Oracle®

JavaServer Pages Developer’s Guide and Reference

Release 8.1.7

(OracleJSP 1.1.0.0.0)

July 2000
Part No. A83726-01

ORACLE

JavaServer Pages Developer’s Guide and Reference, Release 8.1.7
Part No. A83726-01

Copyright © 2000, Oracle Corporation. All rights reserved.
Primary Author: Brian Wright

Contributing Author: Michael Freedman

Contributors: Julie Basu, Alex Yiu, Sunil Kunisetty, YaQing Wang, Hal Hildebrand, Jasen Minton,
Matthieu Devin, Jose Alberto Fernandez, Olga Peschansky, Jerry Schwarz, Clement Lai, Shinji Yoshida,
Robert Pang, Ralph Gordon, Shiva Prasad, Sharon Malek, Jeremy Lizt, Kuassi Mensah, Susan Kraft,
Sheryl Maring, Ellen Barnes, Angie Long, Sanjay Singh, Olaf van der Geest

The Programs (which include both the software and documentation) contain proprietary information of
Oracle Corporation; they are provided under a license agreement containing restrictions on use and
disclosure and are also protected by copyright, patent, and other intellectual and industrial property
laws. Reverse engineering, disassembly, or decompilation of the Programs is prohibited.

The information contained in this document is subject to change without notice. If you find any problems
in the documentation, please report them to us in writing. Oracle Corporation does not warrant that this
document is error free. Except as may be expressly permitted in your license agreement for these
Programs, no part of these Programs may be reproduced or transmitted in any form or by any means,
electronic or mechanical, for any purpose, without the express written permission of Oracle Corporation.

If the Programs are delivered to the U.S. Government or anyone licensing or using the programs on
behalf of the U.S. Government, the following notice is applicable:

Restricted Rights Notice Programs delivered subject to the DOD FAR Supplement are "commercial
computer software" and use, duplication, and disclosure of the Programs, including documentation,
shall be subject to the licensing restrictions set forth in the applicable Oracle license agreement.
Otherwise, Programs delivered subject to the Federal Acquisition Regulations are "restricted computer
software" and use, duplication, and disclosure of the Programs shall be subject to the restrictions in FAR
52.227-19, Commercial Computer Software - Restricted Rights (June, 1987). Oracle Corporation, 500
Oracle Parkway, Redwood City, CA 94065.

The Programs are not intended for use in any nuclear, aviation, mass transit, medical, or other inherently
dangerous applications. It shall be the licensee's responsibility to take all appropriate fail-safe, backup,
redundancy, and other measures to ensure the safe use of such applications if the Programs are used for
such purposes, and Oracle Corporation disclaims liability for any damages caused by such use of the
Programs.

Oracle is a registered trademark, and JDeveloper ™, Net8 ™, Oracle Objects ™, Oracle8 i™, Oracle8 ™,
Oracle7 ™, Oracle Lite ™, PL/SQL ™, Pro*C ™, SQL*Net®, and SQL*Plus® are trademarks or registered
trademarks of Oracle Corporation. Other names may be trademarks of their respective owners.

Contents

SENA US YOUT COMMEINES ..ottt e et ettt et ettt s et st es et are et ee e et et eenerene Xi
PRI AC ..ottt ettt et ettt ettt et Xiii
101 (T gL (=00 I AN U o [11 g o1 ISR Xiii
DOCUIMENT STIUCTUIE ...t ettt et e et e e et et e et e ee e et e e eae e et e et e ea e e e e e satesse e s eneenneeaees Xiv
REIATE DOCUMEBNES. ... eeii ittt ettt ettt e e s et e e et e e s eae e e e ete e e sretesesbeaesabbesss bt aesstbesesssbeesasre s sannas XV
AAAITIONAI RESOUICESeeeeeitie ittt ettt et s et e et e s sttt e e s et e e e st ae s staeae e et beseaataessaaeae s st beesesteeesaes XViii
DOCUMENT CONVEINMTIONS ...ttt ettt ettt et ee e e et e e e et ee e s saeee st bessaseaessabeseassbessabeeessbbessntesesrees XiX

1 General Overview

INtrodUCtioN tO JAVASEIVEr PAJES.c.coviiiiirieiirieiiie sttt e e 1-2
What @ JSP Page LOOKS LIKE........coiiiiiii ittt s s 1-2
Convenience of JSP Coding versus Servlet CodiNg.........ccoouviiiiiiiiie i 1-3
Separation of Business Logic from Page Presentation—Calling JavaBeansc....c........ 1-5
JSP Pages and Alternative Markup LANQUAGES.ccooeiiieiieiineee et 1-5

ISP EXECULTON ...ttt e e e b et s s s e bbb 1-7
JSP Containers in a NUTESHEll ..o 1-7
JSP Pages and On-Demand TransIationccoocoviiiiiinieie e e 1-7
REQUESTING @ JSP PAJE......e ittt st et et eb e eb e er e 1-8

Overview Of JSP Syntax EIEMENTS........ccooiiiiiiee e 1-10
DIFECLIVES ...ttt bbbttt b et e bt bbbt eb et er e 1-10
SCHIPLING EIBMENTScviieiiiiciie e s 1-12
N e @] o] (=T £ T o BTt] o =T TSRS 1-14
JSP Actions and the <jSp: = Tag Selociiiiiiiii e 1-18

LI o N T o =T 1SS 1-23

2 Overview of Oracle’s JSP Implementation

Portability and Functionality Across Servlet ENVIrONMENTS..........coviiriineineinene s 2-2
OracledSP POITaDIILY ..o b 2-2
OracleJSP Extended Functionality for Servlet 2.0 ENVIrONMEeNtsSccoooeevneenneiene e 2-2

Support for OracleJSP in Oracle ENVIFONMENTSccviiiiiriiiieie e e 2-4
Overview of the Oracle Servlet ENgiNe (OSE)ccooiiiiiiiiice et eresieneseneia 2-4
Overview of the Oracle Internet Application SEIVer ... iienience e 2-5
Role of the Oracle HTTP Server, Powered by APache ... 2-6
Oracle Web Application Database ACCESS Strategiescocovevereiereienreireeireere e 2-8
Overview of Other Oracle JSP ENVIFONMENTSccoiiiiiiiie et 2-10

Support for OracleJSP in Non-Oracle ENVIFONMENTS.........ccciiiiiiinc e 2-12

Overview of OracleJSP Programmatic EXENSIONSc.couiiiiiiiinee e 2-13
Overview of Portable OraclelSP EXtENSIONS ...ttt 2-13
Overview of Oracle-Specific EXIENSIONS.ociiiiiiiiie e 2-16
Use of OracleJSP with Oracle PL/SQL SErVEr PAgEScccvverierrenire et 2-17

Summary of OracleJSP Releases and FEAtUre SetS.........cviireneiniee e 2-19
OracleJSP Releases Provided with Oracle PIatforms..........ccocovevenniencienciencenee 2-19
OracleJSP Feature Notes for Release 1.0.0.6.X.......cccoeireiieiie it e 2-20

OracleJSP EXECULION IMOGEIS ..ot e 2-21
On-Demand Translation MO ..o e 2-21
Oracle Servlet Engine Pre-Translation MOdel ..o 2-22

Oracle JDeveloper SUPPOIt FOr OraCleISPccoiiiiiiiiiie e 2-23

3 Basics

Preliminary CONSIABIALIONS ...t et e e e 3-2
Installation and Configuration OVEIVIEWcociiiiiiiiiie it 3-2
Development Environments Versus Deployment ENVIironments..........ccccoveeveeieeinineeee e, 3-2
Client-Side CONSIAEIALIONS.cccoiiiiiiiie ettt e e e et enene 3-3

Application Root and Doc ROOt FUNCLIONAIILYcviiiiiiiieiie et 3-4
Application Roots in Serviet 2.2 ENVIFONMENTSccooioiiiiniiiniieireceire e s 3-4
OracleJSP Application Root Functionality in Servlet 2.0 Environmentscc.cccoeenene. 3-5

Overview of JSP Applications and SESSIONScciiiriiriiiriie e 3-6
General OracleJSP Application and Session SUPPOIt.........coccviieriiiie e 3-6

JSP Default SESSION REGUESTES ..ottt e 3-6

JSP-SErVIEt INTEIACTIONc.iiiieiiiiici e s e e s 3-7
Invoking @ ServIet from @ JSP PAge......c.ci it e 3-7
Passing Data to a Servlet Invoked from @ JSP Page..........cccoceiiiiieniie i 3-8
Invoking @ JSP Page from @ SErVIEt..........cocoi i e 3-8
Passing Data Between a JSP Page and @ SErvIet..........ccoi i 3-9
JSP-Serviet INteraction SAMPIES. ... 3-10

JSP RESOUICE MANAGEIMENT ...ttt ettt enea 3-12
Standard Session Resource Management—HttpSessionBindingListenercc.cco.... 3-12
Overview of Oracle Extensions for Resource Management............cocoevveineineenecneennns 3-17

JSP RUNTIME EFTOr PrOCESSINGvuveviietirie ittt sttt et st bbb e e e 3-18
USING JSP EFTOE PAGES ..ottt ettt sttt ettt et e ettt st st tene et nesneenens 3-18
JSP EFror PAge EXAMPIE.. ..ottt et et bbb et e enaas 3-19

JSP Starter Sample for Database ACCESS ..o e s 3-21

4 Key Considerations

General JSP Programming Strategies, Tips, and Trapsccocoeviernieneee e 4-2
JavaBeans Versus SCHIPLIETS.covi ittt 4-2
Use of Enterprise JavaBeans iN JSP PAgESccccui ittt 4-2
Use of IDBC Performance Enhancement FEAtUIESoccvviiieie i 4-5
Static Includes Versus DYNamic INCIUAESccoeoiiiiiiiinicc e 4-9
When to Consider Creating and Using JSP Tag Libraries..........ccceovvienienieienene e 4-11
Use of a Central CheCKEr PAge... ..ot 4-12
Workarounds for Large Static Content in JSP Pages.........cccoeiiiiiniiiniienceneee e 4-13
Method Variable Declarations Versus Member Variable Declarations..............c.cccccoenene. 4-14
Page Directive CharaCteriStiCs ..ottt e e 4-15
JSP Preservation of White Space and Use with Binary Data............cccoeviinienineniie e 4-16

Key OracleJSP Configuration ISSUES ..ottt s 4-20
Optimization Of JSP EXECULIONcoiiiiiiiieeisie sttt sttt en e 4-20
Classpath and Class Loader Issues (NON-OSE ONIY).......ccccviieieninieienenieiesienese e 4-21

OracleJSP Runtime Considerations (NON-OSE ONIY).......cccocoiiiiniincencecee e 4-25
Dynamic Page REraNSIAtiONcuieiiiiiriiiie ittt 4-25
Dynamic Page REIOAINGcovviuiriiiiiiciiiieiiiet ettt ettt ber e 4-26
Dynamic Class REIOAAINGccoiiciiiiiiiiiee et e e 4-26

Considerations for the Oracle Servlet ENGiNe.........ccoociieiiiiiiiieec e 4-28

Introduction to the JServer JVM and JDBC Server-Side Internal Driver.........ccccceoevvvunee... 4-29

JSEIVET CONNECTIONS. ...ttt et s b e e e b e 4-29
Use of INDI by the Oracle ServIet ENQINe........ccooiiiiiiiie i 4-32
Equivalent Code for OracleJSP Runtime Configuration Parameters..............c.ccccovvcenne. 4-33
Considerations for Apache/JServ Servlet ENVIFONMENTS.........ccviiiiiiiiieie e 4-34
Use of Apache/JServ in the Oracle Internet Application Server..........cooovienieneenenn, 4-34
Dynamic Includes and Forwards in APache/JISErV.........ccouiiiiiiiiiinenene s 4-35
Application Framework for APACheZISEIV ...t s 4-37
JSP and Serviet SESSION SNAFING. ... oot 4-37
Directory Alias TranSIation ..o s 4-38

5 OracleJSP Extensions

Portable OracleJSP Programming EXIENSIONSccoiiiiiiiiiic e 5-2
JML EXTENAEA DALALYPEScceeviiiiee ittt ettt sttt e e ee et sa et bente et en s e 5-2
OracleJSP Support For XML and XSL ..o e 5-9
Oracle Database-ACCESS JAVABEANSccviiriiiriiiirie e e e 5-13
OraclelSP Tag Library for SQL ...t sneeneas 5-24

Oracle-Specific Programming EXTENSIONS.cciiiiriiiiiieie e 5-32
OracleJSP Event Handling—IJSPSCOPELISTENENcoeieiiieieie e 5-32
OracleJSP Support for Oracle SQLI ..ot 5-33

OracleJSP Application and Session SUpport for Serviet 2.0 ... 5-37
Overview of globals.jsa FUNCLIONALILYcooiiiiiiiiicee e 5-37
Overview of globals.jsa Syntax and SEMAaNTICScccceireiiiiie i 5-39
The globals.jsa EVeNt HANAIETS.cccoiiiiiiie e 5-42
Global Declarations and DIrECLIVES..........coeirciriciieiee e 5-46

6 JSP Translation and Deployment

Functionality of the OracleJSP TransSlator ... e 6-2
Generated Code FEATUIEScooiiiiiicc e e 6-2
Generated Package and Class Names (On-Demand Translation)..........ccccoeoeneieniincienennnne 6-4
Generated Files and Locations (On-Demand Translation)..........ccccocvviieiieieneininiece e 6-6
Sample Page Implementation Class SOUFCE ...t e 6-8

Overview of Features and Logistics in Deployment to Oracle8i...........cccocvveniinienciinceennn 6-12
Database Schema ODJECtS fOr JAVA.........ccoiviiiiiiiii i e 6-12
Oracle HTTP Server as a Front-End Web SErver ... 6-14

Vi

URLS for the Oracle ServIet ENGINEccooiiiiiiiieieie et 6-15

Static Files for JSP Applications in the Oracle Servlet ENgineg ..o, 6-17
Server-Side Versus Client-Side Translationccocooiiiiiiiiiini e, 6-19
Overview of Hotloaded Classes in Oracle8i..........cccoevveriiiiiiiiiicinecece e 6-20
Tools and Commands for Translation and Deployment to Oracle8i............cccccvevrcinninnns 6-23
The 0jSPC Pre-Translation TOO! ..ot s 6-23
Overview of the 10adjava TOOI ..o e 6-36
Overview of the sess_sh Session Shell TOOI ... 6-38
Deployment to Oracle8i with Server-Side Translation ... 6-41
Loading Untranslated JSP Pages into Oracle8i (loadjava)...........cccooeveniiniiiiniinsincineene 6-41
Translating and Publishing JSP Pages in Oracle8i (Session Shell publishjsp)................... 6-42
Deployment to Oracle8i with Client-Side Translation...........cccocoviiini i 6-54
Pre-Translating JSP PAges (OJSPC) c.evcvireireiirieiirieiisietis ettt sttt sttt 6-54
Loading Translated JSP Pages into Oracle8i (10adjava)cccoeererneine i 6-58
Hotloading Page Implementation Classes in Oracle8i............cccooviiiiiiniini i 6-62
Publishing Translated JSP Pages in Oracle8i (Session Shell publishservlet)...................... 6-63
Additional JSP Deployment CONSIAErationscccoioiviiiiiniiinete e 6-67
Doc Root for Oracle Internet Application Server Versus Oracle Servlet Engine............... 6-67
Use of ojspc for Pre-Translation for Non-OSE Environmentsc.cccovvviiincincnneenn, 6-68
General JSP Pre-Translation WithoUut EXECULION..........coceviiiiiiiie i 6-69
Deployment of BiNary FIleS ONIY ...t 6-69
RTA N R R B =T o] o)V 0 1T o | TSRS 6-70
Deployment of JSP Pages With JDEVEIOPET ..o e 6-71

7 JSP Tag Libraries and the Oracle JML Tags

Standard Tag Library FrameWO K ...ttt sr e eree s 7-2
Overview of a Custom Tag Library Implementation............cccoeovinininencnecees 7-2
QLI o i =T g o | 1= S TSP SS 7-4
Scripting Variables and Tag-EXtra-1nfo ClasSes........cccciiiiieiine i 7-7
Access to Outer Tag Handler INSTANCESccooiiiiiiiii s 7-10
Tag Library DesCription FileS ..ot st 7-10
Use of web.XmI fOr Tag LIDFari€sccoviiiie ittt 7-12
THe taglib DIFECTIVE ..ot e 7-13
End-to-End Example: Defining and Using @ CUStOM TaQG ...c.coovvierieeneieieee e 7-15
Overview of the JSP Markup Language (JML) Sample Tag Libraryccccooeininninnnen. 7-20

vii

JML Tag Library PhilOSOPRNYcc.ooiiii e 7-21

Y 1= Vo I O 1 (=T o] 13RS RTURRRRT 7-21
JML Tag Library Description File and taglib Directive...........ccccoooeeirniicienicece e, 7-22
JSP Markup Language (JML) Tag DeSCrPtiONS.........cccccvieireirie ettt 7-30
Syntax Symbology and NOTES ... 7-30
Bean Binding Tag DeSCIIPLIONS.cccuiiiiie ettt s en et et ere e e 7-30
Logic and Flow Control Tag DeSCriptioNscocieiiiiiiniie e 7-34

8 OracleJSP NLS Support

Content Type Settings in the page DIreCliVe ... e 8-2
Dynamic CoNtent TYPE SETHINGSovveiriiiectiriet ettt sttt er e er et ber e ben e 8-4
OracleJSP Extended Support for Multibyte Parameter ENcodingcccooooviiiniinciincicneenene 8-5
Effect of translate_params in Overriding Non-Multibyte Servlet Containers..................... 8-5
Code Equivalent to the translate_params Configuration Parameter............c.ccocoeevvineenenen. 8-6
NLS Sample Depending on translate_Paramscccocoeieeiiineineineeeeee e 8-7
NLS Sample Not Depending on translate_Params............ccoeureireineinenenene e 8-9

9 Sample Applications

BASIC SAMPIES ... bbb bbb b 9-2
HElO Page—hNellOUSEE JSP ... e vttt b e 9-2
USEDEAN PagE—USEDEAN.JSP ...ueiviiiriit ittt e e 9-3
] gTe] o] o] g o JOr= Vg f n- o [oaor= it 1] o LRSS 9-4

JDBC SAMPIES ...ttt bbbttt eh e e bbbt eh et eb et en e n e bene 9-10
Simple QUErY—SimMPIEQUETY.JSP .ottt ettt 9-10
User-Specified QUEry—IDBCQUETY JSP . .c.eivitriiiriiririesineeiiniei e e e 9-12
Query Using a Query Bean—UseHtmIQueryBean jSp ..o, 9-13
Connection Caching—ConnCache3.jsp and ConnCachel.jSpc.cccovveiiiineiniencneeieee 9-16

Database-Access JavaBean SamPIES.o s 9-21
Page Using DBBean—DBBEaNDEMO.JSP . ..ccuurteriieriiriiiiiie ettt st st s se s e e 9-21
Page Using ConnBean—ConnNBeanDemIO.JSP.....ccciuiiiriiriiine et e 9-23
Page Using CursorBean—CursorBeanDEMO.SPccoverrieirernierinieninie e eie et ere e enee e 9-24
Page Using ConnCacheBean—ConnCacheBeanDemo.jSPcccooevveiriernesnie s 9-26

CUSTOM Tag SAMPIES ..o s s s e b er e 9-29
JML Tag Sample—helloUser JMLJSPccuo it e 9-29
Pointers to Additional Custom Tag SAMPIESccceviiiiiiiiii e 9-31

viii

A

B

C

Samples for Oracle-Specific Programming EXtENSIONS........c.cocevieriiniiinice e 9-32

Page Using JSPSCOPELISTENEr—SCOPE.JSP vviieriieriieriietinie st sttt ettt 9-32
XML QUENY—XMLQUETY S .. .vtrtetirieitie ittt ettt ettt er bbbt 9-36
SQLJ Queries—SQLJSelectinto.sgljsp and SQLIIterator.sqliSp........ccoevveinieincincincene, 9-37
Samples Using globals.jsa for Serviet 2.0 ENVIroNmMeNtsccoooeinioeeineniene e 9-41
globals.jsa Example for Application EVeNtS—IOtt0.jSPccouvveviriiirieiniineine e s 9-41
globals.jsa Example for Application and Session Events—index1.jSPpc.cccovevervrvrnnne. 9-44
globals.jsa Example for Global Declarations—indeX2.jSPccccoeierinieieeininienie e 9-47

General Installation and Configuration

SYSTEM REQUITEMIENTS ...ttt ettt e b e eb e e eh e b e b s bbb en A-2
OracleJSP Installation and Web Server Configurationc.ccoceveninc e A-3
Required and Optional Files for OracleISP...........occiiiiiieie e A-3
Configuration of Web Server and Servlet Environment to Run OracleJSPccccoee.... A-7
OracleJSP CONTIGUIATIONc.oii ittt et ettt eb ettt b et eb bbb r e ben e A-15
OracleJSP Configuration Parameters (NON-OSE)c.ccociiiiiiiiieniiineetineeere e A-15
OracleJSP Configuration Parameter SETLINGSccocverierie et A-25

Servlet and JSP Technical Background

BaCKgrouNd 0N SEIVIETS ..o e B-2
Review Of SErviet TEChNOIOQYccooiiriiicircic e B-2
THE SErVIEt INTEITACEoei ittt sttt e et es et e e ene B-3
SEIVIEE CONTAINEIS......ocuiiiiie ettt ettt e e e s et ettt s et et st et es e st e erean s e e B-3
SEIVIEE SESSIONS ...ttt ettt et ettt et ettt et es e see st e re et ebe s e ebeeaens e ben e seeneenbeneeseaneenea B-4
SEIVIEE CONTEXES ...eeieeetitieie et sttt ettt ettt ettt s e e st es e et ebe b e et et b et en e see st erean s e e e e B-6
Application Lifecycle Management Through Event LIiStENerscoccoceeevvieeinciiienese e B-7
R=T YA Loy A [LYoo= 4 o o [SRS B-8

Web Application HIEFarchy ... e B-9

Standard JSP Interfaces and Methodscoooiiiiiiiiii e B-12

Compile-Time JML Tag Support

JML Compile-Time Versus Runtime Considerations and LOGistiCs...........c.coccovniiiiiiinnns C-2
General Compile-Time Versus Runtime Considerationsccccocveveeienenene e e C-2
The taglib Directive for Compile-Time JIML SUPPOIT ..o C-3

JML Compile-Time/1.0.0.6.X SYNTAX SUPPOIT......coieiiiirieririe ittt sttt er s eresiereee C-4

JML Bean References and Expressions, Compile-Time Implementationc.cccccenee. C-4
Attribute Settings With JIML EXPIreSSIONSocoiiiiiiriie it e C-5
JML Compile-Time/1.0.0.6.X Tag SUPPOIT.......cuiiireiire ettt er e er s er e er e sierene C-7
JML Tag Summary, 1.0.0.6.x/Compile-Time Versus 1.1.0.0.0/Runtime...........c.cccccoevvrenen. C-7
Descriptions of Additional JML Tags, Compile-Time Implementationccccoccovnne. C-8

Index

Send Us Your Comments

JavaServer Pages Developer’s Guide and Reference, Release 8.1.7
Part No. A83726-01

Oracle Corporation welcomes your comments and suggestions on the quality and usefulness of this
publication. Your input is an important part of the information used for revision.

Did you find any errors?

Is the information clearly presented?

Do you need more information? If so, where?

Are the examples correct? Do you need more examples?
What features did you like most about this manual?

If you find any errors or have any other suggestions for improvement, please indicate the chapter,
section, and page number (if available). You can send comments to us in the following ways:

Electronic mail — jpgcomnt@us.oracle.com

FAX - 650-506-7225. Attn: Java Platform Group, Information Development Manager
Postal service:

Oracle Corporation

Information Development Manager

500 Oracle Parkway, Mailstop 40p978

Redwood Shores, CA 94065

USA

Please indicate if you would like a reply.

If you have problems with the software, please contact your local Oracle World Wide Support Center.

xi

Xil

Preface

This document introduces and explains Oracle’s implementation of JavaServer
Pages (JSP) technology, specified by Sun Microsystems. The document discusses
standard features, as specified by Sun, as well as Oracle-specific extensions in the
OracleJSP product.

Note: This document is intended for use with the OracleJSP
release that accompanies Oracle8i release 8.1.7. This OracleJSP
release can be referred to as either OraclelSP release 8.1.7 or
OracleJSP release 1.1.0.0.0. It is an implementation of the Sun
Microsystems JavaServer Pages Specification, Version 1.1. Previous
versions of OracleJSP implemented the JavaServer Pages
Specification, Version 1.0.

Intended Audience

This document is intended for developers interested in using OracleJSP to create

Web applications based on JavaServer Pages technology. It assumes that working
Web and servlet environments already exist, and that readers are already familiar
with the following:

general Web technology

general servlet technology (some technical background is provided in
Appendix B)

how to configure their Web server and servlet environments
HTML

Java

xiii

« Oracle JDBC (for JSP applications accessing an Oracle database)
« Oracle SQLIJ (for JSP database applications using SQLJ)

This document focuses on Oracle JSP extensions, and on features and logistics
particular to running JSP pages in the Oracle Servlet Engine (the Web server and
servlet container inside Oracle8i).

While some information about standard JSP 1.1 technology and syntax is provided
in Chapter 1 and elsewhere, there is no attempt at completeness in this area. For
additional information about standard JSP 1.1 features, consult the Sun
Microsystems JavaServer Pages Specification, Version 1.1 or other appropriate
reference materials.

Because the JSP 1.1 specification relies on a servlet 2.2 environment, this document
is geared largely toward such environments. OracleJSP has special features for
earlier servlet environments, however, and there is special discussion of these
features as they relate to servlet 2.0 environments, particularly Apache/JServ.

Document Structure

Xiv

This document includes the following chapters and appendixes:

Chapter 1, "General Overview" This chapter reviews standard JSP 1.1 technology.
(It is not intended as a complete reference.)

Chapter 2, "Overview of This chapter discusses support for OracleJSP in

Oracle’s JSP Implementation” both Oracle and non-Oracle JSP environments,
and introduces Oracle JSP extensions and
features.

Chapter 3, "Basics" This chapter introduces basic JSP programming

considerations and provides a starter sample for
database access.

Chapter 4, "Key Considerations" This chapter discusses a variety of general
programming and configuration issues the
developer should be aware of. It also covers
considerations specific to the OSE and
Apache/JServ environments.

Chapter 5, "OraclelSP This chapter covers Oracle JSP extensions—both
Extensions" Oracle-specific extensions and extensions that are
portable to other JSP environments.

Chapter 6, "JSP Translation and
Deployment"

Chapter 7, "JSP Tag Libraries
and the Oracle JML Tags"

Chapter 8, "OracleJSP NLS
Support”

Chapter 9, "Sample
Applications"

Appendix A, "General
Installation and Configuration"

Appendix B, "Servlet and JSP
Technical Background"

Appendix C, "Compile-Time
JML Tag Support"

Related Documents

This chapter focuses on procedures and logistics
in deploying JSP pages to Oracle8i to run in the
Oracle Servlet Engine, but also covers general JSP
translation and deployment features and issues.

This chapter introduces the basic JSP 1.1
framework for custom tag libraries and also
provides an overview and tag descriptions for the
JSP 1.1 (runtime) implementation of the Oracle
JML sample tag library.

This chapter discusses both standard and
Oracle-specific features for National Language
Support.

This chapter contains a set of sample applications
covering both standard JSP technology and
Oracle extensions.

This appendix covers OraclelSP required and
optional files, configuration steps for non-Oracle
environments such as Apache/JServ and Tomcat,
and OracleJSP configuration parameters for
on-demand translation.

This appendix provides a brief background of
servlet technology and introduces the standard
JSP interfaces for translated pages.

This chapter provides an overview of the
compile-time implementation of the Oracle ML
sample tag library (as supported in pre-JSP 1.1
releases), and documents tags not supported in
the runtime implementation documented in
Chapter 7.

See the following additional documents available from the Oracle Java Platform

group:

« Oracle8i Java Developer’s Guide

This book introduces the basic concepts of Java in Oracle8i and provides
general information about server-side configuration and functionality.

XV

XVi

Information that pertains to the Oracle Java platform as a whole, rather than to
a particular product (such as JDBC, SQLJ, or EJBs) is in this book.

Oracle8i Oracle Servlet Engine User’s Guide

This book documents use of the Oracle Servlet Engine, the Web server and
servlet container inside Oracle8i.

Oracle8i Java Tools Reference

This book documents Java-related tools and utilities for use with Oracle8i or in
deploying applications to Oracle8i (such as the Oracle8i session shell and
| oadj ava tools).

Oracle8i JDBC Developer’s Guide and Reference

This book covers programming syntax and features of Oracle’s implementation
of the JDBC standard (for Java Database Connectivity). This includes an
overview of the Oracle JDBC drivers, details of Oracle’s implementation of
JDBC 1.22 and 2.0 features, and discussion of Oracle JDBC type extensions and
performance extensions.

Oracle8i JPublisher User’s Guide

This book describes how to use the Oracle JPublisher utility to translate object
types and other user-defined types to Java classes. If you are developing SQLJ
or JDBC applications that use object types, VARRAY types, nested table types,
or object reference types, then JPublisher can generate custom Java classes to
map to them.

Oracle8i SQLJ Developer’s Guide and Reference

This book covers the use of SQLJ to embed static SQL operations directly into
Java code, covering SQLJ language syntax and SQLJ translator options and
features. Both standard SQLJ features and Oracle-specific SQLJ features are
described.

Oracle8i Java Stored Procedures Developer’s Guide

This book discusses Java stored procedures—programs that run directly in the
Oracle8i server. With stored procedures (functions, procedures, database
triggers, and SQL methods), Java developers can implement business logic at
the server level, thereby improving application performance, scalability, and
security.

Oracle8i Enterprise JavaBeans Developer’s Guide and Reference

This book describes Oracle’s Enterprise JavaBeans implementation and
extensions.

Oracle8i CORBA Developer’s Guide and Reference

This book describes Oracle’s CORBA implementation and extensions.

The following documentation is for Oracle products that incorporate OracleJSP. You
may want to refer to them for JSP information, including installation and
configuration, for those products:

Oracle Internet Application Server 8i Documentation Library

Oracle Application Server, Release 4.0.8.2
Developer’s Guide: JServlet and JSP Applications

Oracle JDeveloper online help, particularly the topic "Creating JSP Pages for
Business Components"

Oracle Web-to-go Implementation Guide

The following documents from the Oracle Server Technologies group may also
contain information of interest.

Oracle8i Application Developer’s Guide - XML

This book provides information about the Oracle XML-SQL Utility. Some of this
is relevant to XML-related support provided by OracleJSP.

Oracle8i Application Developer’s Guide - Fundamentals

This book introduces basic design concepts and programming features in using
an Oracle8i database and creating database access applications.

Oracle8i National Language Support Guide

This book contains information about NLS environment variables, character
sets, and territory and locale settings. In addition, it contains an overview of
common NLS issues, typical scenarios, and NLS considerations for OCI and
SQL programmers.

Oracle8i Supplied PL/SQL Packages Reference

This book documents PL/SQL packages available as part of the Oracle8i server,
some of which may be useful to call from JDBC applications.

Xvii

« PL/SQL User’s Guide and Reference

PL/This book explains the concepts and features of PL/SQL, Oracle’s
procedural language extension to SQL.

« Oracle8i SQL Reference

This book contains a complete description of the content and syntax of the SQL
commands and features used to manage information in an Oracle database.

« Net8 Administrator’s Guide

This book contains information about the Oracle8 Connection Manager and
Net8 network administration in general.

« Oracle Advanced Security Administrator’s Guide

This book describes features of the Oracle Advanced Security Option (formerly
known as ANO or ASO).

= Oracle8i Reference
This book contains general reference information about the Oracle8i server.
« Oracle8i Error Messages

This book contains information about error messages that can be passed by the
Oracle8i server.

Additional Resources

The following Oracle Technology Network (OTN) resources are available for further
information about JavaServer Pages:

=« OTN Web site for Java Servlets and JavaServer Pages:

http://technet. oracl e. comitech/j aval servl et s/

« OTN JSP discussion group, accessible through the following address:

http://technet. oracl e. com support/ bboar d/ di scussi ons. ht m

The following resources are available from Sun Microsystems:
« Javasoft Web site for JavaServer Pages:

htt p://ww j avasof t. comd product s/ j sp/ i ndex. ht n

xviii

=] sp-interest discussion group for JavaServer Pages

To subscribe, send an e-mailto | i st ser v@ ava. sun. comwith the followin
line in the body of the message:

subscribe jsp-interest yourl astname yourfirstnane

It is recommended, however, that you request only the daily digest of the
posted e-mails. To do this add the following line to the message body as well:

set jsp-interest digest

Document Conventions
The following conventions are used in this document:

g

Convention Meaning

italicized regular text Italicized regular text is used for emphasis or to indicate
a term that is being defined or will be defined shortly.

Horizontal ellipsis points in sample code indicate the
omission of a statement or statements or part of a
statement. This is done when you would normally
expect additional statements or code to appear, but such
statements or code would not be related to the example.

code text Code text within regular text indicates commands,
option names, parameter names, Java syntax, class
names, object names, method names, variable names,
Java types, Oracle datatypes, file names, and directory
names.

italicized code_text Italicized code text in a program statement indicates
something that must be provided by the user.

[italicized code text] Square brackets enclosing italicized code text in a
program statement indicates something that can
optionally be provided by the user.

Xix

XX

1

General Overview

This chapter reviews standard features and functionality of JavaServer Pages
technology. For further information, consult the Sun Microsystems JavaServer Pages
Specification, Version 1.1.

(For an overview of Oracle-specific OracleJSP features, see Chapter 2, "Overview of
Oracle’s JSP Implementation”. Also note that Appendix B, "Servlet and JSP
Technical Background", provides related background on standard servlet and JSP
technology.)

The following topics are covered here:
« Introduction to JavaServer Pages
« JSP Execution

« Overview of JSP Syntax Elements

General Overview 1-1

Introduction to JavaServer Pages

Introduction to JavaServer Pages

JavaServer Pages(TM) is a technology specified by Sun Microsystems as a
convenient way of generating dynamic content in pages that are output by a Web
application (an application running on a Web server).

This technology, which is closely coupled with Java servlet technology, allows you
to include Java code snippets and calls to external Java components within the
HTML code (or other markup code, such as XML) of your Web pages. JavaServer
Pages (JSP) technology works nicely as a front-end for business logic and dynamic
functionality in JavaBeans and Enterprise JavaBeans (EJBS).

JSP code is distinct from other Web scripting code, such as JavaScript, in a Web
page. Anything that you can include in a normal HTML page can be included in a
JSP page as well.

In a typical scenario for a database application, a JSP page will call a component
such as a JavaBean or Enterprise JavaBean, and the bean will directly or indirectly
access the database, generally through JDBC or perhaps SQLJ.

A JSP page is translated into a Java servlet before being executed (typically on
demand, but sometimes in advance), and it processes HTTP requests and generates
responses similarly to any other servlet. JSP technology offers a more convenient
way to code the servlet.

Furthermore, JSP pages are fully interoperable with servlets—JSP pages can include
output from a servlet or forward to a servlet, and servlets can include output from a
JSP page or forward to a JSP page.

What a JSP Page Looks Like

Here is an example of a simple JSP page. (For an explanation of JSP syntax elements
used here, see "Overview of JSP Syntax Elements" on page 1-10.)

<HTM_>

<HEAD><TI TLE>The V¢l cone UWser JSP</ Tl TLE></ HEAD>
<BCDY>

<% Sring user=request.getParaneter("user"); %
<H3>\W¢| cone <% (user==null) ? "" : user %! </H3>
<P> Today is <% newjava.util.Date() %. Have a nice day! :-)</B</P>
Enter nane: </ B>

<FCRM METHOD=get >

<INPUT TYPE="text" NAME="user" S ZE=15>

<INPUT TYPE="subnit" VALUE="Subnit nane">

</ FCRW>

1-2 JavaServer Pages Developer’'s Guide and Reference

Introduction to JavaServer Pages

</ BCDY>
</ HTM.>

In a JSP page, Java elements are set off by tags such as <%and %, as in the
preceding example. In this example, Java snippets get the user name from an HTTP
request object, print the user name, and get the current date.

This JSP page will produce the following output if the user inputs the name "Amy":

FE T b ‘wfalicama Llesr J50° - Rial oo aps

_Fli- [Yess L [ewwncsis |[Sep

{,'Hiﬂa:ﬁ.jili

Eimch: famch Heocam Pl EL=
_J"h:-cl.ull. A-'-m"'l": T T T T e T :llrj"h'hd':ﬂﬂd

Welcome Amy!

Todey s Wed Jun 21 15:42:23 PDT 1000, Have @ nies dayd &)

Enter nams:

| Subsmill namme

ol Coociansat [inms - e

't
A

Convenience of JSP Coding versus Servlet Coding

Combining Java code and Java calls into an HTML page is more convenient than
using straight Java code in a servlet. JSP syntax gives you a shortcut for coding
dynamic Web pages, typically requiring much less code than Java servlet syntax.
Following is an example contrasting servlet code and JSP code.

Servlet Code

inport javax.servlet.*;
inport javax.servlet.http.*;
inport java.io.*;

public class Hello extends HtpServl et

{
public void doGet(HtpServl et Request rg, HtpServl et Response rsp)

{
rsp. set ontent Type("text/htm");

try {

General Overview 1-3

Introduction to JavaServer Pages

PrintWiter out = rsp.getWiter();
out. println("<HM>");
out . print | n(" <HEAD><TI TLE>VéI cone</ Tl TLE></ HEAD>") ;
out. println("<BDY>");
out. print! n("<H3>\l cone! </ H3>");
out.println("<P>Today is "+hewjava.util.Date()+". </ P>");
out.println("</BDY>");
out.println("</HM>");
} catch (1 CException ioe)
{

/1 (error processing)

}
}

(See "The Servlet Interface" on page B-3 for some background information about the
standard Ht t pSer vl et abstract class, Ht t pSer vl et Request interface, and
Ht t pSer vl et Response interface.)

JSP Code

<HTM>

<HEAD><TI TLE>V¢I cone</ Tl TLE></ HEAD>

<BCDY>

<H3>V¢| cone! </ H3>

<P>Today is <% new java.util.Date() %. </ P>
</ BCDY>

</ HTM.>

Note how much simpler JSP syntax is. Among other things, it saves Java overhead
such as package importsand try. . . cat ch blocks.

Additionally, the JSP translator automatically handles a significant amount of
servlet coding overhead for you in the . j ava file that it outputs, such as directly or
indirectly implementing the standard j avax. servl et . j sp. Ht t pJspPage
interface (see "Standard JSP Interfaces and Methods" on page B-12) and adding code
to acquire an HTTP session.

Also note that because the HTML of a JSP page is not embedded within Java print
statements as is the case in servlet code, you can use HTML authoring tools to
create JSP pages.

1-4 JavaServer Pages Developer’'s Guide and Reference

Introduction to JavaServer Pages

Separation of Business Logic from Page Presentation—CallingJ avaBeans

JSP technology allows separating the development efforts between the HTML code
that determines static page presentation, and the Java code that processes business
logic and presents dynamic content. It therefore becomes much easier to split
maintenance responsibilities between presentation and layout specialists who may
be proficient in HTML but not Java, and code specialists who may be proficient in
Java but not HTML.

In a typical JSP page, most Java code and business logic will not be within snippets
embedded in the JSP page—instead, it will be in JavaBeans or Enterprise JavaBeans
that are invoked from the JSP page.

JSP technology offers the following syntax for defining and creating an instance of a
JavaBeans class:

<j sp: useBean i d="pageBean" cl ass="nybeans. NaneBean" scope="page" />

This example creates an instance, pageBean, of the mybeans. NanmeBean class (the
scope parameter will be explained later in this chapter).

Later in the page, you can use this bean instance, as in the following example:
Hel | o <% pageBean. get NewhNarre() % !

(This prints "Hello Julie !", for example, if the name "Julie" is in the newNane
attribute of pageBean, which might occur through user input.)

The separation of business logic from page presentation allows convenient division
of responsibilities between the Java expert who is responsible for the business logic
and dynamic content—this developer owns and maintains the code for the
NanmeBean class—and the HTML expert who is responsible for the static
presentation and layout of the Web page that the application user sees—this
developer owns and maintains the code in the . j sp file for this JSP page.

Tags used with JavaBeans—useBean to declare the JavaBean instance and
get Property and set Property to access bean properties—are further discussed
in "JSP Actions and the <jsp: > Tag Set" on page 1-18.

JSP Pages and Alternative Markup Languages

JavaServer Pages technology is typically used for dynamic HTML output, but the
Sun Microsystems JavaServer Pages Specification, Version 1.1 also supports additional
types of structured, text-based document output. A JSP translator does not process

General Overview 1-5

Introduction to JavaServer Pages

text outside of JSP elements, so any text that is appropriate for Web pages in general
is typically appropriate for a JSP page as well.

A JSP page takes information from an HTTP request and accesses information from
a data server (such as through a SQL database query). It combines and processes
this information and incorporates it as appropriate into an HTTP response with
dynamic content. The content can be formatted as HTML, DHTML, XHTML, or
XML, for example.

For information about XML support, see "OracleJSP Support for XML and XSL" on
page 5-9.

1-6 JavaServer Pages Developer’'s Guide and Reference

JSP Execution

JSP Execution

This section provides a top-level look at how a JSP is run, including on-demand
translation (the first time a JSP page is run), the role of the JSP container and the
servlet container, and error processing.

Note: The term JSP container is used in the Sun Microsystems
JavaServer Pages Specification, Version 1.1, replacing the term JSP
engine that was used in earlier specifications. The two terms are
synonymous.

JSP Containers in a Nutshell

A JSP container is an entity that translates, executes, and processes JSP pages and
delivers requests to them.

The exact make-up of a JSP container varies from implementation to
implementation, but it will consist of a servlet or collection of servlets. The JSP
container, therefore, is executed by a servlet container. (Servlet containers are
summarized in "Servlet Containers" on page B-3.)

A JSP container may be incorporated into a Web server if the Web server is written
in Java, or the container may be otherwise associated with and used by the Web
server.

JSP Pages and On-Demand Translation

Presuming the typical on-demand translation scenario, a JSP page is usually
executed through the following steps:

1. The user requests the JSP page through a URL ending with a. j sp file name.

2. Upon noting the . j sp file name extension in the URL, the servlet container of
the Web server invokes the JSP container.

3. TheJSP container locates the JSP page and translates it if this is the first time it
has been requested. Translation includes producing servlet code ina . j ava file
and then compiling the . j ava file to produce a servlet. cl ass file.

The servlet class generated by the JSP translator subclasses a class (provided by
the JSP container) that implements the j avax. servl et . j sp. Ht t pJspPage
interface (described in "Standard JSP Interfaces and Methods" on page B-12).
The servlet class is referred to as the page implementation class. This document
will refer to instances of page implementation classes as JSP page instances.

General Overview 1-7

JSP Execution

Translating a JSP page into a servlet automatically incorporates standard servlet
programming overhead into the generated servlet code, such as implementing
thej avax. servl et.j sp. Ht t pJspPage interface and generating code for its
service method.

4. The JSP container triggers instantiation and execution of the page
implementation class.

The servlet (JSP page instance) will then process the HTTP request, generate an
HTTP response, and pass the response back to the client.

Note: The preceding steps are loosely described for purposes of
this discussion. As mentioned earlier, each vendor decides how to
implement its JSP container, but it will consist of a servlet or
collection of servlets. For example, there may be a front-end servlet
that locates the JSP page, a translation servlet that handles
translation and compilation, and a wrapper servlet class that is
subclassed by each page implementation class (because a translated
page is not a pure servlet and cannot be run directly by the servlet
container). A servlet container is required to run each of these
components.

Requesting a JSP Page

A JSP page can be requested either directly—through a URL—or
indirectly—through another Web page or servlet.

Directly Request a JSP Page

As with a servlet or HTML page, the end-user can request a JSP page directly by
URL. For example, assume you have a Hel | oWor | d JSP page that is located under
the myapp application root directory in the Web server, as follows:

nyapp/ di r 1/ Hel | oVér 1 d. j sp

If it uses port 8080 of the Web server, you can request it with the following URL:
htt p: / / host nare: 8080/ nyapp/ di r 1/ Hel | oVér | d. j sp

(The application root directory is specified in the servlet context of the application.
"Servlet Contexts" on page B-6 summarizes servlet contexts.)

1-8 JavaServer Pages Developer’'s Guide and Reference

JSP Execution

The first time the end-user requests Hel | oWor | d. j sp, the JSP container triggers
both translation and execution of the page. With subsequent requests, the JSP
container triggers page execution only; the translation step is no longer necessary.

Indirectly Requesting a JSP Page

JSP pages, like servlets, can also be executed indirectly—linked from a regular
HTML page or referenced from another JSP page or from a servlet.

When invoking one JSP page from a JSP statement in another JSP page, the path can
be either relative to the application root—known as context-relative or
application-relative—or relative to the invoking page—known as page-relative. An
application-relative path starts with "/"; a page-relative path does not.

Be aware that, typically, neither of these paths is the same path as used in a URL or
HTML link. Continuing the example in the preceding section, the path in an HTML
link is the same as in the direct URL request, as follows:

The application-relative path in a JSP statement is:

<j sp:include page="/dir1/ Hel | oWrl d.jsp" flush="true" />

The page-relative path to invoke Hel | oWor | d. j sp from a JSP page in the same
directory is:

<j sp:forward page="Hel | oWorl d.jsp" />

("JSP Actions and the <jsp: > Tag Set" on page 1-18 discusses the j sp: i ncl ude and
j sp: f orwar d statements.)

General Overview 1-9

Overview of JSP Syntax Elements

Overview of JSP Syntax Elements

Directives

You have seen a simple example of JSP syntax in "What a JSP Page Looks Like" on
page 1-2; now here is a top-level list of syntax categories and topics:

« directives, which convey information regarding the JSP page as a whole

« scripting elements, which are Java coding elements such as declarations,
expressions, scriptlets, and comments

= objects and scopes, where JSP objects can be created either explicitly or implicitly
and are accessible within a given scope, such as from anywhere in the JSP page
or the session

» actions, which create objects or affect the output stream in the JSP response (or
both)

This section introduces each category, including basic syntax and a few examples.
For more information, see the Sun Microsystems JavaServer Pages Specification,
Version 1.1.

Notes: There are XML-compatible alternatives to the syntax for
JSP directives, declarations, expressions, and scriptlets. See
"XML-Alternative Syntax" on page 5-9.

Directives provide instruction to the JSP container regarding the entire JSP page.
This information is used in translating or executing the page. The basic syntax is as
follows:

<Y@directive attributel="val uel" attribute2="value2'... %

The JSP 1.1 specification supports the following directives:

« page—Use this directive to specify any of a number of page-dependent
attributes, such as the scripting language to use, a class to extend, a package to
import, an error page to use, or the JSP page output buffer size. For example:

<Y@page | anguage="j ava" i nport ="packages. nypackage" error Page="boof . j sp" %

Or, to set the JSP page output buffer size to 20kb (the default is 8kb):
<Y@page buf fer="20kb" %

1-10 JavaServer Pages Developer’s Guide and Reference

Overview of JSP Syntax Elements

Or, to unbuffer the page:
<Y@page buf fer="none" %

Notes:

« A SP page using an error page must be buffered. Forwarding
to an error page clears the buffer (not outputting it to the
browser).

« InOraclelSP, j ava is the default language setting. It is good
programming practice to set it explicitly, however.

i ncl ude—Use this directive to specify a resource that contains text or code to
be inserted into the JSP page when it is translated. Specify the path of the
resource relative to the URL specification of the JSP page.

Example:
<Y@i nclude fil e="/jsp/userinfopage.jsp" %

The i ncl ude directive can specify either a page-relative or context-relative
location (see "Requesting a JSP Page" on page 1-8 for related discussion).

Notes:

« Theincl ude directive, referred to as a "static include", is
comparable in nature to thej sp: i ncl ude action discussed
later in this chapter, but takes effect at JSP translation time
instead of request time. See "Static Includes Versus Dynamic
Includes” on page 4-9.

« Thei ncl ude directive can be used only within the same
servlet context.

t agl i b—Use this directive to specify a library of custom JSP tags that will be
used in the JSP page. Vendors can extend JSP functionality with their own sets
of tags. This directive indicates the location of a tag library description file and a
prefix to distinguish use of tags from that library.

Example:

<YU@taglib uri="/oracustontags" prefix="oracust" %

General Overview 1-11

Overview of JSP Syntax Elements

Later in the page, use the or acust prefix whenever you want to use one of the
tags in the library (presume this library includes a tag dbaseAccess):

<or acust : dbaseAccess>
</ oracust : dbaseAccess>

As you can see, this example uses XML-style start-tag and end-tag syntax.

JSP tag libraries and tag library description files are introduced later in this
chapter, in "Tag Libraries" on page 1-23, and discussed in detail in Chapter 7,
"JSP Tag Libraries and the Oracle JML Tags".

Scripting Elements

JSP scripting elements include the following categories of snippets of Java code that
can appear in a JSP page:

declarations—These are statements declaring methods or member variables that
will be used in the JSP page.

A JSP declaration uses standard Java syntax within the <% . . . % declaration
tags to declare a member variable or method. This will result in a corresponding
declaration in the generated servlet code. For example:

<% doubl e f1=0.0; %

This example declares a member variable, f 1. In the servlet class code
generated by the JSP translator, f 1 will be declared at the class top level.

Note: Method variables, as opposed to member variables, are
declared within JSP scriptlets as described below.

expressions—These are Java expressions that are evaluated, converted into string
values as appropriate, and displayed where they are encountered on the page.

A JSP expression does not end in a semi-colon, and is contained within
<%...% tags.

Example:
<P> Today is <% newjava.util.Date() %. Have a nice day! </ B></P>

1-12 JavaServer Pages Developer’s Guide and Reference

Overview of JSP Syntax Elements

Note: A JSP expression in a request-time attribute, such as in a
j sp: set Property statement, need not be converted to a string
value.

scriptlets—These are portions of Java code intermixed within the markup
language of the page.

A scriptlet, or code fragment, may consist of anything from a partial line to
multiple lines of Java code. You can use them within the HTML code of a JSP
page to set up conditional branches or a loop, for example.

A JSP scriptlet is contained within <% . . % scriptlet tags, using normal Java
syntax.

Example 1:

<%if (pageBean. get NewhNarre(). equal s("")) { %
| don't know you.

<% }else { %>
Hello <%= pageBean.getNewName() %>.

<%}%>

Three one-line JSP scriptlets are intermixed with two lines of HTML (one of
which includes a JSP expression, which does not require a semi-colon). Note
that JSP syntax allows HTML code to be the code that is conditionally executed
within the i f and el se branches (inside the Java brackets set out in the
scriptlets).

The preceding example assumes the use of a JavaBean instance, pageBean.
Example 2:

<% if (pageBean.getNewName().equals(™)) { %>
| don't know you.
<% empmgr.unknownemployee();
}else { %>
Hello <%= pageBean.getNewName() %>.
<% empmgrknownemployee();
}%>

This example adds more Java code to the scriptlets, assuming the use of a
JavaBean instance, pageBean, and assuming that some object, enpgr, was
previously instantiated and has methods to execute appropriate functionality
for a known employee or an unknown employee.

General Overview 1-13

Overview of JSP Syntax Elements

Note: Use a JSP scriptlet to declare method variables, as opposed
to member variables, as in the following example:

<%doubl e f2=0.0; %

This scriptlet declares a method variable, f 2. In the servlet class
code generated by the JSP translator, f 2 will be declared as a
variable within the service method of the servlet.

Member variables are declared in JSP declarations as described
above.

For a comparative discussion, see "Method Variable Declarations
Versus Member Variable Declarations" on page 4-14.

« comments—These are developer comments embedded within the JSP code,
similar to comments embedded within any Java code.

Comments are contained within <% - . . . - - % tags. Unlike HTML comments,
these comments are not visible when a user views the page source.

Example:

<%- Execute the follow ng branch if no user nane is entered. --%

JSP Objects and Scopes

In this document, the term JSP object refers to a Java class instance declared within
or accessible to a JSP page. JSP objects can be either:

« explicit—Explicit objects are declared and created within the code of your JSP
page, accessible to that page and other pages according to the scope setting
you choose.

or:

« implicit—Implicit objects are created by the underlying JSP mechanism and
accessible to Java scriptlets or expressions in JSP pages according to the inherent
scope setting of the particular object type.

Scopes are discussed below, in "Object Scopes".

1-14 JavaServer Pages Developer’s Guide and Reference

Overview of JSP Syntax Elements

Explicit Objects

Explicit objects are typically JavaBean instances declared and created in

j sp: useBean action statements. The j sp: useBean statement and other action
statements are described in "JSP Actions and the <jsp: > Tag Set" on page 1-18, but
an example is also shown here:

<j sp: useBean i d="pageBean" cl ass="nybeans. NaneBean" scope="page" />
This statement defines an instance, pageBean, of the NameBean class that is in the

nmybeans package. The scope parameter is discussed in the next section, "Object
Scopes".

You can also create objects within Java scriptlets or declarations, just as you would
create Java class instances in any Java program.

Object Scopes

Obijects in a JSP, whether explicit or implicit, are accessible within a particular scope.
In the case of explicit objects, such as a JavaBean instance created in a
j sp: useBean action statement, you can explicitly set the scope with the following
syntax (as in the example in the preceding section, "Explicit Objects"):

scope="scopeval ue'

There are four possible scopes:

=« Scope="page" —The object is accessible only from within the JSP page where
it was created.

Note that when the user refreshes the page while executing a JSP page, new
instances will be created of all page-scope objects.

=« scope="request" —The object is accessible from any JSP page servicing the
same HTTP request that is serviced by the JSP page that created the object.

« scope="sessi on"—The object is accessible from any JSP page sharing the
same HTTP session as the JSP page that created the object.

=« scope="application"—The object is accessible from any JSP page used in
the same Web application (within any single Java virtual machine) as the JSP
page that created the object.

General Overview 1-15

Overview of JSP Syntax Elements

Implicit Objects
JSP technology makes available to any JSP page a set of implicit objects. These are

Java class instances that are created automatically by the JSP mechanism and that
allow interaction with the underlying servlet environment.

The following implicit objects are available. For information about methods
available with these objects, refer to the Sun Microsystems Javadoc for the noted
classes and interfaces at the following location:

http://java. sun. com product s/ servl et/ 2. 2/ j avadoc/ i ndex. ht n

. page

This is an instance of the JSP page implementation class that was created when
the page was translated; page is synonymous with t hi s within a JSP page.

. request

This represents an HTTP request and is an instance of a class that implements
thej avax. servlet. http. H t pSer vl et Request interface, which extends
thej avax. servl et. Servl et Request interface.

. response

This represents an HTTP response and is an instance of a class that implements
thej avax. servl et. http. Ht t pSer vl et Response interface, which extends
thej avax. servl et . Ser vl et Response interface.

Theresponse and r equest objects for a particular request are associated
with each other.

« pageCont ext

This represents the page context of a JSP page, which is provided for storage and
access of all page scope objects of a JSP page instance. A pageCont ext object
is an instance of the j avax. servl et . j sp. PageCont ext class.

The pageCont ext object has page scope, making it accessible only to the JSP
page instance with which it is associated.

« Session

This represents an HTTP session and is an instance of the
javax. servlet. http. Ht t pSessi on class.

« application

This represents the servlet context for the Web application and is an instance of
thej avax. servl et. Servl et Cont ext class.

1-16 JavaServer Pages Developer’s Guide and Reference

Overview of JSP Syntax Elements

The appl i cat i on object is accessible from any JSP page instance running as
part of any instance of the application within a single JVM. (The programmer
should be aware of the server architecture regarding use of JVMs. For example,
in the Oracle Servlet Engine architecture, each user runs in his or her own JVM.)

out

This is an object that is used to write content to the output stream of a JSP page
instance. It is an instance of the j avax. servl et.jsp. JspWi t er class,
which extends the j ava. i 0. Wit er class.

The out object is associated with the r esponse object for a particular request.
config

This represents the servlet configuration for a JSP page and is an instance of a
class that implements the j avax. ser vl et . Ser vl et Confi g interface.
(Generally speaking, servlet containers use Ser vl et Conf i g instances to
provide information to servlets during initialization. Part of this information is
the appropriate Ser vl et Cont ext instance.)

excepti on (JSP error pages only)

This implicit object applies only to JSP error pages—these are pages to which
processing is forwarded when an exception is thrown from another JSP page;
they must have the page directive i SEr r or Page attribute settot r ue.

The implicit except i on objectisaj ava. | ang. Except i on instance that
represents the uncaught exception that was thrown from another JSP page and
that resulted in this error page being invoked.

The except i on object is accessible only from the JSP error page instance to
which processing was forwarded when the exception was encountered.

For an example of JSP error processing and use of the except i on object, see
"JSP Runtime Error Processing" on page 3-18.

Using an Implicit Object
Any of the implicit objects discussed in the preceding section may be useful. The

following example uses the r equest object to retrieve and display the value of the
user name parameter from the HTTP request:

<H3> Wl cone <% request. get Par anet er ("user nane") % ! <H3>

General Overview 1-17

Overview of JSP Syntax Elements

JSP Actions and the <jsp: > Tag Set

JSP action elements result in some sort of action occurring while the JSP page is
being executed, such as instantiating a Java object and making it available to the
page. Such actions may include the following:

« Creating a JavaBean instance and accessing its properties
« forwarding execution to another HTML page, JSP page, or servlet
« including an external resource in the JSP page

Action elements use a set of standard JSP tags that begin with <j sp: syntax.
Although the tags described earlier in this chapter that begin with <%syntax are
sufficient to code a JSP page, the <j sp: tags provide additional functionality and
convenience.

Action elements also use syntax similar to that of XML statements, with similar
"begin" and "end" tags such as in the following example:

<jsp:sanpl etag attri="val uel" attr2="value2' ... attrN"val ueN >

... body. ..

</j sp: sanpl et ag>

Or, where there is no body, the action statement is terminated with an empty tag:
<jsp:sanpl etag attri="valuel", ..., attrN"valueN |[>

The JSP specification includes the following standard action tags, which are
introduced and briefly discussed here:

= jsp:useBean

The j sp: useBean action creates an instance of a specified JavaBean class,
gives the instance a specified name, and defines the scope within which it is
accessible (such as from anywhere within the current JSP page instance).

Example:
<j sp: useBean i d="pageBean" cl ass="nybeans. NaneBean" scope="page" />
This example creates a page-scoped instance pageBean of the

nybeans. NaneBean class. This instance is accessible only from the JSP page
instance that creates it.

« jSp:setProperty

Thej sp: set Pr oper ty action sets one or more bean properties. (The bean
must have been previously specified in a useBean action.) You can directly

1-18 JavaServer Pages Developer’s Guide and Reference

Overview of JSP Syntax Elements

specify a value for a specified property, or take the value for a specified
property from an associated HTTP request parameter, or iterate through a series
of properties and values from the HTTP request parameters.

The following example sets the user property of the pageBean instance
(defined in the preceding useBean example) to a value of "Smith":

<j sp: set Property nanme="pageBean" property="user" value="Smth" />
The following example sets the user property of the pageBean instance

according to the value set for a parameter called user name in the HTTP
request:

<j sp: set Property nanme="pageBean" property="user" paran¥"usernange" />

Or, if the bean property and request parameter have the same name (user), you
can simply set the property as follows:

<j sp: set Property nane="pageBean" property="user" />

The following example results in iteration over the HTTP request parameters,

matching bean property names with request parameter names and setting bean
property values according to the corresponding request parameter values:

<j sp: set Property nanme="pageBean" property="*" />

j sp:getProperty

Thej sp: get Property action reads a bean property value, converts it to a
Java string, and places the string value into the implicit out object so that it can
be displayed as output. (The bean must have been previously specified in a

j sp: useBean action.) For the string conversion, primitive types are converted
directly and object types are converted using thet oSt ri ng() method
specified in the j ava. | ang. Obj ect class.

The following example puts the value of the user property of the pageBean
bean into the out object:

<j sp: get Property nanme="pageBean" property="user" />

j sp: param

You can use the j sp: par amaction in conjunction with j sp: i ncl ude,
j sp: forward,orjsp: pl ugi n actions (described below).

Forj sp: forward andj sp: i ncl ude statements, aj sp: par amaction
optionally provides key/value pairs for parameter values in the HTTP request

General Overview 1-19

Overview of JSP Syntax Elements

object. New parameters and values specified with this action are added to the
request object, with new values taking precedence over old.

The following example sets the request object parameter user namne to a value
of Smi t h:

<j sp: par am nane="user nane" val ue="Snth" />

Note: Thej sp: par amtag is not supported forj sp: i ncl ude or
j sp: forward in the JSP 1.0 specification.

= jsp:include

Thej sp: i ncl ude action inserts additional static or dynamic resources into the
page at request time as the page is displayed. Specify the resource with a
relative URL (either page-relative or application-relative).

As of the Sun Microsystems JavaServer Pages Specification, Version 1.1, you must
setfl ush totr ue, which results in the buffer being flushed to the browser
when aj sp: i ncl ude action is executed. (The f | ush attribute is mandatory,
but a setting of f al se is currently invalid.)

You can also have an action body with j sp: par amsettings, as shown in the
second example.

Examples:

<j sp:incl ude page="/tenpl at es/ userinf opage. j sp" flush="true" />

or:

<j sp:incl ude page="/tenpl at es/ useri nf opage. j sp" flush="true" >
<j sp: par am nane="user nane" val ue="Snth" />
<j sp: par am nane="user enpno" val ue="9876" />

</j sp:incl ude>

Note that the following syntax would work as an alternative to the preceding
example:

<j sp:incl ude page="/tenpl at es/ useri nf opage. j sp?user name=Sni t h&user enpno=9876" flush="true" />

1-20 JavaServer Pages Developer’s Guide and Reference

Overview of JSP Syntax Elements

Notes:

« Thejsp:include action, known as a "dynamic include", is
similar in nature to the i ncl ude directive discussed earlier in
this chapter, but takes effect at request time instead of
translation time. See "Static Includes Versus Dynamic Includes"
on page 4-9.

« Thejsp:incl ude action can be used only within the same
servlet context.

jsp:forward

The j sp: f or war d action effectively terminates execution of the current page,
discards its output, and dispatches a new page—either an HTML page, a JSP
page, or a servlet.

The JSP page must be buffered (you cannot set buf f er =" none") to use a
j sp: forwar d action. The action will clear the buffer (not outputting contents
to the browser).

As withj sp:incl ude, you can also have an action body with j sp: par am
settings, as shown in the second example.

Examples:

<j sp:forward page="/tenpl at es/ useri nf opage. j sp" />

or:

<j sp:forward page="/tenpl at es/ useri nf opage. j sp" >
<j sp: par am nane="user nane" val ue="Snth" />
<j sp: par am nane="user enpno" val ue="9876" />
</j sp: f or war d>

General Overview 1-21

Overview of JSP Syntax Elements

Notes:

« The difference between the j sp: f or war d examples here and
thej sp: i ncl ude examples earlier is that the j sp: i ncl ude
examples insert user i nf opage. j sp within the output of the
current page; the j sp: f or war d examples stop executing the
current page and display user i nf opage. j sp instead.

« Thej sp: forward action can be used only within the same
servlet context.

« jsp:plugin

The j sp: pl ugi n action results in the execution of a specified applet or
JavaBean in the client browser, preceded by a download of Java plugin software
if necessary.

Specify configuration information, such as the applet to run and the codebase,
using j sp: pl ugi n attributes. The JSP container might provide a default URL
for the download, but you can also specify attribute nspl ugi nur | =" ur /" (for
a Netscape browser) or i epl ugi nurl =" ur/" (for an Internet Explorer
browser).

Use nested j sp: par amactions within <j sp: par ans>and </ j sp: par ans>
start and end tags to specify parameters to the applet or JavaBean. (Note that
these j sp: par ans start and end tags are not necessary when using

j sp: paraminaj sp:includeorjsp: forward action.)

Use <j sp: fal | back>and </ sp: f al | back> start and end tags to delimit
alternative text to execute if the plugin cannot run.

The following example, from the Sun Microsystems JavaServer Pages Specification,
Version 1.1, shows use of an applet plugin:

<j sp: pl ugi n type=appl et code="Mol ecul e. cl ass" codebase="/htnm" >
<j sp: par ans>
<j sp: par am nanme="nol ecul " val ue="nol ecul es/ benzene. nol " />
</j sp: par ans>
<j sp: fal | back>
<p> ULhabl e to start the plugin. </ p>
</j sp: fal | back>
</j sp: pl ugi n>

1-22 JavaServer Pages Developer’s Guide and Reference

Overview of JSP Syntax Elements

Tag Libraries

Many additional parameters—such as ARCHI VE, HEI GHT, NAME, Tl TLE, and
W DTH—are allowed in the j sp: pl ugi n action statement as well. Use of these
parameters is according to the general HTML specification.

In addition to the standard JSP tags discussed previously in this section, the JSP
specification lets vendors define their own tag libraries and also lets vendors
implement a framework allowing customers to define their own tag libraries.

A tag library defines a collection of custom tags and can be thought of as a JSP
sub-language. Developers can use tag libraries directly, in manually coding a JSP
page, but they might also be used automatically by Java development tools. A tag
library must be portable between different JSP container implementations.

Import a tag library into a JSP page using the t agl i b directive, introduced in
"Directives" on page 1-10.

Key concepts of standard JavaServer Pages support for JSP tag libraries include the
following topics:

« tag handlers

A tag handler describes the semantics of the action that results from use of a
custom tag. A tag handler is an instance of a Java class that implements either
the Tag or BodyTag interface (depending on whether the tag uses a body
between a start tag and an end tag) in the standard

javax. servl et.jsp.tagext package.

« scripting variables

Custom tag actions can create server-side objects available for use by the tag
itself or by other scripting elements such as scriptlets. This is accomplished by
creating or updating scripting variables.

Details regarding scripting variables that a custom tag defines must be specified
in a subclass of the standard j avax. servl et . j sp. t agext. TagExt ral nfo
abstract class. This document refers to such a subclass as a tag-extra-info class.
The JSP container uses instances of these classes during translation.

« tag library description files

A tag library description (TLD) file is an XML document that contains
information about a tag library and about individual tags of the library. The file
name of a TLD has the . t | d extension.

General Overview 1-23

Overview of JSP Syntax Elements

A JSP container uses the TLD file in determining what action to take when it
encounters a tag from the library.

« useofweb. xm for tag libraries

The Sun Microsystems Java Servlet Specification, Version 2.2 describes a standard
deployment descriptor for servlets—the web. xm file. JSP applications can use
this file in specifying the location of a JSP tag library description file.

For JSP tag libraries, the web. xm file can include at agl i b element and two
subelements: t agl i b-uri andtaglib-1ocation.

For information about these topics, see "Standard Tag Library Framework" on
page 7-2.

For information about the sample tag library provided with OracleJSP, see
"Overview of the JSP Markup Language (JML) Sample Tag Library" on page 7-20

For further information, see the Sun Microsystems JavaServer Pages Specification,
Version 1.1.

1-24 JavaServer Pages Developer’s Guide and Reference

2

Overview of Oracle’s JSP Implementation

As of Oracle8i release 8.1.7 (OracleJSP 1.1.0.0.0), the Oracle implementation of
JavaServer Pages is a complete implementation of the Sun Microsystems JavaServer
Pages Specification, Version 1.1.

This chapter introduces features of OracleJSP as well as discussing support for
OracleJSP in various environments, particularly the Oracle Servlet Engine (OSE).
OSE is the Web server (more precisely, the servlet container) provided with Oracle8i
JServer.

For an overview of standard JavaServer Pages features, see Chapter 1, "General
Overview".

The following topics are covered here:

« Portability and Functionality Across Servlet Environments
« Support for OracleJSP in Oracle Environments

« Support for OracleJSP in Non-Oracle Environments

« Overview of OracleJSP Programmatic Extensions

« Summary of OracleJSP Releases and Feature Sets

« OracleJSP Execution Models

« Oracle JDeveloper Support for OracleJSP

Overview of Oracle’'s JSP Implementation 2-1

Portability and Functionality Across Servlet Environments

Portability and Functionality Across Servlet Environments

Oracle’s JavaServer Pages implementation is highly portable across server
platforms and servlet environments. It also supplies a framework for Web
applications in older servlet environments, where servlet context behavior was not
yet sufficiently defined.

OracleJSP Portability

OracleJSP can run on any servlet environment that complies with version 2.0 or
higher of the Sun Microsystems Java Servlet Specification. This is in contrast to most
JSP implementations, which require a servlet 2.1(b) or higher implementation. As
the next section explains, OracleJSP provides functionality equivalent to the missing
servlet functionality in older servlet environments.

Furthermore, the OracleJSP container is independent of the server environment and
its servlet implementation. This is in contrast to vendors who deliver their JSP
implementation as part of their servlet implementation instead of as a standalone
product.

This portability makes it much easier to run OracleJSP in both your development
environment and the target environment, as opposed to having to use a different
JSP implementation on your development system because of any server or servlet
platform limitations. There are usually benefits to developing on a system with the
same JSP container as the target server; realistically speaking, there is usually some
variation between environments.

OracleJSP Extended Functionality for Servlet 2.0 Environments

Because of interdependence between servlet specifications and JSP functionality,
Sun Microsystems has tied versions of the JavaServer Pages Specification to versions
of the Java Servlet Specification. According to Sun, JSP 1.0 requires a servlet 2.1(b)
implementation, and JSP 1.1 requires a servlet 2.2 implementation.

The servlet 2.0 specification was limited in that it provided only a single servlet
context per Java virtual machine, instead of a servlet context for each application.
The servlet 2.1 specification allowed, but did not mandate, a separate servlet context
for each application. The servlet 2.1(b) and servlet 2.2 specifications mandated
separate servlet contexts. (For background information about servlets and servlet
contexts, see "Background on Servlets" on page B-2.)

The OraclelSP container, however, offers functionality that emulates the application
support provided with the servlet 2.1(b) specification. This allows a full application

2-2 JavaServer Pages Developer’s Guide and Reference

Portability and Functionality Across Servlet Environments

framework in a servlet 2.0 environment such as Apache/JServ. This includes
providing applications with distinct Ser vl et Cont ext and Ht t pSessi on objects.

This extended support is provided through a file, gl obal s. j sa, that acts as a JSP
application marker, application and session event handler, and centralized location
for application-global declarations and directives. (For information, see "Overview
of globals.jsa Functionality" on page 5-37.)

Because of this extended functionality, OracleJSP is not limited by the underlying
servlet environment.

Overview of Oracle’'s JSP Implementation 2-3

Support for OracleJSP in Oracle Environments

Support for OracleJSP in Oracle Environments

This section provides brief overviews of Oracle environments that support and
provide OracleJSP, covering the following topics:

« Overview of the Oracle Servlet Engine (OSE)

« Overview of the Oracle Internet Application Server
« Role of the Oracle HTTP Server, Powered by Apache
« Oracle Web Application Database Access Strategies
« Overview of Other Oracle JSP Environments

The Oracle Servlet Engine (OSE), a Web server and servlet container that runs inside
the Oracle8i database, supports a JSP pre-translation model. JSP pages are
translated into servlets prior to or during deployment into the database and
subsequently run in the database address space.

For the other Oracle environments, the OracleJSP container supports the typical
on-demand translation model, typically translating the pages at runtime. OracleJSP
is designed to run effectively in either situation and provide consistent semantics
regardless of your choice of server.

Overview of the Oracle Servlet Engine (OSE)

If your JSP pages are intended to access an Oracle8i database, you can execute them
directly in the database—the Oracle Servlet Engine (OSE), which is included with
Oracle8i JServer, incorporates the OracleJSP container. This reduces communication
overhead compared to JSP execution in a middle tier. Access to the database is
through the Oracle JDBC server-side internal driver.

The OSE execution model requires the developer to take some special steps to
deploy the JSP pages into the Oracle8i database. This includes translating the pages,
loading them into the server, and "publishing" them to make them available for
execution.

During installation of Oracle8i release 8.1.7, the Oracle HTTP Server, powered by
Apache, is set as the default Web server, acting as a front-end for JSP and servlet
applications running in OSE. Refer to your installation instructions if you want to
change this setting.

Oracle Servlet Engine release 8.1.7 supports the servilet 2.2 and JSP 1.1
specifications, incorporating OracleJSP release 8.1.7 (1.1.0.0.0).

2-4 JavaServer Pages Developer’s Guide and Reference

Support for OracleJSP in Oracle Environments

Overview of the Oracle Internet Application Server

The Oracle Internet Application Server is a scalable, secure, middle-tier application
server. It can be used to deliver Web content, host Web applications, connect to
back-office applications, and make these services accessible to any client browser.
Users can access information, perform business analysis, and run business
applications on the Internet or corporate intranets or extranets.

To deliver this range of content and services, Oracle Internet Application Server
release 1.0.x incorporates the Oracle HTTP Server release 1.0.0 (powered by
Apache), the iCache for database caching and applications in the middle tier, Oracle
Forms Services and Oracle Reports Services to support Oracle Forms-based
applications and reports generation, and various business logic runtime
environments that support Enterprise JavaBeans, stored procedures, and Oracle
Business Components for Java.

For database access, the Oracle HTTP Server can route HTTP requests to servlets or
JSP pages running in either of the following scenarios:

« directly in Oracle8i (routing is through the Apache nod_ose module)

In this scenario, database access is through the JDBC server-side internal driver
(using either JDBC or SQLJ code).

« inthe Apache/JServ environment (routing is through the Apache nod_j serv
module)

In this scenario, database access is through client-side/middle-tier JDBC drivers
(using either JDBC or SQLJ code).

Oracle Internet Application Server release 1.0.x provides servlet and JSP
environments as follows:

« Both release 1.0.0 and 1.0.1 include the Apache/JServ servlet environment,
supporting the servlet 2.0 specification.

« Release 1.0.0 includes OracleJSP release 1.0.0.6.1, supporting the JSP 1.0
specification.

« Release 1.0.1 includes OracleJSP release 1.1.0.0.0, supporting the JSP 1.1
specification.

See the Oracle Internet Application Server 8i Documentation Library for more
information about the Internet Application Server.

Overview of Oracle’'s JSP Implementation 2-5

Support for OracleJSP in Oracle Environments

Note: Future releases of Oracle Internet Application Server may
replace the Apache/JServ environment with an alternative servlet
environment.

Role of the Oracle HTTP Server, Powered by Apache

Oracle HTTP Server release 1.0.0, powered by the Apache Web server, is included
with Oracle Internet Application Server release 1.0.x and Oracle8i release 8.1.7 as
the HTTP entry point for Web applications accessing the Oracle8i database.

You can employ the Oracle HTTP Server to access Oracle8i from applications
running either inside or outside the database. It accesses the database through
appropriate Apache add-on modules.

The remainder of this section covers the following topics:
« Use of Apache Mods
« More About mod_ose

« More About mod_jserv

Notes:

« The Oracle Servlet Engine itself can function as a Web server;
however, it is advisable to use it as a servlet container in
conjunction with the Oracle HTTP Server, particularly for
applications with static HTML. The nod_ose module allows
access to OSE through the Oracle HTTP Server.

« Inthe Oracle Internet Application Server framework, you can
use the Oracle HTTP Server to access either the Oracle iCache
(for read-only data that has been cached) or the back-end
Oracle8i database. For Internet Application Server releases 1.0.0
and 1.0.1, however, you cannot use the nod_ose/OSE scenario
because those releases of iCache do not yet include the Oracle
Servlet Engine.

Use of Apache Mods

In using the Oracle HTTP Server, powered by Apache, dynamic content is delivered
through various Apache mod components provided either by Apache or by other
vendors such as Oracle. (Static content is typically delivered from the file system.)

2-6 JavaServer Pages Developer’s Guide and Reference

Support for OracleJSP in Oracle Environments

An Apache mod is typically a module of C code, running in the Apache address
space, that passes requests to a particular mod-specific processor. (The mod
software will have been written specifically for use with the particular processor.)

The following Apache mods are of interest to OracleJSP developers:

« nod_ose is provided by Oracle for JSP pages and servlets that have been
deployed into the Oracle8i database and will be executed by the Oracle Servlet
Engine inside the database address space.

« nod_j serv is provided by Apache and can be used in accessing the Oracle8i
database from JSP pages or servlets running in the Apache/JServ servlet
environment in a middle-tier JVM.

Note: Many additional Apache "mod" components are available
for use in an Apache environment, provided by Apache for general
use or by Oracle for Oracle-specific use, but they are not relevant
for JSP applications.

More About mod_ose

The nbd_ose component, supplied by Oracle, delegates HTTP requests to JSP
pages or servlets running in OSE. It communicates with OSE using HTTP over the
Net8 protocol and can handle either stateless or stateful requests. Each virtual
domain configured in the Oracle HTTP Server is associated with a database
connection string (a Net8 name-value list) that indicates where to make a
connection to execute the request. The connection uses Net8 directly, providing the
same load balancing and hot backup functionality as OCI.

If an application running in an Oracle Internet Application Server framework uses
nod_ose, then the Internet Application Server’s Apache/JServ servlet 2.0
environment is not involved. The Oracle Servlet Engine’s own servlet 2.2
environment is used instead.

JSP applications and servlets running in OSE use the Oracle JDBC server-side
internal driver for rapid database access. For an overview of OSE, see "Overview of
the Oracle Servlet Engine (OSE)" on page 2-4.

You can use the JServer session shell expor t webdomai n command to configure
nod_ose to find published servlets and JSP pages in the database.

See the Oracle8i Oracle Servlet Engine User’s Guide for more information about
nmod_ose and for information about the expor t webdonmai n command.

Overview of Oracle’'s JSP Implementation 2-7

Support for OracleJSP in Oracle Environments

More About mod_jserv

The nod_j ser v component, supplied by Apache, delegates HTTP requests to JSP
pages or servlets running in the Apache/JServ servlet container in a middle-tier
JVM. Oracle Internet Application Server release 1.0.x includes the Apache/JServ
servlet container, which supports the servlet 2.0 specification, and either JDK 1.1.8
or 1.2.2. The middle-tier environment may or may not be on the same physical host
as the back-end Oracle8i database.

Communication between nod_j ser v and middle-tier JVMs uses a proprietary
Apache/JServ protocol over TCP/IP. The nod_j ser v component can delegate
requests to multiple JVMs in a pool for load balancing.

JSP applications running in middle-tier J)VMs use the Oracle JDBC OCI driver or
Thin driver to access the database.

Servlet 2.0 environments (as opposed to servlet 2.1 or 2.2 environments) have issues
that require special consideration. See "Considerations for Apache/JServ Servlet
Environments" on page 4-34.

Refer to Apache documentation for nod_j ser v configuration information. (This
documentation is provided with Oracle8i and with the Oracle Internet Application
Server.)

Oracle Web Application Database Access Strategies

Developers who are targeting the Oracle8i database from JSP applications have a
number of options, including the following:

1. Runin the Apache/JServ servlet container through the Oracle HTTP Server
(using nod_j serv).

2. Runin the Oracle Servlet Engine through the Oracle HTTP Server (using
nod_ose).

3. Runin the Oracle Servlet Engine and use it as the Web server directly (although
it is generally recommended to use Oracle HTTP Server).

