
Oracle8 i

Java Tools Reference

Release 3 (8.1.7)

July 2000

Part No. A83727-01

Java Tools Reference, Release 3 (8.1.7)

Part No. A83727-01

Release 3 (8.1.7)

Copyright © 1996, 2000, Oracle Corporation. All rights reserved.

Primary Authors: Sheryl Maring

Contributors: Jason Minton, Dmitry Nizhegorodov, Wendy Liau, Sastry Malladi, John O’Duinn,
Aniruddha Thakur, Jerry Schwarz, Steve Harris, Sam Chou

The Programs (which include both the software and documentation) contain proprietary information of
Oracle Corporation; they are provided under a license agreement containing restrictions on use and
disclosure and are also protected by copyright, patent, and other intellectual and industrial property
laws. Reverse engineering, disassembly, or decompilation of the Programs is prohibited.

The information contained in this document is subject to change without notice. If you find any problems
in the documentation, please report them to us in writing. Oracle Corporation does not warrant that this
document is error free. Except as may be expressly permitted in your license agreement for these
Programs, no part of these Programs may be reproduced or transmitted in any form or by any means,
electronic or mechanical, for any purpose, without the express written permission of Oracle Corporation.

If the Programs are delivered to the U.S. Government or anyone licensing or using the programs on
behalf of the U.S. Government, the following notice is applicable:

Restricted Rights Notice Programs delivered subject to the DOD FAR Supplement are "commercial
computer software" and use, duplication, and disclosure of the Programs, including documentation,
shall be subject to the licensing restrictions set forth in the applicable Oracle license agreement.
Otherwise, Programs delivered subject to the Federal Acquisition Regulations are "restricted computer
software" and use, duplication, and disclosure of the Programs shall be subject to the restrictions in FAR
52.227-19, Commercial Computer Software - Restricted Rights (June, 1987). Oracle Corporation, 500
Oracle Parkway, Redwood City, CA 94065.

The Programs are not intended for use in any nuclear, aviation, mass transit, medical, or other inherently
dangerous applications. It shall be the licensee's responsibility to take all appropriate fail-safe, backup,
redundancy, and other measures to ensure the safe use of such applications if the Programs are used for
such purposes, and Oracle Corporation disclaims liability for any damages caused by such use of the
Programs.

Oracle is a registered trademark, and Oracle products mentioned herein are trademarks or registered
trademarks of Oracle Corporation. All other company or product names mentioned are used for
identification purposes only and may be trademarks of their respective owners.

Contents

Send Us Your Comments .. v

Preface ... vii

1 Tools

Schema Object Tools .. 1-2
What and When to Load.. 1-2
Resolution .. 1-3
Digest Table ... 1-4
Compilation... 1-5
loadjava .. 1-7
dropjava ... 1-16

Session Namespace Tools.. 1-20
publish.. 1-21
remove ... 1-25
sess_sh .. 1-27
Shell Commands... 1-32
Namespace Commands ... 1-45
Dynamic Listener Endpoint Configuration Commands .. 1-57
Web Application Management Commands ... 1-59
Service Configuration .. 1-60
Web Domain Configuration.. 1-64
Servlet Context Management.. 1-66
Servlet Management... 1-70
JavaServer Pages Management... 1-72
iii

Export Commands.. 1-75
Security Management .. 1-77
realm ... 1-84

Enterprise JavaBean Tools ... 1-89
deployejb.. 1-89
ejbdescriptor .. 1-92

VisiBroker™ for Java Tools ... 1-94
Native Compilation Tools ... 1-96

JServer Accelerator Overview... 1-97
JServer Core Java Class Libraries ... 1-99
Natively Compiling Java Application Class Libraries .. 1-99
ncomp ... 1-100
Native Compilation Usage Scenarios .. 1-105
deploync... 1-108
statusnc... 1-109

Miscellaneous Tools ... 1-112
java2rmi_iiop... 1-112
modifyprops .. 1-113

2 Backwards Compatibility Tools

Session Namespace Tools .. 2-2
publish_816.. 2-3
remove_816.. 2-6
sess_sh_816 .. 2-8

Index
iv

Send Us Your Comments

Oracle8 i Java Tools Reference, Release 3 (8.1.7)

Part No. A83727-01

Oracle Corporation welcomes your comments and suggestions on the quality and usefulness of this

publication. Your input is an important part of the information used for revision.

■ Did you find any errors?

■ Is the information clearly presented?

■ Do you need more information? If so, where?

■ Are the examples correct? Do you need more examples?

■ What features did you like most about this manual?

If you find any errors or have any other suggestions for improvement, please indicate the chapter,

section, and page number (if available). You can send comments to us in the following ways:

■ Electronic mail — jpgcomnt@us.oracle.com

■ FAX - 650-506-7225. Attn: Java Platform Group, Information Development Manager

■ Postal service:

Oracle Corporation

Information Development Manager

500 Oracle Parkway, Mailstop 4op978

Redwood Shores, CA 94065

USA

Please indicate if you would like a reply.

If you have problems with the software, please contact your local Oracle World Wide Support Center.
v

vi

Preface

This reference contains the syntax and description for Oracle8i JServer

command-line tools.

How This Reference is Organized
This book has the following two chapters:

■ Chapter 1, "Tools" describes all of the tools that support Java development

within Oracle8i version 8.1.7.

■ Chapter 2, "Backwards Compatibility Tools" describes tools that have been

deprecated for 8.1.7, but that still can be used for existing 8.1.6 Java

development.

Notational Conventions
This guide follows these conventions:

Java code examples follow these conventions:

Italic Italic font denotes terms being defined for the first time,
words being emphasized, error messages, and book titles.

Courier Courier font denotes Java program names, file names, path
names, and Internet addresses.
vii

Your Comments Are Welcome
We appreciate your comments and suggestions. In fact, your opinions are the most

important feedback we receive. We encourage you to use the Reader’s Comment

Form at the front of this book. You can also send comments to the

following address:

Documentation Manager, Oracle8i Java Products Group

Oracle Corporation

500 Oracle Parkway

Redwood Shores, CA 94065

USA

email: jpgcomnt@us.oracle.com

{ } Braces enclose a block of statements.

// A double slash begins a single-line comment, which extends
to the end of a line.

/* */ A slash-asterisk and an asterisk-slash delimit a multi-line
comment, which can span multiple lines.

... An ellipsis shows that statements or clauses irrelevant to the
discussion were left out.

lower case Lower case is used for keywords and for one-word names of
variables, methods, and packages.

UPPER CASE Upper case is used for names of constants (static final
variables) and for names of supplied classes that map to
built-in SQL datatypes.

Mixed Case Mixed case is used for names of classes and interfaces and for
multi-word names of variables, methods, and packages. The
names of classes and interfaces begin with an upper-case
letter. In all multi-word names, the second and succeeding
words also begin with an upper-case letter.
viii

1

Tools

This chapter describes the tools you use in the Oracle8i Java environment. You run

these tools from a UNIX shell or the Windows NT DOS prompt.

The tools described in this chapter as follows:

■ Schema Object Tools

■ Session Namespace Tools

■ Enterprise JavaBean Tools

■ VisiBroker™ for Java Tools

■ Native Compilation Tools

■ Miscellaneous Tools

Note: All names supplied within these tools are case sensitive.

Thus, the schema, username, and password will not be uppercased.
Tools 1-1

Schema Object Tools
Schema Object Tools
Unlike a conventional Java virtual machine, which compiles and loads Java files, the

Aurora Java virtual machine compiles and loads schema objects. The three kinds of

Java schema objects are:

■ Java class schema objects, which correspond to Java class files.

■ Java source schema objects, which correspond to Java source files.

■ Java resource schema objects, which correspond to Java resource files.

To make a class file runnable by the Aurora Java virtual machine, you use the

loadjava tool to create a Java class schema object from the class file or the source

file and load it into a schema. To make a resource file accessible to the Aurora Java

virtual machine, you use loadjava to create and load a Java resource schema

object from the resource file.

The dropjava tool does the reverse of the loadjava tool; it deletes schema objects

that correspond to Java files. You should always use dropjava to delete a Java

schema object that was created with loadjava ; dropping by means of SQL DDL

commands will not update auxiliary data maintained by loadjava and

dropjava .

What and When to Load
You must load resource files with loadjava . If you create .class files outside the

database with a conventional compiler, then you must load them with loadjava .

The alternative to loading class files is to load source files and let the Oracle8i
system compile and manage the resulting class schema objects. In the current

Oracle8i release, most developers will find that compiling and debugging most of

their code outside the database and then loading .class files to debug those files

which must be tested inside the database, is the most productive approach. For a

particular Java class, you can load either its .class file or its .java file, but

not both.

loadjava accepts JAR files that contain either source and resource files or class

and resource files (recall that you can load a class’s source or its class file but not

both). When you pass loadjava a JAR file or a ZIP file, loadjava opens the

archive and loads its members individually; there is no JAR or ZIP schema object. A

file whose content has not changed since the last time it was loaded is not re-loaded,

therefore there is little performance penalty for loading JARs. Loading JAR files is

the simplest and most foolproof way to use loadjava .
1-2 Java Tools Reference

Schema Object Tools
It is illegal for two schema objects in the same schema to define the same class. For

example, suppose a.java defines class x and you want to move the definition of x
to b.java . If a.java has already been loaded, then loadjava will reject an

attempt to load b.java (which also defines x). Instead, do either of the following:

■ Drop a.java , load b.java (which defines x), then load the new a.java
(which does not define x).

■ Load the new a.java (which does not define x), then load b.java (which

defines x).

Resolution
All Java classes contain references to other classes. A conventional Java virtual

machine searches for classes in the directories, ZIP files, and JARs named in the

CLASSPATH. The Aurora Java virtual machine, by contrast, searches schemas for

class schema objects. Each Oracle8i class has a resolver spec, which is the Oracle8i
counterpart to the CLASSPATH. For a hypothetical class alpha , its resolver spec is

a list of schemas to search for classes alpha uses. Notice that resolver specs are

per-class, whereas in a classic Java virtual machine, CLASSPATH is global to all

classes.

In addition to a resolver spec, each class schema object has a list of interclass

reference bindings. Each reference list item contains a reference to another class, and

one of the following:

■ the name of the class schema object to invoke when class uses the reference

■ a code indicating that the reference is unsatisfied; in other words, the referent

schema object is not known

An Oracle8i facility called the resolver maintains reference lists. For each interclass

reference in a class, the resolver searches the schemas specified by the class’s

resolver spec for a valid class schema object that satisfies the reference. If all

references are resolved, the resolver marks the class valid. A class that has never

been resolved, or has been resolved unsuccessfully, is marked invalid. A class that

depends on a schema object that becomes invalid is also marked invalid at the same

time; in other words, invalidation cascades upward from a class to the classes that

use it and the classes that use them, and so on. When resolving a class that depends

on an invalid class, the resolver first tries to resolve the dependency because it may

be marked invalid only because it has never been resolved. The resolver does not

re-resolve classes that are marked valid.

A class developer can direct loadjava to resolve classes, or can defer resolution

until run time. (The resolver runs automatically when a class tries to load a class
Tools 1-3

Schema Object Tools
that is marked invalid.) It is best to resolve before run time to learn of missing

classes early; unsuccessful resolution at run time produces a “class not found”

exception. Furthermore, run-time resolution can fail for lack of database resources if

the tree of classes is very large.

The loadjava has two resolution modes:

1. Load-and-resolve (-resolve option): Loads all classes you specify on the

command line, marks them invalid, and then resolves them. Use this mode

when initially loading classes that refer to each other, and in general when

reloading isolated classes as well. By loading all classes and then resolving

them, this mode avoids the error message that occurs if a class refers to a class

that will be loaded later in the execution of the command.

2. Load-then-resolve (no -resolve option): Resolves each class when compiled

at runtime.

If you can, it is best to defer resolution until all classes have been loaded; this

technique avoids the situation in which the resolver marks a class invalid because a

class it uses has not yet been loaded.

Digest Table
The schema object digest table is an optimization that is usually invisible to

developers. The digest table enables loadjava to skip files that have not changed

since they were last loaded. This feature improves the performance of makefiles and

scripts that invoke loadjava for collections of files, only some of which need to be

re-loaded. A re-loaded archive file might also contain some files that have changed

since they were last loaded and some that have not.

The loadjava tool detects unchanged files by maintaining a digest table in each

schema. The digest table relates a file name to a digest, which is a shorthand

representation of the file’s content (a hash). Comparing digests computed for the

same file at different times is a fast way to detect a change in the file’s

content—much faster than comparing every byte in the file. For each file it

processes, loadjava computes a digest of the file’s content and then looks up the

file name in the digest table. If the digest table contains an entry for the file name

that has the identical digest, then loadjava does not load the file because a

Note: Like a Java compiler, loadjava resolves references to

classes but not to resources; be sure to correctly load the resource

files your classes need.
1-4 Java Tools Reference

Schema Object Tools
corresponding schema object exists and is up to date. If you invoke loadjava with

the -verbose option, then it will show you the results of its digest table lookups.

Normally, the digest table is invisible to developers because loadjava and

dropjava keep it synchronized with schema object additions, changes, and

deletions. For this reason, always use dropjava to delete a schema object that was

created with loadjava , even if you know how to drop a schema object with DDL.

If the digest table becomes corrupted (loadjava does not update a schema object

whose file has changed), use loadjava ’s -force option to bypass the digest table

lookup.

Compilation
Loading a source file creates or updates a Java source schema object and invalidates

the class schema object(s) previously derived from the source. (If the class schema

objects don’t exist, loadjava creates them.) loadjava invalidates the old class

schema objects because they were not compiled from the newly loaded source.

Compilation of a newly loaded source, called for instance A, is automatically

triggered by any of the following conditions:

■ The resolver, working on class B, finds that it refers to class A but class A

is invalid.

■ The compiler, compiling source B, finds that it refers to class A but A is invalid.

■ The class loader, trying to load class A for execution, finds that it is invalid.

To force compilation when you load a source file, use loadjava -resolve .

The compiler writes error messages to the predefined USER_ERRORS view;

loadjava retrieves and displays the messages produced by its compiler

invocations. See the Oracle8i Reference for a description of this table.

The compiler recognizes compiler options. There are two ways to specify options to

the compiler. If you run loadjava with the -resolve option (which may trigger

compilation), you can specify compiler options on the command line.

You can additionally specify persistent compiler options in a per-schema database

table called JAVA$OPTIONS which you create as described shortly. You can use the

JAVA$OPTIONS table for default compiler options, which you can override

selectively with a loadjava command-line option.

Note: A command-line option both overrides and clears the

matching entry in the JAVA$OPTIONS table.
Tools 1-5

Schema Object Tools
A JAVA$OPTIONS row contains the names of source schema objects to which an

option setting applies; you can use multiple rows to set the options differently for

different source schema objects. The compiler looks up options in the

JAVA$OPTIONStable when it has been invoked without a command line (that is, by

the class loader), or when the command line does not specify an option. When

compiling a source schema object for which there is neither a JAVA$OPTIONS entry

nor a command-line value for an option, the compiler assumes a default value as

follows:

■ encoding = latin1

■ online = true : see the Oracle8i SQLJ Developer’s Guide and Reference for a

description of this option, which only applies to Java sources that contain SQLJ

constructs.

You can set JAVA$OPTIONS entries by means of the following functions and

procedures, which are defined in the database package DBMS_JAVA:

■ PROCEDURE set_compiler_option(name VARCHAR2, option
VARCHAR2, value VARCHAR2);

■ FUNCTION get_compiler_option(name VARCHAR2, option
VARCHAR2) RETURNS VARCHAR2;

■ PROCEDURE reset_compiler_option(name VARCHAR2, option
VARCHAR2);

The name parameter is a Java package name, or a fully qualified class name, or the

empty string. When the compiler searches the JAVA$OPTIONS table for the options

to use for compiling a Java source schema object, it uses the row whose name most

closely matches the schema object’s fully qualified class name. A name whose value

is the empty string matches any schema object name.

The option parameter is either 'online' or 'encoding' . For the value s you

can specify for these options, see the Oracle8i SQLJ Developer’s Guide and Reference.

A schema does not initially have a JAVA$OPTIONS table. To create a

JAVA$OPTIONS table, use the DBMS_JAVA package’s

java.set_compiler_option procedure to set a value; the procedure will create

the table if it does not exist. Specify parameters in single quotes. For example:

SQL> execute dbms_java.set_compiler_option('x.y', 'online', 'false');

Table 1–1 represents a hypothetical JAVA$OPTIONS database table. Because the

table has no entry for the encoding option, the compiler will use the default or the
1-6 Java Tools Reference

Schema Object Tools
value specified on the command line. The online options shown in the table match

schema object names as follows:

■ The name a.b.c.d matches class and package names beginning with

a.b.c.d ; they will be compiled with online = true .

■ The name a.b matches class and package names beginning with a.b but not

a.b.c.d ; they will be compiled with online = false .

■ All other packages and classes will match the empty string entry and will be

compiled with online = true .

loadjava
The loadjava tool creates schema objects from files and loads them into a schema.

Schema objects can be created from Java source, class, and data files. loadjava can

also create schema objects from SQLJ files; the Oracle8i SQLJ Developer’s Guide and
Reference describes how to use loadjava with SQLJ.

You must have the following SQL database privileges to load classes:

■ CREATE PROCEDURE and CREATE TABLE privileges to load into your schema.

■ CREATE ANY PROCEDURE and CREATE ANY TABLE privileges to load into

another schema.

■ oracle.aurora.security.JServerPermission.loadLibraryInClass.<classname>. See

the "Database Contents and JVM Security" section in Chapter 5 of the Oracle8i
Java Developer’s Guide for more information.

You can execute the loadjava tool either through the command line (as described

below) or through the loadjava method contained within the DBMS_JAVA class.

To execute within your Java application, do the following:

call dbms_java.loadjava(’... options...’);

Table 1–1 Example JAVA$OPTIONS Table and Matching Examples

JAVA$OPTIONS Entries
Match Examples

Name Option Value

a.b.c.d online true a.b.c.d, a.b.c.d.e

a.b online false a.b, a.b.c.x

(empty string) online true a.c, x.y
Tools 1-7

Schema Object Tools
where the options are the same as specified below. Each option should be separated

by a blank. You should not separate the options with a comma. The only exception

for this is the -resolver option, which contains blanks. For -resolver , you

should specify all other options first, a comma, then the -resolver option with its

definition. You should not specify the following options as they relate to the

database connection for the loadjava command-line tool: -thin, -oci8,
-user, -password . The output is directed to stderr. Set serveroutput on and call

dbms_java.set_output as appropriate.

Syntax
loadjava {-user | -u} <user>/<password>[@<database>] [options]
<file>.java | <file>.class | <file>.jar | <file>.zip |
<file>.sqlj | <resourcefile> ...
 [-debug]
 [-d | -definer]
 [-e | -encoding <encoding_scheme>]
 [-f | -force]
 [-g | -grant <user> [, <user>]...]
 [-help]
 [-nohelp]
 [-o | -oci8]
 [-order]
 [-noverify]
 [-r | -resolve]
 [-R | -resolver "resolver_spec"]
 [-S | -schema <schema>]
 [-stdout]
 [-s | -synonym]
 [-tableschema <schema>]
 [-t | -thin]
 [-v | -verbose]

Argument Summary
Table 1–2 summarizes the loadjava arguments. If you execute loadjava multiple

times specifying the same files and different options, the options specified in the

most recent invocation hold. There are two exceptions:

1. If loadjava does not load a file because it matches a digest table entry, most

options on the command line have no effect on the schema object. The

Note: The loadjava tool is located in the bin subdirectory

under $ORACLE_HOME.
1-8 Java Tools Reference

Schema Object Tools
exceptions are -grant , and -resolve , which are always obeyed. Use the

-force option to direct loadjava to skip the digest table lookup.

2. The -grant option is cumulative; every user specified in every loadjava
invocation for a given class in a given schema has the EXECUTE privilege. You

cannot grant to a role; you can only grant to specified schemas or users.

Table 1–2 loadjava Argument Summary

Argument Description

<filenames> You can specify any number and combination of .java ,
.class , .sqlj , .ser , .jar .zip , and resource file name
arguments in any order.

-debug Turns on SQL logging and is equivalent to javac -g .

-definer By default, class schema objects run with the privileges of their
invoker. This option confers definer (the developer who
invokes loadjava) privileges upon classes instead. (This
option is conceptually similar to the UNIX setuid facility.)

-encoding Identifies the source file encoding for the compiler, overriding
the matching value, if any, in the JAVA$OPTIONS table. Values
are the same as for the javac -encoding option. If you do
not specify an encoding on the command line or in a
JAVA$OPTIONS table, the encoding is assumed to be latin1 .
The -encoding option is relevant only when loading a source
file.

-force Forces files to be loaded even if they match digest table entries.

-grant Grants the EXECUTE privilege on loaded classes to the listed
users. (To call the methods of a class, users must have the
EXECUTE privilege.) Any number and combination of user
names can be specified, separated by commas but not spaces
(-grant Bob,Betty not -grant Bob, Betty). Note:
-grant is a “cumulative” option; users are added to the list of
those with the EXECUTE privilege. To remove privileges,
either drop and reload the schema object with the desired
privileges or change the privileges with the SQL REVOKE
command. Also, you cannot grant to a role. All grants must be
explicit in granting to specific users.

To grant the EXECUTE privilege on an object in someone else’s
schema requires that the original CREATE PROCEDURE
privilege was granted with WITH GRANT options.

Note: You must uppercase the schema name.

-help Prints the usage message on how to use the loadjava tool and
its options.
Tools 1-9

Schema Object Tools
-nohelp Suppresses the usage message that is given if either no option
is specified or if the -help option is specified.

-noverify Causes the classes to be loaded without bytecode verification.
You must be granted
oracle.aurora.security.JServerPermission(Verifier) to execute
this option. In addition, this option must be used in
conjunction with -r.

-oci8 Directs loadjava to communicate with the database using the
OCI JDBC driver. -oci8 and -thin are mutually exclusive; if
neither is specified -oci8 is used by default. Choosing -oci8
implies the syntax of the -user value. You do not need to
provide the URL.

-order Directs loadjava load the classes in an order that facilitates
resolution of those classes. Classes are loaded in a manner
where any dependent class is loaded before the class that
includes it as a dependency.

-resolve Compiles (if necessary) and resolves external references in
classes after all classes on the command line have been loaded.
I f you do not specify -resolve, loadjava loads files but does
not compile or resolve them.

-resolver Specifies an explicit resolver spec, which is bound to the newly
loaded classes. If -resolver is not specified, the default resolver
spec, which includes current user’s schema and PUBLIC, is
used. See "resolver" on page 1-13 for details.

-schema Designates the schema where schema objects are created. If not
specified, the logon schema is used. To create a schema object
in a schema that is not your own, you must have the CREATE
PROCEDURE or CREATE ANY PROCEDURE privilege. You
must have CREATE TABLE or CREATE ANY TABLE privilege.
Finally, you must have the
JServerPermission.loadLibraryInClass for the class.

-stdout Causes the output to be directed to stdout , rather than to
stderr .

-synonym Creates a PUBLIC synonym for loaded classes making them
accessible outside the schema into which they are loaded. To
specify this option, you must have the CREATE PUBLIC
SYNONYM privilege. If -synonym is specified for source files,
classes compiled from the source files are treated as if they had
been loaded with -synonym .

Table 1–2 loadjava Argument Summary (Cont.)

Argument Description
1-10 Java Tools Reference

Schema Object Tools
Argument Details
This section describes the details of loadjava arguments whose behavior is more

complex than the summary descriptions contained in Table 1–2.

File Names
You can specify as many .class , .java , .sqlj , .jar , .zip , and resource files as

you like, in any order. If you specify a JAR or ZIP file, then loadjava processes the

files in the JAR or ZIP; there is no JAR or ZIP schema object. If a JAR or ZIP contains

a JAR or ZIP, loadjava does not process them.

The best way to load files is to put them in a JAR or ZIP and then load the archive.

Loading archives avoids the resource schema object naming complications

described later in this section. If you have a JAR or ZIP that works with the JDK,

then you can be sure that loading it with loadjava will also work, without having

to learn anything about resource schema object naming.

Schema object names are slightly different from file names, and loadjava names

different types of schema objects differently. Because class files are self-identifying

(they contain their names), loadjava ’s mapping of class file names to schema

object names is invisible to developers. Source file name mapping is also invisible to

developers; loadjava gives the schema object the fully qualified name of the first

class defined in the file. JAR and ZIP files also contain the names of their files;

however, resource files are not self identifying. loadjava generates Java resource

schema object names from the literal names you supply as arguments (or the literal

names in a JAR or ZIP file). Because running classes use resource schema objects, it

-tableschema
<schema>

Creates the loadjava internal tables within this specified
schema, rather than in the Java file destination schema.

