
Oracle  Message Broker

Administration Guide

Release 2.0.1.0 for SPARC Solaris and Windows NT

September 2000

Part No. A65435-01

Oracle Message Broker Administration Guide, Release 2.0.1.0 for SPARC Solaris and Windows NT

Part No. A65435-01

Copyright © 1998, 2000, Oracle Corporation. All rights reserved.

Primary Author: Tom Van Raalte

Contributors: Kirk Bittler, Geoff Brown, Mark Callaghan, Pascal Felber, Kathryn Gruenefeldt, Charles
Hall, Doug Hood, Anish Karmarkar, John Lang, John Leinaweaver, Brian Lough, Vivek Maganty,
Nachiketa Sharma, Shengsong Ni, Joan Silverman, Sanjay Singh, Jean Marie Sulmont, Neal Wyse.

The Programs (which include both the software and documentation) contain proprietary information of
Oracle Corporation; they are provided under a license agreement containing restrictions on use and
disclosure and are also protected by copyright, patent, and other intellectual and industrial property
laws. Reverse engineering, disassembly, or decompilation of the Programs is prohibited.

The information contained in this document is subject to change without notice. If you find any problems
in the documentation, please report them to us in writing. Oracle Corporation does not warrant that this
document is error free. Except as may be expressly permitted in your license agreement for these
Programs, no part of these Programs may be reproduced or transmitted in any form or by any means,
electronic or mechanical, for any purpose, without the express written permission of Oracle Corporation.

If the Programs are delivered to the U.S. Government or anyone licensing or using the programs on
behalf of the U.S. Government, the following notice is applicable:

Restricted Rights Notice Programs delivered subject to the DOD FAR Supplement are "commercial
computer software" and use, duplication, and disclosure of the Programs, including documentation,
shall be subject to the licensing restrictions set forth in the applicable Oracle license agreement.
Otherwise, Programs delivered subject to the Federal Acquisition Regulations are "restricted computer
software" and use, duplication, and disclosure of the Programs shall be subject to the restrictions in FAR
52.227-19, Commercial Computer Software - Restricted Rights (June, 1987). Oracle Corporation, 500
Oracle Parkway, Redwood City, CA 94065.

The Programs are not intended for use in any nuclear, aviation, mass transit, medical, or other inherently
dangerous applications. It shall be the licensee's responsibility to take all appropriate fail-safe, backup,
redundancy, and other measures to ensure the safe use of such applications if the Programs are used for
such purposes, and Oracle Corporation disclaims liability for any damages caused by such use of the
Programs.

Oracle is a registered trademark of Oracle Corporation. Other names may be trademarks of their
respective owners. The Oracle Message Broker requires the java(tm) Runtime Environment. The Java(tm)
Runtime Environment ("The Software") is developed by Sun Microsystems, Inc. 2550 Garcia Avenue,
Mountain View, California 94043. Copyright (c) 1997 Sun Microsystems, Inc.

Contents

Send Us Your Comments ... xiii

Preface ... xv

Intended Audience ... xv
Structure... xv
Related Documents... xvii
Conventions... xvii

1 Introduction

What is the Oracle Message Broker?... 1-2
What is JMS?.. 1-2
Oracle Message Broker Components.. 1-3

Oracle Message Broker Core... 1-4
Drivers and Message Servers.. 1-4
Administrative Components .. 1-5
Client Programming Interface .. 1-6

Oracle Message Broker Features.. 1-7
Administration and Monitoring Utilities .. 1-8

Command Line Tools... 1-9
Graphical User Interface.. 1-9
Performance Monitoring Service.. 1-9

Oracle Message Broker Deployment Options .. 1-10
Configuration Options... 1-10
Operation Modes .. 1-12
iii

2 Quick Start

Working with the Administration Utilities ... 2-2
Overview of the Sample Administration Scripts ... 2-2
Using the Oracle Message Broker Instance Configuration Script ... 2-3
Using the Driver Configuration Scripts... 2-4
Using the Propagation Configuration Script .. 2-5

Verifying Directory Contents ... 2-5
Starting and Stopping the Oracle Message Broker .. 2-6

The msg_broker Entry and Distinguished Names .. 2-9
Required Environment Variables ... 2-10
Stopping the Oracle Message Broker... 2-10
Checking the Status of the Oracle Message Broker ... 2-11
Running Oracle Message Broker as an NT Service.. 2-12

Running the JMS Sample Programs ... 2-12

3 JMS Programming

Deployment Options for an Oracle Message Broker Application .. 3-2
Programming Roadmap (Using an LDAP Directory) .. 3-2
Accessing Objects in the Directory ... 3-4

Accessing Objects for Point-to-Point Messaging.. 3-5
Accessing Objects for Publish/Subscribe Messaging.. 3-7

Point-to-Point Messaging .. 3-8
Creating and Starting a Queue Connection .. 3-9
Getting a Queue Session .. 3-10
Working with Queue Destinations - QueueSender and QueueReceiver 3-11
Sending and Receiving Messages... 3-11
Shutting Down .. 3-12

Publish/Subscribe Messaging .. 3-13
Creating and Starting a Topic Connection.. 3-14
Getting a Topic Session.. 3-15
Working with Topic Destinations - TopicPublisher and TopicSubscriber......................... 3-15
Publishing and Subscribing... 3-16
Subscribing to Topics ... 3-16
Shutting Down (Publish/Subscribe).. 3-17

Message Listeners and Threads ... 3-17
iv

Closing JMS Objects and Death Detection ... 3-18
Leaked Resources and Death Detection.. 3-19

Setting the Message Priority... 3-20

4 Administration

What is the Oracle Internet Directory? ... 4-2
What is a Directory? ... 4-2
What is LDAP?.. 4-2
Directory Entries... 4-3
Attributes ... 4-5
Object Classes.. 4-6
Schemas.. 4-7
Accessing LDAP with the Administrative Framework .. 4-7

Oracle Message Broker Directory Information Tree.. 4-8
Oracle Message Broker Configuration.. 4-12

Oracle Message Broker Configuration Roadmap .. 4-12
Reserved Internal Attributes... 4-14
Creating an Oracle Message Broker Instance ... 4-14
Creating and Configuring Message Servers ... 4-15
Configuring the Message Broker Entry and Drivers... 4-18
Creating and Configuring Connection Factories ... 4-27
Adding Queues... 4-28
Adding Topics... 4-31
Creating and Configuring Remote Directories .. 4-33
Creating and Configuring Remote HTTP Listeners .. 4-34
Creating and Configuring Propagation Jobs .. 4-35
Creating and Configuring Durable Subscribers .. 4-35
Creating and Configuring Asynchronous Component Invocation Triggers..................... 4-36
Showing Directory Attributes and Entries ... 4-38

Dynamic Configuration ... 4-38
Create Entry Restrictions... 4-39
Update Entry Restrictions ... 4-39
Delete Entry Restrictions ... 4-40

Command-line Administration Utility - AdminUtil ... 4-41
Object References.. 4-59
v

Entry Attributes .. 4-61
AdminUtil Limitations... 4-63

Directory Utilities ... 4-63
Checking Directory Entries with AdminDirCheck.. 4-64
Migrating Directory Entries Between Releases .. 4-68

5 Oracle Message Broker Features

Working With JMS Messages ... 5-2
Message Properties ... 5-2
Using Message Selectors .. 5-3

Using a QueueBrowser .. 5-5
Using Durable Subscribers ... 5-6
Using the PL/SQL Operational Interface ... 5-7
Running in Local Mode ... 5-8

Using Local Mode with an LDAP Directory... 5-9
Using Local Mode with Lightweight Configuration ... 5-11
Local Mode Limitations ... 5-11
Sample Local and Remote Mode Client Programs .. 5-11

Running in Remote Mode ... 5-14
Starting Oracle Message Broker in Remote Mode ... 5-14
Starting Oracle Message Broker Clients in Remote Mode.. 5-15
Remote Mode Limitations ... 5-15

Oracle Message Broker Version Checking... 5-16

6 Oracle Message Broker Extensions

Using XML Messages ... 6-2
Sending and Receiving XML Messages... 6-2
The XML_to_JMS Method ... 6-2
The JMS_to_XML Method ... 6-3

Collecting Runtime Metrics .. 6-3
Using DMS... 6-5
DMS Format Options - Standard and Pretty .. 6-5
AQ Driver Runtime Metrics .. 6-9

Creating Destinations .. 6-10
Defining Destination Strings... 6-11
vi

Using Client-Side Callouts ... 6-11
Defining Callout Methods... 6-12
Using Callouts in a Message Producer.. 6-13
Using Callouts in a Message Consumer.. 6-15
Using Properties to Indicate Callouts.. 6-16
Sample Client Side Callout Programs ... 6-16

Universal Connections and Universal Sessions ... 6-16
Receiving with a Message ID ... 6-17
Using AQ Rules for Message Selection.. 6-18

Creating AQ Rules Based Message Selectors ... 6-19
PL/SQL Functions Supporting AQ Rules .. 6-21

Obtaining the JDBC Connection in Local Mode .. 6-32
Sample Code Using a JDBC Connection ... 6-33

7 Message Servers and Drivers

Driver Configuration.. 7-2
Driver Features Summary ... 7-2
Oracle Advanced Queuing Driver... 7-3

AQ Driver Connection Types ... 7-4
AQ Messages... 7-5
JDBC Mode .. 7-8
OCI Mode .. 7-9
AQ Message Persistence.. 7-9
AQ User Identities .. 7-10
AQ Tuning and Configuration ... 7-13
AQ Failure Recovery.. 7-13
AQ Driver Restrictions .. 7-14