2-8 JavaServer Pages Developer’s Guide and Reference

Support for OracleJSP in Oracle Environments

Note: When you use the Oracle HTTP Server, be aware that the
Apache/JServ servlet container has a different default doc root for
static files than the Oracle Servlet Engine has. See "Doc Root for
Oracle Internet Application Server Versus Oracle Servlet Engine" on
page 6-67.

Running in Apache/JServ, because it uses a standard JVM (currently JDK 1.2.2 or
1.1.8), is necessary if you want to use the JDBC OCI driver or if the application
requires Java features not available in the Oracle8i JServer environment (JNI, for
example).

However, running in Apache/JServ has the disadvantage of requiring a pool of
multiple JVMs that must be configured manually. (For more information, refer to
the Apache nod_j ser v documentation provided with Oracle8i or the Oracle
Internet Application Server.)

If you do not require Java features such as JNI, especially for applications that are
SQL-intensive, running in OSE is usually preferable for the following reasons:

« OSE offers speedier database access, because it runs in the Oracle8i address
space and uses the Oracle JDBC server-side internal driver.

« OSE offers greater security.
« OSE offers stronger support for statefulness.

Although employing the Oracle Servlet Engine directly as the Web server is feasible,
and may be preferable in some situations, accessing it through the Oracle HTTP
Server and nmod_ose is the typical scenario and is recommended.

In particular, Oracle HTTP Server and nod_ose can handle the following situations
that OSE by itself cannot:

» database access through a Net8-certified firewall
« implementation of a fault-tolerant system using multiple databases
« database access through port 80

This is typically not possible when using OSE as a Web server directly. In a
UNIX environment, for example, port 80 is accessible only from the r oot
account, and end-users do not have r oot access.

= connection pooling for stateless applications so that session startup overhead is
mostly avoided

Overview of Oracle’'s JSP Implementation 2-9

Support for OracleJSP in Oracle Environments

The default installation of Oracle8i release 8.1.7 uses the Oracle HTTP Server as the
front-end Web server for JSP pages and servlets that run in OSE.

Overview of Other Oracle JSP Environments

In addition to the Oracle Servlet Engine and Oracle Internet Application Server, the
following Oracle environments support OracleJSP:

« Oracle Application Server
« Oracle Web-to-go

« Oracle JDeveloper

Oracle Application Server

Oracle Application Server (OAS) is a scalable, standards-based middle-tier
environment for application logic, offering database integration in supporting
business applications in both corporate and e-business environments.

New customers will presumably use Oracle Internet Application Server, discussed
previously, instead of OAS. For existing OAS customers, however, Oracle
Application Server release 4.0.8.2 includes a servlet 2.1 environment and OracleJSP
release 1.0.0.6.0 (supporting the JSP 1.0 specification).

Refer to the Oracle Application Server Developer’s Guide: JServlet and JSP Applications
for more information.

Oracle Web-to-go

Oracle Web-to-go, a component of Oracle8i Lite, consists of a collection of modules
and services that facilitate development, deployment, and management of mobile
Web applications.

Web-to-go lets developers extend Web-based applications to intermittently
connected users without coding the infrastructure required for replication,
synchronization, and other networking issues. Unlike traditional mobile computing
technologies, which rely on custom or proprietary application-programming
interfaces (APIs), Web-to-go uses industry-standard Internet technologies.

Web-to-go release 1.3 provides a servlet 2.1 environment and OracleJSP release
1.0.0.6.1 (supporting the JSP 1.0 specification). Future releases will offer a servlet 2.2
environment and OracleJSP 1.1.x.

Refer to the Oracle Web-to-go Implementation Guide for more information.

2-10 JavaServer Pages Developer's Guide and Reference

Support for OracleJSP in Oracle Environments

Oracle JDeveloper

JDeveloper is a Java development tool, rather than a "platform" like the other Oracle
products listed here, but incorporates a Web listener, servlet runner, and the
OracleJSP container for execution and testing.

See "Oracle JDeveloper Support for OracleJSP" on page 2-23 for more information.

JDeveloper version 3.1 provides a servlet 2.1 environment and OracleJSP release
1.0.0.6.1 (supporting the JSP 1.0 specification). Future releases will offer a servlet 2.2
environment and OracleJSP 1.1.x.

Overview of Oracle’s JSP Implementation 2-11

Support for OracleJSP in Non-Oracle Environments

Support for OracleJSP in Non-Oracle Environments

You should be able to install and run the OracleJSP container on any server
environment supporting servlet specification 2.0 or higher. In particular, OracleJSP
has been tested in the following environments as of release 8.1.7:

Apache Software Foundation Apache/JServ 1.1

This is a Web server and servlet 2.0 environment without a JSP environment. To
run JSP pages, you must install a JSP environment on top of it.

Sun Microsystems JSWDK 1.0 (JavaServer Web Developer’s Kit)

This is a Web server with the servlet 2.1 and JavaServer Pages 1.0 reference
implementations. You can, however, install OracleJSP on top of the JSSWDK
servlet environment to replace the original JSP environment.

Apache Software Foundation Tomcat 3.1

This cooperative effort between Sun Microsystems and the Apache Software
Foundation is a Web server with the servlet 2.2 and JavaServer Pages 1.1
reference implementations. You can, however, install OracleJSP on top of the
Tomcat servlet environment to replace the original JSP environment. You can
also run Tomcat in conjunction with the Apache Web server instead of using the
Tomcat Web server.

2-12 JavaServer Pages Developer’'s Guide and Reference

Overview of OracleJSP Programmatic Extensions

Overview of OracleJSP Programmatic Extensions

This section is an overview of extended programming features supported by
OraclelSP.

OracleJSP provides the following extended functionality through custom tag
libraries and custom JavaBeans, all of which are portable to other JSP environments:

« extended datatypes implemented as JavaBeans that can have a specified scope
« integration with XML and XSL
« database-access JavaBeans

« the Oracle JSP Markup Language (JML) custom tag library, which reduces the
level of Java proficiency required for JSP development

« acustom tag library for SQL functionality
OracleJSP also provides the following Oracle-specific extensions:

« support for SQLJ, a standard syntax for embedding SQL statements directly
into Java code

« extended NLS support
« JspScopeli st ener for event handling
« gl obal s. j safile for application support

Discussion of these topics is followed by a brief description of how OracleJSP pages
can interact with Oracle PL/SQL Server Pages.

Overview of Portable OracleJSP Extensions

The Oracle extensions discussed in this section are implemented either through the
OracleJSP JML sample tag library or through custom JavaBeans. They are portable
to other JSP environments.

OracleJSP Extended Datatypes

JSP pages generally rely on core Java datatypes in representing scalar values.
Neither of the following standard approaches to this is fully suitable for use in JSP
pages:

= primitive typessuch asi nt,fl oat,and doubl e

= wrapper classes in the standard j ava. | ang package, such as | nt eger, Fl oat,
and Doubl e

Overview of Oracle’s JSP Implementation 2-13

Overview of OracleJSP Programmatic Extensions

Primitive values cannot have a specified scope—they cannot be stored in a JSP
scope object (for page, r equest, sessi on, or appl i cat i on scope), because only
objects can be stored in a scope object.

Wrapper type values are objects, so they can theoretically be stored in a JSP scope
object. However, they cannot be declared inaj sp: useBean action, because the
wrapper classes do not follow the JavaBean model and do not provide a
zero-argument constructor.

Additionally, instances of the wrapper classes are immutable. To change a value,
you must create a new instance and assign it appropriately.

To work around these limitations, OracleJSP provides the Jm Bool ean,
Jm Number, Jm FPNunber, and Jml St ri ng JavaBean classes in package
oracl e.jsp.jm towrap the most common Java datatypes.

See "JML Extended Datatypes" on page 5-2 for more information.

Integration with XML and XSL

You can use JSP syntax to generate any text-based MIME type, not just HTML code.
In particular, you can dynamically create XML output. When you use JSP pages to
generate an XML document, however, you often want a stylesheet applied to the
XML data before it is sent to the client. This is difficult in JavaServer Pages
technology, because the standard output stream used for a JSP page is written
directly back through the server.

OracleJSP provides special tags in its sample JML tag library to specify that all or
part of a JSP page should be transformed through an XSL stylesheet before it is
output. You can use this JML tag multiple times in a single JSP page if you want to
specify different style sheets for different portions of the page. Note that the JML tag
library is portable to other JSP environments.

In addition, the OracleJSP translator supports XML-alternative syntax as specified
in the Sun Microsystems JavaServer Pages Specification, Version 1.1.

See "OracleJSP Support for XML and XSL" on page 5-9 for more information.

Custom Database-Access JavaBeans

OracleJSP supplies a set of custom JavaBeans for use in accessing an Oracle
database. The following beans are provided in the or acl e. j sp. dbut i | package:

« ConnBean opens a simple database connection.

« ConnCacheBean uses Oracle’s connection caching implementation for
database connections.

2-14 JavaServer Pages Developer's Guide and Reference

Overview of OracleJSP Programmatic Extensions

« DBBean executes a database query.

« Cur sor Bean provides general DML support for UPDATE, | NSERT, and
DEL ETE statements, as well as queries.

See "Oracle Database-Access JavaBeans" on page 5-13 for more information.

OracleJSP SQL Custom Tag Library

With release 8.1.7, OracleJSP provides a custom tag library for SQL functionality.
The following tags are provided:

« dbOpen—Open a database connection.

« dbC ose—Close a database connection.

« dbQuer y—Execute a query.

« dbCl oseQuer y—Close the cursor for a query.

« dbNext Row—Move to the next row of the result set.

« dbExecut e—Execute any SQL DML or DDL statement.

See "OracleJSP Tag Library for SQL" on page 5-24 for more information.

Oracle JSP Markup Language (JML) Custom Tag Library

Although the Sun Microsystems JavaServer Pages Specification, Version 1.1 supports
scripting languages other than Java, Java is the primary language used and in many
cases the only language considered. Even though JavaServer Pages technology is
designed to separate the dynamic/Java development effort from the static/HTML
development effort, it is no doubt still a hindrance if the Web developer does not
know any Java, especially in small development groups where no Java experts are
available.

OracleJSP provides custom tags as an alternative—the JSP Markup Language (JML).
The Oracle IML sample tag library provides an additional set of JSP tags so that you
can script your JSP pages without using Java statements. JML provides tags for
variable declarations, control flow, conditional branches, iterative loops, parameter
settings, and calls to objects.

The JML tag library also supports XML functionality, as noted previously.

Overview of Oracle’s JSP Implementation 2-15

Overview of OracleJSP Programmatic Extensions

The following example shows use of the j ml : for andj m : pri nt tags:

m:for id="i" fron¥'1" to="5" >
<Hjm:print eval ="i" />
Hello Vérld!
<Hjnm:print eval ="i" />
<jm:for>

For more information, see "Overview of the JSP Markup Language (JML) Sample
Tag Library" on page 7-20.

Note: OracleJSP versions preceding the JSP 1.1 specification used
an Oracle-specific compile-time implementation of the JML tag
library. This implementation is still supported as an alternative to
the standard runtime implementation. For information, see
Appendix C, "Compile-Time JML Tag Support".

Overview of Oracle-Specific Extensions

The OraclelSP extensions listed in this section are not portable to other JSP
environments.

SQLJ Support in OracleJSP

Dynamic server pages commonly include data extracted from databases; however,
JavaServer Pages technology does not offer built-in support to facilitate database
access. JSP developers typically must rely on the standard Java Database
Connectivity (JDBC) API or a custom set of database JavaBeans.

SQLJis a standard syntax for embedding static SQL instructions directly in Java
code, greatly simplifying database access programming. OracleJSP and the
OracleJSP translator support SQLJ programming in JSP scriptlets.

SQLJ statements are indicated by the #sql token. You can trigger the OracleJSP
translator to invoke the Oracle SQLJ translator by using the file name extension
. sql j sp for the JSP source code file.

For more information, see "OracleJSP Support for Oracle SQLJ" on page 5-33.

Extended NLS Support in OracleJSP

OracleJSP provides extended NLS support for servlet environments that cannot
encode multibyte request parameters and bean property settings.

2-16 JavaServer Pages Developer's Guide and Reference

Overview of OracleJSP Programmatic Extensions

For such environments, OracleJSP offers the t r ans| at e_par ans configuration
parameter, which can be enabled to direct OracleJSP to override the servlet
container and do the encoding itself.

For more information, see "OracleJSP Extended Support for Multibyte Parameter
Encoding" on page 8-5.

JspScopeListener for Event Handling

OracleJSP provides the JspScopeli st ener interface for lifecycle management of
Java objects of various scopes within a JSP application.

Standard servlet and JSP event-handling is provided through the
javax.servlet. http. H t pSessi onBi ndi ngLi st ener interface, but this
handles session-based events only. The Oracle JspScopeli st ener can handle
page-based, request-based, and application-based events as well.

For more information, see "OracleJSP Event Handling—JspScopeListener" on
page 5-32.

globals.jsa File for Application Support (Servlet 2.0)

For servlet 2.0 environments, where servlet contexts are not fully defined, OracleJSP
defines a file, gl obal s. j sa, to extend servlet application support.

Within any single Java virtual machine, there can be a gl obal s. j sa file for each
application (or, equivalently, for each servlet context). This file supports the concept
of Web applications through use as an application location marker. Based on

gl obal s. j sa functionality, the OracleJSP container can also mimic servlet context
and HTTP session behavior for servlet environments, where such behavior is not
sufficiently defined.

The gl obal s. j sa file also provides a vehicle for global Java declarations and JSP
directives across all JSP pages of an application.

Use of OracleJSP with Oracle PL/SQL Server Pages

Oracle provides a product called PL/SQL Server Pages (PSP). PSP technology allows
embedded PL/SQL scriptlets and stored procedure calls within an HTML page,
offering development advantages similar to those offered by JSP technology:
namely, that coding the dynamic portion of the page and the static portion of the
page can be largely separate development efforts. An HTML expert can code the
static part of the page and a PL/SQL expert can code the dynamic part of the page.

Overview of Oracle’s JSP Implementation 2-17

Overview of OracleJSP Programmatic Extensions

The syntax used to distinguish PL/SQL scriptlets in a PSP page is identical to that
used to distinguish Java scriptlets in a JSP page.

The remainder of this section discusses support for JSP-PSP interaction, and
includes some background on PSP URLs.

For general information about PL/SQL Server Pages, see the Oracle8i Application
Developer’s Guide - Fundamentals.

Supported Interaction between JSP Pages and PSP Pages

When an end-user runs a PSP application, PSP pages are translated into stored
procedures for execution by the PL/SQL gateway in producing output to the Web
browser. Because the PL/SQL gateway in Oracle8i executes in a servlet wrapper,
JSP pages running in the Oracle Servlet Engine can interact with PSP pages as
follows:

= You can dynamically include a PSP page from a JSP page (j sp: i ncl ude).
= You can dynamically forward to a PSP page from a JSP page (j sp: f or war d).

However, PSP pages do not have the functionality to dynamically include or
forward to a JSP page. Additionally, you cannot statically include a PSP page from a
JSP page (the <%@ i ncl ude % directive to include a file during translation).

PSP Page URLs

Each PSP page, when loaded and compiled in the database, becomes a PL/SQL
stored procedure. The name of the stored procedure for a PSP page is either
explicitly declared in the page, using <%@ pl sql procedur e="proc-nane" %
syntax, or is derived from the name of the PSP file.

Given the name of the PL/SQL stored procedure, the URL is determined according
to the following general syntax:

http:// host[: port]/ some-prefixl dadl [schena.] proc- nane

Where <sone- prefi x>ispl sql for the embedded PL/SQL module, and <dad>
is the database access descriptor to run the stored procedure.

For more information, see the Oracle8i Application Developer’s Guide - Fundamentals.

2-18 JavaServer Pages Developer's Guide and Reference

Summary of OracleJSP Releases and Feature Sets

Summary of OracleJSP Releases and Feature Sets

OracleJSP release 1.1.0.0.0, which fully supports the JSP 1.1 specification, is
provided with Oracle8i release 8.1.7. In this document, "OracleJSP release 8.1.7" is
synonymous with "OracleJSP release 1.1.0.0.0".

Some other Oracle platforms supporting OracleJSP have not yet incorporated the
latest OracleJSP release, however—they integrate OracleJSP release 1.0.0.6.1 or
1.0.0.6.0, which were JSP 1.0 implementations.

OracleJSP Releases Provided with Oracle Platforms

Table 2-1 summarizes which OracleJSP releases are provided with which Oracle
platform releases as of this writing.

The "OracleJSP Feature Notes" column refers to OracleJSP release 1.1.0.0.0 features
documented in this document that are limited in the OracleJSP release noted for the
particular Oracle platform, or have special significance for the platform. For more
information, see "OracleJSP Feature Notes for Release 1.0.0.6.x" on page 2-20.

Table 2-1 Oracle Platform Releases and OracleJSP Releases

OracleJSP
Oracle Platform Servlet Environment OracleJSP Release Feature Notes
Oracle Servlet servlet 2.2 OracleJSP 1.1.0.0.0 n/a
Engine (Oracle8i), (ISP 1.1)
release 8.1.7
Oracle Internet servlet 2.0 OracleJSP 1.1.0.0.0 n/a
Application Server, (Apache/JServ) (ISP 1.1)
release 1.0.1
Oracle Internet servlet 2.0 OracleJSP 1.0.0.6.0 gl obal s. j sa
Application Server, (Apache/JServ) (JSP 1.0) config params
release 1.0.0 JML restrictions
Oracle Application servlet 2.1 OracleJSP 1.0.0.6.0 config params
Server, release 4.0.8.2 (JSP 1.0) JML restrictions
Oracle Web-to-go, servlet 2.1 OracleJSP 1.0.0.6.1 config params
release 1.3 (JSP 1.0) JML restrictions
Oracle JDeveloper, servlet 2.1 OracleJSP 1.0.0.6.1 config params

release 3.1

(ISP 1.0)

JML restrictions

Overview of Oracle’s JSP Implementation 2-19

Summary of OracleJSP Releases and Feature Sets

It is possible to download, incorporate, and use more recent OracleJSP versions
with the above Oracle platforms; the OracleJSP versions documented are the
versions that are supplied as part of the product.

To verify the OracleJSP release being used in a particular environment, retrieve the
release number from the implicit appl i cat i on object in a JSP page, as follows:

<% application.getAttribute("oracle.jsp.versionNunber") %

OracleJSP Feature Notes for Release 1.0.0.6.x

The following points describe the significance of the "OracleJSP Feature Notes"
column in Table 2-1 above, regarding OracleJSP release 1.0.0.6.x.

« Theservlet 2.0 specification did not provide a complete framework for Web
applications. For servlet 2.0 environments such as Apache/JServ and Oracle
Internet Application Server (which uses Apache/JServ), all releases of
OracleJSP offer extensions through the gl obal s. j sa mechanism to support a
more complete application framework. See "OracleJSP Application and Session
Support for Servlet 2.0" on page 5-37 for more information.

= Some OracleJSP configuration parameters that are supported in release 1.1.0.0.0
were not yet supported in release 1.0.0.6.x. See "Configuration Parameters
Summary Table" on page A-15.

= Release 1.0.0.6.x of OracleJSP complied with the JSP 1.0 specification, not the
JSP 1.1 specification, so could not support the JSP 1.1 custom tag library
mechanism. As a result, these OraclelSP releases supported JML tags through
an Oracle-specific compile-time implementation, using extensions to the
OracleJSP translator.

Use of JIML in OracleJSP release 1.0.0.6.x requires at agl i b directive (as
specified for JSP 1.1 and supported by OracleJSP 1.1.0.0.0), but the directive
must specify the class that contains the library, as follows:

<Y@taglib uri="oracl e.jsp. parse. QpenJspRegi sterLi b" prefix="jm" %
By contrast, when using a JSP implementation that complies with the JSP 1.1

specification, such as OracleJSP 1.1.0.0.0, the t agl i b directive specifies the tag
library description file (ina. t1 d file or . j ar file), as follows:

<Y@taglib uri="/WEB-IN-/tlds/jmtags.tld" prefix="jm" %

For information about the JML compile-time implementation, see Appendix C,
"Compile-Time JML Tag Support".

2-20 JavaServer Pages Developer's Guide and Reference

OracleJSP Execution Models

OracleJSP Execution Models

As mentioned earlier, you can use the OracleJSP framework in a variety of server
environments. OracleJSP offers two distinct execution models:

« Inenvironments other than the Oracle Servlet Engine, the OracleJSP container
typically translates pages on demand before triggering their execution, as is also
true with most other vendors’ JSP implementations.

« Inthe Oracle Servlet Engine environment—for JSP pages running in the
Oracle8i database—the developer translates the pages in advance and loads
them into the Oracle8i database as working servlets. (Command-line tools are
available to translate the pages, load them, and "publish" them to make them
available for execution. You can have the translation occur either on the client or
in the server.) When the end-user requests the JSP page, it is executed directly,
with no translation necessary.

On-Demand Translation Model

OraclelJSP uses the typical on-demand translation model for all server environments
that support OracleJSP, other than the Oracle Servlet Engine. This includes using
OracleJSP with the Apache Web server with JServ, for example, as well as various
Oracle environments.

When a JSP page is requested from a Web server that incorporates the OracleJSP
container, the servlet or acl e. j sp. JspSer vl et is instantiated and invoked
(assuming proper Web server configuration). This servlet can be thought of as the
front-end of the OracleJSP container.

JspSer vl et locates the JSP page, translates and compiles it if necessary (if the
page implementation class does not exist or has an earlier timestamp than the JSP
page source), and triggers its execution.

Note that the Web server must be properly configured to map the *. j sp file name
extension (in a URL) to JspSer vl et . The steps to accomplish this for
Apache/JServ, the Sun Microsystems JWSDK, and Tomcat are discussed in detail in
"Configuration of Web Server and Servlet Environment to Run OracleJSP" on

page A-7.

Overview of Oracle’s JSP Implementation 2-21

OracleJSP Execution Models

Oracle Servlet Engine Pre-Translation Model

JSP pages intended to run in the Oracle Servlet Engine (OSE), the Web server and
servlet container within Oracle8i, are pre-translated and deployed into Oracle8i as
working servlets. OSE incorporates the OracleJSP runtime.

Deployment Steps to Run JSP Pages in the Oracle Servlet Engine
Perform the following steps to deploy JSP pages into the Oracle8i database:

1. Pre-translate the JSP pages (typically including compilation). The page
implementation classes produced by the JSP translator are essentially working
servlets.

2. Load the translated JSP pages into the Oracle8i database.
3. Optionally "hotload" the generated page implementation classes.

4. "Publish" the JSP pages to make them accessible from the database for
execution.

Command-line tools are available to translate, load, and publish the pages. The
translator creates the page implementation class ina . j ava file and compiles it into
a.cl ass file.

Hotloading can be enabled and accomplished through additional steps. This is a
feature that allows more efficient use of literal strings such as the generated HTML
tags in a page implementation class.

Deployment to Oracle8i can be performed with the translation being done either in
the server or on the client. For more information about these scenarios and the steps
involved, see "Deployment to Oracle8i with Server-Side Translation" on page 6-41
and "Deployment to Oracle8i with Client-Side Translation" on page 6-54.

Oracle Servlet Engine JSP Container

The Oracle Servlet Engine incorporates its own OracleJSP container, which consists
of most of the overall OracleJSP container without the OracleJSP translator (because
any JSP page that runs in the OSE environment is pre-translated).

The OSE includes front-end JSP processing, with functionality similar to
JspSer vl et in the on-demand translation model.

The front-end component finds and executes JSP pages according to a servlet path
(often referred to as a "virtual path") that was entered in the Oracle8i JINDI name
space during publishing. You specify a servlet path name when you publish the JSP

page.

2-22 JavaServer Pages Developer's Guide and Reference

Oracle JDeveloper Support for OracleJSP

Oracle JDeveloper Support for OracleJSP

Visual Java programming tools are beginning to support JSP coding. In particular,
Oracle JDeveloper supports OracleJSP and includes the following features (as of
JDeveloper release 3.1):

« integration of the OracleJSP container to support the full application
development cycle—editing, debugging, and running JSP pages

« debugging of deployed JSP pages

« an extensive set of data-enabled and Web-enabled JavaBeans, known as
JDeveloper Web beans

« the JSP Element Wizard, which offers a convenient way to add predefined Web
beans to a page

= support for incorporating custom JavaBeans

« adeployment option for JSP applications that rely on the JDeveloper Business
Components for Java (BC4J)

See "Deployment of JSP Pages with JDeveloper" on page 6-71 for more information
about JSP deployment support.

For debugging, JDeveloper can set breakpoints within JSP page source and can
follow calls from JSP pages into JavaBeans. This is much more convenient than
manual debugging techniques, such as adding print statements within the JSP page
to output state into the response stream (for viewing in the your browser) or to the
server log (through the | og() method of the implicit appl i cat i on object).

For information about JDeveloper, refer to their online help, particularly the topic
"Creating JSP Pages for Business Components".

Overview of Oracle’s JSP Implementation 2-23

Oracle JDeveloper Support for OracleJSP

2-24 JavaServer Pages Developer's Guide and Reference

3

Basics

This chapter discusses basic issues such as applications and sessions, JSP-servlet
interaction, resource management, and application roots and doc roots. This is
followed by a JSP "starter sample" for database access.

The following topics are included:

Preliminary Considerations

Application Root and Doc Root Functionality
Overview of JSP Applications and Sessions
JSP-Servlet Interaction

JSP Resource Management

JSP Runtime Error Processing

JSP Starter Sample for Database Access

Basics 3-1

Preliminary Considerations

Preliminary Considerations

This section discusses a few issues to be aware of before you start developing. The
following topics are covered:

« Installation and Configuration Overview
« Development Environments Versus Deployment Environments

= Client-Side Considerations

Installation and Configuration Overview

Installation and configuration, primarily for key non-Oracle environments, is
covered in Appendix A, "General Installation and Configuration".

For installation and configuration of Oracle environments that support OracleJSP,
consult the documentation for the particular Oracle product.

Within Oracle8i, the Oracle Servlet Engine (OSE) incorporates OracleJSP and is
provided with Oracle8i JServer.

Development Environments Versus Deployment Environments

JSP developers targeting a non-Oracle environment, such as Apache/JServ, typically
develop in the same environment as the target environment. In this case, the
installation and configuration instructions in Appendix A, "General Installation and
Configuration" apply to both the development environment and the deployment
environment, although some of the configuration parameters are of interest only
during development.

JSP developers targeting the Oracle Servlet Engine or some other Oracle
environment have at least two development options:

« Use Oracle JDeveloper for development and deployment.

JDeveloper incorporates OracleJSP and a servlet container for use in testing
during development. It also incorporates features to help you deploy the
finished product to the target location.

See "Oracle JDeveloper Support for OracleJSP" on page 2-23 for an introduction
to OracleJSP support in JDeveloper. Refer to JDeveloper documentation for
installation and configuration instructions.

« Develop and test in a non-Oracle environment such as Apache/JServ before
deploying to the target Oracle environment for final testing and end use.

3-2 JavaServer Pages Developer’s Guide and Reference

Preliminary Considerations

In this case, the information in Appendix A is presumably of interest to you for
your development environment.

After testing in the development environment, you can pre-translate the JSP
pages and deploy them to the Oracle8i database using command-line tools
available with the OracleJSP installation. The OracleJSP command-line
translator has options that are equivalent to relevant translation-time
configuration parameters. For information, see "The ojspc Pre-Translation Tool"
on page 6-23 and "Deployment to Oracle8i with Client-Side Translation" on
page 6-54.

For information about installing and configuring any of the Oracle environments
that support OracleJSP, refer to the documentation for the particular product.

Client-Side Considerations
JSP pages will run with any standard browser supporting HTTP 1.0 or higher.

The JDK or other Java environment in the end-user’s Web browser is irrelevant,
because all the Java code in a JSP page is executed in the Web server or data server.

Basics 3-3

Application Root and Doc Root Functionality

Application Root and Doc Root Functionality

This section provides an overview of application roots and doc roots, distinguishing
between servlet 2.2 functionality and servlet 2.0 functionality.

Application Roots in Servlet 2.2 Environments

As mentioned earlier, the servlet 2.2 specification provides for each application to
have its own servlet context. Each servlet context is associated with a directory path
in the server file system, which is the base path for modules of the application. This
is the application root. Each application has its own application root.

This is similar to how a Web server uses a doc root as the root location for HTML
pages and other files belonging to a Web application.

For an application in a servlet 2.2 environment, there is a one-to-one mapping
between the application root (for servlets and JSP pages) and the doc root (for static
files, such as HTML files)—they are essentially the same thing.

Note that a servlet URL has the following general form:

http:// host[: port] I cont ext pat hl servl et pat h

When a servlet context is created, a mapping is specified between the application
root and the context path portion of a URL.

For example, consider an application with the application root

[home/ di r/ mybankappdi r, which is mapped to the context path nybank.
Further assume the application includes a servlet whose servlet path is

| ogi nser vl et . This servlet can be invoked as follows:

http:// host[: port]/ nybank/| ogi nser vl et

(The application root directory name itself is not visible to the end-user.)

To continue this example for an HTML page in this application, the following URL
points to the file / hone/ di r / nybankappdi r/ di r 1/ abc. ht m :

http:// host[: port]/nybank/dir1/ abc. ht n

For each servlet environment there is also a default servlet context. For this context,
the context path is simply "/", which is mapped to the default servlet context
application root. For example, assume the application root for the default context is
/ hore/ mydef aul t di r, and a servlet with the servlet path nyser vl et uses the
default context. Its URL would be as in the following example. (Again, the
application root directory name itself is not visible to the user.)

3-4 JavaServer Pages Developer’s Guide and Reference

Application Root and Doc Root Functionality

http:// host[: port]/nyservl et

(The default context is also used if there is no match for the context path specified in
aURL.)

Continuing this example for an HTML file, the following URL points to the file
[honme/ nydefaul tdir/dir2/def.htnm:

http:// host[: port]/dir2/ def.htnm

OracleJSP Application Root Functionality in Servlet 2.0 Environments

Apache/JServ and other servlet 2.0 environments have no concept of application
roots, because there is only a single application environment. The Web server doc
root is effectively the application root.

For Apache, the doc root is typically some . . . / ht docs directory. In addition, it is
possible to specify "virtual" doc roots through al i as settings in the ht t pd. conf
configuration file.

In a servlet 2.0 environment, OracleJSP offers the following functionality regarding
doc roots and application roots:

« By default, OracleJSP uses the doc root as an application root.

« Through the OraclelSP gl obal s. j sa mechanism, you can designate a
directory under the doc root to serve as an application root for any given
application. This is accomplished by placing a gl obal s. j sa file as a marker in
the desired directory. (See "Overview of globals.jsa Functionality" on page 5-37.)

Basics 3-5

Overview of JSP Applications and Sessions

Overview of JSP Applications and Sessions

This section provides a brief overview of how JSP applications and sessions are
supported by OracleJSP.

General OracleJSP Application and Session Support

OracleJSP uses underlying servlet mechanisms for managing applications and
sessions. For information about these mechanisms, see "Servlet Sessions" on
page B-4 and "Servlet Contexts" on page B-6. For servlet 2.1 and servlet 2.2
environments, these underlying mechanisms are sufficient, providing a distinct
servlet context and session object for each JSP application.

Using the servlet mechanisms becomes problematic, however, in a servlet 2.0
environment such as Apache/JServ. The concept of a Web application was not well
defined in the servlet 2.0 specification, so in a servlet 2.0 environment there is only
one servlet context per servlet container. Additionally, there is one session object
only per servlet container. However, for Apache/JServ and other servlet 2.0
environments, OracleJSP provides extensions to optionally allow distinct servlet
contexts and session objects for each application. (This is unnecessary for Web
servers hosting just a single application.)

Note: For additional information relevant to Apache/JServ and
other servlet 2.0 environments, see "Considerations for
Apache/JServ Servlet Environments" on page 4-34 and "Overview
of globals.jsa Functionality" on page 5-37.

JSP Default Session Requests

Generally speaking, servlets do not request an HTTP session by default. However,
JSP page implementation classes do request an HTTP session by default. You can
override this by setting the sessi on parameter to f al se in a JSP page directive,
as follows:

<Y@page ... session="fal se" %

3-6 JavaServer Pages Developer’s Guide and Reference

JSP-Servlet Interaction

JSP-Servlet Interaction

Although coding JSP pages is convenient in many ways, some situations call for
servlets. One example is when you are outputting binary data, as discussed in
"Reasons to Avoid Binary Data in JSP Pages" on page 4-19.

Therefore, it is sometimes necessary to go back and forth between servlets and JSP
pages in an application. This section discusses how to accomplish this, covering the
following topics:

« Invoking a Servlet from a JSP Page

« Passing Data to a Servlet Invoked from a JSP Page
« Invoking a JSP Page from a Servlet

« Passing Data Between a JSP Page and a Servlet

« JSP-Servlet Interaction Samples

Important: This discussion assumes a servlet 2.2 environment.
Appropriate reference is made to other sections of this document
for related considerations for Apache/JServ and other servlet 2.0
environments.

Invoking a Servlet from a JSP Page

As when invoking one JSP page from another, you can invoke a servlet from a JSP
page through the j sp: i ncl ude andj sp: f or war d action tags. (See "JSP Actions
and the <jsp: > Tag Set" on page 1-18.) Following is an example:

<j sp:include page="/servl et/ MServlet" flush="true" />

When this statement is encountered during page execution, the page buffer is
output to the browser and the servlet is executed. When the servlet has finished
executing, control is transferred back to the JSP page and the page continues
executing. This is the same functionality as for j sp: i ncl ude actions from one JSP
page to another.

And as with j sp: f or war d actions from one JSP page to another, the following
statement would clear the page buffer, terminate the execution of the JSP page, and
execute the servlet:

<j sp:forward page="/servl et/ MServliet" />

Basics 3-7

JSP-Servlet Interaction

Important: You cannot include or forward to a servlet in
Apache/JServ or other servlet 2.0 environments; you would have to
write a JSP wrapper page instead. For information, see "Dynamic
Includes and Forwards in Apache/JServ" on page 4-35.

Passing Data to a Servlet Invoked from a JSP Page

When dynamically including or forwarding to a servlet from a JSP page, you can
use aj sp: par amtag to pass data to the servlet (the same as when including or
forwarding to another JSP page).

Aj sp: par amtag is used within aj sp: i ncl ude orj sp: f or war d tag. Consider
the following example:

<j sp:include page="/servl et/ MServliet" flush="true" >
<j sp: par am nane="user nane" val ue="Snth" />
<j sp: par am nane="user enpno" val ue="9876" />

</j sp:incl ude>

For more information about the j sp: par amtag, see "JSP Actions and the <jsp: >
Tag Set" on page 1-18.

Alternatively, you can pass data between a JSP page and a servlet through an
appropriately scoped JavaBean or through attributes of the HTTP request object.
Using attributes of the request object is discussed later, in "Passing Data Between a
JSP Page and a Servlet" on page 3-9.

Note: Thej sp: par amtag was introduced in the JSP 1.1
specification.

Invoking a JSP Page from a Servlet

You can invoke a JSP page from a servlet through functionality of the standard
j avax. servl et . Request Di spat cher interface. Complete the following steps
in your code to use this mechanism:

1. Get a servlet context instance from the servlet instance:

Servl et ontext sc =this.getServlet@ntext();

3-8 JavaServer Pages Developer’s Guide and Reference

JSP-Servlet Interaction

2. Get a request dispatcher from the servlet context instance, specifying the
page-relative or application-relative path of the target JSP page as input to the
get Request Di spat cher () method:

Request D spat cher rd = sc. get Request Di spat cher ("/ sp/ nypage. j sp");

Prior to or during this step, you can optionally make data available to the JSP
page through attributes of the HTTP request object. See the next section,
"Passing Data Between a JSP Page and a Servlet", for information.

3. Invoke thei ncl ude() orforward() method of the request dispatcher,
specifying the HTTP request and response objects as arguments. For example:

rd. i ncl ude(request, response);

or:

rd. forward(request, response);

The functionality of these methods is similar to that of j sp: i ncl ude and
j sp: forward actions. The i ncl ude() method only temporarily transfers
control; execution returns to the invoking servlet afterward.

Note that the f or war d() method clears the output buffer.

Notes:

« The request and response objects would have been obtained
earlier using standard servlet functionality, such as the
doGet () method specified in the
javax.servlet.http. Ht pServl et class.

= This functionality was introduced in the servilet 2.1
specification.

Passing Data Between a JSP Page and a Servlet

The preceding section, "Invoking a JSP Page from a Servlet", notes that when you
invoke a JSP page from a servlet through the request dispatcher, you can optionally
pass data through the HTTP request object.

You can accomplish this using either of the following approaches:

= You can append a query string to the URL when you obtain the request
dispatcher, using "?" syntax with nane=val ue pairs.

Basics 3-9

JSP-Servlet Interaction

Here is an example:

Request D spatcher rd =
sc. get Request O spat cher ("/] sp/ nypage. j sp?user nane=Snth");

In the target JSP page (or servlet), you can use the get Par anmet er () method of
the implicit r equest object to obtain the value of a parameter set in this way.
« Youcanusetheset Attri bute() method of the HTTP request object.

Here is an example:

request.set Attribute("usernane", "Smth");
Request D spat cher rd = sc. get Request Di spat cher ("/j sp/ nypage. j sp");

In the target JSP page (or servlet), you can use the get Att ri but e() method of
the implicit r equest object to obtain the value of a parameter set in this way.

Notes:

= This functionality was introduced in the serviet 2.1
specification. Be aware that the semantics are different between
the servlet 2.1 specification and the servlet 2.2 specification—in
aservlet 2.1 environment a given attribute can be set only once.

« Mechanisms discussed in this section can be used instead of the
j sp: par amtag to pass data from a JSP page to a servlet.

JSP-Servlet Interaction Samples

This section provides a JSP page and a servlet that use functionality described in the
preceding sections. The JSP page Jsp2Ser vl et . j sp includes the servlet
My Ser vl et , which includes another JSP page, wel cone. j sp.

Code for Jsp2Servlet.jsp

<HTM_>

<HEAD> <TITLE> JSP Gal ling Servlet Deno </ Tl TLE> </ HEAD>

<BCDY>

<I-- Forward processing to a servlet -->
<%request.setAttribute("enpi d', "1234"); %

<j sp:incl ude page="/servl et/ M/Servl et 2user=Snth" flush="true"/>
</ BCDY>

</ HTM.>

3-10 JavaServer Pages Developer’'s Guide and Reference

JSP-Servlet Interaction

Code for MyServlet.java

inport javax.servlet.*;

inport javax.servlet.http.*;
inport java.io.PrintWiter;
inport java.io.|CException;

public class M/Servl et extends HtpServl et {

public void doGet (HtpServlet Request request,
H t pSer vl et Response response)
throws | CException, ServletException {
PrintWiter out= response.getWiter();
out.println("
Wser:" + request. get Paraneter("user"));
out.println
(", Enpl oyee nunber:" + request.getAttribute("enpid') + "</ B");
thi s. get Servl et Cont ext () . get Request D spat cher ("/j sp/ wel cone. j sp").
i ncl ude(request, response);

Code for welcome.jsp

Copyright © 1999, Oracle Corporation. All rights reserved.
%>

<HTML>
<HEAD> <TITLE> The Welcome JSP </TITLE></HEAD>
<BODY>

<H3>Welcome! <H3>

<P> Today is <%= new java.util.Date() %>. Have a nice day! </P>
</BODY>

<HTML>

Basics 3-11

JSP Resource Management

JSP Resource Management

The j avax. servl et . htt p package offers a standard mechanism for managing
session resources. Additionally, Oracle provides extensions for managing
application, session, page, and request resources.

Standard Session Resource Management—HttpSessionBindingListener

A JSP page must appropriately manage resources acquired during its execution,
such as JDBC connection, statement, and result set objects. The standard

j avax. servl et . htt p package provides the Ht t pSessi onBi ndi ngLi st ener
interface and Ht t pSessi onBi ndi ngEvent class to manage session-scoped
resources. Through this mechanism, a session-scoped query bean could, for
example, acquire a database cursor when the bean is instantiated and close it when
the HTTP session is terminated. (The example in "JSP Starter Sample for Database
Access" on page 3-21 opens and closes the connection for each query, which adds
overhead.)

This section describes use of the Ht t pSessi onBi ndi ngLi st ener
val ueBound() and val ueUnbound() methods.

Note: The bean instance must register itself in the event
notification list of the HTTP session object, but the j sp: useBean
statement takes care of this automatically.

The valueBound() and valueUnbound() Methods

An object that implements the Ht t pSessi onBi ndi ngLi st ener interface can
implement aval ueBound() method and a val ueUnbound() method, each of
which takes an Ht t pSessi onBi ndi ngEvent instance as input. These methods are
called by the servlet container—the val ueBound() method when the object is
stored in the session; the val ueUnbound() method when the object is removed
from the session or when the session times-out or becomes invalid. Usually, a
developer will use val ueUnbound() to release resources held by the object (in the
example below, to release the database connection).

3-12 JavaServer Pages Developer’'s Guide and Reference

JSP Resource Management

Note: OraclelSP provides extensions for additional resource
management, allowing you to program JavaBeans to manage
page-scoped, request-scoped, or application-scoped resources as
well as session-scoped resources. See "OracleJSP Event
Handling—JspScopeListener" on page 5-32.

The next section, "JDBCQueryBean JavaBean Code", provides a sample JavaBean
that implements Ht t pSessi onBi ndi ngLi st ener and a sample JSP page that
calls the bean.

JDBCQueryBean JavaBean Code

Following is the sample code for JDBCQuer yBean, a JavaBean that implements the
Ht t pSessi onBi ndi ngLi st ener interface. (It uses the JDBC OCI driver for its
database connection; use an appropriate JDBC driver and connection string if you
want to run this example yourself.)

JDBCQuer yBean gets a search condition through the HTML request (as described
in "The UseJDBCQueryBean JSP Page" on page 3-15), executes a dynamic query
based on the search condition, and outputs the result.

This class also implements a val ueUnbound() method (as specified in the
Ht t pSessi onBi ndi ngLi st ener interface) that results in the database connection
being closed at the end of the session.

package nybeans;

inport java.sql.*;
inport javax.servlet.http.*;

public class JDBOQuUeryBean i npl enents H t pSessi onBi ndi nglLi st ener

{
String searchCond = "";

String result = null;

publ i c voi d JDBOQuer yBean() {
}

publ i c synchroni zed Sring getResult() {
if (result !'=null) return result;
el se return runQuery();

}

Basics 3-13

JSP Resource Management

publ i ¢ synchroni zed voi d set Sear chCond(String cond) {
result = null;
thi s. searchCnd = cond;

}

private Gonnection conn = nul | ;

private Sring runQery() {
SringBuffer sb = new SringBuffer();
Satenent stnt = nul | ;
Resul tSet rset = null;
try {
if (conn = null) {
Dri ver Manager . regi st er Dri ver (new or acl e. j dbc. dri ver. O acl elriver());
conn = Dri ver Manager . get Gonnecti on("j dbc: oracl e: oci 8: @,
"scott", "tiger");

}

stm = conn. createStat enent ();

rset = stnt.executeQuery ("SELECT enane, sal FROMscott.enp "+
(searchnd. equal s("") ? "" : "WHERE " + searchCnd));

result = fornmat Result(rset);

return resul t;

} catch (SQException e) {
return ("<P> SQL error: <PRE>" + e +" </PRE> <P>\n");

}
finally {
try {
if (rset !'=null) rset.close();
if (stmt !'=null) stn.close();
}
cat ch (SQException ignored) {}
}
}

private Sring format Resul t (Resul t Set rset) throws SQException {

SringBuffer sb = new SringBuffer();
if (Irset.next())

sb. append("<P> No mat chi ng rows. <P>\n");
el se {

sh. append(" <U>");

do { sh. append("" + rset.getString(1) +

" earns $ " + rset.getInt(2) + "</ LI>n");

3-14 JavaServer Pages Developer’'s Guide and Reference

JSP Resource Management

} while (rset.next());
sh. append(" </ B></ U>") ;
}
return sh.toSring();

}

publ i ¢ voi d val ueBound(H t pSessi onBi ndi ngBvent event) {
/1 do nothing -- the session-scoped bean is al ready bound

}

publ i ¢ synchroni zed voi d val uethbound(H t pSessi onBi ndi ngEvent event) {
try {
if (conn!=null) conn.close();
}
catch (SQException ignored) {}
}
}

Note: The preceding code serves as a sample only. This is not
necessarily an advisable way to handle database connection
pooling in a large-scale Web application.

The UseJDBCQueryBean JSP Page

The following JSP page uses the JDBCQuer yBean JavaBean defined in the
preceding section ("JDBCQueryBean JavaBean Code"), invoking the bean with
sessi on scope. It uses JIDBCQuer yBean to display employee names that match a
search condition entered by the user.

JDBCQuer yBean gets the search condition through the j sp: set Property
command in this JSP page, which sets the sear chCond property of the bean
according to the value of the sear chCond request parameter input by the user
through the HTML form. (The HTML | NPUT tag is what specifies that the search
condition entered in the form be named sear chCond.)

<j sp: useBean i d="queryBean" cl ass="nybeans. JOBOQuer yBean" scope="session" />
<j sp: set Property nanme="queryBean" property="searchCnd" />

<HTM_>
<HEAD> <TI TLE> The WseJDBOQUeryBean JSP </ TI TLE> </ HEAD>
<BDY BAOCLCR="whi te">

<% Sring searchCondition = request. get Paranet er (" searchCond");

Basics 3-15

JSP Resource Management

if (searchCndition !=null) { %
<H3> Search results for : <> <% searchCondition % </ 1> </ H3>
<% queryBean. getResult () %
<HR>

<%} %

Enter a search condition for the EMP tabl e: </ B>

<FCRM METHD="get ">

<I NPUT TYPE="text" NAME="searchQond" VALUE="enane LIKE 'A% " S ZE="40">
<I NPUT TYPE="submit" VALUE="Ask O acle">

</ FORW

</ BCDY>
</ HTM.>

Following is sample input and output for this page:

T ke Usml I Cusipllssan 3507 - Hsiooaps
Fle [l Yess Lo Cownaincsia Hp
+ ¢ 2 F 2 @ 4 &£ @ M
Eimchc Aecad Horm Ssmech Heoospm P ES
o Botmats & Looston [i1ons il e D BT s o spTes Doreberer L E -3 270000 17w =) A Whats Flalaled

Search resuliz For ; ewomse LIKF 4757

= ALLEM paums § LEOD
= ADARLS cams § 1100

Enter a apmrch condition for the EVIF eable:

|.l-|.a...- LTEE 'k Al Oredle |

ar Cocumrart: [iona R e Y

Advantages of HttpSessionBindingListener

In the preceding example, an alternative to the Ht t pSessi onBi ndi ngLi st ener
mechanism would be to close the connection ina fi nal i ze method in the
JavaBean. The f i nal i ze method would be called when the bean is
garbage-collected after the session is closed. The Ht t pSessi onBi ndi ngLi st ener
interface, however, has more predictable behavior than a f i nal i ze method.

3-16 JavaServer Pages Developer’s Guide and Reference

JSP Resource Management

Garbage collection frequency depends on the memory consumption pattern of the
application. By contrast, the val ueUnbound() method of the
Ht t pSessi onBi ndi ngLi st ener interface is called reliably at session shutdown.

Overview of Oracle Extensions for Resource Management

Oracle provides the following extensions for managing application and session
resources as well as page and request resources:

« JspScopeli st ener —for managing application, session, page, or request
resources

For information, see "OracleJSP Event Handling—IJspScopeL.istener” on
page 5-32.

« gl obal s. j saapplication and session events—for start and end events for
applications and sessions, typically in a servlet 2.0 environment such as
Apache/JServ

See "The globals.jsa Event Handlers" on page 5-42 for information.

Basics 3-17

JSP Runtime Error Processing

JSP Runtime Error Processing

While a JSP page is executing and processing client requests, runtime errors can
occur either inside the page or outside the page (such as in a called JavaBean). This
section describes the JSP error processing mechanism and provides a simple
example.

Using JSP Error Pages

Any runtime error encountered during execution of a JSP page is handled using the
standard Java exception mechanism in one of two ways:

= You can catch and handle exceptions in a Java scriptlet within the JSP page
itself, using standard Java exception-handling code.

« Exceptions you do not catch in the JSP page will result in forwarding of the
request and uncaught exception to an error page. This is the preferred way to
handle JSP errors.

You can specify the URL of an error page by setting the er r or Page parameterina
page directive in the originating JSP page. (For an overview of JSP directives,
including the page directive, see "Directives" on page 1-10.)

In a servlet 2.2 environment, you can also specify a default error page in the
web. xm deployment descriptor with instructions such as the following:

<error - page>
<er r or - code>404</ er r or - code>
<l ocat i on>/ error404. ht nh </ | ocat i on>
</ error-page>

(See the Sun Microsystems Java Servlet Specification, Version 2.2 for more information
about default error pages.)

An error page must have a page directive setting the i SEr r or Page parameter to
true.

The exception object describing the errorisaj ava. | ang. Except i on instance that
is accessible in the error page through the implicit except i on object.

Only an error page can access the implicit except i on object. (For information
about JSP implicit objects, including the except i on object, see "Implicit Objects"
on page 1-16.)

See the next section, "JSP Error Page Example”, for an example of error page usage.

3-18 JavaServer Pages Developer’'s Guide and Reference

JSP Runtime Error Processing

Note: There is ambiguity in the JSP 1.1 specification regarding
exception types that can be handled through the JSP mechanism.

A page implementation class generated by the OracleJSP translator
can handle an instance of the j ava. | ang. Except i on class or a
subclass, but cannot handle an instance of the

j ava. | ang. Thr owabl e class or any subclass other than

Excepti on. A Thr owabl e instance will be thrown by the
OracleJSP container to the servlet container.

The ambiguity is expected to be addressed in the JSP 1.2
specification. OracleJSP behavior will be modified appropriately in
a future release.

JSP Error Page Example

The following example, nul | poi nt er. j sp, generates an error and uses an error
page, nyerror. j sp, to output contents of the implicit except i on object.

Code for nullpointer.jsp

<HTM>
<BCDY>
<Y@page errorPage="nyerror.jsp" %
Nul | pointer is generated bel ow
<%
Sring s=null;
s.length();
%
</ BCDY>
</ HTM.>

Code for myerror.jsp

<HTM_>

<BCDY>

<Y@page i sErrorPage="true" %
Here is your error:

<% exception %

</ BCDY>

</ HTM>

Basics 3-19

JSP Runtime Error Processing

This example results in the following output:

i Haiocaps

P B P Ge Gommecaa He
< ¢ B3 % a = o3 o @ BN
Eimck: Aucad How Semcs Kebcees P Sacimip

T TR LT T T ————r e ——— =] 47 it s Palsie

Here g pour arwor java lang PrelPomberExcephon

Note: The line "Null pointer is generated below:" in

nul | poi nt er. j sp is not output when processing is forwarded to
the error page. This shows the difference between JSP "include" and
"forward" functionality—with a "forward", the output from the

"forward-to" page replaces the output from the "forward-from" page

3-20 JavaServer Pages Developer’s Guide and Reference

JSP Starter Sample for Database Access

JSP Starter Sample for Database Access

Chapter 1, "General Overview", provides a couple of simple JSP examples; however,
if you are using OraclelJSP, you presumably want to access an Oracle database. This
section offers a more interesting sample that uses standard JDBC code in a JSP page
to perform a query.

Because the JDBC API is simply a set of Java interfaces, JavaServer Pages
technology directly supports its use within JSP scriptlets.

Notes:

« Oracle JDBC provides several driver alternatives: 1) JDBC OCI
drivers for use with an Oracle client installation; 2) a 100%-Java
JDBC Thin driver that can be used in essentially any client
situation (including applets); 3) a JDBC server-side Thin driver
to access one Oracle database from within another Oracle
database; and 4) a JDBC server-side internal driver to access the
database within which the Java code is running (such as from a
Java stored procedure or Enterprise JavaBean). For more
information about Oracle JDBC, see the Oracle8i JDBC
Developer’s Guide and Reference.

« OracleJSP also supports SQLJ (embedded SQL in Java) for static
SQL operations and provides custom JavaBeans and custom
SQL tags for database access. These features are discussed in
Chapter 5, "OracleJSP Extensions".

The following example creates a query dynamically, from search conditions that the
user enters through an HTML form (typed into a box and entered with an Ask

Or acl e button). To perform the specified query, it uses JDBC code in a method
called runQuer y() thatis defined in a JSP declaration. It also defines a method

f or mat Resul t () within the JSP declaration to produce the output. The
runQuery() method uses the scott schema with password ti ger. (JDBC is used
instead of SQLJ because the query is formed dynamically. SQLJ is for static SQL.)

The HTML | NPUT tag specifies that the string entered in the form be named cond.
Therefore, cond is also the input parameter to the get Par anet er () method of the
implicit r equest obiject for this HTTP request, and the input parameter to the
runQuery() method (which puts the cond string into the WHERE clause of the

query).

Basics 3-21

JSP Starter Sample for Database Access

Notes:

= Another approach to this example would be to define the
runQuer y() method in <% . . % scriptlet syntax instead of
<% . .. % declaration syntax.

= This example uses the JDBC OCI driver, which requires an
Oracle client installation. If you want to run this sample, use an
appropriate JDBC driver and connection string.

<Y@page | anguage="j ava" inport="java.sql.*" %

<HTM_>
<HEAD> <TI TLE> The JOBOQuery JSP </ TI TLE> </ HEAD>
<BCDY BAOALCR="whi te">

<% Sring searchCondition = request. get Paraneter ("cond");
if (search@ndition !'=null) { %

<H3> Search results for <I> <% searchCondition % </I> </ H3>
 <% runQuery(searchCondition) % </ B> <HR>

<%} %

Enter a search condition: </ B>

<FCRM METHD="get " >

<INPUT TYPE="text" NAME="cond" S ZE=30>

<INPUT TYPE="submit" VALUE="Ask QO acle");

</ FCRW>

</ BCDY>

</ HTM.>

<%- Decl are and define the runQery() method. --%
<% private Sring runQeery(Sring cond) throws SQException {
Connection conn = nul | ;
Statenment stmt = nul | ;
ResultSet rset = null;
try {
Dri ver Manager . regi st er Dri ver (new or acl e. j dbc. dri ver. O acl eDriver());
conn = Dri ver Manager . get Gnnecti on("j dbc: oracl e: oci 8: @,
"scott", "tiger");
stm = conn.createX atenent ();
/1 dynamc query
rset = stm.executeQuery ("SELECT enane, sal FRCMscott.enp "+
(cond.equal s("") ? "" : "WHERE " + cond));
return (fornatResul t(rset));

3-22 JavaServer Pages Developer’'s Guide and Reference

JSP Starter Sample for Database Access

} catch (SQ.Exception e) {
return ("<P> SQ error: <PRE>" + e + " </PRE> </PA\n");

} finally {
if (rset!=null) rset.close();
if (stm!=null) stm.close();
if (conn!=null) conn.close();
}
}
private Sring format Resul t (Resul t Set rset) throws SQLException {
SringBuffer sb = new SringBuffer();
if (Irset.next())
sb. append("<P> No natchi ng rows. <P>\n");
el se { sh. append("<U>");
do { sh.append("" + rset.getSring(1l) +
"earns $ " +rset.getint(2) +".</LIX\n");
} while (rset.next());
sh. append(" </ UL>");

}
return sh.toSring();

}
%

The following graphics illustrate sample input and output:

f 1 ha sl CHusiplean S5 - Raiscaps

Pl Do Y 6 Cowmrcain [ep
i +# 2 % a2 &6 5 & @
Eiacl: Amizad Horm Emmch | Pand k|

" Bookmais b Logskon [i oot slDECD sBlemn spTenschandeerame |ILE et T] (T Wl Flalatad

Search resmlis for 1 evanme LIKE 47"

= ALLEM pamns 5 160D
= ADARLS eams § 1100

Entei a anmrch candtion for the EVIF eable:

|+|.J¢- LTEE 'k Bk Ondle |

ar Cocumrant: Diona O LY

Basics 3-23

JSP Starter Sample for Database Access

ey J5 1" - Msbicaps

B Eo Ta Ge Crewnicsio Hep

FEEN TS e

tamch Heocam Pmi Secunly

L[R!

sl " Bookmats B Lovstn [1 pofie et sk SE R T T0EHD -1 500000 =] T Whal's Flalsiad
Bearch resmlis For sal == 2560 AND i < F008

JOMES earms 5 2075,
ELAEE sams § 1550,
BCOTT eams 5 3000,
FORD parss § 3000,

Enter a search condition:

I Aak Deatha

| [CEr e e

3-24 JavaServer Pages Developer’s Guide and Reference

A

Key Considerations

This chapter discusses important programming, configurational, and runtime
considerations, as well as special considerations for particular execution
environments. The following topics are covered:

General JSP Programming Strategies, Tips, and Traps
Key OracleJSP Configuration Issues

OracleJSP Runtime Considerations (Non-OSE Only)
Considerations for the Oracle Servlet Engine

Considerations for Apache/JServ Servlet Environments

Key Considerations 4-1

General JSP Programming Strategies, Tips, and Traps

General JSP Programming Strategies, Tips, and Traps

This section discusses issues you should consider when programming JSP pages
that will run in the OracleJSP container, regardless of the particular target
environment.

Note: In addition to being aware of the topics in this section, you
should be aware of OracleJSP translation and deployment issues
and behavior. See Chapter 6, "JSP Translation and Deployment".

JavaBeans Versus Scriptlets

The section "Separation of Business Logic from Page Presentation—Calling
JavaBeans" on page 1-5 describes a key advantage of JavaServer Pages technology:
Java code containing the business logic and determining the dynamic content can
be separated from the HTML code containing the request processing, presentation
logic, and static content. This separation allows HTML experts to focus on
presentation logic in the JSP page itself, while Java experts focus on business logic
in JavaBeans that are called from the JSP page.

A typical JSP page will have only brief snippets of Java code, usually for Java
functionality for request processing or presentation. The sample page in "JSP Starter
Sample for Database Access" on page 3-21, although illustrative, is probably not an
ideal design. Database access, such as in the r unQuer y() method in the sample, is
usually more appropriate in a JavaBean. However, the f or mat Resul t () method
in the sample, which formats the output, is more appropriate for the JSP page itself.

Use of Enterprise JavaBeans in JSP Pages

To use an Enterprise JavaBean (EJB) in a JSP page, choose either of the following
approaches:

« Use alJavaBean wrapper for the EJB and call the JavaBean from the JSP page as
you would any other JavaBean.

« Call the EJB directly from the JSP page.

This section provides two examples of calling an EJB from a JSP page—one where
the JSP page runs in a middle-tier environment, and one where it runs in the Oracle
Servlet Engine.

These examples point out some significant advantages in using the Oracle Servlet
Engine.

4-2 JavaServer Pages Developer’s Guide and Reference

General JSP Programming Strategies, Tips, and Traps

For general information about the Oracle EJB implementation, see the Oracle8i
Enterprise JavaBeans Developer’s Guide and Reference.

Calling an EJB from a JSP Page in the Middle Tier

The following JSP page calls an EJB from a middle-tier environment such as the
Oracle Internet Application Server. In this case, the service URL is specified as
sess_iiop://1ocal host:2481: ORCL (you may need to modify it to use your
own hostname, I1OP port number and Oracle instance name). The INDI naming
context is set up through the new | ni ti al Cont ext (env) construction, where
env is a hashtable defining the parameters for the context. Once the initial context
(i c)is created, the code looks up the EJB home object using the service URL and the
JNDI name for the EJB:

Enpl oyeeHone hone = (Enpl oyeetbne) ic.lookup (surl + "/test/enpl oyeeBean");

Then the home. cr eat e() method is called to create an instance of the bean, and
the bean’s quer y() method is called to get the name and salary for the employee
whose humber was entered through the HTML form in the JSP page.

Following is the sample code:

<HTM_>

<Y@page i nport ="enpl oyee. Enpl oyee, enpl oyee. Epl oyeetbre,

enpl oyee. EnpRecord, oracl e. aurora. jndi . sess_iiop. Servi ceQx,

javax. nam ng. Gontext, javax.namng.Initial Context, java.util.Hashtabl e"
%

<HEAD> <TI TLE> The Gal |BEIB JSP </ TI TLE </ HEAD>
<BCDY BAOALCR="whi te">

<% Sring enpNum = request . get Par anet er (" enpNunt) ;
Sring surl = request.getParaneter("surl");
if (enpNum!= null) {
try {

Hasht abl e env = new Hasht abl e() ;
env. put (Cont ext . URL_PKG PREFI XES, "oracl e.aurora.jndi");
env. put (Cont ext . SEQRI TY_PRINO PAL, "scott");
env. put (Cont ext . SEQURI TY_CREDENTI ALS, "tiger");
env. put (Cont ext . SEQUR TY_AUTHENTI CATI ON

ServiceGx. NON SSL LGA N ;
Gontext ic = newlnitial Context (env);
Enpl oyeetbne hone = (Enpl oyeeHone)i c. | ookup (surl +

"/t est/enpl oyeeBean");

Enpl oyee testBean = hone. creat e();

Key Considerations 4-3

General JSP Programming Strategies, Tips, and Traps

EnpRecord enpRec = testBean. query (Integer. parsel nt(enpNun));

%
<h2><BLOCKQUOTE><B| G<PRE>

Hello, I'’'man BEIJBin Qacle8i.

Enpl oyee <% enpRec. enane % earns $ <% enpRec. sal %
<% } catch (Exception e) { %

Error occurred: <% e %
<% }

} %
</ PRE></ Bl G></ BLOCKQUOTE></ h2>
<HR>

<P>Enter an enpl oyee nunber and EJB service UR.: </ B></ P>

<FCRM METHOD=get >

<INPUT TYPE=text NAME="enpNumi Sl ZE=10 val ue="7654">

<INPUT TYPE=text NAME="surl" S ZE=40 val ue="sess_iiop://|ocal host:2481: CROL" >
<I NPUT TYPE=submt VALUE="Ask Cracl e">

</ FCRW>

</ BCDY>

</ HTM.>

Calling an EJB from a JSP Page in the Oracle Servlet Engine

If you are deploying the JSP page to the Oracle Servlet Engine in Oracle8i, the EJB
lookup and invocation is much simpler and highly optimized. In this case, the bean
lookup is done locally within the Oracle8i INDI namespace. An explicit service URL
specification is not required. The naming context is initialized for the current
session with the simple call :

Gontext ic = new lnitial Context();
Note that the constructor in this case does not require any arguments, unlike the

middle-tier example. The bean is looked up using just its INDI name (without the
service URL):

Enpl oyeeHone hone = (Enpl oyeeHone)i c. | ookup ("/test/enpl oyeeBean");

Following is the sample code:

<HTM_>

<Y@page i nport ="enpl oyee. Enpl oyee, enpl oyee. Epl oyeetbre,
enpl oyee. EnpRecord, oracl e.aurora. jndi . sess_iiop. ServiceQx,
j avax. nanm ng. Gont ext, javax. namng.Initial Context,
java.util.Hashtabl e" %

4-4 JavaServer Pages Developer’s Guide and Reference

General JSP Programming Strategies, Tips, and Traps

<HEAD> <TI TLE> The Gal IEIB JSP </ TI TLE> </ HEAD>
<BCDY BAOCLCR="whi te">

<% Sring enpNum = request . get Par anet er (" enpNunt) ;
if (enpNum!= null) {
try {
Context ic = new Initial Gontext();
Enpl oyeetbne hone = (Empl oyeetone)i c. | ookup("/test/ enpl oyeeBean");
Enpl oyee t est Bean = hone. create();
EnpRecord enpRec = testBean. query (I nteger. parselnt(enpNun));
%
<h2><BLOCKQUOTE><B| G<PRE>
Hello, I'’'man BEIJBin Qacle8i.
Enpl oyee <% enpRec. enane % earns $ <% enpRec. sal %
<% } catch (Exception e) { %
Error occurred: <% e %
<% }
} %
</ PRE></ Bl G></ BLOOKQUOTE></ h2>
<HR>

<P>Enter an enpl oyee nunber URL: </ B></ P>

<FCRM METHOD=get >

<INPUT TYPE=text NAME="enpNunmi Sl ZE=10 val ue="7654">
<I NPUT TYPE=submt VALUE="Ask Cracl e">

</ FCRW>

</ BCDY>

</ HTM.>

Use of JDBC Performance Enhancement Features

You can use the following performance enhancement features in JSP applications
executed by OracleJSP:

« caching database connections (through Oracle extensions)

« caching JDBC statements (through Oracle extensions)

= batching update statements (through Oracle extensions)

« prefetching rows during a query (through Oracle extensions)

« caching rowsets (through Sun Microsystems extensions)

Key Considerations 4-5

General JSP Programming Strategies, Tips, and Traps

Most of these performance features are supported by the ConnBean and
ConnCacheBean database-access JavaBeans (but not by DBBean). "Oracle
Database-Access JavaBeans" on page 5-13 describes these beans.

Database Connection Caching

Creating a new database connection is an expensive operation that you should
avoid whenever possible. Instead, use a cache of database connections. A JSP
application can get a logical connection from a pre-existing pool of physical
connections, and return the connection to the pool when done.

You can create a connection pool at any one of the four JSP scopes—appl i cat i on,
sessi on, page, orr equest . It is most efficient to use the maximum possible
scope—appl i cat i on scope if that is permitted by the Web server, or sessi on
scope if not.

The Oracle JDBC connection caching scheme, built upon standard connection
pooling as specified in the JDBC 2.0 standard extensions, is implemented in the
ConnCacheBean database-access JavaBean provided with OracleJSP. This is
probably how most OracleJSP developers will use connection caching. For
information, see "ConnCacheBean for Connection Caching" on page 5-16.

It is also possible to use the Oracle JDBC Or acl eConnect i onCachel npl class
directly, as though it were a JavaBean, as in the following example (although all
Or acl eConnecti onCachel npl functionality is available through
ConnCacheBean):

<j sp: useBean i d="occi" cl ass="oracl e. j dbc. pool . O acl eGnnect i onCachel npl "
scope="sessi on" />

The same properties are available in O acl eConnect i onCachel npl asin
ConnCacheBean. They can be set either through j sp: set Pr oper t y statements or
directly through the class setter methods.

For examples of using Or acl eConnect i onCachel npl directly, see "Connection
Caching—ConnCache3.jsp and ConnCachel.jsp" on page 9-16.

For information about the Oracle JDBC connection caching scheme and the
Or acl eConnecti onCachel npl class, see the Oracle8i JDBC Developer’s Guide and
Reference.

JDBC Statement Caching

Statement caching, an Oracle JDBC extension that is available with release 8.1.7,
improves performance by caching executable statements that are used repeatedly

4-6 JavaServer Pages Developer’s Guide and Reference

General JSP Programming Strategies, Tips, and Traps

within a single physical connection, such as in a loop or in a method that is called
repeatedly. When a statement is cached, the statement does not have to be
re-parsed, the statement object does not have to be recreated, and parameter size
definitions do not have to be recalculated each time the statement is executed.

The Oracle JDBC statement caching scheme is implemented in the ConnBean and
ConnCacheBean database-access JavaBeans that are provided with OraclelJSP. Each
of these beans has a st nt CacheSi ze property that can be set through a

j sp: set Property statement or the bean’s set St nt CacheSi ze() method. For
information, see "ConnBean for a Database Connection" on page 5-14 and
"ConnCacheBean for Connection Caching" on page 5-16.

Statement caching is also available directly through the Oracle JDBC

Or acl eConnecti onand Or acl eConnect i onCachel npl classes. For
information about the Oracle JDBC statement caching scheme and the

Or acl eConnecti onand Or acl eConnect i onCachel npl classes, see the
Oracle8i JDBC Developer’s Guide and Reference.

Important: Statements can be cached only within a single physical
connection. When you enable statement caching for a connection
cache, statements can be cached across multiple logical connection
objects from a single pooled connection object, but not across
multiple pooled connection objects.

Update Batching

The Oracle JDBC update batching feature associates a batch value (limit) with each
prepared statement object. With update batching, instead of the JDBC driver
executing a prepared statement each time its execut eBat ch() method is called,
the driver adds the statement to a batch of accumulated execution requests. The
driver will pass all the operations to the database for execution once the batch value
is reached. For example, if the batch value is 10, then each batch of 10 operations
will be sent to the database and processed in one trip.

OracleJSP supports Oracle JDBC update batching directly, through the

execut eBat ch property of the ConnBean database-access JavaBean. You can set
this property through aj sp: set Pr oper t y statement or through the bean’s setter
method. If you use ConnCacheBean instead, you can enable update batching
through Oracle JDBC functionality in the connection and statement objects you
create. See "ConnBean for a Database Connection" on page 5-14 and
"ConnCacheBean for Connection Caching" on page 5-16 for information about these
JavaBeans.

Key Considerations 4-7

General JSP Programming Strategies, Tips, and Traps

For more information about Oracle JDBC update batching, see the Oracle8i JDBC
Developer’s Guide and Reference.

Row Prefetching

The Oracle JDBC row prefetching feature allows you to set the number of rows to
prefetch into the client during each trip to the database while a result set is being
populated during a query, reducing the number of round trips to the server.

OracleJSP supports Oracle JDBC row prefetching directly, through the pr eFet ch
property of the ConnBean database-access JavaBean. You can set this property
through aj sp: set Property statement or through the bean’s setter method. If
you use ConnCacheBean instead, you can enable row prefetching through Oracle
JDBC functionality in the connection and statement objects you create. See
"ConnBean for a Database Connection" on page 5-14 and "ConnCacheBean for
Connection Caching" on page 5-16 for information about these JavaBeans.

For more information about Oracle JDBC row prefetching, see the Oracle8i JDBC
Developer’s Guide and Reference.

Rowset Caching

A cached rowset provides a disconnected, serializable, and scrollable container for
data retrieved from the database. This feature is useful for small sets of data that do
not change often, particularly when the client requires frequent or continued access
to the information. By contrast, using a normal result set requires the underlying
connection and other resources to be held. Be aware, however, that large cached
rowsets consume a lot of memory on the client.

As of release 8.1.7, Oracle JDBC does not provide a cached rowset implementation;
however, a reference implementation is available from Sun Microsystems.
Download the file r owset . j ar from the Sun Web site, include it in your Web
server classpath, and import the package sun. j dbc. rowset . * in your code. Then
use code to create and populate a cached rowset, such as in the following example:

CachedRowSet crs = new CachedRowSet () ;
crs.popul ate(rset); // rset is a previously created JDBC Resul t Set obj ect.

Once the rowset is populated, the connection and statement objects used in
obtaining the original result set can be closed.

4-8 JavaServer Pages Developer’s Guide and Reference

General JSP Programming Strategies, Tips, and Traps

Static Includes Versus Dynamic Includes

Thei ncl ude directive, described in "Directives" on page 1-10, makes a copy of the
included page and copies it into a JSP page (the "including page") during
translation. This is known as a static include (or translate-time include) and uses the
following syntax:

<Y@include fil e="/jsp/userinfopage.jsp" %

Thej sp: i ncl ude action, described in "JSP Actions and the <jsp: > Tag Set" on
page 1-18, dynamically includes output from the included page within the output of
the including page, during runtime. This is known as a dynamic include (or runtime
include) and uses the following syntax:

<j sp:incl ude page="/j sp/ userinfopage.jsp" flush="true" />
For those of you who are familiar with C syntax, a static include is comparable to a

#i ncl ude statement. A dynamic include is similar to a function call. They are both
useful, but serve different purposes.

Note: Both static includes and dynamic includes can be used only
within the same servlet context.

Logistics of Static Includes

A static include increases the size of the generated code for the including JSP page,
as though the text of the included page is physically copied into the including page
during translation (at the point of the i ncl ude directive). If a page is included
multiple times within an including page, multiple copies are made.

A JSP page that is statically included does not need to stand as an independent,
translatable entity. It simply consists of text that will be copied into the including
page. The including page, with the included text copied in, must then be
translatable. And, in fact, the including page does not have to be translatable prior
to having the included page copied into it. A sequence of statically included pages
can each be fragments unable to stand on their own.

Logistics of Dynamic Includes

A dynamic include does not significantly increase the size of the generated code for
the including page, although method calls, such as to the request dispatcher, will be
added. The dynamic include results in runtime processing being switched from the

Key Considerations 4-9

General JSP Programming Strategies, Tips, and Traps

including page to the included page, as opposed to the text of the included page
being physically copied into the including page.

A dynamic include does increase processing overhead, with the necessity of the
additional call to the request dispatcher.

A page that is dynamically included must be an independent entity, able to be
translated and executed on its own. Likewise, the including page must be
independent as well, able to be translated and executed without the dynamic
include.

Advantages, Disadvantages, and Typical Uses

Static includes affect page size; dynamic includes affect processing overhead. Static
includes avoid the overhead of the request dispatcher that a dynamic include
necessitates, but may be problematic where large files are involved. (There is a 64K
size limit on the service method of the generated page implementation class—see
"Workarounds for Large Static Content in JSP Pages" on page 4-13.)

Overuse of static includes can also make debugging your JSP pages difficult,
making it harder to trace program execution. Avoid subtle interdependencies
between your statically included pages.

Static includes are typically used to include small files whose content is used
repeatedly in multiple JSP pages. For example:

« Statically include a logo or copyright message at the top or bottom of each page
in your application.

« Statically include a page with declarations or directives (such as imports of Java
classes) that are required in multiple pages.

« Statically include a central "status checker" page from each page of your
application. (See "Use of a Central Checker Page" on page 4-12.)

Dynamic includes are useful for modular programming. You may have a page that
sometimes executes on its own but sometimes is used to generate some of the
output of other pages. Dynamically included pages can be reused in multiple
including pages without increasing the size of the including pages.

4-10 JavaServer Pages Developer’'s Guide and Reference

General JSP Programming Strategies, Tips, and Traps

When to Consider Creating and Using JSP Tag Libraries

Some situations dictate that the development team consider creating and using
custom tags. In particular, consider the following situations:

= JSP pages would otherwise have to include a significant amount of Java logic
regarding presentation and format of output.

= Special manipulation or redirection of JSP output is required.

Replacing Java Syntax

Because one cannot count on JSP developers being experienced in Java
programming, they may not be ideal candidates for coding Java logic in the
page—Ilogic that dictates presentation and format of the JSP output, for example.

This is a situation where JSP tag libraries might be helpful. If many of your JSP
pages will require such logic in generating their output, a tag library to replace Java
logic would be a great convenience for JSP developers.

An example of this is the JML sample tag library provided with OracleJSP. This
library includes tags that support logic equivalent to Java loops and conditionals.
(See "Overview of the JSP Markup Language (JML) Sample Tag Library" on

page 7-20 for information.)

Manipulating or Redirecting JSP Output

Another common situation for custom tags is if special runtime processing of the
response output is required. Perhaps the desired functionality requires an extra
processing step or redirection of the output to somewhere other than the browser.

An example is to create a custom tag that you can place around a body of text
whose output will be redirected into a log file instead of to a browser, such as in the
following example (where cust is the prefix for the tag library and | og is one of
the library’s tags):

<cust: | og>
Today is <% newjava.util.Date() %
Text to | og.
Mre text to |og.
Sill nmore text to |og.

</cust: | og>

See "Tag Handlers" on page 7-4 for information about processing of tag bodies.

Key Considerations 4-11

General JSP Programming Strategies, Tips, and Traps

Use of a Central Checker Page

For general management or monitoring of your JSP application, it may be useful to
use a central "checker" page that you include from each page in your application. A
central checker page could accomplish tasks such as the following during execution
of each page:

« Check session status.

= Check login status (such as checking the cookie to see if a valid login has been
accomplished).

« Check usage profile (if a logging mechanism has been implemented to tally
events of interest, such as mouse clicks or page Vvisits).

There could be many more uses as well.

As an example, consider a session checker class, MySessi onChecker, that
implements the Ht t pSessi onBi ndi ngLi st ener interface. (See "Standard
Session Resource Management—HttpSessionBindingListener" on page 3-12.)

public class M/Sessi onChecker inpl enents HtpSessi onBi ndi ngLi st ener
{

val ueBound(H t pSessi onBi ndi ngEvent event)

{...}
val uelnbound(H t pSessi onBi ndi ngEvent event)
{...}

}

You can create a checker JSP page, suppose cent r al check. j sp, that includes
something like the following:

<j sp: useBean i d="sessi oncheck" cl ass="M/Sessi onChecker" scope="session" />

In any page that includes cent r al check. j sp, the servlet container will call the
val ueUnbound() method implemented in the MySessi onChecker class as soon
as sessi oncheck goes out of scope (at the end of the session). Presumably this is
to manage session resources. You could include cent r al check. j sp at the end of
each JSP page in your application.

4-12 JavaServer Pages Developer’'s Guide and Reference

General JSP Programming Strategies, Tips, and Traps

Workarounds for Large Static Content in JSP Pages

JSP pages with large amounts of static content (essentially, large amounts of HTML
code without content that changes at runtime) may result in slow translation and
execution.

There are two primary workarounds for this (either workaround will speed
translation):

« Putthe static HTML into a separate file and use a dynamic i ncl ude command
(j sp: i ncl ude) to include its output in the JSP page output at runtime. See
"JSP Actions and the <jsp: > Tag Set" on page 1-18 for information about the
j sp:incl ude command.

Important: A static <%@ i ncl ude. .. % command would not
work. It would result in the included file being included at
translation time, with its code being effectively copied back into the
including page. This would not solve the problem.

« Putthe static HTML into a Java resource file.

OracleJSP will do this for you if you enable the ext er nal _r esour ce
configuration parameter. This parameter is documented in "OracleJSP
Configuration Parameters (Non-OSE)" on page A-15.

For deployment to Oracle8i, the - ext r es and - hot | oad options of the oj spc
pre-translation tool, and the - hot | oad option of the publ i shj sp session shell
command, also offer this functionality.

Note: Putting static HTML into a resource file may resultin a
larger memory footprint than the j sp: i ncl ude workaround
mentioned above, because the page implementation class must load
the resource file whenever the class is loaded.

Another possible, though unlikely, problem with JSP pages that have large static
content is that most (if not all) JVMs impose a 64K byte size limit on the code within
any single method. Although j avac would be able to compile it, the JVM would be
unable to execute it. Depending on the implementation of the JSP translator, this
may become an issue for a JSP page, because generated Java code from essentially
the entire JSP page source file goes into the service method of the page

Key Considerations 4-13

General JSP Programming Strategies, Tips, and Traps

implementation class. (Java code is generated to output the static HTML to the
browser, and Java code from any scriptlets is copied directly.)

Another possible, though rare, scenario is for the Java scriptlets in a JSP page to be
large enough to create a size limit problem in the service method. If there is enough
Java code in a page to create a problem, however, then the code should be moved
into JavaBeans.

Method Variable Declarations Versus Member Variable Declarations

In "Scripting Elements" on page 1-12, it is noted that JSP <% ... 9% declarations
are used to declare member variables, while method variables must be declared in
<% ... % scriptlets.