-thin Directs loadjava to communicate with the database using the
thin JDBC driver. -oci8 and -thin are mutually exclusive; if
neither is specified, then -oci8 is used by default. Choosing
-thin implies the syntax of the -user value. You do need to
specify the appropriate URL through the -user option.

-user Specifies a user, password, and database connect string; the
files will be loaded into this database instance. The argument
has the form <username>/<password>[@<database>] .

-verbose Directs loadjava to emit detailed status messages while
running. Use -verbose to learn when loadjava does not
load a file because it matches a digest table entry.

Table 1–2 loadjava Argument Summary (Cont.)

Argument Description
Tools 1-11

Schema Object Tools
is important that you specify resource file names correctly on the command line,

and the correct specification is not always intuitive. The surefire way to load

individual resource files correctly is:

Run loadjava from the top of the package tree and specify resource file names relative to
that directory. (The “top of the package tree” is the directory you would name in a Java
CLASSPATH list.)

If you do not want to follow this rule, observe the details of resource file naming

that follow. When you load a resource file, loadjava generates the resource

schema object name from the resource file name as literally specified on the command
line. Suppose, for example you type:

% cd /home/scott/javastuff
% loadjava options alpha/beta/x.properties
% loadjava options /home/scott/javastuff/alpha/beta/x.properties

Although you have specified the same file with a relative and an absolute path

name, loadjava creates two schema objects, one called

alpha/beta/x.properties , the other

ROOT/home/scott/javastuff/alpha/beta/x.properties . (loadjava
prepends ROOT because schema object names cannot begin with the “/ ” character;

however, that is an implementation detail that is unimportant to developers.) The

important point is that a resource schema object’s name is generated from the file

name as entered.

Classes can refer to resource files relatively (for example, b.properties) or

absolutely (for example, /a/b.properties). To ensure that loadjava and the

class loader use the same name for a schema object, follow this rule when loading

resource files:

Enter the name on the command line that the class passes to getResource() or
getResourceAsString() .

Instead of remembering whether classes use relative or absolute resource names

and changing directories so that you can enter the correct name on the command

line, you can load resource files in a JAR as follows:

% cd /home/scott/javastuff
% jar -cf alpharesources.jar alpha/*.properties
% loadjava options alpharesources.jar

Or, to simplify further, put both the class and resource files in a JAR, which makes

the following invocations equivalent:

% loadjava options alpha.jar
1-12 Java Tools Reference

Schema Object Tools
% loadjava options /home/scott/javastuff/alpha.jar

The two loadjava commands in this example make the point that you can use any

pathname to load the contents of a JAR file. Note as well that even if you did

execute the redundant commands shown above, loadjava would realize from the

digest table that it did not need to load the files twice. That means that re-loading

JAR files is not as time-consuming as it might seem even when few files have

changed between loadjava invocations.

definer
{-definer | -d}
The -definer option is identical to definer’s rights in stored procedures and is

conceptually similar to the UNIX setuid facility; however, whereas setuid
applies to a complete program, you can apply -definer class by class. Moreover,

different definers may have different privileges. Because an application may consist

of many classes, you must apply -definer with care to achieve the results desired,

namely classes that run with the privileges they need but no more. For more

information on definer’s rights, see the Oracle8i Java Stored Procedures Developer’s
Guide.

noverify
{-noverify]
Causes the classes to be loaded without bytecode verification. You must be granted

oracle.aurora.security.JServerPermission(Verifier) to execute this

option. In addition, this option must be used in conjunction with -r .

The verifier ensures that incorrectly formed Java binaries cannot be loaded for

execution in the server. If you know that the JAR or classes you are loading are

valid, use of this option will speed up the loadjava process. Some JServer-specific

optimizations for interpreted performance are put in place during the verification

process. Thus, interpreted performance of your application may be adversely

affected by using this option.

resolve
{-resolve | -r}
Use -resolve to force loadjava to compile (if necessary) and resolve a class that

has previously been loaded. It is not necessary to specify -force because

resolution is performed after, and independently of, loading.

resolver
{-resolver | -R} "resolver spec"
This option associates an explicit resolver spec with the class schema objects that

loadjava creates or replaces.
Tools 1-13

Schema Object Tools
A resolver spec consists of one or more items, each of which consists of a name spec
and a schema spec expressed in the following syntax:

"((name_spec schema_spec) [(name_spec schema_spec)] ...)"

■ A name spec is similar to a name in a Java import statement. It can be a fully

qualified Java class name, or a package name whose final element is the

wildcard character “* ”, or (unlike an imported package name) simply the

wildcard character “* ”; however, the elements of a name spec must be

separated by “/ ” characters, not periods. For example, the name spec a/b/*
matches all classes whose names begin with a.b. . The special name * matches

all class names.

■ A schema spec can be a schema name or the wildcard character “-” . The

wildcard does not identify a schema but directs the resolve operation to not

mark a class invalid because a reference to a matching name cannot be resolved.

(Without a “-” wildcard in a resolver spec, an unresolved reference in the class

makes the class invalid and produces an error message.) Use a “-” wildcard

when you must test a class that refers to a class you cannot or do not want to

load; for example, GUI classes that a class refers to but does not call because

when run in the server there is no GUI.

The resolution operation interprets a resolver spec item as follows:

When looking for a schema object whose name matches the name spec, look in the

schema named by the partner schema spec.

The resolution operation searches schemas in the order in which the resolver spec

lists them. For example,

-resolver ’((* SCOTT) (* PUBLIC))’

means the following:

Search for any reference first in SCOTT and then in PUBLIC. If a reference is not

resolved, then mark the referring class invalid and display an error message; in

other words, call attention to missing classes.

The following example:

-resolver "((* SCOTT) (* PUBLIC) (my/gui/* -))"

means the following:

Search for any reference first in SCOTT and then in PUBLIC. If the reference is not

found, and is to a class in the package my.gui then mark the referring class valid,

and do not display an error; in other words, ignore missing classes in this package.
1-14 Java Tools Reference

Schema Object Tools
If the reference is not found and is not to a class in my.gui, then mark the referring

class invalid and produce an error message.

user
{-user | -u} <user>/<password>[@<database>]

By default, loadjava loads into the login schema specified by the -user option.

Use the -schema option to specify a different schema to load into. This does not

involve a login into that schema, but does require that you have sufficient

permissions to alter it.

The permissible forms of @<database> depend on whether you specify -oci8 or

-thin ; -oci8 is the default.

■ -oci8 : @<database> is optional; if you do not specify, loadjava uses the

user’s default database. If specified, <database> can be a TNS name or a Net8

name-value list.

■ -thin : @<database> is required. The format is <host>:<lport>:<SID> .

– <host> is the name of the machine running the database.

– <lport> is the listener port that has been configured to listen for Net8

connections; in a default installation, it is 5521.

– <SID> is the database instance identifier; in a default installation it is ORCL.

Here are examples of loadjava commands:

■ Connect to the default database with the default oci8 driver, load the files in a

JAR into the TEST schema, then resolve them.

loadjava -u joe/shmoe -resolve -schema TEST ServerObjects.jar

■ Connect with the thin driver, load a class and a resource file, and resolve each

class:

loadjava -thin -u SCOTT/TIGER@dbhost:5521:orcl \
 -resolve alpha.class beta.props

■ Add Betty and Bob to the users who can execute alpha.class :

loadjava -thin -schema test -u SCOTT/TIGER@localhost:5521:orcl \
 -grant BETTY,BOB alpha.class
Tools 1-15

Schema Object Tools
dropjava
The dropjava tool is the converse of loadjava . It transforms command-line file

names and JAR or ZIP file contents to schema object names, then drops the schema

objects and deletes their corresponding digest table rows. You can enter .java ,

.class , .sqlj , .ser , .zip , .jar , and resource file names on the command line in

any order.

Alternatively, you can specify a schema object name (full name, not short name)

directly to dropjava . A command-line argument that does not end in .jar , .zip ,

.class , .java , or .sqlj is presumed to be a schema object name. If you specify a

schema object name that applies to multiple schema objects (such as a source

schema object Foo and a class schema object Foo), all will be removed.

Dropping a class invalidates classes that depend on it, recursively cascading

upwards. Dropping a source drops classes derived from it.

You can execute the dropjava tool either through the command line (as described

below) or through the dropjava method contained within the DBMS_JAVA class.

To execute within your Java application, do the following:

call dbms_java.dropjava(’... options...’);

where the options are the same as specified below. Each option should be separated

by a blank. You should not separate the options with a comma. The only exception

for this is the -user option. The connection is always made to the current session,

so you cannot specify another username through the -user option.

For -resolver , you should specify all other options first, a comma, then the

-resolver option with its definition. You should not specify the following options

as they relate to the database connection for the loadjava command-line tool:

-thin, -oci8, -user, -password . The output is directed to stderr. Set

serveroutput on and call dbms_java.set_output as appropriate.

Note: You must remove Java schema objects in the same way that

you first loaded them. If you load a .sqlj source file and translate

it in the server, you must run dropjava on the same source file. If

you translate on a client and load classes and resources directly, run

dropjava on the same classes and resources.
1-16 Java Tools Reference

Schema Object Tools
Syntax
dropjava [options] {<file>.java | <file>.class | file.sqlj |
<file>.jar | <file.zip> | <resourcefile>} ...
 -u | -user <user>/<password>[@<database>]
 [-o | -oci8]
 [-S | -schema <schema>]
 [-stdout]
 [-s | -synonym]
 [-t | -thin]
 [-v | -verbose]

Argument Summary
Table 1–3 summarizes the dropjava arguments.

Table 1–3 dropjava Argument Summary

Argument Description

-user Specifies a user, password, and optional database connect
string; the files will be dropped from this database instance.

<filenames> You can specify any number and combination of .java ,
.class , .sqlj , .ser , .jar , .zip , and resource file names in
any order.

-oci8 Directs dropjava to connect with the database using the oci8
JDBC driver. -oci8 and -thin are mutually exclusive; if
neither is specified, then -oci8 is used by default. Choosing
-oci8 implies the form of the -user value.

-schema Designates the schema from which schema objects are
dropped. If not specified, the logon schema is used. To drop a
schema object from a schema that is not your own, you need
the DROP ANY PROCEDURE and UPDATE ANY TABLE
privileges.

-stdout Causes the output to be directed to stdout , rather than to
stderr .

-synonym Drops a PUBLIC synonym that was created with loadjava.

-thin Directs dropjava to communicate with the database using the
thin JDBC driver. -oci8 and -thin are mutually exclusive; if
neither is specified, then -oci8 is used by default. Choosing
-thin implies the form of the -user value.

-verbose Directs dropjava to emit detailed status messages while
running.
Tools 1-17

Schema Object Tools
Argument Details

File Names
dropjava interprets most file names as loadjava does:

■ .class files: dropjava finds the class name in the file and drops the

corresponding schema object.

■ .java and .sqlj files: dropjava finds the first class name in the file and

drops the corresponding schema object.

■ .jar and .zip files: dropjava processes the archived file names as if they

had been entered on the command line.

If a file name has another extension or no extension, then dropjava interprets the

file name as a schema object name and drops all source, class, and resource objects

that match the name. For example, the hypothetical file name alpha drops

whichever of the following exists: the source schema object named alpha , the class

schema object named alpha , and the resource schema object named alpha . If the

file name begins with the “/ ” character, then dropjava prepends ROOT to the

schema object name.

If dropjava encounters a file name that does not match a schema object, it displays

a message and processes the remaining file names.

user
{-user | -u} <user>/<password>[@<database>]
The permissible forms of @<database> depend on whether you specify -oci8 or

-thin ; -oci8 is the default.

■ -oci8 : @<database> is optional; if you do not specify, then dropjava uses

the user’s default database. If specified, then <database> can be a TNS name

or a Net8 name-value list.

■ -thin : @<database> is required. The format is <host>:<lport>:<SID> .

– <host> is the name of the machine running the database.

– <lport> is the listener port that has been configured to listen for Net8

connections; in a default installation, it is 5521.

– <SID> is the database instance identifier; in a default installation, it

is ORCL.

Here are some dropjava examples.
1-18 Java Tools Reference

Schema Object Tools
■ Drop all schema objects in schema TEST in the default database that were

loaded from ServerObjects.jar :

dropjava -u SCOTT/TIGER -schema TEST ServerObjects.jar

■ Connect with the thin driver, then drop a class and a resource file from the

user’s schema:

dropjava -thin -u SCOTT/TIGER@dbhost:5521:orcl alpha.class beta.props

Dropping Resources
Care must be taken if you are removing a resource that was loaded directly into the

server. This includes profiles if you translated on the client without using the

-ser2class option. When dropping source or class schema objects, or resource

schema objects that were generated by the server-side SQLJ translator, the schema

objects will be found according to the package specification in the applicable .sqlj
source file. However, the fully qualified schema object name of a resource that was

generated on the client and loaded directly into the server depends on path

information in the .jar file or on the command line at the time you loaded it. If

you use a .jar file to load resources and use the same .jar file to remove

resources, there will be no problem. If, however, you use the command line to load

resources, then you must be careful to specify the same path information when you

run dropjava to remove the resources.
Tools 1-19

Session Namespace Tools
Session Namespace Tools
Each database instance running the Oracle8i JServer software has a session

namespace, which the Oracle8i ORB uses to activate CORBA and EJB objects. A

session namespace is a hierarchical collection of objects known as PublishedObjects

and PublishingContexts. PublishedObjects are the leaves of the hierarchy and

PublishingContexts are the nodes, analogous to UNIX file system files and

directories. Each PublishedObject is associated with a class schema object that

represents a CORBA or EJB implementation. To activate a CORBA or EJB object, a

client refers to a PublishedObject’s name. From the PublishedObject, the Oracle8i
ORB obtains the information necessary to find and launch the corresponding class

schema object.

Creating a PublishedObject is known as publishing and can be done with the

command-line publish tool or the interactive session shell, both of which this

section describes. CORBA server developers create PublishedObjects explicitly after

loading the implementation of an object with loadjava . EJB developers do not

explicitly load or publish their implementations; the deployejb tool (see

"deployejb" on page 1-89) implicitly does both.

A PublishedObject has the following attributes:

■ Schema Object Name: the name of the Java class schema object associated with

the PublishedObject.

■ Schema: the name of the schema containing the corresponding class schema

object.

■ Helper Schema Object Name: the name of the helper class the Oracle8i ORB

uses to automatically narrow a reference to an instance of the CORBA object or

EJB.

PublishedObjects and PublishingContexts, as with their file and directory

counterparts, have owners and rights (privileges). An owner can be a user name or

a role name; only the owner can change the ownership or rights of a

PublishedObject or PublishingContext. Table 1–4 describes session namespace

rights.

Table 1–4 PublishingContext and PublishedObject Rights

Right Meaning for PublishingContext Meaning for PublishedObject

read List contents and attributes (type,
rights and creation time).

List object attributes (type, schema object,
schema, helper, rights, and creation
time).
1-20 Java Tools Reference

Session Namespace Tools
Oracle8i creates a session namespace automatically when the Oracle8i ORB is

configured. The PublishingContexts contained in Table 1–5 are present in all session

namespaces:

Because by default only /test is writable by PUBLIC, you will normally create

PublishingContexts and PublishedObjects subordinate to /test .

The following tools support publishing and managing objects in the namespace:

■ publish

■ remove

■ sess_sh

publish
The publish tool creates or replaces (republishes) a PublishedObject in a

PublishingContext. It is not necessary to republish when you update a Java class

schema object; republishing is required only to change a PublishedObject’s

write Create a PublishedObject or
PublishingContext in the
PublishingContext.

Republish object.

execute Use contents to resolve a name. Activate associated class.

Table 1–5 Initial PublishingContexts and Rights

Name Owner Read Write Execute

/ SYS PUBLIC SYS PUBLIC

/bin SYS PUBLIC SYS PUBLIC

/etc SYS PUBLIC SYS PUBLIC

/test SYS PUBLIC PUBLIC PUBLIC

Note: These tools only support Release 8.1.7. A backward

compatible version for these tools are documented in Chapter 2,

"Backwards Compatibility Tools".

Table 1–4 PublishingContext and PublishedObject Rights (Cont.)

Right Meaning for PublishingContext Meaning for PublishedObject
Tools 1-21

Session Namespace Tools
attributes. To publish, you must have write permission (the write right) for the

destination PublishingContext; by default only the PublishingContext /test is

writable by PUBLIC. To republish you must additionally have the write permission

for the PublishedObject.

Syntax
publish [options] <name> <class> [<helper>]

-user | -u <username> -password |-p <password>
-service |-s <serviceURL>

where options are:

 [-describe | -d]
 [-g | -grant {<user> | <role>}[,{<user> | <role>}]...]
 [-recursiveGrant | -rg | -rG {<user> | <role>}[,{<user> | <role>}]...]
 [-h | -help]
 [-idl]
 [-iiop]
 [-replaceIDL]
 [-resolver]
 [-role <role>]
 [-republish]
 [-schema <schema>]
 [-ssl]
 [-useServiceName]
 [-version | -v]

Argument Summary
Table 1–6 summarizes the publish tool arguments.

Note: All supplied names are case sensitive. Thus, the schema,

username, and password will not be uppercased.

Note: If you use the publish as a command within sess_sh, you

do not supply the user, password, or service command-line

arguments.
1-22 Java Tools Reference

Session Namespace Tools
Table 1–6 publish Tool Argument Summary

Option Description

<name> Name of the PublishedObject being created or republished;
PublishingContexts are created if necessary.

<class> Name of the class schema object that corresponds to <name>.

<helper> Name of the Java class schema object that implements the
narrow() method for <class> .

-user Specifies identity with which to log into the database instance
named in -service .

-password Specifies authenticating password for the username specified
with -user .

-service URL identifying database whose session namespace is to be
“opened” by sess_sh . The serviceURL has the form:

sess_iiop://< host>:<lport>:<sid> .

<host> is the computer that hosts the target database;
<lport> is the listener port that has been configured to listen
for session IIOP; <sid> is the database instance identifier.
Example:

sess_iiop://localhost:2481:orcl

which matches the default installation on the invoker’s
machine.

-describe Summarizes the tool’s operation.

-grant After creating or republishing the PublishedObject, grants read
and execute rights to the sequence of <user> and <role>
names. When republishing, replace the existing users/roles
that have read/execute rights with the <user> and <role>
names. To selectively change the rights of a PublishedObject,
use the sess_sh ’s chmod command. Note that to activate a
CORBA object or EJB, a user must have the execute right for
both the PublishedObject and the corresponding class schema
object. The sequence of user and role names must be a
comma-separated list, containing no internal spaces.

Note: You must uppercase the schema name.

-recursiveGrant Grants read and execute permission in the same manner as the
-grant option; but in addition to the designated object, it also
grants these permissions to all contexts that the object exists
within. If the context already has a permission level of SYS, the
grant for that context is ignored. You can specify either -grant
or -recursiveGrant.
Tools 1-23

Session Namespace Tools
-help Summarizes the tool’s syntax.

-idl Load the IDL interface definition into the IFR.

-iiop Connects to the target database with IIOP instead of the
default session IIOP. Use this option when publishing to a
database server that has been configured without session IIOP.

-replaceIDL If an IDL interface definition currently exists within the IFR,
replace it with this version. If not specified, the publish
command will not replace the existing interface within the IFR.
The -replaceIDL flag will replace any interface with the same
name in the IFR, even if it was originally stored by another
user. Thus, different users can overwrite another user’s

interface unknowingly.

-republish Directs publish to replace an existing PublishedObject;
without this option, the publish tool rejects an attempt to
publish an existing name. If the PublishedObject does not exist,
publish creates it. Republishing deletes non-owner rights;
use the -grant option to add read/execute rights when
republishing.

-resolver Specifies an explicit resolver spec to store as part of the
reference. The classloader uses this resolver spec for object
activation. If -resolver is not specified, the default resolver
spec, which includes current user’s schema and PUBLIC, is
used. See "resolver" on page 1-13 for details.

When activating the object, the ORB first tries to locate all
classes using the resolver spec published with the object. If the
required classes are not found, the ORB then uses the caller’s
resolver spec.

-role Role to assume for the publish; no default.

-schema The schema containing the Java <class> schema object. If you
do not specify, the publish tool uses the invoker’s schema.

-ssl Connects to the database with SSL server authentication. You
must have configured the database for SSL to use this option,
and you must specify an SSL listener port in -service .

-useServiceName If you are using a service name instead of an SID in the URL,
you must specify this flag. Otherwise, the tool assumes the last
string in the URL is the SID.

-version Shows the tool’s version.

Table 1–6 publish Tool Argument Summary (Cont.)

Option Description
1-24 Java Tools Reference

Session Namespace Tools
Here is a publish example.

Publish the CORBA server implementation

vbjBankTestbank.AccountManagerImpl and its helper class as

/test/bankMgr in the tool invoker’s schema:

publish /test/bankMgr BankTestServer.AccountManagerImpl \
BankTestServer.AccountManagerHelper \
-user SCOTT -password TIGER \
-service sess_iiop://dlsun164:2481:orcl

IDL Restrictions The following are the restrictions when using the IDL options for

publish:

1. You store the IDL interface definition within the IFR through the Oracle8i
JServer publish command. The publish command stores the interface within

a flat file, AuroraIFR.idl . Normally, this file is automatically written to

$ORACLE_HOME/javavm/admin . However, if this directory is not

write-enabled, you can specify another fully-qualified filename within the

"aurora.ifr.file " system property through the modifyprops tool, as

follows:

modifyprops -user SCOTT/TIGER@dbhost:5521:orcl
 "aurora.ifr.file" "/private/ifr/myIFRfile"

2. The -replaceIDL flag will replace any interface with the same name in the

IFR, even if it was originally stored by another user. Thus, different users can

overwrite another user’s interface unknowingly.

3. Once you have stored the interface in the IFR, there is no method for removing

it. This file will continue to grow until you delete the entire file.

remove
The remove tool removes a PublishedObject or PublishingContext from a session

namespace. It does not remove the Java class schema object associated with a

PublishedObject; use dropjava to do that.

Note: This tool is more extensive than the rm command. It removes

the PublishedObject or PublishingContext from the namespace and

any related IFR interfaces. The rm command solely removes an

entity from within the directory.
Tools 1-25

Session Namespace Tools
Syntax

remove <name> {-user | -u} <username> {-password | -p} <password>
 {-service | -s} <serviceURL>
[options]
 [-d | -describe]
 [-h | -help]
 [-iiop]
 [-r | -recurse]
 [-role role]
 [-ssl]
 [-useServiceName]
 [-version | -v]

Argument Summary

Table 1–7 describes the remove arguments.

Table 1–7 remove Argument Summary

Option Description

<name> Name of PublishingContext or PublishedObject to be removed.

-user Specifies identity with which to log into the instance named in
-service .

-password Specifies authenticating password for the <username> you
specified with -user .

-service URL identifying database whose session namespace is to be
“opened” by sess_sh . The serviceURL has the form:

sess_iiop:// <host> : <lport> : <sid> .

<host> is the computer that hosts the target database;
<lport> is the listener port that has been configured to listen
for session IIOP; <sid> is the database instance identifier.
Example:

sess_iiop://localhost:2481:orcl

which matches the default installation on the invoker’s
machine.

-describe Summarizes the tool’s operation.

-help Summarizes the tool’s syntax.

-iiop Connects to the target database with IIOP instead of the
default session IIOP. Use this option when removing from a
database server that has been configured without session IIOP.
1-26 Java Tools Reference

Session Namespace Tools
Here are examples of remove tool usage.

■ Remove a PublishedObject named /test/testhello :

remove /test/testhello -user SCOTT -password TIGER \
-service sess_iiop://dlsun164:2481:orcl

■ Remove a PublishingContext named /test/etrader :

remove -r /test/etrader -user SCOTT -password TIGER \
-service sess_iiop://dlsun164:2481:orcl

sess_sh
The sess_sh (session shell) tool is an interactive interface to a database instance’s

session namespace. You specify database connection arguments when you start

sess_sh . It then presents you with a prompt to indicate that it is ready for

commands.

The sess_sh gives a session namespace much of the “look and feel” of a UNIX file

system you access through a shell, such as the C shell. For example, the session shell

command:

ls /alpha/beta/gamma

means “List the PublishedObjects and PublishingContexts in the PublishingContext

known as /alpha/beta/gamma ”. (NT users note: /alpha/beta/gamma , not

\alpha\beta\gamma .) Indeed, many session shell command names that operate

on PublishingContexts have the same names as their UNIX shell counterparts that

-recurse Recursively removes <name> and all subordinate
PublishingContexts; required to remove a PublishingContext.