Oracle AQ Lite Driver.. 7-15
AQ Lite Message Persistence .. 7-17
AQ Lite Message Mapping ... 7-17
AQ Lite Driver Propagation.. 7-17

Oracle Volatile Driver .. 7-17
IBM MQSeries Driver.. 7-18

MQSeries Message Mapping .. 7-18
Connections to MQSeries Queue Managers ... 7-21
vii

Transaction Support ... 7-21
Multiple Queue Manager Support ... 7-21
MQSeries Driver Configuration ... 7-21
MQSeries Driver Limitations .. 7-22

Oracle Multicast Driver ... 7-22
Understanding Multicast Driver Operation ... 7-23
Distributed Topics .. 7-23
Messages .. 7-24
Multicast Server Configuration .. 7-24
MultiCast Driver Limitations.. 7-26

TIB/Rendezvous Driver ... 7-26
Distributed Topics .. 7-27
Messages .. 7-27
Sessions... 7-31
TIB/Rendezvous Installation and Administration.. 7-31
TIB/Rendezvous Driver Limitations... 7-31

8 Oracle Message Broker Propagation

Overview of Oracle Message Broker Propagation ... 8-2
Types of Propagation ... 8-2
Propagation with Message Selectors.. 8-5

Propagation Transport Protocols .. 8-7
IIOP Propagation .. 8-7
HTTP Propagation.. 8-7

Administration and Configuration .. 8-9
Sending Broker Configuration.. 8-10
Receiving Broker Configuration... 8-13
Propagation Job Configuration... 8-16
HTTP Propagation Servlet Configuration... 8-21

Propagation Security .. 8-23
IIOP propagation Security... 8-24
 HTTP Propagation Security ... 8-24

Propagation Control ... 8-25
Creating and Deleting Propagation Jobs... 8-26
Activating and Deactivating a Propagation Jobs ... 8-26
viii

Error Handling and Recovery .. 8-27
Propagation Limitations .. 8-28

9 Oracle Message Broker C++ API

Introduction ... 9-1
System Requirements... 9-1
Limitations... 9-2

Major Differences between the Java and C++ APIs .. 9-2
Declaration... 9-2
Types .. 9-3
Memory Management.. 9-3

Sample Application.. 9-4
General Declarations .. 9-4
Initialization .. 9-5
Sending Messages (Sender Specific) .. 9-6
Receiving Messages (Receiver Specific) .. 9-6
Cleanup .. 9-7

10 Logging and Troubleshooting

Working with Log Files ... 10-1
Logging Directory .. 10-2
DMS Metric Log Files... 10-2

Logging Security Exceptions .. 10-3
Problems and Common Solutions... 10-3

MQ Series Driver Problems... 10-3
Runtime Exceptions ... 10-4

11 Administration GUI

Terminology ... 11-2
Starting Oracle Message Broker Manager ... 11-2
Connecting to a Directory Server... 11-2
Navigating Oracle Message Broker Manager ... 11-5

Oracle Message Broker Manager Menu Bar ... 11-6
Oracle Message Broker Manager Toolbar... 11-8
ix

Disconnecting from a Directory Server .. 11-8
Performing Administration Tasks ... 11-9

Viewing Entries... 11-9
Adding Entries .. 11-9
Deleting Entries... 11-14
Modifying Entries ... 11-14
Using the Configuration Wizards to Add Entries ... 11-15

12 Security

Features and Assumptions .. 12-2
SSL Overview .. 12-3
Programming and Administration Control and Assumptions.. 12-3

Security Components ... 12-5
LDAP Server Security .. 12-5
Oracle Message Broker Security ... 12-11
Provider Security .. 12-13
Security Priority .. 12-15
Network Security Overview ... 12-16
Supported Cipher Suites.. 12-18

LDAP Directory Server Security Administration... 12-19
Creating LDAP Users and Working with Access Control Lists .. 12-19
Enabling SSL and Authentication for the LDAP Directory.. 12-20
Configuring SSL for OiD ... 12-21
OiD Access Control and Authorization... 12-23
Creating users and groups in OiD ... 12-24

Oracle Message Broker Security Administration ... 12-26
Oracle Message Broker SSL Options.. 12-26
Enabling Propagation Security ... 12-27
Using the Oracle Message Broker Security Service ... 12-27

Provider Security Administration ... 12-33
Client Connections to the Oracle Message Broker using Authentication 12-33

13 Lightweight Configuration

Benefits of Lightweight Configuration ... 13-2
Using Lightweight Configuration.. 13-3
x

Configuration Changes.. 13-3
Starting with Lightweight Configuration in Remote Mode... 13-4
Starting with Lightweight Configuration in Local Mode... 13-4
Deploying Using Lightweight Configuration .. 13-5
Specifying Configuration Values with Lightweight Configuration 13-11

Lightweight Configuration Properties.. 13-12
Subscriber Configuration Properties ... 13-15
Driver Properties .. 13-16
Destination Properties ... 13-20

Sample Configuration Files .. 13-23
Lightweight Configuration Constraints and Limitations ... 13-23

14 Asynchronous Component Invocation

ACI Architecture ... 14-2
ACI Listener .. 14-3
ACI Dispatcher.. 14-3
ACI Adapters .. 14-4
ACI Helper Classes .. 14-4

ACI Triggers ... 14-4
Setting the ACI Threshold Parameter.. 14-5
Setting the ACI Concurrency Parameter... 14-6

EJB Adapter.. 14-6
Notification-driven Beans ... 14-7
Message-driven Beans ... 14-9

Java Helper Classes .. 14-12
ACI Tutorial ... 14-14

Configure Oracle Database ... 14-14
Define a Remote Interface ... 14-15
Define a Home Interface.. 14-15
Implement the EJB.. 14-15
Compile and Generate Jar File.. 14-16
Deploy the EJB .. 14-17
Add a Trigger Entry to Oracle Message Broker... 14-17
xi

A Oracle AQ Driver ADTs

JMS ADT Types... A-2
Type ombaq_property.. A-3
Type ombaq_properties ... A-4
Type ombaq_header ... A-4
Type ombaq_text_msg ... A-5
Type ombaq_bytes_msg .. A-6
Type ombaq_object_msg Fields.. A-7
Type ombaq_stream_element Fields ... A-8
Type ombaq_stream_elements ... A-9
Type ombaq_stream_msg.. A-9
Type ombaq_map_element ... A-9
Type ombaq_map_elements .. A-10
Type ombaq_map_msg... A-10
Type ombaq_serial_msg ... A-10

PL/SQL Package Interface .. A-11
PL/SQL Package Limitations .. A-11
Coercion and Invalid Data ... A-12
Sample Usage from PL/SQL.. A-15

Index
xii

Send Us Your Comments

Administration Guide, Release 2.0.1.0 for SPARC Solaris and Windows NT

Part No. A65435-01

Oracle Corporation welcomes your comments and suggestions on the quality and usefulness of this

document. Your input is an important part of the information used for revision.

■ Did you find any errors?

■ Is the information clearly presented?

■ Do you need more information? If so, where?

■ Are the examples correct? Do you need more examples?

■ What features did you like most?

If you find any errors or have any other suggestions for improvement, please indicate the document

title and part number, and the chapter, section, and page number (if available). You can send com-

ments to us in the following ways:

■ Electronic mail: infodev@oracle.com

■ FAX - (503) 525-8000. Attn: Oracle Message Broker

■ Postal service:

Oracle Corporation

Oracle Message Broker

1211 SW 5th Avenue, Suite 900

Portland, Oregon 97204

USA

If you would like a reply, please give your name, address, telephone number, and (optionally) elec-

tronic mail address.

If you have problems with the software, please contact your local Oracle Support Services.
xiii

xiv

Preface

The Oracle Message Broker Administration Guide provides instructions for configuring

and using the Oracle Message Broker. The Oracle Message Broker implements a

version of the Java Message Service (JMS) API. This guide shows the components

and commands that allow you to work with the Oracle Message Broker.

Intended Audience
This guide is intended for anyone who needs to work with the Oracle Message

Broker. It assumes that you are familiar with the common commands on a Windows

NT system, or on a Unix system.

Structure
This guide contains fourteen chapters and one appendix:

Chapter 1 Introduction, provides an introduction to the Oracle Message

Broker and its features.

Chapter 2 Quick Start, provides instructions and samples that show you how

to quickly set up and use the Oracle Message Broker.

Chapter 3 JMS Programming, describes the procedures for basic JMS

programming using the JMS API with the Oracle Message Broker.

Chapter 4 Administration, describes the organization of the Oracle Message

Broker’s directory entries, and the Oracle Message Broker

administrative commands and utilities.
xv

Chapter 5 Oracle Message Broker Features, includes advanced programming

features and Oracle Message Broker JMS provider specific

information.

Chapter 6 Oracle Message Broker Extensions, covers Oracle Message Broker

features that are not part of the JMS Specification.

Chapter 7 Message Servers and Drivers, describes the Oracle Message Broker

features that allow programmers to store JMS messages and use

existing Message Oriented Middleware (MOM) products.

Chapter 8 Oracle Message Broker Propagation, describes the Oracle Message

Broker components that control the transfer of messages between

Oracle Message Brokers using either IIOP or HTTP protocols.

Chapter 9 Oracle Message Broker C++ API, contains instructions for using

the Oracle Message Broker C++ API. The C++ API allows clients to

write C++ code that uses the Oracle Message Broker.

Chapter 10 Logging and Troubleshooting, contains information on the Oracle

Message Broker logging file.