Be careful to use the appropriate mechanism for each of your declarations,
depending on how you want to use the variables:

« Avariable thatis declared in <% ... 9% JSP declaration syntax is declared at
the class level in the page implementation class that is generated by the JSP
translator.

« Avariable that is declared in <% . . . % JSP scriptlet syntax is local to the

service method of the page implementation class.
Consider the following example, decl t est . j sp:

<HTM_>

<BCDY>

<%doubl e f2=0.0; %

<% doubl e f1=0.0; %
Variabl e declaration test.
</ BCDY>

</ HTM.>

This results in something like the following code in the page implementation class:

package ...;
inport ...;

public class decltest extends oracle.jsp.runtime HtpJsp {

/1 ** Begin Declarations
doubl e f1=0. 0; [l *** f1 declaration is generated here ***
/!l ** End Declarations

4-14 JavaServer Pages Developer’'s Guide and Reference

General JSP Programming Strategies, Tips, and Traps

public void _jspService
(HtpServl et Request request, HtpServl et Response response)
throws | CException, ServletException {

try {
out.println("<HM>");
out.println("<BDY>");
doubl e f2=0.0; [l *** £2 declaration is generated here ***
out.println("");
out.println("");
out.printIn("Variable declaration test.");
out.println("</ BDY>");
out.println("</ HM>");

out. fl ush();
}
cat ch(Exception e) {
try {
if (out '=null) out.clear();
}
cat ch(Exception cl ear Exception) {
}
finally {
if (out '=null) out.close();
}

Note: This code is provided for conceptual purposes only. Most of
the class is deleted for simplicity, and the actual code of a page
implementation class generated by OracleJSP would differ
somewhat.

Page Directive Characteristics
This section discusses the following page directive characteristics:

« A page directive is static and takes effect during translation; you cannot specify
parameter settings to be evaluated at runtime.

« Javai nport settingsin page directives are cumulative within a JSP page.

Key Considerations 4-15

General JSP Programming Strategies, Tips, and Traps

Page Directives Are Static

A page directive is static; it is interpreted during translation. You cannot specify
dynamic settings to be interpreted at runtime. Consider the following examples:

Example 1 The following page directive is valid:
<Y@page content Type="text/htnm; charset=BJCII S' %

Example 2 The following page directive is not valid and will result in an error
(EUCJI Siis hard-coded here, but the example also holds true for any character set
determined dynamically at runtime):

<% Sring s="BJAIS'; %
<Y@page content Type="text/htn; charset=<%s%" %

For some page directive settings there are workarounds. Reconsidering Example 2,
there is a set Cont ent Type() method that allows dynamic setting of the content
type, as described in "Dynamic Content Type Settings" on page 8-4.

Page Directive Import Settings Are Cumulative

Javai nport settings in page directives within a JSP page are cumulative.
Within any single JSP page, the following two examples are equivalent:
<Y@page | anguage="j ava" %

<Y@page inport="sqlj.runtine.ref.Defaul t ontext, java.sql.*" %

or:

<Y@page | anguage="j ava" %
<Y@page inport="sqlj.runtine.ref.Defaul t Context" %
<Y@page inport="java.sql .*" %

After the first page directive i nport setting, the i nport setting in the second
page directive adds to the set of classes or packages to be imported, as opposed to
replacing the classes or packages to be imported.

JSP Preservation of White Space and Use with Binary Data

OracleJSP (and JavaServer Pages implementations in general) preserves source code
white space, including carriage returns and linefeeds, in what is output to the
browser. Insertion of such white space may not be what the developer intended,
and typically makes JSP technology a poor choice for generating binary data.

4-16 JavaServer Pages Developer’'s Guide and Reference

General JSP Programming Strategies, Tips, and Traps

White Space Examples

The following two JSP pages produce different HTML output, due to the use of
carriage returns in the source code.

Example 1—No Carriage Returns (nowhitsp.jsp)

The following JSP page does not have carriage returns after the Dat e() and
get Par anet er () calls. (The third and fourth lines, starting with the Dat e() call,
actually comprise a single wrap-around line of code.)

<HTM_>

<BCDY>

<% newjava.util.Date() % <% Sring user=request.getParaneter("user"); % <%
(user==null) ? "" : user %

Ent er nare: </ B>

<FCRM METHOD=get >

<INPUT TYPE="text" NAME="user" S ZE=15>
<I NPUT TYPE="submt" VALUE="Submit nane">
</ FCRW>

</ BCDY>

</ HTM.>

This results in the following HTML output to the browser. (Note that there are no
blank lines after the date.)

<HTM_>

<BCDY>

Tue May 30 20: 07: 04 PDT 2000

Ent er nare: </ B>

<FCRM METHOD=get >

<INPUT TYPE="text" NAME="user" S ZE=15>
<I NPUT TYPE="submt" VALUE="Submit nane">
</ FCRW

</ BCDY>

</ HTM.>

Example 2—Carriage Returns (whitesp.jsp)

The following JSP page does include carriage returns after the Dat e() and
get Par anet er () calls.

Key Considerations 4-17

General JSP Programming Strategies, Tips, and Traps

<HTM_>

<BCDY>

<% newjava.util.Date() %

<% Sring user=request.getParaneter("user"); %
<% (user==null) ? "" : user %

Enter nane: </ B>

<FCRM METHOD=get >

<INPUT TYPE="text" NAME="user" S ZE=15>
<INPUT TYPE="subnit" VALUE="Subnit nane">
</ FORW>

</ BCDY>

</ HTM.>

This results in the following HTML output to the browser.

<HTM>
<BCDY>
Tue May 30 20:19: 20 PDT 2000

Ent er nare: </ B>

<FCRM METHOD=get >

<INPUT TYPE="text" NAME="user" S ZE=15>
<I NPUT TYPE="submit" VALUE="Submt nane">
</ FCRW>

</ BCDY>

</ HTM.>

Note the two blank lines between the date and the "Enter name:" line. In this
particular case the difference is not significant, because both examples produce the
same appearance in the browser, as shown below. However, this discussion
nevertheless demonstrates the general point about preservation of white space.

P Ml ap

_Fli- [== L [ewwncels |G
v+ ¢ 34 4 =2 o <+ £ @
Eincl: Askcad Hom Samch Hecem P Sweriniy

_J"i-;-:l.ul- & wlll| Rl 1o 1S40 iy ;lf.__' Wwhal's Falsied

Tue Bwy 30 301930 FIOT 2000 Enter name;

I _ Submi navs_|

4-18 JavaServer Pages Developer’s Guide and Reference

General JSP Programming Strategies, Tips, and Traps

Reasons to Avoid Binary Data in JSP Pages

For the following reasons, JSP pages are a poor choice for generating binary data;
generally you should use servlets instead:

= JSP implementations are not designed to handle binary data—there are no
methods for writing raw bytes in the JspW i t er object.

« During execution, the JSP container preserves whitespace. Whitespace is
sometimes unwanted, making JSP pages a poor choice for generating binary
output to the browser (a . gi f file, for example) or other uses where whitespace
is significant.

Consider the following example:

<%out.getQutput Srean().wite(...binary data...) %
<%out.getQutputSrean().wite(...nore binary data...) %

In this case, the browser will receive an unwanted newline characters in the
middle of the binary data or at the end, depending on the buffering of your
output buffer. You can avoid this problem by not using a carriage return
between the lines of code, but of course this is an undesirable programming
style.

Trying to generate binary data in JSP pages largely misses the point of JSP
technology anyway, which is intended to simplify the programming of dynamic
textual content.

Key Considerations 4-19

Key OracleJSP Configuration Issues

Key OracleJSP Configuration Issues

This section covers important effects of how you set key page directive parameters
and OracleJSP configuration parameters. The discussion focuses on JSP page
optimization, and classpath and class loader issues. The following topics are
covered:

« Optimization of JSP Execution

« Classpath and Class Loader Issues (Non-OSE Only)

Optimization of JSP Execution
There are settings you can consider to optimize JSP performance, including the
following:
« Unbuffering a JSP Page
« Not Checking for Retranslation (Non-OSE Only) ("developer mode")

« Not Using an HTTP Session

Unbuffering a JSP Page

By default, a JSP page uses an area of memory known as a page buffer. This buffer
(8KB by default) is required if the page uses dynamic NLS content type settings,
forwards, or error pages. If it does not use any of these features, you can disable the
buffer in a page directive:

<Y@page buf fer="none" %

This will improve the performance of the page by reducing memory usage and
saving an output step (output goes straight to the browser instead of going through
the buffer first).

Not Checking for Retranslation (Non-OSE Only)

When OracleJSP executes a JSP page, by default it will check whether a page
implementation class already exists, compare the . cl ass file timestamp against the
. j sp source file timestamp, and retranslate the page if the . cl ass file is older.

If comparing timestamps is unnecessary (as is the case in a typical deployment
environment, where source code will not change), you can avoid the timestamp
comparison by disabling the OracleJSP devel oper _node flag

(devel oper _node=f al se).

4-20 JavaServer Pages Developer’'s Guide and Reference

Key OracleJSP Configuration Issues

The default setting is t r ue. For information about how to set this flag in the
Apache/JServ, JSWDK, and Tomcat environments, see "OracleJSP Configuration
Parameter Settings" on page A-25.

Not Using an HTTP Session

If a JSP page does not need an HTTP session (essentially, does not need to store or
retrieve session attributes), then you can avoid using a session through the
following page directive:

<Y@page session="fal se" %

This will improve the performance of the page by eliminating the overhead of
session creation or retrieval.

Note that although servlets by default do not use a session, JSP pages by default do
use a session. For background information, see "Servlet Sessions" on page B-4.)

Classpath and Class Loader Issues (Non-OSE Only)

OracleJSP uses its own classpath, distinct from the Web server classpath, and by
default uses its own class loader to load classes from this classpath. This has
significant advantages and disadvantages.

The OraclelSP classpath combines the following elements:
« the OracleJSP default classpath

« additional classpaths you specify in the OracleJSP cl asspat h configuration
parameter

If there are classes you want loaded by the OracleJSP class loader instead of the
system class loader, use the OracleJSP cl asspat h configuration parameter, or
place the classes in the OracleJSP default classpath. See "Advantages and
Disadvantages of the OracleJSP Class Loader" on page 4-23 for related discussion.

OracleJSP Default Classpath

Oracle JSP defines standard locations on the Web server for locating . cl ass files
and . j ar files for classes (such as JavaBeans) that it requires. OracleJSP will find
files in these locations without any Web server classpath configuration.

Key Considerations 4-21

Key OracleJSP Configuration Issues

These locations are as follows and are relative to the application root:

[/ WEB- | NF/ cl asses
IVEB-INH ib

/ _pages

Important: If you want classes in the VEB- | NF directories to be
loaded by the system class loader instead of the OraclelSP class
loader, place the classes somewhere in the Web server classpath as
well. The system class loader takes priority—any class that is
placed in both classpaths will always be loaded by the system class
loader.

The cl asses directory is for individual Java . cl ass files. These classes should be
stored in subdirectories under the cl asses directory, according to Java package
naming conventions.

For example, consider a JavaBean called Lot t oBean whose code defines it to be in
theoracl e. j sp. sanpl e. | ot t ery package. OracleJSP will look for
Lot t oBean. cl ass in the following location relative to the application root:

/WEB- | NF/ cl asses/ oracl e/ j sp/ sanpl e/ | ottery/ Lot t oBean. cl ass
The | i b directory is for . j ar files. Because Java package structure is specified in

the . j ar file structure, the . j ar files are all directly in the | i b directory (not in
subdirectories).

As an example, Lot t oBean. cl ass might be storedinl ottery.j ar, located as
follows relative to the application root:

/VWEB-INH/ lib/lottery.jar
The application root directory can be located in any of the following locations (as

applicable, depending on your Web server and servlet environment), listed in the
order they are searched:

« the Web server directory this application is mapped to
« the Web server document root directory

« the directory containing the gl obal s. j sa file (where applicable, typically in a
servlet 2.0 environment)

4-22 JavaServer Pages Developer’'s Guide and Reference

Key OracleJSP Configuration Issues

Notes:

« Some Web servers, particularly those supporting the servlet 2.0
specification, do not offer full application support such as
complete servlet context functionality. In this case, or when
application mapping is not used, the default application is the
server itself, and the application root is the Web server
document root.

« For older servlet environments, the gl obal s. j safileisan
Oracle extension that can be used as an application marker to
establish an application root. See "OracleJSP Application and
Session Support for Servlet 2.0" on page 5-37.

OracleJSP classpath Configuration Parameter

Use the OraclelSP cl asspat h configuration parameter to add to the OracleJSP
classpath.

For more information about this parameter, see "OracleJSP Configuration
Parameters (Non-OSE)" on page A-15.

For information about how to set this parameter in the Apache/JServ, JSSWDK, and
Tomcat environments, see "OracleJSP Configuration Parameter Settings" on
page A-25.

Advantages and Disadvantages of the OracleJSP Class Loader

Using the OraclelJSP class loader results in the following advantages and
disadvantages:

« limited access to OracleJSP-loaded classes from classes loaded by any other
class loader

When a class is loaded by the OracleJSP class loader , its definition exists in the
OraclelJSP class loader only. Classes loaded by the system class loader or any
other class loader, including any servlets, would have only limited access. The
classes loaded by another class loader could not cast the OracleJSP-loaded class
or call methods on it. This may be desirable or undesirable, depending on your
situation.

= automatic class reloading

By default, the OracleJSP class loader will automatically reload a class in the
OraclelJSP classpath whenever the class file or JAR file has been modified since

Key Considerations 4-23

Key OracleJSP Configuration Issues

it was last loaded. (For a JSP page, for example, this can happen as a result of
dynamic retranslation, which occurs by default if the . j sp source file for a page
has a more recent timestamp than its corresponding page implementation

. cl ass file).

This is usually only advantageous in a development environment. In a typical
deployment environment, the source, class, and JAR files will not change, and it
is inefficient to check them for changes.

See "Dynamic Class Reloading" on page 4-26 for more information.

It follows that in a deployment environment, you will typically not want to use the
OracleJSP classpath. By default, the cl asspat h parameter is empty.

4-24 JavaServer Pages Developer’'s Guide and Reference

OracleJSP Runtime Considerations (Non-OSE Only)

OracleJSP Runtime Considerations (Non-OSE Only)

This section describes conditions under which OracleJSP retranslates pages, reloads
pages, and reloads classes during runtime. This discussion does not apply to JSP
pages running in the Oracle Servlet Engine.

Dynamic Page Retranslation

As a Web application is running, the OracleJSP container by default will
automatically retranslate and reload a JSP page whenever the page source is
modified.

OracleJSP checks whether the last-modified time of the page implementation class
file, as indicated in the OracleJSP in-memory cache, is older than the last-modified
time of the JSP page source file.

You can avoid the overhead of OracleJSP checking timestamps for retranslation by
setting the OracleJSP devel oper _node flag to f al se. This is advantageous in a
deployment environment, where source and class files will typically not change. For
more information about this flag, see "OracleJSP Configuration Parameters
(Non-OSE)" on page A-15. For how to set it, see "OracleJSP Configuration
Parameter Settings" on page A-25.

Notes:

« Because of the usage of in-memory values for the class file
last-modified time, note that removing a page implementation
class file from the file system will not cause OracleJSP to
retranslate the associated JSP page source. OracleJSP will only
retranslate when the JSP page source file timestamp changes.

« Theclass file will be regenerated when the cache is lost. This
happens whenever a request is directed to this page after the
server is restarted or after another page in this application has
been retranslated.

Key Considerations 4-25

OracleJSP Runtime Considerations (Non-OSE Only)

Dynamic Page Reloading

The OraclelSP container will automatically reload a JSP page (in other words,
reload the generated page implementation class) under the following
circumstances.

« the page is retranslated
(See the previous section, "Dynamic Page Retranslation™.)

« alavaclass that is called by the page and was loaded by the OraclelSP class
loader (and not the system class loader) is modified

(See the following section, "Dynamic Class Reloading".)
= any page in the same application is reloaded

A JSP pages is associated with the overall Web application within which it runs
(even JSP pages not associated with a particular application are considered to be
part of a "default application").

Whenever a JSP page is reloaded, all JSP pages in the application are reloaded.

Notes:

« OracleJSP does not reload a page just because a statically
included file has changed. (Statically included files, included
through <%@ i ncl ude % syntax, are included during
translation-time.)

« Page reloading and page retranslation are not the same thing.
Reloading does not imply retranslation.

Dynamic Class Reloading

By default, before OracleJSP dispatches a request that will execute a Java class that
was loaded by the OraclelSP class loader, it checks to see if the class file has been
modified since it was first loaded. If the class has been modified, then the OracleJSP
class loader reloads it.

4-26 JavaServer Pages Developer’'s Guide and Reference

OracleJSP Runtime Considerations (Non-OSE Only)

This applies only to classes in the OraclelSP classpath, which includes the
following:

« JARfilesinthe WVEB- | NF/ | i b directory
« . classfilesinthe VEB- | NF/ cl asses directory

« classes in paths specified through the OracleJSP cl asspat h configuration
parameter

= Qenerated . cl ass files in the _pages output directory

As mentioned in the preceding section, "Dynamic Page Reloading", reloading a
class results in the dynamic reloading of JSP pages that reference that class.

Important:

=« Remember that classes must be in the JSP classpath, not the
system classpath, to be dynamically reloaded. If they are in the
system classpath as well, the system class loader may take
precedence in some circumstances, possibly interfering with
JSP automatic-reloading functionality.

« Dynamic class reloading can be expensive in terms of CPU
usage. You can disable this feature by setting the OracleJSP
devel oper _node parameter to f al se. This is appropriate in
deployment environments where classes are not expected to
change.

For information about the cl asspat h and devel oper _nopde configuration
parameters and how to set them, see "OracleJSP Configuration Parameters
(Non-OSE)" on page A-15 and "OracleJSP Configuration Parameter Settings" on
page A-25.

Key Considerations 4-27

Considerations for the Oracle Servlet Engine

Considerations for the Oracle Servlet Engine

The Oracle Servlet Engine (OSE) is integrated with the Oracle8i JServer
environment. To run in OSE, a JSP page must be loaded and published in the
database. The details of deploying JSP pages into Oracle8i are discussed in

Chapter 6, "JSP Translation and Deployment". This section discusses special
programming considerations for the OSE environment and provides an overview of
key OSE characteristics.

A JSP application can run in OSE by using the Oracle HTTP Server, powered by
Apache, as a front-end Web server (generally recommended), or by using OSE as
the Web server directly. See "Oracle Web Application Database Access Strategies” on
page 2-8. When installing Oracle8i release 8.1.7, Oracle HTTP Server is set as the
default Web server. Refer to your installation instructions if you want to change this
setting.

It is assumed that JSP pages running in the Oracle Servlet Engine are intended for
database access, so some background is provided on database connections in
JServer.

JSP code is generally completely portable between OSE and other environments
where OracleJSP is used. The exception is that connecting in JServer through the
JDBC server-side internal driver is different (for example, does not require a connect
string), as mentioned in "JServer Connections" on page 4-29.

Aside from the use of any JServer database connection code or other JServer-specific
features, JSP pages written for OSE are portable to other environments running
OracleJSP. The original code has to be modified and re-translated only if
JServer-specific features were used.

The following topics are covered here:

« Introduction to the JServer VM and JDBC Server-Side Internal Driver
« JServer Connections

« Use of INDI by the Oracle Servlet Engine

« Equivalent Code for OracleJSP Runtime Configuration Parameters

4-28 JavaServer Pages Developer’'s Guide and Reference

Considerations for the Oracle Servlet Engine

Notes: This section discusses development considerations in
targeting OSE. For deployment considerations, including hotloaded
classes and client-side versus server-side translation, see "Overview
of Features and Logistics in Deployment to Oracle8i" on page 6-12.

Introduction to the JServer JVM and JDBC Server-Side Internal Driver

Each Oracle8i JServer database session invokes its own dedicated Java virtual
machine. This one-to-one correspondence between sessions and JVMs is important
to keep in mind.

Any Java program running inside JServer in the target Oracle8i database typically
uses the JDBC server-side internal driver to access the local SQL engine. This driver is
intrinsically tied to the Oracle8i database and to the JVM. The driver runs as part of
the same process as the database. It also runs within a default database session—the
same session in which the JVM was invoked.

The server-side internal driver is optimized to run within the database server and
provide direct access to SQL data and PL/SQL subprograms on the local database.
The entire JVM operates in the same address space as the database and the SQL
engine. Access to the SQL engine is a function call—there is no network. This
enhances the performance of your JDBC programs and is much faster than
executing a remote Net8 call to access the SQL engine.

JServer Connections

Because the JDBC server-side internal driver runs within a default database session,
you are already "connected" to the database implicitly. There are two JDBC methods
you can use to access the default connection:

« Use the Oracle-specific def aul t Connect i on() method of the
O acl eDri ver class. (This returns the same connection object each time it is

called.)

« Use the static Dri ver Manager . get Connecti on() method, with either
j dbc: oracl e: kprborjdbc: defaul t: connecti on as the URL string.
(This returns a different connection object each time it is called.)

Using the def aul t Connect i on() method is generally recommended.

It is also possible to use the server-side Thin driver for an internal connection (a
connection to the database in which your Java code is running), but this is not

typical.

Key Considerations 4-29

Considerations for the Oracle Servlet Engine

Notes:

« Alternatively, you can connect using custom JavaBeans
provided with OracleJSP. See "Oracle Database-Access
JavaBeans" on page 5-13.

= You are not required to register the Or acl eDr i ver class for
connecting with the server-side internal driver, although there
is no harm in doing so. This is true whether you are using
get Connecti on() ordefaul t Connecti on() to make the
connection.

For more information about server-side connections through Oracle JDBC, see the
Oracle8i JDBC Developer’s Guide and Reference.

Connecting with the OracleDriver Class defaultConnection() Method

Theoracl e.jdbc. driver. O acl eDri ver class def aul t Connecti on()
method is an Oracle extension you can use to make an internal database connection.
This method always returns the same connection object. Even if you invoke this
method multiple times, assigning the resulting connection object to different
variable names, a single connection object is reused.

The def aul t Connecti on() method does not take a connect string. For example:

inport java.sql.*;
inport oracle.jdbc.driver.*;

cl ass JDBODonnecti on

{

public static Gonnection connect () throws SQ Exception

{

Qonnection conn = nul | ;
try {
/] connect with the server-side internal driver
QacleDriver ora = new Qacl eDxiver();
conn = ora. defaul t Gonnection();

}

} catch (SQException e) {...}
return conn;

}
}

4-30 JavaServer Pages Developer’'s Guide and Reference

Considerations for the Oracle Servlet Engine

Note that there is no conn. cl ose() call in the example. When JDBC code is
running inside the target server, the connection is an implicit data channel, not an
explicit connection instance as from a client. It should typically not be closed.

If you do call the cl ose() method, be aware of the following:

« All connection instances obtained through the def aul t Connecti on()
method, which actually all reference the same connection object, will be closed
and unavailable for further use, with state and resource cleanup as appropriate.
Executing def aul t Connecti on() afterward would result in a new
connection object and, therefore, a new transaction.

« Even though the connection object is closed, the implicit connection to the
database will not be closed.

Connecting with the DriverManager.getConnection() Method

Instead of using the def aul t Connect i on() method to make an internal database
connection, you can use the static Dr i ver Manager . get Connect i on() method
with either of the following connect strings:

Qonnection conn = Driver Manager . get Gonnecti on("j dbc: oracl e: kprb:");

or:

Qonnection conn = Driver Manager . get Gonnecti on("j dbc: def aul t : connection:");

Any user name or password you include in the URL string is ignored in connecting
to the server default connection.

The Dri ver Manager . get Connect i on() method returns a new Java

Connect i on object every time you call it. Note that although the method is not
creating a new physical connection (only a single implicit connection is used), it is
returning a new object.

The fact that Dri ver Manager . get Connect i on() returns a new connection
object every time you call it is significant if you are working with object maps,
known as "type maps". A type map, for mapping Oracle SQL object types to Java
classes, is associated with a specific Connect i on object and with any state that is
part of the object. If you want to use multiple type maps as part of your program,
then you can call get Connect i on() to create a new Connect i on object for each
type map. For general information about type maps, see the Oracle8i JDBC
Developer’s Guide and Reference.

Key Considerations 4-31

Considerations for the Oracle Servlet Engine

Connecting with the Server-Side Thin Driver

The Oracle JDBC server-side Thin driver is generally intended for connecting to one
database from within another database. It is possible, however, to use the
server-side Thin driver for an internal connection. Specify a connect string as you
would for any usage of the Oracle JDBC Thin driver.

This feature offers the possible advantage of code portability between the Oracle
Servlet Engine and other servlet environments; however, the server-side internal
driver offers more efficient performance.

No Auto-Commit in Server-Side Internal Driver

The JDBC auto-commit feature is disabled in the server-side internal driver. You
must commit or roll back changes manually.

No Connection Pooling or Caching with Server-Side Internal Driver

Connection pooling and caching is not applicable when using the server-side
internal driver, because it uses a single implicit database connection. Attempts to
use these features through the internal driver may actually degrade performance.

Use of JNDI by the Oracle Servlet Engine

The Oracle Servlet Engine uses a INDI mechanism to look up "published" JSP pages
and servlets, although this mechanism is generally invisible to the JSP developer or
user. Publishing a JSP page, which you accomplish during deployment to OSE,
involves either running the Oracle session-shell publ i shj sp command (for
deployment with server-side translation) or running the session-shell

publ i shservl et command (for deployment with client-side translation).

The publ i shser vl et command requires you to specify a virtual path name and a
servlet name for the page implementation class. The virtual path name is then used
to invoke the page through a URL, or to include or forward to the page from any
other page running in OSE.

The publ i shj sp command can either take a virtual path name and servlet name
on the command line, or will infer them from the JSP source file name and directory
path that you specify.

Both the servlet name and the virtual path name are entered into the JServer JNDI
namespace, but the JSP developer or user need only be aware of the virtual path
name.

4-32 JavaServer Pages Developer’'s Guide and Reference

Considerations for the Oracle Servlet Engine

For more information about publishing a JSP page for OSE, see "Translating and
Publishing JSP Pages in Oracle8i (Session Shell publishjsp)" on page 6-42 (for
deployment with server-side translation) or "Publishing Translated JSP Pages in
Oracle8i (Session Shell publishservlet)" on page 6-63 (for deployment with
client-side translation).

For general information about how the Oracle Servlet Engine uses JNDI, see the
Oracle8i Oracle Servlet Engine User’s Guide.

Equivalent Code for OracleJSP Runtime Configuration Parameters

Some OraclelJSP configuration parameters take effect during translation; others take
effect during runtime. When you deploy JSP pages to the Oracle8i database to run
in the Oracle Servlet Engine, you can make appropriate translation-time settings
through command-line options of the OracleJSP pre-translation tool.

At runtime, however, the Oracle Servlet Engine does not support execution-time
configuration parameters. The most significant runtime parameter is

transl at e_par ans, which relates to NLS. For a discussion of equivalent code, see
"Code Equivalent to the translate_params Configuration Parameter" on page 8-6.

Key Considerations 4-33

Considerations for Apache/JServ Servlet Environments

Considerations for Apache/JServ Servlet Environments

There are special considerations in running OracleJSP in Apache/JServ-based
platforms, including Oracle Internet Application Server release 1.0.x, because this is
aservlet 2.0 environment. The servlet 2.0 specification lacked support for some
significant features that are available in servlet 2.1 and 2.2 environments.

For information about how to configure an Apache/JServ environment for
OraclelJSP, see the following sections:

« "Add OracleJSP-Related JAR and ZIP Files to Web Server Classpath" on
page A-8

« "Map JSP File Name Extensions to Oracle JspServlet" on page A-11
« "Setting OracleJSP Parameters in Apache/JServ" on page A-25

(If you use Apache/JServ through an Oracle platform, see the installation and
configuration documentation for that platform instead.)

The rest of this section, after summarizing the use of Apache/JServ by the Oracle
Internet Application Server, discusses the following Apache-specific considerations:

« Dynamic Includes and Forwards in Apache/JServ
« Application Framework for Apache/JServ
« JSPand Servlet Session Sharing

« Directory Alias Translation

Use of Apache/JServ in the Oracle Internet Application Server

As of Oracle Internet Application Server release 1.0.0 and release 1.0.1, this product
uses Apache/JServ as its servlet environment.

As in any Apache/JServ or other servlet 2.0 environment, there are special
considerations relating to servlet and JSP usage when using Oracle Internet
Application Server release 1.0.x. These are detailed in the sections that follow.

(The Oracle Internet Application Server includes the Oracle HTTP Server, powered
by Apache, as its Web server. Be aware that if you use the Oracle HTTP Server
nod_ose Apache mod to run your JSP application in the Oracle Servlet Engine, you
are using the OSE servlet 2.2 environment, not the Internet Application Server
Apache/JServ servlet 2.0 environment.)

4-34 JavaServer Pages Developer’'s Guide and Reference

Considerations for Apache/JServ Servlet Environments

Note: Future releases of the Oracle HTTP Server and Oracle
Internet Application Server may use a servlet environment other
than Apache/JServ.

For a brief overview of the Oracle Internet Application Server and its use of the
Oracle HTTP Server, see "Support for OracleJSP in Oracle Environments" on
page 2-4.

Dynamic Includes and Forwards in Apache/JServ

JSP dynamic includes (the j sp: i ncl ude action) and forwards (the j sp: f orwar d
action) rely on request dispatcher functionality that is present in servlet 2.1 and 2.2
environments, but not in servlet 2.0 environments.

OracleJSP, however, provides extended functionality to allow dynamic includes and
forwards from one JSP page to another JSP page or to a static HTML file in
Apache/JServ and other servlet 2.0 environments.

This OracleJSP functionality does not, however, allow dynamic forwards or
includes to servlets. (Servlet execution is controlled by the JServ or other servlet
container, not the OracleJSP container.)

If you want to include or forward to a servlet, you can create a JSP page that acts as
a wrapper for the servlet.

The following example shows a servlet, and a JSP page that acts as a wrapper for
that servlet. In an Apache/JServ environment, you can effectively include or
forward to the servlet by including or forwarding to the JSP wrapper page.

Servlet Code Presume that you want to include or forward to the following servlet:

inport java.io.*;
inport javax.servlet.*;
inport javax.servlet.http.*;

public class TestServl et extends HtpServlet {

public void init(Servlet@nfig config) throws ServletException
{

super.init(config);
Systemout.printIn("initialized");

}

Key Considerations 4-35

Considerations for Apache/JServ Servlet Environments

public void destroy()
{

}

Systemout . println("destroyed");

public void service
(HtpServl et Request request, HtpServl et Response response)
throws Servl et Exception, | CException

response. set nt ent Type("text/htm");

PrintWiter out = response.getWiter();

out. printl n(" <HTM><BDY>") ;

out.println("TestServlet Testing");

out.println("<H3>The local tine is: "+ newjava. util.Date());
out. print!l n("</BADY></ HIM>") ;

JSP Wrapper Page Code You can create the following JSP wrapper (w apper . j sp)
for the preceding servlet:

<%- wapper.jsp--waps TestServlet for JSP include/forward --%
<Y@page i sThreadSaf e="true" inport="TestServlet" %
<%
Test Servl et s=nul | ;
public void jsplnit() {
s=new Test Servl et ();
try {
s.init(this.getServliet@nfig());
} catch (Servl et Exception se)

{

}

}
public void jspDestroy() {

s. destroy();
}
%
<%s. servi ce(request, response); %

s=nul | ;

Including or forwarding to wr apper . j sp in a servlet 2.0 environment has the same
effect as directly including or forwarding to Test Ser vl et inaservlet2.1 or 2.2
environment.

4-36 JavaServer Pages Developer’'s Guide and Reference

Considerations for Apache/JServ Servlet Environments

Notes:

« Whethertoseti sThreadSafe totrue orfal se inthe
wrapper JSP page depends on whether the original servlet is
thread-safe.

« Asan alternative to using a wrapper JSP page for this situation,
you can add HTTP client code to the original JSP page (the one
from which the i ncl ude or f or war d is to occur). You can use
an instance of the standard j ava. net . URL class to create an
HTTP request from the original JSP page to the servlet. (Note
that you cannot share session data or security credentials in this
scenario.) Alternatively, you can use the HTTPCl i ent class
from Innovation GmbH. Oracle8i JServer provides a modified
version of this class that supports SSL, directly or through a
proxy, when you use ht t ps: // for the URL. (See
www. i nnovati on. ch/java/ HTTPC i ent for general
information about this class. Click "Getting Started" for
information that includes how to replace the IDK HTTP client
with the HTTPC i ent class.) Details of these alternatives are
outside the scope of this document, however, and this approach
is generally not recommended.

Application Framework for Apache/JServ

The servlet 2.0 specification does not provide the full servlet context framework for
application support that is provided in later specifications.

For servlet 2.0 environments, including Apache/JServ, OraclelSP supplies its own
application framework using a file, gl obal s. j sa, that you can use as an
application marker.

For more information, see "Distinct Applications and Sessions Through globals.jsa"
on page 5-38.

JSP and Servlet Session Sharing

To share HTTP session information between JSP pages and servlets in an
Apache/JServ environment, you must configure your environment so that

oracl e.jsp.JspServl et (the servlet that acts as the front-end of the OracleJSP
container) is in the same zone as the servlet or servlets with which you want your

Key Considerations 4-37

Considerations for Apache/JServ Servlet Environments

JSP pages to share a session. Consult your Apache documentation for more
information.

To verify proper zone setup, some browsers allow you to enable a warning for
cookies. In an Apache environment, the cookie name includes the zone name.

Additionally, for applications that use a gl obal s. j sa file, the OracleJSP
configuration parameter sessi on_shar i ng should be set to t r ue (the default) for
JSP session data to be accessible to servlets. See these sections for related
information:

= "OracleJSP Application and Session Support for Servlet 2.0" on page 5-37
« "OracleJSP Configuration Parameters (Non-OSE)" on page A-15

» "OracleJSP Configuration Parameter Settings" on page A-25

Directory Alias Translation

Apache supports directory aliasing by allowing you to create a "virtual directory"
through an Al i as command in the ht t pd. conf configuration file. This allows
Web documents to be placed outside the default doc root directory. (An implicit
application is created for the Web server document root and each aliasing root.)

Consider the following sample ht t pd. conf entry:
Aias /icons/ "/apachel apachel39/i cons/"
This command should result in i cons being usable as an alias for the

[apache/ apachel39/i cons/ path. In this way, for example, the file
[apache/ apachel39/i cons/art. gi f, could be accessed by the following URL:

http:// host[: port]/icons/art.gif

Currently, however, this functionality does not work properly for servlets and JSP
pages, because the Apache/JServ get Real Pat h() method returns an incorrect
value when processing a file under an alias directory.

OracleJSP provides an Apache-specific configuration parameter,
al i as_transl ati on, that works around this limitation when you set
al i as_transl ati on=true (the default setting is f al se).

For information about how to set OracleJSP configuration parameters in an
Apache/JServ environment, see "Setting OracleJSP Parameters in Apache/JServ" on
page A-25.

4-38 JavaServer Pages Developer’'s Guide and Reference

D

OracleJSP Extensions

This chapter discusses extended functionality offered by OraclelSP, covering the
following topics:

« Portable OracleJSP Programming Extensions
» Oracle-Specific Programming Extensions
« OracleJSP Application and Session Support for Servlet 2.0

Portable extensions are provided through Oracle’s JSP Markup Language (JML)
custom tags, IML extended datatypes, SQL custom tags, and database-access
JavaBeans. You can use these features in other JSP environments.

Non-portable extensions are those that require OracleJSP for translation and
execution.

Extended application and session support for servlet 2.0 environments is supplied
through Oracle gl obal s. j sa functionality and also requires OracleJSP.

OracleJSP Extensions 5-1

Portable OracleJSP Programming Extensions

Portable OracleJSP Programming Extensions

The Oracle extensions documented in this section are implemented either through
the Oracle JSP Markup Language (JML) sample tag library or through custom
JavaBeans. These extensions are portable to any standard JSP environment. This
includes the following:

« JML extended datatypes

« XML and XSL support (including JML tags)
= database-access JavaBeans

« JML SQL tags

Important: To use any of the JML functionality, see "Overview of
the JSP Markup Language (JML) Sample Tag Library" on page 7-20.

JML Extended Datatypes

To work around shortcomings for JSP usage in the Java primitive datatypes and
j ava. | ang wrapper types (as discussed in "OracleJSP Extended Datatypes" on
page 2-13), OraclelSP provides the following JavaBean classes in the

oracl e.jsp.jm package to act as wrappers for the most common Java
datatypes:

« Jrl Bool ean to represent a bool ean value
« Jml Nunber to representani nt value

« Jnm FPNunber to represent a doubl e value
« Jml StringtorepresentaString value

Each of these classes has a single attribute, val ue, and includes methods to get the
value, set the value from input in various formats, test whether the value is equal to
a value specified in any of several formats, and convert the value to a string.

Alternatively, instead of using the get Val ue() and set Val ue() methods, you
can use thej sp: get Property andj sp: set Property tags, as with any other
bean.

The following example creates a Jml Nunber instance called count that has
appl i cati on scope.

<j sp: useBean id="count" class="oracle.jsp.jn.Jn Nunber" scope="application" />

5-2 JavaServer Pages Developer’s Guide and Reference

Portable OracleJSP Programming Extensions

Later, assuming that the value has been set elsewhere, you can access it as follows:
<h3> The current count is <%count.getVal ue() % </h3>

The following example creates a Jml Nunber instance called maxSi ze that has
reguest scope, and sets it using set Property:

<j sp: useBean i d="maxS ze" cl ass="oracl e.jsp.jnh.Nunber" scope="request" >
<j sp: set Property nane="naxS ze" property="val ue" val ue="<% 25 %" />
</j sp: useBean>

The remainder of this section documents the public methods of the four extended
datatype classes, followed by an example.

Type JmIBoolean
A Jm Bool ean object represents a Java bool ean value.

The get Val ue() and set Val ue() methods get or set the bean’s val ue property
as aJava bool ean value.

« bool ean get Val ue()
« Vvoid setVal ue(bool ean)

The set TypedVal ue() method has several signatures and can set the bean’s
val ue property from a string (such as "true" or "false"), aj ava. | ang. Bool ean
value, a Java bool ean value, or a Jm Bool ean value. For the string input,
conversion of the string is performed according to the same rules as for the
standard j ava. | ang. Bool ean. val ueOf () method.

« Vvoid setTypedVal ue(String)

« Vvoid setTypedVal ue(Bool ean)

« Vvoid setTypedVal ue(bool ean)

« void setTypedVal ue(Jm Bool ean)

The equal s() method tests whether the bean’s val ue property is equal to the
specified Java bool ean value.

« bool ean equal s(bool ean)

The t ypedEqual s() method has several signatures and tests whether the bean’s
val ue property has a value equivalent to a specified string (such as "true" or
"false"), j ava. | ang. Bool ean value, or Jm Bool ean value.

« bool ean typedEqual s(String)

OracleJSP Extensions 5-3

Portable OracleJSP Programming Extensions

« bool ean typedEqual s(Bool ean)
« bool ean typedEqual s(Jni Bool ean)

Thet oSt ri ng() method returns the bean’s val ue property as a
java. |l ang. Stri ng value, either "true" or "false".

« String toString()

Type JmINumber
A Jm Nurmber object represents a 32-bit number equivalent to a Javai nt value.

The get Val ue() and set Val ue() methods get or set the bean’s val ue property
asalavai nt value.

« int getValue()
« void setVal ue(int)

The set TypedVal ue() method has several signatures and can set the bean’s

val ue property from a string, aj ava. | ang. | nt eger value, alJavai nt value, or
aJm Nunber value. For the string input, conversion of the string is performed
according to the same rules as for the standard j ava. | ang. | nt eger . decode()
method.

« void setTypedVal ue(String)

« Vvoid setTypedVal ue(l nteger)

« void set TypedVal ue(int)

« void setTypedVal ue(Jm Nunber)

The equal s() method tests whether the bean’s value property is equal to the
specified Javai nt value.

« bool ean equal s(int)

The t ypedEqual s() method has several signatures and tests whether the bean’s
val ue property has a value equivalent to a specified string (such as "1234"),
j ava. | ang. Nunmber value, or Jml Nunber value.

« bool ean typedEqual s(String)
« bool ean typedEqual s(I nteger)
« bool ean typedEqual s(Jm Nunber)

5-4 JavaServer Pages Developer’s Guide and Reference

Portable OracleJSP Programming Extensions

Thet oSt ri ng() method returns the bean’s val ue property as an equivalent
java.l ang. Stri ng value (such as "1234"). This method has the same
functionality as the standard j ava. | ang. | nt eger.t oSt ri ng() method.

« String toString()

Type JmIFPNumber

A Jm FPNunber object represents a 64-bit floating point number equivalent to a
Java doubl e value.

The get Val ue() and set Val ue() methods get or set the bean’s val ue property
as aJava doubl e value.

« doubl e getVal ue()
« Vvoid setVal ue(doubl e)

The set TypedVal ue() method has several signatures and can set the bean’s
val ue property from a string (such as "3.57"),aj ava. | ang. | nt eger value, a
Javai nt value, aj ava. | ang. Fl oat value, alJavaf | oat value, a

j ava. | ang. Doubl e value, a Java doubl e value, or a Jnl FPNunber value. For
the string input, conversion of the string is according to the same rules as for the
standard j ava. | ang. Doubl e. val ueOf () method.

« void setTypedVal ue(String)

« Vvoid setTypedVal ue(l nteger)

« void setTypedVal ue(int)

« Vvoid setTypedVal ue(Fl oat)

« void setTypedVal ue(fl oat)

« Vvoid set TypedVal ue(Doubl e)

« Vvoid set TypedVal ue(doubl e)

« Vvoid setTypedVal ue(Jm FPNunber)

The equal s() method tests whether the bean’s val ue property is equal to the
specified Java doubl e value.

« bool ean equal s(doubl e)

Thet ypedEqual s() method has several signatures and tests whether the bean’s
val ue property has a value equivalent to a specified string (such as "3.57"),
java.l ang. | nt eger value, Javai nt value,j ava. | ang. Fl oat value, Java

OracleJSP Extensions 5-5

Portable OracleJSP Programming Extensions

f | oat value,j ava. | ang. Doubl e value, Java doubl e value, or IJm FPNunber
value.

« bool ean typedEqual s(String)

« bool ean typedEqual s(I nteger)

« bool ean typedEqual s(int)

« bool ean typedEqual s(Fl oat)

« Dbool ean typedEqual s(fl oat)

« bool ean typedEqual s(Doubl e)

« bool ean typedEqual s(Jm FPNumber)

Thet oSt ri ng() method returns the bean’s value property as a
java. l ang. Stri ng value (such as "3.57"). This method has the same functionality
as the standard j ava. | ang. Doubl e. t oSt ri ng() method.

« String toString()

Type JmlString
AJnm String object representsaj ava. | ang. Stri ng value.

The get Val ue() and set Val ue() methods get or set the bean’s val ue property
asajava.l ang. String value. If the input in a set Val ue() call is null, then the
value property is set to an empty (zero-length) string.

« String getVal ue()

« void setVal ue(String)

Thet oSt ri ng() method is functionally equivalent to the get Val ue() method.
« String toString()

The set TypedVal ue() method sets the bean’s val ue property according to the
specified Jm St ri ng value. If the Jmi St ri ng value is null, then the value
property is set to an empty (zero-length) string.

« void setTypedVal ue(Jm String)

The i senpt y() method tests whether the bean’s val ue property is an empty
(zero-length) string: ""

« boolean i sEnpty()

5-6 JavaServer Pages Developer’s Guide and Reference

Portable OracleJSP Programming Extensions

The equal s() method has two signatures and tests whether the bean’s val ue
property is equal to a specified j ava. | ang. St ri ng value or Jim St ri ng value.

« Dbool ean equal s(String)

« bool ean equal s(Jm String)

JML Datatypes Example

This example illustrates use of IML datatype JavaBeans for management of simple
datatypes at scope. The page declares four session objects—one for each JML type.
The page presents a form that allows you to enter values for each of these types.
Once new values are submitted, the form displays both the new values and the
previously set values. In the process of generating this output, the page updates the
session objects with the new form values.

<j sp:useBean id = "subnitGount" class = "oracle.jsp.jn.Jm Nunber" scope = "session" />

<j sp:useBean id = "bool" class = "oracle.jsp.jn.JnBool ean" scope = "session" >
<j sp:setProperty name = "bool" property = "val ue" param= "fBool ean" />
</j sp: useBean>

<jsp:useBean id = "nunt class = "oracle.jsp.jn.Jm Nunber" scope = "session" >
<j sp:setProperty name = "numi property = "val ue" param= "fNunber" />
</j sp: useBean>

<jsp:useBean id = "fpnuni class = "oracl e.jsp.jn.Jn FPNunber" scope = "session" >
<jsp:setProperty nane = "fpnuni property = "val ue" param="fFPN\unber" />
</j sp: useBean>

<jsp:useBean id = "str" class = "oracle.jsp.jm.Jm Sring" scope = "session" >
<jsp:setProperty nane = "str" property = "val ue" param= "f&ring" />
</j sp: useBean>

<HTM_>

<HEAD>
<META HTTP- EQJ V="Cont ent - Type" OONTENT="t ext / ht nt ; GHARSET=i so- 8859- 1" >
<META NAME=" (ENERATCR' ontent ="M sual Page 1.1 for Wndows">
<TI TLE>Q acl eJSP Ext ended Dat at ypes Sanpl e</ TI TLE>

</ HEAD>

<BCDY BACKAROUND="i mages/ bg. gi f" BGOCLOR="#FFFFFF' >

OracleJSP Extensions 5-7

Portable OracleJSP Programming Extensions

<%if (submtCount.getValue() > 1) { %
<h3> Last submtted val ues </ h3>

 bool : <% bool . get Val ue() %
 num <% num getVal ue() %
 fpnum <% fpnum getVal ue() %
<i>string: <% str.getVal ue() %

<%}
if (submtCount.getValue() >0) { %
<jsp:setProperty nane = "bool " property = "val ue" param= "fBool ean" />
<jsp:setProperty nane = "nunf property = "val ue" param= "fNunber" />
<jsp:setProperty nane = "fpnuni property = "val ue" param="fFPN\unber" />

<jsp:setProperty nane = "str" property = "val ue" param= "f&ring" />

<h3> New submitted val ues </ h3>

 bool : <jsp:getProperty nane="bool " property="val ue" />
 num <jsp:getProperty nane="nuni property="val ue" />
 fpnum <jsp:getProperty name="fpnuni property="val ue" />
 string: < sp:getProperty nane="str" property="value" />

<%} %

<j sp: setProperty nane = "subnitCount" property = "val ue" value = "<% subnitCount.getValue() + 1
%w" />

<FCORM ACTI ON="i ndex. j sp" METHID="PCST" ENCTYPE="appl i cat i on/ x- wa+f or mur | encoded" >
<P> <pre>
bool ean test: <INPUT TYPE="text" NAME="fBool ean" VALUE="<% bool . get Val ue() %" >
nunber test: <INPUT TYPE="text" NAME="fNunber" VALUE="<% numget Val ue() %" >
fpnunber test: <INPUT TYPE="text" NAME="fFPNunber" VALUE="<% fpnumgetVal ue() %" >
string test: <INPUT TYPE="text" NAME="fSring" VALUE= "<% str.getVal ue() %" >
< pre>
<P> <| NPUT TYPE="subnit">
</ FCRW>
</ BADY>

</ HTM.>

5-8 JavaServer Pages Developer’s Guide and Reference

Portable OracleJSP Programming Extensions

OracleJSP Support for XML and XSL

JSP technology can be used to produce dynamic XML pages as well as dynamic
HTML pages. OraclelSP supports the use of XML and XSL technology with JSP
pages in two ways:

= The OracleJSP translator includes logic to recognize standard XML-alternative
JSP syntax.

« OracleJSP provides JML tags to apply an XSL stylesheet to the JSP output
stream.

Additionally, the or acl e. xm . sqgl . query. Oracl eXM_Query class is provided
with Oracle8i as part of the XML-SQL utility for XML functionality in database
queries. This class requires file xsul2. j ar (for JDK 1.2.x) or xsulll. j ar (for IDK
1.1.x), which is also required for XML functionality in the OracleJSP database-access
JavaBeans, and which is provided with Oracle8i release 8.1.7.

For a JSP sample using Or acl eXM_Quer y, see "XML Query—XMLQuery.jsp" on
page 9-36.

For information about the Or acl eXMLQuer y class and other XML-SQL utility
features, refer to the Oracle8i Application Developer’s Guide - XML.

XML-Alternative Syntax

JSP tags, such as <% . . % for scriptlets, <% . . . % for declarations, and

<%. .. % for expressions, are not syntactically valid within an XML document.
Sun Microsystems addressed this in the JavaServer Pages Specification, Version 1.1 by
defining equivalent JSP tags using syntax that is XML-compatible. This is
implemented through a standard DTD that you can specify within aj sp: r oot
start tag at the beginning of an XML document.

This functionality allows you, for example, to write XML-based JSP pages in an
XML authoring tool.

OracleJSP does not use this DTD directly or require you touse aj sp: r oot tag, but
the OraclelSP translator includes logic to recognize the alternative syntax specified
in the standard DTD. Table 5-1 documents this syntax.

OracleJSP Extensions 5-9

Portable OracleJSP Programming Extensions

Table 5-1 XML-Alternative Syntax

Standard JSP Syntax

XML-Alternative JSP Syntax

<vY@directive ...%
Such as:

<%@ page ... %
<Y%@include ... %
<% %> (declaration)
<%= ... % (expression)
<% ... % (scriptlet)

<jsp:directive.directive ...

Such as:
<jsp:directive.page ... />

<jsp:directive.include ... />

<j sp: decl arati on>
...declarations go here. ..
</jsp: decl arati on>

<j sp: expressi on>
...expression goes here. ..
</ j sp: expression>

<jsp:scriptlet>
...code fragnent goes here...
</jsp:scriptlet>

JSP action tags, such asj sp: useBean, for the most part already use syntax that
complies with XML. Changes due to quoting conventions or for request-time
attribute expressions may be necessary, however.

JML Tags for XSL Stylesheets

Many uses of XML and XSL for dynamic pages require an XSL transformation to

occur in the server before results are

returned to the client.

OracleJSP provides two synonymous JML tags to simplify this process. Use either
the JIML t r ansf or mtag or the JIML st yl eSheet tag (their effects are identical), as

in the following example:

< m:transform href="xsl Ref" >

... Tag body contains regul ar JSP cormands and static text that
produce the XM. code that the stylesheet is to be applies to...

</jnm:transform>

(The j m : prefix is used by convention, but you can specify any prefix in your

tagl i b directive.)

5-10 JavaServer Pages Developer’'s Guide and Reference

Portable OracleJSP Programming Extensions

Important: If you will use any JML tags, refer to "Overview of the
JSP Markup Language (JML) Sample Tag Library" on page 7-20.

Note the following regarding the hr ef parameter:

« Itcan refer to either a static XSL stylesheet or a dynamically generated one. For
example, it can refer to a JSP page or servlet that generates the stylesheet.

« Itcan be afully qualified URL (htt p:// host[: port]/ your pat h), an
application-relative JSP reference (starting with /"), or a page-relative JSP
reference (not starting with "/"). See "Indirectly Requesting a JSP Page" on
page 1-9 for information about application-relative and page-relative paths.

« It can be dynamically specified. By default, the value of hr ef is a static Java
string. However, you can use standard JSP expression syntax to provide a
dynamically computed value.

Typically, you would use the t r ansf or mor st yl eSheet tag to transform an
entire page. However, the tag applies only to what is in its body, between its start
and end tags. Therefore, you can have distinct XSL blocks within a page, each block
bounded by its own t r ansf or mor st yl eSheet tag set, specifying its own hr ef
pointer to the appropriate stylesheet.

XSL Example using jml:transform

This section provides a sample XSL stylesheet and a sample JSP page that uses the
j m :transf or mtag to filter its output through the stylesheet. (This is a simplistic
example—the XML in the page is static. A more realistic example might use the JSP
page to dynamically generate all or part of the XML before performing the
transformation.)

Sample Stylesheet: hello.xsl

<?xm version="1.0"?>
<xsl : styl esheet xm ns: xsl ="http://waw w3. or g/ 1999/ XSL/ Tr ansf or n' >

<xsl : tenpl ate nat ch="page" >
<ht n >
<head>
<title>
<xsl :val ue-of select="title"/>
</title>

OracleJSP Extensions 5-11

Portable OracleJSP Programming Extensions

</ head>
<body bgcol or="#ffffff">
<xsl : appl y-tenpl at es/ >
</ body>
</ htm >
</xsl :tenpl at e>

<xsl:tenpl ate natch="title">
<hl align="center">
<xsl : appl y-t enpl at es/ >
</hl>
</xsl:tenpl at e>

<xsl : tenpl at e nat ch="par agr aph">
<p align="center">
<l >
<xsl : appl y-t enpl at es/ >
<i>
< p>
</xsl :tenpl at e>

</ xsl : styl esheet >

Sample JSP Page: hello.jsp

<Y@page session = "false" %
<Y@taglib uri="/WEB-IN"/jnmtaglib.tld" prefix="jm" %

<m:transformhref="styl e/hell o.xsl" >

<page>
<title>Hello</title>
<cont ent >
<paragraph>This is ny first XM/ XSL fil e! </ paragraph>
</ cont ent >
</ page>

</jn:transforny

5-12 JavaServer Pages Developer’'s Guide and Reference

Portable OracleJSP Programming Extensions

This example results in the following output:

& Flalin - Realecaps M=E]
Fis ['Yew Oon [Corsescas §isp
E e
Hello
T i aay i XWENTT, i)
i Droiseesi Duarms T I T e T

Oracle Database-Access JavaBeans

OracleJSP supplies a set of custom JavaBeans for accessing an Oracle database. The
following beans are included in the or acl e. j sp. dbut i | package:

« ConnBean opens a simple database connection.

« ConnCacheBean uses Oracle’s connection caching implementation for
database connections. (This requires JDBC 2.0.)

« DBBean executes a database query.

« Cur sor Bean provides general DML support for queries; UPDATE, | NSERT, and
DEL ETE statements; and stored procedure calls.

For examples using these beans, see "Database-Access JavaBean Samples" on
page 9-21.

All four beans implement the OracleJSP JspScopeli st ener interface for event
notification. See "OracleJSP Event Handling—JspScopeListener" on page 5-32.

This section presumes a working knowledge of Oracle JDBC. Consult the Oracle8i
JDBC Developer’s Guide and Reference as necessary.

OracleJSP Extensions 5-13

Portable OracleJSP Programming Extensions

Important: To use the Oracle database-access JavaBeans, install
the file 0j sputi | . j ar and include it in your classpath. This file is
provided with the OracleJSP installation. For XML-related methods
and functionality, you will also need file xsul2. j ar (for JDK 1.2.x)
or xsulll.j ar (for JDK 1.1.x), which is provided with Oracle8i
release 8.1.7.

ConnBean for a Database Connection

Use oracl e. j sp. dbuti | . ConnBean to establish a simple database connection
(one that uses no connection pooling or caching).

Notes:

« For queries only, it is simpler to use DBBean, which has its own
connection mechanism.

« To use connection caching, use ConnCacheBean instead.

« Aswith any JavaBean you use in a JSP page, you can set any of
the ConnBean properties with aj sp: set Property action
instead of using the setter method directly.

ConnBean has the following properties:

« user (user ID for database schema)

« password (user password)

« URL (database connection string)

« stm CacheSi ze (cache size for Oracle JDBC statement caching)

Setting st nt CacheSi ze enables the Oracle JDBC statement caching feature.
See "JDBC Statement Caching" on page 4-6 for a brief overview of statement
caching features and limitations.

« execut eBat ch (batch size for Oracle JDBC update batching)

Setting execut eBat ch enables Oracle JDBC update batching. See "Update
Batching" on page 4-7 for a brief overview of this feature.

5-14 JavaServer Pages Developer’'s Guide and Reference

Portable OracleJSP Programming Extensions

« preFet ch (number of statements to prefetch in Oracle JDBC row prefetching)

Setting pr eFet ch enables Oracle JDBC row prefetching. Refer to "Row
Prefetching" on page 4-8 for a brief overview of this feature.

ConnBean provides the following setter and getter methods for these properties:
« void setUser(String)

« String getUser()

« Vvoid setPassword(String)

« String getPassword()

« void setURL(String)

« String get URL()

« void setStnt CacheSi ze(int)

« int getStntCacheSize()

« void set ExecuteBatch(int)

« int getExecuteBatch()

« void setPreFetch(int)

« int getPreFetch()

Use the following methods to open and close a connection:

« Vvoid connect () —Establish a database connection using ConnBean property
settings.

« void cl ose()—Close the connection and any open cursors.
Use the following method to open a cursor and return a Cur sor Bean object:
« CursorBean get CursorBean(int, String)
or:
« CursorBean get CursorBean(int)
Input the following:

— one of the following i nt constants to specify the type of JDBC statement
you want: Cur sor Bean. PLAI N_STMT (for a St at emrent object),
Cur sor Bean. PREP_STMT (for a Pr epar edSt at enent object), or
Cur sor Bean. CALL_STMT (for a Cal | abl eSt at enent object)

OracleJSP Extensions 5-15

Portable OracleJSP Programming Extensions

— astring specifying the SQL operation to execute (optional; alternatively, the
SQL operation can be specified in the Cur sor Bean method call that
executes the statement)

See "CursorBean for DML and Stored Procedures" on page 5-20 for information
about Cur sor Bean functionality.

ConnCacheBean for Connection Caching

Useoracl e. jsp. dbutil . ConnCacheBean to use the Oracle JDBC connection
caching mechanism (using JDBC 2.0 connection pooling) for your database
connections. For a brief overview of connection caching, see "Database Connection
Caching" on page 4-6.

Notes:

« To use simple connection objects (no pooling or caching), use
ConnBean instead.

« ConnCacheBean extends Or acl eConnecti onCachel nmpl ,
which extends Or acl eDat aSour ce (both in Oracle JDBC
package or acl e. j dbc. pool). See the Oracle8i JDBC
Developer’s Guide and Reference (release 8.1.6 or later) for more
information about these Oracle JDBC classes.

« Aswith any JavaBean you use in a JSP page, you can set any of
the ConnCacheBean properties with aj sp: set Property
action instead of using the setter method directly.

« Unlike ConnBean, when you use ConnCacheBean, you use
normal Connect i on object functionality to create and execute
statement objects.

ConnCacheBean has the following properties:

« user (user ID for database schema)

« password (user password)

« URL (database connection string)

« maxLi mt (maximum number of connections allowed by this cache)

« mnLi mt (minimum number of connections existing for this cache; if you are
using fewer than this number, then there will also be connections in the "idle
pool" of the cache)

5-16 JavaServer Pages Developer's Guide and Reference

Portable OracleJSP Programming Extensions

« stm CacheSi ze (cache size for Oracle JDBC statement caching)

Setting st nt CacheSi ze enables the Oracle JDBC statement caching feature.
See "JDBC Statement Caching" on page 4-6 for a brief overview of Oracle JDBC
statement caching features and limitations.

« cacheSchenme (type of cache):

— DYNAM C_SCHEME—New pooled connections can be created above and
beyond the maximum limit, but each one is automatically closed and freed
as soon as the logical connection instance that it provided is no longer in
use.

— FI XED_WAI T_SCHEME—When the maximum limit is reached, any new
connection waits for an existing connection object to be released.

— FI XED_RETURN_NULL_SCHEME—When the maximum limit is reached,
any new connection fails (nul | is returned) until connection objects have
been released.

The ConnCacheBean class supports methods defined in the Oracle JDBC
Or acl eConnecti onCachel npl class, including the following getter and setter
methods for its properties:

« void setUser(String)

« String getUser()

« Vvoid setPassword(String)
« String getPassword()

« void setURL(String)

« String get URL()

« void setMaxLimt(int)

« int getMaxLimt()

« void setMnLinmit(int)

« int getMnLimt()

« void setStnt CacheSi ze(int)
« int getStntCacheSize()

OracleJSP Extensions 5-17

Portable OracleJSP Programming Extensions

« void setCacheSchene(int)

Specify ConnCacheBean. DYNAM C_SCHEME,
ConnCacheBean. FI XED_WAI T_SCHEME, or
ConnCacheBean. FI XED_RETURN_NULL_SCHEME.

« int getCacheSchene()

Returns ConnCacheBean. DYNAM C_SCHENME,
ConnCacheBean. FI XED_WAI T_SCHEME, or
ConnCacheBean. FI XED_RETURN_NULL_SCHEME.

The ConnCacheBean class also inherits properties and related getter and setter
methods from the or acl e. j dbc. pool . Or acl eDat aSour ce class. This provides
getter and setter methods for the following properties: dat abaseNane,

dat aSour ceNan®e, descri pti on, net wor kPr ot ocol , por t Nunber,

server Nanme, and dr i ver Type. For information about these properties and their
getter and setter methods, see the Oracle8i JDBC Developer’s Guide and Reference.

Use the following methods to open and close a connection:

« Connection getConnection()—Geta connection from the connection
cache using ConnCacheBean property settings.

« void cl ose()—Close all connections and any open cursors.

Although the ConnCacheBean class does not support Oracle JDBC update
batching and row prefetching directly, you can enable these features by calling the
set Def aul t Execut eBat ch(i nt) and set Def aul t RowPr ef et ch(i nt)
methods of the Connect i on object that you retrieve from the get Connecti on()
method. Alternatively, you can use the set Execut eBat ch(i nt) and

set RowPr ef et ch(i nt) methods of JDBC statement objects that you create from
the Connect i on object (update batching is supported only in prepared
statements). See "Update Batching" on page 4-7 and "Row Prefetching" on page 4-8
for brief overviews of these features.

5-18 JavaServer Pages Developer’'s Guide and Reference

Portable OracleJSP Programming Extensions

DBBean for Queries Only
Useoracl e.jsp. dbutil. DBBean to execute queries only.

Notes:

= DBBean has its own connection mechanism; do not use
ConnBean.

« Use Cur sor Bean for any other DML operations (UPDATE,
| NSERT, DELETE, or stored procedure calls).

« Aswith any JavaBean you use in a JSP page, you can set any of
the DBBean properties with aj sp: set Property statement
instead of using the setter method directly.

DBBean has the following properties:

« user (user ID for database schema)

« password (user password)

« URL (database connection string)

DBBean provides the following setter and getter methods for these properties:
« void setUser(String)

« String getUser()

« Vvoid setPassword(String)

« String getPassword()

« void setURL(String)

« String get URL()

Use the following methods to open and close a connection:

« void connect () —Establish a database connection using DBBean property
settings.

« void cl ose()—Close the connection and any open cursors.
Use either of the following methods to execute a query.

« String getResul t AsHTM.Tabl e(St ri ng) —Input a string with the
SELECT statement.

OracleJSP Extensions 5-19

Portable OracleJSP Programming Extensions

This method returns a string with the HTML commands necessary to output
the result set as an HTML table. SQL column names (or aliases) are used for the
table column headers.

« String getResul t AsXMLString(String)—Inputa string with the
SELECT statement.

This method returns the result set as an XML string, using SQL names (or
aliases) for the XML tags.

CursorBean for DML and Stored Procedures

Useoracl e. jsp. dbutil . CursorBean for SELECT, UPDATE, | NSERT, or
DELETE operations or stored procedure calls on a simple connection. It uses a
previously defined ConnBean object for the connection.

You can specify a SQL operation in a ConnBean object get Cur sor Bean() call, or
through a call to one of the cr eat e() , execut e(), or execut eQuer y() methods
of a Cur sor Bean object as described below.

Cur sor Bean supports scrollable and updatable cursors, update batching, row
prefetching, and query timeout limits. For information about these Oracle JDBC
features, see the Oracle8i JDBC Developer’s Guide and Reference, release 8.1.6 or later.

Notes:

« To use connection caching, use ConnCacheBean and normal
Connect i on object functionality. Do not use Cur sor Bean.

« Aswith any JavaBean you use in a JSP page, you can set any of
the Cur sor Bean properties with aj sp: set Property action
instead of using the setter method directly.

Cur sor Bean has the following properties:

« execut eBat ch (batch size for Oracle JDBC update batching)
Setting this property enables Oracle JDBC update batching.

« preFet ch (number of statements to prefetch in Oracle JDBC row prefetching)
Setting this property enables Oracle JDBC row prefetching.

« queryTi meout (number of seconds for the driver to wait for a statement to
execute before issuing a timeout)

5-20 JavaServer Pages Developer's Guide and Reference

Portable OracleJSP Programming Extensions

resul t Set Type (scrollability of result set):

— TYPE_FORWARD ONLY (default)—A result set that can scroll only forward
(using the next () method) and is not positionable.

— TYPE_SCROLL_I NSENSI TI VE—A result set that can scroll forward or
backward and is positionable, but is not sensitive to underlying database
changes.

— TYPE_SCROLL_SENSI TI VE—A result set that can scroll forward or
backward, is positionable, and is sensitive to underlying database changes.

See the Oracle8i JDBC Developer’s Guide and Reference for information about
result set scrollability types.

resul t Set Concur r ency (updatability of result set):

— CONCUR_READ _ONLY (default)—A result set that is read-only (cannot be
updated).

— CONCUR_UPDATABLE—A result set that is updatable.

See the Oracle8i JDBC Developer’s Guide and Reference for information about
updatable result sets.

You can set these properties with the following methods to enable Oracle JDBC
features, as desired:

voi d set Execut eBat ch(int)

i nt get Execut eBat ch()

voi d setPreFetch(int)

int getPreFetch()

voi d set QueryTi meout (int)

int getQueryTi meout ()

voi d set Resul t Set Concurrency(int)

Specify Cur sor Bean. CONCUR_READ_ONLY or
Cur sor Bean. CONCUR_UPDATABLE.

i nt getResult Set Concurrency()

Returns Cur sor Bean. CONCUR_READ _ONLY or
Cur sor Bean. CONCUR_UPDATABLE.

OracleJSP Extensions 5-21

Portable OracleJSP Programming Extensions

« Vvoid setResultSetType(int)

Specify Cur sor Bean. TYPE_FORWARD_ONLY,
Cur sor Bean. TYPE_SCROLL_I NSENSI TI VE, or
Cur sor Bean. TYPE_SCROLL_SENSI TI VE.

« int getResultSetType()

Returns Cur sor Bean. TYPE_FORWARD_ONLY,
Cur sor Bean. TYPE_SCROLL_I NSENSI TI VE, or
Cur sor Bean. TYPE_SCROLL_SENSI TI VE.

To execute a query once a Cur sor Bean instance has been defined in a

j sp: useBean statement, you can use Cur sor Bean methods to create a cursor in
one of two ways. You can use the following methods to create the cursor and supply
a connection in separate steps:

« Vvoid create()

« Vvoid set ConnBean(ConnBean)

Or you can combine the process into a single step:
« Vvoid create(ConnBean)

(Set up the ConnBean object as described in "ConnBean for a Database Connection"
on page 5-14.)

Then use the following method to specify and execute a query. (This uses a JDBC
plain St at enent object behind the scenes.)

« ResultSet executeQuery(String)
Specify a string with the SELECT statement.

Alternatively, if you want to format the result set as an HTML table or XML string,
use either of the following methods instead of execut eQuery():

« String getResult AsHTM.Tabl e(Stri ng)

Returns a string with HTML statements to create an HTML table for the result
set. Specify a string with the SELECT statement.

« String getResult AsSXMLString(String)

Returns the result set data in an XML string. Specify a string with the SELECT
statement.

To execute an UPDATE, | NSERT, or DELETE statement once a Cur sor Bean instance
has been defined in aj sp: useBean action, you can use Cur sor Bean methods to

5-22 JavaServer Pages Developer's Guide and Reference

Portable OracleJSP Programming Extensions

create a cursor in one of two ways. You can use the following methods to create the
cursor (specifying a statement type as an integer and SQL statement as a string) and
supply a connection:

« void create(int, String)

« Vvoid set ConnBean(ConnBean)

Or you can combine the process into a single step:
« void create(ConnBean, int, String)

(Set up the ConnBean object as described in "ConnBean for a Database Connection"
on page 5-14.)

Thei nt input is to specify one of the following constants to specify the type of
JDBC statement you want: Cur sor Bean. PLAI N_STMT (for a St at ement object),
Cur sor Bean. PREP_STM (for a Pr epar edSt at ement object), or

Cur sor Bean. CALL_STMT (for a Cal | abl eSt at ement object).

The St ri ng input is to specify the SQL statement.

Then use the following method to execute the | NSERT, UPDATE, or DELETE
statement. (You can ignore the bool ean return value.)

« bool ean execute()

Or for update batching, use the following method, which returns the number of
rows affected. (See below for how to enable update batching.)

« int executeUpdate()

Note: The execut e() and execut eUpdat e() methods can
optionally take a St r i ng to specify a SQL operation. The
corresponding cr eat e() call, as well as the get Cur sor Bean()
call in ConnBean, optionally does not take a St r i ng to specify the
SQL operation. Specify an operation either on statement creation or
execution, but not both.

Additionally, Cur sor Bean supports Oracle JDBC statement and result set
functionality such as the r egi st er Qut Par anet er () method, set XXX()
methods, and get XXX() methods.

Use the following method to close the database cursor:

« void close()

OracleJSP Extensions 5-23

Portable OracleJSP Programming Extensions

OracleJSP Tag Library for SQL

With release 8.1.7, OracleJSP supplies a custom tag library for SQL functionality
(separate from the JML custom tag library).

The following tags are provided:

« dbOpen—Open a database connection.

« dbC ose—Close a database connection.

« dbQuer y—Execute a query.

« dbCl oseQuer y—Close the cursor for a query.

« dbNext Row—Process the rows of a result set.

« dbExecut e—Execute any SQL statement (DML or DDL).

These tags are described in the following subsections. For examples, see "SQL Tag
Examples" on page 5-28.

Note the following requirements for using SQL tags:

« Install the file o sputi | . jar and include it in your classpath. This file is
provided with the OracleJSP installation.

« Make sure the tag library description file, sql t agl i b. t 1 d, is deployed with
the application and is in the location specified in the t agl i b directives of your
JSP pages, such as in the following example:

<Y@taglib uri="/WEB-IN-/sqgltaglib.tld" prefix="sql" %

For general information about JSP 1.1 tag library usage, including tag library
description files and t agl i b directives, see "Standard Tag Library Framework" on
page 7-2.

SQL dbOpen Tag
Use the dbOpen tag to open a database connection.
<sql : dbCpen
[connld="connection-id"]
user =" user nane"

passwor d=" passwvor d'
URL="dat abaseUR." >

</ sql : dbQpen>

5-24 JavaServer Pages Developer's Guide and Reference

Portable OracleJSP Programming Extensions

Nested code that you want to execute through this connection can go into the tag
body, between the dbOpen start and end tags. (See "SQL Tag Examples" on

page 5-28.) If you use the optional connl d parameter to set a connection identifier,
then code to execute through this connection can reference the connection identifier
and does not have to be between the dbOpen start and end tags. (The connection
identifier can be any arbitrary string.)

Note that you do not have to hardcode a password into the JSP page (which would
be a security concern). Instead, you can get it and other parameters from the
request object, as follows:

<sql : db@en connl d="connl" user =<%Tr equest . get Par anet er (" user") %
passwor d=<%r equest . get Par anet er (" password') % URL="url|" />

(In this example you do not need a tag body for code that will use this connection;
statements using the connection can reference it through the conn1 value of
connl d.)

If you set a connection identifier, then the connection is not closed until you close it
explicitly with a dbCl ose tag. Without a connection identifier, the connection is
closed automatically when the </ sql : dbOpen> end tag is encountered.

This tag uses a ConnBean object for the connection. You can optionally set the
additional ConnBean properties st nt CacheSi ze, pr eFet ch, and bat chSi ze to
enable those Oracle JDBC features. See "ConnBean for a Database Connection" on
page 5-14 for more information.

SQL dbClose Tag

Use the dbCl ose tag to close a connection associated with the optional connl d
parameter specified in a dbOpen tag. If connl d is not used in the dbOpen tag, then
the connection is closed automatically when the dbOpen end tag is reached; no
dbCl ose tag is required.

<sgl : dbA ose connl d="connection-id"' >

Note: In an OracleJSP environment, you can have the connection
closed automatically with session-based event handling through
the Oracle JspScopeli st ener mechanism. See "OracleJSP Event
Handling—JspScopeListener" on page 5-32.

OracleJSP Extensions 5-25

Portable OracleJSP Programming Extensions

SQL dbQuery Tag

Use the dbQuer y tag to execute a query, outputting the result either as a JDBC
result set, HTML table, or XML string. Place the SELECT statement (one only) in the
tag body, between the dbQuer y start and end tags.

<sql : dbQuery
[queryld="query-id"]
[connld="connection-id"]
[output="HTM| XM | JDBC'] >
... SELECT statenent (one only)...
</ sql : dbQuery>

Important: In release 8.1.7 (OracleJSP 1.1.0.0.0), do not terminate
the SELECT statement with a semi-colon. This would resultin a
syntax error.

All parameters of this tag are optional, depending on your intended uses as
described below.

You must use the quer yl d parameter to set a query identifier if you want to
process the result set using a dbNext Rowtag. The quer yl d can be any arbitrary
string.

Additionally, if the quer y| d parameter is present, then the cursor is not closed
until you close it explicitly with a dbCl oseQuer y tag. Without a query identifier,
the cursor is closed automatically when the </ sql : dbQuer y> end tag is
encountered.

If connl d is not specified, then dbQuer y must be nested within the body of a
dbOpen tag and will use the connection opened in the dbOpen tag.

For the output type:
« HTM puts the result set into an HTML table (default).
« XM puts the result set into an XML string.

« JDBCputs the result set into a JDBC Resul t Set object that can be processed
using the dbNext Rowtag to iterate through the rows.

This tag uses a Cur sor Bean object for the cursor. See "CursorBean for DML and
Stored Procedures" on page 5-20 for information about Cur sor Bean functionality.

5-26 JavaServer Pages Developer's Guide and Reference

Portable OracleJSP Programming Extensions

SQL dbCloseQuery Tag

Use the dbCl oseQuer y tag to close a cursor associated with the optional quer yl d
parameter specified in a dbQuery tag. If quer yl d is not used in the dbQuer y tag,
then the cursor is closed automatically when the dbQuer y end tag is reached; no
dbCl oseQuery tag is required.

<sql : dbA oseQuery queryl d="query-id' />

Note: Inan OracleJSP environment, you can have the cursor
closed automatically with session-based event handling through
the Oracle JspScopeli st ener mechanism. See "OracleJSP Event
Handling—JspScopeListener" on page 5-32.

SQL dbNextRow Tag

Use the dbNext Rowtag to process each row of a result set obtained in a dbQuery
tag and associated with the specified quer yI d. Place the processing code in the tag
body, between the dbNext Rowstart and end tags. The body is executed for each
row of the result set.

For you to use the dbNext Rowtag, the dbQuer y tag must specify out put =JDBC,
and specify a quer yI d for the dbNext Row tag to reference.

<sql : dbNext Row queryl d="query-id' >
... Row processi ng. . .
</ sql : dbNext Fow >

The result set object is created in an instance of the tag-extra-info class of the
dbQuery tag (see "Tag Library Description Files" on page 7-10 for information
about tag-extra-info classes).

SQL dbExecute Tag

Use the dbExecut e tag to execute any DML or DDL statement (one only). Place the
statement in the tag body, between the dbExecut e start and end tags.

<sql : dbExecut e

[connl d="connection-id']

[out put ="yes| no"] >

...DM. or DO statenent (one only)...
</sql : dbExecute >

OracleJSP Extensions 5-27

Portable OracleJSP Programming Extensions

Important: In release 8.1.7, do not terminate the DML or DDL
statement with a semi-colon. This would result in a syntax error.

If you do not specify connl d, then you must nest dbExecut e within the body of a
dbOpen tag and use the connection opened in the dbOpen tag.

If out put =yes, then for DML statements, the HTML string "number row[s]
affected” will be output to the browser to notify the user how many database rows
were affected by the operation; for DDL statements, the statement execution status
will be printed. The default setting is no.

This tag uses a Cur sor Bean object for the cursor. See "CursorBean for DML and
Stored Procedures" on page 5-20 for information about Cur sor Bean functionality.

SQL Tag Examples

The following examples show how to use the OracleJSP SQL tags. (To run them
yourself, you will need to set the URL, user name, and password appropriately.)

Example 1. Query with Connection ID
<Y@taglib uri="/WEB-IN-/sqgltaglib.tld" prefix="sql" %

<HTM_>
<HEAD>
<TI TLE>A si npl e exanpl e with open, query, and cl ose tags</ Tl TLE>
</ HEAD>
<BDY BAOOALR=" #FFFFFF' >
<H>
<sql : dbCpen UR="j dbc: or acl e: t hi n: @l sun991: 1521: 816"
user="scott" password="tiger" connl d="conl">
</ sql : dbQpen>
<sql : dbQuery connl d="conl">
sel ect * fromBW
</ sql : dbQuery>
<sql : dbd ose connl d="conl" />
<H>
</ BCDY>
</ HTM>

5-28 JavaServer Pages Developer's Guide and Reference

Portable OracleJSP Programming Extensions

Example 2: Query Nested in dbOpen Tag

<Y@taglib uri="/WEB-IN-/sqgltaglib.tld" prefix="sql" %
<HTM_>
<HEAD>
<TITLE>Nest ed Tag with Query inside pen </ TITLE>
</ HEAD>
<BY BAOOALR=" #FFFFFF' >
<H>
<sql : dbGpen UR="j dbc: or acl e: t hi n: @l sun991: 1521: 816"
user ="scott" password="tiger">
<sql : dbQuery>
sel ect * fromBW
</ sql : dbQuery>
</ sql : dbQpen>
<H>
</ BCDY>
</ HTM>

Example 3: Query with XML Output

<Y@taglib uri="/WEB-IN-/sqltaglib.tld" prefix="sql" %
<HTM_>
<HEAD>
<TITLE>A sinpl e tagLib with XM out put </ Tl TLE>
</ HEAD>
<BY BAOALR=" #FFFFFF' >
<H>
<sql : dbCpen UR="j dbc: or acl e: t hi n: @l sun991: 1521: 816"
user ="scott" password="tiger">
<sql : dbQuery out put ="xm" >
select * fromBwW
</ sql : dbQuery>
</ sql : dbQpen>
<H>
</ BCDY>
</ HTM>

OracleJSP Extensions 5-29

Portable OracleJSP Programming Extensions

Example 4: Result Set Iteration
<Y@taglib uri="/WEB-IN-/sqgltaglib.tld" prefix="sql" %

<HTM_>
<HEAD>
<TITLE>Result Set Iteration Sanple </ Tl TLE>
</ HEAD>
<BY BAOALR=" #FFFFFF' >
<H>
<sql : dbCpen connl d="conl" WR.="jdbc: oracl e: t hi n: @I sun991: 1521: 816"
user="scott" password="tiger">
</ sql : dbQpen>
<sql : dbQuery connl d="conl" out put="jdbc" queryl d="nyquery">
sel ect * fromBW
</ sql : dbQuery>
<sql : dbNext Row quer yl d="nyquery" >
<% nyquery.get Sring(l) %
</ sql : dbNext Row>
<sql : dbd oseQuery queryl d="nyquery" />
<sql : dbd ose connl d="conl" />
<H>
</ BCDY>
</ HTM>

Example 5: DDL and DML Statements This example uses an HTML form to let the user
specify what kind of DML or DDL statement to execute.