-role Role to assume for the remove; no default.

-ssl Connects to the database with SSL server authentication. You
must have configured the database for SSL to use this option.

-useServiceName If you are using a service name instead of an SID in the URL,
you must specify this flag. Otherwise, the tool assumes the last
string in the URL is the SID.

-version Shows the tool’s version.

Table 1–7 remove Argument Summary (Cont.)

Option Description
Tools 1-27

Session Namespace Tools
operate on directories. For example: mkdir (create a PublishingContext) and cd
(change the working PublishingContext).

In addition to UNIX-style manipulation of PublishingContexts and

PublishedObjects, the session shell can launch an executable, that is, a class with a

static main() method. Executables must have been loaded with loadjava , but not

published—publishing is for CORBA, EJB, and servlet objects only.

Syntax
sess_sh {-service | -s} < serviceURL > {-user | -u} < user >
 {-password | -p} < password > [options]
 [@< filename >]
 [-batch]
 [-c | -command < command> < args >]
 [-credsFile <creds>]
 [-describe | -d]
 [-h | -help]
 [-iiop]
 [-proxy <host>:<port>]
 [-role < rolename >]
 [-ssl]
 [-useServiceName]
 [-version | -v]

Argument Summary
Table 1–8 summarizes the sess_sh command-line arguments.
1-28 Java Tools Reference

Session Namespace Tools
Table 1–8 sess_sh Argument Summary

Option Description

-service | -s URL identifying database whose session namespace is to be
“opened” by sess_sh . The serviceURL should contain one of the
following:

sess_iiop://< host>:<lport>:<sid>
jdbc:oracle: <type>:<spec>
http:// <host>:<lport>

<host > is the computer that hosts the target database;
<lport > is the listener port configured to listen for session IIOP or
HTTP
<sid > is the database instance identifier.
<type > can be either oci8 or thin
<spec > is the connect string, alias, or URL for the JDBC driver

Examples:

sess_iiop://localhost:2481:orcl
jdbc:oracle:thin:@dbhost:5521:ORCL
http://localhost:2481

-user | -u Specifies user’s name for connecting to the database. This name case
insensitive; the name will always be uppercased.

-password | -p Specifies user’s password for connecting to the database. This name
case insensitive; the name will always be uppercased.

@<filename> Specifies a script file that contains sess_sh commands to be executed.
See "Scripting sess_sh Commands in the @<filename> Option" on
page 1-31 for structure of the indicated file.

-batch Disables all messages printed to the screen. No help messages or
prompts will be printed. Only responses to entered commands are
printed.

-command Executes the desired command. If you do not want to run sess_sh in
interpretive mode, but only want to execute a single command,
execute sess_sh with the -command option followed by a string that
contains the command and the arguments. Once the command
executes, sess_sh exits. The following executes the "ls -lR" command
on the designated host:

sess_sh -user SCOTT -password TIGER
 -service sess_iiop://dbserver:2481:orcl -command "ls -lR"

-credsFile Supply a text file with credentials instead of a username and
password for the connect. You create this file by exporting a wallet
into a text version.

-describe | -d Summarizes the tool’s operation.
Tools 1-29

Session Namespace Tools
Example Here is a sess_sh example.

Open a session shell on the session namespace of the database orcl on listener port

2481 on host dbserver .

sess_sh -user SCOTT -password TIGER -service sess_iiop://dbserver:2481:orcl

The sess_sh commands span several different types of functionality, which are

grouped as follows:

■ sess_sh Options—describes the options for the sess_sh command-line tool

■ Shell Commands—describes the commands that are used for manipulating and

viewing contexts and objects in the namespace

-echo Prints out every command before execution. This is useful when
executing script files.

-help Summarizes the tool’s syntax.

-iiop Connects to the target database with plain IIOP instead of the
default session IIOP. Use this option for a database server
configured without session IIOP.

-proxy Specifies the proxy host and port number. This is only required if
you are using a firewall proxy to communicate with hosts outside
your internal network.

-role Role to pass to database; there is no default.

-ssl Connect to the database with SSL server authentication. You must
have configured the database for SSL and specify an SSL port to use
this option.

-useServiceName If you are using a service name instead of an SID in the URL, you
must specify this flag. Otherwise, the tool assumes the last string in
the URL is the SID. Alternatively, you can specify
USE_SERVICE_NAME in the JNDI properties instead of using this
option. See the "JNDI Connections and Session IIOP Service" chapter
in either the Oracle8i CORBA Developer’s Guide and Reference or the
Oracle8i Enterprise JavaBeans Developer’s Guide and Reference for more
information.

-version Shows the version.

Table 1–8 sess_sh Argument Summary (Cont.)

Option Description
1-30 Java Tools Reference

Session Namespace Tools
■ Namespace Commands—describes the commands that bind objects, manage

namespace groups, and set object properties. This includes binding the

UserTransaction and DataSource objects.

■ Dynamic Listener Endpoint Configuration Commands—describes commands

for adding endpoints to existing listeners

■ Web Application Management Commands—describes commands used for

managing web applications, such as servlets and Java Server Pages.

sess_sh Options
■ sess_sh Tool Output Redirection

■ Scripting sess_sh Commands in the @<filename> Option

sess_sh Tool Output Redirection You can specify that any output generated by the

sess_sh tool is put into a file by appending the "&><filename >" at the end of the

command options. The following pipes all output to the listDir file:

ls -lR &>/tmp/listDir

Scripting sess_sh Commands in the @<filename> Option This option designates a script

file that contains one or more sess_sh commands. The script file specified is

located on the client. The sess_sh tool reads in the file and then executes all

commands on the designated server. Also, since the script file is executed on the

server, any interaction with the operating system in the script file—such as

redirecting output to a file or executing another script—will occur on the server. If

you direct sess_sh to execute another script file, this file must exist within

$ORACLE_HOME directory on the server.

You simply type in the sess_sh command followed by any options an any

expected input arguments.

The script file contains any sess_sh command followed by options and input

parameters. The input parameters can be passed in on the sess_sh command line.

The sess_sh command processes all known sess_sh options and then passes on

any other options and arguments to the script file.

To access arguments within the commands in the script file, place &1...&n to denote

the arguments. If all input parameters are passed into a single command, you can

supply a the string "&*" to denote that all input parameters are to be passed to this

command.

The following shows the contents of the script file, execShell :
Tools 1-31

Session Namespace Tools
chmod +x SCOTT nancy /alpha/beta/gamma
chown SCOTT /alpha/beta/gamma
java testhello &*

Since only two input arguments are expected, you could have also implemented the

java command input parameters as follows:

java testhello &1 &2

To execute this file, do the following:

sess_sh -user SCOTT -password TIGER -service sess_iiop://dbserver:2481:orcl \
 @execShell alpha beta

The sess_sh processes all options that it knows about and passes along any other

input parameters to be used by the commands that exist within the script file. In

this example, the parameters, alpha and beta , are passed to the java command

in the script file. Thus, the actual command executed is as follows:

java testhello alpha beta

You can add any comments in your script file with the hash symbol (#). The "#"

symbol makes anything to the end of the line a comment, which is ignored by

sess_sh . For example:

#this whole line is ignored by sess_sh

Shell Commands
The following shell commands behave similarly to their UNIX counterparts:

Note: You can also supply arguments to the -command option in

the same manner. The following shows an example:

sess_sh ... -command "cd &1" contexts

After processing all other options, the sess_sh tool passes

"contexts" in as the argument to the "cd" command.

■ alias ■ cd ■ chmod

■ chown ■ connect ■ echo

■ env ■ exit ■ help

■ java ■ ln ■ ls
1-32 Java Tools Reference

Session Namespace Tools
Each of these shell commands contains the following common options:

alias
You can create an alias used within the script file. You can specify multiple aliases.

The definition can include several commands separated on different lines. The

entire definition is included within double quotes.

The syntax is as follows:

alias < name> < definition >

where the <name> is the alias and <definition > is any sess_sh command. For

example, the following creates an alias of "ll " to be mapped to "ls -l &* "

alias ll "ls -l &*"

Thus, the command for "ll bin webdomains " is translated to "ls -l bin
webdomains ".

To echo an alias, execute alias with just the <name> and no <description> .

To delete an alias, execute alias with the empty string, as follows:

alias <name> ""

cd
The cd command is analogous to a UNIX shell’s cd command; it changes the

working PublishingContext.

Syntax

cd [options] [path]

■ mkdir ■ mv ■ pwd

■ rm ■ setenv ■ version

■ whoami

Table 1–9 sess_sh Command Common Options

Option Description

-describe | -d Summarizes the tool’s operation.

-help | -h Summarizes the tool’s syntax.

-version Shows the version.
Tools 1-33

Session Namespace Tools
Here is an example.

Change to root PublishingContext:

$ cd /

chmod
The chmod command is analogous to a UNIX shell’s chmod command; it changes

the users or roles that have rights for a PublishingContext or PublishedObject. See

Table 1–4 for descriptions of the read, write, and execute rights. Only the object’s

owner can change its rights.

Syntax

chmod [options] {+|-}{r|w|x} {<user> | <role>} [, {<user> | <role>} ...]
 <objectname>
 [-R]

Argument Summary

Table 1–10 summarizes the chmod arguments.

Here are some chmod examples.

■ Give execute rights for /alpha/beta/gamma to SCOTT and NANCY. Note

that the schemas are separated by a comma only.

Note: All names are case sensitive. Thus, the schema, username,

and password will not be uppercased.

Table 1–10 chmod Argument Summary

Option Description

+/-rwx Specifies the right (read, write, or execute) to be added (+) or
removed (-) for <user> or <role> .

<user> | <role> Specifies the user or role whose rights are to be increased or
decreased. This value is case sensitive.

<objectname> Specifies the name of the PublishingContext or
PublishedObject whose rights are to be changed.

-R Changes the execute rights recursively. This does not include
symbolic links.
1-34 Java Tools Reference

Session Namespace Tools
$ chmod +x SCOTT,NANCY /alpha/beta/gamma

■ Remove Scott’s write rights for the same object:

$ chmod -w SCOTT /alpha/beta/gamma

chown
The chown command is analogous to the UNIX chown command; it changes the

ownership of a PublishingContext or PublishedObject. The owner of a newly

created PublishingContext or PublishedObject is the user who publishes it. To

change a PublishingContext’s or PublishedObject’s ownership you must be SYS.

Syntax

chown [options] {<user> | <role>} <objectname>
 [-R]

Argument Summary

Table 1–11 summarizes the chown arguments.

Here is a chown example.

Make Scott the owner of /alpha/beta/gamma :

$ chown SCOTT /alpha/beta/gamma

connect
The connect tool will connect you to another server without exiting sess_sh . It

requires the same connection options used in sess_sh. The options for connect are

as follows:

connect [-options] {-user | -u} < user > {-password | -p} < password >
 {-service | -s} < serviceURL >

Table 1–11 chown Argument Summary

Option Description

<user> | <role> Specifies the user or role to be the new owner.

<objectname> Specifies the name of the PublishingContext or
PublishedObject whose owner is to be changed.

-R Changes the ownership recursively. This does not include
symbolic links.
Tools 1-35

Session Namespace Tools
 [-credsFile <creds>]
 [-iiop]
 [-proxy <host>:<port>]
 [-role < rolename >]
 [-ssl]
 [-useServiceName]

Argument Summary
Table 1–8 summarizes the connect command-line arguments.

Table 1–12 connect Argument Summary

Option Description

-service | -s URL identifying database whose session namespace is to be
“opened” by sess_sh . The serviceURL should contain one of the
following:

sess_iiop://< host>:<lport>:<sid>
jdbc:oracle: <type>:<spec>
http:// <host>:<lport>

<host > is the computer that hosts the target database;
<lport > is the listener port configured to listen for session IIOP or
HTTP
<sid > is the database instance identifier.
<type > can be either oci8 or thin
<spec > is the connect string, alias, or URL for the JDBC driver

Examples:

sess_iiop://localhost:2481:orcl
jdbc:oracle:thin:@dbhost:5521:ORCL
http://localhost:2481

-user | -u Specifies user’s name for connecting to the database. This name case
insensitive; the name will always be uppercased.

-password | -p Specifies user’s password for connecting to the database. This name
case insensitive; the name will always be uppercased.

-credsFile Supply a text file with credentials instead of a username and
password for the connect. You create this file by exporting a wallet
into a text version.

-iiop Connects to the target database with plain IIOP instead of the
default session IIOP. Use this option for a database server
configured without session IIOP.
1-36 Java Tools Reference

Session Namespace Tools
Examples for using connect are as follows:

Connect to an IIOP session:

connect -u scott/tiger -s sess_iiop://mysun:5522:ORCL

Connect to an HTTP SSL session through a firewall:

connect -u scott/tiger -s https://mysun:9090 -proxy companyx-proxy:2443

echo
Prints to stdout exactly what is indicated. This is used mostly in script files.

The syntax is as follows:

echo [<echo_string>] [<args>]

where <echo_string> is a string that contains the text you want written to the

screen during the shell script invocation and <args > are input arguments from the

user. For example, the following prints out a notification:

echo "Adding an owner to the schema" &1

If the input argument is "SCOTT", the output would be "Adding an owner to the

schema SCOTT"

-proxy Specifies the proxy host and port number. This is only required if
you are using a firewall proxy to communicate with hosts outside
your internal network.

-role Role to pass to database; there is no default.

-ssl Connect to the database with SSL server authentication. You must
have configured the database for SSL and specify an SSL port to use
this option.

-useServiceName If you are using a service name instead of an SID in the URL, you
must specify this flag. Otherwise, the tool assumes the last string in
the URL is the SID. Alternatively, you can specify
USE_SERVICE_NAME in the JNDI properties instead of using this
option. See the "JNDI Connections and Session IIOP Service" chapter
in either the Oracle8i CORBA Developer’s Guide and Reference or the
Oracle8i Enterprise JavaBeans Developer’s Guide and Reference for more
information.

Table 1–12 connect Argument Summary (Cont.)

Option Description
Tools 1-37

Session Namespace Tools
env
You can view environment variables and their values with the env command.

Syntax

env [<variable>]

Argument Summary

Table 1–13 describes the env arguments.

The following example prints out the value of the TEST variable:

$ env test
TEST=HELLO

exit
The exit command terminates sess_sh .

Syntax

exit

Here is an example:

Leave the session shell:

$ exit
%

help
The help command summarizes the syntax of the session shell commands. You can

also use the help command to summarize the options for a particular command.

Syntax

help [< command>]

Table 1–13 env Argument Summary

Option Description

<variable> The name of the environment variable. If not provided, all
variables are printed.
1-38 Java Tools Reference

Session Namespace Tools
java
The java command is analogous to the JDK java command; it invokes a class’s

static main() method. The class must have been loaded with loadjava . (There is

no point to publishing a class that will be invoked with the java command.) The

java command provides a convenient way to test Java code that runs in the

database. In particular, the command catches exceptions and redirects the class’s

standard output and standard error to the session shell, which displays them as

with any other command output. (The usual destination of standard out and

standard error for Java classes executed in the database is one or more database

server process trace files, which are inconvenient and may require DBA privileges

to read.)

Syntax

java [-schema <schema>] <class> [arg1 ... argn]

Argument Summary

Table 1–14 summarizes the java arguments.

Here is a java command example.

Say hello and display arguments:

package hello;
public class World {
 public World() {
 super();
 }
 public static void main(String[] argv) {
 System.out.println("Hello from the JServer/ORB");
 if (argv.length != 0)
 System.out.println("You supplied " + argv.length + " arguments: ");
 for (int i = 0; i < argv.length; i++)

Table 1–14 java Argument Summary

Option Description

class Names the Java class schema object that is to be executed.

-schema Names the schema containing the class to be executed; the
default is the invoker’s schema. The schema name is case
sensitive.

arg1 ... argn Arguments to the class’s main() method.
Tools 1-39

Session Namespace Tools
 System.out.println(" arg[" + i + "] : " + argv[i]);
 }
}

Compile, load, publish, and run the executable as follows, substituting your userid,

host, and port information as appropriate:

% javac hello/World.java
% loadjava -r -user SCOTT/TIGER@localhost:2481:orcl hello/World.class
% sess_sh -user SCOTT -password TIGER -service sess_iiop://localhost:2481:orcl
$ java testhello alpha beta
Hello from the JServer/ORB
You supplied 2 arguments:
arg[0] : alpha
arg[1] : beta

ln
The ln (link) command is analogous to the UNIX ln command. A link is a

synonym for a PublishingContext or PublishedObject. A link can prevent a

reference to a PublishingContext or PublishedObject from becoming invalid when

you move a PublishingContext or PublishedObject (see "mv" on page 1-43); creating

a link with the old name makes the object accessible by both its old and new names.

Syntax

ln [-symbolic | -s] <object> <link>

Argument Summary

Table 1–15 summarizes the ln arguments.

Here is an ln command example.

Preserve access via old although the object’s name is changed to new:

Table 1–15 ln Argument Summary

Option Description

-s Create a symbolic soft link for the <object> of the <link> name.

<object> The name of the PublishingContext or PublishedObject for
which a link is to be created.

<link> The synonym by which <object> is also to be known.
1-40 Java Tools Reference

Session Namespace Tools
$ mv old new
$ ln new old

ls
The ls (list) command shows the contents of PublishingContexts as the UNIX ls
command shows the contents of directories.

Syntax

ls [options] [< pubcon > | < pubobj [< pubcon > | < pubobj] ...]
 [-dir]
 [-l]
 [-ld | ldir]
 [-R]

Argument Summary

Table 1–16 describes the ls arguments.

Here are examples of the ls command.

Show contents of the root PublishingContext in short format:

$ ls /
bin/
etc/

Table 1–16 ls Argument Summary

Option Description

<pubcon> | <pubobj> Name of PublishingContext(s) and/or PublishingObject(s) to
be listed; the default is the working PublishingContext.

-dir Shows only PublishingContexts; analogous to the UNIX ls -d
command.

-l Shows contents in long (detailed) format. The long format
includes name, creation time, owner, and rights. For
PublishedObjects, the option also shows class, schema, and
helper. You can use this option in conjunction with -R, as -lR or
-Rl.

-ldir Lists PublishingContexts in long format, ignoring
PublishingObjects; analogous to UNIX ls -ld command.

-R Lists recursively. You can use this option in conjunction with -l,
as -lR or -Rl.
Tools 1-41

Session Namespace Tools
test/

Show contents of the root PublishingContext in long format:

$ ls -l /
Read Write Exec Owner Date Time Name Schema Class Helper
PUBLIC SYS PUBLIC SYS Dec 14 14:59 bin/
PUBLIC SYS PUBLIC SYS Dec 14 14:59 etc/
PUBLIC PUBLIC PUBLIC SYS Dec 14 14:59 test/

Show contents of the /test PublishingContext in long format:

$ ls -l test
Read Write Exec Owner Date Time Name Schema Class Helper
SCOTT SCOTT SCOTT SCOTT Dec 14 16:32 bank SCOTT Bank.AccountManagerImpl Bank.AccountManagerHelper

mkdir
The mkdir command is analogous to the UNIX shell mkdir command; it creates a

PublishingContext. You must have the write right for the target PublishingContext

to use mkdir in it.

Syntax

mkdir [options] <name>
 [-path | -p]

Argument Summary

Table 1–17 describes the mkdir arguments.

Here are examples of the mkdir command.

Create a PublishingContext called /test/alpha (/test exists):

mkdir /test/alpha

Create a PublishingContext called /test/alpha/beta/gamma
(/test/alpha/beta does not exist):

$ mkdir -path /test/alpha/beta/gamma

Table 1–17 mkdir Argument Summary

Option Description

<name> Name of PublishingContext to create.

-path Creates intermediate PublishingContexts if they do not exist.
1-42 Java Tools Reference

Session Namespace Tools
mv
The mv command is analogous to the UNIX shell mv command.

Syntax

mv [options] <old> <new>

Here is an example of the mv command.

Change the name of /test/foo to /test/bar :

$ mv /test/foo /test/bar

pwd
The pwd command displays the name of the current working PublishingContext. It

is analogous to the UNIX pwd command.

Syntax

pwd [options]

Here is an example of the pwd command.

$ pwd
/test/alpha

rm
The rm command is analogous to the rm -r UNIX shell command; it removes a

PublishedObject or a PublishingContext, including its contents. To remove an

object, you must have the write right for the containing PublishingContext.

Syntax

rm [options] <object> ... <object>
 [-r]

Argument Summary

Table 1–18 describes the rm arguments.

Table 1–18 rm Argument Summary

Option Description

<object> Name of PublishedObject or PublishingContext to be removed.
Tools 1-43

Session Namespace Tools
Here is an example of the rm command.

Remove the PublishedObject /test/bank :

rm /test/bank

Remove the PublishingContext /test/release3 and everything it contains:

rm -r /test/release3

setenv
You can set environment variables within a script or for use within the current

invocation of the sess_sh tool. These variables are not valid outside of sess_sh and

are lost when sess_sh terminates.

Syntax

setenv <variable> <value>

Argument Summary

Table 1–19 describes the setenv arguments.

The following example sets the TEST variable to the string HELLO. Once set, the

value is shown with the env command.

$ setenv TEST HELLO
$ setenv PATH .:/bin:/test/bin
$ env test
TEST=HELLO
PATH=.:/bin:/test/bin

-r | -recurse Interprets <object> as a PublishingContext; removes it and
its contents recursively.

Table 1–19 setenv Argument Summary

Option Description

<variable> The name of the environment variable.

<value> The value to set the environment variable to. If no value is
given, the defined <variable> is removed.

Table 1–18 rm Argument Summary (Cont.)

Option Description
1-44 Java Tools Reference

Session Namespace Tools
To remove an environment variable, set the variable to the NULL string. The

following removes the TEST variable:

$ setenv TEST ""

version
The version command shows the version of the sess_sh tool. You can also show

the version of a specified command.

Syntax

version [options] [< command>]

Here is an example of the version command.

Display the session shell’s version:

$ version
1.0

whoami
Prints out the current user that logged into this session.

Namespace Commands

addgroupentry
The addgroupentry command adds a single property to an existing property

group for the designated JNDI object.

Syntax

addgroupentry <object_name> <group_name> <prop_name> <prop_value>

■ addgroupentry ■ bind ■ bindut

■ bindds ■ getgroup ■ getproperties

■ publish ■ removegroupentry ■ setgroup

■ setproperties
Tools 1-45

Session Namespace Tools
The following example sets another property for the wine group of the config
object:

addgroupentry config wine type merlot

bind
The bind command binds an object reference or a naming context into the JNDI

namespace. The ordering of the options must be in the order specified here. You

cannot mix the options.

Syntax

bind <JNDI_object_name> [options]
 [-context]
 [-rebind]
 {-class | -c <classname>
 [-factory | -f <factory>]
 [-location | -l <URL>]
 [-string <type_name> <string_value> [-string <type_name> <string_value> ...]]
 [-binary <type_name> <string_value> [-binary <type_name> <string_value> ...]]

Table 1–20 addgroupentry Command Options

Option Description

<object_name> A JNDI name that is bound to an object.

<group_name> A property group name, which was created by the setgroup
command.

<prop_name> The property name assigned to the group/object.

<prop_value> The value for the property

Table 1–21 bind Command Options

Option Description

<JNDI_object_name> The JNDI name that the object is bound to within the
namespace. This is the name that is used to retrieve the bound
object.

-context The object to be bound is a JNDI Context or InitialContext.

-rebind If the JNDI name already exists, replace the object that it is
bound to with this object.

-class Specify the class name of the bound object.
1-46 Java Tools Reference

Session Namespace Tools
The following binds a CORBA IOR reference into the JNDI namespace. The object

reference was stringified before the bind is executed and is substituted for the

input argument $1. In addition, a binary reference attribute for the employee site

number of 400 is also bound within the object.

bind /test/employee -class employee.Employee -factory employee.EmployeeFactory
-string EmpObjRef $1 -binary EmpNumber 400

bindut
The bindut command binds a UserTransaction object in the namespace. You

must bind a UserTransaction object for both single and two-phase commit

transactions. In a two-phase commit scenario, the UserTransaction is bound

with respect to the two-phase commit engine.

Syntax

bindut < lookup_name > [options]
 [-help | -h]
 [-describe | -d]
 [-version | -v]
 [-rebind]
 [-expprop]
 [-host < hostname > -port < portnum > -sid < SID>]
 [-url <db_url>]

-factory Specify the factory name for creating the object. JNDI uses this
for creating the object.