Chapter 11 Administration GUI, contains information on the Oracle Message

Broker Manager that is used for performing administration tasks.

Chapter 12 Security, contains information on the Oracle Message Broker

security features.

Chapter 13 Lightweight Configuration, contains information on Oracle

Message Broker configuration using Java properties and files,

instead of the LDAP Directory.

Chapter 14 Asynchronous Component Invocation, describes the ACI feature.

The ACI feature links JMS, as provided by the Oracle Message

Broker, to applications running in the Oracle Database Server.

Appendix A Oracle AQ Driver ADTs, describes the JMS ADTs that the Oracle

Message Broker supports with the AQ Driver.
xvi

Related Documents
For details on JMS, refer to the Java Message Service documentation and the Java

Message Service specification available from Javasoft at the following site,

http://www.javasoft.com/products/jms

Conventions
The following conventions are used in this manual:

Convention Meaning

 .
 .
 .

Vertical ellipsis points in an example mean that information not
directly related to the example has been omitted.

. . . Horizontal ellipsis points in statements or commands mean that
parts of the statement or command not directly related to the
example have been omitted.

boldface text Boldface type in text indicates a term defined in the text, the glossary,
or in both locations.

< > Angle brackets enclose user-supplied names.

[] Brackets enclose optional clauses from which you can choose one or
none.

courier Text to be entered exactly as it appears.
xvii

xviii

Introdu
1

Introduction

The following sections introduce the Oracle Message Broker and its features:

■ What is the Oracle Message Broker?

■ What is JMS?

■ Oracle Message Broker Components

■ Oracle Message Broker Features

■ Administration and Monitoring Utilities

■ Oracle Message Broker Deployment Options
ction 1-1

What is the Oracle Message Broker?
What is the Oracle Message Broker?
Oracle Message Broker plays a major role in Oracle’s solution for Enterprise

Application Integration (EAI). It is a scalable and open platform ideal for

integrating strategic applications, e-commerce, or legacy systems.

The Oracle Message Broker provides an open, asynchronous, system-independent,

message-based communication mechanism. The foundation of the Oracle Message

Broker is an implementation of the Java Message Service API. Oracle Message

Broker allows different applications or systems to interact in a near real-time,

robust, reliable, and scalable manner to complete end-to-end cross-functional

business processes. A message selection engine supports message routing based on

the contents of a message header, and transactions are supported across application

boundaries.

The Oracle Message Broker integrates applications on the business process level

that work across the enterprise. While integrating applications, the Oracle Message

Broker shields you from the complicated underlying messaging technology. Because

of its interoperability with a complete line of Oracle products, and with the leading

commercial messaging products, the Oracle Message Broker seamlessly integrates

applications and leverages existing technology.

What is JMS?
The Oracle Message Broker implements an important and powerful standard called

the Java Message Service (JMS)1. The Oracle Message Broker implementation of JMS

supports many of the existing Message Oriented Middleware (MOM) solutions. The

JMS API is a standard developed by Sun Microsystems, Inc. to support enterprise

messaging. JMS provides a standards based API for writing distributed

applications. Enterprise messaging using JMS provides a reliable, flexible service for

the asynchronous exchange of critical business data and events throughout an

enterprise.

Refer to the Java Message Service documentation and the Java Message Service

specification available from Javasoft at the following site for more information on

JMS:

http://www.javasoft.com/products/jms

1 The Oracle Message Broker implements the JMS specification with some restrictions, and
with limitations based on the selected driver. The Oracle Message Broker Release Notes, and
Chapter 7, "Message Servers and Drivers" describe JMS features, limitations, and
restrictions. When we refer to the Oracle Message Broker implementation of JMS or refer to
the Oracle Message Broker as a JMS provider throughout this guide, we acknowledge
these limitations.
1-2 Administration Guide

Oracle Message Broker Components
Oracle Message Broker Components
The Oracle Message Broker consists of the following components:

■ Oracle Message Broker Core

■ Drivers and Message Servers

■ Administrative Components

■ Client Programming Interface

Figure 1–1 shows the Oracle Message Broker’s important components.

Figure 1–1 Oracle Message Broker Architecture
Introduction 1-3

Oracle Message Broker Components
Oracle Message Broker Core
The Oracle Message Broker Core is a JMS provider1. A JMS provider implements

the JMS API that allows you to use JMS for messaging in the enterprise, with one or

more Oracle Message Brokers communicating and coordinating message

transmission. The Oracle Message Broker Core provides:

■ Support for pushing messages to clients

■ Polling of message servers that do not support notification

■ Handling of certain administrative tasks

■ Multiplexing JMS clients onto the underlying message servers

The Oracle Message Broker Core also communicates with message servers using a

standard driver interface that is transparent to client applications.

Drivers and Message Servers
Oracle Message Broker drivers provide access to proprietary message servers.

Message servers manage and store messages. Drivers also coordinate message

translation to native storage formats. Native storage formats are the formats that

messages are stored in on a message server, when the message server does not

directly support JMS.

Table 1–1 shows the drivers that support message servers in Oracle Message Broker.

1 The Oracle Message Broker implements the JMS specification with general restrictions, and
with restrictions based on the selected driver. The Oracle Message Broker Release Notes, and
Chapter 7, "Message Servers and Drivers" describe JMS features, limitations, and
restrictions.

Table 1–1 Oracle Message Broker Drivers

Driver Underlying Message Server

Oracle Advanced Queuing
(AQ) Driver

Supports persistent delivery of JMS messages using the Oracle 8i Database with
the Advanced Queuing (AQ) messaging infrastructure.

Oracle AQ Lite Driver Supports persistent delivery of JMS messages using Oracle 8i Lite and the

AQ Lite messaging infrastructure.

Oracle Volatile Driver Provides very fast delivery of JMS messages using lightweight, in-memory,
communication facilities. The Volatile Driver is useful for high throughput of
messages when the messaging system does not require persistent message storage.

MQSeries Driver Supports commercial messaging system based on IBM MQSeries V5.1.
1-4 Administration Guide

Oracle Message Broker Components
Administrative Components
The Oracle Message Broker supports two options for specifying configuration

information for administration:

■ LDAP Directory Configuration

■ Lightweight Configuration

See "Configuration Options" on page 1-10 for a summary of the features of the

configuration options.

The configuration information for an LDAP Directory is modified using the

administrative utilities. See "Administration and Monitoring Utilities" on page 1-8

for information on the Oracle Message Broker utilities.

What is an OMB Instance
An OMB Instance defines the configuration information used by an active process

running the Oracle Message Broker (an instance of the Oracle Message Broker). The

configuration information is stored, either in the form of LDAP Directory entries or

using the Lightweight configuration facilities. The information that defines an OMB

Instance includes parameters used to configure the Oracle Message Broker process,

the connection factories that JMS clients use to establish a connection with the

Oracle Message Broker, and the configuration information that the Oracle Message

Broker requires to connect to a queue or topic.

Using an LDAP Directory for configuration, the entries that define an OMB instance

are unique for that instance and are not shared by other OMB instances. However,

these entries may contain references to a physical entity that is commonly used by

more than one OMB Instance. For example, from an administrative standpoint,

OMB destinations, including queues and topics, are aliases for an object that is

managed by a message server that stores messages. This allows different OMB

destination objects to refer to the same queue or topic on the message store.

Oracle Multicast Driver Supports very fast delivery of JMS messages using lightweight, multicast
communication facilities. The Multicast Driver uses the Oracle Application Server
Multicast Communication libraries.

TIBCO Driver Provides very fast delivery of transient messages based on lightweight multicast
communication facilities.The TIB/Rendezvous (TIBCO) Driver is based on
TIB/Rendezvous Release 5.x, or TIB/Rendezvous Pro Release 5.x.

Table 1–1 (Cont.) Oracle Message Broker Drivers

Driver Underlying Message Server
Introduction 1-5

Oracle Message Broker Components
Client Programming Interface
The Oracle Message Broker client programming interface lets client programs

communicate with the Oracle Message Broker. The Oracle Message Broker supports

the following client programming interfaces:

■ The JMS API for Java program access (see Chapter 3, "JMS Programming" for

more information on this client programming interface)

■ A C++ API that is similar to the JMS API (see Chapter 9, "Oracle Message

Broker C++ API" for more information on this client programming interface)

■ PL/SQL Operational Interface

PL/SQL Operational Interface
The Oracle Message Broker provides an AQ Driver specific PL/SQL package. The

PL/SQL package is an easy to use mechanism for enqueueing and dequeueing JMS

messages directly to and from Oracle AQ queues. The Oracle AQ queue used for

this purpose needs to be created using the Oracle Message Broker administrative

utilities. The PL/SQL package eliminates the need for PL/SQL applications

running within the Database Server to use the JMS Java or C++ client interfaces to

pass messages to and from Oracle AQ queues.

A message placed on an Oracle AQ queue using the PL/SQL package can be

propagated between Oracle Message Brokers, or to any of the supported Oracle

Message Broker drivers, including the following drivers: Oracle Volatile, IBM

MQSeries, TIB/Rendezvous, or Oracle Multicast.

Legacy applications written in PL/SQL can easily be integrated using the Oracle

Message Broker and the PL/SQL package. This deployment option supports the

following environments:

■ Developers using PL/SQL

■ A hub and spoke architecture where the hub is based on AQ and PL/SQL

The following list includes some of the advantages of using the PL/SQL package:

■ Only two PL/SQL subroutines are necessary to either enqueue or dequeue a

message

■ Efficiency – enqueues and dequeues are performed within the context of the

Database Server using PL/SQL

■ Support for advanced features – including propagation and message selection,

are available through the Oracle Message Broker
1-6 Administration Guide

Oracle Message Broker Features
Refer to "Using the PL/SQL Operational Interface" on page 5-7 for more

information on the PL/SQL operational interface.