<Y@taglib uri="/WEB-IN-/sqgltaglib.tld" prefix="sql" %

<HTM_>

<HEAD><TI TLE>DM. Sanpl e</ Tl TLE></ HEAD>

<FCRM METHOD=get >

<INPUT TYPE="submt" nanme="drop" VALUE="drop tabl e test_tabl e">

<I NPUT TYPE="subnit" nane="create"

VALUE="create table test_tabl e (col 1 NUMBER ">

<I NPUT TYPE="subnit" nane="i nsert"

VALUE="insert into test_table val ues (1234)" >

<INPUT TYPE="submit" nane="sel ect" VALUE="select * fromtest tabl e">

</ FCRW>
<BODY BAOALCR=" #FFFFFF" >
Resul t:

<H>
<sql : dbCpen UR="j dbc: or acl e: t hi n: @l sun991: 1521: 816"
user="scott" password="tiger">
<%if (request.getParaneter("drop")!=null) { %
<sql : dbExecut e out put ="yes">

5-30 JavaServer Pages Developer’'s Guide and Reference

Portable OracleJSP Programming Extensions

</ BCDY>
</ HTM.>

drop table test_table
</ sql : dbExecut e>
<%} %
<%if (request.getParaneter("create")!=null) { %
<sql : dbExecut e out put ="yes">
create table test_table (col 1 NJMBER
</ sql : dbExecut e>
<%} %
<%if (request.getParaneter("insert")!=null) { %
<sql : dbExecut e out put ="yes">
insert into test_tabl e val ues (1234)
</ sql : dbExecut e>
<%} %
<%if (request.getParaneter("select")!=null) { %
<sql : dbQuer y>
select * fromtest _table
</sql : doQuery>
<%} %

</ sql : dbQpen>
<H>

OracleJSP Extensions 5-31

Oracle-Specific Programming Extensions

Oracle-Specific Programming Extensions

The OraclelSP extensions documented in this section are not portable to other JSP
environments. This includes the following:

« event-handling through the Oracle JspScopeLi st ener mechanism

« support for SQLJ, a standard syntax for embedding SQL statements directly
into Java code

« use of JDBC performance enhancement features

Notes:

« For servlet 2.0 environments, OracleJSP provides non-portable
extensions through a mechanism called gl obal s. j sato
support a Web application framework. "OracleJSP Application
and Session Support for Servlet 2.0" on page 5-37 describes this
mechanism.

« OracleJSP also provides extended (and non-portable) NLS
support, which is described in "OracleJSP Extended Support for
Multibyte Parameter Encoding" on page 8-5.

OracleJSP Event Handling—JspScopeListener

In standard servlet and JSP technology, only session-based events are supported.
OracleJSP extends this support through the JspScopelLi st ener interface and
JspScopeEvent class in the or acl e. j sp. event package. The OracleJSP
mechanism supports the four standard JSP scopes for event-handling for any Java
objects used in a JSP application:

= page
= request
= Session
« application

For Java objects that are used in your application, implement the
JspScopeli st ener interface in the appropriate class, then attach objects of that
class to a JSP scope using tags such asj sp: useBean.

When the end of a scope is reached, objects that implement JspScopeli st ener
and have been attached to the scope will be so notified. The OracleJSP container

5-32 JavaServer Pages Developer's Guide and Reference

Oracle-Specific Programming Extensions

accomplishes this by sending a JspScopeEvent instance to such objects through
the out O Scope() method specified in the JspScopeli st ener interface.

Properties of the JspScopeEvent object include the following:

« the scope that is ending (one of the constants PAGE_SCOPE, REQUEST_ SCOPE,
SESSI ON_SCOPE, or APPLI CATI ON_SCOPE)

« the container object that is the repository for objects at this scope (one of the
implicit objects page, r equest, sessi on,orappl i cati on)

« the name of the object that the notification pertains to (the name of the instance
of the class that implements JspScopelLi st ener)

« theJSPimplicitappl i cati on object

The OraclelJSP event listener mechanism significantly benefits developers who want
to always free object resources that are of page or r equest scope, regardless of
error conditions. It frees these developers from having to surround their page
implementations with Javatry/cat ch/f i nal | y blocks.

For a complete sample, see "Page Using JspScopeListener—scope.jsp" on page 9-32.

OracleJSP Support for Oracle SQLJ

SQLJis a standard syntax for embedding static SQL instructions directly in Java
code, greatly simplifying database access programming. OracleJSP and the
OraclelJSP translator support Oracle SQLJ, allowing you to use SQLJ syntax in JSP
scriptlets. SQLJ statements are indicated by the #sql token.

SQLJ JSP Code Example

Following is a sample SQLJ JSP page. (The page directive imports classes that are
typically required by SQLJ.)

<Y@page | anguage="sql j"
import="sqlj.runtine.ref.DefaultContext,oracle.sqlj.runtine.acle" %

<HTM>

<HEAD> <TI TLE> The SQJQuery JSP </ Tl TLE> </ HEAD>

<BDY BAOCLCR="whi te">

<% Sring enpno = request . get Paraneter ("enpno");

if (enpno !'=null) { %

<H3> Enpl oyee # <%enpno % Details: </ H3>

<% runQuery(enpno) %

<HR>

<%} %

Ent er an enpl oyee nunber: </ B>

OracleJSP Extensions 5-33

Oracle-Specific Programming Extensions

<FCRM METHD="get " >

<INPUT TYPE="text" NAME="enpno" S ZE=10>
<INPUT TYPE="submt" VALUE="Ask QO acle");
</ FCRW>

</ BCDY>

</ HTM>

<%

private String runQuery(String enpno) throws java. sgl . SQLException {
Def aul t Gontext dctx = nul | ;
Sring enane = null; double sal = 0.0; String hireDate = nul | ;
SringBuffer sb = new StringBuffer();
try {
dctx = Gracl e. get Connect i on("j dbc: oracl e: oci 8: @, "scott", "tiger");
#sql [dctx] {
sel ect ename, sal, TO CHAR hiredate, ' DD MON YYYY')
INTO : enane, :sal, :hirebDate

FROM scot t. enp WHERE UPPER enpno) = WPPER(: enpno)

b
sb. append(" <BLOKQUOTE><Bl G<PRE>\n") ;
sb. append("Nane : " + enane + "\n");

sbh.append("Salary : " + sal + "\n");
sb. append("Date hired : " + hireDate);
sh. append(" </ PRE></ B></ Bl G></ BLOXQJUOTE>") ;
} catch (java.sql.SQException e) {
sb. append("<P> SQ error: <PRE>" + e + " </PRE> </P>\n");

} finally {
if (detx!'= null) dctx.close();
}
return sh.toString();
}
%

This example uses the JDBC OCI driver, which requires an Oracle client installation.
The Or acl e class used in getting the connection is provided with Oracle SQLJ.

5-34 JavaServer Pages Developer's Guide and Reference

Oracle-Specific Programming Extensions

Entering employee number 7788 results in the following output:

FE T ha ST Dy 150" - Kalscaps

Fle [l Teea Lo Conmrecsla Han

+ ¢ 3 4 a2 @D o o BB

Elmck: Awcad Howm Semch Kebcees P S iy
__-"'mh i Wnoeiey By s bt g B (e e T 7 T :’f;."“'h.i’l.FHid

Emiplocyee # 7788 Details:

Mama - BODTT

Balary | 3000.0
Date hired : 19-APE-19087

Entar an emiploves nunbes:

| Agk Ol |
al Donrwrt: [lore - T L e A X
Notes:

» Incase aJSP page is invoked multiple times in the same JVM, it
is recommended that you always use an explicit connection
context, such as dct x in the example, instead of the default
connection context. (Note that dct x is a local method variable.)

= OracleJSP requires Oracle SQLJ release 8.1.6.1 or higher.

« Inthe future, OracleJSP will support | anguage="sqlj" ina
page directive to trigger the Oracle SQLJ translator during JSP
translation. For forward compatibility, it is recommended as a
good programming practice that you begin using this directive
immediately.

For further examples of using SQLJ in JSP pages, see "SQLJ
Queries—SQLJSelectInto.sqljsp and SQLJIterator.sqljsp" on page 9-37.

For general information about Oracle SQLJ programming features and syntax, see
the Oracle8i SQLJ Developer’s Guide and Reference.

OracleJSP Extensions 5-35

Oracle-Specific Programming Extensions

Triggering the SQLJ Translator

You can trigger the OracleJSP translator to invoke the Oracle SQLJ translator by
using the file name extension . sql j sp for the JSP source file.

This results in the OracleJSP translator generating a . sql j file instead ofa. j ava
file; the Oracle SQLJ translator is then invoked to translate the . sql j file into a
. javafile.

Using SQLJ results in additional output files; see "Generated Files and Locations
(On-Demand Translation)" on page 6-6.

Important:

« To use Oracle SQLJ, you will have to install appropriate SQLJ
ZIP files (depending on your environment) and add them to
your classpath. See "Required and Optional Files for OracleJSP"
on page A-3.

« Do not use the same base file name fora . j sp fileand a
. sql j sp file in the same application, because they would
result in the same generated class name and . j ava file name.

Setting Oracle SQLJ Options

When you execute or pre-translate a SQLJ JSP page, you can specify desired Oracle
SQLJ option settings. This is true both in on-demand translation scenarios and
pre-translation scenarios, as follows:

« For on-demand translation, use the OracleJSP sql j crd configuration
parameter. This parameter, in addition to allowing you to specify a particular
SQLJ translator executable, allows you to set SQLJ command-line options. (The
sql j cnd parameter is not available prior to OracleJSP release 1.1.0.0.0.)

For information, see the sql j cnd description in "OracleJSP Configuration
Parameters (Non-OSE)" on page A-15. For how to set configuration parameters,
see "OraclelSP Configuration Parameter Settings" on page A-25.

« For pre-translation with the oj spc pre-translation tool, use the oj spc - S
option. This option allows you to set SQLJ command-line options.

For information, see "Command-Line Syntax for ojspc" on page 6-27 and
"Option Descriptions for ojspc” on page 6-27.

For general information about Oracle SQLJ options, see the Oracle8i SQLJ Developer’s
Guide and Reference.

5-36 JavaServer Pages Developer’'s Guide and Reference

OracleJSP Application and Session Support for Servlet 2.0

OracleJSP Application and Session Support for Servlet 2.0

OracleJSP defines a file, gl obal s. j sa, as a mechanism for implementing the JSP
specification in a servlet 2.0 environment. Web applications and servlet contexts
were not fully defined in the servlet 2.0 specification.

This section discusses the gl obal s. j sa mechanism and covers the following
topics:

« Overview of globals.jsa Functionality

« Overview of globals.jsa Syntax and Semantics
« The globals.jsa Event Handlers

« Global Declarations and Directives

For sample applications, see "Samples Using globals.jsa for Servlet 2.0
Environments" on page 9-41.

Important: Use all lowercase for the gl obal s. j sa file name.
Mixed case works in a non-case-sensitive environment, but makes
it difficult to diagnose resulting problems if you port the pages to a
case-sensitive environment.

Overview of globals.jsa Functionality

Within any single Java virtual machine, you can use a gl obal s. j sa file for each
application (or, equivalently, for each servlet context). This file supports the concept
of Web applications in the following areas:

« application deployment—through its role as an application location marker to
define an application root

« distinct applications and sessions—through its use by OracleJSP in providing
distinct servlet context and session objects for each application

« application lifecycle management—through start and end events for sessions
and applications

The gl obal s. j sa file also provides a vehicle for global Java declarations and JSP
directives across all JSP pages of an application.

OracleJSP Extensions 5-37

OracleJSP Application and Session Support for Servlet 2.0

Application Deployment through globals.jsa

To deploy an OracleJSP application that does not incorporate servlets, copy the
directory structure into the Web server and create a file called gl obal s. j sa to
place at the application root directory.

The gl obal s. j sa file can be of zero size. The OracleJSP container will locate it,
and its presence in a directory defines that directory (as mapped from the URL
virtual path) as the root directory of the application.

OracleJSP also defines default locations for JSP application resources. For example,
application beans and classes in the application-relative WEB_| NF/ cl asses and
VEB_| NF/ | i b directories will automatically be loaded by the OracleJSP classloader
without the need for specific configuration.

Notes: For an application that does incorporate servlets, especially
in a servlet environment preceding the servlet 2.2 specification,
manual configuration is required as with any servlet deployment.
For servlets in a servlet 2.2 environment, you can include the
necessary configuration in the standard web. xm deployment
descriptor.

Distinct Applications and Sessions Through globals.jsa

The servlet 2.0 specification does not have a clearly defined concept of a Web
application and there is no defined relationship between servlet contexts and
applications, as there is in later servlet specifications. In a servlet 2.0 environment,
such as Apache/JSery, there is only one servlet context object per JVM. A servlet 2.0
environment also has only one session object.

The gl obal s. j sa file, however, provides support for multiple applications and
multiple sessions in a Web server, particularly for use in a servlet 2.0 environment.

Where a distinct servlet context object would not otherwise be available for each
application, the presence of a gl obal s. j sa file for an application allows the
OracleJSP container to provide the application with a distinct Ser vl et Cont ext
object.

Additionally, where there would otherwise be only one session object (with either
one servlet context or across multiple servlet contexts), the presence of a

gl obal s. j sa file allows the OracleJSP container to provide a proxy

Ht t pSessi on object to the application. (This prevents the possibility of session
variable-name collisions with other applications, although unfortunately it cannot
protect application data from being inspected or modified by other applications.

5-38 JavaServer Pages Developer's Guide and Reference

OracleJSP Application and Session Support for Servlet 2.0

This is because Ht t pSessi on objects must rely on the underlying servlet session
environment for some of their functionality.)

Application and Session Lifecycle Management Through globals.jsa

An application must be notified when a significant state transition occurs. For
example, applications often want to acquire resources when an HTTP session begins
and release resources when the session ends, or restore or save persistent data when
the application itself is started or terminated.

In standard servlet and JSP technology, however, only session-based events are
supported.

For applications that use a gl obal s. j sa file, OracleJSP extends this functionality
with the following four events:

« session OnStart

« session_OnEnd

« application_OnStart
« application_OnEnd

You can write event handlers in the gl obal s. j sa file for any of these events that
the server should respond to.

The sessi on_OnSt art event and sessi on_OnEnd event are triggered at the
beginning and end of an HTTP session, respectively.

The appl i cati on_OnSt art eventis triggered for any application by the first
request for that application within any single JVM. The appl i cati on_OnEnd
event is triggered when the OracleJSP container unloads an application.

For more information, see "The globals.jsa Event Handlers" on page 5-42.

Overview of globals.jsa Syntax and Semantics

This section is an overview of general syntax and semantics for a gl obal s. j sa
file.

Each event block in a gl obal s. j sa file—asessi on_OnSt art block, a

sessi on_OnEnd block, an appl i cati on_OnSt art block, or an

appl i cat i on_OnEnd block—has an event start tag, an event end tag, and a body
(everything between the start and end tags) that includes the event-handler code.

OracleJSP Extensions 5-39

OracleJSP Application and Session Support for Servlet 2.0

The following example shows this pattern:

<event:session_hStart >
<% This scriptlet contains the inplenmentation of the event handl er %
</event:session S art>

The body of an event block can contain any valid JSP tags—standard tags as well as
tags defined in a custom tag library.

The scope of any JSP tag in an event block, however, is limited to only that block.
For example, a bean that is declared in aj sp: useBean tag within one event block
must be redeclared in any other event block that uses it. You can avoid this
restriction, however, through the gl obal s. j sa global declaration
mechanism—see "Global Declarations and Directives" on page 5-46.

For details about each of the four event handlers, see "The globals.jsa Event
Handlers" on page 5-42.

Important: Static text as used in a regular JSP page can reside in a
sessi on_OnSt art block only. Event blocks for sessi on_OnEnd,
application_OnStart,andapplicati on_OnEnd can contain
only Java scriptlets.

JSP implicit objects are available in gl obal s. j sa event blocks as follows:
« Theapplication_OnStart block has access to the appl i cat i on object.
« Theapplicati on_OnEnd block has access to the appl i cat i on object.

« Thesession_OnStart block has access to the appl i cati on, sessi on,
request,response, page, and out objects.

« Thesessi on_OnEnd block has access to the appl i cati on and sessi on
objects.

Example of a Complete globals jsa File This example shows you a complete

gl obal s. j safile, using all four event handlers.

<event:application_nStart>
<%- Initializes counts to zero --%
<j sp: useBean i d="pageCount" class="oracle.jsp.jn.Jn Nunber" scope = "application" />

<j sp: useBean i d="sessi onCount" cl ass="oracl e.jsp.jn.Jm Nunber" scope = "application" />
<j sp: useBean i d="acti veSessi ons" cl ass="oracl e.jsp.jn.Jm Nunber" scope = "application" />

5-40 JavaServer Pages Developer’'s Guide and Reference

OracleJSP Application and Session Support for Servlet 2.0

</event:application_ (hSart>
<event : appl i cati on_QOhEnd>

<%- Acquire beans --%

<j sp: useBean i d="pageCount" class="oracle.jsp.jni.Jn Nunber" scope = "application" />

<j sp: useBean i d="sessi onCount" cl ass="oracl e.jsp.jnt.JInt Nunber" scope = "application" />
<% appl i cation.|og("The nunber of page hits were: " + pageCount.getValue()); %

<% application.|og("The nunber of client sessions were: " + sessionCount.getValue()); %

</ event: appl i cati on_QnEnd>
<event:session_hStart >

<%- Acquire beans --%
<j sp: useBean i d="sessi onCount" cl ass="oracl e.jsp.jnt.JInt Nunber" scope = "application" />
<j sp: useBean i d="acti veSessi ons" class="oracl e.jsp.jn.Jm Nunber" scope = "application" />
<%
sessi onCount . set Val ue(sessi onCount . get Val ue() + 1);
act i veSessi ons. set Val ue(acti veSessi ons. get Val ue() + 1);
%

Sarting session # <%sessi onCount. get Val ue() %

There are currently <% activeSessions. getVal ue() % </ b> active sessions <p>

</event:session S art>
<event : sessi on_(hEnd>
<%- Acquire beans --%
<j sp: useBean i d="activeSessi ons" class="oracle.jsp.jnm.Jm Nunber" scope = "application" />
<%
act i veSessi ons. set Val ue(acti veSessi ons. get Val ue() - 1);

%

</ event : sessi on_hEnd>

OracleJSP Extensions 5-41

OracleJSP Application and Session Support for Servlet 2.0

The globals.jsa Event Handlers

This section provides details about each of the four gl obal s. j sa event handlers.

application_OnStart
The appl i cati on_OnSt art block has the following general syntax:

<event :application_nStart>
<% Thi s scriptlet contains the inplenentation of the event handl er %
</event: appl i cation OnSart>

The body of the appl i cati on_OnSt art event handler is executed when
OracleJSP loads the first JSP page in the application. This usually occurs when the
first HTTP request is made to any page in the application, from any client.
Applications use this event to initialize application-wide resources, such as a
database connection pool or data read from a persistent repository into application
objects.

The event handler must contain only JSP tags (including custom tags) and white
space—it cannot contain static text.

Errors that occur in this event handler but are not processed in the event-handler
code are automatically trapped by the OracleJSP container and logged using the
servlet context of the application. Event handling then proceeds as if no error had
occurred.

Example: application_OnStart The following appl i cati on_OnSt art example is
from the "globals.jsa Example for Application Events—Ilotto.jsp" on page 9-41. In
this example, the generated lottery numbers for a particular user are cached for an
entire day. If the user re-requests the picks, he or she gets the same set of numbers.
The cache is recycled once a day, giving each user a new set of picks. To function as
intended, the lotto application must make the cache persistent when the application
is being shut down, and must refresh the cache when the application is reactivated.

The appl i cati on_OnSt art event handler reads the cache from the | ot t 0. che
file.

<event : application_nStart>

<%

Cal endar today = Cal endar. get | nstance();
application.setAttribute("today", today);

try {

FlelnputSreamfis = new F | el nput S ream

(appl i cation. get Real Path("/")+Fi | e. separator+'l ott 0. che");

5-42 JavaServer Pages Developer's Guide and Reference

OracleJSP Application and Session Support for Servlet 2.0

(oj ect I nput Stream oi s = new (pj ect | nput Streanffis);

Cal endar cachebDay = (Cal endar) ois.read(ject();

i f (cacheDay. get (Cal endar. DAY O~ YEAR == today. get (Cal endar. DAY OF YEAR) {
cachedNunbers = (Hashtabl e) ois. read)j ect();
appl i cation.set Attribut e("cachedNunbers", cachedNunbers);

}
oi s.close();
} catch (Exception theE) {
/] catch all -- can't use persistent data

}
%

</event:application_ (hSart>

application_OnEnd
The appl i cati on_OnEnd block has the following general syntax:

<event : appl i cati on_QhEnd>
<% Thi s scriptlet contains the inplenentation of the event handl er %
</ event: appl i cati on_QhEnd>

The body of the appl i cati on_OnEnd event handler is executed when OracleJSP
unloads the JSP application. Unloading occurs whenever a previously loaded page
is reloaded after on-demand dynamic re-translation (unless the OracleJSP

unsaf e_r el oad configuration parameter is enabled), or when the OracleJSP
container, which itself is a servlet, is terminated by having its dest r oy() method
called by the underlying servlet container. Applications use the

appl i cati on_OnEnd event to clean up application level resources or to write
application state to a persistent store.

The event handler must contain only JSP tags (including custom tags) and white
space—it cannot contain static text.

Errors that occur in this event handler but are not processed in the event-handler
code are automatically trapped by the OracleJSP container and logged using the
servlet context of the application. Event handling then proceeds as if no error had
occurred.

Example: application_OnEnd The following appl i cat i on_OnEnd example is from
the "globals.jsa Example for Application Events—Ilotto.jsp" on page 9-41. In this
event handler, the cache is written to file | ot t 0. che before the application is
terminated.

OracleJSP Extensions 5-43

OracleJSP Application and Session Support for Servlet 2.0

<event : appl i cati on_QhEnd>

<%

%

Cal endar now = Cal endar . get | nstance();
Cal endar today = (Cal endar) application.getAttribute("today");
if (cachedNunbers.isEmpty() ||

try {

} catch

now get (Cal endar. DAY_CF_YEAR) > today. get (Cal endar . DAY COF YEAR)) {
Filef = new F le(application. getReal Path("/")+F | e. separat or+"l otto. che");
if (f.exists()) f.delete();
return;

FleQutputSreamfos = new Fil eQut put S ream
(appl i cation. get Real Path("/")+Fi | e. separator +'l ott 0. che");
(bj ect Qut put Stream oos = new (bj ect Qut put S rean{f os) ;
0os. witeChj ect (today);
00s. wi t e(yj ect (cachedNunber s) ;

00s. cl ose();
(Exception theE) {
/] catch all -- can't use persistent data

</ event: appl i cati on_ChEnd>

session_OnStart
The sessi on_OnSt art block has the following general syntax:

<event:session_nStart >
<% Thi s scriptlet contains the inplenentation of the event handl er %
(ptional static text...

</event:session S art>

The body of the sessi on_OnSt art event handler is executed when OracleJSP
creates a new session in response to a JSP page request. This occurs on a per client
basis, whenever the first request is received for a session-enabled JSP page in an
application.

Applications might use this event for the following purposes:
« toinitialize resources tied to a particular client

« to control where a client starts in an application

5-44 JavaServer Pages Developer’'s Guide and Reference

OracleJSP Application and Session Support for Servlet 2.0

Because the implicit out object is available to sessi on_OnSt art, this is the only
gl obal s. j sa event handler that can contain static text in addition to JSP tags.

The sessi on_OnSt art event handler is called before the code of the JSP page is
executed. As a result, output from sessi on_OnSt art precedes any output from
the page.

The sessi on_OnSt art event handler and the JSP page that triggered the event
share the same out stream. The buffer size of this stream is controlled by the buffer
size of the JSP page. The sessi on_OnSt art event handler does not automatically
flush the stream to the browser—the stream is flushed according to general JSP
rules. Headers can still be written in JSP pages that trigger the sessi on_OnSt art
event.

Errors that occur in this event handler but are not processed in the event-handler
code are automatically trapped by the OracleJSP container and logged using the
servlet context of the application. Event handling then proceeds as if no error had
occurred.

Example: session_OnStart The following example makes sure that each new session
starts on the initial page (i ndex. j sp) of the application.
<event:session_nStart >

<%if (!page.equal s("index.jsp")) { %

<j sp:forward page="i ndex. jsp" />
<%} %

</event:session S art>

session_OnEnd
The sessi on_OnEnd block has the following general syntax:

<event:sessi on_OnEnd>
<% Thi s scriptlet contains the inplenentation of the event handl er %
</ event:sessi on_OnEnd>

The body of the sessi on_OnEnd event handler is executed when OracleJSP
invalidates an existing session. This occurs in either of the following circumstances:

= The application invalidates the session by calling the
session. i nval i date() method.

= The session expires (times out) on the server.

OracleJSP Extensions 5-45

OracleJSP Application and Session Support for Servlet 2.0

Applications use this event to release client resources.

The event handler must contain only JSP tags (including tag library tags) and white
space—it cannot contain static text.

Errors that occur in this event handler but are not processed in the event-handler
code are automatically trapped by the OracleJSP container and logged using the
servlet context of the application. Event handling then proceeds as if no error had
occurred.

Example: session_OnEnd The following example decrements the "active session"
count when a session is terminated.

<event : sessi on_(hEnd>

<%- Acquire beans --%
<j sp: useBean i d="act i veSessi ons" cl ass="oracl e. | sp.jnt.Jm Nunber" scope = "appl ication" />

<%
act i veSessi ons. set Val ue(acti veSessi ons. get Val ue() - 1);
%

</ event : sessi on_CnhEnd>

Global Declarations and Directives

In addition to holding event handlers, a gl obal s. j sa file can be used to globally
declare directives and objects for the JSP application. You can include JSP directives,
JSP declarations, JSP comments, and JSP tags that have a scope parameter (such as
j sp: useBean).

This section covers the following topics:
« Global JSP Directives

« globals.jsa Declarations

« Global JavaBeans

« globals.jsa Structure

« Global Declarations and Directives Example

5-46 JavaServer Pages Developer's Guide and Reference

OracleJSP Application and Session Support for Servlet 2.0

Global JSP Directives
Directives used within a gl obal s. j sa file serve a dual purpose:

« They declare the information that is required to process the gl obal s. j sa file
itself.

« They establish default values for succeeding pages.

A directive in a gl obal s. j sa file becomes an implicit directive for all JSP pages in
the application, although a gl obal s. j sa directive can be overwritten for any
particular page.

A gl obal s. j sa directive is overwritten in a JSP page on an attribute-by-attribute
basis. If a gl obal s. j sa file has the following directive:

<Y@page inport="java.util.*" bufferS ze="10kb" %

and a JSP page has the following directive:
<Ygpage bufferS ze="20kb" %

then this would be equivalent to the page having the following directive:
<Y@page inport="java.util.*" bufferS ze="20kb" %

globals.jsa Declarations

If you want to declare a method or data member to be shared across any of the
event handlersinagl obal s. j safile,usealJSP<% ... % declaration within the
gl obal s. j safile.

Note that JSP pages in the application do not have access to these declarations, so
you cannot use this mechanism to implement an application library. Declaration
support is provided in the gl obal s. j sa file for common functions to be shared
across event handlers.

Global JavaBeans

Probably the most common elements declared in gl obal s. j sa files are global
objects. Objects declared in a gl obal s. j sa file become part of the implicit object
environment of the gl obal s. j sa event handlers and all the JSP pages in the
application.

An object declared in a gl obal s. j safile (such as by aj sp: useBean statement)
does not need to be redeclared in any of the individual JSP pages of the application.

OracleJSP Extensions 5-47

OracleJSP Application and Session Support for Servlet 2.0

You can declare a global object using any JSP tag or extension that has a scope
parameter, such asj sp: useBean orj nmi : useVari abl e. Globally declared objects
must be of either sessi on or appl i cat i on scope (not page or r equest scope).

Nested tags are supported. Thus, aj sp: set Propert y command can be nested in
aj sp: useBean declaration. (A translation error occurs if j sp: set Property is
used outside aj sp: useBean declaration.)

globals.jsa Structure

When a global object is used in a gl obal s. j sa event handler, the position of its
declaration is important. Only those objects that are declared before a particular
event handler are added as implicit objects to that event handler. For this reason,
developers are advised to structure their gl obal s. j sa file in the following
sequence:

1. global directives
2. global objects

3. event handlers
4

gl obal s. j sa declarations

Global Declarations and Directives Example
The following sample gl obal s. j sa file accomplishes the following:

« Itdefines the JML tag library (in this case, the compile-time implementation) for
the gl obal s. j sa file, as well as for all subsequent pages.

By including the t agl i b directive in the gl obal s. j sa file, the directive does
not have to be included in any of the individual JSP pages of the application.

« Itdeclares three application variables for use by all pages (in the j sp: useBean
statements).

For an additional example of using gl obal s. j sa for global declarations, see
"globals.jsa Example for Global Declarations—index2.jsp" on page 9-47.

<%- Directives at the top --%
<Y@taglib uri="oracl e.jsp. parse. QpenJspRegi sterLi b" prefix="jm" %
<%- Decl are gl obal objects here --%

<%- Initializes counts to zero --%
<j sp: useBean i d="pageCount" class="oracle.jsp.jn.Jn Nunber" scope = "application" />

5-48 JavaServer Pages Developer’'s Guide and Reference

OracleJSP Application and Session Support for Servlet 2.0

<j sp: useBean i d="sessi onCount" cl ass="oracl e.jsp.jnt.JInt Nunber" scope = "application" />
<j sp: useBean i d="acti veSessi ons" cl ass="oracl e.jsp.jn.Jm Nunber" scope = "application" />

<%- Application |ifecycl e event handlers go here --%

<event:application_nStart>
<% This scriptlet contains the inplenentation of the event handl er %
</event: application S art>

<event : appl i cati on_QOhEnd>
<% This scriptlet contains the inplenentation of the event handl er %
</ event: appl i cati on_nEnd>

<event:session_ S art >

<% Thi s scriptlet contains the inplenentation of the event handl er %
</event:session Start >
<event : sessi on_(hEnd>

<% This scriptlet contains the inplenentation of the event handl er %
</ event : sessi on_hEnd>

<%- Decl arations used by the event handlers go here --%

OracleJSP Extensions 5-49

OracleJSP Application and Session Support for Servlet 2.0

5-50 JavaServer Pages Developer's Guide and Reference

S

JSP Translation and Deployment

This chapter primarily discusses considerations and procedures for deploying JSP
applications into Oracle8i to run in the Oracle Servlet Engine. It also describes

general OracleJSP translation features and briefly discusses deployment in other

environments, particularly the Apache/JServ environment used by the Oracle
Internet Application Server.

The following topics are covered:

Functionality of the OracleJSP Translator

Overview of Features and Logistics in Deployment to Oracle8i

Tools and Commands for Translation and Deployment to Oracle8i

Deployment to Oracle8i with Server-Side Translation

Deployment to Oracle8i with Client-Side Translation

Additional JSP Deployment Considerations

JSP Translation and Deployment

6-1

Functionality of the OracleJSP Translator

Functionality of the OracleJSP Translator

JSP translators generate standard Java code for a JSP page implementation class.
This class is essentially a servlet class wrapped with features for JSP functionality.

This section discusses general functionality of the OracleJSP translator, focusing on
its behavior in on-demand translation environments, such as Apache/JServ or the
Oracle Internet Application Server. The following topics are covered:

« Generated Code Features
« Generated Package and Class Names (On-Demand Translation)
= Generated Files and Locations (On-Demand Translation)

« Sample Page Implementation Class Source

Important: Implementation details discussed in this section
regarding package and class naming, output file locations, and
generated code are for illustrative purposes only. The precise
details apply to OracleJSP release 8.1.7 (1.1.0.0.0) only, in
accordance with JSP 1.1 specifications, as applicable. These details
are subject to change in future releases.

You must pre-translate JSP pages targeted for the Oracle Servlet Engine, either as a
result of running the session shell publ i shj sp command (for deployment with
server-side translation) or by running the oj spc pre-translation tool directly (for
deployment with client-side translation). In either case, there are some differences in
functionality compared with the discussion in this section, such as in placement of
output files. See "Translating and Publishing JSP Pages in Oracle8i (Session Shell
publishjsp)" on page 6-42 and "The ojspc Pre-Translation Tool" on page 6-23 for
information.

Generated Code Features

This section discusses general features of the page implementation class code that is
produced by the OracleJSP translator in translating JSP source (. j spand . sql j sp
files).

Features of Page Implementation Class Code

When the OraclelSP translator generates servlet code in the page implementation
class, it automatically handles some of the standard programming overhead. For

6-2 JavaServer Pages Developer’s Guide and Reference

Functionality of the OracleJSP Translator

both the on-demand translation model and the pre-translation model, generated
code automatically includes the following features:

« Itextends awrapper class (oracl e.j sp. runti ne. Ht t pJsp) provided by the
OracleJSP container that implements the standard
javax. servl et.jsp. H t pJspPage interface (which extends the more
generic j avax. servl et.j sp. JspPage interface, which in turn extends the
standard j avax. servl et. Servl et interface).

« Itimplementsthe j spServi ce() method specified by the Ht t pJspPage
interface. This method, often referred to generically as the "service" method, is
the central method of the page implementation class. Code from any Java
scriptlets and expressions in the JSP page is incorporated into this method
implementation.

« Itincludes code to request an HTTP session, unless your JSP source code
specifically sets sessi on=f al se (which can be done in a page directive).

For introductory information about key JSP and servlet classes and interfaces, see
Appendix B, "Servlet and JSP Technical Background".

Inner Class for Static Text

The service method, _j spSer vi ce(), of the page implementation class includes
print commands—out . pri nt () calls on the implicit out object—to print any
static text in the JSP page. The OracleJSP translator, however, places the static text
itself in an inner class within the page implementation class. The service method
out . print () statements reference attributes of the inner class to print the text.

This inner class implementation results in an additional . cl ass file when the page
is translated and compiled. In a client-side pre-translation scenario (usually for
deployment to Oracle8i), be aware this means there is an extra . cl ass file to
deploy.

The name of the inner class will always be based on the base name of the . j sp file
or. sql j sp file. For nypage. j sp, for example, the inner class (and its . cl ass
file) will always include "mypage" in its name.

JSP Translation and Deployment 6-3

Functionality of the OracleJSP Translator

Note: The OraclelSP translator can optionally place the static text
in a Java resource file, which is advantageous for pages with large
amounts of static text. (See "Workarounds for Large Static Content
in JSP Pages" on page 4-13.) You can request this feature through
the OracleJSP ext er nal _r esour ce configuration parameter (for
on-demand translation) or the oj spc - ext r es option (for
pre-translation). Enabling hotloading (for deployment to Oracle8i)
also results in the static text going into a resource file.

Even when static text is placed in a resource file, the inner class is
still produced, and its . cl ass file must be deployed. (This is only
noteworthy if you are in a client-side pre-translation scenario.)

Generated Package and Class Names (On-Demand Translation)

Although the Sun Microsystems JavaServer Pages Specification, Version 1.1 defines a
uniform process for parsing and translating JSP text, it does not describe how the
generated classes should be named—that is up to each JSP implementation.

This section describes how OracleJSP creates package and class names when it
generates code during translation.

Important: In OracleJSP release 8.1.7 (1.1.0.0.0), the URL path
directory and . j sp file name (which are used in generating
package and class names) are restricted to valid Java package and
class identifiers. For example, a path directory or . j sp name
cannot begin with a number. It is also invalid to use Java reserved
words, such as f or or cl ass, as a path directory or . j sp name
(such as cl ass. j sp). Such implementation details may change in
future releases.

Package Naming

In an on-demand translation scenario, the URL path that is specified when the user
requests a JSP page—specifically, the path relative to the doc root or application
root—determines the package name for the generated page implementation class.
Each directory in the URL path represents a level of the package hierarchy.

It is important to note, however, that generated package names are always
lowercase, regardless of the case in the URL.

6-4 JavaServer Pages Developer’s Guide and Reference

Functionality of the OracleJSP Translator

Consider the following URL as an example:
http:// host[: port]/ HR expenses/ | ogi n. j sp
In OracleJSP release 8.1.7 (1.1.0.0.0), this results in the following package

specification in the generated code (implementation details are subject to change in
future releases):

package hr.expenses;
No package name is generated if the JSP page is at the doc root or application root
directory, where the URL is as follows:

http:// host[: port]/1ogin.jsp

Class Naming

The base name of the . j sp file (or . sql j sp file) determines the class name in the
generated code.

Consider the following URL example:

http:// host[: port] ! HR expenses/ User Logi n. j sp

In OracleJSP release 8.1.7 (1.1.0.0.0), this yields the following class name in the
generated code (implementation details are subject to change in future releases):
public class UWserLogin extends ...

Be aware that the case (lowercase/uppercase) that end-users type in the URL must
match the case of the actual . j sp or . sql j sp file name. For example, they can
specify User Logi n. j sp if that is the actual file name, or user | ogi n. j sp if thatis

the actual file name, but not user | ogi n. j sp if User Logi n. j sp is the actual file
name.

In OraclelSP release 8.1.7 (1.1.0.0.0), the translator determines the case of the class
name according to the case of the file name. For example:

« UserLogin.jspresultsinclass User Logi n.
« Userl ogin.jspresultsinclass User | ogi n.
« userlogin.jspresultsinclassuser!| ogin.

If you care about the case of the class name, then you must name the . j sp file or
. sql j sp file accordingly. However, because the page implementation class is
invisible to the end-user, this is usually not a concern.

JSP Translation and Deployment 6-5

Functionality of the OracleJSP Translator

Generated Files and Locations (On-Demand Translation)

This section describes files that are generated by the OracleJSP translator and where
they are placed. For pre-translation scenarios, oj spc places files differently and has
its own set of relevant options—see "Summary of ojspc Output Files, Locations, and
Related Options" on page 6-34.

The following subsections mention several OracleJSP configuration parameters. For
more information about them, see "OracleJSP Configuration Parameters (Non-OSE)"
on page A-15 and "OracleJSP Configuration Parameter Settings" on page A-25.

Files Generated by OracleJSP

This section considers both regular JSP pages (. j sp files) and SQLJ JSP pages

(- sql j sp files) in listing files that are generated by the OracleJSP translator. For the
file name examples, presume a file Foo. j sp or Foo. sql j sp is being translated.

Source files:

« A.sqlj fileis produced by the OracleJSP translator if the page is a SQLJ JSP
page (for example, Foo. sql j).

« A.javafileis produced for the page implementation class and inner class (for
example, Foo. j ava). It is produced either directly by the OracleJSP translator
from the. j sp file, or by the SQLJ translator from the. sql j file if the page is a
SQLJ JSP page. (The currently installed Oracle SQLJ translator is used by
default, but you can specify an alternative translator or an alternative release of
the Oracle SQLJ translator by using the OracleJSP sql j cd configuration
parameter.)

Binary files:

« Inthe case of a SQLJ JSP page, one or more binary files are produced during
SQLJ translation for SQLJ profiles. By default these are . ser Java resource files,
but they will be . cl ass files if you enable the SQLJ - ser 2cl ass option
(through the OraclelSP sql j cnd configuration parameter). The resource file or
. ¢l ass file has "Foo0" as part of its name.

« A class fileis produced by the Java compiler for the page implementation
class. (The Java compiler isj avac by default, but you can specify an alternative
compiler using the OracleJSP j avaccnd configuration parameter.)

« Anadditional . cl ass file is produced for the inner class of the page
implementation class. This file will have "Foo" as part of its name.

6-6 JavaServer Pages Developer’s Guide and Reference

Functionality of the OracleJSP Translator

A. r es Java resource file is optionally produced for the static page content (for
example, Foo. r es) if the OracleJSP ext er nal _r esour ce configuration
parameter is enabled.

Note: The exact names of generated files for the page
implementation class may change in future releases, but will still
have the same general form. The names would always include the
base name (such as "Foo" in these examples), but may include slight
variations, such as _Foo. j ava or _Foo. cl ass.

OracleJSP Translator Output File Locations

OracleJSP uses the Web server document repository to generate or load translated
JSP pages.

By default, the root directory is the Web server doc root directory (for
Apache/JServ) or the servlet context root directory of the application the page
belongs to.

You can specify an alternative root directory through the OracleJSP
page_repository_root configuration parameter.

In OracleJSP release 8.1.7 (1.1.0.0.0), generated files are placed as follows
(implementation details may change in future releases):

If the . j sp (or. sql j sp) file is directly in the root directory, then OracleJSP
will place generated files into a _pages subdirectory directly under the root
directory.

If the . j sp (or. sql j sp) file is in a subdirectory under the root directory, then
an equivalent directory structure is created under the _pages subdirectory for
the generated files.

As an example, consider an Apache/JServ environment with an ht docs root
directory. If a . j sp file is in the following directory:

ht docs/ subdi r/t est

then generated files will be placed in the following directory:

ht docs/ _pages/ subdi r/ t est

JSP Translation and Deployment 6-7

Functionality of the OracleJSP Translator

Sample Page Implementation Class Source
This section uses an example to illustrate the information in the preceding sections.

Consider the following scenario:

« JSP page code is in the file hel | 0. j sp.

« The page is executed in an Apache/JServ environment.

« Thehell o.] sp file is located in the following directory:

ht docs/ t est

Important: Code generation details discussed here are according
to Oracle’s implementation of the JSP 1.1 specification. Details may
change in the future, as the result of either changes in the
specification or changes in how Oracle implements aspects that are
not specified.

Sample Page Source: hello.jsp
Following is the JSP code in hel | 0. j sp:

<HTM>

<HEAD><TI TLE>The Hel o Wser JSP</ Tl TLE></ HEAD>
<BCDY>

<% Sring user=request.getParaneter("user"); %
<H3>\W¢| cone <% (user==null) ? "" : user %! </H3>
<P> Today is <% newjava.util.Date() %. Have a nice day! :-)</B</P>
Enter nane: </ B>

<FCRM METHOD=get >

<INPUT TYPE="text" NAME="user" S ZE=15>

<INPUT TYPE="subnit" VALUE="Subnit nane">

</ FCRW>

</ BCDY>

</ HTM.>

Sample: Generated Package and Class

Because hel | 0. j spisinthet est subdirectory of the root directory (ht docs),
OraclelJSP release 8.1.7 (1.1.0.0.0) generates the following package name in the page
implementation code:

package test;

6-8 JavaServer Pages Developer’s Guide and Reference

Functionality of the OracleJSP Translator

The Java class name is identical to the base name of the . j sp file (case included), so
the following class definition is generated in the page implementation code:

public class hello extends oracle.jsp.runti ne. HtpJsp

{
}

(Because the page implementation class is invisible to the end-user, the fact that its
name does not adhere to Java capitalization conventions is generally not a concern.)

Sample: Generated Files
Because hel | 0. j sp is located as follows:

ht docs/test/ hel l 0. jsp

OracleJSP release 8.1.7 (1.1.0.0.0) generates output files as follows (the page
implementation class . j ava file and . cl ass file, and the inner class . cl ass file,
respectively):

ht docs/ _pages/test/hel | o. java
ht docs/ _pages/test/hel | o. cl ass
ht docs/ _pages/test/hel | 0$__j sp_StaticText.cl ass

Note: These file names are based specifically on the OracleJSP
1.1.0.0.0 implementation; the exact details may change in future
releases. All file names will always include the base "hello",
however.

Sample Page Implementation Code: hello.java

Following is the generated page implementation class Java code (hel | 0. j ava), as
generated by OracleJSP release 8.1.7 (1.1.0.0.0):

package test;

inport oracle.jsp.runtine.*;
inport javax.servlet.*;
inport javax.servlet.http.*;
inport javax.servlet.jsp.*;
inport java.io.*;

inport java. util.*;

JSP Translation and Deployment 6-9

Functionality of the OracleJSP Translator

inport java.lang.reflect.*;
inport java. beans. *;

public class hello extends oracle.jsp.runtine. HtpJsp {
public final Sring _gl obal sd assNane = nul | ;

/1 ** Begin Decl arations

/] ** End Decl arations

public void _jspService(HtpServl et Request request, HtpServl et Response
response) throws | CException, ServletException {

/* set up the intrinsic variables using the pageCont ext goober:
** session = HtpSession
** application = Servl et Gont ext
** out = JspWiter
** page = this
** config = Servlet@nfig
** al| session/app beans declared in globals.jsa
*/
JspFactory factory = JspFactory. get Defaul t Fact ory();
PageCont ext pageContext = factory. get PageContext(this, request, response,
nul |, true, JspWiter. DBFALLT BUFFER true);
/1 Note: this is not enitted if the session directive == fal se
H t pSessi on sessi on = pageCont ext . get Sessi on() ;
if (pageContext.getAttribute(C acl eJspRunti ne. JSP_REQUEST REDI RECTED,
PageCont ext . REQUEST SOCPE) !'= null) {
pageCont ext . set Attri but e(O acl eJspRunti me. JSP_PAGE DONTNOTI FY, "true",
PageCont ext . PAGE_ SCCPE) ;
factory. rel easePageCont ext (pageCont ext) ;
return;

Servl et Cont ext applicati on = pageCont ext. get Servl et Cont ext ();
JspWiter out = pageContext.getQut();

hell o page =this;

Servl et Config config = pageCont ext . get Servl et Config();

try {
/1 gl obal beans

/1 end gl obal beans

6-10 JavaServer Pages Developer's Guide and Reference

Functionality of the OracleJSP Translator

out.print(__jsp SaticText.text[Q]);
Sring user=request.get Paraneter("user");
out.print(__jsp SaticText.text[1]);
out.print((user==null) ?"" : user);
out.print(__jsp SaticText.text[2]);
out.print(newjava.util.Date());
out.print(__jsp SaticText.text[3]);

out. fl ush();
}
catch(Exception e) {

try {

if (out '=null) out.clear();

}

cat ch(Exception cl ear Exception) {

}

pageCont ext . handl ePageException(e);
}
finally {

if (out '=null) out.close();

factory. rel easePage(nt ext (pageCont ext) ;
}

}

private static class _ jsp_SaticText {
private static final char text[][]=new char[4][];
static {
text[0] =
" <HTMLX\ r \ n<HEAD><TI TLE>The V¢l cone User
JSP</ Tl TLE></ HEAD>\ r\ n<BCDY>\r\ n". t oChar Arr ay() ;

text[1] =

"\r\ n<H3>\W¢l cone ".toChar Array();

text[2] =

"I</H3>\r\n<P> Today is ".toCharArray();
text[3] =

Have a nice day! :-)</P>\r\nEnter name: \r\ n<FCRV
METHOD=get >\ r\ n<I NPUT TYPE=\ "text\" NAMER\"user\" S ZE=153\r\ n<l NPUT
TYPER "submi t\" VALUER\ " Submi t
namre\ " >\ r\ n</ FCRWH r\ n</ BADY>\ r\ n</ HTM>" . t oChar Array() ;

}
}
}

JSP Translation and Deployment

6-11

Overview of Features and Logistics in Deployment to Oracle8i

Overview of Features and Logistics in Deployment to Oracle8i

This section is an overview of considerations and logistics in deploying a JSP
application into Oracle8i to run in the Oracle Servlet Engine. The following topics
are covered:

«» Database Schema Objects for Java

« Oracle HTTP Server as a Front-End Web Server

« URLs for the Oracle Servlet Engine

« Static Files for JSP Applications in the Oracle Servlet Engine
« Server-Side Versus Client-Side Translation

« Overview of Hotloaded Classes in Oracle8i

Database Schema Objects for Java

Java code that executes in the Oracle Servlet Engine uses an Oracle8i JVM inside the
database. The code must be loaded into a particular database schema as one or
more schema objects.

The three kinds of schema objects for Java are:

= source schema objects (corresponding to Java source files)

« class schema objects (corresponding to Java class files)

= resource schema objects (corresponding to Java resource files)

Each schema object is an individual library unit in the database. When you query
the ALL_OBJECTS table of the schema, Java schema objects are seen as type JAVA
SOURCE, JAVA CLASS, or JAVA RESOURCE, respectively.

See the Oracle8i Java Developer’s Guide for more information.

Loading Java Files to Create Schema Objects
The JServer | oadj ava tool is used to load Java files into the database as schema
objects. (See "Overview of the loadjava Tool" on page 6-36.)

When you compile on the client and load the . cl ass file directly, | oadj ava stores
the . cl ass file as a class schema object in the database.

When you load a resource file (such as a . r es file for static JSP content or . ser
profile file for SQLJ), | oadj ava stores the resource file as a resource schema object
in the database.

6-12 JavaServer Pages Developer's Guide and Reference

Overview of Features and Logistics in Deployment to Oracle8i

When you load a. j ava (or . sqgl j) source file, | oadj ava stores the source file as a
source schema object in the database and optionally compiles it inside the database
to create one or more class schema objects.

Whenyou load a. j sp or. sql j sp page source file (for server-side translation),

| oadj ava stores the page source as a resource schema object. During server-side

translation (through the JServer session shell publ i shj sp command), server-side
| oadj ava is invoked automatically to create source schema objects, class schema
objects, and resource schema objects during translation and compilation.

(See "Tools and Commands for Translation and Deployment to Oracle8i" on
page 6-23 for an overview of the | oadj ava and session shell tools.)

Schema Object Full Names and Short Names
The two forms of schema object names in Oracle8i are full names and short names.

Full names are fully qualified and are used as the schema object names wherever
possible. If any full name contains more than 31 characters, however, or contains
characters that are illegal or cannot be converted to characters in the database
character set, then the Oracle8i server converts the full name to a short name to
employ as the name of the schema object, keeping track of both names and how to
convert between them. If the full name contains 31 characters or less and has no
illegal or inconvertible characters, then the full name is used as the schema object
name.

For more information about these and about other file naming considerations,
including DBMS_JAVA procedures to retrieve a full name from a short name and a
short name from a full name, see the Oracle8i Java Developer’s Guide.

Java Schema Object Package Determination During Loading

During loading of Java files into the database, the | oadj ava tool uses the following
logic to determine the package for Java schema objects it creates:

« For source schema objects (created from. j ava and . sql j files) and class
schema objects (created from . cl ass files or by compiling . j ava files), the
schema package is determined by any package information in the Java code.

For example, a class Foo that specifies the package di r 1. di r 2 and is being
loaded into the SCOTT schema will be stored in the schema as follows:

SQOIT: dir 1/ di r 2/ Foo

JSP Translation and Deployment 6-13

Overview of Features and Logistics in Deployment to Oracle8i

Note: When pre-translating a JSP page with the oj spc tool (for
deployment to Oracle8i with client-side translation), you can
specify the package of the generated . j ava file through the oj spc
- packageNane option.

« For resource schema objects (created from . r es and . ser Java resource files,
for example), the schema package is determined by any path information in the
| oadj ava command line (if the Java resource file is being loaded directly) or
the JAR file (if the Java resource file is being loaded as part of a JAR file).

For example, a . r es file being loaded into the SCOTT schema as
di r 3/ di r 4/ abcd. r es will be stored in a schema object as follows:

SQOIT: di r3/di r4/ abcd. res

Publishing Schema Objects

Any JSP page (or servlet) that will run in the Oracle Servlet Engine must be
"published", a process that makes its executable Java code (the class schema objects)
accessible through entries in the JServer JINDI namespace.

Publishing the JSP page links its page implementation class schema object to a
servlet path (and optionally to a non-default servlet context path). The servlet path
(and context path, if applicable) becomes part of the URL that an end-user would
specify to access and execute the page. See "URLSs for the Oracle Servlet Engine" on
page 6-15 for more information.

To publish a JSP page, use the Oracle8i session shell publ i shj sp command for the
"deployment with server-side translation" scenario, or the session shell

publ i shservl et command for the "deployment with client-side translation"
scenario. See "Translating and Publishing JSP Pages in Oracle8i (Session Shell
publishjsp)" on page 6-42 or "Publishing Translated JSP Pages in Oracle8i (Session
Shell publishservlet)" on page 6-63.

Oracle HTTP Server as a Front-End Web Server

JSP pages and servlets running in the Oracle Servlet Engine are typically accessed
through the Oracle HTTP Server (powered by Apache) and its nrod_ose module,
although it is possible to use OSE itself as the Web server.

For more information about the role of the Oracle HTTP Server and nod_ose, see
"Role of the Oracle HTTP Server, Powered by Apache" on page 2-6.

6-14 JavaServer Pages Developer's Guide and Reference

Overview of Features and Logistics in Deployment to Oracle8i

URLs for the Oracle Servlet Engine

As with servlet URLs in general, URLSs to invoke JSP pages running in the Oracle
Servlet Engine are formed by a combination of two components (in addition to the
hostname and port):

« the context path of the servlet context in OSE, as determined when the servlet
context was created

« the servlet path of the JSP page in OSE (often referred to as the "virtual path"), as
determined when the JSP page was published

The context path for the OSE default context, / webdomai ns/ cont ext s/ def aul t,
is simply:

/

The context path for any other OSE servlet context you create, which you
accomplish using the Oracle8i session shell cr eat econt ext command, is
whatever you specify in the cr eat econt ext -vi rtual pat h option. (Itis
conventional, but not required, to specify that the context path be the same as the
context name.)

Note: The -virtual pat h option is required whenever you
execute the cr eat econt ext command.

For general information about the session shell cr eat econt ext command, see the
Oracle8i Java Tools Reference. For an overview of the Oracle8i session shell, see
"Overview of the sess_sh Session Shell Tool" on page 6-38.

The servlet path (JSP page "virtual path") is determined by how you publish the JSP
page, as follows:

« If you use the session shell publ i shj sp command (for server-side translation),
then it is determined by the publ i shj sp -vi rtual pat h option, or else is the
same as the specified schema path by default.

« Ifyou use the session shell publ i shser vl et command (after client-side
translation), then it is determined by the publ i shservl et -virtual path
option (which you must specify when you use publ i shser vl et for aJSP
page).

See "Translating and Publishing JSP Pages in Oracle8i (Session Shell publishjsp)" on
page 6-42 or "Publishing Translated JSP Pages in Oracle8i (Session Shell
publishservlet)" on page 6-63.

JSP Translation and Deployment 6-15

Overview of Features and Logistics in Deployment to Oracle8i

Example 1 As an example, consider a JSP page that is published to the OSE default
context with a servlet path (virtual path), as follows:

nydi r/ nypage. j sp

This page is accessed as follows:

http:// host[: port]/nydir/ nypage.jsp

You can access it from another page in the application, say nydi r / nypage?2. j sp,

in either of the following ways (the first is a page-relative path; the second is an
application-relative path):

<j sp:incl ude page="nypage.jsp" flush="true" />

<j sp:incl ude page="/nydir/nypage.jsp" flush="true" />

Example 2 Now consider a servlet context that is created as follows ($ is the session
shell prompt):

$ createcontext -virtual path nycontext /webdonai ns nycont ext

This does the following:

« ltcreates the servlet context/ webdomnai ns/ cont ext s/ mycont ext (all servlet
contexts in the / webdomai ns domain go under / webdonei ns/ cont ext s).

« It specifies the context path to be the same as the context name (rmycont ext).

If mydi r/ mypage. j sp is published to the mycont ext servlet context, it is
accessed as follows:

http:// host[: port]/nycont ext/nydir/nypage.j sp
You can access it from another page in the application, say nydi r / nypage2. j sp,

in either of the following ways (the first is a page-relative path; the second is an
application-relative path):

<j sp:incl ude page="nypage.jsp" flush="true" />
<j sp:incl ude page="/nydir/nypage.jsp" flush="true" />

The syntax for the dynamic j sp: i ncl ude statements is the same as in Example 1.
Even though a different servlet context is used, the path of the pages relative to the
context is unchanged.

6-16 JavaServer Pages Developer’'s Guide and Reference

Overview of Features and Logistics in Deployment to Oracle8i

Example 3 Now consider a servlet context that is created as follows ($ is the session
shell prompt):

$ createcontext -virtual path nywebapp /webdonai ns nycont ext

This does the following:

« lItcreates the servlet context / webdonmai ns/ cont ext s/ mycont ext asin
Example 2.

= However, it defines a context path, mywebapp, that is different from the context
name. It is this context path, not the context name, that is used in the URL.

In this case, if mydi r/ nypage. j sp is published to the mycont ext servlet context,
it is accessed as follows:

http:// host[: port]/ nywebapp/ nydi r/ nypage. j sp

You can access it from another page in the application, say nydi r/ nypage2. j sp,
in either of the following ways (the first is a page-relative path; the second is an
application-relative path):

<j sp:incl ude page="nypage.jsp" flush="true" />

<j sp:incl ude page="/nydir/nypage.jsp" flush="true" />

Static Files for JSP Applications in the Oracle Servlet Engine

This section describes the required placement of static files, such as HTML files, that
are used in a JSP application that runs in the Oracle Servlet Engine.

The information in this section is independent of whether the Oracle HTTP Server
(powered by Apache) is used as a front-end Web server for OSE, or OSE is used
directly.

Files for Dynamic Includes and Forwards

Static files that are dynamic i ncl ude or f or war d targets (j sp: i ncl ude or

j sp: forwar d) in aJSP application running in the Oracle Servlet Engine must be
manually moved or copied to the OSE doc root directory corresponding to the
servlet context of the application. When you create an OSE servlet context (using
the session shell cr eat econt ext command), you specify a doc root directory
through the cr eat econt ext -docr oot option. Each OSE doc root directory is
linked to the JServer INDI namespace.

JSP Translation and Deployment 6-17

Overview of Features and Logistics in Deployment to Oracle8i

OSE doc root directories are outside the database. The INDI lookup mechanism for
static files is a front-end for the file system of the server where the database resides.

The doc root for the OSE default servlet context,
/ webdomai ns/ cont ext s/ def aul t, is the following:

$CRACLE HOME/ j i s/ publ i c_ht

Whenever you create an additional servlet context with the session shell

cr eat econt ext command, you can use the cr eat econt ext - docr oot option
to specify a doc root directory. (For more information about the session shell

cr eat econt ext command, see the Oracle8i Java Tools Reference.)

Note: If you are migrating your JSP application from Apache to
OSE, it is advisable to copy static files from the Apache doc root to
the OSE servlet context doc root, as opposed to mapping the OSE
servlet context doc root to the Apache doc root. Mapping the doc
roots may ultimately cause confusion.

Files for Static Includes

Any file that is statically included (through an i ncl ude directive) by a JSP page,
whether it is another JSP page or a static file such as an HTML file, must be
accessible by the OraclelJSP translator during translation.

In the case of a JSP application targeted for OSE, there are two translation scenarios:
= server-side translation

This is where you load a . j sp file into the database as a Java resource, then use
publ i shj sp to invoke the OraclelSP translator in the server. (See "Deployment
to Oracle8i with Server-Side Translation" on page 6-41.)

In this case, static files must be loaded into the database beforehand, using
| oadj ava, as resource schema objects.

« client-side translation

This is where you translate a . j sp file on the client using oj spc and load the
generated components into the database.

In this case, static files do not have to be in the server at all. They only have to
be accessible by oj spc on the client during translation. (For application-relative
static i ncl ude directives, see the discussion of the oj spc - appRoot option
under "Option Descriptions for ojspc" on page 6-27.)

6-18 JavaServer Pages Developer’'s Guide and Reference

Overview of Features and Logistics in Deployment to Oracle8i

Server-Side Versus Client-Side Translation

Developers who are deploying their JSP pages to Oracle8i to run in the Oracle
Servlet Engine can translate either in the server or on the client.

Deployment with server-side translation requires two steps:

1. Runl oadj ava to load the JSP page source (. j sp or. sql j sp file) into
Oracle8i as a resource schema object. (You must also load any required Java
classes or other required JSP pages.)

2. Run the session shell publ i shj sp command. This will automatically
accomplish the following:

The JSP page source is translated into Java code for the page
implementation class (first producing a SQLJ source file and invoking the
SQLJ translator in the case of a SQLJ JSP page).

The Java code is compiled into one or more class files.

The page implementation class is optionally hotloaded (if you specified the
publ i shj sp -hotl oad option).

The page implementation class is published for execution in the database.

This step also produces source schema objects, class schema objects, and
resource schema objects for all generated . j ava files (and . sql j files for
. sql j sp pages), . cl ass files, and resource files, respectively.

See "Deployment to Oracle8i with Server-Side Translation" on page 6-41 for more
information.

Deployment with client-side translation requires three or, optionally, four steps:

1. Run the OraclelSP pre-translation tool, oj spc. This accomplishes the following:

The JSP page source is translated into Java code for the page
implementation class. (In the case of a SQLJ JSP page, oj spc first produces
a SQLJ source file then invokes the SQLJ translator to produce Java code.)

A Java resource file is optionally produced for static text, depending on the
0j spc -extres and - hot | oad options.

The Java code is compiled into its class files.

2. Run the Oracle8i | oadj ava utility to load the class files and any resource files
into Oracle8i as class schema objects and resource schema objects.

JSP Translation and Deployment 6-19

Overview of Features and Logistics in Deployment to Oracle8i

3. Optionally hotload the classes (if you enabled the oj spc - hot | oad option
during translation) by using the Oracle8i session shell j ava command to
execute the mai n() method of the page implementation class.

4. Run the session shell publ i shser vl et command to publish the page
implementation classes for execution in the database.

See "Deployment to Oracle8i with Client-Side Translation" on page 6-54 for more
information.

If you are using Oracle JDeveloper, you may find it more convenient to translate on
the client using the OracleJSP translator provided with JDeveloper and then deploy
the resulting classes and resources, as in steps 2, 3, and 4.

If you are not using JDeveloper, however, translating in the server is likely to be
more convenient, because the session shell publ i shj sp command combines
translation, optional hotloading, and publishing into a single step.

In addition, either of the following situations may dictate the need to translate in
the server:

« if required libraries are not available on the client

« if you want to compile against the exact set of classes that will be used at
runtime

Overview of Hotloaded Classes in Oracle8i

Oracle8i JServer offers a feature known as hotloading classes, for more efficient use of
static final variables (constants). This becomes relevant whenever the
hotloaded classes might be used by multiple concurrent users.

A separate JVM is invoked for each JServer database session. Normally each session
gets its own copy of all st ati ¢ fi nal variables in its session space or, in the case
of literal strings, in a hashtable known as the intern table in shared memory. Use of
literal strings in the intern table is synchronized across sessions.

The processing of literal strings is especially relevant to JSP pages. By default
(without hotloading), the static text in a JSP page is ultimately represented as literal
strings.

6-20 JavaServer Pages Developer's Guide and Reference

Overview of Features and Logistics in Deployment to Oracle8i

Note: This section refers to the OracleJSP pre-translation tool

(oj spc), the Oracle session shell tool (sess_sh), and the session
shell publ i shj sp command. For an overview of these tools, see
"Tools and Commands for Translation and Deployment to Oracle8i"
on page 6-23.

Enabling and Accomplishing Hotloading

The ability to hotload a JSP page is enabled during translation, through the oj spc

- hot | oad option (for client-side translation) or the publ i shj sp - hot | oad option
(for server-side translation).

Enabling the - hot | oad option directs the OracleJSP translator to do the following:

It generates code in the page implementation class to allow hotloading, by
creating a hotloading method and a mai n() method that invokes the
hotloading method.

It writes static text to a Java resource file. (Otherwise, static text is written to an
inner class of the page implementation class.)

The hotloading itself is accomplished as follows:

For deployment with client-side translation, you must hotload as an extra
deployment step. After translating with the oj spc - hot | oad option enabled
and loading the page into the database, and before publishing the page, you
must use the session shell j ava command to invoke the mai n() method of the
page implementation class. Details of the process are discussed in "Deployment
to Oracle8i with Client-Side Translation" on page 6-54.

For deployment with server-side translation, hotloading is accomplished
automatically as part of publ i shj sp functionality when you enable the
publ i shjsp -hotl oad option.

The act of hotloading a page implementation class, either directly through the
session shell j ava command or indirectly through the publ i shj sp command,
actually just makes the inner class static text shareable among multiple JVMs in the
database.

JSP Translation and Deployment 6-21

Overview of Features and Logistics in Deployment to Oracle8i

Features and Advantages of Hotloading
Hotloading classes results in the following logistical features and advantages:

= The translator generates code to read the Java resource containing the static text
in static initializers, to initialize the char arrays representing static text.

« During hotloading, each hotloaded inner class is initialized only once, and static
JSP text is converted into static Java char arrays only once.

These char arrays, instead of being stored in the synchronized intern table, are
stored elsewhere in a global area that is shared across all sessions without
synchronization (which is feasible because of the knowledge that none of the
variables will change).

Hotloading, by avoiding synchronization and other costly overhead, can
significantly improve the runtime performance and scalability of JSP pages
executed in the Oracle Servlet Engine. Furthermore, when a hotloaded class is
referenced, the class initializer is not rerun. The session has instant access to the
literal strings and other st ati ¢ fi nal variables.

In addition to allowing better performance of individual JSP pages, hotloading
reduces overall CPU usage of the server.

Note: JSP pages that will not be used by multiple users
concurrently, or small JSP pages with few literal strings, may have
little or no performance improvement from hotloading.

6-22 JavaServer Pages Developer's Guide and Reference

Tools and Commands for Translation and Deployment to Oracle8i

Tools and Commands for Translation and Deployment to Oracle8i

Oracle provides the following tools to use, as applicable, in translating JSP pages
and deploying them into Oracle8i. How they are implemented depends on your
operating system (such as shell scripts for Solaris or . bat files for Windows NT):

=« 0] spc (OraclelSP pre-translation tool)
« | oadj ava (tool for loading JSP pages or Java files into the database)
« sess_sh (Oracle8i session shell tool)

Deployment with client-side translation requires all three tools. Pre-translate JSP
pages on the client using oj spc, load the translated pages into Oracle8i using
| oadj ava, and publish them using the session shell publ i shser vl et command.

Deployment with server-side translation does not require oj spc. Load the
untranslated JSP pages into Oracle8i using | oadj ava, then translate and publish
them using the session shell publ i shj sp command.

The | oadj ava and sess_sh tools are general-purpose tools for the Oracle8i
JServer environment; oj spc is for JSP pages only.

Notes:

« Another tool, the JServer Accelerator, is relevant if you want to
natively compile your application to run in Oracle8i. This tool,
invoked as nconp, is documented in the Oracle8i Java Tools
Reference.

« Thetools discussed in this section are located in the
[ORACLE_HQOVE] / bi n directory.

The ojspc Pre-Translation Tool

The first step in deploying a JSP application to Oracle8i with client-side translation
is to run the OraclelJSP pre-translation tool, oj spc.

You will then use | oadj ava, introduced in the next section, to load the resulting
. ¢l ass files and resource files (if any) into the database as class schema objects and
resource schema objects, respectively.

The following topics are covered here:
« Overview of ojspc Functionality

« Option Summary Table for ojspc

JSP Translation and Deployment 6-23

Tools and Commands for Translation and Deployment to Oracle8i

« Command-Line Syntax for ojspc
« Option Descriptions for ojspc

« Summary of ojspc Output Files, Locations, and Related Options

Notes: There are other possible scenarios, such as in a middle-tier
environment, for using oj spc to pre-translate JSP page. See "Use of
ojspc for Pre-Translation for Non-OSE Environments" on page 6-68.

Overview of ojspc Functionality
For a simple JSP (not SQLJ JSP) page, default functionality for oj spc is as follows:

« Ittakesa.j sp file as an argument.

« Itinvokes the OraclelSP translator to translate the . j sp file into Java page
implementation class code, producing a . j ava file. The page implementation
class includes an inner class for static page content.

« Itinvokes the Java compiler to compile the . j ava file, producing two . cl ass
files (one for the page implementation class itself and one for the inner class).

And following is the default oj spc functionality for a SQLJ JSP page:
«» Ittakesa. sqlj sp file as an argumentinstead of a . j sp file.

« Itinvokes the OracleJSP translator to translate the . sql j sp fileintoa. sql j
file for the page implementation class (and inner class).

« Itinvokes the Oracle SQLJ translator to translate the . sql j file. This produces a
. j ava file for the page implementation class (and inner class) and a SQLJ
"profile" file that is, by default, a. ser Java resource file.

For information about SQLJ profiles, see the Oracle8i SQLJ Developer’s Guide and
Reference.

« Itinvokes the Java compiler to compile the . j ava file, producing two . cl ass
files (one for the page implementation class itself and one for the inner class).

Under some circumstances (see the - hot | oad and - ext r es option descriptions
below), oj spc options direct the OracleJSP translator to produce a . r es Java
resource file for static page content instead of putting this content into the inner
class of the page implementation class. However, the inner class is still created and
must still be deployed with the page implementation class.

6-24 JavaServer Pages Developer's Guide and Reference

Tools and Commands for Translation and Deployment to Oracle8i

For general information about OracleJSP translator output (particularly in the
on-demand translation scenario), see "Generated Files and Locations (On-Demand
Translation)" on page 6-6.

Note: The oj spc command-line tool is a front-end utility that
invokes the or acl e. j sp. t ool . Jspc class.

Option Summary Table for ojspc
Table 6-1 describes the options supported by the oj spc pre-translation utility.
These options are further discussed in "Option Descriptions for ojspc" on page 6-27.

The second column notes comparable or related OracleJSP configuration
parameters for on-demand translation environments (such as Apache/JServ).

Note: A boolean oj spc option is enabled by typing only the
option name, not by setting it to t r ue. Setting it to t r ue will cause
an error.

Table 6-1 Options for ojspc Pre-Translation Utility

Related OracleJSP
Configuration

Option Parameters Description Default
-addclasspath classpath (related, but additional classpath entries for ~ empty (no
with different j avac additional
functionality) path entries)
-appRoot n/a application root directory for current
application-relative static directory
i ncl ude directives from the
page
-debug emit_debuginfo boolean to direct oj spc to false

generate a line map to the
original . j sp file for debugging

-d page_repository_root location where oj spc should current
place generated binary files directory
(- cl ass and resource)

-extend n/a class for the generated page empty
implementation class to extend

JSP Translation and Deployment 6-25

Tools and Commands for Translation and Deployment to Oracle8i

Table 6-1 Options for ojspc Pre-Translation Utility (Cont.)

Related OracleJSP
Configuration
Option Parameters Description Default

-extres external_resource boolean to direct oj spc to false
generate an external resource file
for static text from the . j sp file

-hotload n/a boolean to direct oj spc to false

(for OSE only) implement code in the page
implementation class to allow
hotloading

-implement n/a interface for the generated page empty
implementation class to
implement

-noCompile javaccmd boolean to direct oj spc not to false

compile the generated page
implementation class

-packageName n/a package name for the generated empty
page implementation class (generate
package
names per
.j spfile
location)
-S-<sqlj option> sqglicmd - S prefix followed by an Oracle empty
SQLJ option (for . sql j sp files)
-srcdir page_repository_root location where oj spc should current
place generated source files directory
(javaand.sqlj)
-verbose n/a boolean to direct oj spc to print false
status information as it executes
-version n/a boolean to direct oj spc to false
display the OraclelJSP version
number

6-26 JavaServer Pages Developer's Guide and Reference

Tools and Commands for Translation and Deployment to Oracle8i

Command-Line Syntax for ojspc
Following is the general oj spc command-line syntax (assume %is a UNIX prompt):

%o0j spc [option settings] file_list

The file list can include . j sp filesor . sql j sp files.
Be aware of the following syntax notes:

« Ifmultiple . j sp files are translated, they all must use the same character set
(either by default or through page directive cont ent Type settings).

« Use spaces between file names in the file list.
« Use spaces as separators between option names and option values.

= Option names are not case sensitive, but option values usually are (such as
package names, directory paths, class names, and interface names).

« Enable boolean options, which are disabled by default, by typing only the
option name. For example, type - hot | oad, not - hot | oad true.)

Following is an example:

%oj spc -d /nyapp/ nybi ndi r -srcdir /nyapp/nysrcdir -hotl oad M/Page. sqljsp M/Page2. | sp

Option Descriptions for ojspc
This section describes the oj spc options in more detail.

-addclasspath (fully qualified path; oj spc default: empty)

Use this option to specify additional classpath entries for j avac to use when
compiling generated page implementation class source. Otherwise, j avac uses
only the system classpath.

(The - addcl asspat h setting is also used by the SQLJ translator for SQLJ JSP
pages.)

Notes: In an on-demand translation scenario, the OracleJSP

cl asspat h configuration parameter provides related, although
different, functionality. See "OracleJSP Configuration Parameters
(Non-OSE)" on page A-15.

JSP Translation and Deployment 6-27

Tools and Commands for Translation and Deployment to Oracle8i

-appRoot (fully qualified path; oj spc default: current directory)

Use this option to specify an application root directory. The default is the current
directory, from which oj spc was run.

The specified application root directory path is used as follows:

It is used for static i ncl ude directives in the page being translated. The
specified directory path is prepended to any application-relative
(context-relative) paths in the i ncl ude directives of the translated page.

It is used in determining the package of the page implementation class. The
package will be based on the location of the file being translated relative to the
application root directory. The package, in turn, determines the placement of
output files. (See "Summary of ojspc Output Files, Locations, and Related
Options" on page 6-34.)

This option is necessary, for example, so included files can still be found if you run
oj spc from some other directory.

Consider the following example:

You want to translate the following file:

/abc/ def/ ghi/test.jsp

You run oj spc from the current directory, / abc, as follows (assume %is a
UNIX prompt):

%cd / abc
%oj spc def/ghi/test.jsp

Thet est . j sp page has the following i ncl ude directive:
<Y@include file="/test2. jsp" %

Thet est 2. sp page is in the / abc directory, as follows:

/abc/test2.jsp

This requires no - appRoot setting, because the default application root setting is
the current directory, which is the / abc directory. The i ncl ude directive uses the
application-relative / t est 2. j sp syntax (note the opening "/"), so the included
page will be found as/ abc/ t est 2. j sp.

6-28 JavaServer Pages Developer's Guide and Reference

Tools and Commands for Translation and Deployment to Oracle8i

The package in this case is def . ghi , based simply on the location of t est . j sp
relative to the current directory, from which oj spc was run (the current directory is
the default application root). Output files are placed accordingly.

If, however, you run oj spc from some other directory, suppose / horme/ nydi r,
then you would need an - appRoot setting as in the following example:

%cd / horre/ nydi r
% o0j spc -appRoot /abc /abc/ def/ghi/test.jsp

The package is still def . ghi , based on the location of t est . j sp relative to the
specified application root directory.

Note: Itis typical for the specified application root directory to be
some level of parent directory of the directory where the translated
JSP page is located.

-d (fully qualified path; oj spc default: current directory)

Use this option to specify a base directory for oj spc placement of generated binary
files—. cl ass files and Java resource files. (The . r es files produced for static
content by the - ext r es and - hot | oad options are Java resource files, as are . ser
profile files produced by the SQLJ translator for SQLJ JSP pages.)

The specified path is taken simply as a file system path (not an application-relative
or page-relative path).

In environments such as Windows NT that allow spaces in directory names, enclose
the directory name in quotes.

Subdirectories under the specified directory are created automatically, as
appropriate, depending on the package. See "Summary of ojspc Output Files,
Locations, and Related Options" on page 6-34 for more information.

The default is to use the current directory (your current directory when you
executed oj spc).

It is recommended that you use this option to place generated binary files into a
clean directory so that you easily know what files have been produced.

JSP Translation and Deployment 6-29

Tools and Commands for Translation and Deployment to Oracle8i

Notes: In an on-demand translation scenario, the OracleJSP
page_repository_root configuration parameter provides
related functionality. See "OracleJSP Configuration Parameters
(Non-OSE)" on page A-15.

-debug (boolean; oj spc default: f al se)

Enable this flag to instruct oj spc to generate a line map to the original . j sp file for
debugging. Otherwise, line-mapping will be to the generated page implementation
class.

This is useful for source-level JSP debugging, such as when using Oracle
JDeveloper.

Note: In an on-demand translation scenario, the OracleJSP

em t _debugi nf o configuration parameter provides the same
functionality. See "OracleJSP Configuration Parameters (Non-OSE)"
on page A-15.

-extend (fully qualified Java class name; oj spc default: empty)

Use this option to specify a Java class that the generated page implementation class
will extend.

-extres (boolean; oj spc default: f al se)

Enable this flag to instruct oj spc to place generated static content (the Java print
commands that output static HTML code) into a Java resource file instead of into an
inner class of the generated page implementation class.

The resource file name is based on the JSP page name. For release 8.1.7 it will be the
same name as the JSP name, but with the . r es suffix (translation of MyPage. j sp,
for example, would create MyPage. r es in addition to normal output). The exact
implementation may change in future releases, however.

The resource file is placed in the same directory as . cl ass files.

If there is a lot of static content in a page, this technique will speed translation and
may speed execution of the page. For more information, see "Workarounds for
Large Static Content in JSP Pages" on page 4-13.

6-30 JavaServer Pages Developer's Guide and Reference

Tools and Commands for Translation and Deployment to Oracle8i

Notes:
« Theinner class is still created and must still be deployed.

« Inanon-demand translation scenario, the OracleJSP
ext er nal _r esour ce configuration parameter provides the
same functionality. See "OracleJSP Configuration Parameters
(Non-OSE)" on page A-15.

-hotload (boolean; oj spc default: f al se) (for OSE only)

Enable this flag to allow hotloading. This is relevant only if you will be loading the
translated pages into Oracle8i to run in the Oracle Servlet Engine.

The - hot | oad flag directs oj spc to do the following:

1. Perform - ext r es functionality, writing static output to a Java resource file (see
the - ext r es description above).

2. Create anmai n() method and a hotloading method in the generated page
implementation class to allow hotloading.

For an overview of hotloading, see "Overview of Hotloaded Classes in Oracle8i" on
page 6-20. For how to accomplish the hotloading step (once hotloading has been
enabled), see "Hotloading Page Implementation Classes in Oracle8i" on page 6-62.

Note: To write static content to a resource file without enabling
hotloading (if the page will not be running in OSE, for example),
use the - ext r es option.

-implement (fully qualified Java interface name; oj spc default: empty)

Use this option to specify a Java interface that the generated page implementation
class will implement.

-noCompile (boolean; oj spc default: f al se)

Enable this flag to direct oj spc not to compile the generated page implementation
class source. This allows you to compile it later with an alternative Java compiler.

JSP Translation and Deployment 6-31

Tools and Commands for Translation and Deployment to Oracle8i

Notes:

« Inanon-demand translation scenario, the OracleJSP j avaccnd
configuration parameter provides related functionality,
allowing you to specify an alternative Java compiler directly.
See "OracleJSP Configuration Parameters (Non-OSE)" on
page A-15.

« ForaSQLJIJSP page, enabling - noConpi | e does not prevent
SQLJ translation, just Java compilation.

-packageName (fully qualified package name; oj spc default: per . j sp file location)

Use this option to specify a package name for the generated page implementation
class, using Java "dot" syntax.

Without setting this option, the package name is determined according to the
location of the . j sp file relative to the current directory (from which you ran
0j spc).