-location Specify the factory location if the default location is not used.
This takes a JNDI URL. Refer to the JNDI specification for more
information.

-string Specify a String reference attribute for the object by the type
name and value.

-binary Specify a Binary reference attribute for the object by the type and
a binary value. The given string value is converted into binary.

Note: If you change the two-phase commit engine, you must

update all database links on all DataSource objects involved in

the transaction, and rebind the UserTransaction .

Table 1–21 bind Command Options (Cont.)

Option Description
Tools 1-47

Session Namespace Tools
 [-g | -grant {<user> | <role>}[,{<user> | <role>}]...]
 [-recursiveGrant | -rg | -rG {<user> | <role>}[,{<user> | <role>}]...]
 [-user | -u < user >]
 [-password | -p < password >]

Argument Summary

Table 1–22 summarizes the bindut command-line arguments:

Table 1–22 bindut Argument Summary

Option Description

<lookup_name> The JNDI name of the UserTransaction object

-help Summarizes the tool’s syntax.

-describe Summarizes the tool’s operation.

-version Shows the tool’s version.

-rebind If the JNDI name for the UserTransaction object already exists,
you must specify this option if you want it overwritten with
this new object. Otherwise, no bind will occur for this option
and an AlreadyBound exception is thrown.

-expprop Specify this option only if host/port/sid options are specified.
Designates how the transaction is propagated between objects.
If an IIOP client invokes an IIOP server method, the
transaction context is propagated implicitly for you. However,
if your client uses JDBC or HTTP for communicating, the
propagation context must be propagated explicitly. Specify this
flag in the case of JDBC or HTTP communication.

-host <host>
-port <port>
-sid <sid>

These options specify the Oracle8i database that is acting as the
two-phase commit engine. These are only necessary for any
global transactions that use two-phase commit. You can either
specify the two-phase commit engine location either through
these options or within the -url option. The default value for
-sid is ORCL.

-url <db_url> This URL specifies the location of the Oracle8i database that is
acting as the two-phase commit engine. You can specify the
two-phase commit engine either through this option or by
specifying each part of the URL separately within the four
options mentioned above. This URL can be either JDBC Thin
or sess_iiop URL.
1-48 Java Tools Reference

Session Namespace Tools
Example The following example binds the ut1 UserTransaction within the

namespace designating the two-phase commit engine at dbsun.mycompany.com :

bindut /test/UserTransaction/ut1 -host dbsun.mycompany.com -port 2481 -sid ORCL

The same command could be issued as follows:

bindut /test/UserTransaction/ut1 -url sess_iiop://dbsun.mycompany.com:2481:ORCL

The options used to bind a UserTransaction object depend on whether the

transaction uses single or two-phase commit, as described below:

■ Single-phase commit—provide the JNDI bound name for the

UserTransaction object. You do not need to provide the address to a

two-phase commit engine. For example, the following binds a

UserTransaction with the name of "/test/myUT " that exists for a

single-phase commit transaction:

bindut /test/myUT

-grant <user> | <role> Grants read and execute rights to the sequence of <user> and
<role> names. When rebinding any leaf nodes, replace the
existing users/roles that have read/execute rights with the
<user> and <role> names. To selectively change the rights of a
UserTransaction object, use the sess_sh’s chmod command.
The sequence of user and role names must be a
comma-separated list, containing no internal spaces.

Note: You must uppercase the schema name.

-recursiveGrant
<user> | <role>

Grants read and execute permission like the -grant option to
the designated object and to all contexts that the object exists
within. If the context has a permission level of SYS, the grant
for that context is ignored. You can specify either -grant or
-recursiveGrant.

-user | -u <user> Specifies user’s name for connecting to the two-phase commit
engine. This option is only required for two-phase commit
scenario.

-password | -p
<password>

Specifies user’s password for connecting to the two-phase
commit engine. This option is only required for two-phase
commit scenario.

Table 1–22 bindut Argument Summary (Cont.)

Option Description
Tools 1-49

Session Namespace Tools
■ Two-phase commit—provide the JNDI bound name for the UserTransaction
object and the address to a two-phase commit engine. For example, the

following binds a UserTransaction with the name of "/test/myUT " and a

two-phase commit engine at "2pcHost ":

bindut /test/myUT -url jdbc:oracle:thin:@2pcHost:5521:ORCL

When the transaction commits, the UserTransaction communicates with the

two-phase engine designated in the -url option to commit all changes to all

included databases. The UserTransaction tracks all databases involved in

the transaction; the two-phase commit engine uses the database links for these

databases to complete the transaction.

bindds
The bindds command binds a DataSource object in the JNDI namespace. In

order to enlist any database—including the local database—you must bind a JTA

DataSource object to identify each database included in the transaction. If you

require a two-phase commit transaction, your system administrator must create

public database links from the two-phase commit engine to each database involved

in the transaction. These database link names are included when binding

DataSource objects.

For JTA, XA, or JNDI, you might need to bind a DataSource object in the JNDI

namespace for later retrieval and activation of a database connection. There are four

types of DataSource objects that you can bind using the bindds command.

■ OracleDataSource —a DataSource object modified for use with an Oracle8i
database.

■ OracleJTADataSource —a DataSource object modified for use within

global JTA transactions. Within JTA, in order to enlist any database—including

the local database—you must bind an OracleJTADataSource object to

identify each database included in the transaction.

■ OracleConnectionPoolDataSource —a DataSource object modified for

use with a pool of DataSource objects.

Note: If you change the two-phase commit engine, you must

update all database links on all DataSource objects involved in

the transaction, and rebind the UserTransaction .
1-50 Java Tools Reference

Session Namespace Tools
■ OracleXADataSource —a DataSource object modified for use within an

XA-type connection.

The DataSource object type is specified with the -dstype option of the bindds
command, as described below:

Syntax

bindds < lookup_name > [options]
 [-help | -h]
 [-describe | -d]
 [-version | -v]
 [-dstype <datasource>]
 [-host < hostname > -port < portnum > -sid < SID> -driver <driver_type>]
 [-url <db_url>]
 [-dblink < DBLINK>]
 [-g | -grant {<user> | <role>}[,{<user> | <role>}]...]
 [-recursiveGrant | -rg {<user> | <role>}[,{<user> | <role>}]...]
 [-rebind]
 [-user | -u < user >]
 [-password | -p < password >]

Argument Summary

Table 1–23 summarizes the bindds command-line arguments:

Table 1–23 bindds Argument Summary

Option Description

<lookup_name> The JNDI name of the DataSource object

-help Summarizes the tool’s syntax.

-describe Summarizes the tool’s operation.

-version Shows the tool’s version.

-dstype <datasource> The type of DataSource object that you are currently binding.
Values can be one of the following:

■ do not specify this option to bind an OracleDataSource

■ jta—OracleJTADataSource

■ xa—OracleXADataSource

■ pool—OracleConnectionPoolDataSource

If you do not specify this option, the default is an
OracleDataSource object.
Tools 1-51

Session Namespace Tools
-host <host>
-port <port>
-sid <sid>
-driver <drv_type>

These options specify the location of the database and driver
type for the connection to be established to the database. This
information enables anyone retrieving this object to establish a
connection to this database. You can alternatively specify this
information within a URL format within the -url option. The
default value for -sid is ORCL. Values for -driver can be thin,
oci8, or kprb.

-url <db_url> This JDBC URL specifies the location of the database. With this
information bound within the DataSource object, a connection
can be created to this database. Alternatively, you can specify
this information within the four options mentioned above. You
must specify a JDBC URL; an IIOP (sess_iiop) address is not
permitted.

-dblink <DBLINK> The fully-qualified database link, which must be previously
configured by an administrator, from the two-phase commit
engine to the database described by this DataSource object.
This option is only necessary for two-phase commit
transactions. The public database link must be previously
created by a system administrator on the two-phase commit
engine.

-grant
<user> | <role>

Grants read and execute rights to the sequence of <user> and
<role> names. When rebinding, replace the existing
users/roles that have read/execute rights with the <user> and
<role> names. To selectively change the rights of a DataSource,
use the sess_sh’s chmod command. The sequence of user and
role names must be a comma-separated list, containing no
internal spaces.

Note: You must uppercase the schema name.

-recursiveGrant
<user> | <role>

Grants read and execute permission like the -grant option to
the designated object and to all contexts that the object exists
within. If the context has a permission level of SYS, the grant
for that context is ignored. You can specify either -grant or
-recursiveGrant.

-rebind If the DataSource object already exists, you must specify this
option if you want it overwritten with this new object.
Otherwise, no bind will occur for this option.

-user | -u <user> Specifies user’s name for connecting to the database. Stores the
username within the DataSource object. If no username is
supplied within the JNDI Context when creating the database
connection, this username is used.

Table 1–23 bindds Argument Summary (Cont.)

Option Description
1-52 Java Tools Reference

Session Namespace Tools
Binding an OracleJTADataSource Object You bind an OracleJTADataSource object

for any databases included in a global transaction. If you require a two-phase

commit transaction, your system administrator must create public database links

from the two-phase commit engine to each database involved in the transaction.

These database link names must be included when binding the

OracleJTADataSource object.

The following example binds the ds1 OracleJTADataSource into the namespace

with ds1db as the database link name created on the two-phase commit engine:

% bindds /test/ds1 -host dbsun.mycompany.com -port 2481
-sid ORCL -driver thin -dstype jta -dblink ds1db.oracle.com

The options used to bind an OracleJTADataSource object depend on whether

the transaction uses single or two-phase commit, as described below:

■ Single-phase commit—provide the JNDI bound name and the URL address

information for this database within the OracleJTADataSource object. You

do not need to provide a database link. For example, the following binds an

OracleJTADataSource with the name of "/test/myUT " that exists within a

single-phase commit transaction:

bindds /test/ds1 -host dbsun -port 5521 -sid ORCL -driver thin -dstype jta

■ Two-phase commit—provide the JNDI bound name for the object, the URL for

creating a connection to the database, and the database link from the two-phase

commit engine to this database.

bindds /test/myUT -url jdbc:oracle:thin:@dbsun:5521:ORCL -dstype jta
-dblink mydsdblink.oracle.com

-password | -p
<password>

Specifies user’s password for connecting to the database.
Stores the password within the DataSource object. If no
password is supplied within the JNDI Context when creating
the database connection, this username is used.

Note: In a two-phase commit scenario, the DataSource object is

bound with respect to the two-phase commit engine. If you change

the two-phase commit engine, you must update all database links,

and rebind all concerned DataSource objects.

Table 1–23 bindds Argument Summary (Cont.)

Option Description
Tools 1-53

Session Namespace Tools
This includes not only the information for creating a connection to this

database, but also the information needed by the two-phase commit engine to

facilitate committing a global transaction.

getgroup
The getgroup command lists all of the properties within a property group for the

designated JNDI object.

Syntax

getgroup <object_name> <group_name>

The following example displays all properties defined for the wine group of the

config object:

getgroup config wine

getproperties
The getproperties command lists all properties associated with the given JNDI

name.

Syntax

getproperties [-all] <object_name>

Table 1–24 getgroup Command Options

Option Description

<object_name> A JNDI name that is bound to an object.

<group_name> A property group name, which was created by the setgroup
command.

Table 1–25 getproperties Command Options

Option Description

-all Display all properties information including the reference
information, such as the class, factory, and factory location.

<object_name> A JNDI name that is bound to an object.
1-54 Java Tools Reference

Session Namespace Tools
publish
The publish command performs the same function as the publish tool. Refer to

"publish" on page 1-21 for command syntax and examples.

removegroupentry
The removegroupentry command removes a single property to an existing

property group for the designated JNDI object.

Syntax

removegroupentry <object_name> <group_name> <prop_name>

The following example removes the type property from the wine group of the

config object:

removegroupentry config wine type

setgroup
The setgroup command creates a property group for a JNDI object. You add

properties to an existing group through the addgroupentry command. Each

execution of setgroup either creates a new group or overwrites an existing group.

To specify multiple properties, enclose all name-value pairs within double-quotes

(") and separate each name-value pair with a newline.

Syntax

setgroup <object_name> <group_name> "<prop_name=prop_value>
 [<prop_name=prop_value>...]"

Table 1–26 removegroupentry Command Options

Option Description

<object_name> A JNDI name that is bound to an object.

<group_name> A property group name, which was created by the setgroup
command.

<prop_name> The property name assigned to the group/object.

Table 1–27 setgroup Command Options

Option Description

<object_name> A JNDI name that is bound to an object.
Tools 1-55

Session Namespace Tools
The following example sets three properties for wine group in the config object:

setgroup config wine "debug=true
>servlet.class=SCOTT:winemasters.tasting.Tasting
>details=high"

setproperties
The setproperties command assigns name-value pairs to an object with the

given JNDI name. Each execution of setproperties resets all properties for this

object to what is indicated on the command-line. To specify multiple properties,

enclose all name-value pairs within double-quotes (") and separate each name-value

pair with a newline.

Syntax

setproperties <object_name> "<prop_name=prop_value>
 [<prop_name=prop_value>...]"

The following example sets three properties for the config object:

setproperties config "debug=true
>servlet.class=SCOTT:winemasters.tasting.Tasting
>details=high"

<group_name> The property group name to be used for categorizing the given
properties.

<prop_name> The property name that has already been created with the
setproperties command.

<prop_value> The value for the property

Table 1–28 setproperties Command Options

Option Description

<object_name> A JNDI name that is bound to an object.

<prop_name> The name of the property.

<prop_value> The current value for the property.

Table 1–27 setgroup Command Options (Cont.)

Option Description
1-56 Java Tools Reference

Session Namespace Tools
Dynamic Listener Endpoint Configuration Commands
The following sess_sh commands are provided to modify an existing listener.

■ regep

■ unregep

regep
In order to receive incoming requests, the listener must be configured with an

endpoint for each presentation type. Most listeners are configured to accept Net8

(TTC) connections. The other two types of supported presentations are IIOP

(oracle.aurora.server.SGiopServer) and HTTP (HTTP://webserver). In

addition, if you create your own presentation, the listener must have an endpoint

registered for that presentation.

You can either statically configure these endpoints within the listener configuration

(either through the Net8 configuration tool or by modifying the listener

configuration file) or dynamically register these endpoints through the regep tool.

The register endpoint (regep) command dynamically registers an endpoint within

the existing listener for the specified presentation type. For example, you can

modify a listener that exists primarily for TTC requests to also accept IIOP requests.

This tool requires you log on as a system user.

Syntax

regep -pres <presentation_string> [-host <hostname>] -port <portnum>
 [-listener <lsnr_addr>]
 [-ssl]
 [-persistent]
 [-describe | -d]
 [-help | -h]
 [-version | -v]

Argument Summary

Table 1–29 summarizes the regep command-line arguments:
Tools 1-57

Session Namespace Tools
unregep
The unregister endpoint (unregep) command unregisters an existing dynamic

listener endpoint. This tool requires you log on as a system user.

Syntax

unregep -pres <presentation_string> -host <hostname> -port <portnum>
 [-describe | -d]
 [-help | -h]
 [-version | -v]
 [-delete]

Table 1–29 regep Argument Summary

Option Description

-pres A presentation string.

For IIOP requests, this string is
"oracle.aurora.server.SGiopServer ".

For HTTP requests, this string is "HTTP://webserver "

-host Specifies the hostname or IP address where the endpoint is to be
registered. If you omit this option or supply "*" as the value, this
endpoint will listen on all IP interfaces for the host. That is, you
can connect using the IP address, the host name, or the localhost
logical name. If you choose to listen on all IP interfaces, lsnrctl will
return only one of these values.

-port Specifies the port number for the endpoint. Must be a valid port
number.

-listener If specified, defines a listener with the specified address. The
address equals the string given within the "address=" portion of
the listener configuration string. If unspecified, the local listener is
used.

-ssl If specified, the endpoint is defined as an SSL endpoint.

-persistent If specified, the endpoint is made persistent. The default is
non-persistent. A persistent endpoint re-registers itself after the
database has been restarted.

-describe | -d Summarizes the tool’s operation.

-help | -h Summarizes the tool’s syntax.

-version | -v Shows the version.
1-58 Java Tools Reference

Session Namespace Tools
Argument Summary

Table 1–30 summarizes the unregep command-line arguments:

Web Application Management Commands
The session shell provides a set of specialized commands for manipulating the OSE

JNDI namespace, the web server and publish servlets. The uses and syntax

requirements of each command are described in the following sections:

■ Service Configuration—Create the service root for a designated service within

the namespace.

■ Web Domain Configuration—Create one or more domains within the service

root.

■ Servlet Context Management—Create servlet contexts in one of the defined

domains.

■ Servlet Management—After copying the servlets into the servlet context, you

publish it so that the clients can access it.

■ JavaServer Pages Management—You must publish any JavaServer Pages before

a client can access them.

Table 1–30 unregep Argument Summary

Option Description

-pres A presentation string.

For IIOP requests, this string is
"oracle.aurora.server.SGiopServer ".

For HTTP requests, this string is "HTTP://webserver "

-host Specifies the hostname where the endpoint is to be
unregistered.

-port Specifies the port number for the endpoint.

-describe | -d Summarizes the tool’s operation.

-help | -h Summarizes the tool’s syntax.

-version | -v Shows the version.

-delete Deletes the endpoint completely. If not specified, this endpoint
will be registered upon database startup.
Tools 1-59

Session Namespace Tools
■ Export Commands—Export configuration information about a web domain

into a mod_OSE format.

■ Security Management—Specify the security realm.

Service Configuration
The following session shell commands are provided to create a new service. Each

service is associated with a different presentation string and protocol.

addendpoint
Adds a new endpoint dynamically with the database listener. The listener must

already exist. This command only registers a new endpoint for a web service with

the existing listener.

Syntax

addendpoint [options] <service> <name>
[-listener <lsnr>]
[-net8]
[-interface <int_spec>]
[-port <port_num>]
[-register]
[-ssl]
[-threads <min> <max>]
[-timeout <seconds>]

Argument Summary

Table 1–31 summarizes the addendpoint command-line arguments:

■ addendpoint ■ createservice ■ createwebservice

■ destroyservice ■ rmendpoint

Table 1–31 addendpoint Command Options

Option Description

<service> The service that the endpoint will listen for incoming
requests on. For example, webservice is a valid service
name.

<name> The name of the endpoint.
1-60 Java Tools Reference

Session Namespace Tools
The following example adds a listener endpoint on port 8080 for the webserver
service. It starts up three threads and has a socket read timeout of 300 seconds.

addendpoint -port 8080 -threads 3 5 -timeout 300 webserver endpt1

createservice
Creates basic information for a service that is used during service installation. The

service can either be an HTTP or IIOP based service, or a brand-new service that

you have developed.

Syntax

-listener <lsnr> The address of the listener to add the endpoint to for this
service. If not specified, the endpoint is added to the default
listener.

-net8 Specifies that the endpoint is configured to accept requests
over the Net8 protocol. If not specified, the endpoint is
configured to accept requests over the TCP protocol. Use
Net8 when using mod_OSE to communicate with Servlets.

-port <port_num> The port number that the endpoint is registered for listening
on.

-interface <int_spec> The IP address used to connect to this service. The default
allows all IP addresses. The IP address specified is mapped to
the service domain.

-register This option specifies that the endpoint should always exist.
That is, every time this listener is initiated, the endpoint
exists on that listener. If not specified, the endpoint
terminates when the listener terminates.

-ssl Specifies that the endpoint listens for secure requests that use
the SSL protocol.

-threads <min> <max> The minimum and maximum number of threads for the
endpoint. The minimum value is started upon listener
initialization; the maximum value is used to deny any more
incoming requests.

-timeout <seconds> The socket read timeout value in seconds. The amount of
time that the web server will allow you to block on the
socket.

Table 1–31 addendpoint Command Options (Cont.)

Option Description
Tools 1-61

Session Namespace Tools
createservice [options] <service>
[-http | -iiop]
[-service <class>]
[-properties <prop_groups>]
[-root <location>]
[-globalTimeout <seconds>]

Argument Summary

Table 1–32 summarizes the createservice command-line arguments:

createwebservice
Creates basic information for a web-based service that is used during service

installation. This service uses the HTTP protocol for connecting. This is the similar

to executing createservice -http .

Syntax

createwebservice [options] <service_name>
-root <location>
[-properties <prop_groups>]
[-ip]
[-virtual]

Argument Summary

Table 1–32 createservice Argument Summary

Option Description

<service> The user-defined name of the new service.

-http The service is HTTP-based.

-iiop The service is IIOP-based.

-service <class> The Java class that implements the <service> . Defaults to
Oracle-provided classes if specifying -http or -iiop . Other
presentations require this option.

-properties
<prop_groups>

List of property groups to use as the defaults for this service.
Specify the name-value pairs in the same way as in the setgroup
command.

-root <location> JNDI location for the service configuration.

-globalTimeout
<seconds>

Timeout for database sessions processing requests for this
service. Timeout is specified in seconds.
1-62 Java Tools Reference

Session Namespace Tools
Table 1–33 summarizes the createwebservice command-line arguments:

The following example creates a web service, webserver , that is defined in the

"/webdomains " directory. The "/webdomains " directory should have been created

by the createwebdomain command.

createwebservice -root /webdomains webserver -properties "debug=true
>servlet.class=SCOTT:customer.CustMain
>details=default"

destroyservice
Removes a defined service (created either by the createservice or createwebservice

commands), unregisters all endpoints, and removes the endpoints so that they will

not be started when the listener is initiated again.

destroyservice [-all] <service_name>

Argument Summary

Table 1–34 summarizes the destroyservice command-line arguments:

Table 1–33 createwebservice Argument Summary

Option Description

<service> The user-defined name of the new service.

-root <location> JNDI location for the web service configuration.

-properties
<prop_groups>

List of property groups to use as the defaults for this service.
Specify the name-value pairs in the same way as in the setgroup
command.

-ip The web service allows IP-based multi-homed domains.

-virtual The web service allows VirtualHost multi-homed domains.

Note: If neither -ip or -virtual are specified, the web service is

a single domain web service. The name given will be the service

root name.
Tools 1-63

Session Namespace Tools
The following example deletes the webserver service.

destroyservice webserver

rmendpoint
Removes a specific endpoint from a service and unregisters it from the listener.

Syntax

rmendpoint <service> <name>

Argument Summary

Table 1–35 summarizes the rmendpoint command-line arguments:

The following example deletes the endpt1 endpoint:

rmendpoint webserver endpt1

Web Domain Configuration
Within the service root, you create one or more web domains. These web domain

store servlet contexts. Use web domains to organize your servlet contexts. These

commands enable you to create and destroy any web domain.

■ createwebdomain

■ destroywebdomain

Table 1–34 destroyservice Command Options

Option Description

<service> The service created by the createservice or createwebservice
commands.

 -all Erases everything under this service root.

Table 1–35 rmendpoint Command Options

Option Description

<service> The service that the endpoint will listen for incoming requests on.
For example, webservice is a valid service name.

<name> The name of the endpoint that was created with addendpoint.
1-64 Java Tools Reference

Session Namespace Tools
createwebdomain
Creates a web domain owned by the specified schema. This domain contains

services. The services contain servlets, which execute under the schema’s identity.

Each web domain is initialized with the "/default " servlet contexts.

Syntax

createwebdomain [options] <domain_name>
[-docroot <location>]
[-properties <prop_groups>

Argument Summary

Table 1–36 summarizes the createwebdomain command-line arguments:

The following command creates the /webserver domain in the root directory.

createwebdomain /mywebserver

destroywebdomain
Removes the web domain created by the createwebdomain command. This

command also deletes any servlet contexts contained within the domain.

Syntax

destroywebdomain <domain_name>

Argument Summary

Table 1–37 summarizes the destroywebdomain command-line arguments:

Table 1–36 createwebdomain Command Options

Option Description

<domain_name> The full path of where the domain should be located and its
name.

-docroot <location> The location of the servlet static pages for this webdomain’s
default context. Other context’s docroot location is specified
in the createcontext command.

-properties
<prop_groups>

List of property groups to use as the defaults for this service.
Specify the name-value pairs in the same way as in the
setgroup command.
Tools 1-65

Session Namespace Tools
The following example deletes the /webserver domain and all servlets contained

within it:

destroywebdomain /webserver

Servlet Context Management
Once all domains are setup, you can create the servlet context to exist within the

specified domain. Once created, you can copy servlets into each context.

Management commands for servlet contexts include the following:

accesslog
Specifies how HTTP access logging is handled for the servlet context. This records

information about each incoming HTTP request. You have one of three options.