Oracle Message Broker Features
The Oracle Message Broker provides a complete set of messaging features.

Table 1–2 lists some of the Oracle Message Broker features.

Table 1–2 Oracle Message Broker Features

Feature Description

JMS publish/subscribe
model

The publish/subscribe model is a development and deployment model well
suited for integrating loosely-coupled applications. Using the publish/subscribe
model, subscribers specify their interest in messages using content-based topics.

JMS point-to-point (PTP)
model

The Oracle Message Broker supports the point-to-point messaging model. This
model is useful for message delivery to a single destination.

Persistent JMS Delivery
Mode

The Oracle AQ Driver, the AQ Lite Driver, and the IBM MQSeries Driver
support persistent message delivery. Using persistent message delivery, the
Oracle Message Broker leverages Oracle AQ, Oracle AQ Lite, or IBM MQSeries
to log messages to stable storage as part of the message-send operation. This
insures that messages are not lost during message propagation, or in the event of
system failures.

Non-persistent Delivery
Mode

Non-persistent delivery mode is supported for Volatile, Multicast,
TIBCO/Rendezvous, and MQSeries drivers. A Non-persistent message is
handled with an at-most-once delivery guarantee.

Volatile Queues Volatile queues offer the following benefits:

■ High speed transaction processing

■ A Transient state with a short lifetime – messages are kept for the duration
of an active Oracle Message Broker

■ Low overhead – the maintenance infrastructure for recoverability and
persistence is not required

■ Flexibility – can be used for both transaction oriented processing and
inter-process communication

Scalability The service oriented approach combined with excellent thread management
provides an inherently scalable architecture. The Oracle Message Broker can
push messages to clients with a connection required only for the duration of the
delivery of the message. Supporting push based clients, a single Oracle Message
Broker can support a large number of clients.
Introduction 1-7

Administration and Monitoring Utilities
Administration and Monitoring Utilities
This section introduces the utilities for managing the Oracle Message Broker. These

utilities include:

■ Command Line Tools

■ Graphical User Interface

■ Performance Monitoring Service

Oracle Message Broker
Interoperability

Provides a rich messaging mechanism, in terms of both message type and
models, over widely adopted message queuing systems. This feature protects
corporate investments by leveraging existing messaging systems.

Users can write their API code once, and deploy it over several messaging
systems. The Oracle Message Broker is designed to provide a functionally rich
messaging model over a number of industry queuing systems, including:

■ Oracle Advanced Queuing

■ Oracle AQ Lite

■ IBM MQSeries

■ TIBCO Rendezvous

Integrated drivers for these queuing systems ensure a base level of transparency
over any given queuing system.

Platform Independence Allows communication to a wide variety of operating system platforms. The
Oracle Message Broker can talk to any of its supported messaging systems on
several supported heterogeneous platforms.

Industry Standard
Programming Interface

Adherence to the JMS specification provides a standards based approach, with
minimal complexity.

Table 1–2 (Cont.) Oracle Message Broker Features

Feature Description
1-8 Administration Guide

Administration and Monitoring Utilities
Command Line Tools
The Oracle Message Broker includes the following administration and monitoring

utilities:

■ A command line tool, AdminUtil for Oracle Message Broker administration

This connects to an LDAP Directory and allows an administrator to create,

delete, and manage Oracle Message Broker configuration information. The

command operates in either interactive mode or batch mode. In interactive

mode an administrator enters commands at an input prompt. In batch mode the

utility processes files containing stored commands

■ A command line tool, AdminDirCheck , for checking and validating Oracle

Message Broker directory entries. This performs basic validation for Oracle

Message Broker configuration data. It checks and validates Oracle Message

Broker entries stored in the LDAP Directory.

■ A command line tool, Migrate10To20 , for migrating Oracle Message Broker

directory entries from older versions.

Graphical User Interface
The Oracle Message Broker provides an easy to use Graphical User Interface (GUI)

that allows an administrator to modify administrative entries stored in the LDAP

Directory. The GUI helps an administrator set up an Oracle Message Broker and

provides a view of an active Oracle Message Broker’s configuration. Using the GUI,

an administrator can easily view, create, delete, and manage Oracle Message Broker

configuration information.

Performance Monitoring Service
Oracle Message Broker optionally can collect performance metrics so that an

administrator can dynamically monitor system performance. The Oracle Message

Broker performance metrics are available using the Dynamic Monitoring Service

(DMS). The Oracle Message Broker includes a command line tool to save DMS

metrics. Refer to Chapter 6, "Oracle Message Broker Extensions" for more

information on working with the performance monitoring information.
Introduction 1-9

Oracle Message Broker Deployment Options
Oracle Message Broker Deployment Options
This section summarizes the deployment options available for running the Oracle

Message Broker. The available configuration options are:

■ Using LDAP Directory Configuration

■ Using Lightweight Configuration

In addition, there are two operation modes for the Oracle Message Broker:

■ Local Mode

■ Remote Mode

There are four possible deployment options for an Oracle Message Broker

application:

1. Using the LDAP Directory in Local Mode.

2. Using the LDAP Directory in Remote Mode.

3. Using Lightweight Configuration in Local Mode.

4. Using Lightweight Configuration in Remote Mode.

Choosing from these four available options for running the Oracle Message Broker,

it is up to you to select the option that best meets your needs.

Configuration Options
Selecting a configuration option for the Oracle Message Broker allows you to choose

between the following:

■ Using LDAP Directory Configuration

■ Using Lightweight Configuration

Using LDAP Directory Configuration
Using an LDAP Directory for administrative information allows for an open,

standards based access protocol for system management and configuration. LDAP

Directory configuration requires an LDAP Directory installation and the directory

must be configured for operation with Oracle Message Broker. This configuration
1-10 Administration Guide

Oracle Message Broker Deployment Options
option provides location independence for Oracle Message Broker configuration

information. LDAP Directory configuration also provides the following:

■ Configuration files do not need to be stored locally

■ A scripting language is available to modify configuration data

■ A GUI is provided to modify configuration data

■ Dynamic updates to configuration data are supported for Oracle Message

Broker executing in Remote Mode

■ Provides security services, including access control

■ Support for Oracle Message Broker Propagation

■ Provides location independence for Oracle Message Broker clients to access

remote Oracle Message Brokers

■ Supports durable storage of durable subscribers and message selectors for

durable subscribers.

For more information on configuration using an LDAP Directory, refer to Chapter 4,

"Administration".

Using Lightweight Configuration
With lightweight configuration, the Oracle Message Broker reads configuration

information from a file or from Java properties when it begins its execution. The

Oracle Message Broker configuration information specifies the names and

configuration options for all administrative objects, such as the names and types of

JMS destinations (topics or queues). Lightweight configuration provides the

following:

■ Simple configuration using either Java properties or a stored information from a

configuration file.

■ Lightweight configuration does not require an LDAP Directory.

■ Methods for starting the AQ Driver using minimal configuration options, by

providing only a since a service name, a username, and a password.

■ Better availability (a running LDAP server available is not required).

For more information on configuration using an Lightweight Configuration, refer to

Chapter 13, "Lightweight Configuration".
Introduction 1-11

Oracle Message Broker Deployment Options
Operation Modes
The Oracle Message Broker allows you to choose between the following operation

modes:

■ Local Mode

■ Remote Mode

Local Mode
A Local Mode Oracle Message Broker runs within the same process as the Oracle

Message Broker client. When running in local operation mode, the Oracle Message

Broker uses local procedure calls to interact with the Oracle Message Broker client

(the Local Mode Oracle Message Broker does not start an ORB). Thus, in Local

Mode, Oracle Message Broker clients can use ORBs for their own purposes.

Operation in Local Mode has the following characteristics:

■ Performance is usually better when running in Local Mode. In Local Mode the

Oracle Message Broker client requests do not have to pass through a separate

process to access drivers, including Oracle AQ, MQSeries, or another driver.

■ Availability is easier to manage in Local Mode. There is no need to keep a

separate Oracle Message Broker process available.

■ The Volatile Driver is of limited use in Local Mode. The Volatile Driver is more

useful in Remote Mode when different clients can connect to the Oracle

Message Broker and use the Volatile Driver as a destination separate from the

client (in Local Mode, clients can only access the Oracle Message Broker within

a single process, and all clients must run within the same process).

■ Oracle Message Broker Propagation is not supported in Local Mode.

■ If the security service is used within a Local Mode Oracle Message Broker, an

Oracle Message Broker developer can write code that changes any decisions

made by the security service.

For more information on Local Mode, refer to "Running in Local Mode" on page 5-8.

Remote Mode
A Remote Mode (Non-Local Mode) Oracle Message Broker communicates with

Oracle Message Broker clients using IIOP. A Remote Mode Oracle Message Broker

runs in a separate process from Oracle Message Broker clients. However, it is

possible to run a Remote Mode Oracle Message Broker in the same process and

communicate using IIOP.
1-12 Administration Guide

Oracle Message Broker Deployment Options
Operation in Remote Mode has the following characteristics:

■ Remote Mode Oracle Message Brokers support Oracle Message Broker

Propagation.

■ Remote Mode Oracle Message Brokers support the security service for access

control.

■ A Remote Oracle Message Broker can be configured to start the AQ Driver with

a Database Server password that the Oracle Message Broker administrator does

not want to expose to Oracle Message Broker clients.