Consider an example where you run oj spc from the / nyappr oot directory, while
the . j sp fileisin the / myappr oot/ src/ j spsr c directory (assume %is a UNIX
prompt):

%cd / nyappr oot
% o0j spc - packageNane nyroot . nypackage src/j spsrc/ Foo. j sp
This results in myr oot . nypackage being used as the package name.

If this example did not use the - packageNane option, OracleJSP release 8.1.7
(1.1.0.0.0) would use sr c. j spsr c as the package name, by default. (Be aware that
such implementation details are subject to change in future releases.)

-S-<sqlj option> <value> (- S followed by SQLJ option setting; oj spc default: empty)

For SQLJ JSP pages, use the oj spc - S option to pass Oracle SQLJ options to the
SQLJ translator.

Unlike when you run the SQLJ translator directly, use a space between a SQLJ
option and its value (this is for consistency with other oj spc options).

For example (from a UNIX prompt):
%o0j spc - S-defaul t - cust om zer nypkg. M/Qust -d / nyappr oot/ nybi ndir M/Page. j sp

6-32 JavaServer Pages Developer's Guide and Reference

Tools and Commands for Translation and Deployment to Oracle8i

This invokes the Oracle SQLJ - def aul t - cust om zer option to choose an
alternative profile customizer, as well as setting the oj spc - d option.

Note the following for particular Oracle SQLJ options:

« Do not use the SQLJ - encodi ng option; instead, use the cont ent Type
parameter in a page directive in the JSP page.

» Do not use the SQLJ - ¢l asspat h option if you use the oj spc
- addcl asspat h option.

« Do not use the SQLJ - conpi | e option if you use the oj spc - noConpi | e
option.

« Do not use the SQLJ - d option if you use the oj spc - d option.

« Do not use the SQLJ - di r option if you use the oj spc - srcdi r option.
For information about Oracle SQLJ translator options, see the Oracle8i SQLJ
Developer’s Guide and Reference.

-srcdir (fully qualified path; oj spc default: current directory)

Use this option to specify a base directory location for oj spc placement of
generated source files—. sql j files (for SQLJ JSP pages) and . j ava files.

The specified path is taken simply as a file system path (not an application-relative
or page-relative path).

In environments such as Windows NT that allow spaces in directory names, enclose
the directory name in quotes.

Subdirectories under the specified directory are created automatically, as
appropriate, depending on the package. See "Summary of ojspc Output Files,
Locations, and Related Options" on page 6-34 for more information.

The default is to use the current directory (your current directory when you
executed oj spc).

It is recommended that you use this option to place generated source files into a
clean directory so that you easily know what files have been produced.

JSP Translation and Deployment 6-33

Tools and Commands for Translation and Deployment to Oracle8i

Notes: In an on-demand translation scenario, the OracleJSP
page_repository_root configuration parameter provides
related functionality. See "OracleJSP Configuration Parameters
(Non-OSE)" on page A-15.

-verbose (boolean; oj spc default: f al se)
Enable this option to direct oj spc to report its translation steps as it executes.

The following example shows - ver bose output for the translation of
nmyerror.jsp (in this example, oj spc is run from the directory where
nyerror. jsp is located; assume %is a UNIX prompt):

% o0j spc - verbose nyerror.jsp
Transl ating file: nyerror.jsp
1 JSP files transl ated successfully.
Qonpi ling Java file: ./nyerror.java

-version (boolean; oj spc default: f al se)

Enable this option for oj spc to display the OraclelSP version number and then
exit.

Summary of ojspc Output Files, Locations, and Related Options

By default, oj spc generates the same set of files that are generated by the
OracleJSP translator in an on-demand translation scenario and places them in or
under the current directory (from which oj spc was executed).

Here are the files:

« a.sgqlj source file (SQLJJSP pages only)

« a.javasource file

« a.cl ass file for the page implementation class
« a.cl ass file for the inner class

« alJavaresource file or, optionally, a . cl ass file for the SQLJ profile (SQLJ JSP
pages only)

« optionally, a Java resource file for the static text of the page

6-34 JavaServer Pages Developer's Guide and Reference

Tools and Commands for Translation and Deployment to Oracle8i

For more information about files that are generated by the OraclelSP translator, see
"Generated Files and Locations (On-Demand Translation)" on page 6-6.

To summarize some of the commonly used options described in "Option
Descriptions for ojspc” on page 6-27, you can use the following oj spc options to
affect file generation and placement:

« -appRoot to specify an application root directory
« -srcdir to place source files in a specified alternative location

« -dtoplace binary files (. cl ass files and Java resource files) in a specified
alternative location

= -noConpi | e to not compile the generated page implementation class source
(as a result of this, no . cl ass files are produced)

« - extres to putstatic text into a Java resource file

« -hotl oad to put static text into a Java resource file and to enable hotloading
(relevant only for pages targeting the Oracle Servlet Engine)

« -S-ser2class (SQLJ-ser2cl ass option, for SQLJ JSP pages only) to
generate the SQLJ profile ina . cl ass file instead of a. ser Java resource file

For output file placement, the directory structure underneath the current directory
(or directories specified by the - d and - sr cdi r options, as applicable) is based on
the package. The package is determined by the location of the file being translated
relative to the application root, which is either the current directory or the directory
specified in the - appRoot option.

For example, presume you run oj spc as follows (presume %is a UNIX prompt):
%cd / abc

%oj spc def/ghi/test.jsp

Then the package is def . ghi and output files will be placed in the directory

[abc/ def/ ghi .

If you specify alternate output locations through the - d and - sr cdi r options, a
def / ghi subdirectory structure is created under the specified directories.

Now presume 0j spc is run from some other directory, as follows:

%cd / horre/ nydi r
% o0j spc - appRoot /abc /abc/ def/ghi/test.jsp

The package is still def . ghi , according to the location of t est . j sp relative to the
specified application root. Output files will be placed in / hone/ nydi r / def / ghi

JSP Translation and Deployment 6-35

Tools and Commands for Translation and Deployment to Oracle8i

orin adef / ghi subdirectory under locations specified through the - d and
-srcdi r options.

Notes: Itis advisable that you run oj spc once for each directory
of your JSP application, so files in different directories can be given
different package names, as appropriate.

Overview of the loadjava Tool

The | oadj ava command-line tool is supplied with Oracle8i to create schema
objects from Java files and load them into a specified database schema.

For information beyond what is provided here, and for information about the
associated dr opj ava tool (for removing Java source, class, and resource schema
objects from the database), see the Oracle8i Java Tools Reference.

Generally speaking (not for JSP applications in particular), a Java developer can
compile Java source on the client and then load the resulting class files, or can load
Java source and have it compiled in Oracle8i automatically by the server-side
compiler. In the first case, only class schema objects are created. In the second case,
both source schema objects and class schema objects are created. In either case, the
developer can also load Java resource files, creating resource schema objects.

The | oadj ava tool accepts source files, class files, resource files, JAR files, and ZIP
files on the command line. Source files and class files cannot be loaded
simultaneously, however. A JAR file, ZIP file, or | oadj ava command line can
contain source files or class files, but not both. (In either case, resource files can be
included.)

A JAR or ZIP file is opened and processed, with each file within the JAR or ZIP file
resulting in one or more schema objects.

For OracleJSP, use | oadj ava as follows:

« For client-side translation, you will have already translated your JSP pages
using oj spc, which, by default, also compiles the translated Java source. Then
use | oadj ava to load the resulting . cl ass files and any resource files (the
oj spc - hot | oad option, for example, produces a resource file), typically all
bundled into a JAR file.

Alternatively, you can load the translated . j ava file instead of the compiled
. ¢l ass files. You can have the server-side compiler compile the . j ava file as it
is being loaded.

6-36 JavaServer Pages Developer’'s Guide and Reference

Tools and Commands for Translation and Deployment to Oracle8i

« For server-side translation, use | oadj ava to load untranslated . j sp files,
typically bundled into a JAR file, as resource schema objects. (They will be
translated and published later, in the server, as a result of the session shell
publ i shj sp command.)

Following is the complete | oadj ava option syntax. Brackets, {. . . }, are not part
of the syntax. They are used to surround two possible option formats that are
followed by option input.

| oadj ava {-user | -u} user/ passvord @lat abase] [options]
filejava | file.class | filejar | file.zip| file.sqj | resourcefile
[- debug]
[-d | -definer]
[{-e | -encoding} encoding schene]
[-f | -force]

[{-9 | -grant} user [, user]...]
[-0| -oci8]

[-order]

[-noverify]

[-r | -resolve]

[{-R]| -resolver} "resol ver_spec"]
[{-S| -schema} schena]

[-stdout]
[-s | -synonyni
[-t | -thin]
[-v | -verbose]

Of particular significance are the - user and - r esol ve options (which can be
abbreviated to - u and - r, respectively). Use the - user option to specify the schema
name and password. Use the - r esol ve option to specify whether | oadj ava is to
compile (if applicable) and resolve external references in the classes you are loading,
after all classes on the command line have been loaded.

If you are loading a . j ava source file that you want compiled by the server-side
compiler during loading, you must enable the - r esol ve option.

Following is an example for a client-side translation scenario where the JSP page
has already been translated and compiled, producing file Hel | oWor | d. ¢l ass and
another . cl ass file for the page implementation inner class (with a name that
starts with "HelloWorld"). Assume %is a UNIX prompt:

%/ oadj ava -u scott/tiger -r HelloWrld*. cl ass

Or you can bundle the files into a JAR file:

%] oadj ava -v -u scott/tiger -r HelloWrld.jar

JSP Translation and Deployment 6-37

Tools and Commands for Translation and Deployment to Oracle8i

The |l oadj ava -v (- ver bose) option, which provides detailed status reporting as
loading progresses, is especially useful when you are loading a number of files or
compiling in the server.

The following example is also for a client-side translation scenario

(Hel I oWor | d. j ava is the JSP translator output), but where you have elected to
skip the compilation step on the client (using the oj spc - noConpi | e option) and
instead have the server-side compiler handle the compilation:

%] oadj ava -v -u scott/tiger -r HelloWrld. java

The following example is for a server-side translation scenario:

%] oadj ava -u scott/tiger -r Hellowrld.jsp

Overview of the sess_sh Session Shell Tool

The sess_sh (session shell) tool is provided with Oracle8i as an interactive
interface to the session namespace of a database instance. You specify database
connection arguments when you start sess_sh. It then presents you with its $
prompt to indicate that it is ready for commands.

The session shell tool has many top-level commands you can run from the $
prompt, each of which may have its own set of options. For OracleJSP developers,
the publ i shservl et and unpubl i shser vl et commands (for deployment with
client-side translation), publ i shj sp and unpubl i shj sp commands (for
deployment with server-side translation), and cr eat econt ext command (for
creating OSE servlet contexts) are of primary interest.

Following are the key sess_sh syntax elements for starting the tool:

sess_sh -user user -password password -service servicelRL

= - user specifies the user name of the schema.
« - passwor d specifies the password for the specified user name.

« -servi ce specifies the URL of the database whose session namespace is to be
"opened" by sess_sh. The ser vi ceURL parameter should have one of the
three following forms:

sess_iiop:// host:port:sid

j dbc: oracl e: t ype: spec
http:// host[: port]

6-38 JavaServer Pages Developer's Guide and Reference

Tools and Commands for Translation and Deployment to Oracle8i

Following are some general examples:

sess_iiop://|ocal host: 2481: orcl
j dbc: oracl e: t hi n: @yhost : 1521: or cl
http:/ /1 ocal host: 8000

Here is an example of asess_sh command line:

%sess_sh -user SOOIT -password Tl G2R -servi ce jdbc: oracl e: t hi n: @yhost : 5521: or cl

After starting sess_sh, you will see its command prompt:
$

In addition to publish object commands, such as publ i shser vl et and publ i shj sp,
the session shell tool offers shell commands that give the session namespace much of
the "look and feel" of a UNIX file system as seen from one of the UNIX shells (such
as the C shell). For example, the following sess_sh command displays the
published objects and publishing contexts in the / al pha/ bet a/ ganma publishing
context (publishing contexts are nodes in the session namespace, analogous to
directories in a file system):

$ |'s /al pha/ bet &/ gamma

As mentioned previously, key sess_sh commands for OracleJSP developers
include the following:

$ publishjsp ...

$ unpublishjsp ...

$ publ i shserviet ...
$ unpubl i shservlet ...
$ createcontext ...

For information about the publ i shser vl et and unpubl i shser vl et
commands, see "Publishing Translated JSP Pages in Oracle8i (Session Shell
publishservlet)" on page 6-63. For information about the publ i shj sp and
unpubl i shj sp commands, see "Translating and Publishing JSP Pages in Oracle8i
(Session Shell publishjsp)" on page 6-42.

Each session shell command has a - descr i be option to describe its operation, a
- hel p option to summarize its syntax, and a - ver si on option to show its version
number.

JSP Translation and Deployment 6-39

Tools and Commands for Translation and Deployment to Oracle8i

Note: This document provides only abbreviated discussion of
sess_sh syntax and options. It presents only the simplest
invocation and usage of the tool.

Beyond what is presented here, for example, commands can be
specified within quotes on the sess_sh command line instead of
at the $ prompt.

There are also top-level options to connect with plain I1OP instead
of the default session I1OP, to specify a role, to connect to the
database with SSL server authentication, and to use a service name
instead of an SID in the URL.

For complete information about the sess_sh tool, see the Oracle8i
Java Tools Reference.

6-40 JavaServer Pages Developer's Guide and Reference

Deployment to Oracle8i with Server-Side Translation

Deployment to Oracle8i with Server-Side Translation

This section describes the steps for deployment to Oracle8i with server-side
translation.

The steps are as follows:

1. Usel oadj ava to load untranslated JSP page or SQLJ JSP page source files into
Oracle8i.

2. Use the session shell publ i shj sp command to translate and publish the
pages.

The publ i shj sp step automatically handles translation, compilation, hotloading
(if applicable), and publishing.

Loading Untranslated JSP Pages into Oracle8i (loadjava)

As the first step for deployment with server-side translation, use the Oracle
| oadj ava tool to load untranslated . j sp or . sql j sp files into Oracle8i as Java
resource files.

If you are loading multiple files, it is recommended that you put the files into a JAR
file for loading.

The | oadj ava tool is provided with Oracle8i as a general-purpose tool for loading
Java files into the server. For an overview, see "Overview of the loadjava Tool" on
page 6-36. For further information, see the Oracle8i Java Tools Reference.

Following is an example of loading an untranslated page:

%] oadj ava -u scott/tiger Foo.jsp

This loads Foo. j sp into the SCOTT schema (password Tl GER) as a Java resource
object. There is no need to specify the | oadj ava -resol ve (- r) option.

This will result in the following resource schema object being created in the
database:

« SCOIT: Foo.jsp

Note that any path information you specify for the . j sp file, either in a JAR file or
on the | oadj ava command line, determines placement of the resource schema
object. Consider the following modification of the previous example:

%] oadj ava -u scott/tiger xxx/yyy/ Foo.jsp

JSP Translation and Deployment 6-41

Deployment to Oracle8i with Server-Side Translation

This will result in the following resource schema object being created in the
database:

« SCOTIT: xxx/yyy/ Foo. j sp

For an overview of how | oadj ava names the schema objects it produces, see
"Database Schema Obijects for Java" on page 6-12.

You can also load a . sql j sp file:

%] oadj ava -u scott/tiger Foo.sdljsp

This loads Foo. sql j sp into the SCOTT schema and will result in the following
resource schema object being created in the database:

« SCOIT: Foo. sqlj sp

If you want to load multiple . j sp (or . sql j sp) files, you can use a wildcard
character (depending on your operating environment; assume %is a UNIX prompt):

%] oadj ava -u scott/tiger *.jsp

Or presume you had put the . j sp files into a JAR file:

%] oadj ava -u scott/tiger nyjspapp.jar

Translating and Publishing JSP Pages in Oracle8i (Session Shell publishjsp)

Translation, compilation, hotloading (if enabled), and publishing all occur
automatically in the scenario of deployment with server-side translation, as the
result of executing the JServer session shell publ i shj sp command. See "Overview
of the sess_sh Session Shell Tool" on page 6-38 for how to start the session shell and
connect to the database.

Run publ i shj sp after you have loaded a . j sp (or . sql j sp) file into Oracle8i as a
resource schema object. (This section includes separate discussion for running

publ i shjspona.sqljsp file because there are some logistical differences in the
results.)

6-42 JavaServer Pages Developer's Guide and Reference

Deployment to Oracle8i with Server-Side Translation

Note: JSP pages that are published with publ i shj sp can be
"unpublished" (removed from the JServer JNDI namespace) with
the session shell unpubl i shj sp command. See "Unpublishing JSP
Pages with unpublishjsp" on page 6-53.

Overview of publishjsp Syntax and Options

Starting sess_sh establishes a connection to the database. Once you start
sess_sh, you can run the publ i shj sp command from the session shell $ prompt.

The publ i shj sp command uses the following general syntax:

$ publ i shjsp [options] pathl nane.jsp

The options can be any of the following:

[-schema schenanane] [-virtual path path) [-servletNane nane] [-packageNane nane]
[-context context] [-hotload] [-statel ess] [-verbose] [-resol ver resol ver]
[-extend class] [-inplenent interface]

Important:

« Enable boolean options, such as - hot | oad, by typing only the
option name in the command line (not setting itto t r ue).

« For options where you specify a value, the value does not have
to be in quotes.

The file nane. j sp (or nane. sql j sp for a SQLJ ISP page) is the JSP page resource
schema object that you loaded with | oadj ava and is the only required parameter,
along with any relevant schema pat h information.

By default, if no - vi r t ual pat h option is specified, pat h/ nane. j sp becomes the
servlet path. For example, running publ i shj sp on di r 1/ f 00. j sp (the path
within the current schema or specified schema) results in di r 1/ f 00. j sp as the
servlet path.

By default, if no - cont ext option is specified, the OSE default servlet context is
used and "/" is the context path.

Together, the context path and servlet path (along with the host name and port)
determine the URL to invoke the page, as described in "URLSs for the Oracle Servlet
Engine" on page 6-15.

JSP Translation and Deployment 6-43

Deployment to Oracle8i with Server-Side Translation

The following informative options are also available:

« Use-showVer si on by itself to display the OracleJSP version number and exit.
« Use-usage by itself to display a publ i shj sp option list and exit.

Following are the option descriptions:

« -schema schemanane

Use this option to specify the schema where the JSP page resource schema
object is located, if it is not in the same schema you logged in to through
sess_sh.

This schema must be accessible from your sess_sh login schema. The
publ i shj sp command does not offer a way to specify passwords.

« -virtual pathpath

You can use this option to specify an alternative servlet path for the JSP page;
otherwise, the servlet path is simply the specified . j sp file name itself along
with any specified schema path.

For example:

-virtual path al tpath/ Foo. j sp

or perhaps simply:

-virtual path nypath.jsp

« -servl et Name nane

You can use this option to specify an alternative servlet name (in OSE
naned_ser vl et s) for the JSP page; however, the servlet name has no bearing
on how the page is invoked so is rarely needed.

By default, the servlet name is the base name of the . j sp file along with any
path you specified. For example, running publ i shj sp on

SCOTT: di r 1/ Foo. j sp resultsin di r 1. Foo as the servlet name in OracleJSP
release 8.1.7 (1.1.0.0.0) (Be aware that implementation details are subject to
change in future releases.)

« - packageNane nane

You can use this option to specify a package name for the generated page
implementation class; otherwise, it is determined by any path specification for
the . j sp file when you run publ i shj sp. For example, running publ i shj sp

6-44 JavaServer Pages Developer's Guide and Reference

Deployment to Oracle8i with Server-Side Translation

on SCOTT: di r 1/ Foo. j sp results in package di r 1 for the page
implementation class.

The - packageNane option affects where schema objects are placed in the
schema, but does not affect the servlet path of the JSP page.

-cont ext cont ext

You can use this option to specify a servlet context in the Oracle Servlet Engine.
The context path of this servlet context becomes part of the URL used to invoke
the page.

If you do not use this option, the JSP page will be in the OSE default context,
/ webdomai ns/ cont ext s/ def aul t, whose context path is simply "/".

Any specified context should be under / webdomai ns/ cont ext s, such as:

/ webdonai ns/ cont ext s/ nycont ext

Important: Remember that it is the context path of the servlet
context, not the context name itself, that is used in URLSs to access
the page.

When a servlet context is created in OSE with the session shell

cr eat econt ext command, both the context path (through the
createcontext -virtual path option) and the context name
must be specified. It is convenient, and probably typical, to specify
the context name and context path to be the same, but it is not
required.

- hot | oad

Enable this flag to enable and perform hotloading. This results in the following
steps being performed by the publ i shj sp command:

1. Static output is written to a resource schema object instead of to the page
implementation class schema object.

2. A i n() method and a hotloading method are implemented in the
generated page implementation class to allow hotloading.

3. The mai n() method is executed to perform hotloading.

JSP Translation and Deployment 6-45

Deployment to Oracle8i with Server-Side Translation

To use - hot | oad, you must have permission for the JServer hotloader. This can
be granted as follows (from SQL*Plus, for the SCOTT schema, for example):

dbms_java.grant_permission(SCOTT, 'SYS:oracle.aurora.security.JServerPermission’, 'Hotloader’, null;
For an overview of hotloading, see "Overview of Hotloaded Classes in Oracle8i"
on page 6-20.
« -sStateless

This is a boolean option that tells the Oracle Servlet Engine that the JSP page is
to be stateless—the JSP page should not have access to the Ht t pSessi on object
during execution.

This flag is used for mod_ose optimization. For information about the Apache
nmod_ose module, see the Oracle8i Oracle Servlet Engine User’s Guide.

= -verbose

Set this option tot r ue to direct publ i shj sp to report the translation steps as
it executes.

= -resolver

Use this option to specify an alternative Java class resolver. The resolver is used
in compiling and resolving Java source through | oadj ava, including locating
classes used in JSP pages.

The default resolveris ((* user) (* PUBLI C)).For the SCOTT schema, for
example, this is the following:

((* saom) (* PBLIG)

For the - r esol ver option, you must specify the value in quotes as in the
following example:

$ publishjsp ... -resolver "((* BILL) (* SCOIT) (* PBLIO)" ...

. -extend

Use this option to specify a Java class that the generated page implementation
class will extend.

« -inplenent

Use this option to specify a Java interface that the generated page
implementation class will implement.

6-46 JavaServer Pages Developer's Guide and Reference

Deployment to Oracle8i with Server-Side Translation

Examples: Publishing JSP Pages with publishjsp

This section provides examples of using publ i shj sp to translate and publish
.] sp pages in Oracle8i. The pages will have already been loaded as resource
schema objects in a particular schema, such as SCOTT: Foo. j sp.

(For information about running publ i shj spon. sqlj sp pages, see "Publishing
SQLJ JSP Pages with publishjsp" on page 6-51.)

To review how the servlet path and context path combine in forming the URL to
invoke the page, see "URLS for the Oracle Servlet Engine" on page 6-15.

Notes:

« The following examples use the SCOTT schema. SCOTT must
either be the schema specified when starting sess_sh, or
accessible from the schema specified.

« Each example lists the schema objects that are created, although
this is secondary. All that matters in invoking the JSP page is
the servlet path and context path. The page implementation
class schema object is automatically mapped during the
publ i shj sp publishing step.

« Application-relative and page-relative syntax for dynamic
j sp:includeandj sp: f orwar d statements inside Oracle8i is
the same as for any JSP environment. The relative paths are
according to how the JSP pages were published (as shown in
the examples below).

= The exact names of generated schema objects may change in
future releases, but will still have the same general form. The
names would always include the base name (such as "Foo" in
these examples), but may include slight variations, such as
__Foo instead of Foo.

« $isthesess_sh prompt.

Example 1
$ publ i shjsp -schema SQOIT dir1/ Foo.j sp

This uses the default servlet context, which has a context path of "/".

The default servlet path is di r 1/ Foo. j sp.

JSP Translation and Deployment 6-47

Deployment to Oracle8i with Server-Side Translation

After this command, Foo. j sp can be invoked as follows:
http:// host[: port]/dirl/ Foo.jsp
Access it dynamically from another JSP page in the application, suppose a page

published as di r 1/ Bar . j sp, as follows (using page-relative syntax and then
application-relative syntax):

<j sp:incl ude page="Foo.jsp" flush="true" />

or:

<j sp:incl ude page="/dir1/ Foo.jsp" flush="true" />

By default, di r 1 is the Java package for the page implementation class and inner

class (because of the specified path in the SCOTT schema).

The following schema objects are created:

« SCOTT: di r 1/ Foo source schema object

« SCOTT: di r 1/ Foo class schema object

« aclass schema object under di r 1 for the inner class for static text (with "Foo" in
the name, such as SCOTT: di r 1/ Foo$__j sp__Stati cText)

Example 2

$ publ i shj sp -schema SCOIT - context /webdonai ns/ cont ext s/ nycont ext Foo. | sp

Presume mycont ext had been created as follows:

$ createcontext -virtual path nycontext /webdonai ns nycont ext

The publ i shj sp command publishes the page to the nycont ext servlet context,
which was created with mycont ext also specified as the context path.

The default servlet path is simply Foo. j sp.

After this command, Foo. j sp can be invoked as follows:

http:// host[: port]/nycont ext/Foo. | sp

Access it dynamically from another JSP page in the application, suppose a page

published as Bar . j sp, as follows (using page-relative syntax and then
application-relative syntax):

<j sp:incl ude page="Foo.jsp" flush="true" />

6-48 JavaServer Pages Developer’'s Guide and Reference

Deployment to Oracle8i with Server-Side Translation

or:
<j sp:incl ude page="/Foo.jsp" flush="true" />
Even though this example specifies a non-default servlet context, that is not relevant

for dynamicj sp: i ncl ude orj sp: f or war d commands. What is relevant is that
the published path of the page relative to that context is simply / Foo. j sp.

By default, there is no Java package for the page implementation class and inner
class (because no path is specified in the SCOTT schema).

The following schema objects are created:

« SCOTT: Foo source schema object

« SCOIT: Foo class schema object

« aclass schema object for the inner class for static text (with "Foo" in the name,
such as SCOTT: Foo$__jsp__StaticText)

Example 3

$ publ i shj sp -schema SCOIT - context /webdonai ns/ cont exts/ nycontext dirl/ Foo.jsp

Presume mycont ext had been created as follows:

$ createcontext -virtual path nywebapp /webdonai ns nycont ext

The publ i shj sp command publishes the page to the nycont ext servlet context,
which was created with mywebapp specified as the context path.

The default servlet path is di r 1/ Foo. j sp.

After this command, Foo. j sp can be invoked as follows:

http:// host[: port]/ nywebapp/ di r 1/ Foo. j sp

Access it dynamically from another JSP page in the application, suppose a page

published as di r 1/ Bar . j sp, as follows (using page-relative syntax and then
application-relative syntax):

<j sp:incl ude page="Foo.jsp" flush="true" />

or:

<j sp:include page="/dir1/ Foo.jsp" flush="true" />

JSP Translation and Deployment 6-49

Deployment to Oracle8i with Server-Side Translation

Example 1 and Example 3 use different servlet contexts, but in either case what is
relevant for the application-relative i ncl ude command is that the published path
of the page relative to that context is / di r 1/ Foo. j sp.

By default, di r 1 is the Java package for the page implementation class and inner
class.

The following schema objects are created:

« SCOTT: di r 1/ Foo source schema object

« SCOTT: di r 1/ Foo class schema object

« aclass schema object for the inner class for static text (with "Foo" in the name,
such as SCOTT: di r 1/ Foo$__j sp__Stati cText)

Example 4

$ publ i shj sp -schema SCOIT -hot | oad - packageNane nypkg di r1/ Foo. j sp

This performs hotloading, uses the default servlet context, and overrides the default

di r 1 package.

The context path is "/".

The - packageNane option does not affect the servlet path, which, by default,
remains di r 1/ Foo. j sp.

After this command, Foo. j sp can be invoked as follows:
http:// host[: port]/dirl/ Foo.jsp
Access it dynamically from another JSP page in the application, suppose a page

published as di r 1/ Bar . j sp, as follows (using page-relative syntax and then
application-relative syntax):

<j sp:incl ude page="Foo.jsp" flush="true" />

or:

<j sp:incl ude page="/dir1/ Foo.jsp" flush="true" />

The following schema objects are created:
« SCOTT: nypkg/ Foo source schema object
« SCOIT: nypkg/ Foo class schema object

6-50 JavaServer Pages Developer's Guide and Reference

Deployment to Oracle8i with Server-Side Translation

« aclass schema object under mypkg for the inner class (with "Foo" in the name,
such as SCOTT: nypkg/ Foo$__jsp__StaticText)

« SCOIT: nypkg/ Foo. r es resource schema object for the static text that is
normally in the inner class (the resource is hotloaded as part of publ i shj sp
functionality)

Publishing SQLJ JSP Pages with publishjsp

This section provides an example of using publ i shj sp to translate and publish a
. sqgl j sp page in Oracle8i. The page will have already been loaded as a resource
schema object in a particular schema, such as SCOTT: Foo. sql j sp.

In addition, see "Examples: Publishing JSP Pages with publishjsp" on page 6-47.

To review how the servlet path and context path combine in forming the URL to
invoke the page, see "URLS for the Oracle Servlet Engine" on page 6-15.

Be aware of the following for . sql j sp pages:

« Beyond what is created for a . j sp page, an additional schema objects is
created—a resource schema object for the SQLJ profile. This is always a . ser
resource schema object, as opposed to a class schema object, because there is no
SQLJ - ser 2cl ass option when translating in the server.

For information about SQLJ profiles, see the Oracle8i SQLJ Developer’s Guide and
Reference.

= The generated source schema object is SQLJ source instead of Java source.

= SQLJ has very limited option support in the server.

Server-Side SQLJ Options Client-side SQLJ options are not available for translation in
the server (this is true in general, not just for JSP pages). Instead, there is a small set
of options available through the standard Oracle8i JAVA$OPTI ONS table as set by

the dbnms_j ava. set _conpi |l er _opti on() stored procedure (using SQL*Plus,
for example). Of these options, only the following is supported for JSP pages:

= online

This is a boolean option that enables online semantics-checking through the default
oracl e. sqgl j.checker. Oracl eChecker front-end.

For more information about server-side SQLJ and semantics-checking, see the
Oracle8i SQLJ Developer’s Guide and Reference,

JSP Translation and Deployment 6-51

Deployment to Oracle8i with Server-Side Translation

Example of publishjsp for SQLJ JSP Page Following is an example of publ i shj sp
usage fora . sql j sp page ($ is the sess_sh prompt).

Notes:

« This example uses the SCOTT schema. SCOTT must either be
the schema specified when starting sess_sh, or accessible
from the schema specified.

« This example documents the schema objects that are created,
although this is secondary. All that matters in invoking the JSP
page is the servlet path and context path. The page
implementation class schema object is automatically mapped
during the publ i shj sp publishing step.

= The exact names of generated schema objects may change in
future releases, but will still have the same general form. The
names would always include the base name (such as "Foo" in
these examples), but may include slight variations, such as
_Foo instead of Foo.

$ publ i shj sp -schema SCOIT dirl/Foo. sqljsp

This uses the default OSE servlet context, the context path of which is "/".

The servlet path, by default, is di r 1/ Foo. sql j sp.

After this command, Foo. sql j sp can be invoked as follows:

http:// host[: port]/dirl/ Foo. sqljsp

Access it dynamically from another JSP page in the application, suppose a page

published as di r 1/ Bar . j sp, as follows (using page-relative syntax and then
application-relative syntax):

<j sp:incl ude page="Foo.sqljsp" flush="true" />

or:

<j sp:incl ude page="/dir1/ Foo. sql jsp" flush="true" />

By default, di r 1 is the Java package for the page implementation class and inner
class (because of the specified path in the SCOTT schema).

6-52 JavaServer Pages Developer's Guide and Reference

Deployment to Oracle8i with Server-Side Translation

The following schema objects are created:
« SCOTT: di r 1/ Foo source schema object
« SCOTT: di r 1/ Foo class schema object

« class schema object under di r 1 for the inner class for static text (with "Foo" in
the name, such as SCOTT: di r 1/ Foo$__j sp__Stati cText)

« resource schema object under di r 1 for the SQLJ profile (with "Foo" in the
name, such as SCOTT: di r 1/ Foo_SJProf i | e0. ser)

Unpublishing JSP Pages with unpublishjsp

The sess_sh tool also has an unpubl i shj sp command that removes a JSP page
from the JServer JNDI namespace. This does not, however, remove the page
implementation class schema object from the database.

Unlike the unpubl i shser vl et command, you do not need to specify a servlet
name (unless you specified one when you ran publ i shj sp). Generally, the only
required input is the servlet path (sometimes referred to as the "virtual path").

Following is the general syntax:
$ unpubl i shj sp [-servl et Nane nane] [-context context] [-showversion] [-usage] [-verbose] servletpath
The - servl et Nane, - cont ext , - showMer si on, - usage, and - ver bose options

are the same as for publ i shj sp, as described in "Overview of publishjsp Syntax
and Options" on page 6-43.

In using unpubl i shj sp, specify the values for - ser vl et Nanme and - cont ext
that you specified in using publ i shj sp.

As an example, here is the command to unpublish the page that was published in
Example 4 on page 6-50:

$ unpubl i shj sp dir1/ Foo.j sp

(Remember that the - packageNane option specified in Example 4 has no effect on
the servlet path.)

JSP Translation and Deployment 6-53

Deployment to Oracle8i with Client-Side Translation

Deployment to Oracle8i with Client-Side Translation

This section describes the steps for deployment to Oracle8i with client-side
translation.

The steps are as follows:

1.
2.

Use 0j spc to pre-translate JSP pages or SQLJ JSP pages on the client.

Use | oadj ava to load files into Oracle8i—. cl ass files (or, optionally, . j ava
or.sqglj filesinstead) and any Java resource files resulting from the page
translation.

(Optional) "Hotload" the pages into Oracle8i (if hotloading was enabled during
translation). See "Overview of Hotloaded Classes in Oracle8i" on page 6-20 for
background information about hotloading.

Use the session shell publ i shser vl et command to publish the pages.

Note: For simplicity and convenience, deployment with
server-side translation is generally recommended. See "Deployment
to Oracle8i with Server-Side Translation" on page 6-41.

Pre-Translating JSP Pages (ojspc)

To pre-translate JSP pages on a client (typically for pages that will run in the Oracle
Servlet Engine), use the oj spc command-line tool to invoke the OracleJSP
translator.

For general information about oj spc and description of its options, see "The ojspc
Pre-Translation Tool" on page 6-23.

The rest of this section covers the following topics:

Simplest ojspc Usage

ojspc for SQLJ JSP Pages

Enabling Hotloading with ojspc

Other Key ojspc Features and Options for Deployment to Oracle8i

ojspc Examples

6-54 JavaServer Pages Developer's Guide and Reference

Deployment to Oracle8i with Client-Side Translation

Note: The exact names of generated files may change in future
releases, but will still have the same general form. The names
would always include the base name (such as "Foo" in these
examples), but may include slight variations, such as _Foo. j ava
or Foo. cl ass.

Simplest ojspc Usage
The following example shows the simplest usage of oj spc:

% o0j spc Foo. j sp

With this invocation, the following files are produced:

« Foo.java

« Foo.class

« a. cl ass file for the inner class for static content (with "Foo" in the name)

By default, all output goes to the current directory, from which oj spc was run.

ojspc for SQLJ JSP Pages
The oj spc tool also accepts . sql j sp files for JSP pages that use SQLJ code:

% o0j spc Foo. sql j sp

For . sql j sp files, 0j spc automatically invokes the SQLJ translator as well as the
JSP translator.

With this invocation, the following files are produced:

« Foo.sqlj (produced from Foo. sql j sp by the JSP translator)

« Foo.java (produced from Foo. sql j by the SQLJ translator)

« Foo.class

« a. cl ass file for the inner class for static content (with "Foo" in the name)

« alavaresource file (. ser) or class file (. cl ass), depending on the setting of
the SQLJ - ser 2cl ass option, for the SQLJ "profile" (with "Foo" in the name)

For information about SQLJ profiles, see the Oracle8i SQLJ Developer’s Guide and
Reference.

By default, all output goes to the current directory, from which oj spc was run.

JSP Translation and Deployment 6-55

Deployment to Oracle8i with Client-Side Translation

Enabling Hotloading with ojspc

Use the oj spc - hot | oad option to enable hotloading, which (among other
things) results in static page content going into a Java resource file instead of into
the inner class of the page implementation class.

The following example translates the page and directs the OracleJSP translator to
enable hotloading:

% o0j spc - hot | oad Foo.j sp

With this command, the translator will generate the following output:
« Foo.java (as usual)

« Foo. cl ass (as usual)

« Foo. res, alava resource file to contain the static page content

« a. cl ass file for the inner class (as usual, with "Foo" in the name, although the
static content goes into Foo. r es instead of going into the inner class)

Be aware that the oj spc - hot | oad option merely enables hotloading; it does not
actually hotload the page. Hotloading requires an additional deployment step, as
described in "Hotloading Page Implementation Classes in Oracle8i" on page 6-62.

For an overview of hotloading, see "Overview of Hotloaded Classes in Oracle8i" on
page 6-20.

Other Key ojspc Features and Options for Deployment to Oracle8i

The following oj spc options, fully described in "Option Descriptions for ojspc" on
page 6-27, are especially useful:

« - appRoot —Set an application root directory if you do not want the default
(the current directory, from which oj spc was run).

« -noConpi | e—Enable this flag if you do not want to compile during
translation. You would do this, for example, if you want to load the translated
page into Oracle8i as a . j ava file and have compilation performed by the
server-side compiler.

« - d—Specify the directory where oj spc will place the generated binary files
(- cl ass files and Java resource files). This makes it easier to know what was
generated, and therefore what needs to be loaded into Oracle8i.

« -srcdi r—Specify the directory where oj spc will place the generated source
files. For example, this would be useful instead of - d if you are enabling
- noConpi | e and will load your translated page into Oracle8i as . j ava source.

6-56 JavaServer Pages Developer’'s Guide and Reference

Deployment to Oracle8i with Client-Side Translation

- ext r es—Direct the OracleJSP translator to put static content into a Java
resource file instead of into the inner class of the page implementation class.

- hot | oad—Direct the OraclelSP translator to put static content into a Java
resource file instead of into the inner class of the page implementation class,
and generate code in the page implementation class to enable hotloading.

- S—For SQLJ JSP pages, use the - S prefix to specify Oracle SQLJ options;
oj spc will pass these option settings to the Oracle SQLJ translator.

ojspc Examples
The following examples show the use of key o0j spc options.

% o0j spc - appRoot / nyroot/ pagesrc -d /nyroot/bin -hotl oad /nyroot/ pagesrc/ Foo.j sp

The preceding example accomplishes the following:

Specifies an application root for application-relative static i ncl ude directives
in the translated page.

Enables hotloading and produces the Java resource file Foo. r es for static
content.

Places Foo. j ava into the current directory, by default. There is no package,
because Foo. j sp is in the specified application root directory.

Places Foo. cl ass, Foo. r es, and the . cl ass file for the inner class into the
/ nyr oot / bi n directory.

% o0j spc -appRoot /nyroot/pagesrc -srcdir /nyroot/gensrc -noConpil e -extres /nyroot/ pagesr c/ Foo. j sp

The preceding example accomplishes the following:

Specifies an application root for application-relative static i ncl ude directives
in the translated page.

Produces the Java resource file Foo. r es for static content (without enabling
hotloading).

Places Foo. j ava into the / myr oot / gensr c directory. There is no package,
because Foo. j sp is in the specified application root directory.

Does not compile Foo. j ava (no. cl ass files are produced).

Places Foo. r es into the current directory, by default.

JSP Translation and Deployment 6-57

Deployment to Oracle8i with Client-Side Translation

% o0j spc -appRoot /nyroot/pagesrc -d /nyroot/bin -extres -S ser2class true /nyroot/pagesrc/Foo. sqljsp

The preceding example accomplishes the following:

Specifies an application root for application-relative static i ncl ude directives
in the translated page.

Produces the Java resource file Foo. r es for static content (without enabling
hotloading).

Places Foo. sql j and Foo. j ava into the current directory, by default. There is
no package, because Foo. j sp is in the specified application root directory.

Places Foo. cl ass, Foo. res, a. cl ass file for the inner class,and a . cl ass
file for the SQLJ profile into the / myr oot / bi n directory. (Without the SQLJ

- ser 2cl ass option setting, the profile would be generated ina . ser Java
resource file instead of a . cl ass file.)

Loading Translated JSP Pages into Oracle8i (loadjava)

After client-side pre-translation, use the Oracle | oadj ava tool to load generated
files into Oracle8i. You can use either of the following scenarios:

Load . cl ass files and Java resource files (if any).

Use the oj spc - noConpi | e option during translation, then load the
translated . j ava file and resource files (if any). The . j ava file can be compiled
by the Oracle8i server-side compiler during loading.

In either case, whenever you have multiple files it is recommended that you put the
files into a JAR file for loading.

The | oadj ava tool is provided with Oracle8i as a general-purpose tool for loading
Java files into the database. For an overview, see "Overview of the loadjava Tool" on
page 6-36. For further information, see the Oracle8i Java Tools Reference.

6-58 JavaServer Pages Developer’'s Guide and Reference

Deployment to Oracle8i with Client-Side Translation

Important: In the next two subsections ("Loading Class Files with
loadjava" and "Loading Source Files with loadjava"), be aware of
the following important considerations.

« Even when you enable the - ext r es or - hot | oad option to
place static text into a resource file, the page implementation
inner class is still produced and must still be loaded.

« Like aJava compiler, | oadj ava resolves references to classes,
but not to resources; be sure to correctly load the resource files
your classes heed—they must be in the same package as the
. javafile.

Loading Class Files with loadjava

Assume you translated a JSP page Foo. j sp with the oj spc -extres or
- hot | oad option enabled, producing the following files:

« Foo.java
« Foo.class
« Foo$_ jsp__StaticText.class

. Foo. res

Note: Generated names used here are provided as examples only.
Such implementation details are subject to change in future
releases, although the base name (such as "Foo" here) will always
be part of the generated names.

You can ignore Foo. j ava, but the binary files (. cl ass and . r es) must all be
loaded into Oracle8i. Typically, you would put Foo. cl ass,
Foo$__jsp__StaticText.class,andFoo. res into aJAR file, suppose
Foo. j ar, and load it as follows (assume %is a UNIX prompt):

%] oadj ava -v -u scott/tiger -r Foo.jar

The - u (- user) option specifies the user name and password for the database
schema; the - r (- r esol ve) option resolves the classes as they are loaded.
Optionally use the - v (- ver bose) option for detailed status output.

JSP Translation and Deployment 6-59

Deployment to Oracle8i with Client-Side Translation

Alternatively, you can load the files individually, as follows. (The syntax depends
on your operating environment. In these examples, assume %is a UNIX prompt.)

%/ oadj ava -v -u scott/tiger -r Foo*.class Foo.res

or:
%] oadj ava -v -u scott/tiger -r Foo*.*
All these examples result in the following schema objects being created in the

database (you typically need to know only the name of the page implementation
class schema object):

« SCOIT: Foo page implementation class schema object

Or there may be an additional package designation, according either to the

oj spc - packageNane option or the relative location of the . j sp file to the
current directory when you ran oj spc. For example, a - packageNane setting
of "abc. def " results in that being the package of the Foo class, so there would
be a SCOTT: abc/ def / Foo class schema object.

« SCOIT: Foo$__jsp__StaticText class schema object
With the same package designation as the page implementation class.
« SCOTT: Foo. r es resource schema object

With a package designation according to any path specification, either in a JAR
file or on the | oadj ava command line, when it was loaded.

For an overview of how | oadj ava names the schema objects it produces, see
"Database Schema Obijects for Java" on page 6-12.

Note: If you are loading a pre-translated SQLJ JSP page, you must
also load the generated profile file—either a . ser Java resource file
ora. cl ass file, depending on the SQLJ - ser 2cl ass option. If it
isa. ser file, schema object naming is comparable to that of a

. res Java resource file; if itisa . cl ass file, schema object naming
is comparable to that of the other . cl ass files.

6-60 JavaServer Pages Developer's Guide and Reference

Deployment to Oracle8i with Client-Side Translation

Loading Source Files with loadjava
Assume that you translated a JSP page, Foo. j sp, with the oj spc - noConpi | e
and - ext r es options enabled, producing the following files:

« Foo.j ava (which you want to load into Oracle8i as source to be compiled by
the server-side compiler)

. Foo. res

Typically, you would put Foo. j ava and Foo. r es into a JAR file, suppose
Foo. j ar,and load it as follows:

%] oadj ava -v -u scott/tiger -r Foo.jar

When you enable the | oadj ava -r (- r esol ve) option, this results in the source
file being compiled automatically by the server-side compiler, producing class
schema objects. The - u (- user) option specifies the user name and password for
the database schema. Optionally use the - v (- ver bose) option for detailed status
reporting.

Alternatively, you can load the files individually:

%] oadj ava -v -u scott/tiger -r Foo.java Foo.res

Or load them using a wildcard character:

%] oadj ava -v -u scott/tiger -r Foo.*

All these examples result in the following schema objects being created in the
database (you typically need to know only the name of the page implementation
class schema object):

« SCOTT: Foo source schema object

When you load a source file into Oracle8i with | oadj ava, the source is stored
separately as a source schema object, in addition to the class schema objects
produced by the server-side compiler.

« SCOIT: Foo page implementation class schema object

Or there may be an additional package designation for the Foo class and source
schema objects, according either to the oj spc - packageNane option or the
relative location of the . j sp file to the current directory when you ran oj spc.
For example, a - packageNarne setting of " abc. def " results in that being the
package of the Foo class, so you would have a SCOTT: abc/ def / Foo class
schema object.

JSP Translation and Deployment 6-61

Deployment to Oracle8i with Client-Side Translation

« SCOIT: Foo$__jsp__StaticText class schema object
With the same package designation as the page implementation class.
« SCOTT: Foo. r es resource schema object

With a package designation according to any path specification, either in a JAR
file or on the | oadj ava command line, when it was loaded.

For an overview of how | oadj ava names the schema objects it produces, see
"Database Schema Obijects for Java" on page 6-12.

Notes:

= Generated names used here are provided as examples only.
Such implementation details are subject to change in future
releases, although the base name (such as "Foo" here) will
always be part of generated names.

« Ifyou are loading translated source (. j ava) for a SQLJ JSP
page, you must also load the generated profile file—either a
. ser Java resource file ora . cl ass file, depending on the
SQLJ - ser 2cl ass option. Ifitisa . ser file, schema object
naming is comparable to that of a . r es Java resource file; if it is
a. cl ass file, schema object naming is comparable to that of
other . cl ass files. (Remember that the oj spc - noConpi | e
option prevents Java compilation, but not SQLJ translation.)

Hotloading Page Implementation Classes in Oracle8i

To optionally "hotload" translated JSP pages in Oracle8i, use the session shell j ava
command to invoke the mai n() method of the page implementation class schema
object. See "Overview of the sess_sh Session Shell Tool" on page 6-38 for how to
start the tool and connect to the database.

You are required to have previously enabled hotloading through the oj spc

- hot | oad option during translation. The - hot | oad option results in a mai n()
method and hotloading method being implemented in the page implementation
class. Invoking the mai n() method calls the hotloading method and hotloads the
page implementation class.

Here is an example ($ is the sess_sh prompt):
$ java SOOIT: Foo

6-62 JavaServer Pages Developer's Guide and Reference

Deployment to Oracle8i with Client-Side Translation

Assuming Foo is a class that was translated with the - hot | oad option enabled and
was then loaded with | oadj ava into the SCOTT schema as in earlier examples, this
session shell j ava command will hotload the Foo page implementation class.

For an overview of hotloading, see "Overview of Hotloaded Classes in Oracle8i" on
page 6-20. For more information about the session shell j ava command, see the
Oracle8i Java Tools Reference.

Publishing Translated JSP Pages in Oracle8i (Session Shell publishservlet)

To publish translated pages as part of the "deployment with client-side translation"
scenario, use the session shell publ i shser vl et command. See "Overview of the
sess_sh Session Shell Tool" on page 6-38 for how to start the tool and connect to the
database.

The publ i shser vl et command is for general use in publishing any servlet to run
in OSE, but also applies to JSP page implementation classes (which are essentially
servlets).

Note: Servlets and JSP pages that are published with

publ i shser vl et can be "unpublished" (removed from the
JServer JINDI namespace) with the session shell

unpubl i shser vl et command. See "Unpublishing JSP Pages with
unpublishservlet" on page 6-66.

Overview of publishservlet Syntax and Options

Starting sess_sh establishes a connection to the Oracle8i database. Once you start
sess_sh, you can run the publ i shser vl et command from the session shell $
prompt.

The publ i shser vl et command uses the following general syntax:

$ publishservl et context servletNane className -virtual path path [-statel ess] [-reuse] [-properties props]

When using publ i shser vl et , you must specify the following:
1. aservlet context (cont ext in the command line above)

This is required by publ i shser vl et . You can use the Oracle Servlet Engine’s
default servlet context:

/ webdonai ns/ cont ext s/ def aul t

This results in a context path of "/*".

JSP Translation and Deployment 6-63

Deployment to Oracle8i with Client-Side Translation

If you specify some other servlet context, then the context path of that servlet
context will be used.

For example, if you specify a servlet context, nycont ext , that was created as
follows:

$ createcontext -virtual path nywebapp /webdonai ns nycont ext

then nywebapp will be the context path for the published JSP page.
2. aservlet name (ser vl et Nane in the command line above)

This is required by publ i shser vl et to specify the name for the JSP page in
the named_ser vl et s directory, but has no practical use for the JSP developer
or user other than for unpublishing. It can be an arbitrary string.

3. aclass name (¢! assNanme in the command line above)

This is the name of the page implementation class schema object being
published.

4. aservlet path (referred to on the command line as the "virtual path")

Use the - vi r t ual pat h option. This is required for a JSP page, although it is
optional for publishing servlets in general.

Together, the context path and servlet path (along with the host name and port)
determine the URL to invoke the page, as described in "URLSs for the Oracle Servlet
Engine" on page 6-15.

Important:

= The servlet context, servlet name, and class name are not
preceded by any designating syntax so must appear on the
command line in the above order relative to each other. (Any
publ i shservl et options can be intermixed with these
parameters, however.)

« Enable boolean options, such as - st at el ess, by typing only
the option name in the command line (as opposed to setting it
totrue).

6-64 JavaServer Pages Developer's Guide and Reference

Deployment to Oracle8i with Client-Side Translation

$ publ i shser vl et

In addition to the required parameters, you can specify any of the following
options:

= -statel ess

This is a boolean option that tells the Oracle Servlet Engine that the JSP page is
to be stateless—it will not have access to the Ht t pSessi on object during
execution.

. -reuse

This is a boolean option to specify a new servlet path (referred to as the "virtual
path") for a JSP page. If you enable it, then the specified servlet path will be
linked to the specified servlet name in the JINDI namespace without

publ i shser vl et going through the complete publishing process.

When you enable the - r euse option, specify a new servlet path, the servlet
context, and a previously published servlet name.

« -properties props

Use this option to specify properties to be passed to the JSP page as
initialization parameters upon execution.

For more information about the publ i shser vl et command, see the Oracle8i Java
Tools Reference.

Example: Publishing JSP Pages with publishservlet

The following example publishes a JSP page that has been loaded into Oracle8i ($ is
the sess_sh prompt):

/ webdonai ns/ cont ext s/ defaul t -virtual path Foo.jsp FooServl et SOOTT: Foo
For simplicity, the OSE default servlet context is specified, resulting in "/" as the
context path.

Foo. j sp will be the servlet path. (You can specify any name you want for the
servlet path, but naming it according to the original source file name is a good
convention.)

FooSer vl et will be the servlet name in the OSE named_ser vl et s directory, but
this name generally will not be used, except for unpublishing.

SCOTT: Foo is the page implementation class schema object being published.

JSP Translation and Deployment 6-65

Deployment to Oracle8i with Client-Side Translation

After the above publ i shser vl et command, the end-user would invoke the JSP
page with a URL as follows:

http:// host[: port]/Foo.jsp
Access it dynamically from another JSP page in the application, suppose a page

published as Bar . j sp, as follows (using page-relative syntax and then
application-relative syntax):

<j sp:incl ude page="Foo.jsp" flush="true" />

or:

<j sp:incl ude page="/Foo.jsp" flush="true" />

Note: Both the servlet path and the servlet name specified in the
publ i shser vl et command are entered into the JServer JNDI
namespace, although only the servlet path is generally of interest to
JSP users. OSE uses JNDI to look up any published JSP page or
servlet.

Unpublishing JSP Pages with unpublishservlet

The sess_sh tool also has an unpubl i shser vl et command that removes a
servlet or JSP page from the JServer JNDI namespace. This does not, however,
remove the servlet class schema object or page implementation class schema object
from the database.

Specify the context, servlet path (referred to on the command line as the "virtual
path"), and servlet name. Following is the general syntax to unpublish a JSP page:

$ unpubl i shservl et -virtual path path context servl et Nane

For example, to unpublish the page that was published in the previous section:

$ unpubl i shservl et -virtual path Foo.jsp /webdonai ns/ cont ext s/ default FooSer vl et

6-66 JavaServer Pages Developer’'s Guide and Reference

Additional JSP Deployment Considerations

Additional JSP Deployment Considerations

Most of this chapter focuses on translation and deployment when targeting the
Oracle Servlet Engine, because running in the database is a special situation
requiring special considerations and logistics.

This section covers a variety of additional deployment considerations and scenarios,
mostly for situations where you are not targeting the Oracle Servlet Engine.

The following topics are covered:

« Doc Root for Oracle Internet Application Server Versus Oracle Servlet Engine
« Use of ojspc for Pre-Translation for Non-OSE Environments

« General JSP Pre-Translation Without Execution

« Deployment of Binary Files Only

« WAR Deployment

« Deployment of JSP Pages with JDeveloper

Doc Root for Oracle Internet Application Server Versus Oracle Servlet Engine

Both the Oracle Servlet Engine and the Oracle Internet Application Server use the
Oracle HTTP Server, essentially an Apache environment, as the Web server for
HTTP requests. However, each environment uses its own doc root.

JSP pages and servlets running in the Oracle Servlet Engine, which are routed
through the Apache nod_ose module provided by Oracle, use the OSE doc root of
the relevant servlet context. OSE doc root directories are in the file system, but are
linked to the Oracle8i JINDI mechanism.

Remember that for JSP pages running in OSE, only static files are located in or
under the doc root. JSP pages are in the database.

The OSE doc root directory is either the default doc

root—$ORACLE_HOME/ j i s/ publ i c_ht m —or a doc root specified using the
session shell cr eat econt ext command - docr oot option when the servlet
context was created.

JSP pages and servlets running in the Apache/JServ environment of the Oracle
Internet Application Server (release 1.0.x), which are routed through the Apache
nmod_j ser v module provided with JServ, use the Apache doc root. This doc root
(typically ht docs) is set in the Docunent Root command of the Apache

ht t pd. conf configuration file.

JSP Translation and Deployment 6-67

Additional JSP Deployment Considerations

For JSP pages running in JServ, JSP pages as well as static files are located in or
under the doc root.

If you are migrating between the Apache/JServ environment and the OSE
environment, move or copy static files to the appropriate doc root.

Note: For an overview of the role of the Oracle HTTP Server and
its nod_ose and nod_j ser v modules, see "Role of the Oracle
HTTP Server, Powered by Apache" on page 2-6.

Use of ojspc for Pre-Translation for Non-OSE Environments

The Oracle oj spc tool, described in detail in "The ojspc Pre-Translation Tool" on
page 6-23, is typically used for client-side JSP translation for deployment to
Oracle8i. However, you can use 0j spc to pre-translate JSP pages in any
environment, which may be useful in saving end-users the translation overhead the
first time a page is executed.

If you are pre-translating in some other target environment, specify the oj spc -d
option to set an appropriate base directory for placement of generated binary files.

As an example, consider an Apache/JServ environment with the following JSP
source file:

ht docs/test/foo.jsp

A user would invoke this with the following URL:

http:// host[: port]/test/foo.]jsp

During on-demand translation at execution time, the OracleJSP translator would
use a base directory of ht docs/ _pages for placement of generated binary files.
Therefore, if you pre-translate, you should set ht docs/ _pages as the base
directory for binary output, such as in the following example (assume %is a UNIX
prompt):

%cd htdocs
%oj spc -d _pages test/foo.]jsp

The URL noted above specifies an application-relative path of t est/ f 00. j sp, so
at execution time the OracleJSP container looks for the binary filesin at est
subdirectory under the ht docs/ _pages directory. This subdirectory would be
created automatically by oj spc if itis run as in the above example. At execution
time, the OracleJSP container would find the pre-translated binaries and would not

6-68 JavaServer Pages Developer’'s Guide and Reference

Additional JSP Deployment Considerations

have to perform translation, assuming that the source file was not altered after
pre-translation. (By default, the page would be re-translated if the source file
timestamp is later than the binary timestamp, assuming the source file is available
and the bypass_sour ce configuration parameter is not enabled.)

General JSP Pre-Translation Without Execution
In an on-demand translation environment, it is possible to specify JSP

pre-translation only, without execution, by enabling the j sp_pr econpi | e request
parameter when invoking the JSP page from the end-user’s browser.

Following is an example:

http:// host[: port]/foo.]jsp? sp_preconpil e

Refer to the Sun Microsystems JavaServer Pages Specification, Version 1.1, for more
information.

Deployment of Binary Files Only

If your JSP source is proprietary, you can avoid exposing the source by
pre-translating JSP pages and deploying only the translated and compiled binary
files. Pages that are pre-translated, either from previous execution in an on-demand
translation scenario or by using oj spc, can be deployed to any environment that
supports the OracleJSP container. There are two aspects to this scenario:

= You must deploy the binary files appropriately.

« Inthe target environment, OracleJSP must be configured properly to run pages
when the . j sp (or . sqgl j sp) source is not available.

Deploying the Binary Files

After JSP pages have been translated, archive the directory structure and contents
that are under the binary output directory, then copy the directory structure and
contents to the target environment, as appropriate. For example:

« If you pre-translate with oj spc, you should specify a binary output directory
with the o] spc - d option, then archive the directory structure under that
specified directory.

« If you are archiving binary files produced during previous execution in an
Apache/JServ (on-demand translation) environment, archive the output
directory structure, typically under the ht docs/ _pages directory.

JSP Translation and Deployment 6-69

Additional JSP Deployment Considerations

In the target environment, restore the archived directory structure under the
appropriate directory, such as under the ht docs/ _pages directory in an
Apache/JServ environment.

Configuring OracleJSP for Execution with Binary Files Only

Set OracleJSP configuration parameters as follows to execute JSP pages when the
.jspor.sqgljsp source is unavailable:

« bypass_source=true
« devel oper_node=fal se

Without these settings, OracleJSP will always look for the . j sp or. sql j sp file to
see if it has been modified more recently than the page implementation . cl ass file,
and abort with a "file not found" error if it cannot find the . j sp or . sql j sp file.

With these parameters set appropriately, the end-user can invoke a page with the
same URL that would be used if the source file were in place. For an example,
consider an Apache/JServ environment—if the binary files for f 0o. j sp are in the
ht docs/ _pages/t est directory, then the page can be invoked with the following
URL without f 0o. j sp being present:

http://host:[port]/test/foo.jsp

For how to set configuration parameters, see "OracleJSP Configuration Parameter
Settings" on page A-25.

WAR Deployment

The Sun Microsystems JavaServer Pages Specification, Version 1.1 supports the
packaging and deployment of Web applications, including JavaServer Pages,
according to the Sun Microsystems Java Servlet Specification, Version 2.2.

In typical JSP 1.1 implementations, JSP pages are deployed through the WAR (Web
archive) mechanism. WAR files are created using the JAR utility. The JSP pages can
be delivered in source form and are deployed along with any required support
classes and static HTML files.

According to the servlet 2.2 specification, a Web application includes a deployment
descriptor file, web. xm , that contains information about the JSP pages and other
components of the application. The web. xm file must be included in the WAR file.

The servlet 2.2 specification also defines an XML DTD for web. xm deployment
descriptors and specifies exactly how a servlet container must deploy a Web
application to conform to the deployment descriptor.

6-70 JavaServer Pages Developer's Guide and Reference

Additional JSP Deployment Considerations

Through these logistics, a WAR file is the best way to ensure that a Web application
is deployed into any standard servlet environment exactly as the developer
intended.

Deployment configurations in the web. xm deployment descriptor include
mappings between servlet paths and the JSP pages and servlets that will be
invoked. Many additional features can be specified in web. xm as well, such as
timeout values for application modules, mappings of file name extensions to MIME
types, and mappings of error codes to JSP error pages.

To summarize, the WAR file includes the following:
« Wweb. xm deployment descriptor

« JSP pages

« required JavaBeans and other support classes

« required static HTML files

For more information, see the Sun Microsystems Java Servlet Specification, Version 2.2.

Note: The OracleJSP WAR file implementation and further
documentation will be available through the Oracle Technology
Network shortly after the Oracle8i 8.1.7 release.

In release 8.1.7, OracleJSP uses web. xm in only a limited way, for
JSP tag library descriptors and servlet URL shortcuts.

Deployment of JSP Pages with JDeveloper

Oracle JDeveloper release 3.1 includes a deployment option, "Web Application to
Web Server", that was added specifically for JSP applications.

This option generates a deployment profile that specifies the following:

« alJAR file containing Business Components for Java (BC4J) classes required by
the JSP application

« static HTML files required by the JSP application
« the path to the Web server

The developer can either deploy the application immediately upon creating the
profile or save the profile for later use.

JSP Translation and Deployment 6-71

Additional JSP Deployment Considerations

6-72 JavaServer Pages Developer's Guide and Reference

v

JSP Tag Libraries and the Oracle JML Tags

This chapter discusses custom tag libraries, covering the basic framework that
vendors can use to provide their own libraries and documenting the JML tag library
that OracleJSP provides as a sample. This discussion includes the following topics:

«» Standard Tag Library Framework
« Overview of the JSP Markup Language (JML) Sample Tag Library
« JSP Markup Language (JML) Tag Descriptions

JSP Tag Libraries and the Oracle JML Tags 7-1

Standard Tag Library Framework

Standard Tag Library Framework

Standard JavaServer Pages technology allows vendors to create custom JSP tag
libraries.

A tag library defines a collection of custom actions. The tags can be used directly by
developers in manually coding a JSP page, or automatically by Java development
tools. A tag library must be portable between different JSP container
implementations.

For information beyond what is provided here regarding tag libraries and the
standard JavaServer Pages tag library framework, refer to the following resources.

= Sun Microsystems JavaServer Pages Specification, Version 1.1

= Sun Microsystems Javadoc for the j avax. servl et. j sp. t agext package, at
the following Web site:

http://java. sun. contj 2eel j 2sdkee/ t echdocs/ api / j avax/ servl et/ j sp/ t agext / package- summary. ht n

Note: Do notuse theservl et.j ar file of the Tomcat 3.1 beta
servlet/JSP implementation if you are using custom tags. The
constructor signature was changed for the class
javax.servlet.jsp.tagext. TagAttri but el nf o, which will
result in compilation errors. Instead, use the ser vl et . j ar file that
is provided with OracleJSP or the production version of Tomcat 3.1.

Overview of a Custom Tag Library Implementation

A custom tag library is imported into a JSP page using at agl i b directive of the
following general form:

<Y@taglib uri="UR" prefix="prefix" %

Note the following:

« Thetags of a library are defined in a tag library description file, as described in
"Tag Library Description Files" on page 7-10.

« TheURIlinthetagli b directive specifies where to find the tag library
description file, as described in "The taglib Directive" on page 7-13. It is possible
to use URI shortcuts, as described in "Use of web.xml for Tag Libraries" on
page 7-12.

7-2 JavaServer Pages Developer’s Guide and Reference

Standard Tag Library Framework

The prefix in the t agl i b directive is a string of your choosing that you use in
your JSP page with any tag from the library.

Assume the t agl i b directive specifies a prefix or acust :

<Y@taglib uri="UR" prefix="oracust" %

Further assume that there is a tag myt ag in the library. You might use nyt ag as
follows:

<oracust:nytag attr1="...", attr2="..." />

Using the or acust prefix informs the JSP translator that myt ag is defined in

the tag library description file that can be found at the URI specified in the
abovet agl i b directive.

The entry for a tag in the tag library description file provides specifications
about usage of the tag, including whether the tag uses attributes (as nyt ag
does), and the names of those attributes.

The semantics of a tag—the actions that occur as the result of using the tag—are
defined in a tag handler class, as described in "Tag Handlers" on page 7-4. Each
tag has its own tag handler class, and the class name is specified in the tag
library description file.

The tag library description file indicates whether a tag uses a body.
As seen above, a tag without a body is used as in the following example:

<oracust:nytag attrl="...", attr2="..." />

By contrast, a tag with a body is used as in the following example:

<oracust:nytag attrl="...", attr2="..." >
... body. ..
</ oracust : nyt ag>

A custom tag action can create one or more server-side objects that are available
for use by the tag itself or by other JSP scripting elements, such as scriptlets.
These objects are referred to as scripting variables.

Details regarding the scripting variables that a custom tag uses are defined in a
tag-extra-info class. This is described in "Scripting Variables and Tag-Extra-Info
Classes" on page 7-7.

JSP Tag Libraries and the Oracle JML Tags 7-3

Standard Tag Library Framework

Tag Handlers

A tag can create scripting variables with syntax such as in the following
example, which creates the object myobj :

<oracust:nytag id="nyobj" attr1="...", attr2="..." />

« Thetag handler of a nested tag can access the tag handler of an outer tag, in
case this is required for any of the processing or state management of the nested
tag. See "Access to Outer Tag Handler Instances" on page 7-10.

The sections that follow provide more information about these topics.

A tag handler describes the semantics of the action that results from use of a custom
tag. A tag handler is an instance of a Java class that implements one of two standard
Java interfaces, depending on whether the tag processes a body of statements
between a start tag and an end tag.

Each tag has its own handler class. By convention, the name of the tag handler class
for atag abc, for example, is AbcTag.

The tag library description (TLD) file of a tag library specifies the name of the tag
handler class for each tag in the library. (See "Tag Library Description Files" on
page 7-10.)

A tag handler instance is a server-side object used at request time. It has properties
that are set by the JSP container, including the page context object for the JSP page
that uses the custom tag, and a parent tag handler object if the use of this custom
tag is nested within an outer custom tag.

See "Sample Tag Handler Class: ExampleLoopTag.java" on page 7-15 for sample
code of a tag handler class.

Note: The Sun Microsystems JavaServer Pages Specification, Version
1.1 does not mandate whether multiple uses of the same custom tag
within a JSP page should use the same tag handler instance or
different tag handler instances—this implementation detail is left to
the discretion of JSP vendors. OracleJSP uses a separate tag handler
instance for each use of a tag.

7-4 JavaServer Pages Developer’s Guide and Reference

Standard Tag Library Framework

Custom Tag Body Processing

Custom tags, like standard JSP tags, may or may not have a body. And in the case of
a custom tag, even when there is a body, it may not need special handling by the tag
handler.

There are three situations:

There is no body.

In this case, there is just a single tag, as opposed to a start tag and end tag.
Following is a general example:

<oracust: abcdef attri="...", attr2="..." />

There is a body that does not need special handling by the tag handler.

In this case, there is a start tag and end tag with a body of statements in
between, but the tag handler does not have to process the body—body
statements are passed through for normal JSP processing only. Following is a
general example:

<foo:if cond="<% ... %" >
... body executed if cond is true, but not processed by tag handler. ..
</foo:if>

There is a body that needs special handling by the tag handler.

In this case also, there is a start tag and end tag with a body of statements in
between; however, the tag handler must process the body.

<oracust:ghijkl attr1="...", attr2="..." >
... body processed by tag handler.. .
</ oracust : ghi j kl >

Integer Constants for Body Processing

The tag handling interfaces that are described in the following sections specify a
doSt art Tag() method (further described below) that you must implement to

return an appropriate integer constant, depending on the situation. The possible
return values are as follows:

SKI P_BODY if there is no body or if evaluation and execution of the body
should be skipped

EVAL_BODY_| NCLUDE if there is a body that does not require special handling
by the tag handler

JSP Tag Libraries and the Oracle JML Tags 7-5

Standard Tag Library Framework

« EVAL_BODY_TAGIf there is a body that requires special handling by the tag
handler

Handlers for Tags That Do Not Process a Body

For a custom tag that does not have a body, or has a body that does not need special
handling by the tag handler, the tag handler class implements the following
standard interface:

« javax.servlet.jsp.tagext.Tag

The following standard support class implements the Tag interface and can be used
as a base class:

« javax.servlet.jsp.tagext. TagSupport

The Tag interface specifies a doSt art Tag() method and a doEndTag() method.
The tag developer provides code for these methods in the tag handler class, as
appropriate, to be executed as the start tag and end tag, respectively, are
encountered. Action processing—whatever you want the action tag to
accomplish—is implemented in the doSt art Tag() method. The doEndTag()
method would implement any appropriate post-processing. In the case of a tag
without a body, essentially nothing happens between the execution of these two
methods.

The doSt art Tag() method returns an integer value. For a tag handler class
implementing the Tag interface (either directly or indirectly), this value must be
either SKI P_BODY or EVAL_BODY_| NCLUDE (described in "Integer Constants for
Body Processing"” on page 7-5). EVAL_BODY_TAG s illegal for a tag handler class
implementing the Tag interface.

Handlers for Tags That Process a Body

For a custom tag with a body that requires special handling by the tag handler, the
tag handler class implements the following standard interface:

« javax.servlet.jsp.tagext.BodyTag

The following standard support class implements the Body Tag interface and can be
used as a base class:

« javax.servlet.jsp.tagext.BodyTagSupport

The BodyTag interface specifies a dol ni t Body() method and a doAf t er Body()
method in addition to the doSt art Tag() and doEndTag() methods specified in
the Tag interface.

7-6 JavaServer Pages Developer’s Guide and Reference

Standard Tag Library Framework

Just as with tag handlers implementing the Tag interface (described in the
preceding section, "Handlers for Tags That Do Not Process a Body"), the tag
developer implements the doSt art Tag() method for action processing by the tag,
and the doEndTag() method for any post-processing.

The doSt art Tag() method returns an integer value. For a tag handler class
implementing the Body Tag interface (directly or indirectly), this value must be
either SKI P_BODY or EVAL_BODY_TAG (described in "Integer Constants for Body
Processing"” on page 7-5). EVAL_BODY_| NCLUDE is illegal for a tag handler class
implementing the Body Tag interface.

In addition to implementing the doSt art Tag() and doEndTag() methods, the
tag developer, as appropriate, provides code for the dol ni t Body() method, to be
invoked before the body is evaluated, and the doAf t er Body() method, to be
invoked after each evaluation of the body. (The body could be evaluated multiple
times, such as at the end of each iteration of a loop.)

After the doSt art Tag() method is executed, the dol ni t Body() and
doAf t er Body() methods are executed if the doSt art Tag() method returned
EVAL_BODY_TAG

The doEndTag() method is executed after any body processing, when the end tag
is encountered.

For custom tags that must process a body, the

javax. servl et.jsp.tagext.BodyCont ent class is available for use. This is a
subclass of j avax. servl et.jsp. JspWi t er that can be used to process body
evaluations so that they can re-extracted later. The Body Tag interface includes a
set BodyCont ent () method that can be used by the JSP container to give a
BodyCont ent handle to a tag handler instance.

Scripting Variables and Tag-Extra-Info Classes

A custom tag action can create one or more server-side objects, known as scripting
variables, that are available for use by the tag itself or by other scripting elements,
such as scriptlets and other tags.

Details regarding scripting variables that a custom tag defines must be specified in a
subclass of the standard j avax. servl et . j sp. t agext . TagExt r al nf o abstract
class. This document refers to such a subclass as a tag-extra-info class.

The JSP container uses tag-extra-info instances during translation. (The tag library
description file, specified in the t agl i b directive that imports the library into a JSP
page, specifies the tag-extra-info class to use, if applicable, for any given tag.)

JSP Tag Libraries and the Oracle JML Tags 7-7

Standard Tag Library Framework

A tag-extra-info class has a get Var i abl el nf o() method to retrieve names and
types of the scripting variables that will be assigned during HTTP requests. The JSP
translator calls this method during translation, passing it an instance of the
standard j avax. servl et.j sp. t agext. TagDat a class. The TagDat a instance
specifies attribute values set in the JSP statement that uses the custom tag.

This section covers the following topics:

« Defining Scripting Variables

« Scripting Variable Scopes

«» Tag-Extra-Info Classes and the getVariablelnfo() Method

Defining Scripting Variables

Objects that are defined explicitly in a custom tag can be referenced in other actions
through the page context object, using the object ID as a handle. Consider the
following example:

<oracust:foo id="nyobj " attrl="..." attr2="..." />

This statement results in the object myobj being available to any scripting elements
between the tag and the end of the page. The i d attribute is a translation-time
attribute. The tag developer provides a tag-extra-info class that will be used by the
JSP container. Among other things, the tag-extra-info class specifies what class to
instantiate for the myobj object.

The JSP container enters myobj into the page context object, where it can later be
obtained by other tags or scripting elements using syntax such as the following:

<oracust: bar ref="nyobj" />

The nyobj object is passed through the tag handler instances for f oo and bar . All
that is required is knowledge of the name of the object (nyobj).

Important: Note thati d and r ef are merely sample attribute
names; there are no special predefined semantics for these
attributes. It is up to the tag handler to define attribute names and
create and retrieve objects in the page context.

7-8 JavaServer Pages Developer’s Guide and Reference

Standard Tag Library Framework

Scripting Variable Scopes
Specify the scope of a scripting variable in the tag-extra-info class of the tag that
creates the variable. It can be one of the following integer constants:

« NESTED—if the scripting variable is available between the start tag and end tag
of the action that defines it

« AT_BEG N—if the scripting variable is available from the start tag until the end
of the page

« AT_END—if the scripting variable is available from the end tag until the end of
the page

Tag-Extra-Info Classes and the getVariableInfo() Method

You must create a tag-extra-info class for any custom tag that creates scripting
variables. The class describes the scripting variables and must be a subclass of the
standard j avax. servl et.j sp. t agext. TagExtral nf o abstract class.

The key method of the TagExt r al nf o class is get Var i abl el nfo(), which is
called by the JSP translator and returns an array of instances of the standard
javax. servl et.jsp.tagext. Vari abl el nf o class (one array instance for each
scripting variable the tag creates).

The tag-extra-info class constructs each Var i abl el nf o instance with the following
information regarding the scripting variable:

« itsname
« itsJavatype
= aboolean indicating whether it is a newly declared variable

« itsscope

Important: The get Vari abl el nf o() method must return a
fully qualified class name, such as for a JML datatype, for the Java
type of the scripting variable. (Note that primitive types are not
supported.)

See "Sample Tag-Extra-Info Class: ExampleLoopTagTEl.java" on page 7-17 for
sample code of a tag-extra-info class.

JSP Tag Libraries and the Oracle JML Tags 7-9

Standard Tag Library Framework

Access to Outer Tag Handler Instances

Where nested custom tags are used, the tag handler instance of the nested tag has
access to the tag handler instance of the outer tag, which may be useful in any
processing and state management performed by the nested tag.

This functionality is supported through the static f i ndAncest or Wt hCl ass()
method of the j avax. servl et.j sp. tagext. TagSupport class. Even though
the outer tag handler instance is not named in the page context object, it is
accessible because it is the closest enclosing instance of a given tag handler class.

Consider the following JSP code example:

<foo:barl attr="abc" >
<foo:bar2 />
</ f oo: bar 1>

Within the code of the bar 2 tag handler class (class Bar 2Tag, by convention), you
can have a statement such as the following:
Tag bar 1t ag = TagSupport . fi ndAncest or Wt hd ass(thi s, Bar1Tag. cl ass);

Thefi ndAncest or Wt hCl ass() method takes the following as input:

« thet hi s object that is the class handler instance from which
findAncest or Wt hCl ass() was called (a Bar 2Tag instance in the example)

« the name of the bar 1 tag handler class (presumed to be Bar 1Tag in the
example), asaj ava. | ang. Cl ass instance

Thefi ndAncest or Wt hCl ass() method returns an instance of the appropriate
tag handler class, in this case Bar 1Tag, asaj avax. servl et . j sp. t agext. Tag
instance.

It is useful for a Bar 2Tag instance to have access to the outer Bar 1Tag instance in
case Bar 2Tag needs the value of a bar 1 tag attribute or needs to call a method on
the Bar 1Tag instance.

Tag Library Description Files

A tag library description (TLD) file is an XML document that contains information
about a tag library and about individual tags of the library. The name of a TLD file
has the . t | d extension.

A JSP container uses the TLD file in determining what action to take when it
encounters a tag from the library.

7-10 JavaServer Pages Developer's Guide and Reference

Standard Tag Library Framework

A tag entry in the TLD file includes the following:

« hame of the custom tag

= hame of the corresponding tag handler class

« hame of the corresponding tag-extra-info class (if applicable)

« information indicating how the tag body (if any) should be processed

« information about the attributes of the tag (the attributes that you specify
whenever you use the custom tag)

Here is a sample TLD file entry for the tag nyact i on:

<tag>
<nane>nyact i on</ nane>
<t agcl ass>exanpl es. Mact i onTag</ t agcl ass>
<t ei cl ass>exanpl es. M/act i onTagExt r al nf o</ t ei cl ass>
<bodycont ent >JSP</ bodycont ent >
<i nf o>
Performa server-side action (one mandatory attr; one optional)
</info>
<attribute>
<nane>at t r 1</ nane>
<r equi red>t r ue</ r equi r ed>
</attri bute>
<attribute>
<nane>at t r 2</ nane>
<r equi red>f al se</r equi red>
</attribute>
</t ag>

According to this entry, the tag handler class is Myact i onTag and the
tag-extra-info class is Myact i onTagExt r al nf 0. The attribute at t r 1 is required;
the attribute at t r 2 is optional.

The bodycont ent parameter indicates how the tag body (if any) should be
processed. There are three valid values:

« Avalue of enpt y indicates that the tag uses no body.

« A value of JSP indicates that the tag body should be processed as JSP source
and translated.

« Avalue of t agdependent indicates that the tag body should not be translated.
Any text in the body is treated as static text.

JSP Tag Libraries and the Oracle JML Tags 7-11

Standard Tag Library Framework

Thet agl i b directive in a JSP page informs the JSP container where to find the TLD
file. (See "The taglib Directive" on page 7-13.)

For more information about tag library description files, see the Sun Microsystems
JavaServer Pages Specification, Version 1.1.

Note: Inthe Tomcat 3.1 servlet/JSP implementation, the TLD file
bodycont ent parameter for a given tag is not read if the tag itself
(in the JSP page) has no body. It is possible, therefore, to have an
invalid bodycont ent value in your TLD file (such as none instead
of enpt y) without realizing it. Using the file in another JSP
environment, such as OracleJSP, would then result in errors.

Use of web.xml for Tag Libraries

The Sun Microsystems Java Servlet Specification, Version 2.2 describes a standard
deployment descriptor for servlets—the web. xm file. JSP pages can use this file in
specifying the location of a JSP tag library description file.

