ | ’MAX’})

In the following examples, the dimension boundaries were assumed to be -180 to
180, and -90 and 90. The dimensional information is stored in the <layername>_
SDODIM table.

If you used SDO_ADMIN.UPDATE_INDEX_FIXED or SDO_ADMIN.POPULATE_
INDEX_FIXED to generate your spatial index, replace sdo_code || sdo_meta
with sdo_tile in the SQL statements that follow.

The SQL query shown in Example A–5 can be used to decode all the index entries in
a <layername>_SDOINDEX table. The example returns the coordinates of the
lower-left and upper-right corners of each tile.

Example A–5 View Fixed-Sized Tiles for All Geometries Using the Relational Model

SELECT hhcellbndry (sdo_code || sdo_meta, 1, -180.000000000, 180.000000000,
 hhlength (sdo_code || sdo_meta), ’MIN’) min_x,
 hhcellbndry (sdo_code || sdo_meta, 1, -180.000000000, 180.000000000,
 hhlength (sdo_code || sdo_meta), ’MAX’) max_x,
 hhcellbndry (sdo_code || sdo_meta, 2, -90.000000000, 90.000000000,
 hhlength (sdo_code || sdo_meta), ’MIN’) min_y,
 hhcellbndry (sdo_code || sdo_meta, 2, -90.000000000, 90.000000000,
 hhlength (sdo_code || sdo_meta), ’MAX’) max_y
FROM (SELECT DISTINCT sdo_code, sdo_meta FROM <layername>_sdoindex);

The SQL query shown in Example A–6 can be used to decode the index entries for a
specific geometry stored in a <layername>_SDOINDEX table.

Example A–6 View Fixed-Size Tiles for a Specific Geometry Using the Relational
Model

SELECT hhcellbndry (sdo_code || sdo_meta, 1, -180.000000000, 180.000000000,
 hhlength (sdo_code || sdo_meta), ’MIN’) min_x,
 hhcellbndry (sdo_code || sdo_meta, 1, -180.000000000, 180.000000000,
 hhlength (sdo_code || sdo_meta), ’MAX’) max_x,
 hhcellbndry (sdo_code || sdo_meta, 2, -90.000000000, 90.000000000,
 hhlength (sdo_code || sdo_meta), ’MIN’) min_y,
 hhcellbndry (sdo_code || sdo_meta, 2, -90.000000000, 90.000000000,
 hhlength (sdo_code || sdo_meta), ’MAX’) max_y
FROM <layername>_sdoindex
WHERE sdo_gid = <geometry id>;

See Section A.3.2.3 for another method of viewing tiles.
A-8 Oracle Spatial User’s Guide and Reference

Tuning Tips
A.1.6 Setting the SORT_AREA_SIZE Value
When the Oracle8i database server processes SQL statements that require sorting,
such as statements containing an ORDER BY or DISTINCT clause, the database
server stores the result set in a temporary storage area. The result set is then sorted.
If the SORT_AREA_SIZE value is insufficient for holding the result set in memory,
then some data may be written to disk and an entry is written in the redo log.

Many Spatial operators issue SQL statements internally that contain DISTINCT and
ORDER BY clauses. If the SORT_AREA_SIZE initialization parameter is too small
for processing the secondary filters, then some sorting may occur on disk, which
causes entries to be written in the redo log. This may affect performance. For better
performance, increase the SORT_AREA_SIZE parameter to force sorting to occur in
memory.

To determine if sort operations associated with Spatial are happening in memory or
on disk, execute the following SQL statement before and after running spatial
queries on an otherwise inactive database:

SELECT name, value
 FROM v$sysstat
 WHERE name IN (’sorts (memory)’, ’sorts (disk)’);

If the value associated with disk sort operations is higher after the queries, then the
slower (costlier) disk sorting is being used.

A.1.7 Tuning Point Data with the Relational Model
Point data, unlike line and polygon data, has the unique characteristic of containing
one tile per point. This section describes how to improve the performance of queries
on point data.

A.1.7.1 Efficient Queries for Relational Point Data
When querying point data with a rectangular query window, you can take
advantage of the nature of these geometries to improve performance.

A rectangle can be defined by its lower-left and upper-right coordinates (Xmin,
Ymin and Xmax, Ymax). A point has a single set of coordinates (Px, Py). When your
area of interest is a rectangle, instead of using the SDO_GEOM.RELATE function in
the secondary filter, you can use simple SQL comparison operators as follows:

SELECT sdo_gid, sdo_x1, sdo_y1
FROM cities_sdogeom,
 (SELECT a.sdo_gid gid1
Tuning Tips and Sample SQL Scripts A-9

Tuning Tips
 FROM cities_sdoindex a,
 window_sdoindex b
 WHERE b.sdo_gid = [area of interest id]
 AND a.sdo_code = b.sdo_code)
 WHERE sdo_gid = gid1
 AND sdo_x1 BETWEEN Xmin AND Xmax
 AND sdo_y1 BETWEEN Ymin AND Ymax;

The DISTINCT clause is not necessary in the primary filter of the query because a
point contains only a single tile in the spatial index.

A.1.7.2 Efficient Schema for Relational Point Layers
Because a point is always referenced by only one tile in a spatial index, for
improved performance you can place the columns normally found in the
<layername>_SDOINDEX table in the <layername>_SDOGEOM table. This will
save you the cost of joining the <layername>_SDOINDEX and <layername>_
SDOGEOM tables.

You still need to create an updatable view for the <layername>_SDOINDEX table
that selects the appropriate columns from the <layername>_SDOGEOM table. This
is because functions such as SDO_ADMIN.UPDATE_INDEX_FIXED and SDO_
ADMIN.POPULATE_INDEX_FIXED expect a <layername>_SDOINDEX table to
exist. Create the view using INSTEAD OF triggers for insert, delete, and update
operations such that the appropriate columns in the <layername>_SDO_GEOM
table are updated. The following example shows how to use INSTEAD OF triggers:

CREATE OR REPLACE TRIGGER mytrig INSTEAD OF INSERT ON points_sdoindex
 REFERENCING new AS n
 FOR EACH ROW
 BEGIN
 UPDATE points_sdogeom SET points_sdogeom.sdo_code = :n.sdo_gid
 WHERE sdo_gid = :n.sdo_gid;
 END;
CREATE OR REPLACE TRIGGER mydeltrig INSTEAD OF DELETE ON points_sdoindex
 REFERENCING old AS n
 FOR EACH ROW
 BEGIN
 UPDATE points_sdogeom SET points_sdogeom.sdo_code = NULL
 WHERE points_sdogeom.sdo_gid = :n.sdo_gid;
 END;

The following example shows a window query of a layer containing point data
when the window layer contains one rectangle:
A-10 Oracle Spatial User’s Guide and Reference

Tuning Tips
SELECT a.sdo_gid, sdo_x1, sdo_y1
FROM points_sdogeom a,
 window_sdoindex b
WHERE b.sdo_gid = [area of interest id]
 AND a.sdo_code = b.sdo_code
 AND sdo_x1 BETWEEN Xmin AND Xmax
 AND sdo_y1 BETWEEN Ymin AND Ymax;

A.1.7.3 Script for Using Table Partitioning with Relational Point Data
Because point data is always indexed using a single tile, it is well suited for
partitioning. The following script shows an example of using the Oracle8i
partitioning feature with Spatial point data:

ORACLE_HOME/MD/demo/examples/scripts/partition_points.sql

A.1.8 Tuning Spatial Join Queries Using the Relational Model
There are some helpful hints you can place in your spatial join queries to improve
performance. The remainder of this section describes some of the hints you can use.
For more information on hints, see Oracle8i Tuning.

A.1.8.1 Using the NO_MERGE, INDEX, and USE_NL Hints
A spatial join takes place between two layers. When the two layers being joined are
line or polygon layers, the spatial join query contains two DISTINCT clauses: one in
the inner SELECT clause and the other in the outer SELECT clause. The Oracle
optimizer ignores the inner DISTINCT clause to save on the cost of sorting.
However, if the inner DISTINCT clause is ignored, the secondary filter gets
called many more times than it needs to be. This can have a significant impact on
performance because the secondary filter is an expensive operation. Use the NO_
MERGE hint to prevent the optimizer from ignoring the inner DISTINCT clause.

In a spatial join, all the tiles from one layer are compared to all the tiles from
another layer. The Oracle database server performs a full table scan on one
<layername>_SDOINDEX table, (preferably the smaller of the two), and an index
lookup on the other <layername>_SDOINDEX table. Use the INDEX and USE_NL
hints to force the optimizer to perform the full table scan on the smaller of the two
<layername>_SDOINDEX tables being compared.

 The following example shows a spatial join between line (road) and polygon
(county) data. The query answers the question, Which counties intersect major roads?

SELECT /*+ cost
 ordered use_nl(COUNTY_sdogeom)
Tuning Tips and Sample SQL Scripts A-11

Tuning Tips
 index (COUNTY_sdogeom NAME_OF_SDO_GID_INDEX)
 */
 COUNTY_sdogeom.SDO_GID,
 COUNTY_sdogeom.SDO_ESEQ,
 COUNTY_sdogeom.SDO_SEQ,
 COUNTY_sdogeom.SDO_X1,COUNTY_sdogeom.SDO_Y1,
 COUNTY_sdogeom.SDO_X2,COUNTY_sdogeom.SDO_Y2,
 COUNTY_sdogeom.SDO_X3,COUNTY_sdogeom.SDO_Y3,
 COUNTY_sdogeom.SDO_X4,COUNTY_sdogeom.SDO_Y4,
 COUNTY_sdogeom.SDO_X5,COUNTY_sdogeom.SDO_Y5,
 COUNTY_sdogeom.SDO_X6,COUNTY_sdogeom.SDO_Y6,
 COUNTY_sdogeom.SDO_X7,COUNTY_sdogeom.SDO_Y7,
 COUNTY_sdogeom.SDO_X8,COUNTY_sdogeom.SDO_Y8
FROM (SELECT DISTINCT gid_a gid1
 FROM (SELECT /*+ index (a NAME_OF_SDO_CODE_INDEX)
 index (b NAME_OF_SDO_CODE_INDEX)
 use_nl (a b)
 no_merge */
 DISTINCT a.sdo_gid gid_a,
 b.sdo_gid gid_b
 FROM COUNTY_SDOINDEX a,
 MAJOR_ROAD_SDOINDEX b
 WHERE a.sdo_code = b.sdo_code)
 WHERE sdo_geom.relate(’COUNTY’, gid_a, ’ANYINTERACT’,
 ’MAJOR_ROAD’,gid_b) <> ’FALSE’),
 COUNTY_sdogeom
WHERE COUNTY_sdogeom.sdo_gid = gid1;

A.1.8.2 Spatial Join Queries with Point Layers
The following example shows a spatial join between line (road) and point (street
address) data. The query answers the question, Which addresses are on a major road?

SELECT /*+ cost
 ordered use_nl (STREET_ADDRESS_sdogeom)
 index (STREET_ADDRESS_sdogeom NAME_OF_SDO_GID_INDEX)
 */
 STREET_ADDRESS_sdogeom.SDO_GID,
 STREET_ADDRESS_sdogeom.SDO_X1,
 STREET_ADDRESS_sdogeom.SDO_Y1
FROM (SELECT DISTINCT gid_a gid1
 FROM (SELECT /*+ index (a NAME_OF_SDO_CODE_INDEX)
 index (b NAME_OF_SDO_CODE_INDEX)
 use_nl (a b) */
 a.sdo_gid gid_a,
A-12 Oracle Spatial User’s Guide and Reference

Tuning Tips
 b.sdo_gid gid_b
 FROM STREET_ADDRESS_SDOINDEX a,
 MAJOR_ROAD_SDOINDEX b
 WHERE a.sdo_code = b.sdo_code)
 WHERE sdo_geom.relate(’STREET_ADDRESS’, gid_a, ’ANYINTERACT’,
 ’MAJOR_ROAD’,gid_b) <> ’FALSE’),
 COUNTY_sdogeom
WHERE COUNTY_sdogeom.sdo_gid = gid1;

The inner DISTINCT clause is not necessary for spatial joins where one of the layers
contains point data. Therefore, the NO_MERGE hint is not necessary. This is
because points contain only one tile in the spatial index.

The following example shows a spatial join between polygon (county) and point
(street address) data. The query generates a report that displays how many
addresses are associated with each county.

If you can assume that each street address is associated with a single county, you
can significantly speed up this query. Because points contain only a single tile in the
spatial index, any street address tile that matches only one county tile in the
primary filter does not need to go through the expensive secondary filter.

SELECT county_gid, count(street_gid)
FROM (SELECT poly.sdo_gid county_gid, street.sdo_gid street_gid
 FROM STREET_ADDRESS_sdoindex street,
 (SELECT sdo_code county_sdo_code,
 count(sdo_gid) interacts
 FROM CENSUS_COUNTY_sdoindex
 GROUP by sdo_code
) counts,
 CENSUS_COUNTY_sdoindex poly
 WHERE street.sdo_code = counts.county_sdo_code
 AND poly.sdo_code = street.sdo_code
 AND (counts.interacts = 1
 OR
 sdo_geom.relate(’STREET_ADDRESS’, street.sdo_gid,
 ’ANYINTERACT’,
 ’CENSUS_COUNTY’,poly.sdo_gid) <> ’FALSE’
)
)
GROUP BY county_gid;
Tuning Tips and Sample SQL Scripts A-13

Tuning Tips
A.1.9 Using Customized Geometry Types in the Relational Model
The relational spatial model supports three geometry types: points, lines, and
polygons. If your data contains another type, such as a circle or arc, then you must
choose the supported type that best approximates your desired type (or upgrade to
the object-relational model). For example, in the relational model, a circle can be
defined as a multisided polygon. Obviously, the more coordinates in the element,
the better the approximation will be.

Although customized types are not supported, you do not have to lose the
information about customized types. After storing the approximated element, create
another element in that geometry with SDO_ETYPE=0. Spatial ignores elements of
SDO_ETYPE=0. You can then write your own routines to handle your specialized
geometry type.

A.1.10 Partitioning Spatial Data Using the Relational Model
The Oracle8i partitioning feature lets you spread out your spatial data and create
spatial indexes in a very controlled manner. Such control allows a database
administrator to isolate data that may be causing I/O performance issues. Note that
this optimization works only for the relational implementation.

The most obvious way to partition relational spatial data is to base the partitions on
the geometry ID (GID) column. Select the full list of available GIDs in a given layer
and sort them to produce an ordered list. Next, examine the list to determine
whether or not the GIDs would provide a good set of balanced partitions. In cases
where one or two GIDs dominate the layer, partitioning by GID will not yield a
balanced distribution. In such cases, you may want to consider adding a new
alphanumeric column to the layer, and use this column to create balanced
partitions. Although this requires an extra effort, it may result in significant
performance improvements.

For more information, including examples and sample parsing times, see the online
text file: ORACLE_HOME/md/demo/examples/scripts/parallel.doc.

A.1.11 Parallel Loading and Indexing of Spatial Data Using the Relational Model
On a multiprocessor system, you can use parallel execution to improve both loading
times and spatial index creation times. Note that this optimization works only for
the relational implementation.

When using partitioned tables, as described in Section A.1.10, you can achieve
further performance gains by loading and indexing geometries in parallel. The
partitioned tables can be loaded by selecting from nonpartitioned source tables, or
A-14 Oracle Spatial User’s Guide and Reference

Tuning Tips
using the SQL*Loader utility. Parallel threads (one for each partition) can be
submitted to load the partitioned table. For information on parallel loading, see the
description of the SQL*Loader utility in Oracle8i Utilities.

You can also create spatial indexes in parallel by creating a number of views or
layers. Create each layer with a range of GIDs, with corresponding <layername>_
SDOLAYER and <layername>_SDODIM tables. For example, the following
statements create the necessary views for the first 300 GIDs in a table.

CREATE VIEW a_sdogeom AS SELECT * FROM a_sdogeom
 WHERE sdo_gid BETWEEN 1 and 300;
CREATE VIEW a_sdodim AS SELECT * FROM a_sdodim;
CREATE VIEW a_sdolayer AS SELECT * FROM a_sdolayer;

Next, create the index table as a partitioned table. Create a partition for each range
of GIDs for which you created a view.

CREATE TABLE a_sdoindex
 (sdo_gid NUMBER,
 sdo_code RAW(255),
 sdo_meta RAW(255))
INITRANS 4
STORAGE (initial 2M
 next 1M
 pctincrease 0
 freelist groups 12
 freelists 19)
PARTITION BY RANGE (sdo_gid)
(PARTITION a_idx1 VALUES LESS THAN (300)
 TABLESPACE sdo_data
 .
 .
 .);

To create the index, submit commands to execute the SDO_ADMIN.POPULATE_
INDEX procedure for each of the partitions. The threads will independently build
their corresponding indexes, with significant performance improvements over the
nonpartitioned, single-threaded model.

For more information, including examples and sample parsing times, see the online
text file: ORACLE_HOME/md/demo/examples/scripts/parallel.doc.
Tuning Tips and Sample SQL Scripts A-15

Scripts for Spatial Indexing Using the Relational Model
A.2 Scripts for Spatial Indexing Using the Relational Model
Spatial provides sample SQL script files to show how to use dynamic SQL in a
PL/SQL block to create layer tables for spatially indexed data. The scripts are
available after installation in the ORACLE_HOME/md/admin directory.

The following sections describe the cr_spatial_index.sql and crlayer.sql scripts.

A.2.1 cr_spatial_index.sql Script
The cr_spatial_index.sql script file shows an example of updating the spatial index
for a layer, and executing a commit operation after every 50 GIDs have been
entered.

The procedures SDO_ADMIN.POPULATE_INDEX and SDO_ADMIN.POPULATE_
INDEX_FIXED operate as a single transaction. To reduce the number of rollback
operations required to execute these procedures, you can write a routine similar to
that in cr_spatial_index.sql. This script loops and calls SDO_ADMIN.UPDATE_
INDEX_FIXED for each GID, committing after every 50 GIDs.

-- cr_spatial_index.sql
--
-- Note: if geometries do not span more than 1 row, you can remove
-- the DISTINCT qualifier from the SELECT statement.
--
declare
 cursor c1 is SELECT DISTINCT sdo_gid from POLYGON_SDOGEOM;
 gid number;
 i number;
begin
 i := 0;
 for r in c1 loop
 begin
 gid:= r.sdo_gid;
 sdo_admin.update_index_fixed(’POLYGON’, gid, 15, FALSE, FALSE, FALSE);
 exception when others then
 dbms_output.put_line(’error for gid’||to_char(gid)||’: ’||SQLERRM);
 end;
 i:= i + 1;
 if i = 50 then
 commit;
 i:= 0;
 end if;
 end loop;
commit;
A-16 Oracle Spatial User’s Guide and Reference

Tools and Related Products
end;
/

When you call the SDO_ADMIN.UPDATE_INDEX_FIXED procedure for a large
data set, you may get a "snapshot too old" error message from the Oracle database
server. You can avoid this error by creating more or larger rollback segments. You
can also try to increase the number of GIDs before committing the transaction.

A.2.2 crlayer.sql Script
The crlayer.sql script file is a template used to create all the tables for a layer and
populate the metadata in the <layername>_SDODIM and <layername>_
SDOLAYER tables.

A.3 Tools and Related Products
The following sections describe sample programs and related products that, while
not required for the storage or maintenance of spatial data, can make those tasks
simpler.

A.3.1 Oracle interMedia Locator
Oracle interMedia Locator is a related product that supports online Internet-based
geocoding facilities for location-aware applications and proximity queries.

A.3.1.1 Geocoding Support
Geocoding is the process for converting a nonstandardized street address or postal
code into a standardized address (optionally certified by the USPS), with latitude
and longitude information. In addition, census information such as block groups,
postal carrier routes, and block codes can be retrieved as a result of this process.

The interMedia Locator option provides an interface to the online geocoding service
provided by Qualitative Marketing Service, Inc. (QMS). You can use PL/SQL stored
procedures to geocode an address, and record and fetch all the information into two
predefined objects from the QMS Web site. The first object is of type SDO_
GEOMETRY, and it contains the spatial longitude and latitude information stored as

Note: The cr_spatial_index.sql script is not available in your
ORACLE_HOME/md/admin directory after installation. You must
create this script yourself.
Tuning Tips and Sample SQL Scripts A-17

Tools and Related Products
point data. The second object returned is GEOCODE_RESULT, which contains text
fields of a standardized address and other fields mentioned previously, such as
postal carrier route or block code.

For more information about this online service, see the following Web site:

http://www.centrus-software.com/oracle

For more information about interMedia Locator, see the Oracle interMedia Locator
User’s Guide and Reference.

A.3.1.2 Compatibility with Spatial Objects
interMedia Locator is a subset of Oracle Spatial and, therefore, is completely
compatible with Spatial objects. The index uses the same set of metadata tables, for
instance. One difference is that interMedia Locator locates only points, while Spatial
supports multiple geometry types.

The LOCATOR_WITHIN_DISTANCE operator is similar to the SDO_
GEOM.WITHIN_DISTANCE operator.

The interMedia Locator version of the WITHIN_DISTANCE operator takes a new
parameter in the last string: units=[mile,meter,ft]. This allows you to search by units.
The Spatial version uses only an estimate on the surface of the Earth, and not exact
distance or driving distance.

A.3.1.3 Sample interMedia Locator Code
Sample scripts are available in the following directory after you install Oracle
interMedia Locator:

$ORACLE_HOME/md/demo/geocoder

To migrate data between products, type ocimig, and prompts will guide you
through the process, which is similar to using SQL*Loader or the Export/Import
utilities.