■ If Oracle Message Broker clients use a Remote Mode Oracle Message Broker to

access Oracle AQ, then they will only be able to access Oracle AQ in a manner

that is authenticated and authorized by the security service. That is, these

clients will only not be able to use the Database Server username/password for

general purpose Database Server access.

■ Oracle Message Broker clients that use the Volatile Driver are most useful when

running the Oracle Message Broker in Remote Mode.

For more information on Remote Mode, refer to "Running in Remote Mode" on

page 5-14.
Introduction 1-13

Oracle Message Broker Deployment Options
1-14 Administration Guide

Quick
2

Quick Start

Oracle Message Broker provides sample administration scripts and sample

programs that allow you to quickly set up and use the system. By editing the

sample scripts you can customize the system for your needs.

This chapter assumes that you have installed the Oracle Message Broker and that

you have access to an LDAP Directory that has been updated to support the Oracle

Message Broker. Refer to the Oracle Message Broker Installation Guide for information

on installing these components.

This chapter covers the following:

■ Working with the Administration Utilities

■ Verifying Directory Contents

■ Starting and Stopping the Oracle Message Broker

■ Running the JMS Sample Programs

Note: This chapter provides a quick start guide for the steps

required to operate the Oracle Message Broker in Remote Mode

(Non-Local Mode). For information on using the Oracle Message

Broker in Local Mode, refer to "Running in Local Mode" on

page 5-8.
 Start 2-1

Working with the Administration Utilities
Working with the Administration Utilities
This section shows you how to use the sample administration scripts to create

Oracle Message Broker administrative objects. Oracle Message Broker stores

administrative objects as entries in an LDAP Directory. See Chapter 4 for detailed

information on the organization of the LDAP Directory.

The Oracle Message Broker retrieves configuration information from the LDAP

Directory and uses the directory to locate and set parameters for destinations,

message servers, and for other administrative tasks. Client programs also use the

directory to locate the Oracle Message Broker and to find destinations for messages.

If you are setting up the Oracle Message Broker, you need to create an OMB

Instance and create entries for your destinations and message servers. To perform

these administration tasks you can use AdminUtil with the sample administration

scripts shown in this chapter, or you can use the Oracle Message Broker Graphical

User Interface. The Oracle Message Broker Graphical User Interface provides

wizards for creating OMB Instances and other required entries. For information on

using ombadmin , see Chapter 11, "Administration GUI".

Overview of the Sample Administration Scripts
The Oracle Message Broker sample administration scripts allow you to quickly

create required administrative entries in the directory and set up Oracle Message

Broker queues and topics. You can use these scripts as they are or customize them

for your needs. Before working with the sample scripts, determine which drivers

you need to use for your queues or topics (see Chapter 7, for more information on

drivers). The Oracle Message Broker includes the following drivers:

■ Oracle Advanced Queuing (AQ) Driver

■ Oracle AQ Lite Driver

■ IBM MQSeries Driver

■ Oracle Volatile Driver

■ Oracle Multicast Driver

■ TIBCO/Rendezvous Driver

Note: The Oracle Message Broker also supports lightweight

configuration for administration without using an LDAP Directory

Refer to Chapter 13 for information on lightweight configuration.
2-2 Administration Guide

Working with the Administration Utilities
Table 2–1 lists the sample scripts (these are in $OMB_HOME/samples/admin or

%OMB_HOME%\samples\admin on Windows NT systems.)

The sample scripts include comments that explain the entries and attributes. If you

need to modify a script, copy it and then modify the copy. You can create directory

entries for Oracle Message Broker by running AdminUtil using the sample scripts.

Using the Oracle Message Broker Instance Configuration Script
The SetupOMB script creates an Oracle Message Broker Instance (OMB Instance)

and the required top level directory entries. An OMB Instance contains the

administrative objects, as directory entries, required for an administrator to start or

modify an Oracle Message Broker. The SetupOMB script also sets values for several

required attributes. To execute the SetupOMB script, perform the following steps

(this assumes that $OMB_HOME is set to the Oracle Message Broker installation

directory):

1. Set the environment for your system:

On Unix with the Bourne or Korn shell:

$. ./$OMB_HOME/bin/ombenv.sh

or with the C-Shell environment:

% source $OMB_HOME/bin/ombenv.csh

Table 2–1 Sample Administration Scripts

Script Description

SetupOMB Creates all the basic entries needed to set up an OMB Instance.

SetupACI Creates entries required for ACI.

SetupAQ Creates the entries needed to set up an Oracle AQ queue and topic.

SetupAQLite Creates the entries needed to set up an Oracle AQ Lite queue and topic.

SetupMQSeries Creates the entries needed to set up an MQSeries queue.

SetupMcast Creates the entries needed to set up a Multicast topic.

SetupProp Creates the entries needed to set up a propagation job. This references
several entries created in the SetupOMB, SetupMQSeries, and SetupAQ
scripts. Execute these scripts before SetupProp.

SetupRv Creates the entries needed to set up a TIB/Rendezvous topic.

SetupVol Creates the entries needed to set up Oracle Volatile queues and topics.
Quick Start 2-3

Working with the Administration Utilities
On Windows NT run the batch file:

> C:%OMB_HOME%\bin\ombenv.bat

The Oracle Message Broker installation creates these startup scripts

(ombenv.bat, ombenv.sh, and ombenv.csh).

2. Execute AdminUtil using the SetupOMB script. AdminUtil displays its

progress as it runs.

On Unix:

% cd $OMB_HOME/samples/admin
% AdminUtil -f SetupOMB

On Windows NT:

> cd %OMB_HOME%\samples\admin
> AdminUtil -f SetupOMB

Using the Driver Configuration Scripts
To run the driver sample scripts, perform the following steps:

1. Run the SetupOMB script, (see the section, "Using the Oracle Message Broker

Instance Configuration Script" on page 2-3).

2. Refer to the comments in the driver setup script for information on changes you

can make to customize the script.

3. Execute AdminUtil using the selected script for the driver you want to add.

Run the SetupDriver script, where Driver is one of the following: AQ, AQLite,

Vol, MQSeries, Mcast, or Rv. AdminUtil displays its progress as it executes.

For example, to setup the Oracle Volatile Driver on Unix systems:

Note: AdminUtil prompts for an authentication DN and

password. In addition, when the SSL level is set to 2 or 3, it

prompts for the SSL wallet location and password (the default SSL

level is 0). You can enter these parameters either at the prompt, or

on the command line. See Chapter 12 for information on Security.

Table 4–27 contains a complete list of AdminUtil command line

options.
2-4 Administration Guide

Verifying Directory Contents
% AdminUtil -f SetupVol

On Windows NT systems, run the command:

> AdminUtil -f SetupVol

Using the Propagation Configuration Script
The propagation job sample script sets up a propagation job for transferring

messages between targets. See Chapter 7 for more information on propagation and

propagation jobs. To run the propagation sample script, perform the following

steps:

1. Run the SetupOMB script, (see the section, "Using the Oracle Message Broker

Instance Configuration Script" on page 2-3).

2. Run the Setup driver scripts for the drivers you need to support, (see the

section, "Using the Driver Configuration Scripts" on page 2-4).

3. Refer to the comments found in the SetupProp script for information on

changes you need to make to customize the script.

4. Execute AdminUtil using the SetupProp script for the queues or topics that

you want to propagate. AdminUtil displays its progress as it executes.

On Unix:

% AdminUtil -f SetupProp

On Windows NT:

> AdminUtil -f SetupProp

Verifying Directory Contents
Use the Oracle Message Broker Manager to view the contents of the directory and

verify that the entries you created are in the directory. The command to start the

Oracle Message Broker Manager is:

% ombadmin

When you view your OMB Instance using the Oracle Message Broker Manager, you

can verify your configuration entries.
Quick Start 2-5

Starting and Stopping the Oracle Message Broker
You can also use AdminDirCheck to validate entries. Refer to "Checking Directory

Entries with AdminDirCheck" on page 4-64 for information on AdminDirCheck .

Starting and Stopping the Oracle Message Broker
After creating the administrative entries using the setup scripts, execute the

MsgBroker command with the -start option to start the Oracle Message Broker.

Table 2–2 shows the MsgBroker command line options. Use the MsgBroker
command as follows:

On Unix:

% MsgBroker -omb RDN [options] &

On Windows NT:

> MsgBroker -omb RDN[options]

where RDN is:

For example, to start the Oracle Message Broker using the RDN, cn=msg_
Broker,cn=your_Inst,cn=OMB , use the following command:

On Unix:

% MsgBroker -omb cn=msg_Broker,cn=your_Inst,cn=OMB -start &

On Windows NT:

> MsgBroker -omb cn=msg_Broker,cn=your_Inst,cn=OMB -start

For more information on starting the Oracle Message Broker, see "The msg_broker

Entry and Distinguished Names" on page 2-9.

You can also start the Oracle Message Broker in Local Mode without using the

MsgBroker command. For information on starting the Oracle Message Broker in

Local Mode, refer to "Running in Local Mode" on page 5-8.

RDN the relative distinguished name, RDN, for the message broker entry

(for more information on distinguished names and LDAP, refer to

Chapter 4).
2-6 Administration Guide

Starting and Stopping the Oracle Message Broker
Table 2–2 MsgBroker Command Options

Option Description

–D auth_dn The auth_dn supplies the DN to use for user name authentication.