Syntax

accesslog [options] <context_name>
[-trace | -systable | -table <table_spec>]

Argument Summary

Table 1–38 summarizes the accesslog command-line arguments:

Table 1–37 destroywebdomain Command Options

Option Description

<domain_name> The full directory and name used within createwebdomain
to create the domain.

■ accesslog ■ adderrorpage ■ createcontext

■ destroycontext ■ realm ■ rmerrorpage

Table 1–38 accesslog Command Options

Option Description

<context_name> The name of the servlet context.

-trace Write all log entries to the .TRC text file.
1-66 Java Tools Reference

Session Namespace Tools
The following example specifies that the HTTP access log messages for the

/webdomains/contexts/default service context should be directed into the

HTTP_LOG table in SCOTT’s schema:

accesslog -table SCOTT:HTTP_LOG /webdomains/contexts/default

adderrorpage
When a specific error code is returned, you can specify a URL that the client is

directed to. This is useful for displaying error messages to the client.

Syntax

adderrorpage -error <errcode> -virtualpath <errorpath> <context_name>

-systable Write all log entries to the SYS.JAVA$HTTP$LOG$ table. This
is the default logging option. The owner of the service
context must have permission to access this table. If not,
specify the -table option with a table that the owner does
have permission for.

-table <table_spec> Write all log entries to the designated table. The table must
contain the same layout as the SYS.JAVA$HTTP$LOG$ table.

Argument Summary

Table 1–39 summarizes the adderrorpage command-line arguments:

Table 1–39 adderrorpage Command Arguments

Arguments Description

<context_name> The directory path and name of the servlet context.

-error <errcode> The error code that identifies the error page.

-virtualpath <errorpath> The error page, which is a servlet virtual path that this
error code is associated with. This is a URI that can map
to a servlet, which will be served up, or can map to a
static HTML page. The web server serves up whatever
the URI maps to.

Table 1–38 accesslog Command Options (Cont.)

Option Description
Tools 1-67

Session Namespace Tools
The following example associates the error 401 with the servlet identified within the

-virtualpath option. This code is valid for the default context.

adderrorpage -error 401 -virtualpath /SCOTT/Errors/Err401 \
/webdomains/context/default

createcontext
Creates a servlet context within the specified domain, which was created by the

createwebdomain command.

Syntax

createcontext [options] <domain_name> <context_name>
-virtualpath <path>
[-recreate]
[-properties <prop_groups>]
[-docroot <location>]
[-stateless]

Argument Summary

Table 1–40 summarizes the createcontext command-line arguments:

Table 1–40 createcontext Command Options

Option Description

<domain_name> The directory and name for the domain where the servlet
context is to be created. This domain must already exist. You
create the domain through the createwebdomain command.

<context_name> The user-defined name for the servlet context to be used within
the domain.

-virtualpath <path> Bind the newly created servlet context to this virtual path.

-recreate If a context with this name already exists, delete it before
adding an empty context with this name. This destroys any
servlets currently associated with this context.

-properties
<prop_groups>

List of property groups to use as the defaults for this service.
Specify the name-value pairs in the same way as in the
setgroup command.

-docroot <location> All of the servle static pages are located in this directory in the
server machine’s filesystem.
1-68 Java Tools Reference

Session Namespace Tools
The following example creates a servlet context within the domain "ScottRoot " of

the name "ScottContext ". All of the servlets should be loaded into the

"/private/scott/html " directory. To access the servlets in this directory, use the

virtual path of "/SCOTT".

createcontext -virtualpath /SCOTT -docroot /private/scott/html
/ScottRoot ScottContext

destroycontext
Removes the servlet context, its information, and all contained servlets from the

domain.

Syntax

destroycontext <context_name>

Argument Summary

Table 1–41 summarizes the destroycontext command-line arguments:

The following example remove the "ScottContext " servlet context. In addition,

all servlets contained in the server’s filesystem directory

"/private/scott/html " are all deleted, and the virtual path "/SCOTT" is

removed.

destroycontext ScottContext

-stateless All servlets in this context are stateless. Contexts declared to be
stateless can only contain servlets that are stateless and never
try to access the HTTPSession object.

Table 1–41 destroycontext Command Options

Option Description

<context_name> The servlet context name, which was used on the createcontext
command.

Table 1–40 createcontext Command Options

Option Description
Tools 1-69

Session Namespace Tools
rmerrorpage
Remove the error code associated with the servlet context. This only removes the

error code: it does not remove the servlet associated with the error code.

Syntax

rmerrorpage -error <errcode> <context_name>

Argument Summary

Table 1–42 summarizes the rmerrorpage command-line arguments:

The following command removes the previously defined error code 401 from the

default servlet context. The servlet associated with this code may still exist.

rmerrorpage -error 401 /webdomains/context/default

Servlet Management
Once you have created the correct directory structure to contain your servlet, you

can copy these into the server’s filesystem. Then, you must publish these servlets in

order for the client to invoke them.

publishservlet
Publish the servlet within the named servlet context.

Syntax

publishservlet [options] <context_name> <servlet_name> <class_name>
[-virtualpath <path>]
[-stateless]
[-reuse]
[-properties props]

Argument Summary

Table 1–42 rmerrorpage Command Options

Option Description

<context_name> The name of the servlet context.

-error <errcode> The error code that the error page is associated with. Deletes both
the error code and the page that it is associated with.
1-70 Java Tools Reference

Session Namespace Tools
Table 1–43 summarizes the publishservlet command-line arguments:

The following command publishes the default context for the HelloWorld
example that was loaded in SCOTT’s schema:

publishservlet -virtualpath /hello /websdomains/contexts/default \
helloServlet SCOTT:HelloWorld

unpublishservlet
Removes the servlet from the context as well as any existing virtual path for the

servlet.

Syntax

unpublishservlet <context_name> <servlet_name>

Argument Summary

Table 1–44 summarizes the unpublishservlet command-line arguments:

Table 1–43 publishservlet Command Options

Option Description

<context_name> The name of the servlet context.

<servlet_name> The name assigned to this servlet in the named_servlets directory
to be published within this context. This name is used to refer to
the class published with this command.

<class_name> The name of the class implementing the HttpServlet interface.

-virtualpath
<path>

Bind this servlet to this virtual path.

-stateless This servlet is stateless and can not access the HTTPSession object.

-reuse Add the virtual path to an existing servlet without republishing the
servlet.

-properties
<prop_groups>

List of property groups to use as the defaults for this service.
Specify the name-value pairs in the same way as in the setgroup
command.

Table 1–44 unpublishservlet Command Options

Option Description

<context_name> The name of the servlet context.
Tools 1-71

Session Namespace Tools
The following example unpublishes the HelloWorld servlet:

unpublishservlet /websdomains/contexts/default helloServlet

JavaServer Pages Management
Commands for publishing JavaServer Pages.These commands assume that the JSP

definition is available as a resource on the server.

publishjsp
Translation, compilation, hotloading (if enabled), and publishing all occur

automatically with the publishjsp command. This tool translates and publishes

the JavaServer Pages in the designated servlet context. This command compiles the

JavaServer Page into a servlet, which is stored in jspresource , and maintains the

dependency between the jspresource and the generated class.

Run publishjsp after you have loaded a .jsp (or .sqljsp) file into Oracle8i as a

resource schema object.

Syntax

publishjsp [options] <jsp_resource>
-virtualpath <path>
-schema <schema>
-context <context>
[-stateless]
[-servletName <servlet_name>]
[-packageName <pkg_name>]
[-hotload]
[-verbose]
[-resolver <resolver>]
[-extend <class>]
[-implement <interface>]

Argument Summary

Table 1–45 summarizes the publishjsp command-line arguments:

<servlet_name> The name of the servlet to be published within this context.

Table 1–44 unpublishservlet Command Options (Cont.)

Option Description
1-72 Java Tools Reference

Session Namespace Tools
Table 1–45 publishjsp Command Options

Option Description

<jsp_resource> The file name.jsp (or name.sqljsp for a SQLJ JSP page) is the
JSP page resource schema object that you loaded with loadjava
and is the only required parameter, along with any relevant
schema path information.

-virtualpath
<path>

Specify an alternative servlet path for the JSP page; otherwise, the
servlet path is simply the specified .jsp file name itself along with
any specified schema path.

By default, path/name.jsp becomes the servlet path.

-stateless The JSP page is to be stateless—the JSP page should not have
access to the HttpSession object during execution. This flag is used
for mod_ose optimization.

-schema <schema> Specify the schema where the JSP page resource schema object is
located, if it is not in the same schema you logged in to through
sess_sh .

This schema must be accessible from your sess_sh login schema.
The publishjsp command does not offer a way to specify
passwords.

-servletName
<servlet_name>

Specify an alternative servlet name (in OSE named_servlets) for the
JSP page. By default, the servlet name is the base name of the .jsp
file along with any path you specified.

-packageName
<pkg_name>

Specify a package name for the generated page implementation
class. By default, it is the path specification for the .jsp file when
you run publishjsp . This option affects where schema objects
are placed in the schema, but does not affect the servlet path of the
JSP page.

-context
<context>

Specify a servlet context in the Oracle Servlet Engine. The context
path of this servlet context becomes part of the URL used to invoke
the page.

The OSE default context, /webdomains/contexts/default , is
"/".

-hotload Enable and perform hotloading. See the discussion on hotload
following this table for more information.

-verbose Report the translation steps during execution.

-resolver
<resolver>

Specify an alternative Java class resolver. See the resolver
discussion in the "loadjava" on page 1-7 for more information.

-extend <class> Specify a Java class that the generated page implementation class
extends.
Tools 1-73

Session Namespace Tools
Argument Details

hotload
Enable this flag to enable and perform hotloading. This results in the following

steps being performed by the publishjsp command:

1. Static output is written to a resource schema object instead of to the page

implementation class schema object.

2. A main () method and a hotloading method are implemented in the generated

page implementation class to allow hotloading.

3. The main () method is executed to perform hotloading.

4. To use -hotload, you must have permission for the JServer hotloader. This can

be granted as follows (from SQL*Plus, for the SCOTT schema, for example):

dbms_java.grant_permission(’SCOTT’,
’SYS:oracle.aurora.security.JServerPermission’, ’HotLoader’, null);

The following example publishes the Foo.jsp into the default servlet context path

of "/" and the default servlet path of "dir1/Foo.jsp ".

publishjsp -schema SCOTT dir1/Foo.jsp

After this command, Foo.jsp can be invoked as follows:

http:// host [: port]/dir1/Foo.jsp

Access it dynamically from another JSP page in the application, suppose a page

published as dir1/Bar.jsp , as follows (using page-relative syntax and then

application-relative syntax):

<jsp:include page="Foo.jsp" flush="true" />

unpublishjsp
Removes a JavaServer Page from the JNDI namespace. This does not remove the

page implementation class schema object from the database. You do not need to

specify a servlet name unless you specified one when you ran publishjsp .

-implement
<interface>

Specify a Java interface that the generated page implementation
class implements.

Table 1–45 publishjsp Command Options (Cont.)

Option Description
1-74 Java Tools Reference

Session Namespace Tools
Generally, the only required input is the servlet path, which is also known as the

"virtual path".

Syntax

unpublishjsp [options] <servlet_path>
[-servlet <servlet_name>]
[-context <context>]
[-showVersion]
[-usage]
[-verbose]

Argument Summary

Table 1–46 summarizes the unpublishjsp command-line arguments:

The following example unpublishes the page that was published in the

publishjsp section:

unpublishjsp dir1/Foo.jsp

Export Commands
Exports the structure of a web domain and its configuration file for the mod8i

proxy.

The export utility works in two stages:

Table 1–46 unpublishjsp Command Options

Option Description

<servlet_path> Specify the servlet path for the JSP page.

-servlet
<servlet_name>

Specify the servlet name for the JSP page. By default, the servlet
name is the base name of the .jsp file along with any path you
specified.

-context
<context>

Specify a servlet context in the Oracle Servlet Engine. The OSE
default context path is "/".

-showVersion Display the OracleJSP version number

-usage Display a option list

-verbose Report the translation steps as it executes
Tools 1-75

Session Namespace Tools
1. Generates, in XML format, the structure of a webdomain or contexts within a

domain.

2. Optionally, apply transformations to the XML to produce configuration files

specific to a the mod8i proxy.

exportwebdomain
This command creates the configuration files required for Apache's mod8i and for

others. The default output is in an XML format.

Syntax

exportwebdomain [options] <domain_name>
[-context <context>]
[-netservice <name>]
[-format <fmt>]
[-nodefault]
[-nodocs]

Argument Summary

Table 1–47 summarizes the exportwebdomain command-line arguments:

Table 1–47 exportwebdomain Command Options

Option Description

<domain_name> The name of the web domain that you want converted.

-context <context> The name of the context to support. If not specified, all
contexts within the domain are exported.

-netservice <name> The name of the service defined in the Net8 initialization file
(tnsnames.ora file).

-format <fmt> The XSLT transformation defined in <fmt>.xml is used in
the transformation of the domain. Use -format apache for
mod_OSE configuration. Use -format iis for Microsoft
Internet Service configuation. The <fmt>.xm l files must be
loaded as resources in the server under
"oracle/aurora/mts/http/admin/formats ".

-nodefault Do not map the default context, unless indicated by the
-context option.

-nodocs Do not forward URLs mapped into doc_root to the Servlet
engine. This assumes that such static pages will be served
directly by the external webserver.
1-76 Java Tools Reference

Session Namespace Tools
The following example exports the configuration that exists within the

/webdomain domain to the "/tmp/ApacheConfig " file. The format is defined in

the Apache.xml file and the Net8 connect string service name is

apache_connect .

exportwebdomain -format Apache -netservice apache_connect \
/webdomain & > /tmp/ApacheConfig

Security Management
In HTTP Security, access to a protected resource is composed of two parts,

authentication and authorization. Authentication validates submitted credentials,

which establishes that a user is known and validated by the system. Authorization

determines whether an authorized user is allowed to perform the requested action.

There are four stages involved in establishing these security measures:

1. Declare the known principals of a service

2. Declare resources as being protected, and how they are to be protected

3. Declare the permissions of principals within the servlet context

4. Declare a security servlet for a servlet context

Without any one of these steps, security will either be non-existant or it will not

allow any access to protected resources. These steps ensure that enough information

has been declared, so that HTTP Security can successfully protect web resources.

Declaring Principals
Principal declarations are held in a "realm". A realm is made up of users and

groups. The more generic term for either a user or a group is principal. When either

entity can be used in a situation, the term principal should be used. Realm

definitions exist within the scope of a web service. That is, all servlet contexts

within a web service can use the same pools of principals for security.

■ Principals have names by which they are identified within the system.

Typically, this identification takes the form of a passphrase, but it is not always

limited to this construct. Principals will have permissions declared for them,

and may inherit any permissions that exist for groups of which they may be a

member.

■ Users have all of the same properties as principals
Tools 1-77

Session Namespace Tools
■ Groups have all of the same properties as principals, as well as the property

that other principals can be declared as being a member of a group. Thus, they

inherit any permissions that exist for that group.

■ Realms define sets of principals. There may be multiple realms within a single

web service. The realm and its implementation are core to all of HTTP Security.

A realm is the source of the following:

* the valid set of principals

* the types of principals that are handed to the server

Since the realm is the source of all principals, it plays a key role in what types of

credentials are to be used to identify principals, aiding the principals in

managing the credentials themselves or can defer to whatever entity that does

have them, and establishing the relationships among all principals within it.

By default, there are three implementations of realms for HTTP Security. They are

identified by their types:

■ JNDI—Stores all information in JNDI entries in the namespace

■ DBUSER—Defers to local user and role definitions within the database itself

■ RDBMS—Stores all principals and their relationships in database tables

These type names are shortcuts to use when declaring which realm class name to

use in the JNDI entry that will be used to instantiate the realm.

Predefined Realms
The DBUSER realm derives all principal definitions from the users and roles

defined within the database itself. No principal management is allowed through

any of the security commands for this type of realm. The database, not the security

tools, manages principal creation, deletion, and role membership. Since all instances

of DBUSER realms utilize the same source for principal definition, all instances will

essentially be equivalent. When referring to principals with a DBUSER realm, no

case translations are performed. When the database entity was created, unless the

case was explicitly expressed, the name will be all uppercase. For example SYS and

PUBLIC must always be referred to in all uppercase. If a user were created, as

follows, the username would exactly be ’joe ’.

create user "joe" identified by welcome;

This is especially important when it comes to supplying usernames and passwords

from the browser.
1-78 Java Tools Reference

Session Namespace Tools
Realm Management Overview
To create a RDBMS realm:

realm publish -w /myService -add testRealm -type RDBMS

To remove a realm:

realm publish -w /myService -remove testRealm

To publish a custom realm:

realm publish -w /myService -add testRealm -classname foo.bar.MyRealm

Managing Principals Overview
Not all realms support the editing of principals. For example, DBUSER type realms

do not support any principal manipulation.

To create a user:

realm user -w /myService -realm testRealm1 -add user1 -p upswd1

To create a group:

realm group -w /myService -realm testRealm1 -add group1 -p gpswd1

To delete a user:

realm user -w /myService -realm testRealm1 -remove user1

To delete a group:

Note: For JNDI and DBUSER, use those titles as the type

argument.

Note: It is by design of the system and its use of JNDI that realm

declarations reside in the JNDI namespace. Deploying customized

realms requires customizing the namespace entry.

Note: In either of the above commands, if the password is left

blank, the principal name is used instead.
Tools 1-79

Session Namespace Tools
realm group -w /myService -realm testRealm1 -remove group1

To list users of a realm:

realm user -w /myService -realm testRealm1

To list groups of a realm:

realm group -w /myService -realm testRealm1

To add a principal to a group:

realm parent -w /myService -realm testRealm -group group1 -add user1

To remove a principal from a group:

realm parent -w /myService -realm testRealm -group group1 -remove user1

To list principals within a group:

realm parent -w /myService -realm testRealm -group group1

To query which groups a principal is member:

realm parent -w /myService -realm testRealm -q user1

Resource Protection Overview
In Aurora HTTP Security, resource protection is local to the servlet context. To

declare a resource as protected, two pieces of information must be supplied. That

information is embodied in a protection scheme. A scheme is of the form:

<authType>:<realmName>

Currently, there are only two valid authentication types, although these can be

extended through JNDI namespace entries:

■ Basic—typical base64 encoding, which is not secure

■ Digest—both parties keep the password to themselves and pass highly

encrypted codes, which are salted with situation specific values, such as

timestamp, URL being requested, a secret key, and IP of the requester.

Note: All realms do not support querying the principal group

members.
1-80 Java Tools Reference

Session Namespace Tools
You can declare resources to not be protected, which is useful when the servlet

context root is to be protected. The problem is that when the root is protected, so are

the error pages since they are part of the tree. In order to prompt for authentication,

an error page is handed out. If that error page is protected, cycles develop and the

desired behavior is not observed. Instead, explicitly declare the error pages as

unprotected by using a protection scheme of <NONE>.

The path that describes what should be protected is local to the servlet context.

Internally, that path is "normalized" to enable stable, predictable patterns for

matching. This may cause the internal representation to differ from the original path

used to create the protection scheme. HTTP Security uses the longest, most exact

match possible when trying to apply the protection rules.

Protecting paths to resources with protection schemes:

realm map -s /myService/contexts/myContext -a /doc/index.html \
-scheme basic:testRealm1

realm map -s /myService/contexts/myContext -a /doc -scheme basic:testRealm2
realm map -s /myService/contexts/myContext -a /doc/* -scheme basic:testRealm3

With the above declarations, here is how paths would be matched to realms:

/doc/index.html -> testRealm1
/doc -> testRealm2
/doc/ -> testRealm2
/doc/index -> testRealm3
/doc/foo -> testRealm3

To remove the protection of a path:

realm map -s /myService/contexts/myContext -r /doc/index.html

To list all protected paths within a servlet context:

realm map -s /myService/contexts/myContext

To explicitly declare a path not to be protected:

realm map -s /myService/contexts/myContext -a /system/* -scheme <NONE>

Note: Form based and SSL are currently not supported, though

they may appear in a later update and can be plugged in through

namespace entries.
Tools 1-81

Session Namespace Tools
To list all protected paths within a servlet context:

realm map -s /myService/contexts/myContext

Declaring Permissions
Permissions are the most involved of all HTTP Security declarations. They tie web

service scoped entities with servlet context scoped entities and they reside in the

servlet context.

A permission declaration consists of several pieces:

■ web service root

■ realm within specified web service

■ servlet context within specified web service

■ principal within specified realm

■ path to which the permission is to apply

■ whether or not the permission being granted or denied

■ HTTP actions being assigned

Given all of the pieces that are being tied into one permission declaration, it is easy

to see why these are the most complicated declarations. HTTP Security permissions

concern only those HTTP actions that are valid for HTTP requests, as follows:

■ GET

■ POST

■ PUT

■ DELETE

■ HEAD

■ TRACE

■ OPTIONS

To declare a granted permission on /foo/index.html for user1 for GET and POST:

realm perm -w /myService -realm testRealm1 -s /myService/contexts/myContext \
-n user1 -u /foo/index.html + get,post

To declare a denied permission on /foo/* for user1 for PUT and DELETE:

realm perm -w /myService -realm testRealm1 -s /myService/contexts/myContext \
1-82 Java Tools Reference

Session Namespace Tools
-n user1 -u /foo/* - put,delete

To remove granted permissions on /foo/index.html for user1 :

realm perm -w /myService -realm testRealm1 -s /myService/contexts/myContext \
-n user1 -u /foo/index.html +

To list all permissions for a user:

realm perm -w /myService -realm testRealm1 -s /myService/contexts/myContext \
-n user1

Declaring A Security Servlet
All HTTP Security is declared through JNDI namespace entries. This is also true for

the servlet that does the enforcing of security. In the servlet context, if there is a

PrivilegedServlet named httpSecurity , that servlet is added as the first

pre-filter for all requests within that servlet context.

As with all JNDI namespace entries so far in HTTP Security, if customization is

desired, the namespace entry can specify any custom servlet, if it implements the

PrivilegedServlet interface. If this servlet is customized, it can handle security

any way it chooses, since its main responsibility is to do one of the following for

(HttpRequest.PrivilegedAccess, HttpRequest, HttpResponse):

■ Raise an AccessControlException during its service if there is any security

violation

■ Allow the the request

Once authentication and authorization have taken place, it is also the responsibility

of the servlet to set specific authenticated principal values on the request itself. This

is the user information that can be retrieved from the request by any executing

servlet.

To create a security servlet:

realm secure -s /myService/contexts/myContext

Removing the security servlet removes all security enforcement in a servlet context.

If the entry is missing, the webserver continues execution with no security

enforcement.

To remove a security servlet:

rm /myService/contexts/myContext/httpSecurity
Tools 1-83

Session Namespace Tools
realm
The realm command suite, listed below, manages all realm constituents.

list
Lists the realms declared for the given web service.

The syntax is as follows:

realm list -w <webServiceRoot>

where the <webServiceRoot > is the web service to list.

realm list -w /webservice

echo
Can be used to suppress the results of subsequent realm commands.

The syntax is as follows:

realm echo [0 | 1]

■ 0: Do not print any results of subsequent operations

■ 1: Print results of subsequent operations. This is the default.

realm echo 0

secure
Used to setup the default security servlet for a given servlet context.

The syntax is as follows:

realm secure -s <servletContextPath>

where servletContextPath is the servlet context to operate upon.

Note: The servlet is not published in namedServlets , but within

the servletContext itself.

■ list ■ echo ■ secure

■ map ■ publish ■ user

■ group ■ parent ■ perm
1-84 Java Tools Reference

Session Namespace Tools
map
Used to map paths local to the given servlet context to protection schemes. This is

what declares a resource to be protected.

The syntax is as follows:

realm map -s servletContextPath [-(a[dd]|r[emove]) <path> -scheme auth:realm]

publish
User to publish and remove various types of realms within a given web service. If

the realm already exists, information about that pre-existing realm is output.

The syntax is as follows:

realm publish -w <webserviceRoot> [-(a[dd]|r[emove]) <realmName>
[-type <realmType>]]

Table 1–48 map Option Description

Option Description

-s servletContextPath The servlet context to operate upon. If nothing else is
supplied, this will list all URL-Scheme mappings for the
given servlet context.

-add | -a <path> The path for which a mapping will be added, or edited if
the mapping already exists.

-remove | -r <path> The path for which a mapping will be removed.

-scheme auth:realm The protection scheme to use for the given mapping.

Table 1–49 publish Option Summary

Option Description

-w <webserviceRoot> The web service to operate upon.

-add | -a <realmName> The name to use for creating the realm within the web
service.

-remove | -r <realmName> The name of the realm to remove from the web service.