A.3.2 Spatial Viewer on UNIX/Motif for Relational Model
A sample geometry viewer, sdodemo, is available for UNIX systems using a Motif
interface. This viewer displays geometries stored using the relational model.

A.3.2.1 Installation and Setup
The following steps are required to set up and run the Motif application:
A-18 Oracle Spatial User’s Guide and Reference

Tools and Related Products
1. Set the environment variables:

setenv MD_VIEWER <full_pathname>/sdo_motif_demo/src
setenv XENVIRONMENT $MD_VIEWER/app-defaults/resource_file
alias sdodemo $MD_VIEWER/bin/demo

2. Run the following as MDSYS:

$ORACLE_HOME/md/admin/sdowin.sql
$ORACLE_HOME/md/admin/prvtwin.plb
$MD_VIEWER/sql_scripts/my_window.sql
$MD_VIEWER/sql_scripts/my_win.sql

3. If you are using a Sun Solaris system, a compiled version of $MD_
VIEWER/bin/demo has been shipped with Spatial. Go to step 4.

If you are using a UNIX operating system other than Solaris, you need to
recompile the viewer. A makefile is included only for Sun Solaris systems. You
may need to make some system-specific modifications.

cd $MD_VIEWER
make -f makefile8.sun clean
make -f makefile8.sun

4. Create an alias for the sample program:

alias sdodemo $MD_VIEWER/bin/demo

5. Run the sample program:

sdodemo

A.3.2.2 Connecting to a Database and Viewing Geometries
When you run the sample sdodemo program, you will be prompted for an Oracle
user name, password, and alias if the database resides on a remote machine.

Two windows appear, one where geometries are drawn, and a second with several
buttons. Click CHOOSE LAYER and select a layer.

The extent of the map will initially be the values stored in the <layername>_
SDODIM table for the current layer. You can then click ZOOM TO EXTENT, and
the map extent will be set to the true extent of your data. Note that the time it takes
to perform ZOOM TO EXTENT depends on the amount of data in your
<layername>_SDOGEOM table.
Tuning Tips and Sample SQL Scripts A-19

Tools and Related Products
A.3.2.3 Using the Sample Viewer
The text for all queries is displayed in the UNIX shell where you are running the
sdodemo program.

There are three radio buttons at the top of the control panel. These buttons
determine which query is executed when you click PERFORM QUERY:

■ PRIM & SEC: Performs a primary and secondary filter.

■ PRIMARY FILTER ONLY: Performs a primary filter only query.

■ DRAW ALL: Selects everything in the <layername>_SDOGEOM table. This
does not perform a spatial query.

To perform a spatial query:

1. Click either PRIM & SEC or PRIMARY FILTER ONLY.

2. Click SELECT BOX, SELECT CIRCLE, or SELECT POLYGON, and draw the
area of interest on the map.

3. Click PERFORM QUERY. The geometries will be displayed on the base map.

You can look at individual geometries by clicking SHOW GID. You can also click
SHOW ALL TILES to look at index tiles. This can help you tune your spatial index.
See Section A.1.5 for another method of drawing tiles.

A.3.3 Spatial Visualizer on Windows NT for the Object-Relational Model
The Spatial Visualizer is a sample program used to demonstrate two things. First, it
is an example of using dynamic linking libraries to wrap Oracle Call Interface (OCI)
and Spatial functions into C++ classes. Second, the program provides a simple
visualizer that can display Spatial objects.

A.3.3.1 Compiling and Running the Sample Program
To compile the Spatial Visualizer sample program, first unzip the following file into
your work directory: ORACLE_HOME/md/demos/NT/DEMO_Visualizer.zip.
This creates the following subdirectories:

■ include: Contains header files.

■ bin and lib: Contain output files.

■ SDOConnCur: Contains a project for creating a dynamic link library (DLL).

■ VisualSDO: Contains another project for creating an executable (EXE) file.
A-20 Oracle Spatial User’s Guide and Reference

Tools and Related Products
Next, make sure your Visual C++ IDE has the correct directory settings for using
OCI and common header files. To ensure this, click Tools > Options > Directories,
and then perform the following tasks:

1. Click Include files to add the OCI include path (for example,
C:\ORANT\OCI80\include) and the common include path for your projects
(for example, Myprojects\include).

2. Click Library files to add the OCI library path (for example,
C:\ORANT\OCI80\lib\msvc) and the common library path for your projects
(for example, Myprojects\lib).

3. Type SDOConnCur\SDOConnCur.dsw and click Open to compile
SDOConnCur.dll.

4. Type VisualSDO\VisualSDO.dsw and click Open to create VisualSDO.exe.

A.3.3.2 Usage Notes
Consider the following when using this sample program:

■ ’SDOConnCur’: This project creates a DLL (SDOConnCur.dll) to wrap OCI and
SDO functions into C++ classes, so that users of this DLL can benefit from
Oracle Call Interface (OCI) without knowing how to make OCI calls.

■ 'VisualSDO’: This project creates an executable file (VisualSDO.exe) based on
SDOConnCur.dll. It is a simple visualizer that can display Oracle Spatial
geometry objects.

■ All the files and directories under ORACLE_HOME/md/demos/NT are
components of the Spatial Visualizer demonstration program. They should be
used for demonstration purposes only.

■ The workspaces are created with Visual C++ 6.0, and might not be compatible
with previous versions.

■ The ZIP file (DEMO_Visualizer.zip) contains all the contents under this
directory. Due to system dependencies, copy the ZIP file only to a Windows NT
system.
Tuning Tips and Sample SQL Scripts A-21

Tools and Related Products
A-22 Oracle Spatial User’s Guide and Reference

Installation, Compatibility, and Migration Is
B

Installation, Compatibility, and Migration

Issues

This appendix provides information concerning installation, compatibility, and
migration between various Oracle Spatial product releases.

Beginning with Spatial Data Option 7.3.3, all interfaces are supported in each
subsequent release. A spatial application built for and using the 7.3.3 Spatial Data
Option interfaces will work with a release 8.0.4, 8.0.5, 8.1.6, or 8.1.7 database server.
The implementations of these interfaces have changed, and therefore PL/SQL
packages from prior releases of the Spatial cartridge will not work with later
releases of the Oracle8i database server. Therefore, you must upgrade both the
database server and Spatial at the same time if you wish to use older spatial
applications with an Oracle8i release of Spatial.

Spatial must always be synchronized with the Oracle8i database server on upgrade
or downgrade. In both cases, Spatial must be reinstalled.

B.1 Introduction
Spatial release 8.1 requires Oracle8i Enterprise Edition and the Objects Option.
Spatial release 8.1 was redesigned to use various Oracle8i object and extensibility
features. Many of the Spatial release 8.1 features depend on new features in release
8.1 of the database server. Therefore, there are many compatibility and migration
issues that need to be addressed in this release of Spatial. This appendix outlines the
database and application compatibility issues.

Database compatibility issues exist because Spatial uses extensible indexing and
object types in release 8.1; and therefore if a release 8.1 database instance is
downgraded to release 8.0.5, the spatial objects must be deleted and re-created. In
this case, the data must be exported and imported into the release 8.0.5 database.
sues B-1

Installation Details
This, and other requirements, result in application incompatibility. A release 8.1
Spatial application will likely use the new spatial operators and therefore will not
work with a release 8.0.5 instance unless it can identify the Spatial version and
dynamically change its spatial queries.

An upgrade or downgrade of the database server version requires a corresponding
upgrade or downgrade of Spatial. If a release 8.0.5 database server is upgraded to
release 8.1, Spatial must also be upgraded. The reason has to do with using dynamic
SQL in PL/SQL and with invoker’s rights in release 8.1. Similarly, if a release 8.1
server is downgraded, Spatial must be downgraded too. Lastly, if a release 8.1
server is running in release 8.0 compatibility mode, Spatial will experience various
failures unless it is reconfigured for release 8.0.5. You can reconfigure the product
by running the downgrade script: c813d805.sql.

In summary:

■ The Spatial release and the Oracle8i database server release must match.

■ Upgrade and downgrade scripts must be run when upgrading or downgrading
between releases 8.0.5 and 8.1.

■ Spatial will work in release 8.0 compatibility mode for a release 8.1 database
server if, and only if, the downgrade script is run and users or applications
attempt to use only the relational implementation of the product.

B.2 Installation Details
To install Spatial, the script catmd.sql in the ORACLE_HOME/md/admin directory
must be run as user MDSYS. The MDSYS user should be created with the set of
privileges listed in ORACLE_HOME/MD/mdprivs.sql, and with both default and
temporary tablespaces.

Installation of Spatial requires that the COMPATIBLE init.ora parameter is set to
8.1.0.0.0 or higher. This is required for the creation and definition of Spatial index
types and operators. Thus, if the database was created with a compatibility
parameter value of 8.0.n.n.n, the DBA must shut down the database and restart
with COMPATIBLE=8.1.n.n.n.

B.2.1 Changing from 8.1 to 8.0 Compatibility Mode
If Spatial has been installed and the database compatibility needs to be reset to
8.0.n.n.n from 8.1.n.n.n, do the following:
B-2 Oracle Spatial User’s Guide and Reference

Compatibility Details
1. Determine if there is any user data that contains instances of the type
MDSYS.SDO_GEOMETRY. That is, determine if any user table has a column of
type MDSYS.SDO_GEOMETRY and has data in it.

2. If there are instances, delete all spatial indexes on these columns. Delete the
data in these columns or delete these columns and tables. If there are no
instances, go on to the next step.

3. Run the script c813d805.sql in ORACLE_HOME/md/admin. This will delete all
spatial objects that require 8.1 compatibility. That is, all the object-relational
implementation objects for Oracle Spatial will be deleted. The relational
implementation available in release 8.0.n.n.n will remain installed and
accessible.

4. While connected as SYSTEM, enter the following:

 ALTER DATABASE RESET COMPATIBILITY
 SHUTDOWN
 Change the init.ora parameter COMPATIBLE=8.0.0.0.0
 STARTUP

After running ORACLE_HOME/MD/c813d805.sql, resetting the database
compatibility to 8.1.n.n.n from 8.0.n.n.n requires running the script ORACLE_
HOME/MD/c805u813.sql to reinstall and enable the object-relational
implementation of Spatial.

B.3 Compatibility Details
All releases of the Spatial product provide a set of predefined spatial data types,
topological operators such as RELATE, and a spatial indexing mechanism. The
Oracle8i (release 8.1.5) Spatial release differed from pre-Oracle8i releases in that it:

■ Used object types (a varray-based type called SDO_GEOMETRY to store
ordinates)

■ Supported new spatial data types, namely arcs and circles

■ Had new spatial operators (SDO_WITHIN_DISTANCE) and functions (SDO_
POLY_UNION, SDO_BUFFER, SDO_POLY_INTERSECT, and SDO_POLY_
XOR)

■ Utilized dynamic SQL in PL/SQL

■ Allowed invoker’s rights

■ Tessellated a geometry as a whole rather than one element at a time
Installation, Compatibility, and Migration Issues B-3

Data Migration Issues
All interfaces preceding Oracle8i are maintained, but the package bodies have been
changed to use the preceding features. Thus, for Oracle8i, the Spatial packages must
be reinstalled to use these interfaces even if the compatibility parameter is set to 8.0.

No data migration is needed, and the 7.3.4/8.0.4 spatial applications will work
without modification. Any OCI-specific migration issues must be handled in the
same manner as they would have to be for any OCI application.

The release 7.3.4/8.0.4 to 8.1.5 upgrade requirements are the same. Upgrade both
Oracle8i and Spatial. Perform all the necessary steps for an upgrade. Your spatial
applications will continue to work as before.

Downgrading from 8.0.5 or earlier releases to a previous release of the database
server and Spatial requires no special steps specific to the Spatial implementation.
However, this situation is different for Oracle8i. In Oracle8i, Spatial uses objects and
extensible indexing. Therefore, it creates database objects specific to Oracle8i that
are not compatible with previous releases of the database server. When you
downgrade the database server and Spatial from Oracle8i to release 8.0.5, a
spatial-specific downgrade script must be executed to remove all the spatial
geometry type, index type, and spatial operator definitions.

B.4 Data Migration Issues
Beginning with release 7.3.3, all subsequent releases can work with spatial data
from previous releases. That is, no data migration is required. The situation is
different in Oracle8i because Spatial now allows two storage mechanisms. If you
want the features specific to Oracle8i, such as extensible indexing and spatial
operators, you must migrate your spatial data from the release 7.3.3
columns-of-numbers style to the SDO_GEOMETRY storage scheme. Spatial
provides a stored procedure and sample code that demonstrates one way of
migrating data and metadata.

Migrating data on downgrades is more complex. Spatial provides OCI
demonstration programs to read SDO_GEOMETRY instances and store them in a
release 8.0.5 spatial schema for comparable data. The demo also addresses issues
related to the changes in the way metadata is stored in Oracle8i compared to
previous releases. The complexity arises from the following:

■ From release 7.3.4 onward, Spatial has an UNSUPPORTED_GEOMETRY type
that is always used in conjunction with a bounding box or polygon, which is
used for indexing purposes and which encloses the spatial object. This did not
exist in release 7.3.3.
B-4 Oracle Spatial User’s Guide and Reference

Migrating from Spatial Release 8.1.5 or 8.1.6 to Release 8.1.7
■ From release 8.1.5 onward, Spatial supports arcs, circles, arc strings, and
geometries made up of a mixture of arc and line segments.

You cannot store arcs and circles in any release earlier than Oracle8i, and you cannot
use data from a release 7.3.4 or later spatial layer in release 7.3.3 if it contains
instances of type UNSUPPORTED_GEOMETRY (etype=0).

B.5 Migrating from Spatial Release 8.1.5 or 8.1.6 to Release 8.1.7
To migrate from Spatial release 8.1.5 to release 8.1.7, you must first migrate from
release 8.1.5 to release 8.1.6, as described in Section B.5.1, and then migrate to
release 8.1.7, as described in Section B.5.2. Be sure that you perform any actions
needed for data migration and compatibility for release 8.1.6 before migrating to
release 8.1.7.

To migrate from Spatial release 8.1.6 to release 8.1.7, run the c816u817.sql script, as
described in Section B.5.2.

B.5.1 Migrating from Spatial Release 8.1.5 to Release 8.1.6
Spatial release 8.1.5 uses objects and index types to create spatial indexes. However,
currently there is no tool to convert release 8.1.5 spatial indexes to the new format
for release 8.1.6. Therefore, you must delete all the spatial indexes built in release
8.1.5 database and re-create them in a release 8.1.6 database.

Follow these steps to upgrade from release 8.1.5 to release 8.1.6 of Spatial:

1. Make sure that the Oracle RDBMS is upgraded to release 8.1.6.

2. Find out how the current spatial indexes are built (including what the index
parameters are), so that you can re-create all the indexes after the upgrade.

To see which users have spatial indexes and the spatial index parameters, enter
the following SQL statement:

SELECT PARAMETERS, INDEX_NAME FROM user_indexes,
 sdo_index_metadata_table
 WHERE INDEX_NAME = SDO_INDEX_NAME;

Save this information before upgrading to Spatial 8.1.6.

3. Run the following script: ORACLE_HOME/md/c815u816.sql

This script deletes all the spatial indexes and installs types and packages related
to Spatial 8.1.6. It also migrates the data from all the SDO_GEOM_METADATA
Installation, Compatibility, and Migration Issues B-5

Migrating from Spatial Release 8.1.5 or 8.1.6 to Release 8.1.7
tables in each user’s schema to the new xxx_SDO_GEOM_METADATA views
managed by Spatial.

However, this metadata migration is done only for those layers that have a
spatial index built on them. If you need to do this metadata migration
separately, you can use the following SQL statement (once for each user with
spatial data):

INSERT INTO USER_SDO_GEOM_METADATA
 SELECT TABLE_NAME, COLUMN_NAME, DIMINFO, NULL
 FROM SDO_GEOM_METADATA;

For example, if you connect as user Herman and execute that statement, it
migrates all the metadata in user Herman’s SDO_GEOM_METADATA table.

4. Migrate the geometry objects to release 8.1.6-style types by executing the SDO_
MIGRATE.FROM_815_TO_81X procedure on each table that has geometry data.
(This step is strongly recommended, as explained in Section B.5.1.1.)

5. Manually re-create all the spatial indexes that are required.

B.5.1.1 Data Migration to Release 8.1.6
Spatial release 8.1.6 introduced new SDO_GTYPE and SDO_ETYPE values to better
manage the geometry data. To take advantage of these benefits, it is strongly
recommended that the data be migrated to the new SDO_GTYPE and SDO_ETYPE
values.

To initiate this data migration, execute the SDO_MIGRATE.FROM_815_TO_81X
procedure on each table that has geometry data. This procedure updates all the
geometries to set the SDO_GTYPE and SDO_ETYPE values.

B.5.1.2 Compatibility Between Releases 8.1.5 and 8.1.6
Spatial release 8.1.6 changed the way the geometry metadata is managed. In release
8.1.5, the metadata is managed by the users by keeping the metadata in SDO_
GEOM_METADATA tables in each user’s schema. In release 8.1.6, the metadata is
centrally managed under the MDSYS schema, and the user can access and
manipulate the metadata through metadata views.

A release 8.1.5 Spatial application will fail against a release 8.1.6 database if it tries
to access the metadata. Therefore, if you need to run a release 8.1.5 application with
a release 8.1.6 database, you need to keep the SDO_GEOM_METADATA table and
make sure that the USER_SDO_GEOM_METADATA view and the SDO_GEOM_
METADATA table are consistent all the time.
B-6 Oracle Spatial User’s Guide and Reference

Migrating from Spatial Release 8.1.5 or 8.1.6 to Release 8.1.7
A recommended method for ensuring consistency is to create SQL triggers on the
SDO_GEOM_METADATA table to perform a corresponding insert, update, or
delete operation on USER_SDO_GEOM_METADATA for each such operation on
SDO_GEOM_METADATA. For example, if user SCOTT has spatial data and needs
to keep the SDO_GEOM_METADATA table consistent with the new metadata
views, SCOTT can create a trigger (shown in Example B–1) that inserts data into the
USER_SDO_GEOM_METADATA view whenever SCOTT inserts data into the
SDO_GEOM_METADATA table.

Example B–1 Insert Trigger for Metadata Consistency

CREATE TRIGGER scott_sdo_meta_ins_trig
before insert on sdo_geom_metadata
referencing new as n
FOR EACH ROW
BEGIN

 INSERT INTO user_sdo_geom_metadata
 VALUES(:n.table_name, :n.column_name, :n.diminfo, NULL);
END;
/

User SCOTT can create similar triggers for delete and update operations on the
SDO_GEOM_METADATA table.

B.5.2 Migrating from Spatial Release 8.1.6 to Release 8.1.7
To migrate from Spatial release 8.1.6 to release 8.1.7, run the following script:
ORACLE_HOME/md/c816u817.sql
Installation, Compatibility, and Migration Issues B-7

Migrating from Spatial Release 8.1.5 or 8.1.6 to Release 8.1.7
B-8 Oracle Spatial User’s Guide and Reference

Generic Geocoding Inte
C

Generic Geocoding Interface

This appendix describes a generic interface to third-party geocoding software that
lets users geocode their address information stored in database tables and obtain
standardized addresses and corresponding location information as instances of
predefined object types. This interface is part of the geocoding framework in the
Oracle Spatial and Oracle interMedia Locator products.

A geocoding service is used for converting tables of address data into standardized
address, location, and possibly other data. Given a geocoded address, one can then
perform proximity or location queries using a spatial engine, such as Oracle Spatial
or Oracle interMedia Locator, or demographic analysis using tools and data from
Oracle’s business partners.

Once data has been geocoded, users can perform location queries on this data. In
addition, geocoded data can be used with other spatial data such as block group,
postal code, and county code for association with demographic information. It is
now possible for decision support, customer relationship management, supply
chain analysis, and other applications to use spatial analyses as part of their
information gathering and processing functions. Results of analyses or queries can
be presented as maps, in addition to tabular formats, using third-party software
integrated with Oracle interMedia Locator.

This chapter describes a set of interfaces and metadata schema that enables
geocoding of an entire address table or a single row. It also describes the procedures
for inserting or updating standardized address and spatial point data into another
table (or the same table). The third-party geocoding service is assumed to have been
installed on a local network and to be accessible through standard communication
protocols, such as sockets or HTTP.
rface C-1

Locator Implementation: Benefits and Limitations
C.1 Locator Implementation: Benefits and Limitations
Oracle interMedia Locator contains a set of application programming interface (API)
functions that allows the integration of Oracle Spatial with third-party geocoding
products and Web-based geocoding services. A database user can issue a standard
SQL call or construct PL/SQL routines to geocode an address, and retrieve the
spatial and standardized address objects, both of which are defined as Oracle
database object types. Users have the option of storing these in the database, or
using the spatial objects in Locator functions for Euclidean within-distance queries.

The APIs offer great flexibility in extracting information from existing relational
databases. Data conversion procedures are minimal. A geocode result also returns
an additional set of information; there is no requirement to use all the information,
and the application can decide which fields to extract and where to store them.
However, to use the full range of features of Oracle Spatial or Oracle interMedia
Locator, it is recommended that the Spatial object be stored as returned.

The existing Locator service is Web-based and requests are formatted in HTTP.
Thus, each request in SQL must contain the URL of the Web site, proxy for the
firewall (if any), and user account information on the service provider’s Web site.
An HTTP approach potentially limits the utility or practicality of the service when
dealing with large tables or undertaking frequent updates to the base address
information. In such situations, use a batch geocoding service made available
within an intranet or local area network. The following sections describe the
interface for a facility that can include the existing HTTP-based solution.