–errorlevel level Set the error reporting level. The parameter level is set to an integer value in the range
1-4:

1 – print error message for the top exception

2 – print error messages for all linked exceptions

3 – print stack trace for the top exception

4 – print stack trace for all linked exceptions

The default value for errorlevel is 2.

–fullVersion Displays the full program version information.

–heap size Supplies a heap size to the specified, size, in Megabytes. This sets the size of the JVM
heap used by the Oracle Message Broker process.

–noauth Specifies that LDAP authentication is not required on the LDAP server.

–omb RDN Specifies the relative distinguished name, RDN, for the message broker entry (for more
information on distinguished names and LDAP, refer to Chapter 4). The RDN must be
enclosed in quotes on Windows NT systems.

–P wallet_password Specifies the wallet password. This is ignored if the value of –U is 0 or 1.

–ping Displays the status of the specified Oracle Message Broker. The status message indicates
if the Oracle Message Broker is running. The MsgBroker command returns 0 if the
MsgBroker is running. Otherwise, the MsgBroker command returns non-zero if the
MsgBroker cannot be contacted. This option is not available for Local Mode operation.

–start Use this option to start the specified MsgBroker .

–stats format Produces a DMS log file containing Oracle Message Broker DMS statistics. The name of
the DMS log file is the same as the associated Oracle Message Broker log file, prepended
with “dms-”. Refer to "Collecting Runtime Metrics" on page 6-3 for details on the format
of the DMS log file. The parameter format is set to an integer value in the range 1-4:

1 – dump DMS statistics by appending to the existing log file and use pretty print
format for the data. If the DMS log file does not exist, it is created.

2– dump DMS statistics by appending to the existing log file, do not use pretty print
format for printing the data. If the DMS log file does not exist, it is created.

3 – dump DMS statistics by replacing the existing DMS log file and use pretty print
format for the data.

4 – dump DMS statistics by replacing the existing DMS log file, do not use pretty
print format for printing the data.

This option is ignored when –start or –stop are also specified on the same command-line.
Quick Start 2-7

Starting and Stopping the Oracle Message Broker
If you do not supply the security command line options to MsgBroker , a dialogue

box prompts for a user DN and password. Enter a user DN and password. If the

directory does not use authentication, or if you have set properties to indicate the

user DN and password, leave these fields blank and select the Continue button. If

you select the Exit button, the MsgBroker command exits (for more information

security, refer to Chapter 12, "Security").

If –w is specified without –D, then a dialogue box prompts for the user DN.

If –D is specified without –w, then a dialogue box prompts for the user password

associated with the DN supplied with the –D.

If –noauth is specified, the –D and -w options are ignored. If no authentication

properties are defined, the Oracle Message Broker attempts an anonymous bind to

the LDAP Directory.

Authentication and authorization are delegated to the LDAP server. The credentials

required to start the Oracle Message Broker are those required for updating Oracle

Message Broker entries.

–stop Using this option to shutdown the specified MsgBroker.

–U value Specifies if SSL is used, and the authentication level. Valid values are: 0, 1, 2, and 3.

0 – no SSL. This is the default if –U is not specified.

1 – SSL with no authentication.

2 – SSL with server-side authentication.

3 – SSL with server-side and client-side authentication.

–version Displays the program version number.

–w auth_passwd Supplies a password, auth_passwd, for authentication on the LDAP server.

–W wallet_path Specifies the path to an exported wallet file. This is ignored if the value of –U is 0 or 1.

Table 2–2 (Cont.) MsgBroker Command Options

Option Description
2-8 Administration Guide

Starting and Stopping the Oracle Message Broker
The msg_broker Entry and Distinguished Names
Starting and stopping the Oracle Message Broker using the MsgBroker command

requires that you enter a RDN for a msg_broker entry. For example:

% MsgBroker -start -omb cn=msg_Broker,cn=your_Inst,cn=OMB

Where the RDN for the message broker entry is:

cn=msg_Broker,cn=your_Inst,cn=OMB

In this example, the full DN for the msg_Broker entry is the relative distinguished

name shown above, plus the following:

cn=Products,cn=OracleContext,ou=sales,o=oracle,c=us

The Oracle Message Broker installer writes several distinguished name components

to the startup scripts, including: the country, c=, the organization, o=, and the

organizational unit, ou=. These scripts set environment variables that the

MsgBroker command uses to start the Oracle Message Broker. Oracle standards

specify the following entries:

cn=OMB,cn=Products,cn=OracleContext

The initial naming context is the top level component of the full message broker

DN. For example, in the sample above, the initial naming context is:

cn=Products,cn=OracleContext,ou=sales,o=oracle,c=us

The OMB_IC environment variable, that the MsgBroker command uses contains

the initial context. This variable is set in the startup scripts: ombenv.bat,

ombenv.csh, and ombenv.sh (see "Using the Oracle Message Broker Instance

Configuration Script" on page 2-3 for information on these scripts).

Note: The MsgBroker command, with the –omb option fails with

an “unexpected error: entry not found ” when a full DN

is supplied rather than a RDN for the message broker entry.
Quick Start 2-9

Starting and Stopping the Oracle Message Broker
Required Environment Variables
Oracle Message Broker clients, and the MsgBroker command require the

environment variables, OMB_EF, OMB_IC, OMB_LP, and OMB_OF. The ombenv

scripts define the values for these environment variables (for more information on

the ombenv scripts, see "Using the Oracle Message Broker Instance Configuration

Script" on page 2-3). Table 2–3 shows the required environment variables.

Stopping the Oracle Message Broker
The Oracle Message Broker command MsgBroker -stop executes a shutdown of

all drivers, connections, and open transactions. To shut down the Oracle Message

Broker and stop the system, issue the command:

On Unix:

% MsgBroker -omb RDN -stop &

On Windows NT:

> MsgBroker -omb RDN-stop

Where the value RDN is the relative distinguished name (RDN) for the message

broker entry of the active Oracle Message Broker.

For example:

% MsgBroker -omb cn=msg_broker,cn=your_Inst1,cn=OMB -stop

If you do not supply the security command line options to MsgBroker , a dialogue

box prompts for a user DN and password. Enter a user DN and password. If the

Table 2–3 Oracle Message Broker Environment Variables

Variable Description

OMB_EF Entry Factory

OMB_IC LDAP Initial Context

OMB_LP LDAP Provider Properties

OMB_OF Object Factory

Note: Stopping the Oracle Message Broker using MsgBroker
with the -stop option can take several seconds, or longer.
2-10 Administration Guide

Starting and Stopping the Oracle Message Broker
directory does not use authentication, or if you have set properties to indicate the

user DN and password, leave these fields blank and select the Continue button. If

you select the Exit button, the MsgBroker command exits (for more information

security, refer to Chapter 12, "Security").

Authentication and authorization are delegated to the LDAP server. The credentials

required to stop the Oracle Message Broker are those required for updating Oracle

Message Broker entries.

You can also stop the Oracle Message Broker when it is running in Local Mode. For

information on using the Oracle Message Broker in Local Mode, refer to "Running

in Local Mode" on page 5-8.

Checking the Status of the Oracle Message Broker
Use the –ping option to MsgBroker to check if an Oracle Message Broker is

available. Table 2–2 shows the MsgBroker command line options, including the

–ping option. To check the status of the Oracle Message Broker, use the

MsgBroker command as follows:

On Unix:

% MsgBroker -ping -omb RDN [options]

On Windows NT:

> MsgBroker -ping -omb RDN[options]

where RDN is:

If the specified Oracle Message Broker is available, MsgBroker displays the

following message and returns with a 0 return value:

Broker answered

RDN the relative distinguished name, RDN, for the message broker entry

that you want to check the status for (for more information on

distinguished names and LDAP, refer to Chapter 4).

Note: Status checking using MsgBroker with the –ping option is

not available for Local Mode.
Quick Start 2-11

Running the JMS Sample Programs
If the specified Oracle Message Broker is not available, MsgBroker displays the

following message and returns with a non-zero return value:

Broker unreachable

Running Oracle Message Broker as an NT Service
When running on Windows NT systems with Java 1.2, the Oracle Message Broker

can be installed as a service that can be started automatically when the system starts

up. To start Oracle Message Broker as a service, use the command:

%OMB_HOME%\bin\Register options

Where, options are the same as available for the MsgBroker command (Table 2–2

shows the MsgBroker command line options). For example, the following

command registers an Oracle Message Broker instance as a service:

> Register -noauth -omb cn=msg_broker,cn=testomb,cn=OMB -start

Note that only one instance of Oracle Message Broker can be started as a service per

system. Before running the register command, set the default JVM for the system to

the JVM installed by Oracle Message Broker. In addition, the default PATH

environment variable for the system must contain %OMB_HOME%\jdk\bin,

%OMB_HOME%\bin, and %OMB_HOME%\..\..\orb\bin.

To unregister a previously registered Windows NT service, use the command:

%OMB_HOME%\bin\Unregister

Running the JMS Sample Programs
The $OMB_HOME/samples/client/java/queue directory contains sample

programs for sending and receiving messages (on Windows NT systems, the

directory is, %OMB_HOME%\samples\client\java\queue). Sample programs for

publishing and subscribing using JMS topics are in the directory $OMB_

HOME/samples/client/java/topic (on Windows NT systems, %OMB_

HOME%\samples\client\java\topic). The Readme files in these directories provide

information on compiling and running the sample programs.

All Java client programs should include the environment variables shown in

Table 2–3 on the Java command line. These environment variables set values that

allow the Oracle Message Broker to run.
2-12 Administration Guide

JMS Program
3

JMS Programming

This chapter covers information about programming using the Oracle Message

Broker and the JMS API. The following sections describe basic JMS programming

using both JMS messaging domains, point-to-point (PTP), and publish/subscribe

(Publish/Subscribe). Most client applications use only one of these JMS messaging

domains.