-type <realmType> Specifies the type of realm to publish. One of RDBMS,
DBUSER, JNDI. If not specified, the default value is
RDBMS.
Tools 1-85

Session Namespace Tools
user
Used to query what users exist within a realm, add users to a realm, remove users

from a realm, edit the passwords of existing users.

The syntax is as follows:

realm user -w <webserviceRoot> -realm <realmName>
[-(a[dd]|r[emove]) <userName> [-p <user> <password>]]

group
Used to query what groups exist within a realm, add groups to a realm, remove

groups from a realm, edit the passwords of existing groups.

The syntax is as follows:

realm group -w <webserviceRoot> -realm <realmName>
[-(a[dd]|r[emove]) <groupName> [-p <group> <password>]]

Table 1–50 user Option Summary

Option Description

-w <webserviceRoot> The web service to operate upon.

-realm <realmName> The name of the realm to operate upon. If no other
arguments are supplied, the names of all users within the
given realm are output.

-add | -a <userName> The name of the user to create within the realm.

-remove | -r <userName> The name of the user to remove from the realm.

-p <password> The password to be associated with the user. If not
supplied, the user name is used instead. If the user
already exists, the user’s password is reset to this value.

Table 1–51 group Option Summary

Option Description

-w <webserviceRoot> The web service to operate upon.

-realm <realmName> The name of the realm to operate upon. If no other
arguments are supplied, the names of all users within the
given realm are output.

-add | -a <groupName> The name of the group to create within the realm.

-remove | -r <groupName> The name of the group to remove from the realm.
1-86 Java Tools Reference

Session Namespace Tools
parent
Used to query and manage principal-group relationships.

The syntax is as follows:

realm parent -w webserviceRoot -realm realmName [-g[roup] groupName
[-(a[dd]|r[emove]) principalName]] [-q[uery] principalName

perm
Used to query and manage permissions for principals.

The syntax is as follows:

realm perm -w webserviceRoot -realm realmName -s servletContextPath
-n[ame] principalName [-p[ath] path (+|-) permList]

-p <password> The password to be associated with the group. If not
supplied, the group name is used instead. If the group
already exists, the group’s password is reset to this
value.

Table 1–52 parent Option Summary

Option Description

-w webserviceRoot The web service to operate upon.

-realm realmName The name of the realm to operate upon.

-group groupName The group to operate upon. If no other arguments are
supplied, all members of this group are output, if the
given realm supports such an action.

-add principalName The name of the principal to add to this group. Some
realms may not support this action or may disallow this
operation if it detects a circularity in the group-principal
membership chain.

-remove principalName The name of the principal to remove from the group.
Some realms may not support this action.

-query principalName Print the names of all groups that have this principal as a
member. Some realms may not support this action.

Table 1–51 group Option Summary

Option Description
Tools 1-87

Session Namespace Tools
Table 1–53 perm Option Summary

Option Description

-w webserviceRoot The web service to operate upon.

-realm realmName The name of the realm to operate upon.

-s servletContextPath The servlet context to operate upon.

-name principalName The name of the principal for which permission
operations will be performed. If no other arguments are
supplied, then print out all permissions for this
principal.

-path path The path to be used when applying the permission.

+ permList The list of HTTP actions to grant to the user. If permList
is not given, then clear all granted permissions for the
user.

This is not an additive operation, any existing granted
permissions for the user are completely over-written by
the new list.

- permList The list of HTTP actions to deny to the user. If permList
is not given, then clear all denied permissions for the
user.

This is not an additive operation, any existing denied
permissions for the user are completely over-written by
the new list.

Note: The permList is a comma separated list of HTTP actions

with no spaces. For Example: get,post,trace
1-88 Java Tools Reference

Enterprise JavaBean Tools
Enterprise JavaBean Tools
Instead of loadjava and publish , Enterprise JavaBean developers use the

deployejb tool, which performs equivalent operations, as well as generating and

compiling infrastructure code for the EJB. The ejbdescriptor tool is a utility for

translating between the text and serialized object forms of EJB deployment

descriptors.

deployejb
From a deployment descriptor and a JAR containing interfaces and classes, the

deployejb tool makes an EJB implementation ready for test or production clients

to invoke. deployejb converts the text descriptor to a serialized object, generates

and compiles classes that effect client-bean communication, loads compiled classes

into the database, and publishes the bean’s home interface name in the session

namespace so clients can look it up with JNDI. The BeanHomeName must refer to a

PublishingContext for which the deployejb invoker has the write right; see

"publish" on page 1-21 for the rights required to publish.

Before deploying, verify that you add the appropriate JDK JAR, library, and binary

information in the following environment variables:

To specify a different encoding for multibyte support, modify the encoding element

in the XML deployment descriptor heading. The deployejb tool recognizes the

proper encoding from the header.

Environment Variable Addition Required

JAVA_HOME Set to the location where the JDK is installed.

CLASSPATH Include the appropriate JDK JAR file in your

CLASSPATH, as follows:

■ For JDK 1.1, include

$JAVA_HOME/lib/classes.zip

■ For JDK 1.2, include the JDK’s tools.jar and

dt.jar file

Also, include the remote and home interface files and the

JAR generated by deployejb .

PATH Add the JDK binary path: $JAVA_HOME/bin

LD_LIBRARY_PATH Add the JDK library path: $JAVA_HOME/lib
Tools 1-89

Enterprise JavaBean Tools
Syntax
deployejb {-user | -u} <username> {-password | -p} <password>
 {-service | -s} <serviceURL> -descriptor <file> -temp <work_dir> <beanjar>
 [-addclasspath <dirlist>]
 [-beanonly]
 [-credsFile <credentials>]
 [-describe | -d]
 [-generated <clientjar>]
 [-help | -h]
 [-iiop]
 [-keep]
 [-oracledescriptor <file>]
 [-republish]
 [-resolver "resolver_spec"]
 [-role <role>]
 [-ssl]
 [-useServiceName]
 [-verbose]
 [-version | -v]

Argument Summary
Table 1–54 summarizes the deployejb arguments.

Note: Any value provided within the argument options is case

insensitive. All values are uppercased.

Table 1–54 deployejb Argument Summary

Argument Description and Values

-user Specifies the schema into which the EJB classes will be loaded.

-password Specifies the password for <username> .

-service URL identifying database in whose session namespace the EJB is
to be published. The serviceURL has the form:

sess_iiop://< host>:<lport>:<sid>

<host> is the computer that hosts the target database; <lport>
is the listener port configured to listen for session IIOP; <sid> is
the database instance identifier. Example:

sess_iiop://localhost:2481:orcl

which matches the default installation on the invoker’s machine.
1-90 Java Tools Reference

Enterprise JavaBean Tools
-credsFile Supply a text file with credentials instead of a username and
password for the connect. You create this file by exporting a wallet
into a text version.

-descriptor Specifies the text file containing the EJB deployment descriptor.

-temp Specifies a temporary directory to hold intermediate files
deployejb creates. Unless you specify -keep , deployejb
removes the files and the directory when it completes.

<beanjar> Specifies the name of the JAR containing the bean interface and
implementation files.

-addclasspath Specifies directories containing interface and/or implementation
dependency classes not contained in <beanjar> . Format of
<dirlist> is the same as javac ’s CLASSPATH argument.
Required for -beanonly .

-beanonly Skips generation of interface files. Basically, this option enables
you to reload the bean implementation if none of the interfaces
have changed.

-describe Summarizes the tool’s operation.

-generated Specifies the name of the output (generated) JAR file, which
contains communication files bean clients need. If you do not
specify, the output JAR file has the name of the input JAR file with
_generated appended.

-help Summarizes the tool’s syntax.

-iiop Connects to the target database with IIOP instead of the default
session IIOP. Use this option when deploying to a database server
that has been configured without session IIOP.

-keep Do not remove the temporary files generated by the tool. This
option may be useful for debugging because it provides access to
the source files deployejb generates.

-oracledescriptor Specifies the text file containing the Oracle-specific deployment
descriptor.

-republish Replaces the published BeanHomeName attributes if the
BeanHomeName has already been published, otherwise publishes
it.

Table 1–54 deployejb Argument Summary (Cont.)

Argument Description and Values
Tools 1-91

Enterprise JavaBean Tools
Argument Details

addclasspath
deployejb needs the classes the home and remote interfaces depend on and the

classes the bean implementation depends on. These dependency classes can either

be included in the <beanjar> file or directories containing them or can be

specified in the -addclasspath argument. The first approach is less prone to

error, the second can substantially reduce deployejb ’s run time. If you use

-addclasspath , then you must ensure that the classes have been loaded before

you run a client that activates the EJB.

Here is a deployejb example.

Basic invocation specifying the name of the generated client JAR file:

deployejb -user SCOTT -password TIGER -service sess_iiop://dbserver:2481:orcl \
 -descriptor myBeanDescriptor.xml -temp /tmp/ejb \
 -generated myBeanClient.jar myBean.jar

ejbdescriptor
Each EJB implementation includes a serialized Java object known as a deployment

descriptor. The values in a deployment descriptor are not readable by people, yet

people must create them and might sometimes have to read them. The

ejbdescriptor tool transforms a serialized deployment descriptor to text and

-resolver Specifies an explicit resolver spec, which is bound to the newly
loaded classes. If -resolver is not specified, the default resolver
spec, which includes current user’s schema and PUBLIC, is used.
For more information, see the discussion on -resolve and -resolver
in "loadjava" on page 1-7.

-role Specifies role to assume when connecting to the database; no
default.

-ssl Connects to the database with SSL authentication and encryption.

-useServiceName If you are using a service name instead of an SID in the URL, you
must specify this flag. Otherwise, the tool assumes the last string
in the URL is the SID.

-verbose Emits detailed status information while running.

-version Shows the tool’s version.

Table 1–54 deployejb Argument Summary (Cont.)

Argument Description and Values
1-92 Java Tools Reference

Enterprise JavaBean Tools
converse. Developers are most likely to use ejbdescriptor to extract the

deployment descriptor data from an EJB developed for a non-Oracle environment.

The deployejb tool calls ejbdescriptor to build a deployment descriptor from

the text file you specify in the -descriptor argument.

Syntax
ejbdescriptor [-options] <infile> <outfile>
 [-parse]
 [-parsexml]
 [-dump
 [-dumpxml]
 [-encoding]

Argument Summary
Table 1–55 describes the ejbdescriptor arguments.

Table 1–55 ejbdescriptor Argument Summary

Option Description

-parse Creates serialized deployment descriptor <outfile> from a
Release 8.1.6 and previous .ejb text deployment descriptor
specified in <infile> .

-parsexml Creates the Release 8.1.6 .ejb text deployment descriptor
<outfile> from and XML deployment descriptor specified in
<infile> .

-dump Creates a Release 8.1.6 .ejb deployment descriptor text file
<outfile> from serialized deployment descriptor <infile> .

-dumpxml Creates the Release 8.1.7 XML deployment descriptor file
<outfile> from a Release 8.1.6 text deployment descriptor
<infile> .

-encoding Identifies the source file encoding for the compiler, overriding
the matching value, if any, in the JAVA$OPTIONS table. Values
are the same as for the javac -encoding option. If you do
not specify an encoding on the command line or in a
JAVA$OPTIONS table, the encoding is assumed to be latin1 .
The -encoding option is relevant only when loading a source
file.

infile Name of the file to parse or read. The default is standard in.

The conventional suffix for a deployment descriptor file is .ejb
or .xml; for a serialized descriptor it is .ser.
Tools 1-93

VisiBroker™ for Java Tools
Here are examples of the ejbdescriptor tool.

Create a Release 8.1.7 XML deployment descriptor from a Release 8.1.6 .ejb
deployment descriptor:

ejbdescriptor -dumpxml beandescriptor.ejb beandescriptor.xml

Create a Release 8.1.6 deployment descriptor from an XML deployment descriptor:

ejbdescriptor -parsexml beandescriptor.xml beandescriptor.ser

Create a text file representation of a Release 8.1.6 deployment descriptor:

ejbdescriptor -dump beandescriptor.ser beandescriptor.ejb

Create a serialized deployment descriptor from a Release 8.1.6 deployment

descriptor file:

ejbdescriptor -parse beandescriptor.ejb beandescriptor.ser

Display the contents of a Release 8.1.6 deployment descriptor:

ejbdescriptor -dump beandescriptor.ser

VisiBroker™ for Java Tools
JServer incorporates the Inprise (Visigenic) Caffeine tools that allow you to code

object interfaces directly in Java and generate the infrastructure necessary to

support distributed object invocation. These tools include:

■ java2rmi_iiop generates the infrastructure EJB requires to call other remote

objects. java2rmi_iiop is an extension of the Inprise java2iiop tool.

■ java2idl compiles Java interfaces to IDL code, for cases where IDL is

required.

The idl2java , java2idl , and java2iiop tools developed by Inprise for their

VisiBroker for Java product (release 3.4) are distributed with Oracle8i. The Oracle8i
JServer CD contains the documentation for these tools; the documentation can also

outfile Name of file to dump or write. The default is standard out. The
conventional suffix for a deployment descriptor file is .ejb or
.xml; for a serialized descriptor it is .ser.

Table 1–55 ejbdescriptor Argument Summary (Cont.)

Option Description
1-94 Java Tools Reference

VisiBroker™ for Java Tools
be viewed or downloaded from http://www.inprise.com . Because the Oracle8i
run-time environment differs somewhat from the VisiBroker environment, some

VisiBroker tool options might not work in Oracle8i JServer as they are described in

the VisiBroker documentation.
Tools 1-95

Native Compilation Tools
Native Compilation Tools
The Java language was designed for a platform-independent, secure development

model. To accomplish these goals, some execution performance was sacrificed.

Translating Java bytecodes into machine instructions degrades performance. To

regain some of the performance loss, you may choose to natively compile certain

classes. For example, you may decide to natively compile code with CPU intensive

classes.

Without native compilation, the Java code you load to the server is interpreted and

the underlying core classes upon which your code relies (java.lang.*) are

natively compiled.

Native compilation provides a speed increase ranging from two to ten times the

speed of the bytecode interpretation. The exact speed increase is dependent on

several factors, including:

■ use of numerics

■ degree of polymorphic message sends

■ use of direct field access, as opposed to accessor methods

■ amount of Array accessing

■ casts

Because Java bytecodes were designed to be compact, natively compiled code can

be considerably larger than the original bytecode. However, because the native code

is stored in a shared library, it is shared among all users of the database.

Most JVMs use Just-In-Time compilers that convert the Java bytecodes to native

machine instructions when methods are invoked. The JServer Accelerator uses an

Ahead-Of-Time approach to recompiling the Java classes.

Native Compiler Description

Just-In-Time Provides the JVM the ability to translate the Java

instructions just before needed by the JDK. The benefits

depends on how accurately the native compiler

anticipates code branches and the next instruction. If

incorrect, no performance gain is realized.
1-96 Java Tools Reference

Native Compilation Tools
This static compilation approach provides a large, consistent performance gain,

regardless of the number of users or the code paths they traverse on the server.

After compilation, the tool loads the statically compiled libraries into JServer, which

are then shared between users, processes, and sessions.

JServer Accelerator Overview
Most Ahead-Of-Time native compilers compile directly into a platform-dependent

language. For portability requirements, this was not feasible. As shown in

Figure 1–1, the JServer Accelerator translates the Java classes into a version of C that

is platform-independent. This C code is compiled and linked to supply the final

platform-dependent, natively compiled shared libraries or DLLs.

Ahead-Of-Time The Jserver Accelerator natively compiles all Java code

within a JAR file into native shared libraries, which are

organized by Java package, before execution time. At

runtime, JServer Accelerator checks if a Java package has

been natively compiled; and if so, uses the machine code

library instead of interpreting the deployed Java code.

Native Compiler Description
Tools 1-97

Native Compilation Tools
Figure 1–1 Native Compilation using JServer Accelerator

Given a JAR file, the JServer Accelerator performs the following:

1. The classes, loaded in the database, are verified.

2. The Java bytecodes for these classes are retrieved from the database and stored

in a project directory where the JServer Accelerator was invoked.

3. The Java bytecodes are translated to C.

4. The C code is compiled and linked with the C compiler for your platform.

JServer Accelerator translates, compiles, and links the retrieved classes on the

client. For this reason, you must natively compile on the intended platform

environment that this application will be deployed to. The result is a single

deployment JAR file for all classes within the project.

5. The resulting shared library is loaded into the

$ORACLE_HOME/javavm/admin directory.

JServer Accelerator

Platform Independent
 C Code

Platform Dependent
C Runtime Libraries

JAVA CLASS FILES

Translate Java
Class files into C

Platform Dependent
 Shared Libraries
 (or DLLs)Compile and

Link C Code
1-98 Java Tools Reference

Native Compilation Tools
JServer Core Java Class Libraries
All core Java class libraries and Oracle-provided Java code within JServer is natively

compiled for greater execution speed. Java classes exist as shared libraries in

$ORACLE_HOME/javavm/admin , where each shared library corresponds to a Java

package. For example, orajox8java_lang.so on Solaris and

orajox8java_lang.dll on Windows NT hold java.lang classes. Specifics of

packaging and naming can vary by platform. The Aurora JVM uses natively

compiled Java files internally and opens them, as necessary, at runtime.

Natively Compiling Java Application Class Libraries
The JServer Accelerator can be used by Java application products that need an

performance increase and are deployed on JServer. The JServer Accelerator

command-line tool, ncomp, natively compiles your code and loads it in JServer.

However, in order to use ncomp, you must first provide some initial setup.

Installation Requirements
You must install the following before invoking JServer Accelerator:

1. Install a C compiler for the intended platform on the machine you are running

ncomp.

2. Verify that the correct compiler and linker commands are referenced within the

System*.properties file located in the $ORACLE_HOME/javavm/jahome
directory. Since the compiler and linker information is platform-specific, the

configuration for these items is detailed in the README for your platform.

3. Add the appropriate JDK JAR files, library, and binary information in the

following environment variables:

Note: The JServer Accelerator natively compiled libraries can only

be used within JServer. Also, these libraries can only be used within

the same version of JServer that it was produced in. If you want

your application to be natively compiled on subsequent releases,

you must recompile these classes. That is, native recompilation of

existing libraries will not be performed automatically by any

upgrade process.
Tools 1-99

Native Compilation Tools
4. Grant the user that executes ncomp the following role and security permissions:

a. JAVA_DEPLOY: The user must be assigned to the JAVA_DEPLOY role in

order to be able to deploy the shared libraries on the server, which both the

ncomp and deploync utilities perform. For example, the role is assigned to

DAVE, as follows:

SQL> GRANT JAVA_DEPLOY TO DAVE;

b. FilePermission : JServer Accelerator stores the shared libraries with the

natively compiled code on the server. In order for JServer Accelerator to

store these libraries, the user must be granted FilePermission for read

and write access to directories and files under $ORACLE_HOME on the

server. One method for granting FilePermission for all desired

directories is to grant the user the JAVASYSPRIV role, as follows:

SQL> GRANT JAVASYSPRIV TO DAVE;

See the Security chapter in the Oracle8i Java Developer’s Guide for more

information JAVASYSPRIV and granting FilePermission .

ncomp
JServer Accelerator, implemented within the ncomp tool, natively compiles all

classes within the specified JAR, ZIP, or list of classes. JServer Accelerator natively

Environment Variables Addition Required

JAVA_HOME Set to the location where your JDK is installed.

CLASSPATH Include the appropriate JDK JAR files in your CLASSPATH as
follows:

■ For JDK 1.1, include $JAVA_HOME/lib/classes.zip .

■ For JDK 1.2, include the $JAVA_HOME/lib/tools.jar
and $JAVA_HOME/lib/dt.jar files.

PATH Add the JDK binary path: $JAVA_HOME/bin

LD_LIBRARY_PATH Add the JDK library path: $JAVA_HOME/lib .

Note: DBA role contains both the JAVA_DEPLOY role and the

FilePermission for all files under $ORACLE_HOME.
1-100 Java Tools Reference

Native Compilation Tools
compiles these classes and places them into shared libraries according to their

package. Note that these classes must first be loaded into the database.

 If the classes are designated within a JAR file and have already been loaded in the

database, you can natively compile your Java classes by executing the following:

ncomp -user SCOTT/TIGER myClasses.jar

There are options that allow you control over how the details of native compilation

are handled.

Syntax
ncomp [options] < class_designation_file >
 -user | -u <username>/<password> [@<database_url>]
 [-load]
 [-projectDir | -d < project_directory >]
 [-force]
 [-lightweightDeployment]
 [-noDeploy]
 [-outputJarFile | -o < jar_filename >]
 [-thin]
 [-oci8]
 [-update]
 [-verbose]

Argument Summary
Table 1–56 summarizes the ncomp arguments. The <class_designation_file>
can be a <file>.jar , <file>.zip , or <file>.classes .

Note: Because native compilation must compile and link all of

your Java classes, this process may execute over the span of a few

minutes or a few hours. The time involved depends on the number

of classes to compile and the type of hardware on your machine.

Note: These options are demonstrated within the Scenarios

described in "Native Compilation Usage Scenarios" on page 1-105.
Tools 1-101

Native Compilation Tools
Table 1–56 ncomp Argument Summary

Argument Description and Values

<file>.jar The full pathname and filename of a JAR file that contains
the classes that are to be natively compiled. If you are
executing in the directory where the JAR file exists and you
do not specify the -projectDir option, you may give only the
name of the JAR file.

<file>.zip The full pathname and filename of a ZIP file that contains
the classes that are to be natively compiled. If you are
executing in the directory where the ZIP file exists and you
do not specify the -projectDir option, you may give only the
name of the ZIP file.

<file>.classes The full pathname and filename of a classes file, which
contains the list of classes to be natively compiled. If you are
executing in the directory where the classes file exists and
you do not specify the -projectDir option, you may give only
the name of the classes file. See "Natively Compiling Specific
Classes" on page 1-107 for a description of a classes file.

-user | -u
<username>/<password>
[@<database>]

Specifies a user, password, and database connect string; the
files will be loaded into this database instance. The argument
has the form <username >/< password >[@<database >] .
If you specify the database URL on this option, you must
specify it with OCI8 syntax. To provide a JDBC Thin
database URL, use the -thin option.

-force The native compilation is performed on all classes.
Previously compiled classes are not passed over.

-lightweightDeployment Provides an option for deploying shared libraries and native
compilation information separately. This is useful if you
need to preserve resources when deploying. See
"lightweightDeployment" on page 1-104 for more
information.

-load Executes loadjava on the specified class designation file. You
cannot use this option in combination with a <file>.classes
file.

-outputJarFile
<jar_filename>

All natively compiled classes output into a deployment JAR
file. This option specifies the name of the deployment JAR
file and its destination directory. If omitted, the ncomp tool
names the output deployment JAR file the same name as the
input <file> with "_depl.jar" appended as the suffix. If
directory is not supplied, it stores the output JAR file into the
project directory (denoted by -projectDir).
1-102 Java Tools Reference

Native Compilation Tools
Argument Details

user
{-user | -u} <user>/<password>[@<database>]
The permissible forms of @<database> depend on whether you specify -oci8 or

-thin ; -oci8 is the default.

■ -oci8 : @<database> is optional; if you do not specify, then ncomp uses the

user’s default database. If specified, then <database> can be a TNS name or a

Net8 name-value list.

■ -thin : @<database> is required. The format is <host>:<lport>:<SID> .

– <host> is the name of the machine running the database.

– <lport> is the listener port that has been configured to listen for Net8

connections; in a default installation, it is 5521.

-noDeploy Specifies that the native compilation results only in the
output deployment JAR file, which is not deployed to the
server. The resulting deployment JAR can be deployed to
any server using the deploync tool.

-thin The database URL that is provided on the -user option uses a
JDBC Thin URL address for the database URL syntax.

-oci8 The database URL that is provided on the -user option uses
an OCI8 URL address for the database URL syntax.
However, if neither -oci8 or -thin are specified, the default
assumes that you used an OCI8 database URL.

-projectDir | -d
<absolute_path>

Specifies the full path for the project directory. If not
specified, JServer Accelerator uses the directory that ncomp
is invoked from as the project directory. This directory must
exist; the tool will not create this directory for you. If it does
not exist, the current directory is used.

-update If you add more classes to a <class_designation_file> that has
already been natively compiled, this flag informs JServer
Accelerator to update the deployment JAR file with the new
classes. Thus, JServer Accelerator compiles the new classes
and adds them to the appropriate shared libraries. The
deployment JAR file is updated.

-verbose Output native compilation text with detail.