C.2 Generic Geocoding Client
A fast, scalable, highly available, and secure Java Virtual Machine (Java VM, or
JVM) is integrated in the Oracle8i database server. The Java VM provides an ideal
platform on which to deploy enterprise applications written in Java as Java Stored
Procedures (JSPs), Enterprise Java Beans (EJBs), or Java Methods of Oracle8i object
types.

Therefore, any client geocoder component written in Java can be embedded in the
Oracle8i database as a JSP. This JSP interface can perform either
one-record-at-a-time or batch geocoding. Java stored procedures are published
using PL/SQL interfaces; thus, the generic geocoding interface can be compatible
with existing Locator APIs.

The stored procedures have an interface, oracle.spatial.geocoder, that must be
implemented by each vendor whose geocoder is integrated with Oracle Spatial and
Oracle interMedia Locator. The procedures also require certain object types to be
C-2 Oracle Spatial User’s Guide and Reference

Geocoder Metadata
defined and metadata tables to be populated. The object types, metadata schema,
and the geocoder interface are described in further detail in the following sections.

Although the database user MDSYS oversees all data types, operators, and schema
objects for Oracle Spatial and Oracle interMedia Locator, the geocoding metadata
must exist in each user’s schema. Each user of the geocoder service must have
tables that implement the metadata schema.

The third-party geocoding service must be installed on a local network and be
accessible through standard communication protocols such as sockets, HTTP, or
CORBA.

Figure C–1 shows the Oracle geocoding framework.

Figure C–1 Oracle Geocoding Framework

C.3 Geocoder Metadata
The metadata describes the properties of the geocoding server, the location and
structure of the address data to be geocoded, and the nature and storage location of

Generic Geocoding Interface C-3

Geocoder Metadata
the geocoding results. Other relevant information may include the name of the
server machine, the port to which to connect, and so on. Together, these constitute
the initialization parameters and are stored in metadata tables under the user’s own
schema. At client initialization, a data dictionary lookup is performed to locate the
necessary metadata.

Batch geocoding lets the user simultaneously geocode many records from one table.
Batch geocoding requires the following:

■ Geocoding server setup, instructing the client where and how to connect to the
geocoding service.

■ Associating input fields and output fields with columns in the database tables.
This is called the schema setup.

■ Specifying how to handle geocoding situations such as rejects, multiple
matches, or exceptions.

Thus, the metadata table consists of a task ID, geocoding information, and schema
information. The task ID is a primary key that identifies the initialization
parameters for a particular geocoding task. For example, geocoding a table of
customers is one task, while geocoding a table of customer inquiries is a separate
task.

The metadata is stored in a table named GEOCODE_TASK_METADATA, which is
defined as follows:

Create table geocode_task_metadata (
 task_id NUMBER, -- primary key
 geocoder_info MYSYS.GEOCODE_SERVER_PROPERTY_TYPE,
 schema_info MDSYS.GEOCODE_SCHEMA_PROPERTY_TYPE
);

Note the following about the GEOCODE_TASK_METADATA table:

■ The metadata is divided into a server object (described in Section C.3.1) and a
schema object (described in Section C.3.2).

■ Each object is identified by a unique task_id value.

C.3.1 Server Properties
The GEOCODER_INFO property column of the GEOCODE_TASK_METADATA
table contains information describing the characteristics of the server, including
machines, ports, and vendor-specific information.

The GEOCODE_SERVER_PROPERTY_TYPE type is defined as follows:
C-4 Oracle Spatial User’s Guide and Reference

Geocoder Metadata
create type geocode_value_array as
 varray(1024) of varchar2(64)
/
create type geocode_server_property_type as object
(
 servers geocode_value_array,
 protocol varchar2(32),
 property_name geocode_value_array,
 property_value geocode_value_array,
 reject_level integer,
 batch_size integer
)
/

Note the following about the GEOCODE_SERVER_PROPERTY_TYPE definition:

■ SERVERS is an array of character strings each in the form Machine:Port that
uniquely identifies the geocoding service on the network. This also supports
multiple services on the same network by providing an array of servers. Some
geocoders, for example, can switch to secondary servers in the case of failures.

■ PROTOCOL allows different transport mechanisms, such as HTTP or socket.

■ Additional PROPERTY_NAME and PROPERTY_VALUE arrays allow
customization for unique geocoder processing options. They are not intended to
be used for name or password information, because a local geocoding service
usually does not require this information.

■ REJECT_LEVEL is a vendor-specific value that defines the criteria for rejecting a
record. It is up to the implementation of the Java interface to interpret the value.

■ BATCH_SIZE indicates how many records to send to the geocoder at one time.

C.3.2 Geocoding Input and Output Specification
The SCHEMA_INFO property column of the GEOCODE_TASK_METADATA table
specifies the set of columns that makes up an address in the table to be geocoded,
the table and columns into which the geocoded results are stored, and where
rejected record data and multiple matches are stored.

The GEOCODE_SCHEMA_PROPERTY_TYPE type uses columns of type
GEOCODE_TABLE_COLUMN_TYPE to describe the address fields in the input
(table to be geocoded) and output (table containing geocoded results). The two
types are defined as follows:

create type geocode_table_column_type as object
Generic Geocoding Interface C-5

Geocoder Metadata
(
 firm varchar2(32),
 street varchar2(32),
 street2 varchar2(32),
 cty_subdivision varchar2(32),
 city varchar2(2332),
 country_subdivision varchar2(32), --state
 country varchar2(32),
 postal_code varchar2(32),
 postal_addon_code varchar2(32),
 lastline varchar2(32),
 col_name geocode_value_array,
 col_value geocode_value_array
)
/

create type geocode_schema_property_type as object
(
 language varchar2(32),
 character_set varchar2(32),
 in_table varchar2(32),
 in_table_cols geocode_table_column_type,
 out_table varchar2(32),
 out_table_cols geocode_table_column_type,
 out_sdo_geom varchar2(32),
 out_geo_result varchar2(32),
 in_primary_key varchar2(32),
 out_foreign_key varchar2(32),
 DML_option varchar2(16),
 multi_match_table varchar2(32),
 reject_table varchar2(32),
 batch_commit varchar2(5)
)
/

Note the following about the GEOCODE_TABLE_COLUMN_TYPE and
GEOCODE_SCHEMA_PROPERTY_TYPE definitions:

■ LANGUAGE and CHARACTER_SET are for internationalization.

■ IN_TABLE identifies the name of the input address table (for example,
CUSTOMERS).

■ IN_TABLE_COLS identifies the standard set of fields for geocoding. The fields
in the object are standard, and LASTLINE is redundant with the combination of
CITY, STATE, POSTAL_CODE, and POSTAL_ADDON_CODE. Only one
C-6 Oracle Spatial User’s Guide and Reference

Geocoder Metadata
(LASTLINE, or the combination of CITY, STATE, POSTAL_CODE, and
POSTAL_ADDON_CODE) should be specified.

■ OUT_TABLE and OUT_TABLE_COLS have the same meaning as IN_TABLE
and IN_TABLE_COLS, except that these are the column names where the
results are stored. Either a subset or all the OUT_TABLE_COLS fields can be
null. OUT_TABLE_COLS and GEOCODE_RESULT contain similar information,
that is, the standardized (corrected) address in case of successful geocoding.
Users can choose to store the standardized address in two forms, expanded into
a set of columns or as a single object.

■ If the actual address definition differs from the fields in the GEOCODE_
TABLE_COLUMN_TYPE definition, adjust the field mappings and insert null
values as needed. For example, assume an input table CUSTOMERS defined as
follows:

 (custname varchar2(32),
 company varchar2(32),
 street varchar2(64),
 city varchar2(32),
 state varchar2(32),
 country varchar2(32),
 zip varchar2(9))

In the GEOCODE_SCHEMA_PROPERTY_TYPE column definition, the IN_
TABLE_COLS attribute value would be specified as: GEOCODE_TABLE_
COLUMN_TYPE(‘COMPANY’, ‘STREET’, NULL, NULL, ‘CITY’, ‘STATE’,
‘COUNTRY’, ‘ZIP’, NULL, NULL, NULL, NULL).

The COL_NAME and COL_VALUE information will be used for feature
enhancement for individual geocoding services.

■ OUT_SDO_GEOM and OUT_GEO_RESULT: SDO_GEOMETRY and
GEOCODE_RESULT are the two database objects for storing a standard set of
geocoded results, including standardized address and latitude/longitude
information. If you are using Oracle Spatial, it is required that SDO_
GEOMETRY objects be stored in the database. MDSYS.GEOCODE_RESULT
exists in the current Locator implementation and is defined as follows:

Create type geocode_result as object (
 matchcode varchar2(16),
 firmname varchar2(512),
 addrline varchar2(512),
 addrline2 varchar2(512),
 city varchar2(512),
Generic Geocoding Interface C-7

Geocoder Metadata
 state varchar2(512),
 zip varchar2(5),
 zip4 varchar2(4),
 lastline varchar2(512),
 county varchar2(32),
 block varchar2(32),
 loccode varchar2(16),
 cart varchar2(16),
 dpbc varchar2(16),
 lotcode vrchar2(16),
 lotnum varchar2(16)
);

■ IN_PRIMARY_KEY and OUT_FOREIGN_KEY designate a primary key and
foreign key, respectively. Using a primary key and foreign key pair is a way to
associate the input records to the output records, and is essential when the
database stores the output results. Even if the input table and output table are
the same, a primary key and foreign key pair (essentially the same column: for
example, ID or ROWID) must be specified. There is no restriction on the data
type, because no manipulation of the data is needed.

■ DML_OPTION specifies whether to insert geocoded data into a new row in the
result table (INSERT) or update existing rows in the table (UPDATE). If IN_
TABLE is the same as OUT_TABLE, then DML_OPTION must be UPDATE,
because adding new rows in an existing table is unnecessary. If IN_TABLE is
different from OUT_TABLE and if UPDATE is specified, OUT_TABLE must
have partial records available for primary and foreign key lookup. This permits
the service to locate the exact row to update with the new objects.

■ MULTI_MATCH_TABLE and REJECT_TABLE are table names where the
primary key of the multiple matches and rejected records are stored. If these
tables do not exist, they will be created automatically. Automatic creation is the
preferred approach due to the fixed structure. The REJECT_TABLE table will be
created with a primary key column type in the input table, a match code
column, and an optional error message column. The MULTI_MATCH_TABLE
table will contain a primary key, SDO_GEOMETRY, and GEO_RESULT. If these
fields are null, no table will be created and no multiple matches will be
returned.

■ BATCH_COMMIT is a string containing TRUE or FALSE, indicating if a commit
operation should be performed after each batch. If FALSE is specified, a large
rollback segment will be needed for large address table geocoding.
C-8 Oracle Spatial User’s Guide and Reference

Single-Record and Interactive Geocoding
C.3.2.1 Multiple Matches and Rejected Records
Tables can be specified to store multiple matches (MULTI_MATCH_TABLE) and
rejected records (REJECT_TABLE) during batch geocoding. The primary key will be
a user-specified field from the original table. Hence, any single column can be used.
Currently, no composite primary keys are supported.

If a single address results in multiple matches, after the batch processing you can
examine MULTI_MATCH_TABLE and select the correct entries for the original data
rows. For example, you can create a table in the following format:

create table <user-defined multimatch table> (
 pk <same data type as in input table>,
 location mdsys.sdo_geometry,
 std_addr mdsys.geocode_result
);

The match code in the geocode result object indicates the failure during geocoding.
The rejection level is used in determining if a record has failed the geocoding. If a
record has failed and REJECT_TABLE is defined, the primary key (specified by the
user) is inserted into a rejection table. The interpretation of rejection level is left to
the programmer. REJECT_TABLE can be defined in the following format:

create table <user-defined reject table> (
 pk <same data type as in input table>,
 matchcode varchar2(64),
 errcode varchar2(128)
);

C.4 Metadata Helper Class
The geocoder metadata is comprehensive. To accelerate development and
deployment, Oracle offers a sample class, oracle.spatial.geocoder.Metadata, to allow
easy access (read and write) to these objects. Also, SELECT and INSERT SQL
statements are constructed automatically for the caller. See the class implementation
code for details.

C.5 Single-Record and Interactive Geocoding
Geocoding a row in a table is required when updating or inserting data in the
address table. One way to maintain consistency between the base address table and
the table of geocoded results is to use a trigger to call the geocoding function. The
Java interface method geocode1() will take the primary key to perform the
Generic Geocoding Interface C-9

Java Geocoder Service Interface
geocoding task and insert or update the geocoded information into the specified
table.

The GEOCODER_HTTP package functions are still supported for single-record
geocoding. In addition, you are able to pass an address in as a parameter, and get
back an array of matches. The Java interface takes a metadata structure (see the
GEOCODE_SCHEMA_PROPERTY_TYPE definition in Section C.3.2) and an
address structure, and returns an array of this same address structure:

create type geocode_record_type as object
(
 firm varchar2(40),
 street varchar2(40),
 street2 varchar2(40),
 city_subdivision varchar2(40),
 city varchar2(40),
 country_subdivision varchar2(40),
 country varchar2(40),
 postal_code varchar2(40),
 postal_addon_code varchar2(40),
 lastline varchar2(80),
 latitude number,
 longitude number
);

After performing geocoding, it will return an array (SQL collection type) of such
structures as possible matches. With this method, no database table or schema is
accessed. This method can enable interactive applications such as store locators.

C.6 Java Geocoder Service Interface
Each geocoder independent software vendor (ISV) must implement the following
geocoder interface to integrate their products with Oracle Spatial and Oracle
interMedia Locator.

The interface is defined as follows:

// Geocoder Interface
package oracle.spatial.geocoder;

public interface GeocoderInterface {
 public void geocode(int taskId)
 throws oracle.spatial.geocoder.GeocoderException, java.sql.SQLException;
 public void geocode1(int taskId, BigDecimal pkVal)
 throws oracle.spatial.geocoder.GeocoderException, java.sql.SQLException;
C-10 Oracle Spatial User’s Guide and Reference

Enabling Third-Party Geocoders
// … other geocode1 functions with different pkVal types

 public ARRAY interactive_geocode(STRUCT meta, STRUCT inAddr)
 throws oracle.spatial.geocoder.GeocoderException, java.sql.SQLException;
}

// Geocoder Exception Class
package oracle.spatial.geocoder;

public class GeocoderException extends java.lang.Exception {
 public GeocoderException() {}
 public GeocoderException(String mesg)
 {
 super(mesg);
 }
}

Further details, including some of the actual implementation, will be provided to
developers.

C.7 Enabling Third-Party Geocoders
For customers to implement an Oracle solution with any vendor’s Java client, they
will have to download a copy of the Java client from the geocoder vendor’s Web
site, link the geocoder interface package with the vendor’s code, and then upload
the resulting JSP into the Oracle JVM. Once enabled, the Java client resides on the
vendor’s server and can provide the required services.

To load a client into the database, invoke the Oracle8i loadjava utility, and the Java
geocoding method will be exposed as a SQL function call.

The vendor-specific geocoder interface implementation can be owned by any
schema, such as MDSYS, a DBA account, or an account determined by the customer
or vendor. The owner must grant the appropriate EXECUTE privileges to PUBLIC
or some set of users of the service.
Generic Geocoding Interface C-11

Enabling Third-Party Geocoders
C-12 Oracle Spatial User’s Guide and Reference

Coordinate Systems (Spatial Reference Sys
D

Coordinate Systems (Spatial Reference

Systems)

This appendix describes the coordinate system transformation capabilities of Oracle
Spatial. The coordinate systems application programming interface (API) integrates
support into Oracle8i for storing and manipulating SDO_GEOMETRY objects in a
variety of coordinate systems. (Coordinate systems are sometimes called spatial
reference systems.)

For reference information about coordinate systems functions and procedures, see
Chapter 8.

D.1 Why Integrate Coordinate System Information?
Before Oracle Spatial release 8.1.6, geometries (objects of type SDO_GEOMETRY)
were stored as strings of coordinates without reference to any specific coordinate
system. For definitions of SDO_GEOMETRY objects, users were instructed to set the
SDO_SRID value (intended for future coordinate system support use) to a null
value, and in fact this instruction appeared in the Oracle8i Spatial User’s Guide and
Reference for release 8.1.6. The Spatial functions and operators always assumed a
coordinate system that had the properties of an orthogonal Cartesian system. With
such a system, if Earth-based geometries are stored in latitude and longitude
coordinates, Spatial functions and operators sometimes do not provide correct
results in these coordinates.

With coordinate system support in Oracle Spatial, you can freely convert data from
one coordinate system to another coordinate system, and Spatial functions,
operators, and utilities provide correct and unambiguous results in whatever
coordinate system the data is stored, particularly relating to measurements on the
Earth’s surface. Moreover, Spatial operators for queries and joins perform accurate
tems) D-1

Terms and Concepts
computations with data that uses different coordinate systems. (However, see
Section D.5 for any restrictions and problems in the current release.)

D.2 Terms and Concepts
This section explains important terms and concepts related to coordinate systems
support in Oracle Spatial.

D.2.1 Coordinate System (Spatial Reference System)
A coordinate system (also called a spatial reference system) is a means of assigning
coordinates to a location and establishing relationships between sets of such
coordinates. It enables the interpretation of a set of coordinates as a representation
of a position in a real world space.

D.2.2 Cartesian Coordinates
Cartesian coordinates are coordinates that measure the position of a point from a
defined origin along axes that are perpendicular in the represented
two-dimensional or three-dimensional space.

D.2.3 Geodetic Coordinates (Geographic Coordinates)
Geodetic coordinates (sometimes called geographic coordinates) are angular
coordinates (longitude and latitude), closely related to spherical polar coordinates,
and are defined relative to a particular Earth geodetic datum (described in
Section D.2.5).

D.2.4 Projected Coordinates
Projected coordinates are planar Cartesian coordinates that result from performing
a mathematical mapping from a point on the Earth’s surface to a plane. There are
many such mathematical mappings, each used for a particular purpose.

D.2.5 Geodetic Datum
A geodetic datum is a means of representing the figure of the Earth, usually as an
oblate ellipsoid of revolution, that approximates the surface of the Earth locally or
globally, and is the reference for the system of geodetic coordinates.
D-2 Oracle Spatial User’s Guide and Reference

Coordinate Systems Data Structures
D.2.6 Authalic Sphere
An authalic sphere is a sphere that has the same surface area as a particular oblate
ellipsoid of revolution representing the figure of the Earth.

D.2.7 Transformation (Datum Transformation)
Transformation, specifically datum transformation, is the conversion of geodetic
coordinates from one geodetic datum to another geodetic datum, usually involving
changes in the shape, orientation, and center position of the reference ellipsoid.

D.3 Coordinate Systems Data Structures
The coordinate systems functions and procedures use information provided in a
table and other objects supplied with Oracle Spatial:

■ A table, MDSYS.CS_SRS, defines the valid coordinate systems.

■ Other data structures define the valid map projections and ellipsoids.

The MDSYS.CS_SRS table associates each coordinate system with its well-known
text description, which is in conformance with the standard published by the
OpenGIS Consortium (http://www.opengis.org).

D.3.1 MDSYS.CS_SRS Table
The MDSYS.CS_SRS reference table is included with Oracle Spatial, and it is used
by coordinate systems functions and procedures. This table contains over 900 rows,
one for each valid coordinate system.

The MDSYS.CS_SRS table contains the columns shown in Table D–1.

Note: You should not modify, delete, or add any information in
the MDSYS.CS_SRS table. (Support is planned for user-defined
coordinate systems in a future release.)

Table D–1 MDSYS.CS_SRS Table

Column
Name Data Type Description

CS_NAME VARCHAR2(68) A well-known name, often mnemonic, by which a
user can refer to the coordinate system.
Coordinate Systems (Spatial Reference Systems) D-3

Coordinate Systems Data Structures
D.3.1.1 Well-Known Text (WKTEXT)
The WKTEXT column of the MDSYS.CS_SRS table contains the well-known text
(WKT) description of the SRS, as defined by the OpenGIS Consortium. An example
of the WKT for a geodetic (geographic) coordinate system is:

’GEOGCS ["Longitude / Latitude (Old Hawaiian)", DATUM ["Old Hawaiian", SPHEROID
["Clarke 1866", 6378206.400000, 294.978698]], PRIMEM ["Greenwich", 0.000000],
UNIT ["Decimal Degree", 0.01745329251994330]]’

The WKT definition of the coordinate system is hierarchically nested. The Old
Hawaiian geographic coordinate system (GEOGCS) is composed of a named datum
(DATUM), a prime meridian (PRIMEM), and a unit definition (UNIT). The datum is
in turn composed of a named spheroid and its parameters of semimajor axis and
inverse flattening.

An example of the WKT for a projected coordinate system (a Wyoming state plane)
is:

'PROJCS["Wyoming 4901, Eastern Zone (1983, meters)", GEOGCS ["GRS 80", DATUM
["GRS 80", SPHEROID ["GRS 80", 6378137.000000, 298.257222]], PRIMEM [
"Greenwich", 0.000000], UNIT ["Decimal Degree", 0.01745329251994330]],

SRID INTEGER The unique ID number (Spatial Reference ID) for a
coordinate system.

AUTH_SRID INTEGER An optional ID number that can be used to indicate
how the entry was derived; it might be a foreign key
into another coordinate table, for example.

AUTH_NAME VARCHAR2(256) An authority name for the coordinate system.
Contains ’Oracle’ in the supplied table. Users
can specify any value in any rows that they add.

WKTEXT VARCHAR2(2046) The well-known text (WKT) description of the SRS, as
defined by the OpenGIS Consortium. For more
information, see Section D.3.1.1.

CS_BOUNDS MDSYS.SDO_
GEOMETRY

Optional SDO_GEOMETRY object that is a polygon
with WGS-84 longitude and latitude vertices,
representing the spheroidal polygon description of
the zone of validity for a projected coordinate system.
Must be null for a geographic or non-Earth coordinate
system. Is null in all supplied rows.