This chapter covers the following:

■ Deployment Options for an Oracle Message Broker Application

■ Programming Roadmap (Using an LDAP Directory)

■ Accessing Objects in the Directory

■ Point-to-Point Messaging

■ Publish/Subscribe Messaging

■ Message Listeners and Threads

■ Closing JMS Objects and Death Detection

■ Setting the Message Priority
ming 3-1

Deployment Options for an Oracle Message Broker Application
Deployment Options for an Oracle Message Broker Application
There are four deployment options for an application, including:

1. Using the LDAP Directory with a Local Mode Oracle Message Broker

2. Using the LDAP Directory with a Remote Mode Oracle Message Broker

3. Using Lightweight Configuration with a Local Mode Oracle Message Broker

4. Using Lightweight Configuration with a Remote Mode Oracle Message Broker

Using each of these configuration and deployment options, an Oracle Message

Broker application must perform the following tasks:

1. Obtain a connection factory instance.

2. Obtain a destination instance for a topic or a queue.

3. Cleanup and shutdown.

This chapter covers the methods you need to use to perform these tasks using an

LDAP Directory and either Local Mode or Remote Mode (Non-Local Mode).

Chapter 13, "Lightweight Configuration" covers the details for the application

programming tasks using Lightweight Configuration.

Programming Roadmap (Using an LDAP Directory)
This section describes JMS programming using the Oracle Message Broker.

Figure 3–1 shows the standard JMS client programming steps when using the

LDAP Directory configuration option in Remote Mode. This section explains JMS

programming for both Local Mode and Remote Mode.

Note: Using Local Mode or Remote (Non-Local Mode), the

commands you use to start and stop the Oracle Message Broker

differ. Refer to "Starting and Stopping the Oracle Message Broker"

on page 2-6 for information on starting and stopping the Oracle

Message Broker.
3-2 Administration Guide

Programming Roadmap (Using an LDAP Directory)
The steps a JMS client program executes to access and use the Oracle Message

Broker are as follows:

1. Use JNDI to lookup and create a Connection Factory. Refer to "Accessing Objects

in the Directory" on page 3-4 for more information.

2. Use JNDI to lookup a Destination. Refer to "Accessing Objects in the Directory"

on page 3-4 for more information.

3. Create and start a Connection using the connection factory. Refer to "Creating

and Starting a Queue Connection" on page 3-9 for PTP messaging or "Creating

and Starting a Topic Connection" on page 3-14 for Publish/Subscribe

messaging.

4. Use the new connection to create a Session. Refer to "Getting a Queue Session"

on page 3-10 for PTP messaging or "Getting a Topic Session" on page 3-15 for

Publish/Subscribe messaging.

5. (Optional) When JNDI is not used to lookup a destination, you can use the

session to create a Destination. Refer to "Working with Queue Destinations -

QueueSender and QueueReceiver" on page 3-11 for PTP messaging or "Working

with Topic Destinations - TopicPublisher and TopicSubscriber" on page 3-15 for

Publish/Subscribe messaging.

6. Create and handle messages. This step differs depending on the needs of the

client. Clients may need to create messages or to consume them, or both. In a

PTP messaging system, this step involves sending and receiving messages

along with any other required conversions or processing. In a

Publish/Subscribe messaging system, this step involves publishing messages,

receiving messages, and subscribing to topics. Refer to "Sending and Receiving

Messages" on page 3-11 for PTP messaging or "Publishing and Subscribing" on

page 3-16 for Publish/Subscribe messaging.

7. Finally, when clients finish, they need to cleanup and shutdown.

Refer to "Shutting Down" on page 3-12 for PTP messaging or "Shutting Down

(Publish/Subscribe)" on page 3-17 for Publish/Subscribe messaging.
JMS Programming 3-3

Accessing Objects in the Directory
Figure 3–1 JMS Client Programming Steps (using an LDAP Directory)

Accessing Objects in the Directory
JMS clients obtain Oracle Message Broker administrative information from an

LDAP Directory. Using JMS, clients find administrative objects by looking them up

using JNDI. Oracle Message Broker clients follow this convention when the

configuration mode uses the LDAP Directory. In this mode, the Oracle Message

Broker uses the LDAP Directory to store administrative information, including the

administrative objects for both PTP and Publish/Subscribe messaging.

The Oracle Message Broker also supports domain-specific methods for creating

destinations dynamically. Dynamically created destinations do not use the LDAP

Directory (see "Creating Destinations" on page 6-10 for more details). Dynamic

destinations are intended for use by advanced clients for specialized applications.

Using PTP messaging, client programs that send or receive messages need to obtain

the following from the directory:

■ A QueueConnectionFactory

■ A Queue
3-4 Administration Guide

Accessing Objects in the Directory
Similarly, using Publish/Subscribe messaging, client programs need to obtain the

following from the directory:

■ A TopicConnectionFactory

■ A Topic

Accessing Objects for Point-to-Point Messaging
Before you use JMS for PTP messaging, the administrator needs to create certain

administrative objects (see Chapter 2 for information on creating administrative

objects). After creating the administrative objects and starting the Oracle Message

Broker, a client program obtains and uses the information stored in the directory to

initialize a connection with the Oracle Message Broker.

Accessing the Connection Factory with JNDI (for Point-to-Point)
A JMS client that sends or receives messages needs to create a queue connection

factory. The client uses the queue connection factory to create a connection with the

Oracle Message Broker.

To access the connection factory, the administrator creates a directory entry for the

queue connection factory. The client uses the JMS API, and the connection factory

that it obtains from the directory lookup to establish a connection with an active

Oracle Message Broker. The Oracle Message Broker also supports a JMS extension

for a connection factory that supports creating topic and queue connections (see

"Universal Connections and Universal Sessions" on page 6-16 for more

information).

The following code shows the JNDI lookup for accessing a connection factory:

 SimpleSession(DirContext initCtx, String cfDn)
 {
 QueueConnectionFactory queueConnectionFactory;
 try
 {

queueConnectionFactory = (QueueConnectionFactory)
 initCtx.lookup(cfDn);
 if (queueConnectionFactory == null)
 {
 System.out.println("Lookup object returned null");
 System.exit(-1);
 }

}catch () { }
 }
JMS Programming 3-5

Accessing Objects in the Directory
As is the example above, to obtain a QueueConnectionFactory instance, the

client program uses a JNDI lookup on a connection factory entry in the LDAP

Directory.

Remote Mode Connection Factory Support The Oracle Message Broker’s JNDI support

code obtains the IOR of a remote mode Oracle Message Broker process from an

LDAP Server. The Oracle Message Broker client side runtime uses the IOR to

communicate with the remote mode Oracle Message Broker using IIOP.

Note the following limitations when obtaining the QueueConnectionFactory
instance:

■ It is possible that the Oracle Message Broker process associated with the IOR

stored in the LDAP Directory has died.

■ It is possible that several Oracle Message Brokers have been started and written

their IORs into the same directory entry. In this case, the last IOR written is

retrieved.

Local Mode Connection Factory Support Obtains a connection factory instance using a

JNDI lookup on a connection factory entry in the LDAP Directory. Oracle

Message Broker’s JNDI support code either starts an Oracle Message Broker

within the Oracle Message Broker client process or obtains a handle to a

previously started Oracle Message Broker within the Oracle Message Broker

client process in the process before the lookup returns.

Accessing the Queue with JNDI (for Point-to-Point)
You can obtain instances of javax.jms.Queue using JNDI lookups on destination

directory entries. The administrator creates the queue entries and queues that a

client JMS program uses to specify, and that the Oracle Message Broker uses to

determine where to store messages. A client program that needs to send or receive

messages uses JNDI to locate the queue entry. The JNDI lookup returns a reference

to an object that implements javax.jms.Queue.

The following code shows a queue lookup that creates a javax.jms.Queue object:

queue = (Queue) initCtx.lookup(qDn);
3-6 Administration Guide

Accessing Objects in the Directory
Accessing Objects for Publish/Subscribe Messaging
Before you can use JMS for Publish/Subscribe messaging, the administrator needs

to create certain administrative objects (see Chapter 2 for information on creating

administrative objects). After creating the administrative objects and starting the

Oracle Message Broker, a client program obtains and uses the information stored in

the directory to initialize a connection with the Oracle Message Broker.

Accessing the Connection Factory with JNDI (for Publish/Subscribe)
A JMS client program that publishes messages to a topic, or that subscribes to a

topic, needs to create a topic connection factory. The client uses the topic connection

factory to create a connection with the Oracle Message Broker.

To access the connection factory, the administrator creates a directory entry for the

topic connection factory. The client uses the JMS API, and the connection factory

that it obtains from the directory lookup to establish a connection with an active

Oracle Message Broker. The Oracle Message Broker also supports a JMS extension

for a connection factory that creates topic connections and queue connections (see

"Universal Connections and Universal Sessions" on page 6-16 for more

information).

The following code shows the JNDI lookup for accessing a topic connection factory:

 TopicConnectionFactory topicConnectionFactory;
 try
 {
 topicConnectionFactory = (TopicConnectionFactory)initCtx.lookup(cfDn);
 if (topicConnectionFactory == null)
 {
 System.out.println("Lookup object returned null");
 System.exit(-1);
 }

}catch () { }
}

As is the example above, to obtain a TopicConnectionFactory instance, the

client program uses a JNDI lookup on a connection factory entry in the LDAP

Directory.