For JSP tag libraries, the web. xmi file can include at agl i b element and two
subelements:

« taglib-uri
« taglib-location

Thet agl i b-1 ocati on subelement indicates the application-relative location (by
starting with "/") of the tag library description file.

Thetagl i b-uri subelement indicates a "shortcut" URI to use int agl i b
directives in your JSP pages, with this URI being mapped to the TLD file location
specified in the accompanyingt agl i b- | ocat i on subelement. (The term URI,
universal resource indicator, is somewhat equivalent to the term URL, universal
resource locator, but is more generic.)

Important: When a JSP application uses a web. xn file, you must
deploy web. xm with the application. Treat it as a Java resource
file.

7-12 JavaServer Pages Developer’'s Guide and Reference

Standard Tag Library Framework

Following is a sample web. xmi entry for a tag library description file:

<taglib>

<tagl i b-uri >/ oracustontags</taglib-uri>

<tagl i b-1 ocati on> WEB- | N/ or acust om ags/ t| ds/ M/TLD. t| d</ tagl i b-1 ocati on>
</taglib>

This makes / or acust ont ags equivalent to
/ VIEB- | NF/ or acust ont ags/tl ds/ MyTLD. t1 d intagl i b directives in your JSP
pages. See "Using a Shortcut URI for the TLD File" on page 7-14 for an example.

See the Sun Microsystems Java Servlet Specification, Version 2.2 and the Sun
Microsystems JavaServer Pages Specification, Version 1.1 for more information about
the web. xm deployment descriptor and its use for tag library description files.

Notes:

« Do not use the sample web. xm file from the Tomcat 3.1
servlet/JSP implementation. It introduces new elements that
will not pass the standard DTD XML validation.

» Do not use the term "urn" instead of "uri" in aweb. xm file.
Some JSP implementations allow this (such as Tomcat 3.1), but
using "urn” will not pass the standard DTD XML validation.

The taglib Directive

Import a custom library into a JSP page using at agl i b directive, of the following
form:

<Y@taglib uri="UR" prefix="prefix" %

For the URI, you have the following options:

« Specify a shortcut URI, as defined in aweb. xm file (see "Use of web.xml for
Tag Libraries" on page 7-12).

« Fully specify the tag library description (TLD) file name and location.

JSP Tag Libraries and the Oracle JML Tags 7-13

Standard Tag Library Framework

Using a Shortcut URI for the TLD File
Assume the following web. xm entry for a tag library defined in the tag library
description file MyTLD. t | d:

<taglib>

<tagl i b-uri >/ oracustontags</taglib-uri>

<tagl i b-1 ocati on> WEB- | N~/ or acust om ags/ t| ds/ M/TLD. t| d</ tagl i b-1 ocati on>
</taglib>

Given this example, the following directive in your JSP page results in the JSP
container finding the / or acust ont ags URI inweb. xm and, therefore, finding
the accompanying name and location of the tag library description file

(MyTLD. t 1 d):

<YU@taglib uri="/oracustontags" prefix="oracust" %

This statement allows you to use any of the tags of this custom tag library in a JSP
page.

Fully Specifying the TLD File Name and Location

If you do not want your JSP application to depend on a web. xmi file for its use of a
tag library, t agl i b directives can fully specify the name and location of the tag
library description file, as follows:

<Y@taglib uri="/WEB-| N+ oracustontags/tlds/ MTLD tld" prefix="oracust" %
The location is specified as an application-relative location (by starting with "/", as
in this example). See "Requesting a JSP Page" on page 1-8 for related discussion.

Alternatively, you can specify a. j ar fileinstead ofa.tl dfileinthetaglib
directive, where the . j ar file contains a tag library description file. The tag library
description file must be located and named as follows when you create the JAR file:

META- I N/ taglib. tld

Then the t agl i b directive might be as follows, for example:
<Y@taglib uri="/WEB-| N+ oracustontags/tlds/ MTLD jar" prefix="oracust" %

7-14 JavaServer Pages Developer's Guide and Reference

Standard Tag Library Framework

End-to-End Example: Defining and Using a Custom Tag

This section provides an end-to-end example of the definition and use of a custom
tag, | oop, that is used to iterate through the tag body a specified number of times.

Included in the example are the following:
= JSP source for a page that uses the tag

= source code for the tag handler class

= source code for the tag-extra-info class

« thetag library description file

Sample JSP Page: exampletag.jsp

Following is a sample JSP page that uses the | oop tag, specifying that the outer
loop be executed five times and the inner loop three times:

exanpl estag. j sp

<Y@taglib prefix="foo" uri="/WEB-|N-/exanpl etag.tld" %
<%int nun¥5; %

<pr e>

<foo:loop i ndex="i" count ="<%nunds" >

bodylhere: i expr: <%i% i property: <jsp:getProperty nane="i" property="val ue" />
<foo:loop index="j" count="3">
body2here: j expr: <%j %
i property: <jsp:getProperty name="i" property="val ue" />
j property: <jsp:getProperty name="j" property="val ue" />
</ f oo: | oop>

</ foo: | oop>

</ pre>

Sample Tag Handler Class: ExampleLoopTag.java
Following is the source code for the tag handler class, Exanpl eLoopTag. Note the
following:

« ThedoStart Tag() method returns the integer constant EVAL_BODY_TAG, so
that the tag body (essentially, the loop) is processed.

= After each pass through the loop, the doAf t er Body() method increments the
counter. It returns EVAL_BODY_TAG:if there are more iterations left and
SKI P_BQODY after the last iteration.

JSP Tag Libraries and the Oracle JML Tags 7-15

Standard Tag Library Framework

package exanpl es;

inport javax.servlet.jsp.*;

inport javax.servlet.jsp.tagext.?*;
inport java. util.Hashtabl e;

inport java.io.Witer;

inport java.io.|CException;

inport oracle.jsp.jn.Jn Nunber ;

public cl ass Exanpl eLoopTag
ext ends BodyTagSuppor t

{

S ring index;

int count;

int i=0;

Jm Nunber i b=new Jni Nunber ();

public void setlndex(Sring i ndex)

{
t hi s. i ndex=i ndex;
}
public void setGount(Sring count)
{
t hi s. count =I nt eger . par sel nt (count) ;
}

public int doStartTag() throws JspException {
return EVAL BODY TAG

}

public void dol nitBody() throws JspException {
pageCont ext . set At tri but e(i ndex, ib);
i ++
i b.setVal ue(i);

}

public int doAfterBody() throws JspException {
try {

if (i > count) {
bodyGont ent . wi t eQut (bodyCont ent . get Encl osi ngWiter());
return SKI P_BODY;

} else
pageCont ext . set Attri bute(index, ib);

i ++;

7-16 JavaServer Pages Developer's Guide and Reference

Standard Tag Library Framework

i b. set Val ue(i);
return EVAL BODY TAG
} catch (1 CException ex) {
t hr ow new JspTagException(ex.toSring());

}

Sample Tag-Extra-Info Class: ExampleLoopTagTEl.java

Following is the source code for the tag-extra-info class that describes the scripting
variable used by the | oop tag.

A Var i abl el nf o instance is constructed that specifies the following for the
variable:

« The variable name is according to the i ndex attribute.

« Thevariable is of the type or acl e. j sp.j m . Jm Nunmber (this must be
specified as a fully qualified class name).

« The variable is newly declared.
« The variable scope is NESTED.

In addition, the tag-extra-info class has ani sVal i d() method that determines
whether the count attribute is valid (it must be an integer).

package exanpl es;
inport javax.servlet.jsp.tagext.?*;
public cl ass Exanpl eLoopTagTH ext ends TagExtral nfo {

public Variabl el nfo[] getVariabl el nfo(TagData data) {
return new Vari abl el nf o[]

{
new Vari abl el nfo(data. get AttributeSring("i ndex"),
"oracl e.jsp.jm.Jn Nunber",
true,
Vari abl el nf 0. NESTED)
b

}

publ i ¢ bool ean isVali d(TagData dat a)

{
Sring count Str=data.get AttributeString("count");

JSP Tag Libraries and the Oracle JML Tags 7-17

Standard Tag Library Framework

if (countSr!=null) // for request tine case

{

try {
i nt count=lnteger. parselnt(countStr);

cat ch (Nunber For mat Excepti on e)
{

return fal se;

}
}

return true;

}

Sample Tag Library Description File: exampletag.tld

Following is the tag library description (TLD) file for the tag library. In this example,
the library consists of only the one tag, | oop.

This TLD file specifies the following for the | oop tag:
« exanpl es. Exanpl eLoopTag is the tag handler class.
« exanpl es. Exanpl eLoopTagTEl is the tag-extra-info class.

« Thebodycont ent specification is JSP, meaning the JSP translator should
process and translate the body code.

« There are two attributes, i ndex and count , and both are mandatory. The
count attribute can be a request-time JSP expression.

<?xm version="1.0" encodi ng="1 SO 8859-1" ?>

<IDCOCTYPE taglib
PUBLI C "-//Sun Mcrosystens, Inc.//DID JSP Tag Library 1. 1//EN
"http://java. sun. conij 2ee/ dtds/web-jsptaglibrary_1 1.dtd">

<l-- atab library descriptor -->

<taglib>
<l-- after this the default space is
"http://java. sun. conij2ee/ dtds/jsptaglibrary 1 2.dtd"

-->
<tlibversi on>1.0</tli bversi on>

<j spver si on>1. 1</ j spver si on>
<shor t name>si npl e</ shor t nane>

7-18 JavaServer Pages Developer's Guide and Reference

Standard Tag Library Framework

<--
there shoul d be no <urn></urn> here
-->
<i nf o>
Asinple tab library for the exanpl es
</info>

<I-- exanple tag -->
<I-- for loop -->
<t ag>
<nane>| oop</ nane>
<t agcl ass>exanpl es. Exanpl eLoopTag</t agcl ass>
<t ei cl ass>exanpl es. Exanpl eLoopTagTH </t ei cl ass>
<bodycont ent >JSP</ bodycont ent >
<i nfo>for | oop</info>
<attribute>
<name>i ndex</ nane>
<requi r ed>t r ue</ r equi r ed>
</attribute>
<attribute>
<name>count </ nane>
<requi r ed>t r ue</ r equi r ed>
<rtexprval ue>t rue</rtexprval ue>
</attribute>
</tag>

</taglib>

JSP Tag Libraries and the Oracle JML Tags 7-19

Overview of the JSP Markup Language (JML) Sample Tag Library

Overview of the JSP Markup Language (JML) Sample Tag Library

OracleJSP supplies the JSP Markup Language (JML) sample tag library, which is
portable to any standard JSP environment. JML tags, as with those of any standard
tag library, are completely compatible with regular JSP script and can be used in
any JSP page.

Many of the JML tags are intended to simplify coding syntax for JSP developers
who are not proficient with Java. There are also tags for XML transformations (as
described in Chapter 5), bean binding, and general utility.

The following topics are covered here:

« JML Tag Library Philosophy

« JML Tag Categories

« JML Tag Library Description File and taglib Directive
Note the following requirements for using JML tags:

« Install the file oj sputi | . j ar and include it in your classpath. This file is
provided with the OracleJSP installation.

« Make sure that the tag library description file,j m . t | d, is deployed with the
application and is in the location specified in the t agl i b directives of your JSP
pages. See "JML Tag Library Description File and taglib Directive" on page 7-22.

Notes:

« OracleJSP also provides a tag library for SQL functionality. This
is described in "OracleJSP Tag Library for SQL" on page 5-24.

« Prior to OracleJSP release 1.1.0.0.0 and the release of the JSP 1.1
specification, OracleJSP supported JML tags only as Oracle
extensions. (The tag library framework was not added to the
JavaServer Pages specification until JSP 1.1.) For these releases,
Oracle-specific JML tag processing was built into the OracleJSP
translator. This is referred to as "compile-time JML support"
and is described in Appendix C, "Compile-Time JML Tag
Support".

7-20 JavaServer Pages Developer's Guide and Reference

Overview of the JSP Markup Language (JML) Sample Tag Library

JML Tag Library Philosophy

JavaServer Pages technology is intended for two separate developer

communities—those whose primary skill is Java programming and those whose
primary skill is in designing static content, particularly in HTML, and may have
limited scripting experience.

The JML tag library is designed to allow most Web developers, with little or no
knowledge of Java, to assemble JSP applications with a full complement of program

flow-control features.

This model presumes that the business logic is contained in JavaBeans that are
developed separately by a Java developer.

JML Tag Categories

The JML tag library covers a wide feature set. The major functional categories are

summarized in Table 7-1.

Table 7-1 JML Tag Functional Categories

Tag Categories Tags Functionality

bean binding tags useVariable These tags are to declare or
useForm undeclare a JavaBean at a specified
useCookie JSP scope. See "Bean Binding Tag
remove Descriptions" on page 7-30.

logic/flow control tags if These tags offer simplified syntax to
choose..when..otherwise define code flow, such as for
foreach iterative loops or conditional
return branches. See "Logic and Flow
flush Control Tag Descriptions” on

page 7-34.

XML transformation tags transform These tags simplify the process of

styleSheet applying an XSL stylesheet to all or

part of JSP page output. See "JML
Tags for XSL Stylesheets" on
page 5-10.

JSP Tag Libraries and the Oracle JML Tags 7-21

Overview of the JSP Markup Language (JML) Sample Tag Library

JML Tag Library Description File and taglib Directive

As with any tag library following the JSP 1.1 specification, the tags of the IML
library are specified in an XML-style tag library description (TLD) file.

This TLD file is provided with the OracleJSP sample applications. It must be
deployed with any JSP application that uses JML tags, and specified inatagli b
directive for any page using JML tags.

JML taglib Directive

A JSP page using JML tags must specify the TLD filein at agl i b directive that
supplies a standard universal resource indicator (URI) to locate the file. The URI
syntax is typically application-relative, such as in the following example:

<Y@taglib uri="/WEB-IN/jnm.tld" prefix="jm" %

Alternatively, instead of using the full path to the TLD file, as in this example, you
can specify a URI shortcut in the web. xm file then use the shortcut in your
tagl i b directives. See "Use of web.xml for Tag Libraries" on page 7-12.

For general information about tag library description files, see "Tag Library
Description Files" on page 7-10.

JML TLD File Listing

This section lists the entire TLD file for the JML tag library, as supported in
OraclelSP release 1.1.0.0.0.

<?xm version="1.0" encodi ng="1 SO 8859-1" ?>

<IDOCTYPE taglib
PUBLI C "-//Sun Mcrosystens, Inc.//DID JSP Tag Library 1. 1//EN
"http://java. sun. conij 2ee/ dtds/web-jsptaglibrary_1 1.dtd">

<l-- atab library descriptor -->

<taglib>
<l-- after this the default space is
"http://java. sun. conj 2ee/ dtds/web-j sptaglibrary 1 1.dtd"
-->

<tlibversion>1.0</tli bversi on>
<j spversi on>1. 1</ j spver si on>
<shor t nane>j nt </ short nanme>
<i nf o>
Qacle’s jm tag library. Not all of the jn

7-22 JavaServer Pages Developer's Guide and Reference

Overview of the JSP Markup Language (JML) Sample Tag Library

tag's available in the Oacle JSP envi ronnent

are provided in this library. No jsp: tags are

dupl i cated, sone tags are unavail abl e, and sone tags
have stricter syntax. No bean expressions are supported.

The differences are:
*-jm:call - not avail abl e
* jnm:choose - works as docurnent ed
* jm:flush - works as docunent ed
* jm:for - works as docurent ed
* jm:foreach - the type attribute is required, otherw se,
as docunent ed
*Ijm:forward - use jsp:forward
*Ijm:getProperty - use jsp:getProperty
* jm:if - works as docunent ed
*Ijm:include - use jsp:include
*-jm:lock - not avail abl e
*Ijm:plugin - use jsp:plugin
* jm:print - the expression to print must be supplied as
an attribute. i.e. the tag cannot have a body
* jm:remove - works as docurnent ed
* jm:return - works as docurnent ed
*-jm:set - not available
*Ijm:setProperty - use jsp:setProperty
* jnm:styleSheet - works as docunent ed
* jm:transform- works as docunented
*1j m:useBean - use jsp:useBean
* jn:useCoki e - works as docunent ed
* jnm:useForm- works as docunent ed
* jnm:useVariable - works as docunent ed
</i nf 0>

<lI-- The choose tag -->
<t ag>
<nanme>choose</ nane>
<t agcl ass>oracl e. j sp.j ni. t agext. Jnk Choose</ t agcl ass>
<bodycont ent >JSP</ bodycont ent >
<i nf 0>
The outer tag of a multiple choice |ogic block,
choose
when condi ti onl
when condi ti on2
ot herw se
end choose
</info>

JSP Tag Libraries and the Oracle JML Tags 7-23

Overview of the JSP Markup Language (JML) Sample Tag Library

</tag>

<l-- The flush tag -->
<t ag>
<nanme>f | ush</ nanme>
<tagcl ass>oracl e. jsp.jn.tagext.JIn H ush</tagcl ass>
<bodycont ent >enpt y</ bodycont ent >
<i nf 0>
Fush the current JspWiter
</info>
</tag>

<l-- The for tag -->
<t ag>
<nane>f or </ nane>
<t agcl ass>oracl e. j sp.jnt.tagext.Jm For </t agcl ass>
<teiclass>oracle.jsp.jni.tagext.Jnt For TH </t ei cl ass>
<bodycont ent >JSP</ bodycont ent >
<i nf o>
A sinple for |oop
</info>

<attribute>

<nane>i d</ nane>

<requi red>t r ue</ requi r ed>
</attri bute>
<attribute>

<nane>f r on¥/ name>

<requi red>t r ue</ requi r ed>

<rt exprval ue>t r ue</ rt expr val ue>
</attribute>
<attribute>

<nane>t o</ nane>

<requi red>t r ue</ requi r ed>

<rt exprval ue>t r ue</ rt expr val ue>
</attribute>

</tag>

<l-- The foreach tag -->

<t ag>
<name>f or each</ nane>
<t agcl ass>oracl e. j sp.j ni .t agext. Jnk For each</t agcl ass>
<tei class>oracle.jsp.jnl.tagext.Jm ForeachTH </t ei cl ass>
<bodycont ent >JSP</ bodycont ent >
<i nf o>

7-24 JavaServer Pages Developer's Guide and Reference

Overview of the JSP Markup Language (JML) Sample Tag Library

A foreach loop for iterating arrays, enunerations,
and vector’s.
</info>

<attribute>

<nane>i d</ nane>

<requi red>t r ue</ requi r ed>
</attribute>
<attribute>

<nane>i n</ nane>

<requi red>t r ue</ requi r ed>

<rt exprval ue>t r ue</ rt expr val ue>
</attribute>
<attribute>

<nane>t ype</ nane>

<requi red>t r ue</ requi r ed>
</attribute>
<attribute>

<nane>l i mt </ nane>

<requi red>f al se</requi red>

<rt exprval ue>t r ue</ rt expr val ue>
</attri bute>

</tag>

<I-- The if tag -->
<t ag>
<name>i f </ nanme>
<tagcl ass>oracl e.jsp.jn.tagext.Jn|f</tagcl ass>
<bodycont ent >JSP</ bodycont ent >
<i nf 0>
Aclassic if
</info>

<attribute>
<nane>condi t i on</ nane>
<requi red>t r ue</ requi r ed>
<rt exprval ue>t r ue</ rt expr val ue>
</attribute>
</tag>

<l-- The otherwi se tag -->
<t ag>
<nane>ot her w se</ nane>
<t agcl ass>oracl e. j sp.jnt.tagext.Jm Q herw se</tagcl ass>

JSP Tag Libraries and the Oracle JML Tags 7-25

Overview of the JSP Markup Language (JML) Sample Tag Library

<bodycont ent >JSP</ bodycont ent >
<i nf o>
(optional) final part of a choose bl ock
</info>
</tag>

<l-- The print tag -->
<t ag>
<name>pri nt </ nanme>
<tagcl ass>oracl e. jsp.jni.tagext.Jnt Print</tagcl ass>
<bodycont ent >enpt y</ bodycont ent >
<i nf 0>
print the expression specified in the eval attribute
</info>
<attribute>
<nane>eval </ namre>
<requi red>t r ue</ requi r ed>
<rt exprval ue>t r ue</ rt expr val ue>
</attri bute>
</tag>

<l-- The renove tag -->
<t ag>
<nane>r enove</ nane>
<t agcl ass>oracl e. j sp.j ni. t agext. Jnt Renove</t agcl ass>
<bodycont ent >enpt y</ bodycont ent >
<i nf 0>
renove the specified object fromthe pageCont ext
</info>
<attribute>
<nane>i d</ nane>
<requi red>t r ue</ requi r ed>
</attribute>
<attribute>
<nane>scope</ nane>
<requi red>f al se</requi red>
</attribute>
</tag>

<I-- The return tag -->
<t ag>
<nanme>r et ur n</ nane>
<t agcl ass>oracl e. j sp.j ni . tagext. Jnk Ret urn</t agcl ass>
<bodycont ent >enpt y</ bodycont ent >
<i nf 0>

7-26 JavaServer Pages Developer's Guide and Reference

Overview of the JSP Markup Language (JML) Sample Tag Library

Sip the rest of the page
</info>
</tag>

<l-- The styl eSheet tag -->
<t ag>
<nane>st yl eSheet </ nane>
<tagcl ass>oracl e.jsp.jn.tagext.JIn Syl eSheet </t agcl ass>
<bodycont ent >JSP</ bodycont ent >
<i nf o>
Transformthe body of the tag using a styl esheet
</info>
<attribute>
<nane>hr ef </ name>
<requi red>t r ue</ requi r ed>
<rt exprval ue>t r ue</ rt expr val ue>
</attribute>
</tag>

<I-- The transformtag -->
<t ag>
<nare>t r ansf or nx/ nane>
<tagcl ass>oracl e.jsp.jnt.tagext.Jm Syl eSheet </t agcl ass>
<bodycont ent >JSP</ bodycont ent >
<i nf 0>
Transformthe body of the tag using a styl esheet
</info>
<attribute>
<nane>hr ef </ name>
<requi red>t r ue</ requi r ed>
<rt exprval ue>t r ue</ rt expr val ue>
</attri bute>
</tag>

<l-- The useGookie tag -->
<t ag>
<nane>useCooki e</ nane>
<t agcl ass>oracl e. j sp.j nt.tagext. Jm UseCooki e</t agcl ass>
<teiclass>oracle.jsp.jni.tagext.Jnt UseTH </t ei cl ass>
<bodycont ent >enpt y</ bodycont ent >
<i nf 0>
create a jm variable and initialize it to a cooki e val ue
</info>
<attribute>
<nane>i d</ nane>

JSP Tag Libraries and the Oracle JML Tags 7-27

Overview of the JSP Markup Language (JML) Sample Tag Library

<requi red>t r ue</ requi r ed>
</attribute>
<attribute>

<nane>scope</ hane>

<requi red>f al se</requi red>
</attri bute>
<attribute>

<nane>t ype</ nane>

<requi red>t r ue</ requi r ed>
</attri bute>
<attribute>

<nane>cooki e</ nane>

<requi red>t r ue</ requi r ed>
</attri bute>

</tag>

<I-- The useFormtag -->
<t ag>
<name>useFor nx/ nane>
<t agcl ass>oracl e. j sp.j ni .t agext. Jnk UseFor n¥/ t agcl ass>
<teiclass>oracle.jsp.jn.tagext.Jnt UseTH </t ei cl ass>
<bodycont ent >enpt y</ bodycont ent >
<i nf 0>
create a jnm variable and initialize it to a parameter val ue
</info>
<attribute>
<nane>i d</ nane>
<requi red>t r ue</ requi r ed>
</attribute>
<attribute>
<nane>scope</ nane>
<requi red>f al se</requi red>
</attribute>
<attribute>
<nane>t ype</ nane>
<requi red>t r ue</ requi r ed>
</attribute>
<attribute>
<nane>par anx/ nane>
<requi red>t r ue</ requi r ed>
</attribute>
</tag>

<l-- The useVariable tag -->
<t ag>

7-28 JavaServer Pages Developer's Guide and Reference

Overview of the JSP Markup Language (JML) Sample Tag Library

<name>useVar i abl e</ nane>

<tagcl ass>oracl e. jsp.jn.tagext.JInt UseVari abl e</ t agcl ass>
<tei class>oracl e.jsp.jn.tagext.JIn UseTH </tei cl ass>

<bodycont ent >enpt y</ bodycont ent >

<i nf o>

create a jnm variable and initialize it to a paraneter val ue

</info>
<attribute>

<nane>i d</ nane>

<requi red>t r ue</ requi r ed>
</attribute>
<attribute>

<nane>scope</ nane>

<requi red>f al se</requi red>
</attribute>
<attribute>

<nane>t ype</ nane>

<requi red>t r ue</ requi r ed>
</attribute>
<attribute>

<nane>val ue</ nane>

<requi red>f al se</requi red>

<rt exprval ue>t r ue</ rt expr val ue>

</attribute>
</tag>

<l-- The when tag -->
<t ag>
<nanme>when</ nane>

<t agcl ass>or acl e. j sp.j ni .t agext. Jnt Wen</ t agcl ass>

<bodycont ent >JSP</ bodycont ent >

<i nf o>

one part of a choose bl ock, see choose

</info>

<attribute>
<nane>condi t i on</ nane>
<requi red>t r ue</ requi r ed>

<rt exprval ue>t r ue</ rt expr val ue>

</attribute>
</tag>

</taglib>

JSP Tag Libraries and the Oracle JML Tags 7-29

JSP Markup Language (JML) Tag Descriptions

JSP Markup Language (JML) Tag Descriptions

This section documents the JML tags that are supported in the OracleJSP 1.1.0.0.0
runtime implementation, following the JSP 1.1 specification. They are categorized as
follows:

« Bean Binding Tag Descriptions
« Logic and Flow Control Tag Descriptions

For an elementary sample using some of the tags described here, see "JML Tag
Sample—hellouser_jml.jsp" on page 9-29.

Tags for XML transformations are documented separately, in "JML Tags for XSL
Stylesheets" on page 5-10.

Syntax Symbology and Notes

For the syntax documentation in the tag descriptions, note the following:
« Italics indicate that you must specify a value or string.

« Optional attributes are enclosed in square brackets: [. . .]

« Default values of optional attributes are indicated in bold.

« Choices in how to specify an attribute are separated by vertical bars: |

« The prefix "jml:" is used. This is by convention but is not required. You can
specify any desired prefix in your t agl i b directive.

Bean Binding Tag Descriptions

This section documents the following JML tags, which are used for bean-binding
operations:

« JML useVariable Tag
« JML useForm Tag
« JML useCookie Tag

« JML remove Tag
JML useVariable Tag

This tag offers a convenient alternative to the j sp: useBean tag for declaring
simple variables.

7-30 JavaServer Pages Developer's Guide and Reference

JSP Markup Language (JML) Tag Descriptions

Syntax

<jm:useVariabl e i d = " beanl nst anceNang'
[scope = "page | request | session | application"]
type = "string | bool ean | nunber | fpnunber"
[value = "stringLiteral | <% jspExpression %"] [>

Attributes
« i d—Names the variable being declared. This attribute is required.

« scope—Defines the duration or scope of the variable (as with aj sp: useBean
tag). This attribute is optional; the default scope is page.

« type—Specifies the type of the variable (the type specifications refer to
Jm String,Jm Bool ean,Jm Nunmber, or Im FPNunber). This attribute is
required.

« Vval ue—Allows the variable to be set directly in the declaration, as either a
string literal or a JSP expression enclosed in <% . . . % syntax. This attribute
is optional. If it is not specified, the value remains the same as when it was last
set (if it already exists) or is initialized with a default value. If it is specified,
then the value is always set, regardless of whether this declaration instantiates
the object or merely acquires it from the named scope.

Example Consider the following example:

<jm:useVariable id = "isValidUser" type = "bool ean" val ue = "<% dbConn.isValid() %" scope = "session" />

This is equivalent to the following:

<j sp:useBean id = "isValidWser" class = "oracle.jsp.jnt.JmBool ean" scope = "session" />
<j sp:setProperty name="isVal i dUser" property="val ue" value = "<% dbQnn.isValid() %" />

JML useForm Tag

This tag provides a convenient syntax for declaring variables and setting them to
values passed in from the request.

Syntax

<jm:useFormid = "beanl nst anceNane"
[scope = "page | request | session | application"]
[type = "string | bool ean | nunber | fpnunber"]
param = " request Par aret er Nang" | >

JSP Tag Libraries and the Oracle JML Tags 7-31

JSP Markup Language (JML) Tag Descriptions

Attributes
« i d—Names the variable being declared or referenced. This attribute is required.

« scope—Defines the duration or scope of the variable (as with aj sp: useBean
tag). This attribute is optional; the default scope is page.

« type—Specifies the type of the variable (the type specifications refer to
Jm String,Jm Bool ean,Jm Nunmber, or Im FPNunber). This attribute is
optional; the default setting is st ri ng.

« par am—Specifies the name of the request parameter whose value is used in
setting the variable. This attribute is required. If the request parameter exists,
then the variable value is always updated, regardless of whether this
declaration brings the variable into existence. If the request parameter does not
exist, then the variable value remains unchanged.

Example The following example sets a session variable named user of the type
st ri ng to the value of the request parameter named user.

<jm:useFormid = "user" type = "string" param= "user" scope = "session" />

This is equivalent to the following:

<jsp:useBean id = "user" class = "oracle.jsp.jm.Jm String" scope = "session" />
<j sp: set Property nanme="user" property="val ue" param= "user" />

JML useCookie Tag
This tag offers a convenient syntax for declaring variables and setting them to

values contained in cookies.
Syntax

<j m : useCooki e i d = " beanl nst anceNang"
[scope = "page | request | session | application"]
[type = "string | bool ean | nunber | fpnunber"]
cooki e = "cooki ehane" | >

Attributes
« i d—Names the variable being declared or referenced. This attribute is required.

« scope—Defines the duration or scope of the variable. This attribute is optional;
the default scope is page.

7-32 JavaServer Pages Developer's Guide and Reference

JSP Markup Language (JML) Tag Descriptions

« type—Identifies the type of the variable (the type specifications refer to
Jm String,Jm Bool ean,Jm Nunmber, or Im FPNunber). This attribute is
optional; the default setting is st ri ng.

« cooki e—Specifies the name of the cookie whose value is used in setting this
variable. This attribute is required. If the cookie exists, then the variable value is
always updated, regardless of whether this declaration brings the variable into
existence. If the cookie does not exist, then the variable value remains
unchanged.

Example The following example sets a request variable named user of the type
st ri ng to the value of the cookie named user.

<jm:useCookie id = "user" type = "string" cookie = "user" scope = "request" />

This is equivalent to the following:

<jsp:useBean id = "user" class = "oracle.jsp.jm.Jm Sring" scope = "request” />
<%
Gooki es [] cooki es = request. get Gooki es();
for (int i =0; i < cookies.length; i++) {
if (cookies[i].getNane().equal s("user")) {
user . set Val ue(cooki es[i].get Val ue());
br eak;

%

JML remove Tag
This tag removes an object from its scope.

Syntax
<jnm:renove id = " beanl nst anceNane"
[scope = "page | request | session | application"] />
Attributes
« | d—Specifies the name of the bean being removed. This attribute is required.

= scope—This attribute is optional. If not specified, then scopes are searched in
the following order: 1) page, 2) request, 3) session, 4) application. The first
object whose name matches i d is removed.

JSP Tag Libraries and the Oracle JML Tags 7-33

JSP Markup Language (JML) Tag Descriptions

Example The following example removes the session user object:

<jm:renove id = "user" scope = "session" />

This is equivalent to the following:

<% sessi on. renoveVal ue("user"); %

Logic and Flow Control Tag Descriptions

This section documents the following JML tags, which are used for logic and flow
control:

« JML if Tag

« JML choose...when...[otherwise] Tags
« JML for Tag

« JML foreach Tag

« JML return Tag

« JML flush Tag

These tags, which are intended for developers without extensive Java experience,
can be used in place of Java logic and flow control syntax, such as iterative loops
and conditional branches.

JML if Tag
This tag evaluates a single conditional statement. If the condition is true, then the

body of the i f tag is executed.
Syntax

<n:if condition = "<% jspExpression %" >
...body of if tag (executed if the condition is true)...
<jm:if>

Attributes

« condi ti on—Specifies the conditional expression to be evaluated. This
attribute is required.

7-34 JavaServer Pages Developer's Guide and Reference

JSP Markup Language (JML) Tag Descriptions

Example The following e-commerce example displays information from a user’s
shopping cart. The code checks to see if the variable holding the current T-shirt
order is empty. If not, then the size that the user has ordered is displayed. Assume
currTSisof type Jm Stri ng.

<m:if condition = "<% !currTS isEmpty() %" >
<S>(size: <% currTS. getVal ue().tolUpper Case() %)</ S>
<jm:if>

JML choose...when...[otherwise] Tags

The choose tag, with associated when and ot her wi se tags, provides a multiple
conditional statement.

The body of the choose tag contains one or more when tags, where each when tag
represents a condition. For the first when condition that is true, the body of that
when tag is executed. (A maximum of one when body is executed.)

If none of the when conditions are true, and if the optional ot her wi se tag is
specified, then the body of the ot her wi se tag is executed.

Syntax

<j ni : choose>
<j nh:when condition = "<% jspExpression %" >
...body of 1st when tag (executed if the condition is true)...
</j m : when>

[...optional additional when tags...]
[<jm:otherw se>
...body of othervise tag (executed if all when conditions false)...
</jn:otherw se>]
</j m: choose>

Attributes The when tag uses the following attribute (the choose and ot her wi se
tags have no attributes):

« condi ti on—Specifies the conditional expression to be evaluated. This
attribute is required.

Example The following e-commerce example displays information from a user's
shopping cart. This code checks to see if anything has been ordered. If so, the
current order is displayed; otherwise, the user is asked to shop again. (This example

JSP Tag Libraries and the Oracle JML Tags 7-35

JSP Markup Language (JML) Tag Descriptions

omits the code to display the current order.) Presume or der edl t emis of the type
Jm Bool ean.

<j ni : choose>
<jn:when condition = "<% orderedl temgetVal ue() %" >
You have changed your order:
-- output the current order --
</jm : when>
<j n : ot her wi se>
Are you sure we can't interest you in sonething, cheapskate?
</jn:otherw se>
</j n : choose>

JML for Tag
This tag provides the ability to iterate through a loop, as with a Java f or loop.

Thei d attribute is a local loop variable of the type j ava. | ang. | nt eger that
contains the value of the current range element. The range starts at the value
expressed in the f r omattributed and is incremented by one after each execution of
the body of the loop, until it exceeds the value expressed in the t o attribute.

Once the range has been traversed, control goes to the first statement following the
f or end tag.

Note: Descending ranges are not supported; the f r omvalue must
be less than or equal to the t o value.

Syntax

<gm:for id = "/oopVariabl e
from= "<% j spExpressi on %"
to = "< jspExpression %" >
... body of for tag (executed once at each val ue of range, inclusive)...
<jnm:for>

Attributes

« i d—Names the loop variable, which holds the current value in the range. This
isaj ava. | ang. | nt eger value and can be used only within the body of the
tag. This attribute is required.

7-36 JavaServer Pages Developer's Guide and Reference

JSP Markup Language (JML) Tag Descriptions

« from—Specifies the start of the range. This is an expression that must evaluate
to alJavai nt value. This is a required attribute.

« t o—Specifies the end of the range. This is an expression that must evaluate to a
Javai nt value. This is a required attribute.

Example The following example repeatedly prints "Hello World" as progressively
smaller headings (H1, H2, H3, H4, H5).

m:for id="i" fron¥'<0& 1 %" to="<% 5 %" >
<H<9%i %>
Hello Wrl d!
</ H<%i %>
<jm:for>

JML foreach Tag
This tag provides the ability to iterate over a homogeneous set of values.

The body of the tag is executed once per element in the set. (If the set is empty, then
the body is not executed.)

Thei d attribute is a local loop variable containing the value of the current set
element. Its type is specified in the t ype attribute. (The specified type should match
the type of the set elements, as applicable.)

This tag currently supports iterations over the following types of data structures:
« Javaarray
« java.util.Enumeration

= java.util.Vector

Syntax

<jm:foreach id = "/ oopVari abl €'
in = "<% jspExpression %"
limt ="<% jspExpression %"
type = "package. cl ass" >
...body of foreach tag (executes once for each el enent in data structure). ..
</jnm:foreach>

JSP Tag Libraries and the Oracle JML Tags 7-37

JSP Markup Language (JML) Tag Descriptions

Attributes

« i d—Names the loop variable, which holds the value of the current element at
each step of the iteration. It can be used only within the body of the tag. Its type
is the same as specified in the t ype attribute. The i d attribute is required.

= i n—Specifies a JSP expression that evaluates to a Java array, Enuner at i on
object, or Vect or object. This is a required attribute.

« | imt—Specifies a JSP expression that evaluates to aJavai nt value defining
the maximum number of iterations, regardless of the number of elements in the
set. This is a required attribute.

« type—Specifies the type of the loop variable. This should match the type of the
set elements, as applicable. This is a required attribute.

Example The following example iterates over the request parameters.

<jm:foreach i d="name" in="<% request. get Paraneter Nanes() %" type="java.lang.&ring" >
Paraneter: <% name %
Val ue: <% request . get Paranet er (nane) %

</jm:foreach>

Or, if you want to handle parameters with multiple values:

<jm:foreach i d="name" in="<% request.get Paraneter Nanes() %" type="java.lang.&ring" >

Paraneter: <% name %

Value: <jni:foreach id="val " in="<%tr equest . get Par anet er Val ues(nane) %"

type="java.lang. Sring" >
<% val % :
</jm:foreach>

</jm:foreach>

JML return Tag

When this tag is reached, execution returns from the page without further
processing.

Syntax

<m:return />

Attributes

None.

7-38 JavaServer Pages Developer's Guide and Reference

JSP Markup Language (JML) Tag Descriptions

Example The following example returns without processing the page if the timer has
expired.

<gm:if condition="<% tiner.isExpired() %" >
You did not conplete in tinel
<jm:return />

<jm:if>

JML flush Tag
This tag writes the current contents of the page buffer back to the client.

This applies only if the page is buffered; otherwise, there is no effect.

Syntax
<m:flush />

Attributes

None.

Example The following example flushes the current page contents before performing
an expensive operation.

<m:flush />
<% nyBean. expensi ve(perat i on(out); %

JSP Tag Libraries and the Oracle JML Tags 7-39

JSP Markup Language (JML) Tag Descriptions

7-40 JavaServer Pages Developer's Guide and Reference

8

OracleJSP NLS Support

OracleJSP provides standard National Language Support (NLS) according to the
Sun Microsystems JavaServer Pages Specification, Version 1.1, and also offers extended
support for servlet environments that do not support multibyte parameter
encoding.

Standard Java support for localized content depends on the use of Unicode 2.0 for
uniform internal representation of text. Unicode is used as the base character set for
conversion to alternative character sets.

This chapter describes key aspects of how OracleJSP supports NLS. The following
topics are covered (additional topics will be covered in a future release):

« Content Type Settings in the page Directive
« Dynamic Content Type Settings
» OracleJSP Extended Support for Multibyte Parameter Encoding

OracleJSP NLS Support 8-1

Content Type Settings in the page Directive

Content Type Settings in the page Directive

You can use the page directive cont ent Type parameter to set the MIME type and
to optionally set the character encoding for a JSP page. The MIME type applies to
the HTTP response at runtime. The character encoding, if set, applies to both the
page text during translation and the HTTP response at runtime.

Use the following syntax for the page directive:

<Y@page ... contentType="TYPE charset=character_set" ... %

or, to set the MIME type while using the default character set:
<Y@page ... contentType="TYPE ... %
TYPE is an IANA (Internet Assigned Numbers Authority) MIME type and

char act er _set isan IANA character set. (When specifying a character set, the
space after the semi-colon is optional.)

For example:

<Y@page | anguage="j ava' content Type="text/htni; charset=UTF8" %

or:

<Y@page | anguage="j ava"' content Type="text/htnm" %

The default MIME type ist ext / ht ml . The IANA maintains a registry of MIME
types at the following site:

ftp://venera.isi.edu/in-notes/ianal assi gnnent s/ nedi a-t ypes/ nedi a- t ypes

The default character encoding is | SO 8859- 1 (also known as Latin-1). The IANA

maintains a registry of character encodings at the following site (use the indicated
"preferred MIME name" if one is listed):

ftp://venera.isi.edu/in-notes/ianalassi gnnents/ character-sets
(There is no JSP requirement to use an IANA character set as long as you use a
character set that Java and the Web browser support, but the IANA site lists the

most common character sets. Using the preferred MIME names they document is
recommended.)

8-2 JavaServer Pages Developer’s Guide and Reference

Content Type Settings in the page Directive

The parameters of a page directive are static. If a page discovers during execution
that a different setting is necessary for the response, it can do one of the following:

« Use the servlet response object API to set the content type during execution, as
described in "Dynamic Content Type Settings" on page 8-4.

« Forward the request to another JSP page or to a servlet.

Notes:

The page directive that sets cont ent Type should appear as
early as possible in the JSP page.

A JSP page written in a character set other than | SO 8859- 1
must set the appropriate character set in a page directive. It
cannot be set dynamically because the page has to be aware of
the setting during translation. Dynamic settings are for runtime
only.

The JSP 1.1 specification assumes that a JSP page is written in
the same character set that it will use to deliver its content.

This document, for simplicity, assumes the typical case that the
page text, request parameters, and response parameters all use
the same encoding (although other scenarios are technically
possible). Request parameter encoding is controlled by the
browser, although Netscape browsers and Internet Explorer
follow the setting you specify for the response parameters.

OracleJSP NLS Support 8-3

Dynamic Content Type Settings

Dynamic Content Type Settings

For situations where the appropriate content type for the HTTP response is not
known until runtime, you can set it dynamically in the JSP page. The standard

j avax. servl et. Servl et Response interface specifies the following method for
this purpose:

public void set Gontent Type(j ava. | ang. String contenttype)

The implicitr esponse object of a JSP page is a
javax.servlet. http. Ht t pServl et Response instance, where the
Ht t pSer vl et Response interface extends the Ser vl et Response interface.

The set Cont ent Type() method input, like the cont ent Type setting in a page
directive, can include a MIME type only, or both a character set and a MIME type.
For example:

response. set Gont ent Type("text/htnt; charset=UTF-8");

or:

response. set Gont ent Type("text/htn");

As with a page directive, the default MIME type ist ext / ht M and the default
character encoding is | SO 8859- 1.

This method has no effect on interpreting the text of the JSP page during translation.
If a particular character set is required during translation, that must be specified in a
page directive, as described in "Content Type Settings in the page Directive" on
page 8-2.

Be aware of the following important usage notes:
« The JSP page cannot be unbuffered if you are using the set Cont ent Type()

method. (It is buffered by default; do not set buf f er =" none" in a page
directive.)

« Theset Cont ent Type() call must appear early in the page, before any output
to the browser or any j sp: i ncl ude command (which flushes the JSP buffer to
the browser).

« Inservilet 2.2 environments, the r esponse object hasa set Local e() method
that sets a default character set based on the specified locale, overriding any
previous character set. For example, the following method call results in a
character set of Shi ft _JI S:

response. set Local e(new Local e("ja", "JP'));

8-4 JavaServer Pages Developer’s Guide and Reference

OracleJSP Extended Support for Multibyte Parameter Encoding

OracleJSP Extended Support for Multibyte Parameter Encoding

Character encoding of request parameters is not well defined in the HTTP
specification. Most servlet containers must interpret them using the servlet default
encoding, | SO- 8859- 1.

For such environments, where the servlet container cannot encode multibyte
request parameters and bean property settings, OracleJSP offers extended support
through the t r ansl at e_par ans configuration parameter.

It is also possible to use equivalent code in the JSP page, which is necessary in the
Oracle Servlet Environment.

Important: Do not enable the t r ansl| at e_par ans flag in the
following circumstances:

=« When the servlet container properly handles multibyte
parameter encoding itself. Setting t r ansl at e_par ans to
t r ue in this situation will cause incorrect results. As of this
writing, however, it is known that Apache/JServ, JSWDK, and
Tomcat all do not properly handle multibyte parameter
encoding.

=« When the request parameters use a different encoding from
what is specified for the response in the JSP page directive or
set Cont ent Type() method.

=« When code with workaround functionality equivalent to what
transl at e_par ams accomplishes is already present in the
JSP page. (See "Code Equivalent to the translate_params
Configuration Parameter" on page 8-6.)

Effect of translate_params in Overriding Non-Multibyte Servlet Containers

Settransl at e_parans totr ue to override servlet containers that cannot encode
multibyte request parameters and bean property settings. (For information about
how to set OracleJSP configuration parameters, see "OracleJSP Configuration
Parameter Settings" on page A-25.)

When this flag is enabled, OracleJSP encodes the request parameters and bean
property settings based on the character set of the r esponse object, as indicated by
ther esponse. get Char act er Encodi ng() method.

OracleJSP NLS Support 8-5

OracleJSP Extended Support for Multibyte Parameter Encoding

Thet ransl at e_par ans flag affects parameter names and values, specifically:
« request object get Par anet er () method output

= request object get Par anet er Val ues() method output

= request object get Par anet er Names() method output

=] sp:setProperty settings for bean property values

Code Equivalent to the translate_params Configuration Parameter

Thetransl at e_par ans configuration parameter, being a runtime parameter,
cannot be set in the Oracle Servlet Engine environment. (Translation-time
configuration can be set for the OSE environment through oj spc command-line
options. There is no equivalent for runtime parameters.)

For this reason, and possibly other reasons as well, it is useful to be aware of
equivalent functionality that can be implemented through scriptlet code in the JSP
page, for example:

<Y@page content Type="text/htn; charset=BUGJIP' %

String paraniNane="XXYYZZ'; /1 where XXYYZZ is a nultibyte string
par amNane =
new & ri ng(par aniane. get Byt es(r esponse. get Char act er Encodi ng()), "I1S@859 1");
Sring paranVal ue = request. get Par anet er (par ani\ane) ;
par anVal ue= new S ri ng(par anVal ue. get Byt es("1S08859 1"), "EUG JP');

This code accomplishes the following:

« Sets XXYYZZ as the parameter name to search for. (Presume XX, YY, and ZZ are
three Japanese characters.)

« Encodes the parameter name to | SO 8859- 1, the servlet container character
set, so that the servlet container can interpret it. (First a byte array is created for
the parameter name, using the character encoding of the request object.)

« Gets the parameter value from the request object by looking for a match for the
parameter name. (It is able to find a match because parameter names in the
request object are also in | SO 8859- 1 encoding.)

« Encodes the parameter value to EUC- JP for further processing or output to the
browser.

8-6 JavaServer Pages Developer’s Guide and Reference

OracleJSP Extended Support for Multibyte Parameter Encoding

See the next two sections for an NLS sample that depends ont r ansl at e_par ans
being enabled, and an NLS sample that contains the equivalent code so that it does
not depend on the t r ansl at e_par amns setting.

NLS Sample Depending on translate_params

The following sample accepts a user name in Japanese characters and correctly
outputs the name back to the browser. In a servlet environment that cannot encode
multibyte request parameters, this sample depends on the OracleJSP configuration
setting of t r ansl| at e_par ans=t r ue.

Presume XXYY is the parameter name (something equivalent to "user name" in
Japanese) and AABB is the default value (also in Japanese).

(See the next section for a sample that has the code equivalent of the
transl at e_par ans functionality, and so does not depend on the
transl at e_par amns setting.)

<Y@page content Type="text/htn; charset=BUGJIP' %

<HTM_>

<HEAD>

<Tl TLE>Hel | o</ Tl TLE></ HEAD>

<BCDY>

<%
//charset is as specified in page directive (BUGJP)
Sring charset = response. get Charact er Encodi ng();

%

 encodi ng = <% charset %

<%
Sring paranVal ue = request. get Par anet er (" XXYY");

if (paramValue == null || paranVal ue.length() ==0) { %
<FORM METHD=" GET" >
F ease input your nane: <INPUT TYPE="TEXT' NAME="XXYY" val ue="AABB' size=20>

<INPUT TYPE="SUBM T >
</ FORW>
<%}
el se
{ %
<HL> Hel |l 0, <% paranVal ue % </ HL>
<%} %

OracleJSP NLS Support 8-7

OracleJSP Extended Support for Multibyte Parameter Encoding

</ BCDY>
</ HTM.>

Following is the sample input:

i h Evelpiremi [coplresi
el o ol s L =

4.':3_':1'3&'

e
Bk Freswd Se Febmh How

Y B R A (v Semrees Gy e - L
ﬁﬂ‘ﬂll-ﬂ sy e | S¥S A hallo_eer e ﬂ &b
|

imizsdling = ELC-JF

Flease inpml wonr name: |EF

Submat usry |

= .]
] e ES[Er T :

and the sample output:

I

oo o lsoonm B o a
e E < ST A o (5 + O
Bk | sinp Fekwsh How | Gasch
Y GE A (v Semrees Gy e - L
Aot] o E o TE 1 A BE LA S e 350 |

|

imizsdling = ELC-JF

Hello, {5

8-8 JavaServer Pages Developer’s Guide and Reference

OracleJSP Extended Support for Multibyte Parameter Encoding

NLS Sample Not Depending on translate_params

The following sample, as with the preceding sample, accepts a user name in
Japanese characters and correctly outputs the name back to the browser. This
sample, however, has the code equivalent of t r ansl| at e_par ans functionality, so
does not depend on the t r ansl| at e_par ans setting.

Important: Ifyou usetransl at e_par ans-equivalent code, do
not also enable the t r ansl at e_par ans flag. This would cause
incorrect results. (This is not a concern in the OSE environment,
where the t r ansl at e_par ans flag is not supported.)

Presume XXYY is the parameter name (something equivalent to "user name" in
Japanese) and AABB is the default value (also in Japanese).

For an explanation of the critical code in this sample, see "Code Equivalent to the
translate_params Configuration Parameter" on page 8-6.

<Y@page content Type="text/htn; charset=BUGJIP' %

<HTM_>
<HEAD>
<Tl TLE>Hel | o</ Tl TLE></ HEAD>
<BCDY>
<%
//charset is as specified in page directive (BUGJP)
Sring charset = response. get Charact er Encodi ng();
%

 encodi ng = <% charset %

<%
Sring paramdame = "XXYY';

par amNane = new S ri ng(par ani\ane. get Byt es(charset), "1SM8859 1");
Sring paranVal ue = request. get Par anet er (par ani\ane) ;

if (paramValue == null || paranVal ue.length() ==0) { %
<FORM METHOD=" GET" >
M ease input your nane: <INPUT TYPE="TEXT' NAME='XXYY" val ue="AABB' size=20>

<INPUT TYPE="SUBM T >
</ FORW>
<%}
el se

OracleJSP NLS Support 8-9

OracleJSP Extended Support for Multibyte Parameter Encoding

par anVal ue= new S ri ng(paranVal ue. get Byt es("1 938859 1"), "EUGJP'); %
<HL> Hel |l 0, <% paranVal ue % </ HL>

<%} %

</ BCDY>

</ HTM>

8-10 JavaServer Pages Developer's Guide and Reference

9

Sample Applications

This chapter provides a variety of code samples for JSP pages and the JavaBeans
that they use (as applicable), in the following categories:

Basic Samples

JDBC Samples

Database-Access JavaBean Samples

Custom Tag Samples

Samples for Oracle-Specific Programming Extensions

Samples Using globals.jsa for Servlet 2.0 Environments

Sample Applications 9-1

Basic Samples

Basic Samples

This section provides JSP samples that are fairly basic but also exemplify use of the
Oracle JML datatypes. This includes an elementary "hello" sample, a sample of
using a JavaBean, and a more intermediate shopping cart example. The following
samples are provided:

« Hello Page—hellouser.jsp
» Usebean Page—usebean.jsp
« Shopping Cart Page—cart.jsp

These examples could use standard datatypes instead, but JML datatypes offer a
number of advantages, as described in "JML Extended Datatypes" on page 5-2. JIML
datatypes are also portable to other JSP environments.

Hello Page—hellouser.jsp

This sample is an elementary JSP "hello" page. Users are presented with a form to
enter their name. After they submit the name, the JSP page redisplays the form with
the name at the top.

<%page session="fal se" %

<j sp: useBean i d="nane" cl ass="oracle.jsp.jm.JnmM Sring" scope="request" >
<j sp: set Property nane="nange" property="val ue" paran¥'newNane" />
</j sp: useBean>

<HTM_>
<HEAD>

<Tl TLE>
Hel l o Wser
< TITLE>
</ HEAD>

<BCDY>
<%if ('nane.isbBEmpty()) { %

<H3>\M¢| cone <% nane. get Val ue() %</ H3>
<%} %

9-2 JavaServer Pages Developer’s Guide and Reference

Basic Samples

<P>

Enter your Nane:

<FCRM METHOD=get >

<I NPUT TYPESTEXT nane=newNane si ze = 20>

<INPUT TYPEESIBM T VALUE="Submit nane" >

</ FCRW>

</ BCDY>
</ HTM.>

Usebean Page—usebean.jsp

This page uses a simple JavaBean, NaneBean, to illustrate usage of the
j sp: useBean tag. Code for the bean is provided as well as code for the page.

Code for usebean.jsp

<Y@page inport="beans. NaneBean" %

<j sp: useBean i d="pageBean" cl ass="beans. NameBean" scope="page" />
<j sp: set Property nane="pageBean" property="*" />

<j sp: useBean i d="sessi onBean" cl ass="beans. NaneBean" scope="sessi on" />
<j sp: set Pr opert y nane="sessi onBean" pr opert y:" LA Y

<HTM_>
<HEAD> <TI TLE> The WseBean JSP </ TI TLE> </ HEAD>
<BCDY BAOALCR=whi t e>

<H3> Wél cone to the WseBean JSP </ H3>
<P>Page bean:
<%if (pageBean. get NewhNarre(). equal s("")) { %
I don't know you.
<%} else { %
Hel | o <% pageBean. get NewNane() % !
<% } %

<P>Sessi on bean: </ B>

<%if (sessionBean.get NewNane().equal s("")) { %
I don't know you either.

Sample Applications 9-3

Basic Samples

<%} else {
if ((request.getParaneter("newNane") == null) ||
(request . get Par arret er (" newNane") . equal s(""))) { %
Aha, | renenber you.
<% } %
You are <% sessi onBean. get NewNane() %.
<%} %

<P>May we have your nane?

<FCRM METHOD=get >

<I NPUT TYPEETEXT nane=newNane size = 20>
<INPUT TYPEESUBM T VALUE="Subnit nane">
</ FORW>

</ BCDY>

</ HTM.>

Code for NameBean.java
package beans;

public class NaneBean {
String newNarre="";
public void NaneBean() { }

public Sring get NewNane() {
return newNane;

}
public voi d set NewNane(Sring newNane) {
t hi s. newNane = newhNane;

}
}

Shopping Cart Page—cart.jsp

This sample shows how to use session state to maintain a shopping cart. The user
chooses a T-shirt or sweatshirt to order and the order is then redisplayed. If
shopping continues and the order is changed, the page redisplays the order, striking
out the previous choices as appropriate.

The cart . j sp file is the primary source file; it references i ndex. j sp. Code for
both pages is provided.

9-4 JavaServer Pages Developer’s Guide and Reference

Basic Samples

Code for cart.jsp

<j sp: useBean id="currSS' scope ="session" class="oracle.jsp.jm.JmMSring" />
<j sp: useBean id="currTS' scope ="session" class="oracle.jsp.jm.JmMSring" />

<HTM_>

<HEAD>
<TI TLE>Java Sore</ TI TLE>
</ HEAD>

<BCDY BACKAROUND=I mages/ bg. gi f BEOALCR=#FFFFFF>

<j sp: useBean i d="sweat ShirtS ze" scope="page" class="oracle.jsp.jnm.Jm String" >
<j sp: set Property nane="sweat ShirtSi ze" property="val ue" paran¥"'SS' />

</ sp: useBean>

<j sp: useBean id="tshirtS ze" scope="page" class="oracle.jsp.jm.IJmSring" >
<j sp:setProperty nanme="tshirtS ze" property="val ue" paran='TS' />

</ sp: useBean>

<j sp: useBean i d="orderedSaeat shirt" scope="page"
cl ass="oracl e. j sp.j nt. Jm Bool ean" >
<j sp: set Property nane="or der edSweat shirt" property="val ue"
val ue= ' <% ! (sweat ShirtSize.isbEpty() ||
sweat ShirtS ze. get Val ue() . equal s("none")) %' />
</ sp: useBean>

<j sp: useBean i d="orderedTShi rt" scope="page" cl ass="oracl e.jsp.jmn.Jnl Bool ean" >
<j sp: set Property nane="order edTShirt" property="val ue"
val ue=" <% ! (tshirtS ze.isBEwty() || tshirtS ze. get Val ue(). equal s("none"))
% />
</ sp: useBean>

<P>
<TABLE BCORDER=0 CELLPADD NG=0 CHLLSPAQ NG=0 W DTH=100% HEl GHT=553>
<TR>
<TD W DTH=33% HEl GHT=61> </ TD>
<TD W DTH=67% HE GHT=61> </ TD>
</ TR>
<TR>

<TD W DTH=33% HEl GHT=246> </ TD>
<TD WDTH=67% HE GHI=246 VALI G\=TCP BAOCLCR=AFFFFFF>

Sample Applications 9-5

Basic Samples

<%if (orderedSneatshirt.getVal ue() || orderedTShirt.getValue()) { %
Thank you for selecting our fine JSP Véar abl es! <P>

<%if ('currSSiisBEwty() || 'currTSisbEwpty()) { %
You have changed your order:
<Uu>
<%if (orderedSaeatshirt.getValue()) { %
1 Sieatshirt
<%if (lcurrSSisEwty()) { %
<S>(size: <% currSS getVal ue().tolUpperCase() %)</ S>
<%} %
(size: <% sweat ShirtSize. getVal ue().tolpper Case() %)
<%} else if (lcurrSSisEmpty()) { %
<S>1 Sweatshirt (size: <% currSS get Val ue() .t olUper Case()
%) </ S
<%} %

<%if (orderedTShirt.getValue()) { %
1 Tshirt
<%if (lcurrTSisEwpty()) { %
<S>(size: <% currTS getVal ue().tolUpperCase() %)</ S>
<%} %
(size: <% tshirtS ze. getVal ue().tolpperCase() %)
<%} else if (lcurrTS isEmty()) { %
<S>1 Tshirt (size: <% currTS. getVal ue() .t oUpper Case()
%) </ S
<%} %
</ u>
<%} else { %
You have sel ect ed:
<u>
<%if (orderedSaeatshirt.getValue()) { %
<Ll >1 Sneatshirt (size: <% sweat ShirtS ze. getVal ue().tolUpper Case()
%)
<%} %

<%if (orderedTShirt.getValue()) { %
1 Tshirt (size: <% tshirtS ze. getVal ue().tolpperCase() %)
<%} %

</ u>
<%} %
<%} else { %
Are you sure we can't interest you in somethi ng?

9-6 JavaServer Pages Developer’s Guide and Reference

Basic Samples

<%} %

<CENTER>
<FORM ACTI ONF"i ndex. j sp" METHID="GET"
ENCTYPE="appl i cat i on/ x- wawf or m ur | encoded" >
<INPUT TYPE="I MAGE' SRC="i nages/ shop_agai n.gi f" WDIH="91" HA GHT="30"
BORDER="0">
</ FCRW»
</ CENTER>
< TD</ TR>
</ TABLE>

</ BCDY>
</ HTM.>

<%
if (orderedSneatshirt. getVal ue()) {

curr SS. set Val ue(sweat Shirt S ze. get Val ue());
} else {

curr SS. set Val ue("");

}

if (orderedTShirt. getValue()) {

currTS. set Val ue(tshirt S ze. get Val ue());
} else {

currTS. set Val ue("");

}
%

Code for index.jsp

<j sp: useBean id="currSS' scope ="session" class="oracle.jsp.jm.JmMSring" />
<j sp: useBean id="currTS' scope ="session" class="oracle.jsp.jm.JmMSring" />

<! DOCTYPE HTM. PUBLIC "-//V8Q / DID HTM. 3. 2// EN'>
<HTM_>

<HEAD>
<TI TLE>unti tl ed</ TI TLE>
</ HEAD>

Sample Applications 9-7

Basic Samples

<BCDY BACKGROUND="i nages/ bg. gi f* BGOOLCR="#FFFFFF' >

<FORM ACTI ON\="cart . j sp" METHOD=" POBT"
ENCTYPE="appl i cat i on/ x- waww f or m ur | encoded" >
<P~
<TABLE BORDER="0" CHLLPADD NG="0" CHLLSPAQ NG="0" WDIH="100% HEl GHI="553">
<TR>
<TD WDTH="33% HA GHI="61"> </ TD>
<TD WDTH="67% HA GHI="61"> </ TD>
< TR>
<TR>
<TD WDTH="33% HE GHT="246"> </ TD>
<TD WDTH="67% HHE GHI="246" VALI O\="TCP' BAOOLCR="#FFFFFF'>
<TABLE BCRDER="0" CH.LPADD NG="0" CELLSPAQ NG="0" WDTH="81% >
<TR>
<TD WDTH="100% BGOOLCR="#COCOFFFF"'>
<H4>JSP W\éar abl es
</ D>
< TR>
<TR>
<TD WDTH="100% BQOOLCR="#FFFFFF'>

<BLAXQLOTE>
Sneat shirt
<SPACER TYPE="HOR ZONTAL" S ZE="10">($24. 95)

<SPACER TYPE="HOR ZONTAL" S ZE="30">
<I NPUT TYPE="RAD O' NAME="SS' VALUE="xI "
<% currSS. getVal ue().equal s("xI") ? "CGHEXED' : "" % >XL
<SPACER TYPE="HOR ZONTAL" S ZE="10">
<INPUT TYPE="RAD O' NAME="SS' VALUE="I" <% currSS. get Val ue(). equal s("1")
?"GEXED : "" % >L
<SPACER TYPE="HOR ZONTAL" S ZE="10">
<INPUT TYPE="RAD O' NAME="SS' VALUE="n1 <% curr SS. get Val ue() . equal s("nY)
? "GEXED : "' % >M
<SPACER TYPE="HOR ZONTAL" S ZE="10">
<INPUT TYPE="RAD O' NAME="SS' VALUE="S" <% curr SS. get Val ue() . equal s("s")
? "GEXED : "" % >S
<SPACER TYPE="HOR ZONTAL" S ZE="10">
<I NPUT TYPE="RAD O' NAME="SS' VALUE="xs"
<% curr SS. get Val ue() . equal s("xs") ? "GHEXED' : "" % >XS
<SPACER TYPE="HOR ZONTAL" S ZE="10">
<I NPUT TYPE="RAD O' NAME="SS' VALUE="none"
<% curr SS. get Val ue() . equal s("none") || currSS.isBEwty() ?
"CHECKED' @ "" % >NONE

9-8 JavaServer Pages Developer’s Guide and Reference

Basic Samples

T- Shi rt <SPACER TYPE="HOR ZONTAL" Sl ZE="10"> (14. 95)

<SPACER TYPE="HOR ZONTAL" S ZE="30">
<I NPUT TYPE="RAD O' NAME="TS' VALUE="xI "
<% currTS getVal ue().equal s("xI") ? "CGHEXED' : "" % >XL
<SPACER TYPE="HOR ZONTAL" S ZE="10">
<INPUT TYPE="RAD O' NAME="TS' VALUE="I" <% curr TS get Val ue(). equal s("I ")
?"GEXED : "" % >L
<SPACER TYPE="HOR ZONTAL" S ZE="10">
<INPUT TYPE="RAD O' NAME="TS' VALUE="n1 <% curr TS get Val ue() . equal s("nY)
? "GEXED : """ % >M
<SPACER TYPE="HOR ZONTAL" S ZE="10">
<INPUT TYPE="RADO' NAME="TS' VALUE="S" <% curr TS get Val ue() . equal s("s")
? "GEXED : "" % >S
<SPACER TYPE="HOR ZONTAL" S ZE="10">
<I NPUT TYPE="RAD O' NAME="TS' VALUE="xs"
<% currTS getVal ue() . equal s("xs") ? "GEXED' : "" % >XS
<SPACER TYPE="HOR ZONTAL" S ZE="10">
<I NPUT TYPE="RAD O' NAME="TS' VALUE="none"
<% curr TS get Val ue() . equal s("none") || currTS.isBEwpty() 2
"CHECKED' @ "" % >NONE
</ BLOCKQUOTE>
</ D>
< TR>
<TR>
<TD WDTH="100% >
<DV ALICN-"R GHT >
<P><I NPUT TYPE="I MAGE' SRC="i mages/ addt obkt . gi f" WDIH="103" Hel GHT="22"
ALl G\="BOTTAM BARDER="0">
</ D\V>
</ D>
< TR>
</ TABLE>
</ D>
< TR>
</ TABLE>

</ FCRW>
</ BCDY>

</ HTM.>

Sample Applications 9-9

JDBC Samples

JDBC Samples

Examples in this section use JDBC to query a database. For the most part they use
standard JDBC functionality, although the connection caching examples use
Oracle’s particular connection caching implementation. The following examples are
provided:

« Simple Query—SimpleQuery.jsp

« User-Specified Query—JDBCQuery.jsp

« Query Using a Query Bean—UseHtmIQueryBean.jsp

« Connection Caching—ConnCache3.jsp and ConnCachel.jsp

See the Oracle8i JDBC Developer’s Guide and Reference for information about Oracle
JDBC in general and the Oracle JDBC connection caching implementation in
particular.

Simple Query—SimpleQuery.jsp
This page executes a simple query of the scot t . enp table, listing employees and
their salaries in an HTML table (ordered by employee name).

<Y@page inport="java.sql .*" %

.
* This is a basic JavaServer Page that does a JDBC query on the
* enp table in schema scott and outputs the result in an htm table.

<TI TLE>
S npl eQuery JSP
< T TLE>
</ HEAD>
<BDY BAOOLCR=ECFFFC>
<HL> Hel l o
<% (request.get RenotelUser () !'=null? ", " + request.getRenotelser() : "") %
' | am S npl eQuery JSP.
</ HL>
<HR>
 | will do a basic JDBC query to get enpl oyee data
fromBW tabl e in schema SCOIT. .
</ B>

9-10 JavaServer Pages Developer’'s Guide and Reference

JDBC Samples

<P>
<%
try {
/1 Wse the following 2 files whening running inside Oacle 8i
/1 Gonnection conn = new oracl e.jdbc. driver. Oacl eDri ver ().
/1 def aul t Gonnection ();
Qonnection conn =
Dri ver Manager . get Connect i on((St ri ng) sessi on. get Val ue("connStr"),
"scott", "tiger");
Satenent stnt = conn.createStatenent ();
Resul t Set rset = stm.executeQuery ("SELECT enane, sal " +
"FROM scot t. enp CROER BY enane") ;
if (rset.next()) {
%

<TABLE BCRDER=1 BGOOLCR="0AQ" >

<TH WDTH=200 BGOO.CR="whi t €"> <I| >Enpl oyee Nane</|> </ TH>

<TH WDTH=100 BAOO.CR="whi te"> <I>Sal ary</ 1> </ TH>

<TR> <TD ALI G\=CENTER> <% rset.get SXring(1l) % </ TD>
<TD ALI G\=-CENTER> $<% r set . get Doubl e(2) % </ TD>

</ TR>

<% while (rset.next()) {

%
<TR> <TD ALI G\=CENTER> <% rset.get Sring(1l) % </ TD>
<TD ALI G\-CENTER> $<% r set . get Doubl e(2) % </ TD>
</ TR>
<%}
%
</ TABLE>
<% }
el se {
%
<P> Sorry, the query returned no rows! </P>
<%

}

rset.close();
stm.close();
} catch (SQException e) {
out.printIn("<P>" + "There was an error doing the query:");
out.println ("<PRB>" + e + "</PRE> \n <P>");

Sample Applications 9-11

JDBC Samples

%

</ BODY>
</ HTM.>

User-Specified Query—JDBCQuery.jsp

This page queries the scot t . enp table according to a user-specified condition and
outputs the results.

<Y@page inport="java.sql .*" %

<HTM_>
<HEAD> <TI TLE> The JOBOQuery JSP </ TI TLE> </ HEAD>
<BCDY BAOALCR=whi t e>

<% Sring searchCondition = request. get Paraneter ("cond");
if (search@ndition !'=null) { %
<H3> Search results for : <> <% searchCondition % </ 1> </ H3>
<% runQuery(searchCndition) %
<HR>

<%} %

Enter a search condition: </ B>
<FCRM METHOD=get >
<INPUT TYPE="text" NAME="cond" S ZE=30>
<INPUT TYPE="submit" VALUE="Ask QO acle");
</ FCRW>
</ BCDY>
</ HTM.>
<%
private Sring runQiery(String cond) throws SQException {
Connection conn = nul | ;
Statenmnent stm = nul | ;
ResultSet rset = null;
try {
Dri ver Manager . regi st er Dri ver (new or acl e. j dbc. dri ver. O acl eDriver());
conn = Dri ver Manager . get Gonnecti on((S ri ng) sessi on. get Val ue("conn&tr"),
"scott", "tiger");

stm = conn. createX atenent () ;
rset = stm.executeQuery ("SELECT enane, sal FRCMscott.enp "+
(cond.equal s("") ? "" : "WERE " + cond));
return (format Resul t(rset));
} catch (SQ.Exception e) {

9-12 JavaServer Pages Developer's Guide and Reference

JDBC Samples

return ("<P> SQL error: <PRE>" + e + " </PRE> <PX\n");
} finally {

if (rset!'=null) rset.close();

if (stm!=null) stm.close();

if (conn!'=null) conn.close();

}
}

private Sring format Resul t (Resul tSet rset) throws SQException {
SringBuffer sb = new SringBuffer();
if (Irset.next())
sb. append("<P> No mat chi ng rows. <P>\n");
el se { sb. append("<U>");
do { sh. append("" + rset.getString(1l) +
"earns $" +rset.getIint(2) +".</LIX\n");
} while (rset.next());
sb. append(" </ B></ U>") ;
}

return sh.toSring();

}
%

Query Using a Query Bean—UseHtmIQueryBean.jsp

This page uses a JavaBean, Ht ml Quer yBean, to query the scot t . enp table
according to a user-specified condition. Ht ml Quer yBean, in turn, uses the class
Ht m Tabl e to format the output into an HTML table. This sample includes code
for the JSP page, Ht M Quer yBean, and Ht ml Tabl e.

Code for UseHtmIQueryBean.jsp

<j sp: useBean i d="ht nh Quer yBean" cl ass="beans. H nt Quer yBean" scope="sessi on" />
<j sp: set Property nane="ht mi Quer yBean" property="searchCondition" />

<HTM_>
<HEAD> <TI TLE> The WseH ml QueryBean JSP </ TI TLE> </ HEAD>
<BCDY BAOCLCR="whi te">

<% Sring searchCondition = request. get Par anet er ("searchCondi ti on");
if (searchCondition!=null) { %
<H3>Search Results for : <I> <% searchCondition % </I> </ H3>
<% htnl QeryBean. get Resul t () %

 <HR>

Sample Applications 9-13

JDBC Samples

<% } %

<P>Enter a search condition: </ B></ P>

<FCRM METHOD=get >

<I NPUT TYPE=t ext NAME="sear chCondi ti on" S ZE=30>
<I NPUT TYPE=submt VALUE="Ask O acle">

</ FCRW>

</ BCDY>

</ HTM.>

Code for HtmlQueryBean.java

package beans;
inport java.sql.*;

public class H n QueryBean {

private String searchCndition = "";
private Sring connStr = null;

public Sring getResult() throws SQException {
return runQuery();

}

publ i c voi d set SearchGondi ti on(String searchCondition) {
thi s. searchCndi ti on = sear chCondi ti on;

}

public void setConnStr(Sring connStr) {
this.conn&r = connSr;

}

private Sring runQery() {
Qonnection conn = nul | ;
Satement stnt = nul | ;
Resul tSet rset = null;
try {
if (conn = null) {
Dri ver Manager . regi ster Dri ver (new oracl e. j dbc. dri ver. Oracl eDriver());
conn = DriverManager . get Connect i on(connStr,
"scott","tiger");

}
stm = conn. createStat enent ();
rset = stnt.executeQuery ("SEHLECT enane as \"Nane\", " +

9-14 JavaServer Pages Developer's Guide and Reference

JDBC Samples

"enpno as \"Enpl oyee Id\","+
"sal as \"Salary\"," +
"TOHAR hiredate, 'DD-MNYYYY') as \"Date Hred\"" +
"FROM scott.enp " + (searchCondition. equal s("") ? ""
"WHERE " + searchQondition));
return format(rset);;
} catch (SQException e) {
return ("<P> SQ error: <PRE>" + e +" </PRE> <P>\n");
}
finally {
try {
if (rset!=null) rset.close();
if (stm!=null) stnt.close();
if (conn!'=null) conn.close();
} catch (SQException ignored) {}
}
}

public static Sring fornat(ResultSet rs) throws SQException {
SringBuffer sb = new SringBuffer();

if (rs=null || !'rs.next())
sb. append("<P> No mat chi ng rows. <P>\n");
el se {

sb. append(" <TABLE BCRDER>\n");
Resul t Set Met aDat a nd = rs. get Met aDat a() ;
int nun@l s = nd. get Gl umGount () ;
for (int i=1; i<= nun@ols; i++) {
sh. append(" <TH><I >" + md. get Col unmLabel (i) + "</ I></TH");

}
do {
sb. append("<TR>\n");
for (int i =1; i <= nuntols; i++) {
sb. append("<TD>");
(bject obj =rs.getject(i);
if (obj '=null) sh.append(obj.toSring());
sb. append(" </ TD>") ;
}

sh. append("</ TR");
} while (rs.next());
sh. append(" </ TABLE>") ;
}
return sh.toSring();
}
}

Sample Applications 9-15

JDBC Samples

Code for HtmlITable.java
inport java.sql.*;

public class HniTabl e {

public static Sring fornat(ResultSet rs) throws SQException {
SringBuffer sb = new SringBuffer();

if (rs=null || !'rs.next())
sb. append("<P> No mat chi ng rows. <P>\n");
el se {

sb. append(" <TABLE BCRDER>\n");
Resul t Set Met aDat a nd = rs. get Met aDat a() ;
int nun@l s = nd. get Gl umGount () ;
for (int i=l; i<=nunCols; i++) {
sb. append(" <TH><I >" + nu. get Gol ummLabel (i) + "</1></ TH");

}
do {

sb. append("<TR>\n");

for (int i =1; i <= nuntols; i++) {

sh. append(" <TD>>") ;

(hject obj =rs.gethject(i);

if (obj !'=null) sb.append(obj.toString());
sh. append("</ TD");

sb. append(" </ TR>");
} while (rs.next());
sh. append(" </ TABLE>") ;

}
return sh.toSring();

}
}

Connection Caching—ConnCache3.jsp and ConnCachel.jsp

This section provides two examples of connection caching using Oracle’s caching
implementation. This implementation uses the Oracle JDBC

Oracl eConnect i onCachel npl class. For introductory information, see
"Database Connection Caching" on page 4-6. For further information see, the
Oracle8i JDBC Developer’s Guide and Reference.

The first example, ConnCache3. j sp, performs its own cache setup.

9-16 JavaServer Pages Developer's Guide and Reference

JDBC Samples

The second example, ConnCachel. j sp, uses a separate page, set upcache. j sp,
to do the setup.

Code is provided for all three pages.

Note: As a more convenient alternative, you can use the
ConnCacheBean JavaBean provided with OracleJSP. See "Page
Using ConnCacheBean—ConnCacheBeanDemo.jsp" on page 9-26.

Code for ConnCache3.jsp (with cache setup)
This sample page handles its own connection cache setup.

<Y@page inport="java.sql .*, javax.sql.*, oracle.jdbc.pool.*" %

* This is a JavaServer Page that uses Connection Caching at Session
* scope.

<j sp: useBean i d="ods" cl ass="oracl e.j dbc. pool . O acl eConnect i onCachel npl "
scope="sessi on" />

<HTM_>
<HEAD>
<TI TLE>
GonnCache 3 JSP
< T TLE>
</ HEAD>
<BDY BAOOL.CR=ECFFFC>
<HL> Hel l o
<% (request.get Renotelser () !'=null? ", " + request.getRenotelser() : "") %
I | am Gonnection Gaching JSP.
</ HL>
<HR>
 Session Level Qonnection Cachi ng.
<B

<P>
<%
try {
ods. set URL((St ri ng) sessi on. get Val ue("connStr"));
ods. set Wser ("scott");
ods. set Password("tiger");

Sample Applications 9-17

JDBC Samples

Gonnection conn = ods. get Gnnection ();

Satenent stnt = conn.createStatenent ();

Resul t Set rset = stm.executeQuery ("SELECT enane, sal " +
"FROM scot t. enp CROER BY enane") ;

if (rset.next()) {

%
<TABLE BCROER=1 BGOOLCR=" QA" >
<TH WDTH=200 BAOOLCOR="whi te"> <I >Enpl oyee Nane</|> </ TH>
<TH WDTH=100 BAOOLCR="whi te"> <I >Sal ary</1> </ TH>
<TR> <TD ALI Q\-CENTER> <% rset.getSring(l) % </ TD>

<TD ALl G\=CENTER> $<% rset . get Doubl e(2) % </ TD>

< TR>

<% while (rset.next()) {

%
<TR> <TD ALI Q\-CENTER> <% rset.getSring(l) % </ TD>

<TD ALl G\=CENTER> $<% rset . get Doubl e(2) % </ TD>

< TR>

<%}

%
</ TABLE>

<% }
el se {

%
<P> Sorry, the query returned no rows! </ P>

<%

}

rset.close();
stm.close();
conn.close(); // Put the Gonnection Back into the Pool

} catch (SQLException e) {
out.println("<P>" + "There was an error doing the query:");
out.println ("<PRB>" + e + "</PRE> \n <P>");
%

</ BODY>
</ HTM.>

9-18 JavaServer Pages Developer’'s Guide and Reference

JDBC Samples

Code for ConnCachel.jsp and setupcache.jsp

This sample page statically includes another page, set upcache. j sp, for its
connection cache setup. Code is provided for both pages.

ConnCachel.jsp

<Y@i ncl ude fil e="setupcache.jsp" %
<Y@page inport="java.sql .*, javax.sql.*, oracle.jdbc.pool.*" %

* This is a JavaServer Page that uses Connection Caching over application
* scope. The Cache is created in an application scope in setupcache.jsp
* (onnection is obtai ned fromthe Cache and recycl ed back once done.