Table 1–56 ncomp Argument Summary

Argument Description and Values
Tools 1-103

Native Compilation Tools
– <SID> is the database instance identifier; in a default installation, it

is ORCL.

lightweightDeployment
JServer Accelerator places compilation information and the compiled shared

libraries in one JAR file, copies the shared libraries to

$ORACLE_HOME/javavm/admin directory on the server, and deploys the

compilation information to the server. If you want to place the shared libraries on

the server yourself, you can do so through the lightweightDeployment option.

The lightweightDeployment option enables you to do your deployment in two

stages:

1. Natively compile your JAR file with -noDeploy and

-lightweightDeployment options. This creates an deployment JAR file with

only ncomp information, such as transitive closure information. The shared

libraries are not saved within the deployment JAR file. Thus, the deployment

JAR file is much smaller.

2. Deploy as follows:

a. Copy all output shared libraries from the lib directory of the native

compilation project directory to the server’s

$ORACLE_HOME/javavm/admin directory.

b. Deploy the lightweight deployment JAR file to the server using deploync .

Errors
Any errors that occur during native compilation are printed to the screen. Any

errors that occur during deployment of your shared libraries to the server or during

runtime can be viewed with the statusnc tool or by referring to the

JACCELERATOR$DLL_ERRORS table.

If an error is caught while natively compiling the designated classes, JServer

Accelerator denotes these errors, abandons work on the current package, and

continues its compilation task on the next package. The native compilation

continues for the rest of the packages. The package with the class that contained the

error will not be natively compiled at all.

Note: You need to have FilePermission to write to this

directory. FilePermission is included in the DBA or

JAVASYSPRIV roles.
1-104 Java Tools Reference

Native Compilation Tools
After fixing the problem with the class, you can choose to do one of the following:

■ recompile the shared library

■ reload the Java class into the database

If you choose to not recompile the classes, but to load the correct Java class into the

database, the corrected class and all classes that are included in the resolution

validation for that class—whether located within the same shared library or a

different shared library—will be executed in interpreted mode. That is, the JVM will

not run these classes natively. All the other natively compiled classes will continue

to execute in native format. When you execute the statusnc command on the

reloaded class or any of its referred classes, they will have an NEED_NCOMPING

status message.

Possible errors for a Java class:

1. The Java class does not exist in the database. If you do not load the Java class

into JServer, JServer Accelerator does not include the class in the shared library.

The class is simply skipped.

2. The Java class is invalid; that is, one of its references may not be found.

3. Any Java class that is unresolved, JServer Accelerator will try to resolve it

before natively compiling. However, if the class cannot be resolved, it is ignored

by JServer Accelerator.

Possible errors for deployment of native compilation JAR file:

■ The native compilation of your JAR file executes correctly, but the deployment

fails. In this case, do not recompile the JAR file, but deploy the output natively

compiled JAR file with the deploync command.

Native Compilation Usage Scenarios
The following scenarios demonstrate how each of the options for the ncomp tool

can be used:

■ Natively Compiling on Test Platform—Java Classes Already Loaded in the

Database

■ Natively Compiling Java Classes Not Loaded in the Database

■ Clean Compile and Generate Output for Future Deployment

■ Controlling Native Compilation Build Environment

■ Natively Compiling Specific Classes
Tools 1-105

Native Compilation Tools
■ Natively Compiling Packages That Are Fully or Partially Modified

Natively Compiling on Test Platform—Java Classes Already Loaded in the
Database
If all classes are loaded into the database and you have completed your testing of

the application, you can request JServer Accelerator to natively compile the tested

classes. JServer Accelerator takes in a JAR, ZIP, or list of classes to determine the

packages and classes to be involved in the native compilation. The JServer

Accelerator then retrieves all of the designated classes from the server, natively

compiles them into shared libraries—each library containing a single package of

classes.

Assuming that the classes have already been loaded within the server, you execute

the following command to natively compile all classes listed within a class

designation file, such as the pubProject.jar file, as follows:

ncomp -user SCOTT/TIGER pubProject.jar

If you change any of the classes within the class designation file and ask for

recompilation, JServer Accelerator recompiles only the packages that contain the

changed classes. It will not recompile all packages.

Natively Compiling Java Classes Not Loaded in the Database
Once tested, you may wish to natively compile the designated classes on another

host than the test machine. Once you transfer the designated class file to this

platform, the classes in this file must be loaded into the database before native

compilation can occur. The following loads the classes through loadjava and then

executes native compilation for the class designation file—pubProject.jar :

ncomp -user SCOTT/TIGER@dbhost:5521:orcl -thin -load pubProject.jar

Clean Compile and Generate Output for Future Deployment
If you want all classes within a class designation file to be recompiled—regardless

of whether they were previously natively compiled—you execute ncomp with the

-force option. You might want to use the -force option to ensure that all classes

are compiled resulting in a deployment JAR file that can be deployed to other

JServer databases. You can specify the native compilation deployment JAR file with

the -outputJarFile option. The following forces a recompilation of all Java

classes within the class designation file—pubProject.jar— and creates a

deployment JAR file with the name of pubworks.jar :

ncomp -user SCOTT/TIGER -force -outputJarFile pubworks.jar pubProject.jar
1-106 Java Tools Reference

Native Compilation Tools
The deployment JAR file contains the shared libraries for your classes and

installation classes specified to these shared libraries. It does not contain the original

Java classes. In order to deploy the natively compiled deployment JAR file to any

JServer (of the appropriate platform type), you must do the following:

1. Load the original Java classes into the destination server. In the previous

example, the pubProject.jar file would be loaded into the database using

the loadjava tool.

2. Deploy the natively compiled deployment JAR file with the JServer Accelerator

deploync tool, which is described in deploync on page 1-108.

Controlling Native Compilation Build Environment
By default, the JServer Accelerator uses the directory where ncomp is executed as its

build environment. The JServer Accelerator downloads several class files into this

directory, and then uses this directory for the compilation and linking process.

If you do not want to have JServer Accelerator put any of its files into the current

directory, create a working directory, and specify this working directory as the

project directory with the -projectDir option. The following directs JServer

Accelerator to use /tmp/jaccel/pubComped as the build directory. This directory

must exist before specifying it within the -projectDir option. JServer Accelerator will

not create this directory for you.

ncomp -user SCOTT/TIGER -projectDir /tmp/jaccel/pubComped pubProject.jar

Natively Compiling Specific Classes
You can specify one or more classes, which are to be natively compiled, within a

text-based <file >.classes file. You use the following Java syntax to specify

packages and/or individual classes within this file:

■ To specify classes within one or more packages, as follows:

import COM.myDomain.myPackage.*;
import COM.myDomain.myPackage.mySubPackage.*;

■ To specify an individual class, as follows:

Note: Java has no formal notion of a sub-package. You must

specify each package independently.
Tools 1-107

Native Compilation Tools
import COM.myDomain.myPackage.myClass;

Once explicitly listed, you specify the name and location of this class designation

file on the command line. Given the following pubworks.classes file:

import COM.myDomain.myPackage.*;
import COM.myDomain.hisPackage.hisSubPackage.*;
import COM.myDomain.herPackage.herClass;
import COM.myDomain.petPackage.petClass;

The following directs JServer Accelerator to compile all classes designated within

this file: all classes in myPackage , hisSubPackage and the individual classes,

herClass and myClass . These classes must have already been loaded into the

database:

ncomp -user SCOTT/TIGER /tmp/jaccel/pubComped/pubworks.classes

Natively Compiling Packages That Are Fully or Partially Modified
If you change any of the classes within this JAR file, JServer Accelerator will only

recompile shared libraries that contain the changed classes. It will not recompile all

shared libraries designated in the JAR file. However, if you want all classes within a

JAR file to be recompiled—regardless of whether they were previously natively

compiled—you execute ncomp with the -force option, as follows:

ncomp -user scott/tiger -force pubProject.JAR

deploync
You can deploy any deployment JAR file with the deploync command. This

includes the default output JAR file, <file >_depl.jar or the JAR created when

you used the ncomp -outputJarFile option. The operating system and Oracle8i
database version must be the same as the platform where it was natively compiled.

Syntax
deploync [options] < deployment >.jar
 -user | -u <username>/<password> [@<database_url>]
 [-projectDir | -d < project_directory >]
 [-thin]
 [-oci8]

Note: The list of shared libraries deployed into JServer are listed

within the JACCELERATOR$DLLS table.
1-108 Java Tools Reference

Native Compilation Tools
Argument Summary
Table 1–57 summarizes the deploync arguments.

Example
Deploy the natively compiled deployment JAR file, pub.jar , to the dbhost
database as follows:

deploync -user SCOTT/TIGER@dbhost:5521:orcl -thin /tmp/jaccel/PubComped/pub.jar

statusnc
After the native compilation is completed, you can check the status for your Java

classes through the statusnc command. This tool will print out—either to the

screen or to a designated file—the status of each class. In addition, the statusnc
tool always saves the output within the JACCELERATOR$STATUS table. The

values can be the following:

Table 1–57 deploync Argument Summary

Argument Description and Values

<deployment>.jar The full pathname and filename of a deployment JAR file.
This JAR file is created when you specify the -outputJarFile
option on the ncomp tool. Note that deploync does not verify
that this is a native compilation deployment JAR.

-user | -u
<username>/<password>
[@<database>]

Specifies a user, password, and database connect string; the
files will be loaded into this database instance. The argument
has the form <username >/< password >[@<database >] . If
you specify the database URL on this option, you must
specify it with OCI8 syntax. To provide a JDBC Thin database
URL, use the -thin option.

-projectDir | -d
<absolute_path>

Specifies the full path for the project directory. If not specified,
JServer Accelerator uses the directory that ncomp is invoked
from as the project directory.

-thin The database URL that is provided on the -user option uses a
JDBC Thin URL address for the database URL syntax.

-oci8 The database URL that is provided on the -user option uses
an OCI8 URL address for the database URL syntax. However,
if neither -oci8 or -thin are specified, the default assumes that
you used an OCI8 database URL.
Tools 1-109

Native Compilation Tools
Syntax
statusnc [options] < class_designation_file >
 -user < user>/<password>[@database]
 [-output | -o < filename >]
 [-projectDir | -d < directory >]
 [-thin]
 [-oci8]

Argument Summary
Table 1–58 summarizes the statusnc arguments. The

<class_designation_file> can be a <file>.jar , <file>.zip , or

<file>.classes .

Class Native
Compilation Status

Description

ALREADY_NCOMPED The class is currently natively compiled.

NEED_NCOMPING A class within the shared library was reloaded after native
compilation. Thus, you should recompile this shared library.

INVALID A class loaded in the database is invalid. JServer Accelerator
tried to validate it and failed. The class will be excluded from the
natively compiled shared library.

Note: The JACCELERATOR$STATUS table only contains the

output from the last execution of the statusnc command. When

executed, the statusnc command cleans out this table before

writing the new records into it.

Table 1–58 statusnc Argument Summary

Argument Description

<file>.jar The full pathname and filename of a JAR file that was
natively compiled.

<file>.zip The full pathname and filename of a ZIP file that was
natively compiled.

<file>.classes The full pathname and filename of a classes file, which
contains the list of classes that was natively compiled. See
"Natively Compiling Specific Classes" on page 1-107 for a
description of a classes file.
1-110 Java Tools Reference

Native Compilation Tools
Example
statusnc -user SCOTT/TIGER -output pubStatus.txt /tmp/jaccel/PubComped/pub.jar

-user | -u
<username>/<password>
[@<database>]

Specifies a user, password, and database connect string
where the files are loaded. The argument has the form
<username >/< password >[@<database >] . If you
specify the database URL on this option, you must specify it
with OCI8 syntax. To provide a JDBC Thin database URL,
use the -thin option.

-output <filename> Designates that the statusnc should output to the specified
text file rather than to the screen.

-projectDir | -d
<absolute_path>

Specifies the full path for the project directory. If not
specified, JServer Accelerator uses the directory that ncomp
is invoked from as the project directory.

-thin The database URL that is provided on the -user option uses
a JDBC Thin URL address for the database URL syntax.

-oci8 The database URL that is provided on the -user option uses
an OCI8 URL address for the database URL syntax.
However, if neither -oci8 or -thin are specified, the default
assumes that you used an OCI8 database URL.

Table 1–58 statusnc Argument Summary

Argument Description
Tools 1-111

Miscellaneous Tools
Miscellaneous Tools
This section describes special-purpose tools.

■ java2rmi_iiop

■ modifyprops

java2rmi_iiop
In the current JServer Enterprise JavaBeans implementation, EJBs communicate

with clients by RMI-over-IIOP. This presents a difficulty for a CORBA client that

wants to pass an object to an EJB for the EJB to invoke (call back) because the

CORBA transport is IIOP, not RMI-over-IIOP. The CORBA client needs to pass the

EJB an object the EJB can invoke with RMI-over-IIOP. The java2rmi_iiop tool

generates the stubs, skeletons, and other classes a client or server needs to make an

object remotely invocable by an EJB. (java2rmi_iiop is the analog of the

VisiBroker for Java java2iiop tool, except that it expects interfaces that extend

java.rmi.Remote rather than org.omg.CORBA.Object)

The Java interface definitions must follow the RMI spec:

■ Interfaces must extend java.rmi.Remote.

■ All remote methods must throw at least java.rmi.RemoteException.

■ All arguments and return values of the remote methods must be valid RMI

types.

Syntax
java2rmi_iiop [options] <file>.java ...
 [-no_bind]
 [-no_comments]
 [-no_examples]
 [-no_tie]
 [-root_dir <directory>]
 [-verbose]
 [-version]
 [-W <number>]
 [-wide]

Argument Summary
Table 1–59 summarizes the java2rmi_iiop arguments.
1-112 Java Tools Reference

Miscellaneous Tools
Example
Generate RMI-over-IIOP class files for an RMI interface:

java2rmi_iiop Dictionary.java

modifyprops
Some aspects of the Oracle8i ORB are governed by properties it reads when a new

session running the ORB starts. You can change these properties with the

modifyprops tool. Developers should change ORB properties only when Oracle

technical support provides instructions to do so.

Syntax
modifyprops {-u | -user} <user/password@<database> [options]
{<key> <value> [,<key> <value>] ... | <key> -delete}
 [-o | -oci8]
 [-t | -thin]

Argument Summary
Table 1–60 summarizes the modifyprops arguments.

Table 1–59 java2rmi_iiop Argument Summary

Argument Description

-nobind Suppresses the generation of bind() methods.

-no_comments Suppresses comments in generated code.

-no_examples Suppresses the generation of example code.

-no_tie Suppresses the generation of tie code.

-root_dir Places all generated files in the specified directory instead of in
the current directory.

-verbose Emits extra messages.

-version Displays the version of VisiBroker for Java that you are
currently running.

-W Setting this option to 0 (zero) suppresses all warnings from the
compiler.

-wide Maps Java String /char to IDL wstring /wchar .
Tools 1-113

Miscellaneous Tools
Argument Details

user
{-user | -u} <user>/<password>[@<database>]
The permissible forms of @<database> depend on whether you specify -oci8 or

-thin ; -oci8 is the default.

■ -oci8 : @<database> is optional. If you do not specify, then modifyprops
uses the user’s default database. If specified, then <database> can be a TNS

name or a Net8 name-value list.

■ -thin : @<database> is required. The format is <host>:<lport>:<SID> .

– <host> is the name of the machine running the database.

– <lport> is the listener port that has been configured to listen for Net8

connections. In a default installation, it is 5521.

– <SID> is the database instance identifier. In a default installation it is ORCL.

Table 1–60 modifyprops Argument Summary

Argument Description

-user Specifies a user, password, and optional database connect
string. See "user" on page 1-114 for details.

-oci8 Directs modifyprops to connect with the database using the
OCI8 JDBC driver. -oci8 and -thin are mutually exclusive; if
neither is specified, then -oci8 is used by default. Choosing
-oci8 implies the form of the database connect string. See
"user" on page 1-114 for details.

-thin Directs modifyprops to communicate with the database
using the thin JDBC driver. -oci8 and -thin are mutually
exclusive; if neither is specified, then -oci8 is used by default.
Choosing -thin implies the form of database connect string
See "user" on page 1-114 for details.

<key> <value> Oracle technical support will advise you of the values to enter
for <key> and <value> .
1-114 Java Tools Reference

Backwards Compatibility
2

Backwards Compatibility Tools

The underlying logic for the session shell, publish, and remove tools were changed

for Release 8.1.7. Because of this, each of these tools are not backward compatible to

versions of Oracle8i Release 8.1.6 and prior. Thus, the following tools are provided

for backwards compatibility: sess_sh_816 , publish_816 , and remove_816 .

These tools will be deprecated in Release 8.2.

The tools described in this chapter as follows:

■ Session Namespace Tools

■ publish_816

■ remove_816

■ sess_sh_816
 Tools 2-1

Session Namespace Tools
Session Namespace Tools
Each database instance running the Oracle8i JServer software has a session

namespace, which the Oracle8i ORB uses to activate CORBA and EJB objects. A

session namespace is a hierarchical collection of objects known as PublishedObjects

and PublishingContexts. PublishedObjects are the leaves of the hierarchy and

PublishingContexts are the nodes, analogous to UNIX file system files and

directories. Each PublishedObject is associated with a class schema object that

represents a CORBA or EJB implementation. To activate a CORBA or EJB object, a

client refers to a PublishedObject’s name. From the PublishedObject, the Oracle8i
ORB obtains the information necessary to find and launch the corresponding class

schema object.

Creating a PublishedObject is known as publishing and can be done with the

command-line publish_816 tool or the interactive session shell, both of which this

section describes. CORBA server developers create PublishedObjects explicitly after

loading the implementation of an object with loadjava . EJB developers do not

explicitly load or publish their implementations; the deployejb tool implicitly does

both.

A PublishedObject has the following attributes:

■ Schema Object Name: the name of the Java class schema object associated with

the PublishedObject.

■ Schema: the name of the schema containing the corresponding class schema

object.

■ Helper Schema Object Name: the name of the helper class the Oracle8i ORB

uses to automatically narrow a reference to an instance of the CORBA object or

EJB.

PublishedObjects and PublishingContexts, as with their file and directory

counterparts, have owners and rights (privileges). An owner can be a user name or

a role name; only the owner can change the ownership or rights of a

PublishedObject or PublishingContext. Table 2–1 describes session namespace

rights.

Table 2–1 PublishingContext and PublishedObject Rights

Right Meaning for PublishingContext Meaning for PublishedObject

read List contents and attributes (type,
rights and creation time).

List object attributes (type, schema object,
schema, helper, rights, and creation
time).
2-2 Java Tools Reference

Session Namespace Tools
Oracle8i creates a session namespace automatically when the Oracle8i ORB is

configured. The PublishingContexts contained in Table 2–2 are present in all session

namespaces:

Because by default only /test is writable by PUBLIC, you will normally create

PublishingContexts and PublishedObjects subordinate to /test .

publish_816
The publish_816 tool creates or replaces (republishes) a PublishedObject in a

PublishingContext. It is not necessary to republish when you update a Java class

schema object; republishing is required only to change a PublishedObject’s

attributes. To publish, you must have write permission (the write right) for the

destination PublishingContext; by default only the PublishingContext /test is

writable by PUBLIC. To republish you must additionally have the write right for the

PublishedObject.

write Create a PublishedObject or
PublishingContext in the
PublishingContext.

Republish object.

execute Use contents to resolve a name. Activate associated class.

Table 2–2 Initial PublishingContexts and Rights

Name Owner Read Write Execute

/ SYS PUBLIC SYS PUBLIC

/bin SYS PUBLIC SYS PUBLIC

/etc SYS PUBLIC SYS PUBLIC

/test SYS PUBLIC PUBLIC PUBLIC

Table 2–1 PublishingContext and PublishedObject Rights (Cont.)

Right Meaning for PublishingContext Meaning for PublishedObject
Backwards Compatibility Tools 2-3

Session Namespace Tools
Syntax
publish_816 [options]
<name> <class> [<helper>] -user <username> -password <password>
-service <serviceURL>
where options are:

 [-describe]
 [{-g | -grant} {<user> | <role>}[,{<user> | <role>}]...]
 [{-h | -help}]
 [-idl]
 [-iiop]
 [-replaceIDL]
 [-role <role>]
 [-republish]
 [-schema <schema>]
 [-keepcase]
 [-ssl]
 [-useServiceName]
 [-version]

Argument Summary
Table 2–3 summarizes the publish_816 tool arguments.

Table 2–3 publish_816 Tool Argument Summary

Option Description

<name> Name of the PublishedObject being created or republished;
PublishingContexts are created if necessary.

<class> Name of the class schema object that corresponds to <name>.

<helper> Name of the Java class schema object that implements the
narrow() method for <class> .

-user Specifies identity with which to log into the database instance
named in -service .

-password Specifies authenticating password for the username specified
with -user .
2-4 Java Tools Reference

Session Namespace Tools
-service URL identifying database whose session namespace is to be
“opened” by sess_sh_816 . The serviceURL has the form:

sess_iiop://< host>:<lport>:<sid> .

<host> is the computer that hosts the target database;
<lport> is the listener port that has been configured to listen
for session IIOP; <sid> is the database instance identifier.
Example:

sess_iiop://localhost:2481:orcl

which matches the default installation on the invoker’s
machine.

-describe Summarizes the tool’s operation, then exits.

-grant After creating or republishing the PublishedObject, grants read
and execute rights to the sequence of <user> and <role>
names. When republishing, replace the existing users/roles
that have read/execute rights with the <user> and <role>
names. To selectively change the rights of a PublishedObject,
use the sess_sh_816 ’s chmod command. Note that to
activate a CORBA object or EJB, a user must have the execute
right for both the PublishedObject and the corresponding class
schema object. The sequence of user and role names must be a
comma-separated list, containing no internal spaces.

-help Summarizes the tool’s syntax, then exits.

-idl Load the IDL interface definition into the IFR.

-iiop Connects to the target database with IIOP instead of the
default session IIOP. Use this option when publishing to a
database server that has been configured without session IIOP.

-replaceIDL If an IDL interface definition currently exists within the IFR,
replace it with this version. If not specified, the publish
command will not replace the existing interface within the IFR.
The -replaceIDL flag will replace any interface with the same
name in the IFR, even if it was originally stored by another
user. Thus, different users can overwrite another user’s

interface unknowingly.

-role Role to assume for the publish; no default.

Table 2–3 publish_816 Tool Argument Summary (Cont.)

Option Description
Backwards Compatibility Tools 2-5

Session Namespace Tools
Here is a publish_816 example.

Publish the CORBA server implementation

vbjBankTestbank.AccountManagerImpl and its helper class as

/test/bankMgr in the tool invoker’s schema:

publish_816 /test/bankMgr vbjBankTestServer.AccountManagerImpl \
vbjBankTestServer.AccountManagerHelper \
-user SCOTT -password TIGER \
-service sess_iiop://dlsun164:2481:orcl

remove_816
The remove_816 tool removes a PublishedObject or PublishingContext from a

session namespace. It does not remove_816 the Java class schema object associated

with a PublishedObject; use dropjava to do that.

-republish Directs publish_816 to replace an existing PublishedObject;
without this option, the publish_816 tool rejects an attempt
to publish an existing name. If the PublishedObject does not
exist, publish_816 creates it. Republishing deletes
non-owner rights; use the -grant option to add read/execute
rights when republishing.

-schema The schema containing the Java <class> schema object. If you
do not specify, the publish_816 tool uses the invoker’s
schema.

-keepcase Normally, any schema name supplied is uppercased by
default. If you created a schema name that requires lowercase
letters, specify the -keepcase option. Thus, you would execute
publish_816 ... -schema mySchema -keepcase ...

-ssl Connects to the database with SSL server authentication. You
must have configured the database for SSL to use this option,
and you must specify an SSL listener port in -service .

-useServiceName If you are using a service name instead of an SID in the URL,
you must specify this flag. Otherwise, the tool assumes the last
string in the URL is the SID.

-version Shows the tool’s version, then exist.

Table 2–3 publish_816 Tool Argument Summary (Cont.)

Option Description
2-6 Java Tools Reference

Session Namespace Tools
Syntax
remove_816 <name> -user <username> -password <password> -service <serviceURL>
[options]
 [{-d | -describe}]
 [{-h | -help}]
 [-iiop]
 [{-r | -recurse}]
 [-role role]
 [-ssl]
 [-useServiceName]
 [-version]

Argument Summary
Table 2–4 describes the remove_816 arguments.

Table 2–4 remove_816 Argument Summary

Option Description

<name> Name of PublishingContext or PublishedObject to be removed.

-user Specifies identity with which to log into the instance named in
-service .

-password Specifies authenticating password for the <username> you
specified with -user .