Table D–1 MDSYS.CS_SRS Table (Cont.)

Column
Name Data Type Description
D-4 Oracle Spatial User’s Guide and Reference

Coordinate Systems Data Structures
PROJECTION ["Transverse Mercator"], PARAMETER ["Scale_Factor", 0.999938],
PARAMETER ["Central_Meridian", -105.166667], PARAMETER ["Latitude_Of_Origin",
40.500000], PARAMETER ["False_Easting", 200000.000000], UNIT ["Meter",
1.000000000000]]’

The projected coordinate system contains a nested geographic coordinate system as
its basis, as well as parameters that control the projection.

Oracle Spatial supports all the common geodetic datums and map projections.

D.3.2 Other Objects
Underlying the CS_SRS table are data and code to represent the ellipsoids and
projections in common use around the world. Table D–2 lists the supported map
projections.

Table D–2 Supported Map Projections

ID Projection Name ID Projection Name

0 Geographic (longitude/latitude) 3 Albers Conical Equal Area

4 Lambert Conformal Conic 5 Mercator

7 Polyconic 8 Equidistant Conic

9 Transverse Mercator 10 Stereographic

11 Lambert Azimuthal Equal Area 12 Azimuthal Equidistant

13 Gnomonic 14 Orthographic

15 General Vertical Near-Side
Perspective

16 Sinusiodal

17 Equirectangular 18 Miller Cylindrical

19 Van der Grinten 20 Hotine Oblique Mercator

21 Robinson 22 Space Oblique Mercator

23 Alaska Conformal 24 Interrupted Goode Homolosine

25 Mollweide 26 Interrupted Mollweide

27 Hammer 28 Wagner IV

29 Wagner VII 30 Oblated Equal Area

31 Non-Earth 32 Transverse Mercator Danish System
45 Bornholm
Coordinate Systems (Spatial Reference Systems) D-5

Coordinate Systems Data Structures
Table D–3 lists the supported ellipsoids.

33 Transverse Mercator Danish System
34 Jylland-Fyn

34 Transverse Mercator Sjaelland

35 Transverse Mercator Finnish KKJ 36 Eckert IV

37 Eckert VI 38 Gall

39 Lambert Conformal Conic (Belgium
1972)

40 New Zealand Map Grid

41 Cylindrical Equal Area 42 Swiss Oblique Mercator

43 Bonne 44 Cassini

Table D–3 Supported Ellipsoids

ID Ellipsoid Name ID Ellipsoid Name

0 Clarke 1866 1 WGS 72

2 Australian 3 Krassovsky

4 International 1924 5 Hayford

6 Clarke 1880 7 GRS 80

8 Clarke 1866 (Michigan) 9 Airy 1930

10 Bessel 1841 11 Everest

12 Sphere 13 Airy 1930 (Ireland 1965)

14 Bessel 1841 (Schwarzeck) 15 Clarke 1880 (Arc 1950)

16 Clarke 1880 (Merchich) 17 Everest (Kertau)

18 Fischer 1960 (Mercury) 19 Fischer 1960 (South Asia)

20 Fischer 1968 21 GRS 67

22 Helmert 1906 23 Hough

24 South American 1969 25 War Office

26 WGS 60 27 WGS 66

28 WGS 84 29 Clarke 1880 (IGN)

30 IAG 75 31 MERIT 83

Table D–2 Supported Map Projections (Cont.)

ID Projection Name ID Projection Name
D-6 Oracle Spatial User’s Guide and Reference

Restrictions and Problems in the Current Release
D.4 Coordinate Systems Functions and Procedures
The current release of Oracle Spatial includes the following functions and
procedures:

■ SDO_CS.TRANSFORM function: Transforms a geometry representation using a
coordinate system (specified by SRID or name).

■ SDO_CS.TRANSFORM_LAYER procedure: Transforms an entire layer of
geometries (that is, all geometries in a specified column in a table).

Reference information about these functions and procedures is in Chapter 8.

Support for additional functions and procedures is planned for future releases of
Oracle Spatial.

D.5 Restrictions and Problems in the Current Release
The current release of Oracle Spatial provides the first phase of support for
coordinate systems. Further support is planned for future releases.

The following restrictions and problems apply to the current release.

D.5.1 Geometries with Longitude and Latitude Coordinates
In the current release, Spatial functions and operators do not necessarily return
precisely correct results with geometries whose coordinates are expressed as
longitude and latitude values. For example, a query asking if Stockholm, Sweden

32 New International 1967 33 Walbeck

34 Bessel 1841 (NGO 1948) 35 Clarke 1858

36 Clarke 1880 (Jamaica) 37 Clarke 1880 (Palestine)

38 Everest (Timbalai) 39 Everest (Kalianpur)

40 Indonesian 41 NWL 9D

42 NWL 10D 43 OSU86F

44 OSU91A 45 Plessis 1817

46 Struve 1860 48 Sphere (Unity)

Table D–3 Supported Ellipsoids (Cont.)

ID Ellipsoid Name ID Ellipsoid Name
Coordinate Systems (Spatial Reference Systems) D-7

Example of Coordinate Systems
and Helsinki, Finland are within a specified distance may return an incorrect result
if the specified distance is close to the actual measured distance.

As a workaround, first transform the geometries of interest to a projection
coordinate system that is conformant to the local space of the geometries. Then, use
the Spatial functions and operators with the transformed geometries.

In a future release, support is planned for correct results in all cases with Spatial
functions and operators using geometries with longitude/latitude coordinates.

D.6 Example of Coordinate Systems
This section presents a simplified example that uses coordinate system functions
and procedures. It refers to concepts that were explained in this appendix and uses
functions documented in Chapter 8.

Example D–1 uses the same geometry data (cola markets) as in Section 2.1, except
that instead of null SRID values, the SRID value 8307 is used. That is, the geometries
are defined as using the coordinate system whose SRID is 8307 and whose
well-known name is "Longitude / Latitude (WGS 84)". This is probably the most
widely used coordinate system, and it is the one used for global positioning system
(GPS) devices. The geometries are then transformed using the coordinate system
whose SRID is 8199 and whose well-known name is "Longitude / Latitude (Arc
1950)".

Example D–1 uses the geometries illustrated in Figure 2–1 in Section 2.1.

Example D–1 does the following:

■ Creates a table (cola_markets) to hold the spatial data

■ Inserts rows for four areas of interest (cola_a, cola_b, cola_c, cola_d), using the
SRID value 8307

■ Updates the USER_SDO_GEOM_METADATA view to reflect the dimension of
the areas, using the SRID value 8307

■ Creates a spatial index (cola_spatial_idx)

■ Performs some transformation operations (single geometry and entire layer)

Example D–2 includes the output of the SELECT statements in Example D–1.

Example D–1 Simplified Example of Coordinate Systems

CREATE TABLE cola_markets (
 mkt_id NUMBER PRIMARY KEY,
D-8 Oracle Spatial User’s Guide and Reference

Example of Coordinate Systems
 name VARCHAR2(32),
 shape MDSYS.SDO_GEOMETRY);

-- The next INSERT statement creates an area of interest for
-- Cola A. This area happens to be a rectangle.
-- The area could represent any user-defined criterion: for
-- example, where Cola A is the preferred drink, where
-- Cola A is under competitive pressure, where Cola A
-- has strong growth potential, and so on.

INSERT INTO cola_markets VALUES(
 1,
 ’cola_a’,
 MDSYS.SDO_GEOMETRY(
 2003, -- 2-dimensional polygon
 8307, -- SRID for ’Longitude / Latitude (WGS 84)’ coordinate system
 NULL,
 MDSYS.SDO_ELEM_INFO_ARRAY(1,1003,3), -- one rectangle (1003 = exterior)
 MDSYS.SDO_ORDINATE_ARRAY(1,1, 5,7) -- only 2 points needed to
 -- define rectangle (lower left and upper right)
)
);

-- The next two INSERT statements create areas of interest for
-- Cola B and Cola C. These areas are simple polygons (but not
-- rectangles).

INSERT INTO cola_markets VALUES(
 2,
 ’cola_b’,
 MDSYS.SDO_GEOMETRY(
 2003, -- 2-dimensional polygon
 8307,
 NULL,
 MDSYS.SDO_ELEM_INFO_ARRAY(1,1003,1), -- one polygon (exterior polygon ring)
 MDSYS.SDO_ORDINATE_ARRAY(5,1, 8,1, 8,6, 5,7, 5,1)
)
);

INSERT INTO cola_markets VALUES(
 3,
 ’cola_c’,
 MDSYS.SDO_GEOMETRY(
 2003, -- 2-dimensional polygon
 8307,
Coordinate Systems (Spatial Reference Systems) D-9

Example of Coordinate Systems
 NULL,
 MDSYS.SDO_ELEM_INFO_ARRAY(1,1003,1), --one polygon (exterior polygon ring)
 MDSYS.SDO_ORDINATE_ARRAY(3,3, 6,3, 6,5, 4,5, 3,3)
)
);

-- Now insert an area of interest for Cola D. This is a
-- circle with a radius of 2. It is completely outside the
-- first three areas of interest.

INSERT INTO cola_markets VALUES(
 4,
 ’cola_d’,
 MDSYS.SDO_GEOMETRY(
 2003, -- 2-dimensional polygon
 8307,
 NULL,
 MDSYS.SDO_ELEM_INFO_ARRAY(1,1003,4), -- one circle
 MDSYS.SDO_ORDINATE_ARRAY(8,7, 10,9, 8,11)
)
);

-- UPDATE METADATA VIEW --

-- Update the USER_SDO_GEOM_METADATA view. This is required
-- before the Spatial index can be created. Do this only once for each
-- layer (i.e., table-column combination; here: cola_markets and shape).

INSERT INTO USER_SDO_GEOM_METADATA
 VALUES (
 ’cola_markets’,
 ’shape’,
 MDSYS.SDO_DIM_ARRAY(-- 20X20 grid, virtually zero tolerance
 MDSYS.SDO_DIM_ELEMENT(’X’, 0, 20, 0.005),
 MDSYS.SDO_DIM_ELEMENT(’Y’, 0, 20, 0.005)
),
 8307 -- SRID for ’’Longitude / Latitude (WGS 84)’ coordinate system
);

-- CREATE THE SPATIAL INDEX --

CREATE INDEX cola_spatial_idx
ON cola_markets(shape)
D-10 Oracle Spatial User’s Guide and Reference

Example of Coordinate Systems
INDEXTYPE IS MDSYS.SPATIAL_INDEX
PARAMETERS(’SDO_LEVEL = 8’);

-- TEST COORDINATE SYSTEMS FUNCTIONS AND PROCEDURES --

-- Return the transformation of cola_c using to_srid 8199
-- (’Longitude / Latitude (Arc 1950)’)
SELECT c.name, SDO_CS.TRANSFORM(c.shape, m.diminfo, 8199)
 FROM cola_markets c, user_sdo_geom_metadata m
 WHERE m.table_name = ’COLA_MARKETS’ AND m.column_name = ’SHAPE’
 AND c.name = ’cola_c’;

-- Same as preceding, but using to_srname parameter.
SELECT c.name, SDO_CS.TRANSFORM(c.shape, m.diminfo, ’Longitude / Latitude (Arc
1950)’)
 FROM cola_markets c, user_sdo_geom_metadata m
 WHERE m.table_name = ’COLA_MARKETS’ AND m.column_name = ’SHAPE’
 AND c.name = ’cola_c’;

-- Transform the entire SHAPE layer and put results in the table
-- named cola_markets_8199, which the procedure will create.
EXECUTE SDO_CS.TRANSFORM_LAYER(’COLA_MARKETS’,’SHAPE’,’COLA_MARKETS_8199’,8199);

-- Select all from the old (existing) table.
SELECT * from cola_markets;

-- Select all from the new (layer transformed) table.
SELECT * from cola_markets_8199;

-- Show metadata for the new (layer transformed) table.
DESCRIBE cola_markets_8199;

Example D–2 shows the output of the SELECT statements in Example D–1. Notice
the slight differences between the coordinates in the original geometries (SRID 8307)
and the transformed coordinates (SRID 8199) -- for example, (1, 1, 5, 7) and
(1.00078606, 1.00272755, 5.00069866, 7.00321633) for cola_a.

Example D–2 Output of SELECT Statements in Coordinate Systems Example

SQL> -- Return the transformation of cola_c using to_srid 8199 (’Longitude /
Latitude (Arc 1950)’)
SQL> SELECT c.name, SDO_CS.TRANSFORM(c.shape, m.diminfo, 8199)
 2 FROM cola_markets c, user_sdo_geom_metadata m
Coordinate Systems (Spatial Reference Systems) D-11

Example of Coordinate Systems
 3 WHERE m.table_name = ’COLA_MARKETS’ AND m.column_name = ’SHAPE’
 4 AND c.name = ’cola_c’;

NAME

SDO_CS.TRANSFORM(C.SHAPE,M.DIMINFO,8199)(SDO_GTYPE, SDO_SRID, SDO_POINT(X, Y, Z)
--
cola_c
SDO_GEOMETRY(2003, 8199, NULL, SDO_ELEM_INFO_ARRAY(1, 1003, 1), SDO_ORDINATE_ARR
AY(3.00074116, 3.00289624, 6.0006707, 3.00289431, 6.00067234, 5.00305745, 4.0007
1964, 5.00305956, 3.00074116, 3.00289624))

SQL>
SQL> -- Same as preceding, but using to_srname parameter.
SQL> SELECT c.name, SDO_CS.TRANSFORM(c.shape, m.diminfo, ’Longitude / Latitude
(Arc 1950)’)
 2 FROM cola_markets c, user_sdo_geom_metadata m
 3 WHERE m.table_name = ’COLA_MARKETS’ AND m.column_name = ’SHAPE’
 4 AND c.name = ’cola_c’;

NAME

SDO_CS.TRANSFORM(C.SHAPE,M.DIMINFO,’LONGITUDE/LATITUDE(ARC1950)’)(SDO_GTYPE, SDO
--
cola_c
SDO_GEOMETRY(2003, 8199, NULL, SDO_ELEM_INFO_ARRAY(1, 1003, 1), SDO_ORDINATE_ARR
AY(3.00074116, 3.00289624, 6.0006707, 3.00289431, 6.00067234, 5.00305745, 4.0007
1964, 5.00305956, 3.00074116, 3.00289624))

SQL> -- Transform the entire SHAPE layer and put results in the table
SQL> -- named cola_markets_8199, which the procedure will create.

SQL> EXECUTE SDO_CS.TRANSFORM_LAYER(’COLA_MARKETS’, ’SHAPE’, ’COLA_MARKETS_
8199’, 8199);

PL/SQL procedure successfully completed.

SQL>
SQL> -- Select all from the old (existing) table.
SQL> SELECT * from cola_markets;

 MKT_ID NAME
---------- --------------------------------
D-12 Oracle Spatial User’s Guide and Reference

Example of Coordinate Systems
SHAPE(SDO_GTYPE, SDO_SRID, SDO_POINT(X, Y, Z), SDO_ELEM_INFO, SDO_ORDINATES)
--
 1 cola_a
SDO_GEOMETRY(2003, 8307, NULL, SDO_ELEM_INFO_ARRAY(1, 1003, 3), SDO_ORDINATE_ARR
AY(1, 1, 5, 7))

 2 cola_b
SDO_GEOMETRY(2003, 8307, NULL, SDO_ELEM_INFO_ARRAY(1, 1003, 1), SDO_ORDINATE_ARR
AY(5, 1, 8, 1, 8, 6, 5, 7, 5, 1))

 3 cola_c

 MKT_ID NAME
---------- --------------------------------
SHAPE(SDO_GTYPE, SDO_SRID, SDO_POINT(X, Y, Z), SDO_ELEM_INFO, SDO_ORDINATES)
--
SDO_GEOMETRY(2003, 8307, NULL, SDO_ELEM_INFO_ARRAY(1, 1003, 1), SDO_ORDINATE_ARR
AY(3, 3, 6, 3, 6, 5, 4, 5, 3, 3))

 4 cola_d
SDO_GEOMETRY(2003, 8307, NULL, SDO_ELEM_INFO_ARRAY(1, 1003, 4), SDO_ORDINATE_ARR
AY(8, 7, 10, 9, 8, 11))

SQL>
SQL> -- Select all from the new (layer transformed) table.

SQL> SELECT * from cola_markets_8199;

SDO_ROWID

GEOMETRY(SDO_GTYPE, SDO_SRID, SDO_POINT(X, Y, Z), SDO_ELEM_INFO, SDO_ORDINATES)
--
AAAA1BAABAAACcHAAA
SDO_GEOMETRY(2003, 8199, NULL, SDO_ELEM_INFO_ARRAY(1, 1003, 3), SDO_ORDINATE_ARR
AY(1.00078606, 1.00272755, 5.00069866, 7.00321633))

AAAA1BAABAAACcHAAB
SDO_GEOMETRY(2003, 8199, NULL, SDO_ELEM_INFO_ARRAY(1, 1003, 1), SDO_ORDINATE_ARR
AY(5.00069355, 1.00272665, 8.00062193, 1.00272605, 8.00062526, 6.00313458, 5.000
69866, 7.00321633, 5.00069355, 1.00272665))

SDO_ROWID

Coordinate Systems (Spatial Reference Systems) D-13

Error Messages for Coordinate Systems
GEOMETRY(SDO_GTYPE, SDO_SRID, SDO_POINT(X, Y, Z), SDO_ELEM_INFO, SDO_ORDINATES)
--
AAAA1BAABAAACcHAAC
SDO_GEOMETRY(2003, 8199, NULL, SDO_ELEM_INFO_ARRAY(1, 1003, 1), SDO_ORDINATE_ARR
AY(3.00074116, 3.00289624, 6.0006707, 3.00289431, 6.00067234, 5.00305745, 4.0007
1964, 5.00305956, 3.00074116, 3.00289624))

AAAA1BAABAAACcHAAD
SDO_GEOMETRY(2003, 8199, NULL, SDO_ELEM_INFO_ARRAY(1, 1003, 4), SDO_ORDINATE_ARR
AY(8.00062651, 7.00321213, 10.0005803, 9.00335882, 8.00063347, 11.0035044))

SQL> -- Show metadata for the new (layer transformed) table.
SQL> DESCRIBE cola_markets_8199;
 Name Null? Type
 --- -------- ----------------------------
 SDO_ROWID ROWID
 GEOMETRY MDSYS.SDO_GEOMETRY

D.7 Error Messages for Coordinate Systems
This section lists the coordinate systems error messages, including the cause and
recommended user action for each.

ORA-13276 internal error [%s] in coordinate transformation
Cause: OCI internal error.

Action: Contact Oracle Support Services with the exact error message text.

ORA-13278 failure to convert SRID to native format
Cause: OCI internal error.

Action: Contact Oracle Support Services with the exact error message text.

ORA-13281 failure in execution of sql statement to retrieve WKT
Cause: OCI internal error or SRID does not match a table entry.

Action: Check that a valid SRID is being used.

ORA-13282 failure on initialization of coordinate transformation
Cause: Parsing error on source or destination coordinate system WKT or
incompatible coordinate systems.

Action: Check validity of WKT for table entries and the legitimacy of the
requested transformation.
D-14 Oracle Spatial User’s Guide and Reference

Error Messages for Coordinate Systems
ORA-13283 failure to get new geometry object for conversion in place
Cause: OCI internal error.

Action: Contact Oracle Support Services with the exact error message text.

ORA-13284 failure to copy geometry object for conversion in place
Cause: OCI internal error.

Action: Contact Oracle Support Services with the exact error message text.

ORA-13285 Geometry coordinate transformation error
Cause: A coordinate pair was out of valid range for a conversion/projection.

Action: Check that data to be transformed is consistent with the desired con-
version/projection.

ORA-13287 can’t transform unknown gtype
Cause: A geometry with an SDO_GTYPE value of <= 0 was specified for
transformation. Only an SDO_GTYPE value >= 1 is allowed.

Action: Specify an appropriate SDO_GTYPE value.

ORA-13288 Point coordinate transformation error
Cause: An internal error occurred while transforming points.

Action: Check the accompanying error messages.

ORA-13294 Cannot transform geometry containing circular arcs
Cause: It is impossible to transform a 3-point representation of a circular arc
without distortion.

Action: Make sure a geometry does not contain circular arcs.

ORA-13300 Single point transform error
Cause: Low-level coordinate transformation error trap.

Action: Check the accompanying error messages.

ORA-13303 failure to retrieve a geometry object from a table
Cause: OCI internal error.

Action: Contact Oracle Support Services with the exact error message text.

ORA-13304 failure to insert a transformed geometry object in a table
Cause: OCI internal error.

Action: Contact Oracle Support Services with the exact error message text.
Coordinate Systems (Spatial Reference Systems) D-15

Error Messages for Coordinate Systems
D-16 Oracle Spatial User’s Guide and Reference

Linear Referencing Sy
E

Linear Referencing System

Linear referencing is a natural and convenient means to associate attributes or
events to locations or portions of a linear feature. It has been widely used in
transportation applications (such as for highways, railroads, and transit routes) and
utilities applications (such as for gas and oil pipelines). The major advantage of
linear referencing is its capability of locating attributes and events along a linear
feature with only one parameter (usually known as measure) instead of two (such as
latitude/longitude or x/y in Cartesian space). Sections of a linear feature can be
referenced and created dynamically by indicating the start and end locations along
the feature without explicitly storing them.

The linear referencing system (LRS) application programming interface (API) in
Oracle Spatial provides server-side LRS capabilities at the cartographic level. The
linear measure information is directly integrated into the Oracle Spatial geometry
structure. The Oracle Spatial LRS API provides support for dynamic segmentation,
and it serves as a groundwork for third-party or middle-tier application
development virtually for any linear referencing methods and models in any
coordinate systems.