<HTM>
<HEAD>
<TI TLE>
@nnCachel JSP
< T TLE>
</ HEAD>
<BDY BAOOLCR=ECFFFC>
<HL> Hel l o
<% (request.get RenotelUser () !'=null? ", " + request.getRenotelser() : "") %
I | am Gonnection Gachi ng JSP.
</ HL>
<HR>
 | get the onnection fromthe Cache and recycle it back.
< B

<P>
<%

try {
Gonnection conn = cods. get Gonnecti on();

Satenent stnt = conn.createStatenent ();

Resul t Set rset = stm. execut eQuery ("SELECT enane, sal " +
"FROM scott. enp CROER BY enane");

if (rset.next()) {

%

<TABLE BCROER=1 BGOOLCR=" Q0" >

<TH WDTH=200 BAOOL.CR="whi te"> <I >Enpl oyee Nane</|> </ TH>

<TH WDTH=100 BAOOLCR="whi te"> <I >Sal ary</1> </ TH>

<TR> <TD ALI Q\=-CENTER> <% rset.getSring(l) % </ TD>

Sample Applications 9-19

JDBC Samples

<TD ALl G\=CENTER> $<% rset . get Doubl e(2) % </ TD>

< TR>
<% while (rset.next()) {
%
<TR> <TD AL| Q\-CENTER> <% rset.getSring(l) % </ TD>
<TD ALl G\=CENTER> $<% rset . get Doubl e(2) % </ TD>
< TR>
<%}
%
</ TABLE>
<% }
el se {
%
<P> Sorry, the query returned no rows! </ P>
<%

}

rset.close();
stm.close();
conn.close(); // Put the Gonnection Back into the Pool
} catch (SQException e) {
out.println("<P>" + "There was an error doing the query:");
out.println ("<PRB>" + e + "</PRE> \n <P>");

%

</ BODY>
</ HTM.>

setupcache.jsp

<j sp: useBean i d="cods" cl ass="oracl e. j dbc. pool . O acl eGnnect i onCachel npl "
scope="appl i cati on">
<%
cods. set URL((Stri ng) sessi on. get Val ue("connStr™));
cods. set User ("scott");
cods. set Password("tiger");
cods. set X m Cache (5);
%
</ sp: useBean>

9-20 JavaServer Pages Developer's Guide and Reference

Database-Access JavaBean Samples

Database-Access JavaBean Samples

This section provides examples using the Oracle database-access JavaBeans. These
beans are provided with OracleJSP but are generally portable to other JSP
environments. Note, however, that the connection caching bean relies on the Oracle
JDBC implementation of connection caching.

DBBean is the simplest of these JavaBeans, with its own connection functionality
and supporting queries only. For more complicated operations, use appropriate
combinations of ConnBean (for simple connections), ConnCacheBean (for
connection caching), and Cur sor Bean (for general SQL DML operations).

For more information, see "Oracle Database-Access JavaBeans" on page 5-13.
The following examples are included:

« Page Using DBBean—DBBeanDemo.jsp

« Page Using ConnBean—ConnBeanDemao.jsp

« Page Using CursorBean—CursorBeanDemo.jsp

« Page Using ConnCacheBean—ConnCacheBeanDemo.jsp

Note: Oracle also provides custom tags for SQL functionality that
use these JavaBeans behind the scenes. For samples using these
tags, see "SQL Tag Examples" on page 5-28.

Page Using DBBean—DBBeanDemo.jsp

This page uses a DBBean object to connect to the database, execute a query, and
output the results as an HTML table.

<Y@page inport="java.sql .*" %

.
* This is a basic JavaServer Page that uses a DB Access Bean and queries
* dept and enp tables in schema scott and outputs the result in an htnh table.

<j sp: useBean i d="dbbean" cl ass="oracl e.j sp.dbutil.BBean" scope="session">
<j sp: set Property name="dbbean" property="User" val ue="scott"/>
<j sp: set Property name="dbbean" property="Password" val ue="tiger"/>
<j sp: set Property nanme="dbbean" property="UR" val ue=
"< (Sring)session. getVal ue(\"connSr\") %" />

Sample Applications 9-21

Database-Access JavaBean Samples

</j sp: useBean>

<HTM_>
<HEAD>
<TI TLE>
DBBeanDeno JSP
< T TLE>
</ HEAD>
<BDY BAOOLCR=ECFFFC>
<HL> Hel l o
<% (request.get Remotelser() !'=null? ", " + request.getRenotelser() : "")
I | am DBBeanDeno JSP.
</ HL>
<HR>
I'm using DBBean and querying DEPT & EMP tables in schema SCOTT......
| get all employees who work in the Research department.

<P>
<%
try{

String sql_string =" select ENAME from EMP,DEPT " +
"where DEPT.DNAME ='RESEARCH'" +
"and DEPT.DEPTNO = EMP.DEPTNO",

/l Make the Connection
dbbean.connect);

I Execute the SQL and geta HTML table
out.printin(dbbean.getResutASHTML Table(sql_string));

Il Close the Bean to close the connection
dbbean.close();
} catch (SQLEXxception €) {
out.printin("<P>"+ "There was an error doing the query:");
outprintin ('<PRE>"+ e +"</PRE>\n <P>");
}

%>

</BODY>
<HTML>

9-22 JavaServer Pages Developer's Guide and Reference

%

Database-Access JavaBean Samples

Page Using ConnBean—ConnBeanDemo.jsp

This page uses a ConnBean object (for a simple connection) to retrieve a
Cur sor Bean object, then uses the Cur sor Bean object to output query results as an
HTML table.

<Y@page inport="java.sql .* , oracle.jsp.dbutil.*" %

.
* This is a basic JavaServer Page that uses a Gonnection Bean and queries
* enp table in schema scott and outputs the result in an htm table.

<j sp: useBean i d="cbhean" cl ass="oracle.jsp.dbutil.ConnBean" scope="session">
<j sp: set Property name="cbean" property="User" val ue="scott"/>
<j sp: set Property name="cbean" property="Password" val ue="tiger"/>
<j sp: set Property nanme="cbean" property="UR" val ue=
"< (Sring)session. getVal ue(\"connSr\") %"/>
<j sp: set Property nanme="cbean" property="PreFetch" val ue="5"/>
<j sp: set Property name="cbean" property="StniCacheS ze" val ue="2"/>
</ sp: useBean>

<HTM_>
<HEAD>
<TI TLE>
Gonnecti on Bean Deno JSP
< T TLE>
</ HEAD>
<BDY BAOALR=ECFFFC>
<HL> Hel l o
<% (request.get Renotelser () !'=null? ", " + request.getRenotelser() : "") %
! | am Gonnection Bean Deno JSP.
</ HL>
<HR>
I'm using connection and a query bean and querying employee names
and salaries from EMP table in schema SCOTT..

<P>
<%

fry{

1/ Make the Connection
chean.connect();

Sample Applications 9-23

Database-Access JavaBean Samples

Sring sql = "SELECT ename, sal FROMscott.enp CRDER BY enane";

/1 get a Qursor Bean
Qur sor Bean cb = cbean. get Qur sor Bean (Qur sor Bean. PREP_STMI, sdql);

out . println(ch.get Result ASHTM.Tabl e());

/1 Qose the cursor bean
cb. cl ose();
/1 dose the Bean to close the connection
cbean. cl ose();
} catch (SQException e) {
out.println("<P>" + "There was an error doing the query:");
out.println ("<PRB>" + e + "</PRE> \n <P>");

%

</ BODY>
</ HTM.>

Page Using CursorBean—CursorBeanDemo.jsp

This page uses a ConnBean object (for a simple connection) and a Cur sor Bean
object to execute a PL/SQL statement, get a REF CURSOR, and translate the results
into an HTML table.

<Y@page inport="java.sql .* , oracle.jsp.dbutil.*" %

=

* This is a basic JavaServer Page that uses a Qursor and Conn Beans and queri es
* dept table in schema scott and outputs the result in an htm table.

<j sp: useBean i d="connbean" class="oracl e.jsp.dbutil.ConnBean" scope="sessi on">
<j sp: set Property name="connbean" property="User" val ue="scott"/>
<j sp: set Property nanme="connbean" property="Password" val ue="tiger"/>
<j sp: set Property nane="connbean" property="UR" val ue=
"< (Sring)session. get Val ue(\"connStr\") %" />
</ sp: useBean>
<j sp: useBean i d="cbhean" class="oracle.jsp.dbutil.QursorBean" scope="session">
<j sp: set Property nane="cbean" property="PreFetch" val ue="10"/>
<j sp: set Property name="cbean" property="ExecuteBatch" val ue="2"/>

9-24 JavaServer Pages Developer's Guide and Reference

Database-Access JavaBean Samples

</j sp: useBean>

<HTM>
<HEAD>
<TI TLE>
Qur sor Bean Deno JSP
< T TLE>
</ HEAD>
<BDY BAOACR-ECFFFC>
<HL> Hel l o
<% (request.get Renotelser() !=null? ", " + request.getRemotelser() : "") %
! | amQrsor Bean JSP.
</ HL>
<HR>
 | ‘musi ng cbean and i’ mquering departnent nanes from DEPT table
in schema SQOTT..
<B

<P>
<%

try {

/1 Make the Qonnection
connbean. connect ();

Sring sql = "BEA N CPEN ? FCR SH.ECT DNAME FROM DEPT; END “;

/]l Geate a Call abl e Stat enent

cbean. create (connbean, QursorBean. CALL_STMI, sql);

cbean. regi st er Qut Paranet er (1, or acl e. j dbc. dri ver . O acl eTypes. ORS(R) ;

/1 Execute the PLSQL
cbean. execut elpdat e ();

/1 Get the Ref Qursor
Resul t Set rset = cbean. get Qursor(1);

out.println(oracle.jsp.dbutil.Beanltil.transl ateToHM.Tabl e (rset));

/1 dose the Ref Qursor
rset.close();

/1 dose the Bean
cbean. cl ose();

Sample Applications 9-25

Database-Access JavaBean Samples

/! dose the connection
connbean. cl ose() ;

} catch (SQLException e) {
out.println("<P>" + "There was an error doing the query:");
out.println ("<PRB>" + e + "</PRE> \n <P>");

%

</ BODY>
</ HTM.>

Page Using ConnCacheBean—ConnCacheBeanDemo.jsp

This page uses a ConnCacheBean object to obtain a connection from a connection
cache. It then uses standard JDBC functionality to execute a query, formatting the
results as an HTML table.

<Y@page inport="java.sql .*, javax.sql.*, oracle.jsp.dbutil.@nnCacheBean" %

=

* This is a basic JavaServer Page that does a JDBC query on the
* enp table in schema scott and outputs the result in an htm table.
* Wses Qonnection Cache Bean.

<j sp: useBean i d="ccbean" cl ass="oracl e.j sp. dbutil.nnCacheBean"
scope="sessi on" >
<j sp: set Property name="ccbean" property="user" val ue="scott"/>
<j sp: set Property name="ccbean" property="password" val ue="tiger"/>
<j sp: set Property nane="ccbean" property="UR" val ue=
"< (Sring)session. getVal ue(\"connSr\") %" />
<j sp: set Property name="ccbean" property="MixLimt" val ue="5" />
<j sp: set Property nanme="ccbean" property="CacheSchene" val ue=
"<0& onnCacheBean. FI XED RETURN NULL_SCHEME %" />
</ sp: useBean>
<HTM_>
<HEAD>
<TI TLE>
S npl eQuery JSP
< T TLE>
</ HEAD>
<BDY BAOOL.CR=ECFFFC>

9-26 JavaServer Pages Developer's Guide and Reference

Database-Access JavaBean Samples

<Hl> Hello

<% (request.get Renotelser() !=null? ", " + request.getRemotelser() : "") %
I | am Qonnecti on Cache Deno Bean

</ HL>

<H>

 | will do a basic JDBC query to get enpl oyee data
fromBWP tabl e in schema SQOIT. The connection i s obtained from
t he Gonnecti on Cache.

Gonnection conn = ccbhean. get Gonnection();

conn. createS aterrent ();
st n. execut eQuery ("SELECT enane, sal " +
"FROM scott. enp CROER BY enane");

<TABLE BCROER=1 BGOOLCR=" QA" >

<TH WDTH=200 BAOOLOR="whi te"> <I >Enpl oyee Nane</|> </ TH>

<TH WDTH=100 BAOOLCR="whi te"> <I >Sal ary</1> </ TH>

<TR> <TD ALI Q\=CENTER> <% rset.getSring(l) % </ TD>
<TD ALl G\=CENTER> $<% rset . get Doubl e(2) % </ TD>

<TR> <TD ALI Q\-CENTER> <% rset.getSring(l) % </ TD>
<TD ALl G\=CENTER> $<% rset . get Doubl e(2) % </ TD>

<P> Sorry, the query returned no rows! </ P>

<B
<P>
<%
try {
Satenent stnt
Resul t Set rset
if (rset.next()) {
%
< TR>
<% while (rset.next()) {
%
< TR>
<%}
%
</ TABLE>
<% }
el se {
%
<%
}

rset.close();

Sample Applications 9-27

Database-Access JavaBean Samples

stn.close();
conn. cl ose() ;
ccbean. cl ose();
} catch (SQException e) {
out.println("<P>" + "There was an error doi ng the query:");
out.println ("<PRB>" + e + "</PRE> \n <P>");

%

</ BODY>
</ HTM.>

9-28 JavaServer Pages Developer’'s Guide and Reference

Custom Tag Samples

Custom Tag Samples
This section includes the following:
« asample using some of the Oracle JSP Markup Language (JML) custom tags

« referrals to additional custom tag samples elsewhere in this document

JML Tag Sample—hellouser_jml.jsp

This section provides a basic sample using some of the Oracle JML custom tags.

This is a modified version of the hel | ouser . j sp sample provided earlier in this
chapter. For contrast, both the JML code and the original code are provided here.

Note that the runtime implementation of the JML tag library is portable to other JSP
environments. For an overview of the runtime implementation, see "Overview of
the JSP Markup Language (JML) Sample Tag Library" on page 7-20. For information
about the compile-time (non-portable) implementation, see Appendix C,
"Compile-Time JML Tag Support".

Code for hellouser_jml.jsp (using JML tags)

Gopyright (c) 1999, Gacle Corporation. Al rights reserved.

<%page session="fal se" %
<Y@taglib uri="VEB-INF/jm.tld" prefix="jm" %

<j m : useFormi d="nane" paran"'newNane" scope="request" />

<HTM_>
<HEAD>

<Tl TLE>
Hel o Wser
< TITLE>
</ HEAD>

<BCDY>

<m:if condition="!nane.isEmpty()" >

<H3>\W¥l cone <jm:print eval ="nane. get Val ue()" /></ H3>
<jm:if>

<P~

Sample Applications 9-29

Custom Tag Samples

Enter your Nane:

<FCRM METHOD=get >

<I NPUT TYPESTEXT nane=newNane si ze = 20>

<INPUT TYPEESIBM T VALUE="Submit nane" >

</ FCRW>

</ BCDY>
</ HTM.>

Code for hellouser.jsp (not using JML tags)

<Ypage session="fal se" %

<j sp: useBean i d="nange" cl ass="oracle.jsp.jm.Jnm Sring" scope="request" >
<j sp: set Property nane="nange" property="val ue" paran¥'newNane" />
</j sp: useBean>

<HTM_>
<HEAD>

<Tl TLE>
Hel o Wser
< TITLE>
</ HEAD>

<BCDY>

<%if ('nane.isBEmpty()) { %
<H3>\M¢| cone <% nane. get Val ue() %</ H3>
<%} %

<P>

Enter your Nane:

<FCRM METHOD=get >

<I NPUT TYPESTEXT nane=newNane si ze = 20>

<INPUT TYPEESLBM T VALUE="Submit nane" >

</ FCRW

</ BCDY>
</ HTM.>

9-30 JavaServer Pages Developer's Guide and Reference

Custom Tag Samples

Pointers to Additional Custom Tag Samples
Additional custom tag samples are provided elsewhere in this document:

« For acomplete example of defining and using a standard JSP 1.1-compliant
custom tag, see "End-to-End Example: Defining and Using a Custom Tag" on
page 7-15.

« For samples using the Oracle custom tag library for SQL functionality, see "SQL
Tag Examples" on page 5-28.

Sample Applications 9-31

Samples for Oracle-Specific Programming Extensions

Samples for Oracle-Specific Programming Extensions

This section provides a variety of examples using Oracle-specific extensions. This
includes the following:

« Page Using JspScopeListener—scope.jsp
« XML Query—XMLQuery.jsp
« SQLJ Queries—SQLJSelectinto.sqljsp and SQLJIterator.sqljsp

Page Using JspScopeListener—scope.jsp

This sample illustrates the use of a JspScopelLi st ener implementation to allow
JSP objects attached to a scope to be notified when they are going "out of scope”.
The sample implements a generic listener that redispatches the out-of-scope
notification to the registered object or method. In using this listener, scope. j sp is
able to simulate page event handlers for request and page out-of-scope notification.

This sample creates and attaches a listener object to the r equest and page scopes.
It registers local methods to handle out-of-scope notifications forwarded by the
listener. To illustrate this, the sample keeps two counters—the first is a page count;
the second is a count of the number of included files.

The current page count is logged when the page goes out of scope. The included
page count is logged when the request goes out of scope. The sample then proceeds
to include itself five times.

The sample outputs six messages indicating a page count of 1, followed by a single
message indicating five j sp: i ncl ude operations occurred.

For general information about the JspScopelLi st ener mechanism, see "OracleJSP
Event Handling—JspScopeListener" on page 5-32.

Listener Implementation—PageEventDispatcher

PageEvent Di spat cher is aJavaBean that implements the JspScopeLi st ener
interface. The interface defines the out Of Scope() event method, which takes a
JspScopeEvent object as input. The out Of Scope() method of a

PageEvent Di spat cher object is called when the scope (appl i cati on,

sessi on, page, orr equest) associated with the object is ending.

In this sample, a PageEvent Di spat cher object acts as a redispatcher for the JSP
page, allowing the JSP page to host the equivalent of gl obal s. j sa "onend"
functionality for page and request events. The JSP page creates a

PageEvent Di spat cher object for each scope for which it wants to provide an

9-32 JavaServer Pages Developer's Guide and Reference

Samples for Oracle-Specific Programming Extensions

event handler. It then registers the event handler method with the
PageEvent Di spat cher object. When the PageEvent Di spat cher object is
notified that it is going out of scope, it calls the registered "on end" method of the

page.

package oracl e. j sp. sanpl e. event ;

inport java.lang.reflect.*;
inport oracle.jsp.event.*;

public cl ass PageEvent O spat cher extends (bject inplenents JspScopeli stener {

private (bject page;
private Sring net hodN\ane;
private Mt hod net hod;

publ i ¢ PageBEvent D spat cher () {
}

publ i c (hject getPage() {
return page;

}

public void setPage((hj ect page) {
thi s. page = page;
}

public String get Met hodNane() {
return net hodN\ane;

}

public void set Met hodNanme(String nm)
t hrows NoSuchMet hodException, O assNot FoundException {
net hod = verifyMethod(n);
net hodNane = m

}

public void out Ff Scope(JspScopeEvent ae) {
int scope = ae. get Scope();

if ((scope == javax.servlet.jsp. PageCont ext. REQUEST SOCPE ||
scope == javax. servl et.]j sp. PageCont ext . PACE SOCPE) &&
nethod !'= null) {

try {
(pj ect args[] = {ae.getApplication(), ae.getCntainer()};

Sample Applications 9-33

Samples for Oracle-Specific Programming Extensions

net hod. i nvoke(page, args);
} catch (Exception e) {
/1 catch all and continue

}
}

private Method verifyMethod(Sring n)
t hrows NoSuchMet hodException, O assNot FoundException {
if (page == null) throw new NoSuchMet hodExcepti on
("A page hasn't been set yet.");

/* Don't know whether this is a request or page handl er so try one then
the ot her
*/
dass ¢ = page.getd ass();
d ass pTypes[] = {d ass. forNane("j avax. servl et. Servl et Gontext "),
A ass. for Nange("j avax. servl et. j sp. Pagent ext") };

try {
return c. get Decl aredMet hod(m pTypes);
} catch (NoSuchMet hodException nsne) {
/] fall through and try the request signature

}

pTypes[1] = d ass. forName("javax. servlet.http. HtpServl et Request");
return c.getDecl aredMet hod(m pTypes);

scope.jsp Source

This JSP page uses the preceding PageEvent Di spat cher class (which
implements the JspScopelLi st ener interface) to track events of page or
request scope.

<%- decl are request and page scoped beans here --%

<j sp:useBean id = "includeQunt" class = "oracl e.jsp.jnt.Jnm Nunber" scope = "request" />
<j sp:useBean id = "pageCount" class = "oracl e.j sp.jnt.Jm Nunber" scope = "page" >
<j sp: set Property nane = "pageCount "
property = "val ue" val ue = "<% pageCount.getValue() + 1 %" />
</j sp: useBean>

9-34 JavaServer Pages Developer’'s Guide and Reference

Samples for Oracle-Specific Programming Extensions

<%- decl are the event dispatchers --%

<j sp:useBean id = "request D spatcher" class = "oracl e.j sp. sanpl e. event . PageEvent D spat cher "
scope = "request” >
<j sp: setProperty nane = "request D spatcher" property = "page" value = "<% this %" />
<j sp: setProperty nane = "request D spatcher" property = "net hod\ane"
val ue = "request_QnEnd" />
</ sp: useBean>
<j sp: useBean id = "pageD spat cher" class = "oracl e.j sp. sanpl e. event . PageBEvent D spat cher "
scope = "page" >
<j sp: set Property nane = "pageD spatcher" property
<j sp: set Property nane =

"page" value = "<% this %" />
"pageD spat cher" property = "net hod\ane" val ue = "page Ohend" />
</ sp: useBean>
<%

/1 request _(nEnd Bvent Handl er

public voi d request _QnEnd(Servl et Gontext application, HtpServl et Request request)
/] acquire beans
oracl e.jsp.jnt.Jm Nunber incl udeCount

{

(oracle.jsp.jm.Jn Nunber) request.getAttribute("includeCount");

/1 now cl eanup the bean
if (includeCount !=null) application.log
("request _hEnd: I ncl ude count =" + includeCount. get Val ue());
}

/1 page_(nEnd BEvent Handl er

public voi d page hEnd(Servl et Context appl i cation, PageContext page) {
/] acquire beans

oracl e.jsp.jn.Jnk Nunber pageCount

(oracle.jsp.jm.Jn Nunber) page. get Attribute("pageCount");

/1 now cl eanup the bean -- uncorment code for real bean
if (pageCount != null) application.log
("page_nEnd: Page count =" + pageQount . get Val ue());
}
%

<%- Page inplenentati on goes here --%

<j sp: setProperty nane = "includeCount" property = "val ue"
value = '<% (request.getAttribute("javax. servlet.include.request_uri")
I'=null) ?includeCount.getValue() +1: 0 % />
<h2> Hell o Wirl d </ h2>

Sample Applications 9-35

Samples for Oracle-Specific Programming Extensions

Incl uded: <% request.getAttribute("javax.servlet.include.request_uri") %
Gount: <% incl udeCount . get Val ue() %

<%if (includeCount.getValue() <5) { %
<j sp:include page="scope.jsp" flush = "true" />
<%} %

XML Query—XMLQuery.jsp

This example connects to a database, executes a query, and uses functionality of the
oracl e.xm . sql . query. O acl eXM_Quer y class to output the results as an
XML string.

This is Oracle-specific functionality. The Or acl eXM_Quer y class is provided with
Oracle8i as part of the XML-SQL utility.

For general information about XML and XSL usage with JSP pages, see "OracleJSP
Support for XML and XSL" on page 5-9.

<Y@page inport = "java.sql.*,oracle. xni.sql.query.Qacl eXMQery" %
<ht n >

<head><title> The XM.Query Deno </titl e></head>
<body>
<hl> XM.Query Deno </ hl>
<h2> Enpl oyee List in XM </ h2>
(\Vi ew Page Source in your browser to see XM. out put)
<% (onnection conn = nul | ;

S at enent st nt nul | ;

Resul t Set rset nul | ;

try {

/1 determne JDBC driver nane from session val ue
/1 if null, use JDBC kprb driver if in JServer, JDBC oci otherw se
String dbURL = (String) session. get Val ue("connStr");
if (dbURL == null)
dbURL = (Systemget Property("oracl e.jserver.version') == null?
"jdbc:oracle:oci 8@ : "jdbc:oracl e: kprb: @) ;

Dri ver Manager . regi st er Dri ver (new or acl e. jdbc. dri ver. O acl eDriver());

9-36 JavaServer Pages Developer's Guide and Reference

Samples for Oracle-Specific Programming Extensions

conn = Dri ver Minager . get Gonnecti on(dbUR., "scott", "tiger");
stm = conn.createStatenent ();
rset = stnt.executeQuery ("SELECT enane, sal " +
"FROM scott. enp GRDER BY enane");
QO acl eXMQuery xq = new O acl eXM.Query(conn, rset); %
<PRE> <9 xg.getXM.Sring() % </ PRE>
<% } catch (java.sql .SQException e) { %
<P> SQ error: <PRE> <% e % </PRE> </P>
<% } finally {
if (stmt !'=null) stnt.close();

if (rset '=null) rset.close();
if (conn !=null) conn.close();
} %
</ body>
</ htnm >

SQLJ Queries—SQLJSelectlInto.sgljsp and SQLJIterator.sqljsp

This section provides examples of using SQLJ in JSP pages to query a database.

The first example, SQLJSel ect | nt 0. sql j sp, selects a single row using SQLJ
SELECT | NTOsyntax.

The second example, SQLJI t er at or . sql j sp, selects multiple rows into a SQLJ
iterator, which is similar to a JDBC result set.

For information about using SQLJ in JSP pages, see "OracleJSP Support for Oracle
SQLJ" on page 5-33.

For general information about Oracle SQLJ programming features and syntax, see
the Oracle8i SQLJ Developer’s Guide and Reference.

Code for SQLJSelectInto.sqljsp (select single row)

This example selects a single row from the database, using SQLJ SELECT | NTO
syntax.

<Y@page inport="sqlj.runtine.ref.Defaul t Context,oracle.sqlj.runtine. acle" %
<HTM_>

<HEAD> <TI TLE> The SQJSel ectinto JSP </ Tl TLE> </ HEAD>

<BCDY BAOCLCR=whi t e>

<%
Sring connStr=request . get Paraneter("connXr");

Sample Applications 9-37

Samples for Oracle-Specific Programming Extensions

if (connStr==null) {
connStr=(String)sessi on. get Val ue("connStr");
} else {
sessi on. put Val ue("connStr", connStr) ;
}
if (connStr==null) { %
<jsp:forward page="../setconn.jsp" />
<%

}
%

<%
Sring enpno = request . get Paranet er ("enpno");
if (enpno '=null) { %
<H3> Enpl oyee # <¥%enpno % Details: </ H3>
<% runQuery(conn&tr, enpno) %
<HR>

<%} %

Ent er an enpl oyee nunber: </ B>
<FCRM METHOD=get >
<INPUT TYPE="text" NAME="enpno" S ZE=10>
<INPUT TYPE="submit" VALUE="Ask QO acle");
</ FCRW>
</ BCDY>
</ HTM.>
<%
private Sring runQiery(String connSr, String enpno) throws
java.sql . SQLException {
Def aul t Gontext dctx = nul | ;

String enane = null; double sal = 0.0; String hireDate = null;
StringBuffer sb = new StringBuffer();

try {

dct x = O acl e. get Gnnecti on(connStr, "scott", "tiger");

#sgl [dctx] { SELECT enane, sal, TO CHAR hiredate, ' DD MON YYYY')
INTO : enane, :sal, :hireDate

FRCM scot t . enp WERE UPPER enpno) = UPPER(: enpno)

b

sb. append(" <BLOKQUOTE><B| G<PRE>\ n") ;
sb. append(" Nane " + enane + "\n");
sb. append(" Sal ary "+ sal +"\n");

sb. append("Date hired : " + hirelate);
sh. append(" </ PRE></ B></ Bl G></ BLOKQUOTE>") ;

} catch (java.sql.SQException e) {

9-38 JavaServer Pages Developer’'s Guide and Reference

Samples for Oracle-Specific Programming Extensions

sb. append("<P> SQ error: <PRE>" + e +" <JPRE> </P>\n");

} finally {
if (detx!'=null) dctx.close();
}

return sh.toString();

%

Code for SQLJIterator.sqljsp (select multiple rows)
This example selects multiple rows from the database, using a SQLJ iterator.

<Y@page inport="j ava.sql .*" %
<Y@page inport="sqlj.runtine.ref.Defaul t Context,oracle.sqlj.runtine. Qacle" %

.
* This is a SQLJ JavaServer Page that does a SQJ query on the
* enp table in schema scott and outputs the result in an htm table.

<% #sql iterator Enpiter(Sring ename, double sal, java.sql.Date hiredate) %

<%
Sring connStr=request . get Paraneter("connXr");
if (connStr==null) {
connStr=(String)sessi on. get Val ue("connStr");
} else {
sessi on. put Val ue("connStr", connStr) ;
}
if (connStr==null) { %
<j sp:forward page="../setconn.jsp" />

<%
}
%
<%
Def aul t Gontext dctx = nul | ;
dct x = O acl e. get Gonnecti on(connSr, "scott", "tiger");
%
<HTM_>

<HEAD> <TITLE> The Sgljlterator SQISP </ TITLE> </ HEAD>
<BCDY BAOOLCR=" EOFFFO" >

Sample Applications 9-39

Samples for Oracle-Specific Programming Extensions

<% String user;
#sqgl [dctx] {SELECT user INTFO:user FROMdual };
%

<HI> Hel | o, <% user %! </ H1>
<HR>
1| will use a SQJ iterator to get enpl oyee data
fromBW tabl e in schema SCOIT. .
</ B>
<P>
<%
Enpi ter enps;
try {
#sgl [dctx] enps = { SHLECT enane, sal, hiredate
FROM scot t. enp CRDER BY enang} ;
if (enps.next()) {
%
<TABLE BCROER=1 BGOOLCR=" Q">
<TH WDTH=200 BAOOLCR=whi t e> Enpl oyee Nane </ TH>
<TH WDTH-100 BAOOLCR~whi te> Sal ary </ TH>
<TR> <TD> <% enps. enane() % </ TD>
<TD> <% enps.sal () % < TD>
< TR>

<% while (enps.next()) {

%
<TR> <TD> <% enps. enane() % </ TD>
<TD> <% enps.sal () % < TD>
< TR>
<%} %
</ TABLE>

<% } else { %

<P> Sorry, the query returned no rows! </ P>
<%

enps. cl ose() ;

} catch (SQException e) { %

<P>There was an error doing the query: <PRE> <% e % </ PRE> <P>
<%)} %
</ BCDY>
</ HTM.>

9-40 JavaServer Pages Developer's Guide and Reference

Samples Using globals.jsa for Servlet 2.0 Environments

Samples Using globals.jsa for Servlet 2.0 Environments

This section has examples of how the Oracle gl obal s. j sa mechanism can be used
in servlet 2.0 environments to provide an application framework and
application-based and session-based event handling. The following examples are
provided:

« globals.jsa Example for Application Events—Iotto.jsp
« globals.jsa Example for Application and Session Events—index1.jsp
« globals.jsa Example for Global Declarations—index2.jsp

For information about gl obal s. j sa usage, see "OracleJSP Application and
Session Support for Servlet 2.0" on page 5-37.

Note: The examples in this section base some of their functionality
on application shutdown. Many servers do not allow an application
to be shut down manually. In this case, gl obal s. j sa cannot
function as an application marker. However, you can cause the
application to be automatically shut down and restarted
(presuming devel oper _node=f al se) by updating either the

| ott 0.] spsource or the gl obal s. j sa file. (The OracleJSP
container always terminates a running application before
retranslating and reloading an active page.)

globals.jsa Example for Application Events—Iotto.jsp

This sample illustrates OracleJSP gl obal s. j sa event handling through the
application_OnStart andappl i cati on_OnEnd event handlers. In this
sample, numbers are cached on a per-user basis for the duration of the day. As a
result, only one set of numbers is ever presented to a user for a given lottery
drawing. In this sample, a user is identified by their IP address.

Code has been written for appl i cati on_OnSt art and appl i cati on_OnEnd to
make the cache persistent across application shutdowns. The sample writes the
cached data to a file as it is being terminated and reads from the file as it is being
restarted (presuming the server is restarted the same day that the cache was
written).

Sample Applications 9-41

Samples Using globals.jsa for Servlet 2.0 Environments

globals.jsa File for lotto.jsp
<Y@page inport="java. util.*, oracle.jsp.jm.*" %

<j sp: useBean id = "cachedNunbers" class = "java.util.Hashtabl e" scope = "application" />

<event:application_nStart>

<%
Cal endar today = Cal endar. get | nstance();
application.setAttribute("today", today);
try {
FlelnputSreamfis = new F | el nput S ream
(appl i cation. get Real Path("/")+Fi | e. separator+'l ott 0. che");
(oj ect I nput Stream oi s = new (pj ect | nput Streanffis);
Cal endar cacheDay = (Cal endar) ois.read(ject();
i f (cacheDay. get (Cal endar. DAY O YEAR == today. get (Cal endar. DAY CF YEAR)) {
cachedNunbers = (Hashtabl e) ois. read)j ect();
appl i cation.set Attribut e("cachedNunbers", cachedNunbers);
}
oi s.cl ose();
} catch (Exception theE) {
/] catch all -- can't use persistent data
}
%

</event:application_ (hSart>
<event : appl i cati on_QOhEnd>

<%

Cal endar now = Cal endar . get | nstance();

Cal endar today = (Cal endar) application.getAttribute("today");

if (cachedNunbers.isEnpty() ||

now get (Cal endar. DAY_(F_YEAR) > today. get (Cal endar . DAY COF YEAR)) {

Filef = new F le(application.getReal Path("/")+F | e. separat or+"l otto. che");
if (f.exists()) f.delete();
return;

try {
FleQutputSreamfos = new Fil eQut put S ream

(appl i cation. get Real Path("/")+Fi | e. separator +'l ott 0. che");
(bj ect Qut put Stream oos = new (bj ect Qut put & r ean{f os) ;
0os. witeChj ect (today);
0os. w it e(yj ect (cachedNunber s) ;

9-42 JavaServer Pages Developer’'s Guide and Reference

Samples Using globals.jsa for Servlet 2.0 Environments

00s. cl ose();
} catch (Exception theE) {
/] catch all -- can't use persistent data

}
%

</ event: appl i cati on_QnEnd>

lotto.jsp Source

<Y@page session = "false" %
<jsp:useBean id = "picker" class = "oracle.jsp.sanple.lottery. LottoPi cker" scope = "page" />

<HTM_>

<HEAD><TI TLE>Lot t 0 Nunber Gener at or </ Tl TLE></ HEAD>
<BCDY BACKARAND="i nages/ creamj pg" BGOCLOR="#FFFFFF' >
<HL ALl G\F"' CENTER' ></ H1>

<I-- <HL ALI G\F"CENTER'> | P. <% request . get Renot eAddr () %
 -->

<HL ALI O\="CENTER' >Your Speci al |y Pi cked</ HL>

<P ALlI G\F" CENTER' ><| M5 SRC="i nages/ w nni ngnunber s. gi f" WDITH="450" HEl GHT="69" ALl G\="BOTTQM
BORCER="0"></ P>

<P~

<P ALI O\" CENTER' >
<TABLE ALl G\="CENTER' BORDER="0" CHLLPADD NG="0" CELLSPAA NG="0">
<TR>
<%
int[] picks;
String identity = request. get Rermot eAddr () ;

/1 Make sure its not tonorrow
Cal endar now = Cal endar . get | nstance();
Cal endar today = (Cal endar) application.getAttribute("today");
i f (now get (Cal endar. DAY OF YEAR > today. get (Cal endar. DAY (F YEAR)) {
Systemout. printl n("New day....");
cachedNunber s. cl ear () ;
today = now
application. setAttribute("today", today);
}

synchroni zed (cachedNunbers) {

Sample Applications 9-43

Samples Using globals.jsa for Servlet 2.0 Environments

}

if ((picks = (int []) cachedNunbers. get(identity)) == null) {
pi cks = pi cker.get A cks();
cachedNunber s. put (i dentity, picks);

}

for (int i =0; i <picks.length; i++ {

%

<TD>

<I MG SRC="i mages/ bal | <% picks[i] %.gif" WDTH"68" HE GHT="76" ALl G\="BOTTGM BORDER="0">

</ TD>

<%
}
%
</ TR>
</ TABLE>

<P>

<P ALl G\=" CENTER' >

<I M5 SRC="i nages/ pl ayr espon. gi f" WDITH="120" HEl GHT="73" ALI G\="BOITGM BCRDER="0">

</ BCDY>
</ HTM.>

globals.jsa Example for Application and Session Events—index1.jsp

This example uses a gl obal s. j sa file to process applications and session lifecycle
events. It counts the number of active sessions, the total number of sessions, and the
total number of times the application page has been hit. Each of these values is
maintained at the appl i cat i on scope. The application page (i ndex1. j sp)
updates the page hit count on each request. The gl obal s. j sa

sessi on_OnSt art event handler increments the number of active sessions and
the total number of sessions. The gl obal s. j sa sessi on_OnEnd handler
decrements the number of active sessions by one.

The page output is simple. When a new session starts, the session counters are
output. The page counter is output on every request. The final tally of each value is
outputin the gl obal s. j sa appl i cati on_OnEnd event handler.

9-44 JavaServer Pages Developer's Guide and Reference

Samples Using globals.jsa for Servlet 2.0 Environments

Note the following in this example:

= When the counter variables are updated, access must be synchronized, as these
values are maintained at appl i cati on scope.

« The count values use the OracleJSP or acl e. j sp.j m . Jm Nunber extended
datatype. This is a built-in bean that simplifies the use of data values at
application scope. (For information about the JML extended datatypes, see
"JML Extended Datatypes" on page 5-2.)

globals.jsa File for index1.jsp
<Y@taglib uri="oracle.jsp. parse. QpenJspRegi sterLi b" prefix="jm" %

<event:application_nStart>

<%- Initializes counts to zero --%
<j sp: useBean i d="pageCount" class="oracle.jsp.jni.Jn Nunber" scope = "application" />
<j sp: useBean i d="sessi onCount" cl ass="oracl e.jsp.jn.Jm Nunber" scope = "application" />
<j sp: useBean i d="acti veSessi ons" cl ass="oracl e.jsp.jnm.Jm Nunber" scope = "application" />
<%- Consider storing pageCount persistently -- If you doread it here --%

</event:application_ (hSart>
<event : appl i cati on_QOhEnd>

<%- Acquire beans --%

<j sp: useBean i d="pageCount" class="oracle.jsp.jni.Jn Nunber" scope = "application" />

<j sp: useBean i d="sessi onCount" cl ass="oracl e.jsp.jn.Jm Nunber" scope = "application" />
<% application.| og("The nunber of page hits were: " + pageCount.getValue()); %

<% application.log("The nunber of client sessions were: " + sessionCount.getValue()); %
<%- Consider storing pageCount persistently -- If you do wite it here --%

</ event : appl i cati on_ChEnd>
<event:sessi on_hStart >

<%- Acquire beans --%
<j sp: useBean i d="sessi onCount" cl ass="oracl e.jsp.jn.Jm Nunber" scope = "application" />
<j sp: useBean i d="activeSessi ons" class="oracl e.jsp.jnm.Jm Nunber" scope = "application" />

<%
synchroni zed (sessi onGunt) {
sessi on(ount . set Val ue(sessi onCount . get Val ue() + 1);
%

Sample Applications 9-45

Samples Using globals.jsa for Servlet 2.0 Environments

Sarting session # <% sessionCount. get Val ue() %

<%
}
%
<%

synchroni zed (activeSessions) {
acti veSessi ons. set Val ue(acti veSessi ons. get Val ue() + 1);
%
There are currently <% activeSessions. get Val ue() % </ b> active sessions <p>
<%

}
%

</event:session S art>
<event : sessi on_(hEnd>

<%- Acquire beans --%
<j sp: useBean i d="activeSessi ons" class="oracl e.jsp.jn.Jm Nunber" scope = "application" />

<%
synchroni zed (activeSessi ons) {
acti veSessi ons. set Val ue(acti veSessi ons. get Val ue() - 1);

}
%

</ event : sessi on_hEnd>

index1.jsp Source

<%- Acquire beans --%
<j sp: useBean i d="pageCount" class="oracl e.jsp.jn.Jn Nunber" scope = "application" />

<%
synchr oni zed(pageCount) {
page@unt . set Val ue(pageCount . get Val ue() + 1);

}
%

Thi s page has been accessed <% pageCount.getVal ue() % </ b> tines.
<p>

9-46 JavaServer Pages Developer's Guide and Reference

Samples Using globals.jsa for Servlet 2.0 Environments

globals.jsa Example for Global Declarations—index2.jsp

This example uses a gl obal s. j sa file to declare variables globally. It is based on
the event handler sample in "globals.jsa Example for Application and Session
Events—indexLl.jsp" on page 9-44, but differs in that the three application counter
variables are declared globally. (In the original event-handler sample, by contrast,
each event handler and the JSP page itself had to provide j sp: useBean statements
to locally declare the beans they were accessing.)

Declaring the beans globally results in implicit declaration in all event handlers and
the JSP page.

globals.jsa File for index2.jsp
<%- globally declares variables and initializes themto zero --%

<j sp: useBean i d="pageCount" class="oracl e.jsp.jn.Jn Nunber" scope = "application" />
<j sp: useBean i d="sessi onCount" cl ass="oracl e.j sp.jnh.Jnh Nunber" scope = "application" />
<j sp: useBean i d="acti veSessi ons" class="oracl e.jsp.jn.Jm Nunber" scope = "application" />
<event:application_nStart>

<%- Consider storing pageCount persistently -- If you doread it here --%
</event:application_ (hSart>

<event : appl i cati on_QOhEnd>

<% appl ication.|l og("The nunber of page hits were: " + pageCount.getValue()); %
<% application.log("The nunber of client sessions were: " + sessionCount.getValue()); %

<%- Consider storing pageCount persistently -- If you do wite it here --%
</ event: appl i cati on_QhEnd>
<event : sessi on_nStart >
<%
synchroni zed (sessi onCount) {
sessi on(ount . set Val ue(sessi onCount . get Val ue() + 1);

%

Starting session # <% sessionCount.getVal ue() %

Sample Applications 9-47

Samples Using globals.jsa for Servlet 2.0 Environments

<%

}
%

<%
synchroni zed (activeSessions) {
acti veSessi ons. set Val ue(acti veSessi ons. get Val ue() + 1);
%
There are currently <% activeSessions. get Val ue() % </ b> active sessions <p>
<%

}
%

</event:session S art>
<event : sessi on_(hEnd>
<%

synchroni zed (activeSessi ons) {
acti veSessi ons. set Val ue(acti veSessi ons. get Val ue() - 1);

}
%
</ event : sessi on_hEnd>
index2.jsp Source
<%- pageCount declared in globals.jsa so active in all pages --%
<%

synchr oni zed(pageCount) {
page@unt . set Val ue(pageCount . get Val ue() + 1);

}
%
Thi s page has been accessed <% pageCount.getVal ue() % </ b> tines.

<p>

9-48 JavaServer Pages Developer's Guide and Reference

A

General Installation and Configuration

This appendix provides general information about installing OracleJSP, configuring
the Web server to run OracleJSP, and configuring OracleJSP. The technical
information focuses on common Web servers and servlet environments:
Apache/JServ, the Sun Microsystems JavaServer Web Developer’s Kit (JSWDK),
and Tomcat (from Apache, in cooperation with Sun Microsystems). For Oracle
environments that support OraclelSP, reference is made to documentation for those
products for installation and configuration instructions.

For the Oracle Servlet Engine, translation-time configuration is handled through
options of the OracleJSP pre-translation utility, as described in "The ojspc
Pre-Translation Tool" on page 6-23.

This appendix includes the following topics:
« System Requirements
« OracleJSP Installation and Web Server Configuration

« OracleJSP Configuration

General Installation and Configuration A-1

System Requirements

System Requirements
OracleJSP is a pure Java environment. The system on which you install it must meet
the following minimum requirements.
operating system: any OS that supports JDK 1.1.x or higher

Java version: JDK 1.1.x or 1.2.x
(Oracle recommends the most current version available
for your platform, preferably JDK 1.1.8 or higher.)

Java compiler: the standard j avac provided with your JDK

(You can, however, use alternative compilers instead.)
Web server: any Web server that supports servlets
servlet environment: any servlet container implementing the servlet 2.0

specification or higher

Note: The servlet library for your servlet environment must be
installed on your system and included in the classpath in your Web
server configuration file. This library contains the

j avax. servl et . * packages.

For example, in an Apache/JServ environment (including Oracle
Internet Application Server), you will need j sdk. j ar, which is
provided with the Sun Microsystems JSDK 2.0. In a Sun
Microsystems JSWDK environment, you will need servl et . j ar
(servlet 2.1 version), which is provided with JSSWDK 1.0. In a
Tomcat environment, you will need ser vl et . j ar (servilet2.2
version), which is provided with Tomcat 3.1. Do not confuse JSDK
(Java Servlet Developer’s Kit) with JSWDK (JavaServer Web
Developer’s Kit).

See "Configuration of Web Server and Servlet Environment to Run
OracleJSP" on page A-7 for further discussion of classpath settings
in a Web server configuration file.

A-2 JavaServer Pages Developer’s Guide and Reference

OracleJSP Installation and Web Server Configuration

OracleJSP Installation and Web Server Configuration

This section discusses OracleJSP installation and related Web server configuration
for various JSP environments. The following environments are considered:

« Apache/JServ

= Sun Microsystems JSWDK
« Tomcat

« Oracle Servlet Engine (OSE)
« other Oracle environments

This discussion assumes that your target system, which might be either a
development environment or a deployment environment, meets the requirements
specified in "System Requirements" on page A-2. It also assumes that you have
verified you can do the following:

= frunlJava
« runalavacompiler (typically the standard j avac)

« runan HTTP servlet

Note:

« Examples here are for a UNIX environment, but the basic
information (such as directory names and file names) applies to
other environments as well.

= Web server configuration information focuses on prevalent
non-Oracle environments. For Oracle environments, refer to
documentation for the particular product (such as Oracle
Internet Application Server or Web-to-go).

Required and Optional Files for OracleJSP

This section summarizes JAR and ZIP files required for OracleJSP, as well as
optional JAR and ZIP files to use Oracle JDBC and SQLJ functionality, IML or SQL
custom tags, or custom data-access JavaBeans. The summary of files is followed by
a discussion of how to install OraclelSP files on non-Oracle environments, and a list
of Oracle environments that already provide OraclelSP.

Required files must also be added to your classpath. (See "Add OracleJSP-Related
JAR and ZIP Files to Web Server Classpath" on page A-8.)

General Installation and Configuration A-3

OracleJSP Installation and Web Server Configuration

Summary of Files

Note: Refer to the Oracle8i Java Developer’s Guide for the locations
of these files on the Oracle8i product CD.

The following files are provided with OracleJSP and must be installed on your
system:

« 0jsp.jar (OraclelSP)

« xml parserv2.jar (for XML parsing—required for the web. xm deployment
descriptor and any tag library descriptors)

« servlet.jar (standard servlet library, servlet 2.2 version)

In addition, if your JSP pages will use Oracle JSP Markup Language (JML) tags,
SQL tags, or database-access JavaBeans, you will need the following files:

« Ojsputil.jar

« Xsul2.jar (forJDK 1.2.x) or xsulll. j ar (for IDK 1.1.x) (in OSE, or for XML
functionality on the client)

To run in the Oracle Servlet Engine, xsul2. j ar or xsulll. j ar must be installed
prior to or simultaneously with oj sputi | . j ar. (This should be handled
automatically in a normal Oracle8i installation.) To run in a client environment,
however, xsul2. j ar or xsulll. j ar isrequired only if you will use XML
functionality in the database-access JavaBeans (such as getting a result set as an
XML string). The xsul2. j ar and xsulll. j ar files are included with Oracle8i
release 8.1.7.

Servlet Library Notes Note that OracleJSP 8.1.7 requires and supplies the 2.2 version
of the servlet library, which is where the standard j avax. ser vl et . * packages are
located. Your Web server environment likely requires and supplies a different
servlet library version. You must be careful in your classpath to have the version for
your Web server precede the version for OracleJSP. "Add OracleJSP-Related JAR
and ZIP Files to Web Server Classpath” on page A-8 further discusses this.

Table A-1 summarizes the servlet library versions. Do not confuse the Sun
Microsystems JSWDK (JavaServer Web Developer’s Kit) with the Sun Microsystems
JSDK (Java Servlet Developer’s Kit).

A-4 JavaServer Pages Developer’s Guide and Reference

OracleJSP Installation and Web Server Configuration

Table A-1 Serviet Library Versions

Servlet Library Version Library File Name Provided with:

servlet 2.2 servlet.jar OracleJSP, Tomcat 3.1
servlet 2.1 servlet.jar Sun JSWDK 1.0
servlet 2.0 jsdk.jar Sun JSDK 2.0; also used with Apache/JServ

(For Apache/JServ, j sdk. j ar must be downloaded separately.)

The remainder of this section discusses files that are necessary only if you use
certain optional or extended features.

Files for JDBC (optional) The following files are required if you will use Oracle JDBC.
(Be aware that Oracle SQLJ uses Oracle JDBC.)

« classesl2. zi p (for JDK 1.2.x environments)

or:

« classeslll. zi p (for DK 1.1.x environments)

Files for SQLJ (optional) The following files are necessary if your JSP pages use Oracle
SQLJ for their Oracle8i access:

« translator. zip (for the SQLJ translator, for JDK 1.2.x or 1.1.X)

as well as the appropriate SQLJ runtime:

« runtimel2. zip (for JDK 1.2.x with Oracle JDBC 8.1.7)

or:

=« runtinmel2ee. zip (for IDK 1.2.x enterprise edition with Oracle JDBC 8.1.7)
or:

« runtimell. zip (for JDK 1.1.x with Oracle JDBC 8.1.7)

or:

« runtime. zip(generic: for JIDK 1.2.x or 1.1.x with any Oracle JDBC version)

(The JDK 1.2.x enterprise edition allows datasource support, in compliance with the
SQLJ ISO specification.)

General Installation and Configuration A-5

OracleJSP Installation and Web Server Configuration

File Installation for Non-Oracle Environments

To run OracleJSP in a non-Oracle environment—typically Apache/JServ, the Sun
Microsystems JSWDK, or Tomcat—download the OracleJSP files from the Oracle
Technology Network (OTN) at the following URL:

http://technet. oracl e. comitech/j aval servl et s/i ndex. ht m

Click on "Software" in the button bar near the top of this page.

You will need an OTN account, but membership is free of charge. Click on
"Membership" in the bar at the top of the page if you do not already have an
account.

For the OTN download, OraclelSP files are contained within oj sp. zi p, which
includes files mentioned in this section as well as configuration files discussed later
in this appendix, release notes, documentation files, and sample applications.

Installation and configuration instructions are included in oj sp. zi p—see

i nstal | . ht mfor top-level information and links. However, you can use this
appendix for detailed information about configuring the predominant non-Oracle
Web server environments—Apache/JServ, the Sun Microsystems JSWDK, and
Tomcat—to use OraclelSP.

You can choose any desired root directory for OracleJSP, as long as the location you
choose is reflected in your Web server classpath settings (discussed in "Add
OracleJSP-Related JAR and ZIP Files to Web Server Classpath" on page A-8).

Oracle JDBC and SQLI files are also available from OTN separately at the following
URL:

http://technet. oracl e. comtech/java/ sql j _j dbc/i ndex. ht m

Click on "Software" in the button bar near the top of this page.

Note: Oracle Internet Application Server uses an Apache/JServ
environment, but you should use application server installation
and configuration instructions instead of the Apache/JServ
instructions in this appendix.

A-6 JavaServer Pages Developer’s Guide and Reference

OracleJSP Installation and Web Server Configuration

Oracle Environments Providing OracleJSP

The following Oracle environments provide OracleJSP and a Web server or Web
listener, starting with the version numbers noted:

« Oracle Servlet Engine (OSE) 8.1.7

« Oracle Internet Application Server 1.0.0

« Oracle Application Server 4.0.8.2

» Oracle Web-to-go 1.3 (can be used with Oracle8i Lite)
« Oracle JDeveloper 3.0

In any of these environments, OracleJSP components are included with the product
installation.

If you are targeting OSE you will need a client-side development and testing
environment—probably Oracle JDeveloper or perhaps a non-Oracle development
tool. When you have completed preliminary testing in your development
environment, you can deploy JSP pages to the Oracle8i database, as described in
Chapter 6, "JSP Translation and Deployment".

Configuration of Web Server and Servlet Environment to Run OracleJSP

Configuring your Web server to run OracleJSP pages requires the following general
steps:

1. Add OraclelSP-related JAR and ZIP files to the Web server classpath.

2. Configure the Web server to map JSP file name extensions (. j sp and . JSPand,
optionally, . sql j sp and . SQLJSP) to the Oracle JspSer vl et , which is the
front-end of the OracleJSP container.

These steps apply to any Web server environment, but the information in this
section focuses on the most prevalent non-Oracle environments— Apache/JServ,
the Sun Microsystems JSWDK, and Tomcat.

The Oracle Servlet Engine, provided with the Oracle8i JServer environment, is
automatically configured upon installation to run OracleJSP. For other Oracle
environments, refer to the documentation for those products, because procedures
vary. (Much of the installation and configuration may be automatic.)

General Installation and Configuration A-7

OracleJSP Installation and Web Server Configuration

Add OracleJSP-Related JAR and ZIP Files to Web Server Classpath

You must update the Web server classpath to add JAR and ZIP files that are
required by OracleJSP, and in the proper order. (In particular, you must be careful as
to where you place the servlet 2.2 version of ser vl et . j ar in the classpath, as
described below.) This includes the following:

= Ojsp.jar

« Xxml parserv2.jar

« servlet.jar (servlet 2.2 version)

(Note that the ser vl et . j ar supplied with OracleJSP is identical to the
servl et.jar provided with Tomcat 3.1.)

« Ojsputil.jar (optional, for IML tags, SQL tags, and database-access
JavaBeans)

« Xsul2.jar (forJDK 1.2.x) or xsulll. j ar (for JDK 1.1.x) (optional, for IML
tags, SQL tags, and database-access JavaBeans; see "Summary of Files" on
page A-4)

« additional optional ZIP and JAR files, as necessary, for JDBC and SQLJ (see
"Summary of Files" on page A-4)

Important: You must also ensure that OracleJSP can find j avac
(or an alternative Java compiler, according to your j avaccnd
configuration parameter setting). For j avac in a JDK 1.1.x
environment, the JDK cl asses. zi p file must be in the Web server
classpath. For j avac in a JDK 1.2.x environment, the JDK

t ool s. j ar file must be in the Web server classpath.

Apache/JServ Environment In an Apache/JServ environment, add appropriate

wr apper . cl asspat h commands to the j serv. properti es file in the JServ
conf directory. Note that j sdk. j ar should already be in the classpath. This file is
from the Sun Microsystems JSDK 2.0 and provides servlet 2.0 versions of the

j avax. servl et . * packages that are required by Apache/JServ. Additionally, files
for your JDK environment should already be in the classpath.

The following example (which happens to use UNIX directory paths) includes files
for OracleJSP, JDBC, and SQLJ. (Replace [Or acl e_Hone] with your Oracle Home
path.)

A-8 JavaServer Pages Developer’s Guide and Reference

OracleJSP Installation and Web Server Configuration

servliet 2.0 APls (required by Apache/JServ, fromSun JSIK 2.0):
wr apper . cl asspat h=j sdk2. 0/l i b/ j sdk. j ar

#

servlet 2.2 APls (required and provided by O acl eJSP):

wr apper . cl asspat h=[O acl e_Hone] / oj sp/ i b/ servl et .| ar

Oracl eJSP packages:

wr apper . cl asspat h=[O acl e_Hone] / oj sp/ | i b/ o] sp. j ar

wrapper . cl asspat h=[O acl e_tbne] / oj sp/ i b/ oj sputil.jar

XML parser (used for servliet 2.2 web depl oynent descriptor):

wr apper . cl asspat h=[Oracl e_Hone] / oj sp/ | i b/ xm par serv2. j ar

JDBC libraries for Oacl e database access (JDK 1.2.x envi ronnent):
wr apper . cl asspat h=[O acl e_Hone] / oj sp/ | i b/ cl asses12. zi p

SQJ translator (optional):

wr apper . cl asspat h=[O acl e_Hone] / oj sp/ | i b/transl ator. zi p

SQJ runtinme (optional) (for JOK 1.2.x enterprise edition):

wr apper . cl asspat h=[O acl e_Hone] / oj sp/ | i b/ runti nel2. zi p

Important: In an Apache/JServ environment, j sdk. j ar must
precede ser vl et . j ar in the classpath.

Now consider an example where you have the following useBean command:
<j sp: useBean i d="queryBean" cl ass="nybeans. JOBOQuer yBean" scope="session" />
You can add the following wr apper . cl asspat h command to the

j serv. properti es file. (This example happens to be for a Windows NT
environment.)

wr apper . cl asspat h=D \ Apache\ Apachel. 3. 9\ beans\

And then JDBCQuer yBean. cl ass should be located as follows:
D\ Apache\ Apachel. 3. 9\ beans\ nybeans\ JDBOQuer yBean. cl ass

JSWDK Environment Update the st art server scriptin thej swdk- 1. 0 root
directory to add OracleJSP files to the j spJar s environment variable. Append
them to the last . j ar file listed, using the appropriate directory syntax and
separator character for your operating system, such as a colon (:) for UNIX or a
semi-colon (;) for Windows NT. Here is an example:

jsplars=./libljspengine.jar:./lib/lojsp.jar:./liblojsputil.jar

General Installation and Configuration A-9

OracleJSP Installation and Web Server Configuration

This example (with UNIX syntax) assumes that the JAR filesareintheli b
subdirectory under the j swdk- 1. 0 root directory.

Similarly, update the st ar t ser ver script to specify any additional required files in
the ni scJar s environment variable, such as in the following example:

msclars=./lib/xn.jar:./lib/xmparserv2.jar:./lib/servlet.jar

This example (with UNIX syntax) also assumes that the files are in the | i b
subdirectory under the j swdk- 1. 0 root directory.

Important: In aJSWDK environment, the servlet 2.1 version of
servl et.jar (provided with Sun JSWDK 1.0) must precede the
servlet 2.2 version of ser vl et . j ar (provided with OracleJSP) in
your classpath.

The servlet 2.1 version is typically in the j sdkJar s environment
variable. The overall classpath is formed through a combination of
various xxxJar s environment variables, including j sdkJar s,

j spJars,and m scJar s. Examine the st art ser ver script to
verify that mi scJar s is added to the classpath after j sdkJar s.

Tomcat Environment For Tomcat, the procedure for adding files to the classpath is
more operating-system dependent than for the other servlet environments
discussed here.

For a UNIX operating system, copy the OracleJSP JAR and ZIP files to your
[TOMCAT_HOVE] / | i b directory. This directory is automatically included in the
Tomcat classpath.

For a Windows NT operating system, update the t ontat . bat file in the

[TOMCAT_HQOVE] \ bi n directory to individually add each OracleJSP file to the
CLASSPATH environment variable. The following example presumes that you have
copied the files to the [TOMCAT_HOME] \ | i b directory:

set CLASSPATH=Y61ASSPATH/ Y9 OMCAT_HOME%A | i b\ o] sp. j ar; YTOMCAT_HOME%% 1 i b\ oj sputi | . j ar

The servlet 2.2 version of ser vl et . j ar (the same version that is provided with
OraclelJSP) is already included with Tomcat, so it needs no consideration.

A-10 JavaServer Pages Developer’s Guide and Reference

OracleJSP Installation and Web Server Configuration

Map JSP File Name Extensions to Oracle JspServlet
You must configure the Web server for the following:

« torecognize appropriate file name extensions as JSP pages

Map . j sp and. JSP. Alsomap . sql j sp and . SQLISP if your JSP pages use
Oracle SQLJ.

« to find and execute the servlet that begins processing JSP pages

In OraclelSP, this is or acl e. j sp. JspSer vl et , which you can think of as the
front-end of the Oracle JSP container.

Important: With the above configurations, OracleJSP will support
page references that use either a . j sp file name extension or a

. JSP file name extension, but the case in the reference must match

the actual file name in a case-sensitive environment. If the file name
isfile.jsp,youcanreference it that way, butnotasfil e. JSP If
the file name isf i | e. JSP, you can reference it that way, but not as
file.jsp.(Thesame holds true for . sql j sp versus . SQLJSP)

Apache/JServ Environment In an Apache/JServ environment, mapping each JSP file
name extension to the Oracle JspSer vl et requires just a single step. In the JServ
conf directory, update the configuration file—j serv. conf or

nod_j serv. conf —to add ApJSer vAct i on commands to perform the mappings.

(In older versions, you must instead update the ht t pd. conf file in the Apache
conf directory. In newer versions, the j serv. conf or nod_j serv. conf fileis
"included" into ht t pd. conf during execution—look at the ht t pd. conf file to see
which one it includes.)

Following is an example (which happens to use UNIX syntax):

Map file nane extensions (.sqgljsp and . SQLISP are optional).
ApJServAction . jsp /servlets/oracl e.jsp. JspServl et
ApJServAction . JSP /servl ets/oracl e.j sp. JspServl et
ApJServAction .sqljsp /servlets/oracl e.jsp. JspServl et
ApJServAction . SQLISP /servl ets/oracl e.j sp. JspServl et

The path you use in this command for or acl e. j sp. JspSer vl et is not a literal
directory path in the file system. The path to specify depends on your
Apache/JServ servlet configuration—how the servlet zone is mounted, the name of
the zone properties file, and the file system directory that is specified as the
repository for the servlet. ("Servlet zone" is an Apache/JServ term that is similar

General Installation and Configuration A-11

OracleJSP Installation and Web Server Configuration

conceptually to "servlet context".) Consult your Apache/JServ documentation for
more information.

JSWDK Environment In a JSSWDK environment, mapping each JSP file name extension
to the Oracle JspSer vl et requires two steps.

The first step is to update the mappi ngs. properti es file in the VEB- | NF
directory of each servlet context to define JSP file name extensions. Do this with the
following commands:

Map JSP file name extensions (.sqljsp and . SQLISP are optional).
-jsp=j sp

.JSP sp

-sql j sp=j sp

. SQISPS) sp

The second step is to update the ser vl et . properti es file in the WEB- | NF
directory of each servlet context to define the Oracle JspSer vl et as the servlet that
begins JSP processing. In addition, be sure to comment out the previously defined
mapping for the JSP reference implementation. Do this as follows:

#j sp. code=com sun. j sp. runti me. JspServl et (replacing this with Qacle)
j sp. code=or acl e. j sp. JspSer vl et

Tomcat Environment In a Tomcat environment, mapping each JSP file name extension
to the Oracle JspSer vl et requires a single step. Update the servlet mapping
section of the web. xm file as shown below.

Note: There is a global web. xmi file in the

[TOMCAT_HOVE] / conf directory. To override any settings in this
file for a particular application, update the web. xmi file in the
V\EB- | NF directory under the particular application root.

Map file name extensions (.sqljsp and . SQLISP are optional).

<ser vl et - mappi ng>
<servl et - nane>
oracl e. j sp. JspServl et
</ servl et - nane>
<url-pattern>
*.jsp
< url - pattern>

A-12 JavaServer Pages Developer’s Guide and Reference

OracleJSP Installation and Web Server Configuration

</ servl et - nappi ng>

<ser vl et - mappi ng>
<servl et - nane>
oracl e. j sp. JspServl et
</ servl et - nane>
<url-pattern>
*. JSP
</url - pattern>
</ servl et - nappi ng>

<ser vl et - mappi ng>
<servl et - nane>
oracl e. j sp. JspServl et
</ servl et - nane>
<url-pattern>
*.sqljsp
< url - pattern>
</ servl et - nappi ng>

<ser vl et - nappi ng>
<servl et - nane>
oracl e. j sp. JspServl et
</ servl et - nane>
<url-pattern>
*. SQISP
< url - pattern>
</ servl et - nappi ng>

You can optionally set an alias for the or acl e. j sp. JspSer vl et class name, as
follows:

<servl et >
<servl et - name>
oj sp
</ servl et - nane>
<servl et - cl ass>
oracl e. j sp. JspServl et
</servl et - cl ass>

</servl et >

General Installation and Configuration A-13

OracleJSP Installation and Web Server Configuration

Setting this alias allows you to use "ojsp" instead of the class name for your other
settings, as follows:

<ser vl et - mappi ng>
<servl et - nane>
oj sp
</ servl et - nane>
<url-pattern>
*.jsp
</ url - pattern>
</ servl et - nappi ng>

A-14 JavaServer Pages Developer’s Guide and Reference

OracleJSP Configuration

OracleJSP Configuration

The OraclelSP front-end servlet, JspSer vl et , supports a number of configuration
parameters to control OracleJSP operation. They are set as servlet initialization
parameters for JspSer vl et . How you accomplish this depends on the Web server
and servlet environment you are using.

This section describes the OracleJSP configuration parameters and how to set them
in the most prevalent Web server and servlet environments.

Only a limited number of these parameters are of interest in the Oracle products
that supply OraclelSP, and how to set them may vary from product to product.
Consult the product documentation for more information.

Configuration settings that apply to the Oracle Servlet Engine are typically
supported as equivalent options in the OraclelJSP pre-translation tool (oj spc). OSE
does not employ the Oracle JspSer vl et in translating or running JSP pages.

OracleJSP Configuration Parameters (Non-OSE)

This section describes the configuration parameters supported by the Oracle
JspSer vl et for environments such as Apache/JSeryv, the Sun Microsystems
JSWDK, or Tomcat. (Note that the Oracle Internet Application Server uses an
Apache/JServ environment.)

For the Oracle Servlet Engine environment, some of the equivalent configuration
functionality is supported through equivalent oj spc options.

Configuration Parameters Summary Table

Table A-2 summarizes the configuration parameters supported by Oracle
JspSer vl et (the front-end of the OracleJSP container). For each parameter, the
table notes the following:

« Wwhether it is used during page translation or page execution

« Whether it is typically of interest in a development environment, deployment
environment, or both

« any equivalent oj spc translation options for pages that are targeted for the
Oracle Servlet Engine (which does not use JspSer vl et)

OSE does not support execution-time configuration parameters.

General Installation and Configuration A-15

OracleJSP Configuration

Be aware of the following:

The parameters bypass_sour ce, eni t _debugi nf o, ext ernal _r esource,
j avaccnd, and sql j cnd were not supported prior to OracleJSP release

1.1.0.0.0.

The parameter al i as_t ransl ati on is for use in the Apache/JServ

environment only.

The parameter sessi on_shar i ng is for use with gl obal s. j sa only
(presumably in a servlet 2.0 environment such as Apache/JServ).

Notes:

« See "The ojspc Pre-Translation Tool" on page 6-23 for a

description of the oj spc options.

« The distinction between execution-time and translation-time is
not particularly significant in a real-time translation
environment, but may be of interest with respect to OSE.

Table A—2 OracleJSP Configuration Parameters

Used in
Used in JSP Development
Related ojspc Translation or or Deployment
Parameter Options Description Default Execution? Environment?
alias_translation n/a boolean; t r ue to work false execution development
(Apache-specific) around Apache/JServ and deployment
limitations in directory
aliasing for JSP page
references
bypass_source n/a boolean; t r ue for OracleJSP false execution deployment
to ignore Fi | eNot Found (also used by
exceptions on . j sp source; JDeveloper)
uses pre-translated and
compiled code when source
is not available
classpath -addclasspath additional classpath entries null translation or development
(related, but for OraclelSP class loading (noaddl. execution and deployment
different path)

functionality)

A-16 JavaServer Pages Developer’s Guide and Reference

OracleJSP Configuration

Table A—2 OracleJSP Configuration Parameters (Cont.)

Used in
Used in JSP Development
Related ojspc Translation or or Deployment
Parameter Options Description Default Execution? Environment?
developer_mode n/a boolean; f al se to not check true execution development
timestamps to see if and deployment
retranslation is necessary
when a page is requested
emit_debuginfo -debug boolean;t rue to generate a false translation development
line map to the original
. j sp file for debugging
external_resource -extres boolean; t r ue for OracleJSP false translation development
to place all static content of and deployment
the page into a separate Java
resource file during
translation
javaccmd -noCompile Java compiler command null translation development
line—j avac options, or and deployment
alternative Java compiler
run in aseparate JVM (nul |
means use JDK j avac with
default options)
page_repository_root -srcdir alternative root directory null translation or development
-d (fully qualified path) for (use execution and deployment
OracleJSP to use in loading default
and generating JSP pages root)
session_sharing n/a boolean;t r ue for JSP true execution development

(for use with
globals.jsa)

session data to be
propagated to the

underlying servlet session
for applications using

gl obal s.jsa

and deployment

General Installation and Configuration A-17

OracleJSP Configuration

Table A—2 OracleJSP Configuration Parameters (Cont.)

Used in
Used in JSP Development
Related ojspc Translation or or Deployment
Parameter Options Description Default Execution? Environment?
sqglicmd n/a SQLJcommand line—sql j null translation development
options, or alternative SQLJ and deployment
translator run in a separate
JVM (nul | means use the
Oracle SQLJ version
provided with OracleJSP,
with default option settings)
translate_params n/a boolean;t rue to override false execution development
servlet containers that do and deployment
not perform multibyte
encoding
unsafe_reload n/a boolean; t r ue to not restart false execution development

the application and sessions
whenever a JSP page is
retranslated and reloaded

Configuration Parameter Descriptions
This section describes the OracleJSP configuration parameters in more detail.

alias_translation (boolean; OracleJSP default: f al se) (Apache-specific)

This parameter allows OracleJSP to work around limitations in the way
Apache/JServ handles directory aliasing. For information about the current
limitations, see "Directory Alias Translation" on page 4-38.

You mustsetal i as_transl ationtotrue forhttpd. conf directory aliasing
commands (such as the following example) to work properly in the Apache/JServ
servlet environment:

Aias /icons/ "/apachel apachel39/i cons/"

bypass_source (boolean; OracleJSP default: f al se)

Normally, when a JSP page is requested, OracleJSP will throw a Fi | eNot Found
exception if it cannot find the corresponding . j sp source file, even if it can find the
page implementation class. (This is because, by default, OracleJSP checks the page

A-18 JavaServer Pages Developer’s Guide and Reference

OracleJSP Configuration

source to see if it has been modified since the page implementation class was
generated.)

Set this parameter to t r ue for OracleJSP to proceed and execute the page
implementation class even if it cannot find the page source.

If bypass_sour ce is enabled, OracleJSP will still check for retranslation if the
source is available and is needed (one of the factors in determining whether it is
needed is the setting of the devel oper _npde parameter).

Notes:

« Thebypass_sour ce option is useful in deployment
environments that have the generated classes only, not the
source. (For related discussion, see "Deployment of Binary Files
Only" on page 6-69.)

« Oracle JDeveloper enables bypass_sour ce so that you can
translate and run a JSP page before you have saved the JSP
source to a file.

classpath (fully qualified path; OracleJSP default: nul | ')

Use this parameter to add classpath entries to the OracleJSP default classpath for
use during translation, compilation, or execution of JSP pages. For information
about the OraclelSP classpath and class loader, see "Classpath and Class Loader
Issues (Non-OSE Only)" on page 4-21.

The exact syntax depends on your Web server environment and operating system.
See "OracleJSP Configuration Parameter Settings" on page A-25 for some examples.

Overall, OracleJSP loads classes from its own classpath (including entries from this
cl asspat h parameter), the system classpath, the Web server classpath, the page
repository, and predefined locations relative to the root directory of the JSP
application.

Be aware that classes loaded through the cl asspat h-specified path are loaded by
the JSP class loader, not the system class loader. During JSP execution, classes
loaded by the JSP class loader cannot access (or be accessed by) classes loaded by
the system class loader or any other class loader.

General Installation and Configuration A-19

OracleJSP Configuration

Notes:

« OracleJSP runtime automatic class reloading applies only to
classes in the OracleJSP classpath. This includes paths specified
through this cl asspat h parameter. (See "Dynamic Class
Reloading" on page 4-26 for information about this feature.)

= When you are pre-translating pages to run in the Oracle Servlet
Engine, the oj spc - addcl asspat h option offers some
related, though different, functionality. See "Option
Descriptions for ojspc" on page 6-27.

developer_mode (boolean; OracleJSP default: t r ue)

Set this flag to f al se to instruct OracleJSP to not routinely compare the timestamp
of the page implementation class to the timestamp of the . j sp source file when a
page is requested. Ordinarily, OraclelSP checks every time to see if the source has
been modified since the page implementation class was generated. If that is the
case, OracleJSP retranslates the page. With devel oper _node=f al se, OracleJSP
will check only upon the initial request for the page or application. For subsequent
requests, it will simply re-execute the generated page implementation class.

Oracle generally recommends setting devel oper _node tof al se, particularly ina
deployment environment where code is not likely to change and where
performance is a significant issue.

emit_debuginfo (boolean; OracleJSP default: f al se) (for developer only)

Set this flag to true to instruct OracleJSP to generate a line map to the original . j sp
file for debugging. Otherwise, lines will be mapped to the generated page
implementation class.

Notes:
« Oracle JDeveloper enables eni t _debugi nf o.

= When you are pre-translating pages to run in the Oracle Servlet
Engine, the oj spc - debug option is equivalent. See "Option
Descriptions for ojspc" on page 6-27.

A-20 JavaServer Pages Developer’s Guide and Reference

OracleJSP Configuration

external_resource (boolean; OracleJSP default: f al se)

Set this flag to true to instruct the OracleJSP translator to place generated static
content (the Java print commands that output static HTML code) into a Java
resource file instead of into the service method of the generated page
implementation class.

The resource file name is based on the JSP page name. For release 8.1.7, it will be the
same name as the JSP name, but with the . r es suffix. (Translation of MyPage. j sp,
for example, would create MyPage. r es in addition to normal output. The exact
implementation may change in future releases, however.)

The resource file is placed in the same directory as generated class files.

If there is a lot of static content in a page, this technique will speed translation and
may speed execution of the page. In extreme cases, it may even prevent the service
method from exceeding the 64K method size limit imposed by the Java VM. For
more information, see "Workarounds for Large Static Content in JSP Pages" on
page 4-13.

Note: When you are pre-translating pages to run in the Oracle
Servlet Engine, the oj spc - ext r es option is equivalent.

The oj spc - hot | oad option is also relevant, performing the
- ext r es functionality along with additional steps to allow
hotloading into Oracle8i. See "Option Descriptions for ojspc” on
page 6-27.

javacecmd (compiler executable; OracleJSP default: nul 1)
This parameter is useful in either of the following circumstances:

« ifyouwantto setj avac command-line options (although default settings are
typically sufficient)

« if you want to use a compiler other than j avac (optionally including
command-line options)

Specifying an alternative compiler results in OracleJSP spawning that executable as
a separate process in a separate JVM, instead of spawning the JDK default compiler
within OracleJSP’s JVM. You can fully specify the path for the executable, or specify
only the executable and let OracleJSP look for it in the system path.

The following j avaccnd setting enables the j avac - ver bose option:

j avaccnd=j avac - verbose

General Installation and Configuration A-21

OracleJSP Configuration

The exact syntax depends on your servlet environment. See "OracleJSP
Configuration Parameter Settings" on page A-25.

Notes:

« The specified Java compiler must be installed in the classpath
and any front-end utility (if applicable) must be installed in the
system path.

= When you are pre-translating pages to run in the Oracle Servlet
Engine, the oj spc - noConpi | e option allows similar
functionality. It results in no compilation by j avac, so you can
compile the translated classes manually using your desired
compiler. See "Option Descriptions for ojspc" on page 6-27.

page_repository_root (fully qualified directory path; OracleJSP default: nul | ')

OracleJSP uses the Web server document repository to generate or load translated
JSP pages. By default, in an on-demand translation scenario, the root directory is the
Web server doc root directory (for Apache/JServ) or the servlet context root
directory of the application the page belongs to. JSP page source is in the root
directory or some subdirectory. Generated files are written to a _pages
subdirectory or some corresponding subdirectory.

Set the page_r eposi t ory_r oot option to instruct OracleJSP to use a different
root directory.

For information about file locations relative to the root directory and _pages
subdirectory, see "OracleJSP Translator Output File Locations" on page 6-7.

Notes:

« The specified directory, _pages subdirectory, and any
appropriate subdirectories under these are created
automatically if they do not already exist.

= When you are pre-translating pages to run in the Oracle Servlet
Engine, the oj spc options - srcdi r and - d provide related
functionality. See "Option Descriptions for ojspc" on page 6-27.

A-22 JavaServer Pages Developer’s Guide and Reference

OracleJSP Configuration

session_sharing (boolean; OracleJSP default: t r ue) (for use with globals.jsa)

When a gl obal s. j sa file is used for an application, presumably in a servlet 2.0
environment, each JSP page uses a distinct JSP session wrapper attached to the
single overall servlet session object provided by the servlet container.

In this situation, the default t r ue setting of the sessi on_shar i ng parameter
results in JSP session data being propagated to the underlying servlet session. This
allows servlets in the application to access the session data of JSP pages in the
application.

If sessi on_shari ngis f al se (which parallels standard behavior in most JSP
implementations), JSP session data is not propagated to the servlet session. As a
result, an application’s servlets would not be able to access JSP session data.

This parameter is meaningless if gl obal s. j sa is not used. For information about
gl obal s. j sa, see "Overview of globals.jsa Functionality" on page 5-37.

sglicmd (SQLJ translator executable; OracleJSP default: nul 1)

This parameter is useful in any of the following circumstances:

« if you want to set SQLJ command-line options

« if you want to use a different SQLJ translator (or at least a different version)
than the one provided with OracleJSP

« ifyou want to run SQLJ in a separate process from OracleJSP

Specifying a SQLJ translator executable results in OracleJSP spawning that
executable as a separate process in a separate JVM, instead of spawning the default
SQLIJ translator within OracleJSP’s JVM.

You can fully specify the path for the executable, or specify only the executable and
let OracleJSP look for it in the system path.

Following is an example of a sql j cd setting:

sql j cmd=sqlj -user=scott/tiger -ser2class

(The exact syntax depends on your servlet environment. See "OracleJSP
Configuration Parameter Settings" on page A-25.)

General Installation and Configuration A-23

OracleJSP Configuration

Notes:

« Appropriate SQLJ files must be in the classpath, and any
front-end utility (such as sql j in the example) must be in the
system path. (For Oracle SQLJ, t r ansl at or. zi p and the
appropriate SQLJ runtime ZIP file must be in the classpath. See
"Summary of Files" on page A-4.)

« Presumably the great majority of OracleJSP developers will use
Oracle SQLJ (as opposed to some other SQLJ product) if they
use SQLJ code in their JSP pages; however, this option is useful
if you want to use a different Oracle SQLJ version (for example,
one intended for use with Oracle JDBC 8.0.x/7.3.x drivers
instead of Oracle8i drivers) or if you want to set SQLJ options.

translate_params (boolean; OraclelSP default: f al se)

Set this flag to t r ue to override servlet containers that do not encode multibyte
(NLS) request parameters or bean property settings. With this setting, OracleJSP
encodes request parameters and bean property settings. Otherwise, OracleJSP
returns the parameters from the servlet container unchanged.

Because the Oracle Servlet Engine does not support execution-time configuration
parameters, t r ans| at e_par ans cannot be set for the OSE environment. See
"Code Equivalent to the translate_params Configuration Parameter" on page 8-6 for
a workaround.