-service URL identifying database whose session namespace is to be
“opened” by sess_sh_816 . The serviceURL has the form:

sess_iiop:// <host> : <lport> : <sid> .

<host> is the computer that hosts the target database;
<lport> is the listener port that has been configured to listen
for session IIOP; <sid> is the database instance identifier.
Example:

sess_iiop://localhost:2481:orcl

which matches the default installation on the invoker’s
machine.

-describe Summarizes the tool’s operation, then exits.

-help Summarizes the tool’s syntax, then exits.

-iiop Connects to the target database with IIOP instead of the
default session IIOP. Use this option when removing from a
database server that has been configured without session IIOP.
Backwards Compatibility Tools 2-7

Session Namespace Tools
Here are examples of remove_816 tool usage.

■ Remove a PublishedObject named /test/testhello :

remove_816 /test/testhello -user SCOTT -password TIGER \
-service sess_iiop://dlsun164:2481:orcl

■ Remove a PublishingContext named /test/etrader :

remove_816 -r /test/etrader -user SCOTT -password TIGER \
-service sess_iiop://dlsun164:2481:orcl

sess_sh_816
The sess_sh_816 (session shell) tool is an interactive interface to a database

instance’s session namespace. You specify database connection arguments when

you start sess_sh_816 . It then presents you with a prompt to indicate that it is

ready for commands.

The sess_sh_816 gives a session namespace much of the “look and feel” of a

UNIX file system you access through a shell, such as the C shell. For example, the

session shell command:

ls /alpha/beta/gamma

means “List the PublishedObjects and PublishingContexts in the PublishingContext

known as /alpha/beta/gamma ”. (NT users note: /alpha/beta/gamma , not

\alpha\beta\gamma .) Indeed, many session shell command names that operate

on PublishingContexts have the same names as their UNIX shell counterparts that

-recurse Recursively removes <name> and all subordinate
PublishingContexts; required to remove a PublishingContext.

-role Role to assume for the remove; no default.

-ssl Connects to the database with SSL server authentication. You
must have configured the database for SSL to use this option.

-useServiceName If you are using a service name instead of an SID in the URL,
you must specify this flag. Otherwise, the tool assumes the last
string in the URL is the SID.

-version Shows the tool’s version, then exits.

Table 2–4 remove_816 Argument Summary (Cont.)

Option Description
2-8 Java Tools Reference

Session Namespace Tools
operate on directories. For example: mkdir (create a PublishingContext) and cd
(change the working PublishingContext).

In addition to UNIX-style manipulation of PublishingContexts and

PublishedObjects, the session shell can launch an executable, which is analogous to a

Java standalone application, that is, a class with a static main() method.

Executables must have been loaded with loadjava , but not published—publishing

is for CORBA and EJB objects only.

Syntax
sess_sh_816 [options] -user <user> -password <password> -service <serviceURL>
 [-d | -describe]
 [-h | -help]
 [-iiop]
 [-role <rolename>]
 [-ssl]
 [-useServiceName]
 [-version]

Argument Summary
Table 2–5 summarizes the sess_sh_816 command line arguments.

Table 2–5 sess_sh_816 Argument Summary

Option Description

-user Specifies user’s name for connecting to the database.

-password Specifies user’s password for connecting to the database.

-service URL identifying database whose session namespace is to be
“opened” by sess_sh_816 . The serviceURL has the form:

sess_iiop://< host>:<lport>:<sid> .

<host> is the computer that hosts the target database;
<lport> is the listener port configured to listen for session
IIOP; <sid> is the database instance identifier. Example:

sess_iiop://localhost:2481:orcl

which matches the default database installation on the
invoker’s machine.

-describe Summarizes the tool’s operation, then exits.

-help Summarizes the tool’s syntax, then exits.
Backwards Compatibility Tools 2-9

Session Namespace Tools
Here is a sess_sh_816 example.

Open a session shell on the session namespace of the database orcl on listener port

2481 on host dbserver .

sess_sh_816 -user scott -password tiger -service sess_iiop://dbserver:2481:orcl

cd Command
The cd command is analogous to a UNIX shell’s cd command; it changes the

working PublishingContext.

Syntax

cd [path]

Here is an example.

Change to root PublishingContext:

$ cd /

chmod Command
The chmod command is analogous to a UNIX shell’s chmod command; it changes

the users or roles that have rights for a PublishingContext or PublishedObject. See

Table 2–1 on page 2-2 for descriptions of the read, write, and execute rights. Only

the object’s owner can change its rights.

-iiop Connects to the target database with plain IIOP instead of the
default session IIOP. Use this option for a database server
configured without session IIOP.

-role Role to pass to database; there is no default.

-ssl Connect to the database with SSL server authentication. You
must have configured the database for SSL and specify an SSL
port to use this option.

-useServiceName If you are using a service name instead of an SID in the URL,
you must specify this flag. Otherwise, the tool assumes the last
string in the URL is the SID.

-version Shows the command’s version, then exits.

Table 2–5 sess_sh_816 Argument Summary (Cont.)

Option Description
2-10 Java Tools Reference

Session Namespace Tools
Syntax

chmod [options] {+|-}{r|w|e} {<user> | <role>} [, {<user> | <role>} ...] \
<objectname>
 [-h | -help]
 [-version]

Argument Summary

Table 2–6 summarizes the chmod arguments.

Here are some chmod examples.

■ Give execute rights for /alpha/beta/gamma to Scott and Nancy:

$ chmod +x scott nancy /alpha/beta/gamma

■ Remove Scott’s write rights for the same object:

$ chmod -w scott /alpha/beta/gamma

chown Command
The chown command is analogous to the UNIX chown command; it changes the

ownership of a PublishingContext or PublishedObject. The owner of a newly

created PublishingContext or PublishedObject is the user who publishes it. To

change a PublishingContext’s or PublishedObject’s ownership you must be SYS.

Syntax

chown [options] {<user> | <role>} <objectname>
 [-h | -help]

Table 2–6 chmod Argument Summary

Option Description

+/-rwe Specifies the right (read, write, or execute) to be added (+) or
removed (-) for <user> or <role> .

<user> | <role> Specifies the user or role whose rights are to be increased or
decreased.

<objectname> Specifies the name of the PublishingContext or
PublishedObject whose rights are to be changed.

-help Summarizes the command’s syntax, then exits.

-version Shows the command’s version, then exits.
Backwards Compatibility Tools 2-11

Session Namespace Tools
 [-version]

Argument Summary

Table 2–7 summarizes the chown arguments.

Here is a chown example.

Make Scott the owner of /alpha/beta/gamma :

$ chown scott /alpha/beta/gamma

exit Command
The exit command terminates sess_sh_816 .

Syntax

exit

Here is an example:

Leave the session shell:

$ exit
%

help Command
The help command summarizes the syntax of the session shell commands.

Syntax

help

Table 2–7 chown Argument Summary

Option Description

<user> | <role> Specifies the user or role to be the new owner.

<objectname> Specifies the name of the PublishingContext or
PublishedObject whose owner is to be changed.

-help Summarizes the command’s syntax, then exits.

-version Shows the command’s version, then exits.
2-12 Java Tools Reference

Session Namespace Tools
Here is a help example.

$ help
Commands are of the format <command> [arg1, ar2...]
Intrinsic Commands:
 exit exit the shell
 help prints this message
 version print version inforamtion
 pwd print working directory
 cd change working directory
 ls list directory
 ln link name
 chmod change read, write or execute permissions on an object
 chown change an objects owner
 mkdir create a directory
 mv move an object or directory to another location
 rm remove an object or directory
 lpwd print local file system working directory
 publish publish an object
 republish republish an object
 java execute the "main" method on a java class

java Command
The java command is analogous to the JDK java command; it invokes a class’s

static main() method. The class must have been loaded with loadjava . (There is

no point to publishing a class that will be invoked with the java command.) The

java command provides a convenient way to test Java code that runs in the

database. In particular, the command catches exceptions and redirects the class’s

standard output and standard error to the session shell, which displays them as

with any other command output. (The usual destination of standard out and

standard error for Java classes executed in the database is one or more database

server process trace files, which are inconvenient and may require DBA priviliges to

read.)

Syntax

java class [-schema <schema>] [arg1 ... argn] [options]
 [{-h | -help}]
 [-version]

Argument Summary

Table 2–8 summarizes the java arguments.
Backwards Compatibility Tools 2-13

Session Namespace Tools
Here is a java command example.

Say hello and display arguments:

package hello;
public class World {
 public World() {
 super();
 }
 public static void main(String[] argv) {
 System.out.println("Hello from the JServer/ORB");
 if (argv.length != 0)
 System.out.println("You supplied " + argv.length + " arguments: ");
 for (int i = 0; i < argv.length; i++)
 System.out.println(" arg[" + i + "] : " + argv[i]);
 }
}

Compile, load, publish, and run the executable as follows, substituting your userid,

host, and port information as appropriate:

% javac hello/World.java
% loadjava -r -user scott/tiger@localhost:2481:orcl hello/World.class
% sess_sh_816 -user scott -password tiger -service
sess_iiop://localhost:2481:orcl
$ java testhello alpha beta
Hello from the JServer/ORB
You supplied 2 arguments:
arg[0] : alpha
arg[1] : beta
$

Table 2–8 java Argument Summary

Option Description

class Names the Java class schema object that is to be executed.

-schema Names the schema containing the class to be executed; the
default is the invoker’s schema.

arg1 ... argn Arguments to the class’s main() method.

-help Summarizes the command’s syntax, then exits.

-version Shows the command’s version, then exits.
2-14 Java Tools Reference

Session Namespace Tools
ln Command
The ln (link) command is analogous to the UNIX ln command. A link is a

synonym for a PublishingContext or PublishedObject. A link can prevent a

reference to a PublishingContext or PublishedObject from becoming invalid when

you move a PublishingContext or PublishedObject (see "mv Command" on

page 2-18); creating a link with the old name makes the object accessible by both its

old and new names.

Syntax

ln <object> <link>

Argument Summary

Table 2–9 summarizes the ln arguments.

Here is an ln command example.

Preserve access through old , although the object’s name is changed to new:

$ mv old new
$ ln new old

lpwd Command
The lpwd (local print working directory) command displays the name of the

working directory, just as executing pwd outside of the session shell would.

Syntax

lpwd

Here is an example of the lpwd command that shows the working directory:

$ lpwd
/home/usr/billc

Table 2–9 ln Argument Summary

Option Description

<object> The name of the PublishingContext or PublishedObject for
which a link is to be created.

<link> The synonym by which <object> is also to be known.
Backwards Compatibility Tools 2-15

Session Namespace Tools
ls Command
The ls (list) command shows the contents of PublishingContexts as the UNIX ls
command shows the contents of directories.

Syntax

ls [options] [{<pubcon> | <pubobj} [{<pubcon> | <pubobj}] ...]
 [-dir]
 [-h | -help]
 [-l]
 [-ld | ldir]
 [-R]
 [-version]

Argument Summary

Table 2–10 describes the ls arguments.

Here are examples of the ls command.

Show contents of the root PublishingContext in short format:

$ ls /
bin/
etc/

Table 2–10 ls Argument Summary

Option Description

<pubcon> | <pubobj> Name of PublishingContext(s) and/or PublishingObject(s) to
be listed; the default is the working PublishingContext.

-dir Shows only PublishingContexts; analogous to the UNIX ls -d
command.

-help Summarizes the command’s syntax, then exits.

-l Shows contents in long (detailed) format. The long format
includes name, creation time, owner, and rights. For
PublishedObjects, the option also shows class, schema, and
helper.

-ldir Lists PublishingContexts in long format, ignoring
PublishingObjects; analogous to UNIX ls -ld command.

-R Lists recursively.

-version Shows the command’s version, then exits.
2-16 Java Tools Reference

Session Namespace Tools
test/

Show contents of the root PublishingContext in long format:

$ ls -l /
Read Write Exec Owner Date Time Name Schema Class Helper
PUBLIC SYS PUBLIC SYS Dec 14 14:59 bin/
PUBLIC SYS PUBLIC SYS Dec 14 14:59 etc/
PUBLIC PUBLIC PUBLIC SYS Dec 14 14:59 test/

Show contents of the /test PublishingContext in long format:

$ ls -l test
Read Write Exec Owner Date Time Name Schema Class Helper
SCOTT SCOTT SCOTT SCOTT Dec 14 16:32 bank SCOTT Bank.AccountManagerImpl Bank.AccountManagerHelper

mkdir Command
The mkdir command is analogous to the UNIX shell mkdir command; it creates a

PublishingContext. You must have the write right for the target PublishingContext

to use mkdir in it.

Syntax

mkdir [options] <name>
 [-path]

Argument Summary

Table 2–11 describes the mkdir arguments.

Here are examples of the mkdir command.

Create a PublishingContext called /test/alpha (/test exists):

mkdir /test/alpha

Create a PublishingContext called /test/alpha/beta/gamma
(/test/alpha/beta does not exist):

Table 2–11 mkdir Argument Summary

Option Description

<name> Name of PublishingContext to create.

-path Creates intermediate PublishingContexts if they do not exist.
Backwards Compatibility Tools 2-17

Session Namespace Tools
$ mkdir -path /test/alpha/beta/gamma

mv Command
The mv command is analogous to the UNIX shell mv command.

Syntax

mv <old> <new>

Here is an example of the mv command.

Change the name of /test/foo to /test/bar :

$ mv /test/foo /test/bar

publish Command
The publish command creates or replaces (republishes) a PublishedObject in a

PublishingContext. It is not necessary to republish when you update a Java class

schema object that has been published; republish only to change a

PublishedObject’s attributes. To publish, you must have the write right for the

destination PublishingContext; to republish you must also have the write right for

the PublishedObject.
2-18 Java Tools Reference

Session Namespace Tools
Syntax

publish <name> <class> <helper> [options]
 [{-e | -executable}]
 [{-g | -grant} {<user> | <role>}[,{<user> | <role>} ...]]
 [{-h | -help}]
 [-republish]
 [-schema <schema>]
 [-version]

Argument Summary

Table 2–12 summarizes the publish command arguments.

Table 2–12 publish Command Argument Summary

Option Description

<name> Name of the PublishedObject being created or republished;
PublishingContexts are created if necessary.

<class> Name of the class schema object that corresponds to <name>.

<helper> Name of the Java class schema object that implements the
narrow() method for <class> .

-grant After creating or republishing the PublishedObject, grants read
and execute rights to the sequence of <user> and <role>
names. When republishing, replaces the existing users/roles
that have read/execute rights with the <user> and <role>
names. To selectively change the rights of a PublishedObject,

use the session shell’s chmod command. Note that to activate
a CORBA object or EJB, a user must have the execute right for
both the PublishedObject and the corresponding class schema
object.

-help Summarizes the command’s syntax, then exits.

-republish Directs publish to replace an existing PublishedObject;
without this option, the publish command rejects an attempt
to publish an existing name. If the PublishedObject does not
exist, it is created. Republishing deletes non-owner rights; use
the -grant option to add read/execute rights when
republishing.

-schema The schema containing the Java <class> schema object; if you
do not specify, the command uses the invoker’s schema.

-version Shows the command’s version, then exits.
Backwards Compatibility Tools 2-19

Session Namespace Tools
Here is an example of the publish command.

Publish the CORBA server implementation Bank.AccountManagerImpl and its

helper class as /test/bank in the command invoker’s schema:

$ ls -l /test
$ publish /test/bank Bank.AccountManagerImpl Bank.AccountManagerHelper
$ ls -l /test
Read Write Exec Owner Date Time Name Schema Class Helper
SCOTT SCOTT SCOTT SCOTT Dec 14 16:32 bank SCOTT Bank.AccountManagerImpl Bank.AccountManagerHelper

pwd Command
The pwd command displays the name of the current working PublishingContext. It

is analogous to the UNIX pwd command.

Syntax

pwd

Here is an example of the pwd command.

$ pwd
/test/alpha

rm Command
The rm (remove) command is analogous to the rm -r UNIX shell commands; it

removes a PublishedObject or a PublishingContext, including its contents. To

remove an object, you must have the write right for the containing

PublishingContext.

Syntax

rm [options] <object> ... <object>
 [{-h | -help}]
 [-r]
 [-version]

Argument Summary

Table 2–13 describes the rm arguments.
2-20 Java Tools Reference

Session Namespace Tools
Here is an example of the rm command.

Remove the PublishedObject /test/bank :

rm /test/bank

Remove the PublishingContext /test/release3 and everything it contains:

rm -r /test/release3

version Command
The version command shows the version of the sess_sh_816 tool.

Syntax

version

Here is an example of the version command.

Display the session shell’s version:

$ version
1.0

Table 2–13 rm Argument Summary

Option Description

<object> Name of PublishedObject or PublishingContext to be removed.

-help Summarizes the command’s syntax, then exits.

-r Interprets <object> as a PublishingContext; removes it and
its contents recursively.

-version Shows the command’s version, then exits.
Backwards Compatibility Tools 2-21

Session Namespace Tools
2-22 Java Tools Reference

Index

A
accesslog command, 1-66

addendpoint command, 1-60

adderrorpage command, 1-67

addgroupentry command, 1-45

ALREADY_NCOMPED status, 1-110

B
bind

reference, 1-46

bind command, 1-46

bindds command, 1-50

bindut command, 1-47

C
cd command, 2-10

chmod command, 1-34, 2-10

chown command, 1-35, 2-11

class schema object, 1-2, 1-3

compiling

error messages, 1-5

options, 1-5

createcontext command, 1-68

createservice command, 1-62

createwebdomain command, 1-65

createwebservice command, 1-62

D
DataSource

bind in namespace, 1-50

deployejb tool, 1-89

deployment descriptor, 1-91, 1-92

deploync tool, 1-108

destroycontext command, 1-69

destroywebdomain command, 1-65

digest table, 1-4, 1-5

dropjava tool, 1-16

E
ejbdescriptor tool, 1-89, 1-92

env command, 1-38

exit command, 1-38, 2-12

exportwebdomain command, 1-76

F
file names

dropjava, 1-18

loadjava, 1-11

FilePermission permission, 1-100

G
get_compiler_option method, 1-6

getgroup command, 1-54

getproperties command, 1-54

H
help command, 1-38, 2-12

HTTP

security, 1-77
Index-1

I
idl2java tool, 1-94

IFR

loading interfaces, 1-24, 2-5

Inprise

VisiBroker for Java, 1-94

interface

retrieving from IFR, 1-25

INVALID status, 1-110

J
java command, 1-39, 2-13

JAVA$OPTIONS table, 1-5

JAVA_DEPLOY role, 1-100

java2idl tool, 1-94

java2iiop tool, 1-94, 1-112

java2rmi_iiop tool, 1-94, 1-112

JNDI

bind, 1-46

object properties, 1-54, 1-56

JServer Accelerator

deploync tool, 1-108

for user applications, 1-99

installation requirements, 1-99

ncomp tool, 1-100

overview, 1-97

statusnc tool, 1-109

JTA

bind DataSource, 1-50

L
ln command, 1-40, 2-15

loadjava tool, 1-2 to 1-3

lpwd command, 2-15

ls command, 1-41, 2-16

M
mkdir command, 1-42, 2-17

modifyprops tool, 1-113

mv command, 1-43, 2-18

N
namespace, 1-20, 1-21, 1-27

native compilation

classes loaded in database, 1-106

classes not loaded in database, 1-106

compile subset, 1-107

deploync tool, 1-108

designating build directory, 1-107

errors, 1-104

execution time, 1-101

force recompile, 1-106

ncomp tool, 1-100

scenarios, 1-105

static, 1-97

statusnc tool, 1-109

ncomp

security, 1-100

ncomp tool, 1-99, 1-100

NEED_NCOMPING status, 1-110

NEED_NCOMPING status message, 1-105

O
OracleConnectionPoolDataSource

bind in namespace, 1-50

OracleDataSource

bind in namespace, 1-50

OracleJTADataSource

bind in namespace, 1-50

OracleXADataSource

bind in namespace, 1-51

P
permissions

FilePermission, 1-100

JAVA_DEPLOY role, 1-100

pre-translation

server-side (for OSE), 1-72

publish command, 1-55, 2-18

publish tool, 1-20, 1-21

publish_816 tool, 2-2, 2-3

PublishedObject, 1-20, 2-2

PublishingContext, 1-20, 2-2

publishjsp command, 1-72
Index-2

publishservlet command, 1-70

pwd command, 1-43, 2-20

R
realm command, 1-77, 1-84

remove tool, 1-25

remove_816 tool, 2-6

removegroupentry command, 1-55

reset_compiler_option method, 1-6

resolver, 1-3

resource schema object, 1-2

rm command, 1-43, 2-20

rmendpoint command, 1-64

rmerrorpage command, 1-70

RMI, 1-112

S
schema object, 1-2

sess_sh

commands in a script file, 1-31

redirecting output, 1-31

sess_sh tool, 1-27 to ??

sess_sh_816 tool, 2-8

session

namespace, 1-20, 1-27, 2-2, 2-8

default PublishingContexts, 1-21, 2-3

rights, 1-20, 1-34, 2-2, 2-10

set_compiler_option method, 1-6

setenv command, 1-44

setgroup command, 1-55

setproperties command, 1-56

source schema object, 1-2, 1-5

statusnc tool, 1-109

T
translation

server-side pre-translation (for OSE), 1-72

U
unpublishjsp command, 1-75

unpublishservlet command, 1-71

UserTransaction

bind in namespace, 1-47
Index-3

Index-4

	PDF Directory
	Java Tools Reference
	Send Us Your Comments
	Preface
	1 Tools
	Schema Object Tools
	What and When to Load
	Resolution
	Digest Table
	Compilation
	loadjava
	Syntax
	Argument Summary
	Argument Details

	dropjava
	Syntax
	Argument Summary
	Argument Details
	Dropping Resources

	Session Namespace Tools
	publish
	Syntax
	Argument Summary

	remove
	sess_sh
	Syntax
	Argument Summary
	sess_sh Options

	Shell Commands
	alias
	cd
	chmod
	chown
	connect
	Argument Summary
	echo
	env
	exit
	help
	java
	ln
	ls
	mkdir
	mv
	pwd
	rm
	setenv
	version
	whoami

	Namespace Commands
	addgroupentry
	bind
	bindut
	bindds
	getgroup
	getproperties
	publish
	removegroupentry
	setgroup
	setproperties

	Dynamic Listener Endpoint Configuration Commands
	regep
	unregep

	Web Application Management Commands
	Service Configuration
	addendpoint
	createservice
	createwebservice
	destroyservice
	rmendpoint

	Web Domain Configuration
	createwebdomain
	destroywebdomain

	Servlet Context Management
	accesslog
	adderrorpage
	createcontext
	destroycontext
	rmerrorpage

	Servlet Management
	publishservlet
	unpublishservlet

	JavaServer Pages Management
	publishjsp
	Argument Details
	unpublishjsp

	Export Commands
	exportwebdomain

	Security Management
	Declaring Principals
	Predefined Realms
	Realm Management Overview
	Managing Principals Overview
	Resource Protection Overview
	Declaring Permissions
	Declaring A Security Servlet

	realm
	list
	echo
	secure
	map
	publish
	user
	group
	parent
	perm

	Enterprise JavaBean Tools
	deployejb
	Syntax
	Argument Summary
	Argument Details

	ejbdescriptor
	Syntax
	Argument Summary

	VisiBroker™ for Java Tools
	Native Compilation Tools
	JServer Accelerator Overview
	JServer Core Java Class Libraries
	Natively Compiling Java Application Class Libraries
	Installation Requirements

	ncomp
	Syntax
	Argument Summary
	Argument Details
	Errors

	Native Compilation Usage Scenarios
	Natively Compiling on Test Platform—Java Classes Already Loaded in the Database
	Natively Compiling Java Classes Not Loaded in the Database
	Clean Compile and Generate Output for Future Deployment
	Controlling Native Compilation Build Environment
	Natively Compiling Specific Classes
	Natively Compiling Packages That Are Fully or Partially Modified

	deploync
	Syntax
	Argument Summary

	statusnc
	Syntax
	Argument Summary

	Miscellaneous Tools
	java2rmi_iiop
	Syntax
	Argument Summary
	Example

	modifyprops
	Syntax
	Argument Summary
	Argument Details

	2 Backwards Compatibility Tools
	Session Namespace Tools
	publish_816
	Syntax
	Argument Summary

	remove_816
	Syntax
	Argument Summary

	sess_sh_816
	Syntax
	Argument Summary
	cd Command
	chmod Command
	chown Command
	exit Command
	help Command
	java Command
	ln Command
	lpwd Command
	ls Command
	mkdir Command
	mv Command
	publish Command
	pwd Command
	rm Command
	version Command

	Index