For an example of LRS, see Section E.5. However, you may want to read the rest of
this appendix first, to understand the concepts that the example illustrates.

For reference information about LRS functions, see Chapter 9.

E.1 Terms and Concepts
This section explains important terms and concepts related to linear referencing
support in Oracle Spatial.
stem E-1

Terms and Concepts
E.1.1 Geometric Segments (LRS Segments)
Geometric segments are basic LRS elements in Oracle Spatial. They are Oracle line
string geometries. An Oracle line string is an ordered, non-branching, and
continuous geometry. A geometric segment must contain at least start and end
measures for its start and end points. Measures of points of interest (such as
highway exits) on the geometric segments can also be assigned. These measures are
either assigned by users or derived from existing geometric segments. Figure E–1
shows a geometric segment with four line segments and one arc. Points on the
geometric segment are represented by triplets (x, y, m), where x and y describe the
location and m denotes the measure (with each measure value underlined in
Figure E–1).

Figure E–1 Geometric Segment

E.1.2 Shape Points
Shape points are points that are specified when an LRS segment is constructed, and
that are assigned measure information. In Oracle Spatial, a line segment is
represented by its start and end points, and an arc is represented by three points:
start, middle, and end points of the arc. You must specify these points as shape
points, but you can also specify other points as shape points if you need measure
information stored for these points (for example, an exit in the middle of a straight
part of the highway).

start point

end point

line segments

arc

segment direction

(15, 5, 11.180)

(30, 10, 26.991)

(40, 5, 38.171)

(50,15, 53.879)

(55, 20, 60.950)

7.071

(5, 10, 0)

E-2 Oracle Spatial User’s Guide and Reference

Terms and Concepts
Thus, shape points can serve one or both of the following purposes: to indicate the
direction of the segment (for example, a turn or curve), and to identify a point of
interest for which measure information is to be stored.

Shape points might not directly relate to mileposts or reference posts in LRS; they
are used as internal reference points. The measure information of shape points is
automatically populated when the LRS segment is defined.

E.1.3 Direction of a Geometric Segment
The direction of a geometric segment is indicated from the start point of the
geometric segment to the end point. Measures of points on a geometric segment
always increase along the direction of the geometric segment.

E.1.4 Measure (Linear Measure)
The measure of a point along a geometric segment is the linear distance (in the
measure dimension) measured from the start point of the geometric segment. The
measure information does not necessarily have to be of the same scale as their
Euclidean distance. However, the linear mapping relationship between measure
and distance is always preserved.

Some LRS functions use offset instead of measure to represent measured distance
along linear features. Although some other linear referencing systems might use
offset to mean what the Oracle Spatial LRS refers to as measure, offset has a
different meaning in Oracle Spatial from measure, as explained in Section E.1.5.

E.1.5 Offset
The offset of a point along a geometric segment is the perpendicular distance
between the point and the geometric segment. Offsets are positive if points are on
the left side along the segment direction and are negative if they are on the right
side. Points are on a geometric segment if their offsets to the segment are zero.

Figure E–2 shows how a point can be located along a geometric segment with
measure and offset information. By assigning an offset together with a measure, it is
possible to locate not only points that are on the geometric segment, but also points
that are perpendicular to the geometric segment.
Linear Referencing System E-3

Terms and Concepts
Figure E–2 Describing a Point Along a Segment with a Measure and an Offset

E.1.6 Measure Populating
Any unassigned measures of a geometric segment are automatically populated
based upon their distance distribution. This is done before any LRS operations for
geometric segments with unknown measures (NULL in Oracle Spatial). The
resulting geometric segments from any LRS operations return the measure
information associated with geometric segments. The measure of a point on the
geometric segment can be obtained based upon a linear mapping relationship
between its previous and next known measures or locations. See the algorithm
representation in Figure E–3 and the example in Figure E–4.

Figure E–3 Measures, Distances, and Their Mapping Relationship

measure offset value

start point

end point

point to be located

segment direction

Negative offset

Positive offset
Ms

Me

Mp

Mp

PprevP

PprevPnext
----------------------- Mnext Mprev–() Mprev+=

PprevP 50=

PprevPnext 100=

Pprev(0,0) Pnext(100,0)P(50,0)

Mprev=20 Mp=60 Mnext=100

 Distance

 Measure

E-4 Oracle Spatial User’s Guide and Reference

Terms and Concepts

Figure E–4 Measure Populating of a Geometric Segment

Measures are evenly spaced between assigned measures. However, the assigned
measures for points of interest on a geometric segment do not need to be evenly
spaced. This could eliminate the problem of error accumulation and account for
inaccuracy of data source.

Moreover, the assigned measures do not even need to reflect actual distances; they
can be any valid values within the measure range. For example, Figure E–5 shows
the measure population that results when assigned measure values are not
proportional and reflect widely varying gaps.

Figure E–5 Measure Populating With Disproportional Assigned Measures

In all cases, measure populating is done in an incremental fashion along the
segment direction. This improves the performance of current and subsequent LRS
operations.

0 12060 90

0 12060 90

15 30 45 70 80 100 110

assigned
measures

populated
measures

Before measure populating

After measure populating

0 10088 97

0 10088 97

22 44 66 91 94 98 99

assigned
measures

populated
measures

Before measure populating

After measure populating

Linear Referencing System E-5

Terms and Concepts
E.1.7 Measure Range of a Geometric Segment
The start and end measures of a geometric segment define the linear measure range
of the geometric segment. Any valid LRS measures of a geometric segment must fall
within its linear measure range.

E.1.8 Projection
The projection of a point along a geometric segment is the point on the geometric
segment with the minimum distance to the point. The measure information of the
resulting point is also returned in the point geometry.

E.1.9 LRS Point
LRS points are points with linear measure information along a geometric segment.
A valid LRS point is a point geometry with measure information.

E.1.10 Linear Features
Linear features are any spatial objects that can be treated as a logical set of linear
segments. Examples of linear features are highways in transportation applications
and pipelines in utility industry applications. The relationship of linear features,
geometric segments, and LRS points is shown in Figure E–6.
E-6 Oracle Spatial User’s Guide and Reference

LRS Data Model

Figure E–6 Linear Feature, Geometric Segments, and LRS Points

E.2 LRS Data Model
The Oracle Spatial LRS data model incorporates measure information into its
geometry representation at the point level. The measure information is directly
integrated into the Oracle Spatial model. To accomplish this, an additional measure
dimension must be added to the Oracle Spatial metadata.

Oracle Spatial LRS support affects the Spatial metadata and data (the geometries).
Example E–1 shows how a measure dimension can be added to 2-dimensional
geometries in the Spatial metadata. The measure dimension must be the last
element of the SDO_DIM_ARRAY in a spatial object definition (shown in bold in
Example E–1).

Example E–1 Including LRS Measure Dimension in Spatial Metadata

INSERT INTO user_sdo_geom_metadata VALUES(
 ’LRS_ROUTES’,
 ’GEOMETRY’,
 MDSYS.SDO_DIM_ARRAY (
 MDSYS.SDO_DIM_ELEMENT(’X’, 0, 100, 0.005),
 MDSYS.SDO_DIM_ELEMENT(’Y’, 0, 100, 0.005),
 MDSYS.SDO_DIM_ELEMENT(’M’, 0, 100, 0.005)),
 NULL);

Geometric Segment 1 Geometric Segment 2 Geometric Segment 3

M1
s M1

e

M2
s

M3
s

M2
e

M3
e

Linear Feature

LRS points

Direction

Direction

Direction

Linear Referencing System E-7

Indexing of LRS Data
After adding the new measure dimension, geometries with measure information
such as geometric segments and LRS points can be represented. An example of
creating a geometric segment with three line segments is shown in Figure E–7.

Figure E–7 Creating a Geometric Segment

In Figure E–7, the geometric segment has the following definition (with measure
values underlined):

SDO_GEOMETRY(3002, NULL, NULL,
 MDSYS.SDO_ELEM_INFO_ARRAY(1,2,1),
 MDSYS.SDO_ORDINATE_ARRAY(5,10,0, 20,5,NULL, 35,10,NULL, 55,10,100))

Whenever a geometric segment is defined or created, its start and end measures
must be defined or derived from some existing geometric segment. The unsigned
measures of all shape points on a geometric segment will be automatically
populated.

The LRS API supports the object-relational model of Oracle Spatial. The LRS API
works with geometries in formats of Oracle Spatial before release 8.1.6, but the
resulting geometries will be converted to the Oracle Spatial release 8.1.6 or higher
format, specifically with 4-digit SDO_GTYPE and SDO_ETYPE values.

For example, in Oracle Spatial release 8.1.6 and higher, the geometry type (SDO_
GTYPE) of a spatial object includes the number of dimensions of the object as the
first digit of the SDO_GTYPE value. Thus, the SDO_GTYPE value of a point is 1 in
the pre-release 8.1.6 format but 2001 in the release 8.1.6 format (the number of
dimensions of the point is 2). However, an LRS point (which includes measure
information) has 3 dimensions, and thus the SDO_GTYPE of any point geometry
used with an LRS function must be 3001.

E.3 Indexing of LRS Data
When LRS data is indexed using a spatial quadtree index, only the first two
dimensions are indexed; the measure dimension and values are not indexed.

(5,10,0)

(20,5,NULL)

(35,10,NULL) (55,10,100)

start point
end point

start measure end measure
E-8 Oracle Spatial User’s Guide and Reference

LRS Operations
When LRS data is indexed using a spatial R-tree index, you must use the SDO_
INDX_DIMS keyword in the CREATE INDEX statement in order to limit the
number of dimensions to be indexed (for example, SDO_INDX_DIMS=2 to index
only the X and Y dimensions and not the measure dimension, or SDO_INDX_
DIMS=3 to index only the X, Y, and Z dimensions and not the measure dimension).
There is no benefit to including the measure dimension in a spatial index, and there
is additional processing overhead; therefore, you should use the SDO_INDX_DIMS
keyword when spatially indexing LRS data.

Information about the CREATE INDEX statement and its parameters and keywords
is in Chapter 5.

E.4 LRS Operations
This section describes several linear referencing operations supported by the Oracle
Spatial LRS API.

E.4.1 Defining a Geometric Segment
There are two ways to create a geometric segment with measure information:

■ Construct a geometric segment and assign measures explicitly.

■ Define a geometric segment with specified start and end, and/or any other
measures, in an ascending order. Measures of shape points with unknown
(unassigned) measures (null values) in the geometric segment will be
automatically populated according to their locations and distance distribution.

Figure E–8 shows different ways of defining a geometric segment.
Linear Referencing System E-9

LRS Operations

Figure E–8 Defining a Geometric Segment

An LRS segment must be defined before any LRS operations can proceed. That is,
the start, end, and any other assigned measures must be present to derive the
location from a specified measure. The measure information of intermediate shape
points will automatically be populated if they are not assigned.

E.4.2 Redefining a Geometric Segment
You can redefine a geometric segment to replace the existing measures of all shape
points between the start and end point with automatically calculated measures.
Redefining a segment can be useful if errors have been made in one or more explicit
measure assignments, and you want to start over with proportionally assigned
measures.

Figure E–9 shows the redefinition of a segment where the existing (before) assigned
measure values are not proportional and reflect widely varying gaps.

(5,10,NULL)

(20,5,NULL)

(35,10,NULL) (55,10,NULL)

start point end point

(5,10,0)

(20,5,NULL)

(35,10,NULL) (55,10,100)

start point end point

(5,10,0)

(20,5,30.628)

(35,10,61.257) (55,10,100)

start point end point

start measure
end measure

a. Geometric segment with no measures assigned

b. Geometric segment with start/end measures

c. Populating measures of shape points in a geometric segment

E-10 Oracle Spatial User’s Guide and Reference

LRS Operations
Figure E–9 Redefining a Geometric Segment

After the segment redefinition in Figure E–9, the populated measures reflect
proportional distances along the segment.

E.4.3 Clipping a Geometric Segment
You can clip a geometric segment to create a new geometric segment out of an
existing geometric segment (Figure E–10, part a).

0 10088 97

22 44 66 91 94 98 99

assigned
measures

populated
measures

Before segment redefinition

0 100

10 20 30 40 50 60 70 80 90

assigned
measures

populated
measures

After segment redefinition

Linear Referencing System E-11

LRS Operations

Figure E–10 Clipping, Splitting, and Concatenating Geometric Segments

E.4.4 Splitting a Geometric Segment
You can create two new geometric segments by splitting a geometric segment
(Figure E–10, part b).

E.4.5 Concatenating Two Connected Geometric Segments
You can create a new geometric segment by concatenating two geometric segments
(Figure E–10, part c). Note that the geometric segments must be spatially connected.
The measures of the second geometric segment are shifted so that the end measure
of the first segment is the same as the start measure of the second segment.

Note: In Figure E–10 and several that follow, small gaps between
segments are used in illustrations of segment splitting and
concatenation. Each gap simply reinforces the fact that two
different segments are involved. However, the two segments (such
as segment 1 and segment 2 in Figure E–10, parts b and c) are
actually connected. The tolerance (see Section 1.5.4) is considered in
determining whether or not segments are connected.

segment direction

segment 1
segment 2

segment 1
segment 2

Ms

Me

start point
end point

segment direction

Ms

Me

start point
end point

b. Segment splitting

a. Segment clipping

c. Segment concatenation

E-12 Oracle Spatial User’s Guide and Reference

LRS Operations

Measure assignments for the clipping, splitting, and concatenating operations in
Figure E–10 are shown in Figure E–11. Measure information and segment direction
are preserved in a consistent manner. The assignment is done automatically when
the operations have completed.

Figure E–11 Measure Assignment in Geometric Segment Operations

The direction of the geometric segment resulting from concatenation is always the
direction of the first segment (geom_segment1 in the call to the SDO_
LRS.CONCATENATE_GEOM_SEGMENTS function), as shown in Figure E–12.

segment 1

segment 2

segment 1

segment 2

M=0

M=100
M=0

M=50

M=100

M=0

M=100

M=25

M=50

M=0
M=50

M=30 M=80

M=0

a. Segment splitting b. Segment clipping

c. Segment concatenation

Continuous measures for segment concatenation

M=70

M=25

M=70

M=50

Second segment
measure shifted by 20

M=100
Linear Referencing System E-13

LRS Operations

Figure E–12 Segment Direction with Concatenation

E.4.6 Scaling a Geometric Segment
You can create a new geometric segment by performing a linear scaling on a
geometric segment. Figure E–13 shows the mapping relationship for geometric
segment scaling.

 Directions of segments Concatenate Direction of resulting segment
 (always same as first segment)

geom_segment1 geom_segment2
E-14 Oracle Spatial User’s Guide and Reference

LRS Operations
Figure E–13 Scaling a Geometric Segment

In general, scaling a geometric segment only involves rearranging measures of the
newly created geometric segment. However, if the scaling factor is negative, the
order of the shape points needs to be reversed so that measures will increase along
the geometric segment’s direction (which is defined by the order of the shape
points).

A scale operation can perform any combination of the following operations:

■ Translating (shifting) measure information. (For example, add the same value to
Ms and Me to get M’s and M’e.)

■ Reversing measure information. (Let M’s = Me, M’e = Ms, and Mshift = 0.)

■ Performing simple scaling of measure information. (Let Mshift = 0.)

For examples of these operations, see usage notes and examples for the SDO_
LRS.SCALE_GEOM_SEGMENT function in Chapter 9.

E.4.7 Locating a Point on a Geometric Segment
You can find the position of a point described by a measure and an offset on a
geometric segment (see Figure E–14).

start point

end point

start point

end point

segment direction
Ms

 Me

M’ s

M’ e

Mshift shift measure

M M’

M’ M Ms–()

M'e M's–()
Me Ms–()

--------------------------× M's Mshift+ +=

Linear Mapping Relationship

(new end measure)

(new start measure)

Scaling Factor

Linear Referencing System E-15

LRS Operations
Figure E–14 Locating a Point Along a Segment with a Measure and an Offset

There is always a unique a location with a specific measure on a geometric segment.
Ambiguity arises when offsets are given and the points described by the measures
fall on shape points of the geometric segment (see Figure E–15).

Figure E–15 Ambiguity in Location Referencing with Offsets

As shown in Figure E–15, an offset arc of a shape point on a geometric segment is an
arc on which all points have the same minimum distance to the shape point. As a

measure offset (positive if to left along segment direction;

start point

end point

point to be located

segment direction

 negative if to right)

- offsets

+ offsets

projection point

(5,10,0)

(20,5,30.628)

(35,10,61.257) (55,10,100)

(5,10,0)
(20,5,30.628)

(35,10,61.257) (55,10,100)

(m, o)

P

m

o o
o

m

o

offset arc

shape point on the geometric segment

one-to-one mapping

many-to-one mapping

middle pt

E-16 Oracle Spatial User’s Guide and Reference

LRS Operations
result, all points on the offset arc are represented by the same (measure, offset) pair.
To resolve this one-to-many mapping problem, the middle point on the offset arc is
returned.

E.4.8 Projecting a Point onto a Geometric Segment
You can find the projection point of a point with respect to a geometric segment.
The point to be projected can be on or off the segment. If the point is on the
segment, the point and its projection point are the same.

Projection is a reverse operation of the point-locating operation shown in
Figure E–14. Similar to a point-locating operation, all points on the offset arc of a
shape point will have the same projection point (that is, the shape point itself),
measure, and offset (see Figure E–15). If there are multiple projection points for a
point, the first one from the start point is returned (projection pt 1 in both
illustrations in Figure E–16).

Figure E–16 Multiple Projection Points

E.4.9 Converting Geometric Segments
You can convert geometric segments from standard line string format to Linear
Referencing System format, and vice versa. The main use of conversion functions
will probably occur if you have a large amount of existing line string data, in which
case conversion is a convenient alternative to creating all of the LRS segments
manually. However, if you need to convert LRS segments to standard line strings
for certain applications, that capability is provided also.

Functions are provided to convert:

projection pt 1

projection pt 2

segment

segment

point to be projected

projection pt 1

arc

P P

direction

direction

point to be projected

Linear Referencing System E-17

LRS Operations
■ Individual line strings

For conversion from standard format to LRS format, a measure dimension
(named M by default) is added, and measure information is provided for each
point. For conversion from LRS format to standard format, the measure
dimension and information are removed. In both cases, the dimensional
information (DIMINFO) metadata in the USER_SDO_GEOM_METADATA
view is not affected.

■ Layers (all line strings in a column)

For conversion from standard format to LRS format, a measure dimension
(named M by default) is added, but no measure information is provided for
each point. For conversion from LRS format to standard format, the measure
dimension and information are removed. In both cases, the dimensional
information (DIMINFO) metadata in the USER_SDO_GEOM_METADATA
view is modified as needed.

■ Dimensional information (DIMINFO)

The dimensional information (DIMINFO) metadata in the USER_SDO_GEOM_
METADATA view is modified as needed. For example, converting a standard
dimensional array with X and Y dimensions (SDO_DIM_ELEMENT) to an LRS
dimensional array causes an M dimension (SDO_DIM_ELEMENT) to be added.

Figure E–17 shows the addition of measure information when a standard line string
is converted to an LRS line string (using the SDO_LRS.CONVERT_TO_LRS_GEOM
function). The measure dimension values are underlined in Figure E–17.
E-18 Oracle Spatial User’s Guide and Reference

Example
Figure E–17 Conversion from Standard to LRS Line String

The conversion functions are listed in Table 9–3 in Chapter 9. See also the reference
information in Chapter 9 about each conversion function.

E.5 Example
This section presents a simplified example that uses LRS functions. It refers to
concepts that were explained in this chapter and uses functions documented in
Chapter 9.

This example uses the road that is illustrated in Figure E–18.

 Standard Line String

 (0,0) (10,0) (20,0)

 LRS Line String (After Conversion)

 (0,0,0) (10,0,10) (20,0,20)
Linear Referencing System E-19

Example
Figure E–18 Simplified LRS Example: Highway

In Figure E–18, the highway (Route 1) starts at point 2,2 and ends at point 5,14,
follows the path shown, and has six entrance-exit points (Exit 1 through Exit 6). For
simplicity, each unit on the graph represents one unit of measure, and thus the
measure from start to end is 27 (the segment from Exit 5 to Exit 6 being the
hypotenuse of a 3-4-5 right triangle).

Each row in Table E–1 lists an actual highway-related feature and the LRS feature
that corresponds to it or that can be used to represent it.

Table E–1 Highway Features and LRS Counterparts

Highway Feature LRS Feature

Named route, road, or street LRS segment, or linear feature (logical set
of segments)

Mile or kilometer marker Measure

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 150 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

Route1 (start)

Route1 (end)

Exit 1

Exit 2 Exit 3 Exit 4

Exit 5

Exit 6

segment
direction

E-20 Oracle Spatial User’s Guide and Reference

Example
Example E–2 does the following:

■ Creates a table to hold the segment

■ Inserts the definition of the highway into the table

■ Inserts the necessary metadata into the USER_SDO_GEOM_METADATA view

■ Uses PL/SQL and SQL statements to define the segment and perform
operations on it

Example E–3 includes the output of the SELECT statements in Example E–2.