For more information about the functionality and use of t r ansl at e_par ans,
including situations where it should not be used, see "OracleJSP Extended Support
for Multibyte Parameter Encoding" on page 8-5.

unsafe_reload (boolean; OracleJSP default: f al se) (for developer only)

By default, OracleJSP restarts the application and sessions whenever a JSP page is
dynamically retranslated and reloaded (which occurs when the JSP translator finds
a . j sp source file with a more recent timestamp than the corresponding page
implementation class).

Set this parameter to t r ue to instruct OracleJSP not to restart the application after
dynamic retranslations and reloads. This avoids having existing sessions become
invalid.

A-24 JavaServer Pages Developer’s Guide and Reference

OracleJSP Configuration

For a given JSP page, this parameter has no effect after the initial request for the
page if devel oper _node issettof al se (in which case OracleJSP never
retranslates after the initial request).

Important: This parameter is intended for developers only and is
not recommended for deployment environments.

OracleJSP Configuration Parameter Settings

How to set the JSP configuration parameters discussed in the preceding section
("OracleJSP Configuration Parameters (Non-OSE)" on page A-15) depends on your
Web server and servlet environment.

Non-Oracle environments support configuration parameter settings through
properties files or similar functionality.

The Oracle Servlet Engine, provided with the Oracle8i JServer environment, does
not directly support OracleJSP configuration parameters (because it does not use
JspSer vl et). However, some of the translation parameter settings have
equivalent OraclelSP translator options. These options are noted in the
"Configuration Parameters Summary Table" on page A-15.

Other Oracle products that support OracleJSP have their own mechanisms for
configuration settings—consult the product documentation.

The remainder of this section describes how to set configuration parameters in the
Apache/JServ, Sun Microsystems JSWDK, and Tomcat environments.

Setting OracleJSP Parameters in Apache/JServ

Each Web application in an Apache/JServ environment has its own properties file,
known as a zone properties file. In Apache terminology, a zone is essentially the same
as a servlet context.

The name of the zone properties file depends on how you mount the zone. (See the
Apache/JServ documentation for information about zones and mounting.)

To set OracleJSP configuration parameters in an Apache/JServ environment, set the
JspSer vl et initArgs property in the application zone properties file, as in the
following example (which happens to use UNIX syntax):

servlet.oracl e.jsp.JspServl et.initArgs=devel oper_node=f al se,
sql j cmi=sqlj -user=scott/tiger -ser2class=true,classpath=/nydir/nyapp.jar

General Installation and Configuration A-25

OracleJSP Configuration

(The preceding is a single wrap-around line.)

The servlet path, servl et . oracl e.j sp. JspSer vl et, also depends on how you

mount the zone. It does not represent a literal directory path.

Note: Becausei nit Ar gs parameters are comma-separated, there
can be no commas within a parameter setting. Spaces and other
special characters (such as "=" in this example) do not cause a
problem, however.

Setting OracleJSP Parameters in JSWDK
To set OracleJSP configuration parameters in a JSWDK environment, set the

j sp.initparamns property intheservl et. properti es file in the WEB- | NF
directory of the application’s servlet context, as in the following example (which

happens to use UNIX syntax):

j sp. i ni t par ans=devel oper _node=f al se, cl asspat h=/ nydi r/ nyapp. j ar

Note: Becausei nit par ans parameters are comma-separated,
there can be no commas within a parameter setting. Spaces and
other special characters do not cause a problem, however.

Setting OracleJSP Parameters in Tomcat

To set OracleJSP configuration parameters in a Tomcat environment, add
i ni t-paramentries in the web. xm file as shown below.

Note: There is a global web. xmi file in the

[TOMCAT_HOVE] / conf directory. To override any settings in this
file for a particular application, update the web. xmi file in the
V\EB- | NF directory under the particular application root.

<servl et>
<init-paranr
<par am nane>
devel oper _node
</ par am nane>
<par am val ue>
true

A-26 JavaServer Pages Developer’s Guide and Reference

OracleJSP Configuration

</ param val ue>
</init-parany
<init-paran»
<par am nane>
ext ernal _resource
</ par am nane>
<par am val ue>
true
</ paramval ue>
</init-paranm>
<init-parane
<par am nane>
j avaccrd
</ par am nane>
<par am val ue>
javac -verbose
</ paramval ue>
</init-paranm>
</servl et >

Oracle Servlet Engine JSP Configuration

Because the Oracle Servlet Engine does not use the OracleJSP JspSer vl et
front-end, it requires other mechanisms for OracleJSP configuration settings.

Appropriate translation-time configuration parameters have equivalent support
through command-line options of oj spc, which is the utility to pre-translate JSP
pages for the OSE environment. The correlation between OracleJSP configuration
parameters and oj spc options is noted in the table in "Configuration Parameters
Summary Table" on page A-15.

There is no such equivalent support for runtime configuration parameters, however.
The most significant of these ist r ansl at e_par ans, required for NLS use in
servlet environments that do not support multibyte encoding of request parameters.
The Oracle Servlet Engine requires this functionality, but it is left to the developer to
write equivalent code in the JSP page. For details, see "Code Equivalent to the
translate_params Configuration Parameter" on page 8-6.

General Installation and Configuration A-27

OracleJSP Configuration

A-28 JavaServer Pages Developer’s Guide and Reference

B

Servlet and JSP Technical Background

This appendix provides technical background on servlets and JavaServer Pages.
Although this document is written for users who are well grounded in servlet
technology, the servlet information here may be a useful refresher.

Standard JavaServer Pages interfaces, implemented automatically by generated JSP
page implementation classes, are briefly discussed as well. Most readers, however,
will not require this information.

The following topics are covered:

« Background on Servlets

« Web Application Hierarchy

» Standard JSP Interfaces and Methods

Servlet and JSP Technical Background B-1

Background on Servlets

Background on Servlets

Because JSP pages are translated into Java servlets, a brief review of servlet
technology may be helpful. Refer to the Sun Microsystems Java Servlet Specification,
Version 2.2 for more information about the concepts discussed here.

For more information about the methods this section discusses, refer to Sun
Microsystems Javadoc at the following location:

http://java. sun. com product s/ servl et/ 2. 2/ j avadoc/ i ndex. ht n

Review of Servlet Technology

In recent years, servlet technology has emerged as a powerful way to extend Web
server functionality through dynamic HTML pages. A servlet is a Java program that
runs in a Web server (as opposed to an applet, which is a Java program that runs in
a client browser). The servlet takes an HTTP request from a browser, generates
dynamic content (such as by querying a database), and provides an HTTP response
back to the browser.

Prior to servlets, CGl (Common Gateway Interface) technology was used for
dynamic content, with CGI programs being written in languages such as Perl and
being called by a Web application through the Web server. CGI ultimately proved
less than ideal, however, due to its architecture and scalability limitations.

Servlet technology, in addition to improved scalability, offers the well-known Java
advantages of object orientation, platform independence, security, and robustness.
Servlets can use all standard Java APIs, including the JDBC API (for Java database
connectivity, of particular interest to database programmers).

In the Java realm, servlet technology offers advantages over applet technology for
server-intensive applications such as those accessing a database. One advantage is
that a servlet runs in the server, which is usually a robust machine with many
resources, minimizing use of client resources. An applet, by contrast, is downloaded
into the client browser and runs there. Another advantage is more direct access to
the data. The Web server or data server in which a servlet is running is on the same
side of the network firewall as the data being accessed. An applet running on a
client machine, outside the firewall, requires special measures (such as signed
applets) to allow the applet to access any server other than the one from which it
was downloaded.

B-2 JavaServer Pages Developer’s Guide and Reference

Background on Servlets

The Servlet Interface

A Java servlet, by definition, implements the standard j avax. ser vl et. Ser vl et
interface. This interface specifies methods to initialize a servlet, process requests, get
the configuration and other basic information of a servlet, and terminate a servlet
instance.

For Web applications, the Ser vl et interface is implemented indirectly by
subclassing the standard j avax. servl et. http. Ht t pSer vl et abstract class.
The Ht t pSer vl et class includes the following methods:

« init(...)anddestroy(...),toinitialize and terminate the servlet,
respectively

« doCet(...),for HTTP GET requests

« doPost(...),for HTTP POST requests

« doPut(...),for HTTP PUT requests

« doDelete(...),for HTTP DELETE requests

« service(...),toreceive HTTP requests and, by default, dispatch them to the
appropriate doXXX() methods

« getServletlnfo(...),which the servlet usesto provide information about
itself

A servlet class that subclasses Ht t pSer vl et must implement some of these
methods, as appropriate. Each method takes as input a standard
javax.servlet. http. H t pServl et Request instance and a standard
javax.servlet. http. Htt pServl et Response instance.

The Ht t pSer vl et Request instance provides information to the servlet regarding
the HTTP request, such as request parameter names and values, the name of the
remote host that made the request, and the name of the server that received the
request. The Ht t pSer vl et Response instance provides HTTP-specific
functionality in sending the response, such as specifying the content length and
MIME type and providing the output stream.

Servlet Containers

Servlet containers, sometimes referred to as servlet engines, execute and manage
servlets. A servlet container is usually written in Java and is either part of a Web
server (if the Web server is also written in Java) or otherwise associated with and
used by a Web server.

Servlet and JSP Technical Background B-3

Background on Servlets

When a servlet is called (such as when a servlet is specified by URL), the Web server
passes the HTTP request to the servlet container. The container, in turn, passes the
request to the servlet. In the course of managing a servlet, a simple container
performs the following:

« creates an instance of the servlet and calls its i ni t () method to initialize it
« callsthe servi ce() method of the servlet

« callsthe destroy() method of the servlet to discard it when appropriate, so
that it can be garbage collected

For performance reasons, it is typical for a servlet container to keep a servlet
instance in memory for reuse, rather than destroying it each time it has finished
its task. It would be destroyed only for infrequent events, such as Web server
shutdown.

If there is an additional servlet request while a servlet is already running, servlet
container behavior depends on whether the servlet uses a single-thread model or a
multiple-thread model. In a single-thread case, the servlet container prevents
multiple simultaneous ser vi ce() calls from being dispatched to a single servlet
instance—it may spawn multiple separate servlet instances instead. In a
multiple-thread model, the container can make multiple simultaneous ser vi ce()
calls to a single servlet instance, using a separate thread for each call, but the servlet
developer is responsible for managing synchronization.

Servlet Sessions

Servlets use HTTP sessions to keep track of which user each HTTP request comes
from, so that a group of requests from a single user can be managed in a stateful
way. Servlet session-tracking is similar in nature to HTTP session-tracking in
previous technologies, such as CGl.

HttpSession Interface

In the standard servlet API, each user is represented by an object that implements
the standard j avax. servl et. htt p. Ht t pSessi on interface. Servlets can set and
get information about the session in this Ht t pSessi on object, which must be of
application-level scope.

A servlet uses the get Sessi on() method of an Ht t pSer vl et Request object
(which represents an HTTP request) to retrieve or create an Ht t pSessi on object
for the user. This method takes a boolean argument to specify whether a new
session object should be created for the user if one does not already exist.

B-4 JavaServer Pages Developer’s Guide and Reference

Background on Servlets

The Ht t pSessi on interface specifies the following methods to get and set session
information:

« public void setAttribute(String name, Object val ue)
This binds the specified object to the session, under the specified name.
« public Object getAttribute(String name)

This retrieves the object that is bound to the session under the specified nhame
(or nul | if there is no match).

Note: Older servilet implementations use put Val ue() and
get Val ue() instead of set Attri bute() and
get Attri bute(), with the same signatures.

Depending on the implementation of the servlet container and the servlet itself,
sessions may expire automatically after a set amount of time or may be invalidated
explicitly by the servlet. Servlets can manage session lifecycle with the following
methods, specified by the Ht t pSessi on interface:

« public boolean invalidate()

This method immediately invalidates the session and unbinds any objects from
it.

« public bool ean setMaxl nactivelnterval (int interval)
This method sets a timeout interval, in seconds, as an integer.
« public boolean i sNew()

This method returns t r ue within the request that created the session; it returns
f al se otherwise.

=« public bool ean getCreationTi me()

This method returns the time when the session object was created, measured in
milliseconds since midnight January 1, 1970.

« public bool ean getLast AccessedTi ne()

This method returns the time of the last request associated with the client,
measured in milliseconds since midnight January 1, 1970.

Servlet and JSP Technical Background B-5

Background on Servlets

Session Tracking

The Ht t pSessi on interface supports alternative mechanisms for tracking sessions.
Each involves some way to assign a session ID. A session ID is an intermediate
handle that is assigned and used by the servlet container. Multiple sessions by the
same user can share the same session ID, if appropriate.

The following session-tracking mechanisms are supported:
« cookies

The servlet container sends a cookie to the client, which returns the cookie to
the server upon each HTTP request. This associates the request with the session
ID indicated by the cookie. JSESSI ONI D must be the name of the cookie.

This is the most frequently used mechanism and is supported by any servlet
container that adheres to the servlet 2.2 specification.

« URL rewriting

The servlet container appends a session ID to the URL path. The name of the
path parameter must be j sessi oni d, as in the following example:

http:// host[: port]/nyapp/ i ndex. ht i ;j sessi oni d=6789

This is the most frequently used mechanism where clients do not accept
cookies.

« SSL Sessions

SSL (Secure Sockets Layer, used in the HTTPS protocol) includes a mechanism
to take multiple requests from a client and define them as belonging to a single
session. Some servlet containers use the SSL mechanism for their own session
tracking as well.

Servlet Contexts

A servlet context is used to maintain state information for all instances of a Web
application within any single Java virtual machine (that is, for all servlet and JSP
page instances that are part of the Web application). This is similar to the way a
session maintains state information for a single client on the server; however, a
servlet context is not specific to any single user and can handle multiple clients.
There is usually one servlet context for each Web application running within a given
Java virtual machine. You can think of a servlet context as an "application
container".

B-6 JavaServer Pages Developer’s Guide and Reference

Background on Servlets

Any servlet context is an instance of a class that implements the standard
j avax. servl et . Servl et Cont ext interface, with such a class being provided
with any Web server that supports servlets.

A Ser vl et Cont ext object provides information about the servlet environment
(such as name of the server) and allows sharing of resources between servlets in the
group, within any single JVM. (For servlet containers supporting multiple
simultaneous JVMs, implementation of resource-sharing varies.)

A servlet context maintains the session objects of the users who are running the
application and provides a scope for the running instances of the application.
Through this mechanism, each application is loaded from a distinct class loader and
its runtime objects are distinct from those of any other application. In particular, the
Ser vl et Cont ext object is distinct for an application, as is the Ht t pSessi on
object for each user of the application.

As of the Sun Microsystems Java Servlet Specification, Version 2.2, most
implementations can provide multiple servlet contexts within a single host, which is
what allows each Web application to have its own servlet context. (Previous
implementations usually provided only a single servlet context with any given
host.)

The Ser vl et Cont ext interface specifies methods that allow a servlet to
communicate with the servlet container that runs it, which is one of the ways that
the servlet can retrieve application-level environment and state information.

Note: In earlier versions of the servlet specification, the concept of
servlet contexts was not sufficiently defined. Beginning with
version 2.1(b), however, the concept was further clarified and it was
specified that an HTTP session object could not exist across
multiple servlet context objects.

Application Lifecycle Management Through Event Listeners

The Java Servlet Specification, Version 2.1 (and higher) provides limited application
lifecycle management through the standard Java event-listener mechanism. HTTP
session objects can use event listeners to make objects stored in the session object
aware of when they are added or removed. Because the typical reason for removing
objects within a session object is that the session has become invalid, this
mechanism allows the developer to manage session-based resources. Similarly, the
event-listener mechanism also allows the managing of page-based and
request-based resources.

Servlet and JSP Technical Background B-7

Background on Servlets

Unfortunately, servlet context objects do not support this sort of notification.
Standard servlet application support does not provide a way to manage
application-based resources.

Servlet Invocation

A servlet, like an HTML page, is invoked through a URL. The servlet is launched
according to how servlets are mapped to URLs in the Web server implementation.
Following are the possibilities:

« A specific URL can be mapped to a specific servlet class.

= An entire directory can be mapped so that any class in the directory is executed
as a servlet. For example, the special / ser vl et directory can be mapped so
that any URL of the form / ser vl et/ <ser vl et _nane> executes a servlet.

« A file name extension can be mapped, so that any URL specifying a file whose
name includes that extension executes a servlet.

This mapping would be specified as part of the Web server configuration.

B-8 JavaServer Pages Developer’s Guide and Reference

Web Application Hierarchy

Web Application Hierarchy

The entities relating to a Web application (which consists of some combination of
servlets and JSP pages) do not follow a simple hierarchy, but can be considered in
the following order:

1.

servlet objects (including page implementation objects)

There is a servlet object for each servlet and for each JSP page implementation
in a running application (and possibly more than one object, depending on
whether a single-thread or multiple-thread execution model is used). A servlet
object processes request objects from a client and sends response objects back to
the client. A JSP page, as with servlet code, specifies how to create the response
objects.

You can think of multiple servlet objects as being within a single request object
in some circumstances, such as when one page or servlet "includes" or forwards
to another.

A user will typically access multiple servlet objects in the course of a session,
with the servlet objects being associated with the session object.

Servlet objects, as well as page implementation objects, indirectly implement
the standard j avax. ser vl et. Ser vl et interface. For servlets in a Web
application, this is accomplished by subclassing the standard
javax.servlet. http. Ht t pServl et abstract class. For JSP page
implementation classes, this is accomplished by implementing the standard
javax. servl et.jsp. H t pJspPage interface.

request and response objects

These objects represent the individual HTTP requests and responses that are
generated as a user runs an application.

A user will typically generate multiple requests and receive multiple responses
in the course of a session. The request and response objects are not "contained
in" the session, but are associated with the session.

As a request comes in from a client, it is mapped to the appropriate servlet
context object (the one associated with the application the client is using)
according to the virtual path of the URL. The virtual path will include the root
path of the application.

A request object implements the standard
javax.servlet. http. Ht t pServl et Request interface.

Servlet and JSP Technical Background B-9

Web Application Hierarchy

A response object implements the standard
javax.servlet. http. Ht t pServl et Response interface.

3. session objects

Session objects store information about the user for a given session and provide
a way to identify a single user across multiple page requests. There is one
session object per user.

There may be multiple users of a servlet or JSP page at any given time, each
represented by their own session object. All these session objects, however, are
maintained by the servlet context that corresponds to the overall application. In
fact, you can think of each session object as representing an instance of the Web
application associated with a common servlet context.

Typically, a session object will sequentially make use of multiple request objects,
response objects, and page or servlet objects, and no other session will use the
same objects; however, the session object does not "contain" those objects per se.

A session lifecycle for a given user starts with the first request from that user. It
ends when the user session terminates (such as when the user quits the
application) or there is a timeout.

HTTP session objects implement the j avax. servl et. http. Ht t pSessi on
interface.

Note: Prior to the 2.1(b) version of the servlet specification, a
session object could span multiple servlet context objects.

4. servlet context object

A servlet context object is associated with a particular path in the server. This is
the base path for modules of the application associated with the servlet context,
and is referred to as the application root.

There is a single servlet context object for all sessions of the application in any
given JVM, providing information from the server to the servlets and JSP pages
that comprise the application. The servlet context object also allows application
sessions to share data within a secure environment isolated from other
applications.

The servlet container provides a class that implements the standard

j avax. servl et. Servl et Cont ext interface, instantiates this class the first
time a user requests an application, and provides this Ser vl et Cont ext object
with the path information for the location of the application.

B-10 JavaServer Pages Developer’s Guide and Reference

Web Application Hierarchy

The servlet context object typically has a pool of session objects to represent the
multiple simultaneous users of the application.

A servlet context lifecycle starts with the first request (from any user) for the
corresponding application. The lifecycle ends only when the server is shut
down or otherwise terminated.

(For additional introductory information about servlet contexts, see "Servlet
Contexts" on page B-6.)

servlet configuration object

The servlet container uses a servlet configuration object to pass information to a
servlet when it is initialized—the i ni t () method of the Ser vl et interface
takes a servlet configuration object as input.

The servlet container provides a class that implements the standard

j avax. servl et. Servl et Conf i g interface and instantiates it as necessary.
Included within the servlet configuration object is a servlet context object (also
instantiated by the servlet container).

Servlet and JSP Technical Background B-11

Standard JSP Interfaces and Methods

Standard JSP Interfaces and Methods

Two standard interfaces, both in the j avax. ser vl et . j sp package, are available
to be implemented in code that is generated by a JSP translator:

« JspPage
« HttpJspPage

JspPage is a generic interface that is not intended for use with any particular
protocol. It extends the j avax. servl et. Ser vl et interface.

Ht t pJspPage is an interface for JSP pages using the HTTP protocol. It extends
JspPage and is typically implemented directly and automatically by any servlet
class generated by a JSP translator.

JspPage specifies the following methods used in initializing and terminating
instances of the generated class:

= jsplnit()
« jspDestroy()

Any code for these methods must be included in scriptlets in your JSP page, as in
the following example:

<%
void jsplnit()
{
... your inplenentation code. ..
}
%

(JSP syntax is described later in this chapter. See "Scripting Elements" on page 1-12.)
Ht t pJspPage adds specification for the following method:
= _jspService()

Code for this method is typically generated automatically by the translator and
includes code from scriptlets in the JSP page, code resulting from any JSP directives,
and any static content of the page. (JSP directives are used to provide information
for the page, such as specifying the Java language for scriptlets and providing
package imports. See "Directives" on page 1-10.)

As with the Ser vl et methods discussed in "The Servlet Interface” on page B-3, the
_j spService() method takes an Ht t pSer vi ceRequest instance and an
Ht t pSer vi ceResponse instance as input.

B-12 JavaServer Pages Developer’s Guide and Reference

Standard JSP Interfaces and Methods

The JspPage and Ht t pJspPage interfaces inherit the following methods from the
Ser vl et interface:

« init()

« destroy()

« service()

« getServletConfig()
« getServletlnfo()

Refer back to "The Servlet Interface" on page B-3 for a discussion of the Ser v| et
interface and its key methods.

Servlet and JSP Technical Background B-13

Standard JSP Interfaces and Methods

B-14 JavaServer Pages Developer’s Guide and Reference

C

Compile-Time JML Tag Support

OracleJSP 1.0.0.6.x releases, because they were JSP 1.0 implementations, could
support JML tags only as Oracle-specific extensions. (The tag library framework
was not added to the JavaServer Pages specification until JSP 1.1.) For those
releases, IML tag processing was built into the OracleJSP translator. This is referred
to as "compile-time JML support".

Release 1.1.0.0.0 continues to support the compile-time JML implementation;
however, it is generally advisable to use the runtime implementation, documented
in Chapter 7, "JSP Tag Libraries and the Oracle JML Tags", wherever possible.

This appendix discusses features of the compile-time implementation that are not in
common with the runtime implementation. This includes the following topics:

« JML Compile-Time Versus Runtime Considerations and Logistics
« JML Compile-Time/1.0.0.6.x Syntax Support
« JML Compile-Time/1.0.0.6.x Tag Support

Compile-Time JML Tag Support C-1

JML Compile-Time Versus Runtime Considerations and Logistics

JML Compile-Time Versus Runtime Considerations and Logistics

This section discusses two aspects of compile-time tag libraries compared to
runtime tag libraries:

= general considerations in when it may be advantageous to use a compile-time
tag library implementation (for any library, not just JIML)

« thetagli b directive required for the compile-time JML implementation in
particular

General Compile-Time Versus Runtime Considerations

The Sun Microsystems JavaServer Pages Specification, Version 1.1, describes a runtime
support mechanism for custom tag libraries. This mechanism, using an XML-style
tag library description file to specify the tags, is covered in "Standard Tag Library
Framework" on page 7-2.

Creating and using a tag library that adheres to this model assures that the library
will be portable to any standard JSP environment.

There are, however, reasons to consider compile-time implementations:
« A compile-time implementation may produce more efficient code.

« A compile-time implementation allows the developer to catch errors during
translation and compilation, instead of the end-user seeing them at runtime.

In the future, Oracle may offer a general framework for creating custom tag libraries
with compile-time tag implementations. Such implementations would depend on
the OracleJSP translator, so would not be portable to other JSP environments.

The general advantages and disadvantages of compile-time implementations apply
to the Oracle JML tag library as well. There may be situations where it is
advantageous to use the compile-time JML implementation as first introduced in
older versions of OracleJSP. There are also a few additional tags in that
implementation, and some additional expression syntax that is supported. (See
"JML Compile-Time/1.0.0.6.x Syntax Support" on page C-4 and "JML
Compile-Time/1.0.0.6.x Tag Support" on page C-7.)

It is generally advisable, however, to use the JML runtime implementation that
adheres to the JSP 1.1 specification.

C-2 JavaServer Pages Developer’s Guide and Reference

JML Compile-Time Versus Runtime Considerations and Logistics

The taglib Directive for Compile-Time JML Support

The OraclelSP 1.0.0.6.x/compile-time JML support implementation uses a custom
class supplied by Oracle, OpenJspRegi st er Li b, to implement JML tag support.

In a JSP page using JML tags with the compile-time implementation, thet agl i b
directive must specify the fully qualified name of this class (as opposed to
specifying a TLD file as in standard JSP 1.1 tag library usage).

Following is an example:

<Y@taglib uri="oracle.jsp. parse. QpenJspRegi sterLi b" prefix="jm" %

For information about usage of the taglib directive for the JML runtime
implementation, see "The taglib Directive" on page 7-13.

Compile-Time JML Tag Support C-3

JML Compile-Time/1.0.0.6.x Syntax Support

JML Compile-Time/1.0.0.6.x Syntax Support

This section describes Oracle-specific bean reference syntax and expression syntax
supported by the compile-time JML implementation, for specifying tag attribute
values. The following topics are covered:

« JML Bean References and Expressions, Compile-Time Implementation
« Attribute Settings with IML Expressions

This functionality is not portable to other JSP environments.

JML Bean References and Expressions, Compile-Time Implementation

Generally speaking, a bean reference is any reference to a JavaBean instance (bean)

that results in accessing either a property or a method of the bean. This includes a
reference to a property or method of a bean where the bean itself is a property of

another bean.

This becomes cumbersome, because standard JavaBeans syntax requires that
properties be accessed by calling their accessor methods rather than by direct
reference. For example, consider the following direct reference:

a.b.c.d. dolt()

This must be expressed as follows in standard JavaBeans syntax:
a.getB().getq).getN).dolt()

Oracle’s compile-time JML implementation, however, offers abbreviated syntax.

JML Bean References

Oracle-specific syntax supported by the compile-time JML implementation allows
bean references to be expressed using direct "." (dot) notation. Note that standard
bean property accessor method syntax is also still valid.

Consider the following standard JavaBean reference:

cust orrer . get Nane()

In JML bean reference syntax, you can express this in either of the following ways:

cust omrer . get Nane()

or:

cust orer . nane

C-4 JavaServer Pages Developer’s Guide and Reference

JML Compile-Time/1.0.0.6.x Syntax Support

JavaBeans can optionally have a default property, whose reference is assumed if no
reference is explicitly stated. Default property names can be omitted in JML bean
references. In the example above, if name is the default property, then the following
are all valid JML bean references:

cust onrer . get Nane()

or:

cust oner . nane

or simply:

cust oner

Most JavaBeans do not define a default property. Of those that do, the most
significant are the JML datatype JavaBeans described in "JML Extended Datatypes"
on page 5-2.

JML Expressions

JML expression syntax supported by the compile-time JML implementation is a
superset of standard JSP expression syntax, adding support for the JML bean
reference syntax documented in the preceding section.

A JML bean reference appearing in a JML expression must be enclosed in the
following syntax:

$[JM._bean ref erencel

Attribute Settings with JML Expressions

Tag attribute documentation under "JSP Markup Language (JML) Tag Descriptions"
on page 7-30 notes standard syntax that is portable. You can set attributes, as
documented there, for either the runtime or the compile-time JML implementation
and even for non-Oracle JSP environments.

If you intend to use only the Oracle-specific compile-time implementation,
however, you can set attributes using JML bean references and JML expression
syntax, as documented in "JML Bean References and Expressions, Compile-Time
Implementation” on page C-4.

Compile-Time JML Tag Support C-5

JML Compile-Time/1.0.0.6.x Syntax Support

Note the following:

= Wherever Chapter 7 documents an attribute that accepts either a string literal or
an expression, you can use a JML expression inits $[. . .] syntax inside
standard JSP <% . . . % syntax.

Consider an example using the JML useVar i abl e tag. You would use syntax
such as the following for the runtime implementation:

<jnm:useVariable id isValidUser" type = "bool ean" val ue = "<% dbQonn.isValid() %" scope = "session" />

You can alternatively use syntax such as the following for the compile-time
implementation (the val ue attribute can be either a string literal or an
expression):

<jnm:useVariable id i sValidUser" type = "bool ean" val ue = "<% $[dbConn.val id] %" scope = "session" />

=« Wherever Chapter 7 documents an attribute that accepts an expression only,
you can use a JML expression inits $[. . .] syntax without being nested in
<%. .. % syntax.

Consider an example using JML choose. . . when tags. You would use
something such as the following syntax for the runtime implementation
(presume or der edl t emis a Jm Bool ean instance):

<j ni : choose>
<jn :when condition = "<% orderedl temgetVal ue() %" >
You have changed your order:
-- outputs the current order --
</j m : when>
<j n : ot her wi se>
Are you sure we can't interest you in sorethi ng?
</jn:otherw se>
</j m: choose>

You can alternatively use syntax such as the following for the compile-time
implementation (the condi t i on attribute can be an expression only):

<j ni : choose>
<jnh:when condition = "$[orderediten}" >
You have changed your order:
-- outputs the current order --
</jm : when>
<j n : ot her wi se>
Are you sure we can't interest you in sorethi ng?
</jn:otherw se>
</j n : choose>

C-6 JavaServer Pages Developer’s Guide and Reference

JML Compile-Time/1.0.0.6.x Tag Support

JML Compile-Time/1.0.0.6.x Tag Support

This section presents the following:

= asummary of all compile-time tags, noting which are desupported in the

runtime implementation

« adescription of tags supported by the compile-time implementation that are
desupported in the runtime implementation (because such tags are not
documented in "JSP Markup Language (JML) Tag Descriptions" on page 7-30)

Note: In most cases, ML tags that are desupported in the runtime
implementation have standard JSP equivalents. Some of the
compile-time tags, however, were desupported because they have
functionality that is difficult to implement when adhering to the JSP

1.1 specification.

JML Tag Summary, 1.0.0.6.x/Compile-Time Versus 1.1.0.0.0/Runtime

Most JML tags are available in both the runtime model and the compile-time model;
however, there are exceptions, as summarized in Table C-1.

Table C-1 JML Tags Supported: Compile-Time Model Versus Runtime Model

Supported in OracleJSP
Tag Compile-Time Implementation?

Supported in OracleJSP
Runtime Implementation?

Bean Binding Tags:

useBean yes
useVariable yes
useForm yes
useCookie yes
remove yes

Bean Manipulation Tags

getProperty yes
setProperty yes
set yes
call yes

no; use j sp: useBean
yes
yes
yes

yes

no; use j sp: get Property
no; use j sp: set Property
no

no

Compile-Time JML Tag Support C-7

JML Compile-Time/1.0.0.6.x Tag Support

Table C-1 JML Tags Supported: Compile-Time Model Versus Runtime Model (Cont.)

Supported in OracleJSP Supported in OracleJSP
Tag Compile-Time Implementation? Runtime Implementation?
lock yes no
Control Flow Tags
if yes yes
choose yes yes
for yes yes
foreach yes; t ype attribute is optional yes; t ype attribute is required
return yes yes
flush yes yes
include yes no; use j sp: i ncl ude
forward yes no; use j sp: forward
XML Tags
transform yes yes
styleSheet yes yes
Utility Tags
print yes; use double-quotes to specify a no; use JSP expressions
string literal
plugin yes no; use j sp: pl ugin

Descriptions of Additional JML Tags, Compile-Time Implementation

This section provides detailed descriptions of JML tags that are still supported by
the JML compile-time implementation, but are not supported by the JML runtime
implementation. These tags are not documented under "JSP Markup Language
(JML) Tag Descriptions" on page 7-30.

In summary, this consists of the following JML tags.
« JML useBean Tag

« JML getProperty Tag

« JML setProperty Tag

« JML set Tag

C-8 JavaServer Pages Developer’s Guide and Reference

JML Compile-Time/1.0.0.6.x Tag Support

« JML call Tag

« JML lock Tag

« JML include Tag

« JML forward Tag

« JML print Tag

« JML plugin Tag

For the syntax documentation in the tag descriptions, note the following:
« ltalics indicate you must specify a value or string.

« Optional attributes are enclosed in square brackets: [. . .]

« Default values of optional attributes are indicated in bold.

« Choices in how to specify an attribute are separated by vertical bars: |

« The prefix "jml:" is used. This is by convention, but is not required. You can
specify any desired prefix in your t agl i b directive.

JML useBean Tag

This tag declares an object to be used in the page, locating the previously
instantiated object at the specified scope by name if it exists. If it does not exist, the
tag will create a new instance of the appropriate class and attach it to the specified
scope by name.

The syntax and semantics are the same as for the standard j sp: useBean tag,
except that wherever a JSP expression is valid in j sp: useBean usage, either a JML
expression or a JSP expression is valid in JML useBean usage.

Syntax

<j m :useBean id = "beanl nst anceNane"
scope ="page | request | session | application”
cl ass ="package. cl ass" | type = " package. cl ass" |
cl ass ="package. cl ass" type = "package. cl ass" |
beanNane = "package. cl ass | <Y jni Expressi on %"
type = "package. cl ass" | >

Alternatively, you can have additional nested tags, such as set Pr opert y tags, and
use a</jm : useBean> end tag.

Compile-Time JML Tag Support C-9

JML Compile-Time/1.0.0.6.x Tag Support

Attributes
Refer to the Sun Microsystems JavaServer Pages Specification, Version 1.1 for
information about attributes and their syntax.

Example

<jm:useBean id = "isValidWser" class = "oracle.jsp.jnt.JmBool ean" scope = "session" />

JML getProperty Tag

This tag is functionally identical to the standard j sp: get Property tag. It prints
the value of the bean property into the response.

For general information about get Pr oper t y usage, refer to the Sun Microsystems
JavaServer Pages Specification, Version 1.1.

Syntax

<jm:getProperty nane = "beanl nstanceNane' property = "propertyhang' |>

Attributes

« name—This is the name of the bean whose property is being retrieved. This
attribute is required.

« property—Thisis the name of the property being retrieved. This attribute is
required.

Example The following example outputs the current value of the sal ary property.

(Assume sal ary is of type Jm Numnber.)

<jm:getProperty nane="sal ary" property="val ue" />

This is equivalent to the following:
<% sal ary.getVal ue() %

JML setProperty Tag

This tag covers the functionality supported by the standard j sp: set Property
tag, but also adds functionality to support JML expressions. In particular, you can
use JML bean references.

C-10 JavaServer Pages Developer’s Guide and Reference

JML Compile-Time/1.0.0.6.x Tag Support

For general information about set Pr oper t y usage, refer to the Sun Microsystems
JavaServer Pages Specification, Version 1.1.

Syntax

<jn:setProperty nane = "beanl nst anceNane"
property =" * " |
property = "propertyNang' [param= "paraneterhang' | |
property = "propertyNane"
value = "stringlLiteral | <% jni Expression %" |>

Attributes

« name—This is the name of the bean whose property is being set. This attribute
is required.

« property—Thisis the name of the property being set. This attribute is
required.

« val ue—This is an optional parameter that lets you set the value directly
instead of from a request parameter. The JML set Property tag supports JIML
expressions in addition to standard JSP expressions to specify the value.

Example The following example updates sal ary with a six percent raise. (Assume
sal ary is of type Jm Nunber.)

<jm:setProperty name="sal ary" property="val ue" val ue="<% $[salary] * 1.06 %" />

This is equivalent to the following:
<%sal ary. set Val ue(sal ary. getValue() * 1.06); %

JML set Tag

This tag provides an alternative for setting a bean property, using syntax that is
more convenient than that of the set Pr oper ty tag.

Syntax

<jnm:set name = "beanl nst anceNane. propert yNane"
value = "stringLiteral | <% jniExpression %" |>

Compile-Time JML Tag Support C-11

JML Compile-Time/1.0.0.6.x Tag Support

Attributes

« name—This is a direct reference (JML bean reference) to the bean property to be
set. This attribute is required.

« Vval ue—This is the new property value. It is expressed either as a string literal,

a JML expression, or a standard JSP expression. This attribute is required.
Example Each of the following examples updates sal ar y with a six percent raise.
(Assume sal ary is of type Jm Numnber.)

<jnm:set name="sal ary. val ue" val ue="<% sal ary. get Val ue() * 1.06 %" />

or:

<jnm:set name="sal ary. val ue" val ue="<% $[sal ary.value] * 1.06 %" />

or:

<jnm:set name="sal ary" val ue="<% $[salary] * 1.06 %" />

These are equivalent to the following:
<%sal ary. set Val ue(sal ary. getValue() * 1.06); %

JML call Tag
This tag provides a mechanism to invoke bean methods that return nothing.

Syntax

<jm:call nethod = "beanl nst anceNarre. net hodN\ane(par aneters)" >

Attributes

« met hod—This is the method call as you would write it in a scriptlet, except that
the beanl nst ancenane. met hodName portion of the statement can be written
as a JML bean reference if enclosed in JML expression $[. ..] syntax. This
attribute is required.

Example The following example redirects the client to a different page:

<jm:call nanme="response. sendRedirect ("http://ww oracle.com")’ />

C-12 JavaServer Pages Developer’s Guide and Reference

JML Compile-Time/1.0.0.6.x Tag Support

This is equivalent to the following:

<% response. sendRedi rect ("http: //ww oracl e.com"); %

JML lock Tag

This tag allows controlled, synchronous access to the named object for any code that
uses it within the tag body.

Generally, JSP developers need not be concerned with concurrency issues. However,
because application-scoped objects are shared across all users running the
application, access to critical data must be controlled and coordinated.

You can use the IML | ock tag to prevent concurrent updates by different users.

Syntax

<jm:lock nane = " beanl nst ancehNange" >
... body. ..
</jnm:Ilock>

Attributes

« name—This is the name of the object that should be locked during execution of
code in the | ock tag body. This is a required attribute.

Example In the following example, pageCount is an application-scoped

Jm Nunber value. The variable is locked to prevent the value from being updated
by another user between the time this code gets the current value and the time it
sets the new value.

<jm: | ock name="pageCount" >
<j m:set nane="pageCount . val ue" val ue="<% pageCount.getValue() + 1 %" />
</jnm:Ilock>

This is equivalent to the following:

<% synchr oni zed(pageCount)

{
pageCount . set Val ue(pageCount . get Val ue() + 1);

}
%

Compile-Time JML Tag Support C-13

JML Compile-Time/1.0.0.6.x Tag Support

JML include Tag

This tag includes the output of another JSP page, a servlet, or an HTML page in the
response of this page (the page invoking the i ncl ude). It provides the same
functionality as the standard j sp: i ncl ude tag except that the page attribute can
also be expressed as a JIML expression.

Syntax

<jm:include page = "relativelR. | <% jniExpression %" flush = "true" />

Attributes
For general information about i ncl ude attributes and usage, refer to the Sun
Microsystems JavaServer Pages Specification, Version 1.1.

Example The following example includes the output of t abl e. j sp, a presentation
component that renders an HTML table, based on data in the query string and
request attributes.

<jm:include page="tabl e. j sp?naxRows=10" flush="true" />

JML forward Tag

This tag forwards the request to another JSP page, a servlet, or an HTML page. It
provides the same functionality as the standard j sp: f or war d tag except that the
page attribute can also be expressed as a JIML expression.

Syntax
<jm:forward page = "relativelR. | <% jni Expression %" [>

Attributes

For general information about f or war d attributes and usage, refer to the Sun
Microsystems JavaServer Pages Specification, Version 1.1.

Example

<jm:forward page="al t page.jsp" />

C-14 JavaServer Pages Developer’s Guide and Reference

JML Compile-Time/1.0.0.6.x Tag Support

JML print Tag

This tag provides essentially the same functionality as a standard JSP expression:
<% expr %.A specified IML expression or string literal is evaluated, and the
result is output into the response. With this tag, the JIML expression does not have to
be enclosed in <% ... % syntax; however, a string literal must be enclosed in
double-quotes.

Syntax

<jml:printeval =™ stringlLiteral™|" jniExpression'f>

Attributes

eval —Specifies the string or expression to be evaluated and output. This attribute
is required.

Examples Either of the following examples outputs the current value of sal ary,
which is of type Jm Nunber:

<gn:print eval ="$[sal ary]"/>
or:

<m:print eval ="sal ary. getValue()" />

The following example prints a string literal:

<jml:print eval=""Your string here" />

JML plugin Tag
This tag has functionality identical to that of the standard j sp: pl ugi n tag.

For information about pl ugi n attributes, usage, and examples, refer to the Sun
Microsystems JavaServer Pages Specification, Version 1.1.

Compile-Time JML Tag Support C-15

JML Compile-Time/1.0.0.6.x Tag Support

C-16 JavaServer Pages Developer’s Guide and Reference

Symbols

_jspService() method, B-12

A

action tags

forward tag, 1-21
getProperty tag, 1-19
include tag, 1-20
overview, 1-18
param tag, 1-19
plugin tag, 1-22
setProperty tag, 1-18
useBean tag, 1-18

addclasspath, ojspc option, 6-27
alias translation, Apache/JServ

alias_translation configuration parameter, A-18
overview, 4-38

Apache/JServ

Apache "mods", 2-6

classpath configuration, A-8

config, map file name extensions, A-11
mod_jserv module, 2-8

mod_ose module, 2-7

OraclelSP application framework, 4-37
OracleJSP dynamic include support, 4-35
overview of JSP-servlet session sharing, 4-37
overview of special considerations, 4-34
setting configuration parameters, A-25
support for OracleJSP, 2-12

use with Internet Application Server, 4-34

application events

servlet application lifecycles, B-7

Index

with globals.jsa, 5-42

with JspScopeListener, 5-32
application framework for Apache/JServ, 4-37
application hierarchy, B-9
application object (implicit), 1-16
application root functionality, 3-4
application scope (JSP objects), 1-15
application support

overview, 3-6

servlet application lifecycles, B-7

through globals.jsa, 5-38
application_OnEnd tag, globals.jsa, 5-43
application_OnStart tag, globals.jsa, 5-42
application-relative path, 1-9
appRoot, ojspc option, 6-28

B

batch updates--see update batching

bean references, compile-time JML, C-4
binary data, reasons to avoid in JSP, 4-19
binary file deployment, 6-69

binary file location, ojspc d option, 6-29
bypass_source config param, A-18

C

call servlet from JSP, JSP from servlet, 3-7
call tag, compile-time JML, C-12

checker pages, 4-12

choose tag, JIML, 7-35

class loader issues, 4-21

class naming, translator, 6-5

class reloading, dynamic, 4-26

Index-1

classesXX.zip, required file for JDBC, A-5
classpath
classpath and class loader issues, 4-21
classpath config param, A-19
configuration, Apache/JServ, A-8
configuration, JSSWDK, A-9
configuration, Tomcat, A-10
Web server classpath configuration, A-8
client-side considerations, 3-3
client-side translation, Oracle8i deployment
hotloading page implementation classes, 6-62
loading translated pages, 6-58
overview, 6-54
pre-translating with ojspc, 6-54
publishing pages with publishservlet, 6-63
vs. server-side translation, 6-19
code, generated by translator, 6-2
comments (in JSP code), 1-14
compilation
javaccmd config param, A-21
ojspc noCompile option, 6-31
compile-time JML tags
syntax support, C-4
tag summary and descriptions, C-7
taglib directive, C-3
config object (implicit), 1-17
configuration
classpath and class loader issues, 4-21
classpath, Apache/JServ, A-8
classpath, JSSWDK, A-9
classpath, Tomcat, A-10
config param descriptions (non-OSE), A-18

config params, summary table (non-OSE), A-15

equivalent code for config params, OSE, 4-33
map file name extensions, Apache/JServ, A-11
map file name extensions, JSSWDK, A-12
map file name extensions, Tomcat, A-12
map JSP file name extensions, A-11
optimization of execution, 4-20

overview, OSE configuration, A-27

setting configuration parameters, A-25
setting parameters, Apache/JServ, A-25
setting parameters, JSSWDK, A-26

setting parameters, Tomcat, A-26

Web server and servlet environment, A-7

Index-2

Web server classpath, A-8
configuration parameters (non-OSE)

setting, A-25

summary table and descriptions, A-15
ConnBean JavaBean

sample application, 9-23

usage (for connection), 5-14
ConnCacheBean JavaBean

sample application, 9-26

usage (for connection cache), 5-16
connection caching

overview, 4-6

sample applications, 9-16

through ConnCacheBean JavaBean, 5-16
connection, server-side (for OSE), 4-29
containers

JSP containers, 1-7

OSE JSP container, 2-22

servlet containers, B-3
content type settings

dynamic (setContentType method), 8-4

static (page directive), 8-2
context path, URLs, 6-15
context, publishjsp option, 6-45
context-relative path, 1-9
cookies, B-6
createcontext command, 6-15, 6-16, 6-18, 6-45
CursorBean JavaBean

sample application, 9-24

usage (for DML), 5-20
custom tags--see tag libraries

D

d, ojspc option (binary output dir), 6-29
database access
database-access JavaBeans, 5-13
server-side JDBC connection, 4-29
starter sample, 3-21
strategies, 2-8
database schema objects--see schema objects
database-access JavaBeans
ConnBean for connection, 5-14
ConnCacheBean for connection cache, 5-16
CursorBean for DML, 5-20

DBBean for queries, 5-19

overview, 5-13

sample applications, 9-21
datatypes

JML datatypes example, 5-7

JmIBoolean extended type, 5-3

JmIFPNumber extended type, 5-5

JmINumber extended type, 5-4

JmIString extended type, 5-6

Oracle JML extended types, 5-2

overview of OracleJSP extensions, 2-13
DBBean JavaBean

sample application, 9-21

usage (for queries), 5-19
dbClose SQL tag, close connection, 5-25
dbCloseQuery SQL tag, close cursor, 5-27
dbExecute SQL tag, DML/DDL, 5-27
dbNextRow SQL tag, process results, 5-27
dbOpen SQL tag, open connection, 5-24
dbQuery SQL tag, execute query, 5-26
debugging

debug, ojspc option, 6-30

emit_debuginfo config param, A-20

through JDeveloper, 2-23
declarations

global declarations, globals.jsa, 5-47

member variables, 1-12

method variable vs. member variable, 4-14
deployment environment, 3-2
deployment to Oracle8i

ojspc pre-translation tool, 6-23

overview of hotloading, 6-20

overview of loadjava tool, 6-36

overview of session shell tool, 6-38

overview of tools, 6-23

overview, features and logistics, 6-12

server-side vs. client-side translation, 6-19

static file location, 6-17

with client-side translation, 6-54

with server-side translation, 6-41
deployment, general considerations

deploying pages with JDeveloper, 6-71

deployment of binary files only, 6-69

doc root, iAS vs. OSE, 6-67

general pre-translation without execution,

6-69

ojspc for non-OSE environments, 6-68
overview, 6-67
WAR deployment, 6-70
developer_mode config param, A-20
development environment, 3-2
directives
global directives, globals.jsa, 5-47
include directive, 1-11
overview, 1-10
page directive, 1-10
taglib directive, 1-11
directory alias translation--see alias translation
doc root
functionality, 3-4
iAS vs. OSE, 6-67
dynamic class reloading, 4-26
dynamic forward, special support for
Apache/JServ, 4-35
dynamic include
actiontag, 1-20
for large static content, 4-13
logistics, 4-9
special support for Apache/JServ, 4-35
vs. static include, 4-9
dynamic page reloading, 4-26
dynamic page retranslation, 4-25

E

EJBs, calling from JSPs
from the middle tier, 4-3
from the Oracle Servlet Engine, 4-4
overview, 4-2
emit_debuginfo config param, A-20
Enterprise JavaBeans--see EJBs
environments, development vs. deployment, 3-2
error processing (runtime), 3-18
event handling
servlet application lifecycles, B-7
with globals.jsa, 5-42
with HttpSessionBindingListener, 3-12
with JspScopeListener, 5-32
exception object (implicit), 1-17
execution models for OracleJSP, 2-21
execution of a JSP page, 1-7

Index-3

explicit JSP objects, 1-15

expressions, 1-12

extend, ojspc option, 6-30

extend, publishjsp option, 6-46

extensions
extended functionality for servlet 2.0, 2-2
overview of database-access JavaBeans, 2-14
overview of extended datatypes, 2-13
overview of extended NLS support, 2-16
overview of globals.jsa (application

support), 2-17

overview of JML tag library, 2-15
overview of JspScopeListener, 2-17
overview of Oracle-specific extensions, 2-16

overview of PL/SQL Server Pages support, 2-17

overview of portable extensions, 2-13
overview of programmatic extensions, 2-13
overview of SQL tag library, 2-15
overview of SQLJ support, 2-16
overview of XML/XSL support, 2-14
external resource file
for static text, 4-13
through external_resource parameter, A-21
through ojspc extres option, 6-30
external_resource config param, A-21
extres, ojspc option, 6-30

F

fallback tag (with plugin tag), 1-22

Feiner, Amy (welcome), 1-3

file name extensions, mapping, A-11

files
generated by translator, 6-6
installation for non-Oracle environments, A-6
locations, ojspc d option, 6-29
locations, ojspc srcdir option, 6-33
locations, page_repository_root config

param, A-22

locations, translator output, 6-7
OraclelSP required files, A-4

flush tag, JIML, 7-39

for tag, JIML, 7-36

foreach tag, JML, 7-37

forward tag, 1-21

Index-4

forward tag, compile-time JML, C-14
full names, schema objects, 6-13

G

generated code, by translator, 6-2
getProperty tag, 1-19
getProperty tag, compile-time JML, C-10
globals.jsa
application and session lifecycles, 5-39
application deployment, 5-38
application events, 5-42
distinct applications and sessions, 5-38
event handling, 5-42
example, declarations and directives, 5-48
extended support for servlet 2.0, 5-37
file contents, structure, 5-48
global declarations, 5-47
global JavaBeans, 5-47
global JSP directives, 5-47
overview of functionality, 5-37
overview of syntax and semantics, 5-39
sample application, application and session
events, 9-44
sample application, application events, 9-41
sample application, global declarations, 9-47
sample applications, 9-41
session events, 5-44

H

hotload, ojspc option, 6-31
hotload, publishjsp option, 6-45
hotloading (for OSE)
enabling and accomplishing, 6-21
enabling through ojspc, 6-56
features and advantages, 6-22
hotloading page implementation classes, 6-62
ojspc hotload option, 6-31
overview, 6-20
publishjsp hotload option, 6-45
HttpJspPage interface, B-12
HttpSession interface, B-4
HttpSessionBindingListener, 3-12

if tag, IML, 7-34
implement, ojspc option, 6-31
implement, publishjsp option, 6-46
implicit JSP objects
overview, 1-16
using implicit objects, 1-17
include directive, 1-11
include tag, 1-20
include tag, compile-time JML, C-14
inner class for static text, 6-3
installation of files, non-Oracle environment, A-6
interaction, JSP-servlet, 3-7
Internet Application Server
OracleJSP support, 2-5
use of Apache/JServ, 4-34
invoke servlet from JSP, JSP from servlet, 3-7

J

java command (session shell), 6-62
JavaBeans
bean references, compile-time JML, C-4
database-access JavaBean samples, 9-21
global JavaBeans, globals.jsa, 5-47
JML bean binding tags, 7-30
Oracle database-access beans, 5-13
query bean sample application, 9-13
use for separation of business logic, 1-5
use with useBean tag, 1-18
useBean sample application, 9-3
vs. scriptlets, 4-2
javaccmd config param, A-21
JDBC in JSP pages
performance enhancements, 4-5
required files, A-5
sample applications, 9-10
server-side internal driver (for OSE), 4-29
JDeveloper
OracleJSP support, 2-23
use for deploying JSP pages, 6-71
jml call tag, compile-time JML, C-12
jml choose tag, 7-35
JML datatypes

descriptions, 5-2
example, 5-7

JML expressions, compile-time JML
attribute settings, C-5
syntax, C-5

jml flush tag, 7-39

jml for tag, 7-36

jml foreach tag, 7-37

jml forward tag, compile-time JML, C-14

jml getProperty tag, compile-time JML, C-10

jmliftag, 7-34

jml include tag, compile-time JML, C-14

jml lock tag, compile-time JML, C-13

jml otherwise tag, 7-35

jml plugin tag, compile-time JML, C-15

jml printtag, C-15

jml remove tag, 7-33

jml return tag, 7-38

jml set tag, compile-time JML, C-11

jml setProperty tag, compile-time JML, C-10

jml styleSheet tag, 5-10

JML tags
attribute settings, compile-time JML, C-5
bean references, compile-time JML, C-4
descriptions, additional compile-time tags, C-8
descriptions, bean binding tags, 7-30
descriptions, logic/flow control tags, 7-34
descriptions, XSL stylesheet tags, 5-10
expressions, compile-time JML, C-5
overview, 7-20
philosophy, 7-21
requirements, 7-20
sample application, 9-29
summary of tags, categories, 7-21
summary, compile-time vs. runtime, C-7
tag descriptions, symbology and notes, 7-30
tag library description file, 7-22
taglib directive, 7-22
taglib directive, compile-time JML, C-3

jml transform tag, 5-10

jml useBean tag, compile-time JML, C-9

jml useCookie tag, 7-32

jml useForm tag, 7-31

jml useVariable tag, 7-30

jmlwhen tag, 7-35

Index-5

JmIBoolean extended datatype, 5-3
JmIFPNumber extended datatype, 5-5
JmINumber extended datatype, 5-4
JmIString extended datatype, 5-6
JNDI in Oracle Servlet Engine, 4-32
JServer JVM, 4-29
jsp fallback tag (with plugin tag), 1-22
jsp forward tag, 1-21
jsp getProperty tag, 1-19
jsp include tag, 1-20
JSP Markup Language--see JML
jsp param tag, 1-19
jsp plugin tag, 1-22
jsp setProperty tag, 1-18
JSP translator--see translator
jsp useBean tag
sample application, 9-3
syntax, 1-18
JspPage interface, B-12
JspScopeEvent class, event handling, 5-32
JspScopeListener
sample application, 9-32
usage for event handling, 5-32
jspService() method, B-12
JSP-servlet interaction
invoking JSP from servlet, request
dispatcher, 3-8
invoking servlet from JSP, 3-7
passing data, JSP to servlet, 3-8
passing data, servlet to JSP, 3-9
sample code, 3-10
JSWDK
classpath configuration, A-9
config, map file name extensions, A-12
setting configuration parameters, A-26
support for OracleJSP, 2-12

L

loadjava tool (load to Oracle8i)
complete option syntax, 6-37
loading translated pages, 6-58
loading translated pages as class files, 6-59
loading translated pages as source files, 6-61
loading untranslated pages, 6-41

Index-6

overview, 6-36
lock tag, compile-time JML, C-13

M

mapping JSP file name extensions, A-11
member variable declarations, 4-14
method variable declarations, 4-14
multibyte parameter encoding, NLS, 8-5

N

National Language Support--see NLS
NLS support
content type settings (dynamic), 8-4
content type settings (static), 8-2
multibyte parameter encoding, 8-5
overview, 8-1
sample depending on translate_params, 8-7
sample not depending on translate_params, 8-9
noCompile, ojspc option, 6-31

O

objects and scopes (JSP objects), 1-14
ojspc pre-translation tool
command-line syntax, 6-27
enabling hotloading, 6-56
examples, 6-57
for SQLJSP pages, 6-55
key features and options, 6-56
option descriptions, 6-27
option summary table, 6-25
output files, locations, related options, 6-34
overview, 6-23
overview of functionality, 6-24
pre-translating for deployment to Oracle8i, 6-54
simplest usage, 6-55
use for non-OSE environments, 6-68
ojsp.jar, required file, A-4
ojsputil jar, optional file, A-4
on-demand translation (runtime), 1-7,2-21
optimization
not checking for retranslation, 4-20
not using HTTP session, 4-21

unbuffering a JSP page, 4-20
Oracle Application Server, OracleJSP support,
Oracle HTTP Server
advantages in using, 2-9
role with OracleJSP, 2-6
with mod_jserv, 2-8
with mod_ose, 2-7
Oracle platforms supporting OracleJSP
Internet Application Server, 2-5
JDeveloper, 2-23
Oracle Application Server, 2-10
summary of releases, 2-19
Web-to-go, 2-10
Oracle Servlet Engine
advantages in using, 2-9
calling EJBs from JSPs in OSE, 4-4
config parameters, equivalent code, 4-33
configuration overview, A-27
doc root, vs. iAS, 6-67
JSP integration with PL/SQL Pages, 2-17
OSE JSP container, 2-22
overview, 2-4
overview of pre-translation model, 2-22
overview of special considerations, 4-28
server-side JDBC connection, 4-29
static files, 6-17
URLs, 6-15
use of INDI, 4-32
virtual paths, 6-15
OracleJSP translator--see translator
otherwise tag, JML, 7-35
out object (implicit), 1-17
output files
generated by translator, 6-6
locations, 6-7
locations and related options, ojspc, 6-34
ojspc d option (binary location), 6-29
ojspc srcdir option (source location), 6-33
page_repository_root config param, A-22

P

package naming
by translator, 6-4
ojspc packageName option, 6-32

publishjsp packageName option, 6-44
packageName, ojspc option, 6-32
packageName, publishjsp option, 6-44
page directive

characteristics, 4-15

contentType setting for NLS, 8-2

overview, 1-10
page events (JspScopelListener), 5-32
page implementation class

generated code, 6-2

overview, 1-7

sample code, 6-8
page object (implicit), 1-16
page reloading, dynamic, 4-26
page retranslation, dynamic, 4-25
page scope (JSP objects), 1-15
page_repository_root config param, A-22
pageContext object (implicit), 1-16
page-relative path, 1-9
param tag, 1-19
PL/SQL Server Pages, use with OracleJSP, 2-17
plugin tag, 1-22
plugin tag, compile-time JML, C-15
portability of OracleJSP, 2-2
prefetching rows--see row prefetching
pre-translation

client-side (for OSE), 6-54

for OSE (overview), 2-22

server-side (for OSE), 6-42

without execution, general, 6-69
pre-translation for deployment to Oracle8i, 6-54
pre-translation tool, ojspc, 6-23
printtag, IML, C-15
properties, publishservlet option, 6-65
PSP pages, use with OracleJSP, 2-17
publishjsp command

examples, 6-47

overview, 6-42

publishing SQLJSP pages, 6-51

syntax and options, 6-43
publishservlet command

example, 6-65

overview, 6-63

syntax and options, 6-63

Index-7

R

release number, OracleJSP, code to display, 2-20
reloading classes, dynamic, 4-26
reloading page, dynamic, 4-26
remove tag, JML, 7-33
request dispatcher (JSP-servlet interaction), 3-8
request events (JspScopeListener), 5-32
request object (implicit), 1-16
request objects, servlets, B-9
request scope (JSP objects), 1-15
RequestDispatcher interface, 3-8
requesting a JSP page, 1-8
requirements
summary of required files, A-4
system requirements for OraclelJSP, A-2
resolver, publishjsp option, 6-46
resource management
application (JspScopeListener), 5-32
overview of OracleJSP extensions, 3-17
page (JspScopeListener), 5-32
request (JspScopeListener), 5-32
session (JspScopeListener), 5-32
standard session management, 3-12
response object (implicit), 1-16
response objects, servlets, B-9
retranslation of page, dynamic, 4-25
return tag, JML, 7-38
reuse, publishservlet option, 6-65
row prefetching
overview, 4-8
through OracleJSP ConnBean, 5-15
rowset caching, 4-8
runtime considerations
dynamic class reloading, 4-26
dynamic page reloading, 4-26
dynamic page retranslation, 4-25
runtimeXX.zip, required file for SQLJ, A-5

S

S, ojspc option (for SQLJ options), 6-32
sample applications

basic samples, 9-2

ConnBean sample, 9-23

Index-8

ConnCacheBean sample, 9-26
connection caching pages, 9-16
CursorBean sample, 9-24
custom tag definition and use, 7-15
database access, starter sample, 3-21
database-access JavaBean samples, 9-21
DBBean sample, 9-21
globals.jsa samples, 9-41
globals.jsa, application and session events, 9-44
globals.jsa, application events, 9-41
globals.jsa, global declarations, 9-47
hello page, 9-2
HttpSessionBindingListener sample, 3-13
JDBC samples, 9-10
JML datatypes example, 5-7
JML tag sample, 9-29
JspScopeListener, event handling, 9-32
JSP-servlet interaction, 3-10
NLS, depending on translate_params, 8-7
NLS, not depending on translate_params, 8-9
page implementation class code, 6-8
query bean, 9-13
query page (simple), 9-10
shopping cart page, 9-4
SQL tag examples, 5-28
SQLJ example, 5-33
SQLJ queries, 9-37
useBean page, 9-3
user-specified query page, 9-12
XML query output, 9-36

schema objects
forJava, 6-12
full names and short names, 6-13
loading Java files to create, 6-12
package determination, 6-13
publishing, 6-14

schema, publishjsp option, 6-44

scopes (JSP objects), 1-15

scripting elements
comments, 1-14
declarations, 1-12
expressions, 1-12
overview, 1-12
scriptlets, 1-13

scripting variables (tag libraries)

defining, 7-8
scopes, 7-9
scriptlets
overview, 1-13
vs. JavaBeans, 4-2
server-side JDBC driver, 4-29
server-side translation, Oracle8i deployment
loading untranslated pages into Oracle8i, 6-41
overview, 6-41
translating and publishing, publishjsp, 6-42
vs. client-side translation, 6-19
service method, JSP, B-12
servlet 2.0 environments
added support through globals.jsa, 5-37
globals.jsa sample applications, 9-41
OracleJSP application root functionality, 3-5
overview of OracleJSP functionality, 2-2
servlet containers, B-3
servlet contexts
overview, B-6
servlet context objects, B-10
servlet library, A-4
servlet path, URLs, 6-15
servlet sessions
HttpSession interface, B-4
session tracking, B-6
servlet.jar
required file, A-4
versions, A-5
servlet-JSP interaction
invoking JSP from servlet, request
dispatcher, 3-8
invoking servlet from JSP, 3-7
passing data, JSP to servlet, 3-8
passing data, servlet to JSP, 3-9
sample code, 3-10
servletName, publishjsp option, 6-44
servletName, publishservlet option, 6-64
servlets
application lifecycle management, B-7
request and response objects, B-9
review of servlet technology, B-2
servlet configuration objects, B-11
servlet containers, B-3
servlet context objects, B-10

servlet contexts, B-6
servlet interface, B-3
servlet invocation, B-8
servlet objects, B-9
servlet sessions, B-4
session objects, B-10
session sharing, JSP, Apache/JServ, 4-37
technical background, B-2
wrapping servlet with JSP page, 4-35
sess_sh--see session shell
session events
with globals.jsa, 5-44
with HttpSessionBindingListener, 3-12
with JspScopeListener, 5-32
session object (implicit), 1-16
session objects, servlets, B-10
session scope (JSP objects), 1-15
session sharing
overview, JSP-servlet, Apache/JServ, 4-37
session_sharing config param, A-23
session shell tool
createcontext command, 6-15
java command, 6-62
key commands, 6-39
key syntax elements, 6-38
overview, 6-38
publishjsp command, 6-42
publishservlet command, 6-63
unpublishjsp command, 6-53
unpublishservlet command, 6-66
session support
default session requests, 3-6
overview, 3-6
through globals.jsa, 5-38
session tracking, B-6
session_OnEnd tag, globals.jsa, 5-45
session_OnStart tag, globals.jsa, 5-44
session_sharing config param, A-23
set tag, compile-time JML, C-11
setContentType() method, NLS, 8-4
setProperty tag, 1-18
setProperty tag, compile-time JML, C-10
short names, schema objects, 6-13
showVersion, publishjsp option, 6-44
source file location, ojspc srcdir option, 6-33

Index-9

SQL tags
examples, 5-28
overview, tag list, 5-24
requirements, 5-24
SQLJ
JSP code example, 5-33
ojspc S option for SQLJ options, 6-32
OracleJSP support, 5-33
publishing SQLJSP pages with publishjsp, 6-51
required files for use in JSP, A-5
sample applications, 9-37
server-side SQLJ options, 6-51
setting Oracle SQLJ options, 5-36
sgljcmd config param, A-23
sqljsp files, 5-36
triggering SQLJ translator, 5-36
sglijcmd config param, A-23
sqljsp files for SQLJ, 5-36
srcdir, ojspc option, 6-33
SSL sessions, B-6
stateless, publishjsp option, 6-46
stateless, publishservlet option, 6-65
statement caching
overview, 4-6
through OracleJSP ConnBean, 5-14
through OracleJSP ConnCacheBean, 5-17
static files, Oracle Servlet Engine, 6-17
static include
directive, 1-11

logistics, 4-9
vs. dynamic include, 4-9
static text

external resource file, 4-13
external resource, ojspc extres option, 6-30
external_resource parameter, A-21
generated inner class, 6-3
workaround for large static content, 4-13
styleSheet tag, JML, 5-10
Sun Microsystems JSWDK--see JSWDK
syntax (overview), 1-10
system requirements for OraclelJSP, A-2

T

tag handlers (tag libraries)

Index-10

access to outer tag handlers, 7-10
overview, 7-4
sample tag handler class, 7-15
tags with bodies, 7-6
tags without bodies, 7-6
tag libraries
defining and using, end-to-end example, 7-15
Oracle JML tag descriptions, 7-30
Oracle JML tags, overview, 7-20
Oracle SQL tags, 5-24
overview, 1-23
overview of standard implementation, 7-2
runtime vs. compile-time implementations, C-2
scripting variables, 7-7
standard framework, 7-2
strategy, when to create, 4-11
tag handlers, 7-4
tag library description files, 7-10
tag-extra-info classes, 7-7
taglib directive, 7-13
web.xml use, 7-12
tag library description files
defining shortcut URI in web.xml, 7-12
for Oracle JML tags, 7-22
for Oracle SQL tags, 5-24
general features, 7-10
sample file, 7-18
tag-extra-info classes (tag libraries)
general use, getVariableInfo() method, 7-9
sample tag-extra-info class, 7-17
taglib directive
compile-time JML, C-3
for Oracle JML tags, 7-22
for Oracle SQL tags, 5-24
general use, 7-13
syntax, 1-11
use of full TLD name and location, 7-14
use of shortcut URI, 7-14
tips
avoid JSP use with binary data, 4-19
JavaBeans vs. scriptlets, 4-2
JSP page as servlet wrapper, 4-35
JSP preservation of white space, 4-16
key configuration issues, 4-20
method vs. member variable declaration, 4-14

page directive characteristics, 4-15

static vs. dynamic includes, 4-9

using a "checker" page, 4-12

when to create tag libraries, 4-11

workaround, large static content, 4-13
TLD file--see tag library description file
Tomcat

classpath configuration, A-10

config, map file name extensions, A-12

setting configuration parameters, A-26

support for OracleJSP, 2-12
tools

for deployment to Oracle8i, 6-23

ojspc for client-side translation, 6-23

overview of loadjava (load to Oracle8i), 6-36

overview of session shell, 6-38
transform tag, JML, 5-10
translate_params config param

code equivalent, 8-6

effect in overriding non-multibyte servlet

containers, 8-5

general information, A-24

NLS sample depending on it, 8-7

NLS sample not depending on it, 8-9

overview, multibyte parameter encoding, 8-5
translation

client-side pre-translation (for OSE), 6-54

on-demand (runtime), 1-7

server-side pre-translation (for OSE), 6-42

server-side vs. client-side (for OSE), 6-19
translator

generated class names, 6-5

generated code features, 6-2

generated files, 6-6

generated inner class, static text, 6-3

generated package names, 6-4

output file locations, 6-7

sample generated code, 6-8
translator.zip, required file for SQLJ, A-5

U

unpublishjsp command, 6-53
unpublishservlet command, 6-66
unsafe_reload config param, A-24

update batching
overview, 4-7
through OracleJSP ConnBean, 5-14
URLs
context path, 6-15
for Oracle Servlet Engine, 6-15
servlet path, 6-15
URL rewriting, B-6
usage, publishjsp option, 6-44
useBean tag
sample application, 9-3
syntax, 1-18
useBean tag, compile-time JML, C-9
useCookie tag, IML, 7-32
useForm tag, JIML, 7-31
useVariable tag, JML, 7-30

\%

verbose, ojspc option, 6-34

verbose, publishjsp option, 6-46

version humber, OraclelSP, code to display, 2-20
version, ojspc option, 6-34

virtual path (in OSE URLs), 6-15

virtualpath, publishjsp option, 6-44

virtualpath, publishservlet option, 6-64

\W

WAR deployment, 6-70

Web application hierarchy, B-9
Web-to-go, OracleJSP support, 2-10
web.xml, usage for tag libraries, 7-12
when tag, JIML, 7-35

wrapping servlet with JSP page, 4-35

X

xmlparserv2.jar, required file, A-4
XML/ XSL support
JML tags for XSL stylesheets, 5-10
overview, 5-9
sample application, 9-36
XML-alternative syntax, 5-9
XSL transformation example, 5-11

Index-11

xsul2.jar or xsulll.jar, optional file, A-4

Index-12

	PDF Directory
	Send Us Your Comments
	Preface
	1 General Overview
	Introduction to JavaServer Pages
	What a JSP Page Looks Like
	Convenience of JSP Coding versus Servlet Coding
	Separation of Business Logic from Page Presentation—Calling JavaBeans
	JSP Pages and Alternative Markup Languages

	JSP Execution
	JSP Containers in a Nutshell
	JSP Pages and On-Demand Translation
	Requesting a JSP Page

	Overview of JSP Syntax Elements
	Directives
	Scripting Elements
	JSP Objects and Scopes
	JSP Actions and the <jsp: > Tag Set
	Tag Libraries

	2 Overview of Oracle’s JSP Implementation
	Portability and Functionality Across Servlet Environments
	OracleJSP Portability
	OracleJSP Extended Functionality for Servlet 2.0 Environments

	Support for OracleJSP in Oracle Environments
	Overview of the Oracle Servlet Engine (OSE)
	Overview of the Oracle Internet Application Server
	Role of the Oracle HTTP Server, Powered by Apache
	Oracle Web Application Database Access Strategies
	Overview of Other Oracle JSP Environments

	Support for OracleJSP in Non-Oracle Environments
	Overview of OracleJSP Programmatic Extensions
	Overview of Portable OracleJSP Extensions
	Overview of Oracle-Specific Extensions
	Use of OracleJSP with Oracle PL/SQL Server Pages

	Summary of OracleJSP Releases and Feature Sets
	OracleJSP Releases Provided with Oracle Platforms
	OracleJSP Feature Notes for Release 1.0.0.6.x

	OracleJSP Execution Models
	On-Demand Translation Model
	Oracle Servlet Engine Pre-Translation Model

	Oracle JDeveloper Support for OracleJSP

	3 Basics
	Preliminary Considerations
	Installation and Configuration Overview
	Development Environments Versus Deployment Environments
	Client-Side Considerations

	Application Root and Doc Root Functionality
	Application Roots in Servlet 2.2 Environments
	OracleJSP Application Root Functionality in Servlet 2.0 Environments

	Overview of JSP Applications and Sessions
	General OracleJSP Application and Session Support
	JSP Default Session Requests

	JSP-Servlet Interaction
	Invoking a Servlet from a JSP Page
	Passing Data to a Servlet Invoked from a JSP Page
	Invoking a JSP Page from a Servlet
	Passing Data Between a JSP Page and a Servlet
	JSP-Servlet Interaction Samples

	JSP Resource Management
	Standard Session Resource Management—HttpSessionBindingListener
	Overview of Oracle Extensions for Resource Management

	JSP Runtime Error Processing
	Using JSP Error Pages
	JSP Error Page Example

	JSP Starter Sample for Database Access

	4 Key Considerations
	General JSP Programming Strategies, Tips, and Traps
	JavaBeans Versus Scriptlets
	Use of Enterprise JavaBeans in JSP Pages
	Use of JDBC Performance Enhancement Features
	Static Includes Versus Dynamic Includes
	When to Consider Creating and Using JSP Tag Libraries
	Use of a Central Checker Page
	Workarounds for Large Static Content in JSP Pages
	Method Variable Declarations Versus Member Variable Declarations
	Page Directive Characteristics
	JSP Preservation of White Space and Use with Binary Data

	Key OracleJSP Configuration Issues
	Optimization of JSP Execution
	Classpath and Class Loader Issues (Non-OSE Only)

	OracleJSP Runtime Considerations (Non-OSE Only)
	Dynamic Page Retranslation
	Dynamic Page Reloading
	Dynamic Class Reloading

	Considerations for the Oracle Servlet Engine
	Introduction to the JServer JVM and JDBC Server-Side Internal Driver
	JServer Connections
	Use of JNDI by the Oracle Servlet Engine
	Equivalent Code for OracleJSP Runtime Configuration Parameters

	Considerations for Apache/JServ Servlet Environments
	Use of Apache/JServ in the Oracle Internet Application Server
	Dynamic Includes and Forwards in Apache/JServ
	Application Framework for Apache/JServ
	JSP and Servlet Session Sharing
	Directory Alias Translation

	5 OracleJSP Extensions
	Portable OracleJSP Programming Extensions
	JML Extended Datatypes
	OracleJSP Support for XML and XSL
	Oracle Database-Access JavaBeans
	OracleJSP Tag Library for SQL

	Oracle-Specific Programming Extensions
	OracleJSP Event Handling—JspScopeListener
	OracleJSP Support for Oracle SQLJ

	OracleJSP Application and Session Support for Servlet 2.0
	Overview of globals.jsa Functionality
	Overview of globals.jsa Syntax and Semantics
	The globals.jsa Event Handlers
	Global Declarations and Directives

	6 JSP Translation and Deployment
	Functionality of the OracleJSP Translator
	Generated Code Features
	Generated Package and Class Names (On-Demand Translation)
	Generated Files and Locations (On-Demand Translation)
	Sample Page Implementation Class Source

	Overview of Features and Logistics in Deployment to Oracle8i
	Database Schema Objects for Java
	Oracle HTTP Server as a Front-End Web Server
	URLs for the Oracle Servlet Engine
	Static Files for JSP Applications in the Oracle Servlet Engine
	Server-Side Versus Client-Side Translation
	Overview of Hotloaded Classes in Oracle8i

	Tools and Commands for Translation and Deployment to Oracle8i
	The ojspc Pre-Translation Tool
	Overview of the loadjava Tool
	Overview of the sess_sh Session Shell Tool

	Deployment to Oracle8i with Server-Side Translation
	Loading Untranslated JSP Pages into Oracle8i (loadjava)
	Translating and Publishing JSP Pages in Oracle8i (Session Shell publishjsp)

	Deployment to Oracle8i with Client-Side Translation
	Pre-Translating JSP Pages (ojspc)
	Loading Translated JSP Pages into Oracle8i (loadjava)
	Hotloading Page Implementation Classes in Oracle8i
	Publishing Translated JSP Pages in Oracle8i (Session Shell publishservlet)

	Additional JSP Deployment Considerations
	Doc Root for Oracle Internet Application Server Versus Oracle Servlet Engine
	Use of ojspc for Pre-Translation for Non-OSE Environments
	General JSP Pre-Translation Without Execution
	Deployment of Binary Files Only
	WAR Deployment
	Deployment of JSP Pages with JDeveloper

	7 JSP Tag Libraries and the Oracle JML Tags
	Standard Tag Library Framework
	Overview of a Custom Tag Library Implementation
	Tag Handlers
	Scripting Variables and Tag-Extra-Info Classes
	Access to Outer Tag Handler Instances
	Tag Library Description Files
	Use of web.xml for Tag Libraries
	The taglib Directive
	End-to-End Example: Defining and Using a Custom Tag

	Overview of the JSP Markup Language (JML) Sample Tag Library
	JML Tag Library Philosophy
	JML Tag Categories
	JML Tag Library Description File and taglib Directive

	JSP Markup Language (JML) Tag Descriptions
	Syntax Symbology and Notes
	Bean Binding Tag Descriptions
	Logic and Flow Control Tag Descriptions

	8 OracleJSP NLS Support
	Content Type Settings in the page Directive
	Dynamic Content Type Settings
	OracleJSP Extended Support for Multibyte Parameter Encoding
	Effect of translate_params in Overriding Non-Multibyte Servlet Containers
	Code Equivalent to the translate_params Configuration Parameter
	NLS Sample Depending on translate_params
	NLS Sample Not Depending on translate_params

	9 Sample Applications
	Basic Samples
	Hello Page—hellouser.jsp
	Usebean Page—usebean.jsp
	Shopping Cart Page—cart.jsp

	JDBC Samples
	Simple Query—SimpleQuery.jsp
	User-Specified Query—JDBCQuery.jsp
	Query Using a Query Bean—UseHtmlQueryBean.jsp
	Connection Caching—ConnCache3.jsp and ConnCache1.jsp

	Database-Access JavaBean Samples
	Page Using DBBean—DBBeanDemo.jsp
	Page Using ConnBean—ConnBeanDemo.jsp
	Page Using CursorBean—CursorBeanDemo.jsp
	Page Using ConnCacheBean—ConnCacheBeanDemo.jsp

	Custom Tag Samples
	JML Tag Sample—hellouser_jml.jsp
	Pointers to Additional Custom Tag Samples

	Samples for Oracle-Specific Programming Extensions
	Page Using JspScopeListener—scope.jsp
	XML Query—XMLQuery.jsp
	SQLJ Queries—SQLJSelectInto.sqljsp and SQLJIterator.sqljsp

	Samples Using globals.jsa for Servlet 2.0 Environments
	globals.jsa Example for Application Events—lotto.jsp
	globals.jsa Example for Application and Session Events—index1.jsp
	globals.jsa Example for Global Declarations—index2.jsp

	A General Installation and Configuration
	System Requirements
	OracleJSP Installation and Web Server Configuration
	Required and Optional Files for OracleJSP
	Configuration of Web Server and Servlet Environment to Run OracleJSP

	OracleJSP Configuration
	OracleJSP Configuration Parameters (Non-OSE)
	OracleJSP Configuration Parameter Settings

	B Servlet and JSP Technical Background
	Background on Servlets
	Review of Servlet Technology
	The Servlet Interface
	Servlet Containers
	Servlet Sessions
	Servlet Contexts
	Application Lifecycle Management Through Event Listeners
	Servlet Invocation

	Web Application Hierarchy
	Standard JSP Interfaces and Methods

	C Compile-Time JML Tag Support
	JML Compile-Time Versus Runtime Considerations and Logistics
	General Compile-Time Versus Runtime Considerations
	The taglib Directive for Compile-Time JML Support

	JML Compile-Time/1.0.0.6.x Syntax Support
	JML Bean References and Expressions, Compile-Time Implementation
	Attribute Settings with JML Expressions

	JML Compile-Time/1.0.0.6.x Tag Support
	JML Tag Summary, 1.0.0.6.x/Compile-Time Versus 1.1.0.0.0/Runtime
	Descriptions of Additional JML Tags, Compile-Time Implementation

	Index