Example E–2 Simplified Example: Highway

-- Create a table for routes (highways).
CREATE TABLE lrs_routes (
 route_id NUMBER PRIMARY KEY,
 route_name VARCHAR2(32),
 route_geometry MDSYS.SDO_GEOMETRY);

-- Populate table with just one route for this example.
INSERT INTO lrs_routes VALUES(
 1,
 ’Route1’,
 MDSYS.SDO_GEOMETRY(
 3002, -- line string, 3 dimensions: X,Y,M
 NULL,
 NULL,
 MDSYS.SDO_ELEM_INFO_ARRAY(1,2,1), -- one line string, straight segments

Accident reporting and location tracking SDO_LRS.LOCATE_PT function

Construction zone (portion of a road) SDO_LRS.CLIP_GEOM_SEGMENT
function

Road extension (adding at the beginning or
end) or combination (designating or renaming
two roads that meet as one road)

SDO_LRS.CONCATENATE_GEOM_
SEGMENTS function

Road reconstruction or splitting (resulting in
two named roads from one named road)

SDO_LRS.SPLIT_GEOM_SEGMENT
function

Finding the closest point on the road to a point
off the road (such as a building)

SDO_LRS.PROJECT_PT function

Table E–1 Highway Features and LRS Counterparts (Cont.)

Highway Feature LRS Feature
Linear Referencing System E-21

Example
 MDSYS.SDO_ORDINATE_ARRAY(
 2,2,0, -- Start point - Exit1; 0 is measure from start.
 2,4,2, -- Exit2; 2 is measure from start.
 8,4,8, -- Exit3; 8 is measure from start.
 12,4,12, -- Exit4; 12 is measure from start.
 12,10,NULL, -- Not an exit; measure will be automatically calculated and
filled.
 8,10,22, -- Exit5; 22 is measure from start.
 5,14,27) -- End point (Exit6); 27 is measure from start.
)
);

-- Update the Spatial metadata.
INSERT INTO USER_SDO_GEOM_METADATA
 VALUES (
 ’lrs_routes’,
 ’route_geometry’,
 MDSYS.SDO_DIM_ARRAY(-- 20X20 grid
 MDSYS.SDO_DIM_ELEMENT(’X’, 0, 20, 0.005),
 MDSYS.SDO_DIM_ELEMENT(’Y’, 0, 20, 0.005),
 MDSYS.SDO_DIM_ELEMENT(’M’, 0, 20, 0.005) -- Measure dimension
),
 NULL -- SRID (reserved for future Spatial releases)
);

-- Test the LRS procedures.
DECLARE
geom_segment MDSYS.SDO_GEOMETRY;
line_string MDSYS.SDO_GEOMETRY;
dim_array MDSYS.SDO_DIM_ARRAY;
result_geom_1 MDSYS.SDO_GEOMETRY;
result_geom_2 MDSYS.SDO_GEOMETRY;
result_geom_3 MDSYS.SDO_GEOMETRY;

BEGIN

SELECT a.route_geometry into geom_segment FROM lrs_routes a
 WHERE a.route_name = ’Route1’;
SELECT m.diminfo into dim_array from
 user_sdo_geom_metadata m
 WHERE m.table_name = ’LRS_ROUTES’;

-- Define the LRS segment for Route1.
SDO_LRS.DEFINE_GEOM_SEGMENT (geom_segment,
 dim_array,
E-22 Oracle Spatial User’s Guide and Reference

Example
 0, -- Zero starting measure: LRS segment starts at start of route.
 27); -- End of LRS segment is at measure 27.

SELECT a.route_geometry INTO line_string FROM lrs_routes a
 WHERE a.route_name = ’Route1’;

-- Split Route1 into two segments.
SDO_LRS.SPLIT_GEOM_SEGMENT(line_string,dim_array,5,result_geom_1,result_geom_2);

-- Concatenate the segments that were just split.
result_geom_3 := SDO_LRS.CONCATENATE_GEOM_SEGMENTS(result_geom_1, dim_array,
result_geom_2, dim_array);

-- Insert geometries into table, to display later.
INSERT INTO lrs_routes VALUES(
 11,
 ’result_geom_1’,
 result_geom_1
);
INSERT INTO lrs_routes VALUES(
 12,
 ’result_geom_2’,
 result_geom_2
);
INSERT INTO lrs_routes VALUES(
 13,
 ’result_geom_3’,
 result_geom_3
);

END;
/

-- First, display the data in the LRS table.
SELECT route_id, route_name, route_geometry from lrs_routes;

-- Are result_geom_1 and result_geom2 connected?
SELECT SDO_LRS.CONNECTED_GEOM_SEGMENTS(a.route_geometry, m.diminfo,
 b.route_geometry, m.diminfo)
 FROM lrs_routes a, lrs_routes b, user_sdo_geom_metadata m
 WHERE m.table_name = ’LRS_ROUTES’ AND a.route_id = 11 AND b.route_id = 12;

-- Is the Route1 segment valid?
SELECT SDO_LRS.VALID_GEOM_SEGMENT(a.route_geometry, m.diminfo)
 FROM lrs_routes a, user_sdo_geom_metadata m
Linear Referencing System E-23

Example
 WHERE m.table_name = ’LRS_ROUTES’ AND a.route_id = 1;

-- Is 50 a valid measure on Route1? (Should return FALSE; highest Route1 measure
is 27.)
SELECT SDO_LRS.VALID_MEASURE(a.route_geometry, m.diminfo, 50)
 FROM lrs_routes a, user_sdo_geom_metadata m
 WHERE m.table_name = ’LRS_ROUTES’ AND a.route_id = 1;

-- Is the Route1 segment defined?
SELECT SDO_LRS.IS_GEOM_SEGMENT_DEFINED(a.route_geometry, m.diminfo)
 FROM lrs_routes a, user_sdo_geom_metadata m
 WHERE m.table_name = ’LRS_ROUTES’ AND a.route_id = 1;

-- How long is Route1?
SELECT SDO_LRS.GEOM_SEGMENT_LENGTH(a.route_geometry, m.diminfo)
 FROM lrs_routes a, user_sdo_geom_metadata m
 WHERE m.table_name = ’LRS_ROUTES’ AND a.route_id = 1;

-- What is the start measure of Route1?
SELECT SDO_LRS.GEOM_SEGMENT_START_MEASURE(a.route_geometry, m.diminfo)
 FROM lrs_routes a, user_sdo_geom_metadata m
 WHERE m.table_name = ’LRS_ROUTES’ AND a.route_id = 1;

-- What is the end measure of Route1?
SELECT SDO_LRS.GEOM_SEGMENT_END_MEASURE(a.route_geometry, m.diminfo)
 FROM lrs_routes a, user_sdo_geom_metadata m
 WHERE m.table_name = ’LRS_ROUTES’ AND a.route_id = 1;

-- What is the start point of Route1?
SELECT SDO_LRS.GEOM_SEGMENT_START_PT(a.route_geometry, m.diminfo)
 FROM lrs_routes a, user_sdo_geom_metadata m
 WHERE m.table_name = ’LRS_ROUTES’ AND a.route_id = 1;

-- What is the end point of Route1?
SELECT SDO_LRS.GEOM_SEGMENT_END_PT(a.route_geometry, m.diminfo)
 FROM lrs_routes a, user_sdo_geom_metadata m
 WHERE m.table_name = ’LRS_ROUTES’ AND a.route_id = 1;

-- Shift by 5 (for example, 5-mile segment added before original start)
SELECT SDO_LRS.SCALE_GEOM_SEGMENT(a.route_geometry, m.diminfo, 0, 27, 5)
 FROM lrs_routes a, user_sdo_geom_metadata m
 WHERE m.table_name = ’LRS_ROUTES’ AND a.route_id = 1;

-- Reverse direction (for example, to concatenate with another road)
SELECT SDO_LRS.SCALE_GEOM_SEGMENT(a.route_geometry, m.diminfo,27, 0, 0)
E-24 Oracle Spatial User’s Guide and Reference

Example
 FROM lrs_routes a, user_sdo_geom_metadata m
 WHERE m.table_name = ’LRS_ROUTES’ AND a.route_id = 1;

-- "Convert" mile measures to kilometers (27 * 1.609 = 43.443)
SELECT SDO_LRS.SCALE_GEOM_SEGMENT(a.route_geometry, m.diminfo,
 0, 43.443, 0)
 FROM lrs_routes a, user_sdo_geom_metadata m
 WHERE m.table_name = ’LRS_ROUTES’ AND a.route_id = 1;

-- Clip a piece of Route1.
SELECT SDO_LRS.CLIP_GEOM_SEGMENT(a.route_geometry, m.diminfo, 5, 10)
 FROM lrs_routes a, user_sdo_geom_metadata m
 WHERE m.table_name = ’LRS_ROUTES’ AND a.route_id = 1;

-- Point (9,3,NULL) is off the road; should return (9,4,9).
SELECT SDO_LRS.PROJECT_PT(a.route_geometry, m.diminfo,
 MDSYS.SDO_GEOMETRY(3001, NULL, NULL,
 MDSYS.SDO_ELEM_INFO_ARRAY(1, 1, 1),
 MDSYS.SDO_ORDINATE_ARRAY(9, 3, NULL)))
 FROM lrs_routes a, user_sdo_geom_metadata m
 WHERE m.table_name = ’LRS_ROUTES’ AND a.route_id = 1;

-- Return the measure of the projected point.
SELECT SDO_LRS.GET_MEASURE(
 SDO_LRS.PROJECT_PT(a.route_geometry, m.diminfo,
 MDSYS.SDO_GEOMETRY(3001, NULL, NULL,
 MDSYS.SDO_ELEM_INFO_ARRAY(1, 1, 1),
 MDSYS.SDO_ORDINATE_ARRAY(9, 3, NULL))),
 m.diminfo)
 FROM lrs_routes a, user_sdo_geom_metadata m
 WHERE m.table_name = ’LRS_ROUTES’ AND a.route_id = 1;

-- Is point (9,3,NULL) a valid LRS point? (Should return TRUE.)
SELECT SDO_LRS.VALID_LRS_PT(
 MDSYS.SDO_GEOMETRY(3001, NULL, NULL,
 MDSYS.SDO_ELEM_INFO_ARRAY(1, 1, 1),
 MDSYS.SDO_ORDINATE_ARRAY(9, 3, NULL)),
 m.diminfo)
 FROM lrs_routes a, user_sdo_geom_metadata m
 WHERE m.table_name = ’LRS_ROUTES’ AND a.route_id = 1;

-- Locate the point on Route1 at measure 9, offset 0.
SELECT SDO_LRS.LOCATE_PT(a.route_geometry, m.diminfo, 9, 0)
 FROM lrs_routes a, user_sdo_geom_metadata m
 WHERE m.table_name = ’LRS_ROUTES’ AND a.route_id = 1;
Linear Referencing System E-25

Example
Example E–3 shows the output of the SELECT statements in Example E–2.

Example E–3 Simplified Example: Output of SELECT Statements

SQL> -- First, display the data in the LRS table.
SQL> SELECT route_id, route_name, route_geometry from lrs_routes;

 ROUTE_ID ROUTE_NAME
---------- --------------------------------
ROUTE_GEOMETRY(SDO_GTYPE, SDO_SRID, SDO_POINT(X, Y, Z), SDO_ELEM_INFO, SDO_ORDIN
--
 1 Route1
SDO_GEOMETRY(3002, NULL, NULL, SDO_ELEM_INFO_ARRAY(1, 2, 1), SDO_ORDINATE_ARRAY(
2, 2, 0, 2, 4, 2, 8, 4, 8, 12, 4, 12, 12, 10, NULL, 8, 10, 22, 5, 14, 27))

 11 result_geom_1
SDO_GEOMETRY(3002, NULL, NULL, SDO_ELEM_INFO_ARRAY(1, 2, 1), SDO_ORDINATE_ARRAY(
2, 2, 0, 2, 4, 2, 5, 4, 5))

 12 result_geom_2

 ROUTE_ID ROUTE_NAME
---------- --------------------------------
ROUTE_GEOMETRY(SDO_GTYPE, SDO_SRID, SDO_POINT(X, Y, Z), SDO_ELEM_INFO, SDO_ORDIN
--
SDO_GEOMETRY(3002, NULL, NULL, SDO_ELEM_INFO_ARRAY(1, 2, 1), SDO_ORDINATE_ARRAY(
5, 4, 5, 8, 4, 8, 12, 4, 12, 12, 10, 18, 8, 10, 22, 5, 14, 27))

 13 result_geom_3
SDO_GEOMETRY(3002, NULL, NULL, SDO_ELEM_INFO_ARRAY(1, 2, 1), SDO_ORDINATE_ARRAY(
2, 2, 0, 2, 4, 2, 5, 4, 5, 8, 4, 8, 12, 4, 12, 12, 10, 18, 8, 10, 22, 5, 14, 27)
)

SQL>
SQL> -- Are result_geom_1 and result_geom2 connected?
SQL> SELECT SDO_LRS.CONNECTED_GEOM_SEGMENTS(a.route_geometry, m.diminfo,
 2 b.route_geometry, m.diminfo)
 3 FROM lrs_routes a, lrs_routes b, user_sdo_geom_metadata m
 4 WHERE m.table_name = ’LRS_ROUTES’ AND a.route_id = 11 AND b.route_id =
12;

SDO_LRS.CONNECTED_GEOM_SEGMENTS(A.ROUTE_GEOMETRY,M.DIMINFO,B.ROUTE_GEOMETRY,M.DI
--
E-26 Oracle Spatial User’s Guide and Reference

Example
TRUE

SQL>
SQL> -- Is the Route1 segment valid?
SQL> SELECT SDO_LRS.VALID_GEOM_SEGMENT(a.route_geometry, m.diminfo)
 2 FROM lrs_routes a, user_sdo_geom_metadata m
 3 WHERE m.table_name = ’LRS_ROUTES’ AND a.route_id = 1;

SDO_LRS.VALID_GEOM_SEGMENT(A.ROUTE_GEOMETRY,M.DIMINFO)
--
TRUE

SQL>
SQL> -- Is 50 a valid measure on Route1? (Should return FALSE; highest Route1
measure is 27.)
SQL> SELECT SDO_LRS.VALID_MEASURE(a.route_geometry, m.diminfo, 50)
 2 FROM lrs_routes a, user_sdo_geom_metadata m
 3 WHERE m.table_name = ’LRS_ROUTES’ AND a.route_id = 1;

SDO_LRS.VALID_MEASURE(A.ROUTE_GEOMETRY,M.DIMINFO,50)
--
FALSE

SQL>
SQL> -- Is the Route1 segment defined?
SQL> SELECT SDO_LRS.IS_GEOM_SEGMENT_DEFINED(a.route_geometry, m.diminfo)
 2 FROM lrs_routes a, user_sdo_geom_metadata m
 3 WHERE m.table_name = ’LRS_ROUTES’ AND a.route_id = 1;

SDO_LRS.IS_GEOM_SEGMENT_DEFINED(A.ROUTE_GEOMETRY,M.DIMINFO)
--
TRUE

SQL>
SQL> -- How long is Route1?
SQL> SELECT SDO_LRS.GEOM_SEGMENT_LENGTH(a.route_geometry, m.diminfo)
 2 FROM lrs_routes a, user_sdo_geom_metadata m
 3 WHERE m.table_name = ’LRS_ROUTES’ AND a.route_id = 1;

SDO_LRS.GEOM_SEGMENT_LENGTH(A.ROUTE_GEOMETRY,M.DIMINFO)

 27

SQL>
SQL> -- What is the start measure of Route1?
Linear Referencing System E-27

Example
SQL> SELECT SDO_LRS.GEOM_SEGMENT_START_MEASURE(a.route_geometry, m.diminfo)
 2 FROM lrs_routes a, user_sdo_geom_metadata m
 3 WHERE m.table_name = ’LRS_ROUTES’ AND a.route_id = 1;

SDO_LRS.GEOM_SEGMENT_START_MEASURE(A.ROUTE_GEOMETRY,M.DIMINFO)
--
 0

SQL>
SQL> -- What is the end measure of Route1?
SQL> SELECT SDO_LRS.GEOM_SEGMENT_END_MEASURE(a.route_geometry, m.diminfo)
 2 FROM lrs_routes a, user_sdo_geom_metadata m
 3 WHERE m.table_name = ’LRS_ROUTES’ AND a.route_id = 1;

SDO_LRS.GEOM_SEGMENT_END_MEASURE(A.ROUTE_GEOMETRY,M.DIMINFO)
--
 27

SQL>
SQL> -- What is the start point of Route1?
SQL> SELECT SDO_LRS.GEOM_SEGMENT_START_PT(a.route_geometry, m.diminfo)
 2 FROM lrs_routes a, user_sdo_geom_metadata m
 3 WHERE m.table_name = ’LRS_ROUTES’ AND a.route_id = 1;

SDO_LRS.GEOM_SEGMENT_START_PT(A.ROUTE_GEOMETRY,M.DIMINFO)(SDO_GTYPE, SDO_SRID, S
--
SDO_GEOMETRY(3001, 0, NULL, SDO_ELEM_INFO_ARRAY(1, 1, 1), SDO_ORDINATE_ARRAY(2,
2, 0))

SQL>
SQL> -- What is the end point of Route1?
SQL> SELECT SDO_LRS.GEOM_SEGMENT_END_PT(a.route_geometry, m.diminfo)
 2 FROM lrs_routes a, user_sdo_geom_metadata m
 3 WHERE m.table_name = ’LRS_ROUTES’ AND a.route_id = 1;

SDO_LRS.GEOM_SEGMENT_END_PT(A.ROUTE_GEOMETRY,M.DIMINFO)(SDO_GTYPE, SDO_SRID, SDO
--
SDO_GEOMETRY(3001, 0, NULL, SDO_ELEM_INFO_ARRAY(1, 1, 1), SDO_ORDINATE_ARRAY(5,
14, 27))

SQL>
SQL> -- Shift by 5 (for example, 5-mile segment added before original start)
SQL> SELECT SDO_LRS.SCALE_GEOM_SEGMENT(a.route_geometry, m.diminfo, 0, 27, 5)
E-28 Oracle Spatial User’s Guide and Reference

Example
 2 FROM lrs_routes a, user_sdo_geom_metadata m
 3 WHERE m.table_name = ’LRS_ROUTES’ AND a.route_id = 1;

SDO_LRS.SCALE_GEOM_SEGMENT(A.ROUTE_GEOMETRY,M.DIMINFO,0,27,5)(SDO_GTYPE, SDO_SRI
--
SDO_GEOMETRY(3002, NULL, NULL, SDO_ELEM_INFO_ARRAY(1, 2, 1), SDO_ORDINATE_ARRAY(
2, 2, 5, 2, 4, 7, 8, 4, 13, 12, 4, 17, 12, 10, 23, 8, 10, 27, 5, 14, 32))

SQL>
SQL> -- Reverse direction (for example, to concatenate with another road)
SQL> SELECT SDO_LRS.SCALE_GEOM_SEGMENT(a.route_geometry, m.diminfo,27, 0, 0)
 2 FROM lrs_routes a, user_sdo_geom_metadata m
 3 WHERE m.table_name = ’LRS_ROUTES’ AND a.route_id = 1;

SDO_LRS.SCALE_GEOM_SEGMENT(A.ROUTE_GEOMETRY,M.DIMINFO,27,0,0)(SDO_GTYPE, SDO_SRI
--
SDO_GEOMETRY(3002, NULL, NULL, SDO_ELEM_INFO_ARRAY(1, 2, 1), SDO_ORDINATE_ARRAY(
5, 14, 0, 8, 10, 5, 12, 10, 9, 12, 4, 15, 8, 4, 19, 2, 4, 25, 2, 2, 27))

SQL> -- "Convert" mile measures to kilometers (27 * 1.609 = 43.443)
SQL> SELECT SDO_LRS.SCALE_GEOM_SEGMENT(a.route_geometry, m.diminfo, 0, 43.44
3, 0)
 2 FROM lrs_routes a, user_sdo_geom_metadata m
 3 WHERE m.table_name = ’LRS_ROUTES’ AND a.route_id = 1;

SDO_LRS.SCALE_GEOM_SEGMENT(A.ROUTE_GEOMETRY,M.DIMINFO,0,43.443,0)(SDO_GTYPE, SDO
--
SDO_GEOMETRY(3002, NULL, NULL, SDO_ELEM_INFO_ARRAY(1, 2, 1), SDO_ORDINATE_ARRAY(
2, 2, 0, 2, 4, 3.218, 8, 4, 12.872, 12, 4, 19.308, 12, 10, 28.962, 8, 10, 35.398
, 5, 14, 43.443))

SQL>
SQL> -- Clip a piece of Route1.
SQL> SELECT SDO_LRS.CLIP_GEOM_SEGMENT(a.route_geometry, m.diminfo, 5, 10)
 2 FROM lrs_routes a, user_sdo_geom_metadata m
 3 WHERE m.table_name = ’LRS_ROUTES’ AND a.route_id = 1;

SDO_LRS.CLIP_GEOM_SEGMENT(A.ROUTE_GEOMETRY,M.DIMINFO,5,10)(SDO_GTYPE, SDO_SRID,
--
SDO_GEOMETRY(3002, NULL, NULL, SDO_ELEM_INFO_ARRAY(1, 2, 1), SDO_ORDINATE_ARRAY(
5, 4, 5, 8, 4, 8, 10, 4, 10))

Linear Referencing System E-29

Example
SQL>
SQL> -- Point (9,3,NULL) is off the road; should return (9,4,9).
SQL> SELECT SDO_LRS.PROJECT_PT(a.route_geometry, m.diminfo,
 2 MDSYS.SDO_GEOMETRY(3001, NULL, NULL,
 3 MDSYS.SDO_ELEM_INFO_ARRAY(1, 1, 1),
 4 MDSYS.SDO_ORDINATE_ARRAY(9, 3, NULL)))
 5 FROM lrs_routes a, user_sdo_geom_metadata m
 6 WHERE m.table_name = ’LRS_ROUTES’ AND a.route_id = 1;

SDO_LRS.PROJECT_PT(A.ROUTE_GEOMETRY,M.DIMINFO,MDSYS.SDO_GEOMETRY(3001,NULL,NULL,
--
SDO_GEOMETRY(3001, NULL, NULL, SDO_ELEM_INFO_ARRAY(1, 1, 1), SDO_ORDINATE_ARRAY(
9, 4, 9))

SQL>
SQL> -- Return the measure of the projected point.
SQL> SELECT SDO_LRS.GET_MEASURE(
 2 SDO_LRS.PROJECT_PT(a.route_geometry, m.diminfo,
 3 MDSYS.SDO_GEOMETRY(3001, NULL, NULL,
 4 MDSYS.SDO_ELEM_INFO_ARRAY(1, 1, 1),
 5 MDSYS.SDO_ORDINATE_ARRAY(9, 3, NULL))),
 6 m.diminfo)
 7 FROM lrs_routes a, user_sdo_geom_metadata m
 8 WHERE m.table_name = ’LRS_ROUTES’ AND a.route_id = 1;

SDO_LRS.GET_MEASURE(SDO_LRS.PROJECT_PT(A.ROUTE_GEOMETRY,M.DIMINFO,MDSYS.SDO_GEOM
--
 9
SQL>
SQL> -- Is point (9,3,NULL) a valid LRS point? (Should return TRUE.)
SQL> SELECT SDO_LRS.VALID_LRS_PT(
 2 MDSYS.SDO_GEOMETRY(3001, NULL, NULL,
 3 MDSYS.SDO_ELEM_INFO_ARRAY(1, 1, 1),
 4 MDSYS.SDO_ORDINATE_ARRAY(9, 3, NULL)),
 5 m.diminfo)
 6 FROM lrs_routes a, user_sdo_geom_metadata m
 7 WHERE m.table_name = ’LRS_ROUTES’ AND a.route_id = 1;

SDO_LRS.VALID_LRS_PT(MDSYS.SDO_GEOMETRY(3001,NULL,NULL,MDSYS.SDO_ELEM_INFO_ARRAY
--
TRUE

SQL>
SQL> -- Locate the point on Route1 at measure 9, offset 0.
E-30 Oracle Spatial User’s Guide and Reference

Error Messages for Linear Referencing System
SQL> SELECT SDO_LRS.LOCATE_PT(a.route_geometry, m.diminfo, 9, 0)
 2 FROM lrs_routes a, user_sdo_geom_metadata m
 3 WHERE m.table_name = ’LRS_ROUTES’ AND a.route_id = 1;

SDO_LRS.LOCATE_PT(A.ROUTE_GEOMETRY,M.DIMINFO,9,0)(SDO_GTYPE, SDO_SRID, SDO_POINT
--
SDO_GEOMETRY(3001, NULL, NULL, SDO_ELEM_INFO_ARRAY(1, 1, 1), SDO_ORDINATE_ARRAY(
9, 4, 9))

E.6 Error Messages for Linear Referencing System
This section lists the LRS error messages, including the cause and recommended
user action for each.

ORA-13331 invalid LRS segment
Cause: The given LRS segment was not a valid line string.

Action: A valid LRS geometric segment is a line string geometry in Oracle Spa-
tial. It could be a simple or compound line string (made of lines or arcs, or
both). The dimension information must include the measure dimension as the
last element in Oracle Spatial metadata. Currently, the number of dimensions
for an LRS segment must be greater than 2 (x/y or latitude/longitude plus mea-
sure).

ORA-13332 invalid LRS point
Cause: The given LRS point was not a valid LRS point.

Action: A valid LRS point is a point geometry in Oracle Spatial with additional
measure dimension. The dimension information must include the measure
dimension as the last element in the Spatial metadata. Currently, the number of
dimensions for an LRS segment must be greater than 2 (x/y or latitude/longi-
tude plus measure).

ORA-13333 invalid LRS measure
Cause: The given measure for linear referencing was out of linear measure
range.

Action: The start and end measures of a geometric segment define the measure
range of the segment. Any valid measures for a geometric segment must be
within its measure range. The measures are always in an ascending order from
the start to the end point.

ORA-13334 LRS segments not connected
Cause: The given geometric segments were not connected.
Linear Referencing System E-31

Error Messages for Linear Referencing System
Action: For concatenating two geometric segments, the two segments must be
spatially connected. That is, the end point of the first segment must be the same
as the start point of the second segment.

ORA-13335 LRS segment is not defined
Cause: The given start or end measures are not defined, or some assigned
measures in between are not in an ascending order.

Action: An LRS geometric segment is defined if its start and end measure are
assigned (non-null). Any other measures assigned on the segment must be in an
ascending order.

ORA-13336 LRS conversion failure
Cause: The conversion of an LRS geometry or layer was not successful.

Action: Check the following to see if they are valid: the geometry type for a
geometry conversion, or the geometry type and dimensional information (dim-
info) for a layer conversion. For example, polygon geometries are invalid as
input to LRS functions.
E-32 Oracle Spatial User’s Guide and Reference

Glossary

area

An extent or region of dimensional space.

attribute

Descriptive information characterizing a geographical feature such as a point, line,
or area.

attribute data

Nondimensional data that provides additional descriptive information about
multidimensional data, for example a class or feature such as a bridge or a road.

batch geocoding

An operation that simultaneously geocodes many records from one table. See also
geocoding.

boundary

1. The lower or upper extent of the range of a dimension, expressed by a numeric
value.

2. The line representing the outline of a polygon.

Cartesian coordinate system

A coordinate system in which the location of a point in n-dimensional space is
defined by distances from the point to the reference plane. Distances are measured
parallel to the planes intersecting a given reference plane. See also coordinate
system.
Glossary-1

contain

To describe a geometric relationship where one object encompasses another and the
inner object does not touch any boundaries of the outer. The outer object contains
the inner object. See also inside.

convex hull

A simple convex polygon that completely encloses the associated geometry object.

coordinate

A set of values uniquely defining a point in an n-dimensional coordinate system.

coordinate system

A reference system for the unique definition for the location of a point in
n-dimensional space. Also called a spatial reference system.

cover

To describe a geometric relationship in which one object encompasses another and
the inner object touches the boundary of the outer object in one or more places.

data dictionary

A repository of information about data. A data dictionary stores relational
information on all the objects in a database.

decompose

To separate or resolve into constituent parts or elements, or into simpler
compounds.

dimensional data

Data that has one or more dimensional components and is described by multiple
values.

direction

The direction of an LRS geometric segment is indicated from the start point of the
geometric segment to the end point. Measures of points on a geometric segment
always increase along the direction of the geometric segment.

disjoint

A geometric relationship where two objects do not interact in any way. Two disjoint
objects do not share any element or piece of their geometry.
Glossary-2

equal

A geometric relationship in which two objects are considered to represent the same
geometric figure. The two objects must be composed of the same number of points,
however, the ordering of the points defining the two objects’ geometries may differ
(clockwise or counterclockwise).

extent

A rectangle bounding a map, the size of which is determined by the minimum and
maximum map coordinates.

feature

An object with a distinct set of characteristics in a spatial database.

geocoding

The process of converting tables of address data into standardized address, location,
and possibly other data.

geographical information system (GIS)

A computerized database management system used for the capture, conversion,
storage, retrieval, analysis, and display of spatial data.

geographically referenced data

See spatiotemporal data.

geometry

The geometric representation of the shape of a spatial feature in some coordinate
space.

georeferenced data

See spatiotemporal data.

GIS

See geographical information system (GIS).

grid

A data structure composed of points located at the nodes of an imaginary grid. The
spacing of the nodes is constant in both the horizontal and vertical directions.
Glossary-3

HHCODE

A data type representing the intersection point of multiple dimensions. It encodes
these multiple dimensions into a unique, linear value. The HHCODE data types
were used for both spatial indexing and partitioned point data in previous releases
of Spatial.

high-water mark

Expressed in number of records and associated with the deprecated Spatial
partitioned table structure, it defines the maximum number of records to store in a
table before decomposing another level. The high-water mark determines the
maximum size of a partition within the Spatial table. Partitioned tables were an
alternative to spatial indexing.

hole

A polygon can include subelements that negate sections of its interior. For example,
consider a polygon representing a map of buildable land with an inner polygon (a
hole) representing where a lake is located.

homogeneous

Spatial data of one feature type such as points, lines, or regions.

hyperspatial data

In mathematics, any space having more than the three standard x, y, and z
dimensions, also referred to as multidimensional data.

index

Identifier that is not part of a database and used to access stored information.

inside

To describe a geometric relationship where one object is surrounded by a larger
object and the inner object does not touch the boundary of the outer. The smaller
object is inside the larger. See also contain.

key

A field in a database used to obtain access to stored information.

keyword

Synonym for reserved word.
Glossary-4

latitude

North/South position of a point on the Earth defined as the angle between the
normal to the Earth’s surface at that point and the plane of the equator.

line

A geometric object represented by a series of points, or inferred as existing between
two coordinate points.

linear feature

Any spatial object that can be treated as a logical set of linear segments.

longitude

East/West position of a point on the Earth defined as the angle between the plane of
a reference meridian and the plane of a meridian passing through an arbitrary
point.

measure

The linear distance (in the LRS measure dimension) measured from the start point
of the geometric segment.

measure range

The measure values at the start and end measures of a geometric segment.

multidimensional data

See hyperspatial data.

offset

The perpendicular distance between a point along a geometric segment and the
geometric segment. Offsets are positive if points are on the left side along the
segment direction and are negative if they are on the right side. Points are on a
geometric segment if their offsets to the segment are zero.

partition

1. The spatial table that contains data only for a unique bounded n-dimensional
space.

2. The process of grouping data into partitions that maintain the dimensional
organization of the data.
Glossary-5

partition key column

The primary HHCODE column that is used to dimensionally partition the data.
One HHCODE data type column must be identified as the partition key for the
table to be registered as partitionable in the Spatial data dictionary. There can be
only one partition key per spatial table. Note that this is only used for the
deprecated partitioned point data model, and not for spatially indexed data.

partitioned table

The spatial logical table structure that contains one or more partitions. Use
partitioned tables only if you are dealing with a very large amount of legacy point
data (over 50 gigabytes).

polygon

A class of spatial objects having a nonzero area and perimeter, and representing a
closed boundary region of uniform characteristics.

primary filter

The operation that permits fast selection of candidate records to pass along to the
secondary filter. The primary filter compares geometry approximations to reduce
computation complexity and is considered a lower-cost filter. Because the primary
filter compares geometric approximations, it returns a superset of the exact result
set. See also secondary filter and two-tier query model.

projection

The point on the LRS geometric segment with the minimum distance to the
specified point.

proximity

A measure of inter-object distance.

query

A set of conditions or questions that form the basis for the retrieval of information
from a database.

query window

Area within which the retrieval of spatial information and related attributes is
performed.

RDBMS

See Relational Database Management System (RDBMS).
Glossary-6

recursion

A process, function, or routine that executes continuously until a specified condition
is met.

region

An extent or area of multidimensional space.

Relational Database Management System (RDBMS)

A computer program designed to store and retrieve shared data. In a relational
system, data is stored in tables consisting of one or more rows, each containing the
same set of columns. Oracle8i is an object-relational database management system.
Other types of database systems are called hierarchical or network database
systems.

resolution

The number of subdivision levels of data.

scale

1. The number of digits to the right of the decimal point in a number representing
the level of resolution of an HHCODE instance.

2. The ratio of the distance on a map, photograph, or image to the corresponding
image on the ground, all expressed in the same units.

SD*Converter

A utility used with previous releases of Spatial Data Option to prepare data for
loading into spatial tables. Loading is now accomplished through SQL*Loader.

secondary filter

The operation that applies exact computations to geometries that result from the
primary filter. The secondary filter yields an accurate answer to a spatial query. The
secondary filter operation is computationally expensive, but it is only applied to the
primary filter results, not the entire data set. See also primary filter and two-tier
query model.

shape points

Points that are specified when an LRS segment is constructed, and that are assigned
measure information.
Glossary-7

SLF

See Spatial Load Format (SLF).

sort

The operation of arranging a set of items according to a key that determines the
sequence and precedence of items.

spatial

A generic term used to reference the mathematical concept of n-dimensional data.

spatial data

Data that is referenced by its location in n-dimensional space. The position of spatial
data is described by multiple values. See also hyperspatial data.

spatial database

A database containing information indexed by location.

spatial data model

A model of how objects are located on a spatial context.

Spatial data dictionary

An extension of the Oracle8i data dictionary. It keeps track of the number of
partitions created in a spatial table. The Spatial data dictionary is owned by user
MDSYS. The data dictionary is used only by the deprecated partitioned point
routines.

spatial data structures

A class of data structures designed to store spatial information and facilitate its
manipulation.

spatial join

A query in which each of the geometries in one layer is compared with each of the
geometries in the other layer. Comparable to a spatial cross product.

Spatial Load Format (SLF)

The format used to load data into spatial tables in a previous release of Spatial Data
Option. Loading is now accomplished with the standard SQL*Loader.
Glossary-8

spatial query

A query that includes criteria for which selected features must meet location
conditions.

spatial reference system

See coordinate system.

spatiotemporal data

Data that contains time and/or location components as one of its dimensions, also
referred to as geographically referenced data or georeferenced data.

SQL*Loader

A utility to load formatted data into spatial tables.

tessellation

The process of covering a geometry with rectangular tiles without gaps or overlaps.

tiling

 See tessellation.

touch

A geometric relationship where two objects share a common point on their
boundaries, but their interiors do not intersect.

two-tier query model

The query model used by Spatial to resolve spatial queries and spatial joins. Two
distinct filtering operations (primary and secondary) are performed to resolve
queries. The output of both operations yields the exact result set. See also primary
filter and secondary filter.
Glossary-9

Glossary-10

Index

Numerics
8.1.7

changes to this guide for release 8.1.7, xxiii
migrating to release 8.1.7, 10-5
migrating to release 8.1.7 from release

8.1.5, 10-2

A
administrative procedures, 15-1
ALL_SDO_GEOM_METADATA view, 2-18
ALL_SDO_INDEX_METADATA view, 2-20
ALTER INDEX, 5-2

REBUILD, 5-5
RENAME TO, 5-8

ANYINTERACT, 7-5, 17-3
arcs, A-14
area, 7-7
authalic sphere, D-3
average minimum bounding rectangle, 11-2
AVERAGE_MBR, 11-2, 16-2

B
batch geocoding, C-4
bounding rectangle

minimum, 11-14
buffer area, 7-9
BUILD_WINDOW, 18-3
BUILD_WINDOW_FIXED, 18-5
bulk loading, 3-1, 13-2

C
C language examples (using OCI), 1-26
Cartesian coordinates, D-2
center of gravity (centroid), 7-11
centroid, 7-11
circle, 2-11, A-14
CLEAN_WINDOW, 18-7
CLEANUP_GID, 18-8
clip, E-11
CLIP_GEOM_SEGMENT, 9-5
COLUMN_NAME (in USER_SDO_GEOM_

METADATA), 2-19
compound element, 2-9
CONCATENATE_GEOM_SEGMENT, 9-59
concatenating geometric segments, E-12
CONNECTED_GEOM_SEGMENTS, 9-10
consistency check, 7-33, 17-5
CONTAINS, 7-5, 17-3
control file, 13-2
CONVERT_TO_LRS_DIM_ARRAY, 9-12
CONVERT_TO_LRS_GEOM, 9-14
CONVERT_TO_LRS_LAYER, 9-16
CONVERT_TO_STD_DIM_ARRAY, 9-18
CONVERT_TO_STD_GEOM, 9-20
CONVERT_TO_STD_LAYER, 9-22
converting geometric segments

functions for, 9-3
overview, E-17

convex hull, 7-13
coordinate systems

conceptual and usage information, D-1
error messages, D-14
example, D-8
Index-1

coordinates
Cartesian, D-2
geodetic, D-2
geographic, D-2
projected, D-2

COVEREDBY, 7-5, 17-3
COVERS, 7-5, 17-4
cr_spatial_index.sql, A-16
CREATE INDEX, 5-9
CREATE_WINDOW_LAYER, 18-9
creating geometric segments

functions for, 9-1
creating layer tables, A-17
crlayer.sql, A-17
CS_SRS table, D-3
customized geometry types, A-14

D
data model, 1-6, A-1

LRS, E-7
datum

geodetic, D-2
transformation, D-3

DBA_SDO_GEOM_METADATA view, 2-18
DBA_SDO_INDEX_METADATA view, 2-20
DEFINE_GEOM_SEGMENT, 9-24
difference, 7-15
dimension (in SDO_GTYPE), 2-7
DIMINFO (in USER_SDO_GEOM_

METADATA), 2-19
direction of geometric segment, E-3

concatenation result, E-13
disjoint, 7-5, 17-4
displaying geometries, A-18, A-20
distance, 7-39
DROP INDEX, 5-14
dynamic query window, 4-3, 14-4
DYNAMIC_SEGMENT, 9-27

E
editing geometric segments

functions for, 9-1
ELEM_INFO (SDO_ELEM_INFO), 2-8

element, 1-6
ellipsoids

list of supported, D-6
enabling third-party geocoders, C-11
EQUAL, 7-5, 17-4
error messages, xxiv

coordinate systems, D-14
linear referencing system, E-31

ESTIMATE_INDEX_PERFORMANCE, 11-4, 16-3
ESTIMATE_TILING_LEVEL, 11-7, 16-5
ESTIMATE_TILING_TIME, 11-9, 16-8
ESTIMATE_TOTAL_NUMTILES, 11-11
ETYPE (SDO_ETYPE), 2-9
examples

C, 1-26
coordinate systems, D-8
creating, indexing, and querying spatial

data, 2-1
directory, 1-25
Linear Referencing System (LRS), E-19
OCI (Oracle Call Interface), 1-26
PL/SQL, 1-26
SQL, 1-26

extent, 16-9
EXTENT_OF, 11-14, 16-9
exterior polygon rings, 2-7, 2-9, 2-14, 2-15

F
features

linear, E-6
filter, 14-6
FIND_MEASURE, 9-29
fixed indexing, 1-13
fixed-size tiles, 3-12, 13-7, 15-5, 15-14
FROM_815_TO_81x, 10-2
functions

CLIP_GEOM_SEGMENT, 9-5
CONCATENATE_GEOM_SEGMENT, 9-59
CONNECTED_GEOM_SEGMENTS, 9-10
CONVERT_TO_LRS_DIM_ARRAY, 9-12
CONVERT_TO_LRS_GEOM, 9-14
CONVERT_TO_LRS_LAYER, 9-16
CONVERT_TO_STD_DIM_ARRAY, 9-18
CONVERT_TO_STD_GEOM, 9-20
Index-2

CONVERT_TO_STD_LAYER, 9-22
DEFINE_GEOM_SEGMENT procedure, 9-24
DYNAMIC_SEGMENT, 9-27
FIND_MEASURE, 9-29
GEOM_SEGMENT_END_MEASURE, 9-41
GEOM_SEGMENT_END_PT, 9-33
GEOM_SEGMENT_LENGTH, 9-35
GEOM_SEGMENT_START_MEASURE, 9-37
GEOM_SEGMENT_START_PT, 9-39
GET_MEASURE, 9-41
IS_GEOM_SEGMENT_DEFINED, 9-69
LOCATE_PT, 9-45
MEASURE_RANGE, 9-47
MEASURE_TO_PERCENTAGE, 9-49
PERCENTAGE_TO_MEASURE, 9-51
PROJECT_PT, 9-53
REDEFINE_GEOM_SEGMENT, 9-55
REVERSE_MEASURE, 9-57
SCALE_GEOM_SEGMENT, 9-59
SPLIT_GEOM_SEGMENT procedure, 9-62
TRANSLATE_MEASURE, 9-65
VALID_GEOM_SEGMENT, 9-67
VALID_LRS_PT, 9-69
VALID_MEASURE, 9-71

G
generic geocoding interface, C-1
GEOCODE_SCHEMA_PROPERTY_TYPE, C-5
GEOCODE_SERVER_PROPERTY_TYPE, C-4
GEOCODE_TABLE_COLUMN_TYPE, C-5
GEOCODE_TASK_METADATA, C-4
geocoder metadata, C-3
GEOCODER_HTTP package, C-10
geocoding

generic interface, C-1
geocoding support

interMedia Locator, A-17
geodetic coordinates, D-2
geodetic datum, D-2
geographic coordinates, D-2
GeoImage feature, xxiv
GEOM_SEGMENT_END_MEASURE, 9-41
GEOM_SEGMENT_END_PT, 9-33
GEOM_SEGMENT_LENGTH, 9-35

GEOM_SEGMENT_START_MEASURE, 9-37
GEOM_SEGMENT_START_PT, 9-39
geometric primitive, 1-4
geometric segment

clipping, E-11
concatenating, E-12
converting (functions for), 9-3
converting (overview), E-17
creating (functions for), 9-1
direction, E-3
direction with concatenation, E-13
editing (functions for), 9-1
locating point on, E-15
projecting point onto, E-17
querying (functions for), 9-2
scaling, E-14
splitting, E-12

geometric segments, E-2
geometry types, 1-4

custom, A-14
object-relational, 2-6
relational, 12-3

GET_MEASURE, 9-41
GIS, 1-3
GTYPE (SDO_GTYPE), 2-6

H
HISTOGRAM_ANALYSIS, 11-16, 16-10
hybrid indexing, 1-18

I
index

creation, 3-11
creation (cross-schema), 3-16
creation in parallel, A-14
description of Spatial indexing, 1-9
performance, 11-4, 16-3
quadtree, 1-12
R-tree, 1-10
R-tree (requirements before creating), 1-11

inserting spatial data, 13-4
INSIDE, 7-6, 17-4
INTEPRETATION (SDO_INTERPRETATION), 2-9
Index-3

interaction, 7-5, 17-3
interior polygon rings, 2-7, 2-9, 2-14, 2-15
interMedia Locator, A-17
intersection, 7-20
IS_GEOM_SEGMENT_DEFINED, 9-69

J
Java Virtual Machine, C-2
JVM (Java Virtual Machine), C-2

L
layer, 1-7, A-17

transforming, 8-5
validating, 7-36

length (SDO_LENGTH), 7-23
line, 2-12

length, 7-23
line data, 1-6
linear features, E-6
linear measure, E-3
Linear Referencing System (LRS)

conceptual and usage information, E-1
data model, E-7
error messages, E-31
example, E-19
function reference information, 9-1
limiting indexing to X and Y dimensions, E-8
LRS point, E-6
segments, E-2

loading process, 3-1, 13-2
in parallel, A-14

LOCATE_PT, 9-45
location, 1-3
Locator (interMedia), A-17
long transactions (Workspace Management), xxiv
LRS

See Linear Referencing System (LRS)
LRS point, E-6

M
map projections

list of supported, D-5

MDSYS schema, 1-1
MDSYS.CS_SRS table, D-3
measure, E-3
measure populating, E-4
measure range, E-6
MEASURE_RANGE, 9-47
MEASURE_TO_PERCENTAGE, 9-49
metadata for geocoding, C-3
migration

OGIS, 10-8, 10-9
to current Spatial release, 10-5
to current Spatial release from 8.1.5, 10-2
to release 7.3.4, 10-3

minimum bounding rectangle, 11-2, 11-14, 16-2,
16-9

average, 11-2
MIX_INFO, 11-18, 16-12
multimatch table, C-9
multiple matches, C-9
multipolygon, 2-15

N
nearest neighbor (SDO_NN), 6-6

O
object-relational model

schema, 2-1
OCI (Oracle Call Interface) examples, 1-26
offset, E-3
OGIS_METADATA_FROM, 10-8
OGIS_METADATA_TO, 10-9
operators

cross-schema invocation, 4-9
SDO_FILTER, 6-2
SDO_NN, 6-6
SDO_RELATE, 6-8
SDO_WITHIN_DISTANCE, 6-13

Oracle Call Interface (OCI) examples, 1-26
Oracle Technology Network (OTN), xxiv
oracle.spatial.geocoder.Metadata, C-9
OVERLAPBDYDISJOINT, 7-6, 17-4
OVERLAPBDYINTERSECT, 7-6, 17-4
Index-4

P
parallel load, A-14
partitioned tables, 1-25, A-14
PERCENTAGE_TO_MEASURE, 9-51
plotting tiles, A-5
PL/SQL and SQL examples, 1-26
point

locating on geometric segment, E-15
LRS, E-6
shape, E-2

point data, 1-6, 15-8, A-9
point on surface of polygon, 7-25
polygon

area of, 7-7
centroid, 7-11
exterior and interior rings, 2-7, 2-9, 2-14, 2-15
point on surface, 7-25

polygon collection, 2-15
polygon data, 1-6
POPULATE_INDEX, 15-3
POPULATE_INDEX_FIXED, 15-5
POPULATE_INDEX_FIXED_POINTS, 15-8
populating

measure, E-4
primary filter, 14-6
primitive, 1-4
problems in current release, D-7
procedures

DEFINE_GEOM_SEGMENT, 9-24
SPLIT_GEOM_SEGMENT, 9-62

PROJECT_PT, 9-53
projected coordinates, D-2
projection, E-6

point onto geometric segment, E-17
PROJECT_PT function, 9-53

Q
quadtree indexes, 1-12
query, 1-8
query window, 4-3, 14-4
querying geometric segments

functions for, 9-2

R
range

measure, E-6
rectangle, 2-11

minimum bounding, 11-14
REDEFINE_GEOM_SEGMENT, 9-55
rejected records, C-9
RELATE, 7-4, 17-2
relational model

schema, 12-1
release 8.1.7

changes to this guide, xxiii
migrating to release 8.1.7, 10-5
migrating to release 8.1.7 from release

8.1.5, 10-2
restrictions in current release, D-7
REVERSE_MEASURE, 9-57
rollback segment

R-tree index creation, 1-11
R-tree indexes, 1-10

before creating, 1-11
sequence object, 2-23

S
sample program, A-18, A-20
SCALE_GEOM_SEGMENT, 9-59
scaling a geometric segment, E-14
schema, 12-1

creating index on table in another schema, 3-16
invoking operators on table in another

schema, 4-9
object-relational model, 2-1
relational model, 12-1

SDO_AREA, 7-7
SDO_BUFFER, 7-9
SDO_CENTROID, 7-11
SDO_CODE, 2-22
SDO_CODE_SIZE, 15-10
SDO_CONVEXHULL, 7-13
SDO_DIFFERENCE, 7-15
SDO_DISTANCE, 7-18
SDO_ELEM_INFO, 2-8
SDO_ETYPE, 2-9
Index-5

SDO_FILTER operator, 6-2
SDO_GEOMETRY object type, 2-6
SDO_GROUPCODE, 2-22
SDO_GTYPE, 2-6
SDO_INDEX_TABLE, 2-22
SDO_INDX_DIMS, E-8
SDO_INTERPRETATION, 2-9
SDO_INTERSECTION, 7-20
SDO_LENGTH, 7-23
SDO_LEVEL, 1-12
SDO_NN

optimizer hint, 6-7
SDO_NN operator, 6-6
SDO_NUMTILES, 1-12
SDO_ORDINATES, 2-12
SDO_POINT, 2-8
SDO_POINTONSURFACE, 7-25
SDO_POLY_xxx functions (deprecated and

removed), 7-2
SDO_RELATE operator, 6-8
SDO_ROWID, 2-22
SDO_RTREE_SEQ_NAME, 2-23
SDO_SRID, 2-8
SDO_STARTING_OFFSET, 2-8
SDO_STATUS, 2-22
SDO_UNION, 7-27
SDO_VERSION, 15-11
SDO_WITHIN_DISTANCE operator, 6-13
SDO_XOR, 7-30
secondary filter, 14-7
segments

geometric, E-2
sequence object for R-tree index, 2-23
shape point, E-2
simple element, 2-9
SORT_AREA_SIZE parameter

R-tree index creation, 1-11
spatial data structures

object-relational model, 2-1
relational model, 12-1

spatial database
sizing, A-4

spatial index
See index

Spatial Index Advisor

using to determine best tiling level, 3-14
spatial indexing

fixed, 1-13
hybrid, 1-18

spatial join, 4-9, 14-8, A-11
spatial query, 4-3, 14-4
spatial reference systems

conceptual and usage information, D-1
example, D-8

sphere
authalic, D-3

SPLIT_GEOM_SEGMENT, 9-62
splitting a geometric segment, E-12
SQL and PL/SQL examples, 1-26
SQL script, A-16
SQL*Loader, 3-1, 13-2
SRID

in USER_SDO_GEOM_METADATA, 2-20
SDO_SRID in SDO_GEOMETRY, 2-8

T
table partitioning, 1-25
TABLE_NAME (in USER_SDO_GEOM_

METADATA), 2-19
tessellation, 1-13, 13-6
tile, 1-12, 4-1, 14-1
tiling, 11-7, 15-14, 16-5, A-2
TO_734, 10-3
TO_81x, 10-5
tolerance, 1-7
TOUCH, 7-6, 17-4
transactional insert, 3-3, 13-4
TRANSFORM (function), 8-2
TRANSFORM_LAYER (procedure), 8-5
Transform_Layer (procedure)

table for transformed layer, 8-6
transformation, D-3
TRANSLATE_MEASURE, 9-65
two-tier query, 1-8, 4-1, 14-1

U
union, 7-27
UPDATE_INDEX, 15-12
Index-6

UPDATE_INDEX_FIXED, 15-14
USER_SDO_GEOM_METADATA view, 2-18
USER_SDO_INDEX_METADATA view, 2-20

V
VALID_GEOM_SEGMENT, 9-67
VALID_LRS_PT, 9-69
VALID_MEASURE, 9-71
VALIDATE_GEOMETRY, 7-33, 17-5
VALIDATE_LAYER, 7-36
VERIFY_LAYER, 15-16
visualizing geometries, A-18, A-20
visualizing tiles, A-5, A-20

W
well-known text (WKTEXT), D-4
WITHIN_DISTANCE, 7-39
WKTEXT, D-4
Workspace Management, xxiv

X
XOR, 7-30
Index-7

Index-8

	PDF Directory
	List of Examples
	List of Figures
	List of Tables
	Send Us Your Comments
	Preface
	Audience
	Organization
	Changes for Release 8.1.7
	Features Released Separately
	Related Documents
	Conventions

	1 Spatial Concepts
	1.1� What Is Oracle Spatial?
	1.2� Object-Relational and Relational Models
	1.2.1� Benefits of the Object-Relational Model
	1.2.2� Benefits of the Relational Model

	1.3� Introduction to Spatial Data
	1.4� Geometric Types for Relational and Object-Relational Models
	1.5� Data Model
	1.5.1� Element
	1.5.2� Geometry
	1.5.3� Layer
	1.5.4� Tolerance

	1.6� Query Model
	1.7� Indexing of Spatial Data
	1.7.1� R-tree Indexing
	1.7.2� Quadtree Indexing

	1.8� Spatial Relations and Filtering
	1.9� Partitioned Point Data
	1.10� Examples

	Part I� Object-Relational Model
	2 The Object-Relational Schema
	2.1� Simple Example: Inserting, Indexing, and Querying Spatial Data
	2.2� SDO_GEOMETRY Object Type
	2.2.1� SDO_GTYPE
	2.2.2� SDO_SRID
	2.2.3� SDO_POINT
	2.2.4� SDO_ELEM_INFO
	2.2.5� SDO_ORDINATES
	2.2.6� Usage Considerations

	2.3� Geometry Examples Using the Object-Relational Model
	2.3.1� Rectangle
	2.3.2� Polygon with a Hole
	2.3.3� Compound Element
	2.3.4� Compound Polygon

	2.4� Geometry Metadata Structure
	2.4.1� TABLE_NAME
	2.4.2� COLUMN_NAME
	2.4.3� DIMINFO
	2.4.4� SRID

	2.5� Spatial Index-Related Structure
	2.5.1� Spatial Index Views
	2.5.2� Spatial Index Table Definition
	2.5.3� R-Tree Index Sequence Object

	3 Loading and Indexing Spatial Object Types
	3.1� Load Process
	3.1.1� Bulk Loading
	3.1.2� Transactional Insert Using SQL

	3.2� Index Creation
	3.2.1� Determining Index Creation Behavior (Quadtree Indexes)
	3.2.2� Spatial Indexing with Fixed-Size Tiles (Quadtree Indexes)
	3.2.3� Hybrid Spatial Indexing with Fixed-Size and Variable-Sized Tiles
	3.2.4� R-tree Index Parameter Considerations
	3.2.5� Cross-Schema Index Creation

	4 Querying Spatial Data
	4.1� Query Model
	4.2� Spatial Query
	4.2.1� Primary Filter
	4.2.2� Primary and Secondary Filters
	4.2.3� Within-Distance Operator
	4.2.4� Nearest Neighbor Operator

	4.3� Spatial Join
	4.4� Cross-Schema Operator Invocation

	5 Indexing Statements
	ALTER INDEX
	ALTER INDEX REBUILD
	ALTER INDEX RENAME TO
	CREATE INDEX
	DROP INDEX

	6 Spatial Operators
	SDO_FILTER
	SDO_NN
	SDO_RELATE
	SDO_WITHIN_DISTANCE

	7 Geometry Functions
	SDO_GEOM.RELATE
	SDO_GEOM.SDO_AREA
	SDO_GEOM.SDO_BUFFER
	SDO_GEOM.SDO_CENTROID
	SDO_GEOM.SDO_CONVEXHULL
	SDO_GEOM.SDO_DIFFERENCE
	SDO_GEOM.SDO_DISTANCE
	SDO_GEOM.SDO_INTERSECTION
	SDO_GEOM.SDO_LENGTH
	SDO_GEOM.SDO_POINTONSURFACE
	SDO_GEOM.SDO_UNION
	SDO_GEOM.SDO_XOR
	SDO_GEOM.VALIDATE_GEOMETRY
	SDO_GEOM.VALIDATE_LAYER
	SDO_GEOM.WITHIN_DISTANCE

	8 Coordinate System Functions
	SDO_CS.TRANSFORM
	SDO_CS.TRANSFORM_LAYER

	9 Linear Referencing Functions
	SDO_LRS.CLIP_GEOM_SEGMENT
	SDO_LRS.CONCATENATE_GEOM_SEGMENTS
	SDO_LRS.CONNECTED_GEOM_SEGMENTS
	SDO_LRS.CONVERT_TO_LRS_DIM_ARRAY
	SDO_LRS.CONVERT_TO_LRS_GEOM
	SDO_LRS.CONVERT_TO_LRS_LAYER
	SDO_LRS.CONVERT_TO_STD_DIM_ARRAY
	SDO_LRS.CONVERT_TO_STD_GEOM
	SDO_LRS.CONVERT_TO_STD_LAYER
	SDO_LRS.DEFINE_GEOM_SEGMENT
	SDO_LRS.DYNAMIC_SEGMENT
	SDO_LRS.FIND_MEASURE
	SDO_LRS.GEOM_SEGMENT_END_MEASURE
	SDO_LRS.GEOM_SEGMENT_END_PT
	SDO_LRS.GEOM_SEGMENT_LENGTH
	SDO_LRS.GEOM_SEGMENT_START_MEASURE
	SDO_LRS.GEOM_SEGMENT_START_PT
	SDO_LRS.GET_MEASURE
	SDO_LRS.IS_GEOM_SEGMENT_DEFINED
	SDO_LRS.LOCATE_PT
	SDO_LRS.MEASURE_RANGE
	SDO_LRS.MEASURE_TO_PERCENTAGE
	SDO_LRS.PERCENTAGE_TO_MEASURE
	SDO_LRS.PROJECT_PT
	SDO_LRS.REDEFINE_GEOM_SEGMENT
	SDO_LRS.REVERSE_MEASURE
	SDO_LRS.SCALE_GEOM_SEGMENT
	SDO_LRS.SPLIT_GEOM_SEGMENT
	SDO_LRS.TRANSLATE_MEASURE
	SDO_LRS.VALID_GEOM_SEGMENT
	SDO_LRS.VALID_LRS_PT
	SDO_LRS.VALID_MEASURE

	10 Migration Procedures
	SDO_MIGRATE.FROM_815_TO_81X
	SDO_MIGRATE.TO_734
	SDO_MIGRATE.TO_81X
	SDO_MIGRATE.OGIS_METADATA_FROM
	SDO_MIGRATE.OGIS_METADATA_TO

	11 Tuning Functions and Procedures
	SDO_TUNE.AVERAGE_MBR
	SDO_TUNE.ESTIMATE_INDEX_PERFORMANCE
	SDO_TUNE.ESTIMATE_TILING_LEVEL
	SDO_TUNE.ESTIMATE_TILING_TIME
	SDO_TUNE.ESTIMATE_TOTAL_NUMTILES
	SDO_TUNE.EXTENT_OF
	SDO_TUNE.HISTOGRAM_ANALYSIS
	SDO_TUNE.MIX_INFO

	Part II� Relational Model
	12 The Relational Schema
	12.1� Database Structures for the Relational Implementation

	13 Loading Spatial Data (Relational Model)
	13.1� Load Model
	13.2� Load Process
	13.2.1� Bulk Loading
	13.2.2� Transactional Insert Using SQL

	13.3� Index Creation
	13.3.1� Choosing a Tessellation Algorithm
	13.3.2� Spatial Indexing with Fixed-Size Tiles
	13.3.3� Hybrid Spatial Indexing with Fixed-Size and Variable-Sized Tiles

	14 Querying Spatial Data (Relational Model)
	14.1� Query Model
	14.2� Spatial Index Data Structures
	14.3� Spatial Query
	14.3.1� Dynamic Query Window
	14.3.2� Primary Filter Query
	14.3.3� Secondary Filter Query

	14.4� Spatial Join

	15 Administrative Functions and Procedures for Relational Model
	SDO_ADMIN.POPULATE_INDEX
	SDO_ADMIN.POPULATE_INDEX_FIXED
	SDO_ADMIN.POPULATE_INDEX_FIXED_POINTS
	SDO_ADMIN.SDO_CODE_SIZE
	SDO_ADMIN.SDO_VERSION
	SDO_ADMIN.UPDATE_INDEX
	SDO_ADMIN.UPDATE_INDEX_FIXED
	SDO_ADMIN.VERIFY_LAYER

	16 Tuning Functions and Procedures for Relational Model
	SDO_TUNE.AVERAGE_MBR
	SDO_TUNE.ESTIMATE_INDEX_PERFORMANCE
	SDO_TUNE.ESTIMATE_TILING_LEVEL
	SDO_TUNE.ESTIMATE_TILING_TIME
	SDO_TUNE.EXTENT_OF
	SDO_TUNE.HISTOGRAM_ANALYSIS
	SDO_TUNE.MIX_INFO

	17 Geometry Functions and Procedures for Relational Model
	SDO_GEOM.RELATE
	SDO_GEOM.VALIDATE_GEOMETRY
	SDO_GEOM.VALIDATE_LAYER

	18 Window Functions and Procedures for Relational Model
	SDO_WINDOW.BUILD_WINDOW
	SDO_WINDOW.BUILD_WINDOW_FIXED
	SDO_WINDOW.CLEAN_WINDOW
	SDO_WINDOW.CLEANUP_GID
	SDO_WINDOW.CREATE_WINDOW_LAYER

	A Tuning Tips and Sample SQL Scripts
	A.1� Tuning Tips
	A.1.1� Data Modeling
	A.1.2� Understanding the Tiling Level
	A.1.3� Using Hybrid Indexes (Object-Relational Model Only)
	A.1.4� Database Sizing
	A.1.5� Visualizing the Spatial Index (Drawing Tiles)
	A.1.6� Setting the SORT_AREA_SIZE Value
	A.1.7� Tuning Point Data with the Relational Model
	A.1.8� Tuning Spatial Join Queries Using the Relational Model
	A.1.9� Using Customized Geometry Types in the Relational Model
	A.1.10� Partitioning Spatial Data Using the Relational Model
	A.1.11� Parallel Loading and Indexing of Spatial Data Using the Relational Model

	A.2� Scripts for Spatial Indexing Using the Relational Model
	A.2.1� cr_spatial_index.sql Script
	A.2.2� crlayer.sql Script

	A.3� Tools and Related Products
	A.3.1� Oracle interMedia Locator
	A.3.2� Spatial Viewer on UNIX/Motif for Relational Model
	A.3.3� Spatial Visualizer on Windows NT for the Object-Relational Model

	B Installation, Compatibility, and Migration Issues
	B.1� Introduction
	B.2� Installation Details
	B.2.1� Changing from 8.1 to 8.0 Compatibility Mode

	B.3� Compatibility Details
	B.4� Data Migration Issues
	B.5� Migrating from Spatial Release 8.1.5 or 8.1.6 to Release 8.1.7
	B.5.1� Migrating from Spatial Release 8.1.5 to Release 8.1.6
	B.5.2� Migrating from Spatial Release 8.1.6 to Release 8.1.7

	C Generic Geocoding Interface
	C.1� Locator Implementation: Benefits and Limitations
	C.2� Generic Geocoding Client
	C.3� Geocoder Metadata
	C.3.1� Server Properties
	C.3.2� Geocoding Input and Output Specification

	C.4� Metadata Helper Class
	C.5� Single-Record and Interactive Geocoding
	C.6� Java Geocoder Service Interface
	C.7� Enabling Third-Party Geocoders

	D Coordinate Systems (Spatial Reference Systems)
	D.1� Why Integrate Coordinate System Information?
	D.2� Terms and Concepts
	D.2.1� Coordinate System (Spatial Reference System)
	D.2.2� Cartesian Coordinates
	D.2.3� Geodetic Coordinates (Geographic Coordinates)
	D.2.4� Projected Coordinates
	D.2.5� Geodetic Datum
	D.2.6� Authalic Sphere
	D.2.7� Transformation (Datum Transformation)

	D.3� Coordinate Systems Data Structures
	D.3.1� MDSYS.CS_SRS Table
	D.3.2� Other Objects

	D.4� Coordinate Systems Functions and Procedures
	D.5� Restrictions and Problems in the Current Release
	D.5.1� Geometries with Longitude and Latitude Coordinates

	D.6� Example of Coordinate Systems
	D.7� Error Messages for Coordinate Systems

	E Linear Referencing System
	E.1� Terms and Concepts
	E.1.1� Geometric Segments (LRS Segments)
	E.1.2� Shape Points
	E.1.3� Direction of a Geometric Segment
	E.1.4� Measure (Linear Measure)
	E.1.5� Offset
	E.1.6� Measure Populating
	E.1.7� Measure Range of a Geometric Segment
	E.1.8� Projection
	E.1.9� LRS Point
	E.1.10� Linear Features

	E.2� LRS Data Model
	E.3� Indexing of LRS Data
	E.4� LRS Operations
	E.4.1� Defining a Geometric Segment
	E.4.2� Redefining a Geometric Segment
	E.4.3� Clipping a Geometric Segment
	E.4.4� Splitting a Geometric Segment
	E.4.5� Concatenating Two Connected Geometric Segments
	E.4.6� Scaling a Geometric Segment
	E.4.7� Locating a Point on a Geometric Segment
	E.4.8� Projecting a Point onto a Geometric Segment
	E.4.9� Converting Geometric Segments

	E.5� Example
	E.6� Error Messages for Linear Referencing System

	Glossary
	Index