Remote Mode Connection Factory Support The Oracle Message Broker’s JNDI support

code obtains the IOR of an Oracle Message Broker process from an LDAP server.

The client program uses the Oracle Message Broker client-side runtime to interact

with an Oracle Message Broker process using IIOP.
JMS Programming 3-7

Point-to-Point Messaging
Note the following limitations when obtaining the TopicConnectionFactory
instance:

■ It is possible that the Oracle Message Broker process associated with the IOR

stored in the LDAP Directory has died.

■ It is possible that several Oracle Message Brokers have been started and written

their IORs into the same directory entry. In this case, the last IOR written is

retrieved.

Local Mode Connection Factory Support In Local Mode, the client program obtains a

connection factory instance using a JNDI lookup on a connection factory entry in

the LDAP Directory. Oracle Message Broker’s JNDI support code either starts an

Oracle Message Broker within the Oracle Message Broker client process or obtains a

handle to a previously started Oracle Message Broker within the Oracle Message

Broker client process in the process before the lookup returns.

Accessing Topics with JNDI (for Publish/Subscribe)
You can obtain instances of javax.jms.Topic are using JNDI lookups on destination

directory entries. The administrator creates the topic entries and queues that a client

JMS program uses to specify and the Oracle Message Broker uses to determine

where to store messages. A client program that needs to publish or subscribe to

messages uses JNDI to locate the topic entry. The JNDI lookup returns a reference to

an object that implements javax.jms.Topic.

The following code shows a topic lookup that creates a topic object:

topic = (Topic) initCtx.lookup(topicDn);

Point-to-Point Messaging
This section describes the programming steps required to send and receive

messages using the JMS PTP methods. The following steps assume that the

administrator has created the queue connection factory and one or more queues,

and that these Oracle Message Broker administrative objects were obtained as

described in "Accessing Objects in the Directory" on page 3-4.
3-8 Administration Guide

Point-to-Point Messaging
This section covers the following:

■ Creating and Starting a Queue Connection

■ Getting a Queue Session

■ Working with Queue Destinations - QueueSender and QueueReceiver

■ Sending and Receiving Messages

Figure 3–2 shows the path of messages for a simple point to point communication

using a single queue.

Figure 3–2 JMS Programming Using the Point to Point Model

Creating and Starting a Queue Connection
Once you obtain a queue connection factory, use it to create a QueueConnection and

use the start method to establish communications with an active Oracle Message

Broker. When you first create the QueueConnection, the connection is stopped.

Note: When the QueueConnection is created, it is in the stopped

mode. When a connection is stopped, consumers cannot receive

messages and calls to receive do not return.
JMS Programming 3-9

Point-to-Point Messaging
The QueueConnection is an active connection to the JMS provider (Oracle Message

Broker). A client uses the QueueConnection to create one or more QueueSessions

for producing and consuming messages.

QueueConnection queueConnection = null;
queueConnection = queueConnectionFactory.createQueueConnection();
queueConnection.start();

The JMS specification contains information that client programs should follow on

the preferred use of the start method. When the QueueConnection is created, it is

in the stopped mode. In general, it is best to leave the connection in the stopped

mode while its sessions are being created, and then use the start method to start

the stopped connection (for more information on conventions for using a session,

see section 4.4.6 of the JMS specification).

Getting a Queue Session
After creating the QueueConnection, the client program needs to create a

QueueSession. A session is single threaded, therefore concurrent operations are not

allowed on a session. The session is used to create destinations for sending or

receiving messages. A single connection can support multiple sessions, each

maintaining its own state. The Oracle Message Broker supports a feature called

Universal Sessions. Universal Sessions support both topic and queue sessions

within a single session. See "Universal Connections and Universal Sessions" on

page 6-16 for more information on Universal Connections.

The following example shows how to create a session using the

createQueueSession method:

QueueSession queueSession = null;
queueSession = queueConnection.createQueueSession(false,

MercurySession.IMMEDIATE_ACKNOWLEDGE);

The first parameter to createQueueSession indicates if the session is transacted.

The parameter’s value is either true or false.

The second parameter to createQueueSession indicates the mode of

acknowledging message receipt (for more information on message

acknowledgment, see section 4.4.13 in the JMS specification and see "Message

Listeners and Threads" on page 3-17).

If the session is transacted, the first parameter to createQueueSession is true,

and the acknowledge mode parameter is ignored. If the session is not transacted,
3-10 Administration Guide

Point-to-Point Messaging
the first parameter to createQueueSession is false, and the acknowledge mode

parameter must be the following:

MercurySession.IMMEDIATE_ACKNOWLEDGE

Working with Queue Destinations - QueueSender and QueueReceiver
Once a session is created, messages can be sent within the session by creating queue

senders, and messages can be received by creating queue receivers. A destination

must be specified when a queue receiver is created.

Creating a QueueSender
Use the QueueSession createSender method to create a QueueSender.

QueueSender sender;
sender = session.createSender(queue);

The createSender method creates an object that can be used to send messages to

a queue. The queue administrative object is obtained as described in "Accessing

Objects for Point-to-Point Messaging" on page 3-5.

Creating a QueueReceiver
Use the QueueSession method createReceiver to create a QueueReceiver for

receiving messages.

QueueReceiver receiver;
receiver = session.createReceiver(queue);

The queue parameter is the queue to receive messages from. The queue

administrative object is obtained as described in "Accessing Objects for

Point-to-Point Messaging" on page 3-5.

Sending and Receiving Messages
Finally, the client program needs to create a message of the desired type and send it

to a queue. The client program that is receiving messages also needs to create a

message.
JMS Programming 3-11

Point-to-Point Messaging
Creating and Sending Messages
This example shows how to create and send a text message. The Oracle Message

Broker and JMS support several message types in addition to a text message.

TextMessage message_out;
message_out = session.createTextMessage();
message_out.setText(“Data”);
sender.send(message_out);

Creating and Receiving Messages
This example shows how to receive a text message.

A client can receive messages either synchronously or have the provider

asynchronously deliver the messages as they arrive. For information on

asynchronous delivery and the message listener interface, see the JMS specification,

section 4.5.2.

The following code shows the use of the QueueReceiver.receive method for

synchronous delivery:

TextMessage message_in;
message_in = session.createTextMessage();
message_in = receiver.receive();
String inData = message_in.getText();

Shutting Down
Client programs run in either Local Mode or Remote Mode (Non-Local Mode). A

client program in either mode needs to shut down when it finishes. Refer to

Chapter 5 for information on Local Mode and Remote Mode clients.

When a client is done with the Oracle Message Broker, it should call

Mercury.shutdownClient() . This shuts down any Oracle Message Brokers

running in Local Mode, and the ORB, if remote Oracle Message Brokers have been

accessed, and performs certain cleanup operations. Clients call this method as

follows:

oracle.oas.mercury.Mercury.shutdownClient()
3-12 Administration Guide

Publish/Subscribe Messaging
After the Oracle Message Broker is shut down, keep the following in mind:

■ The ORB cannot be restarted after it is shut down. Thus a client should not call

Mercury.shutdownClient() and then attempt to access a Remote Mode

Oracle Message Broker by obtaining a connection factory.

Publish/Subscribe Messaging
This section describes the programming steps required to publish messages to a

topic and subscribe to topics to receive messages using the JMS Publish/Subscribe

methods. The following steps assume that the administrator has created the topic

connection factory and one or more topics, and that these Oracle Message Broker

administrative objects were obtained as described in "Accessing Objects in the

Directory" on page 3-4.

This section covers the following:

■ Creating and Starting a Topic Connection

■ Getting a Topic Session

■ Working with Topic Destinations - TopicPublisher and TopicSubscriber

■ Publishing and Subscribing

Figure 3–3 shows the path of messages for a simple Publish/Subscribe model.

Note: The shutdown methods are not part of the JMS

specification. They assist the Oracle Message Broker in cleanup,

and allow clients to exit and cleanup.
JMS Programming 3-13

Publish/Subscribe Messaging
Figure 3–3 JMS Programming Using a Publisher and a Subscriber

Creating and Starting a Topic Connection
Once you obtain a topic connection factory, use it to create a TopicConnection and

use the start method to establish communications with the Oracle Message

Broker. When you first create the TopicConnection, the connection is stopped.

The TopicConnection is an active connection to the provider. A client uses the

TopicConnection to create one or more TopicSessions for producing and consuming

messages.

TopicConnection topicConnection = null;
topicConnection = topicConnectionFactory.createTopicConnection();
topicConnection.start();

The JMS specification contains information that client programs should follow on

the preferred use of the start method. When the TopicConnection is created, it is

in the stopped mode. When a connection is stopped, consumers cannot receive

messages. In general, it is best to leave the connection in the stopped mode while its

sessions are being created, and then use the start method to start the stopped

Note: When the TopicConnection is created, it is in the stopped

mode. When a connection is stopped, consumers cannot receive

messages and calls to receive do not return.
3-14 Administration Guide

Publish/Subscribe Messaging
connection (for more information on conventions for using a session, see section

4.4.6 of the JMS specification.)

Getting a Topic Session
After creating the TopicConnection, the client program needs to create a session. A

session is single threaded, therefore concurrent operations are not allowed on a

session. Subscribers and Publishers are created within the session. A single

connection can support multiple sessions, each maintaining its own state

(transactions, publishers, and subscribers).

The following example shows how to create a session using the TopicConnection’s

createTopicSession method:

TopicSession topicSession = null;
topicSession = topicConnection.createTopicSession(false,

MercurySession.IMMEDIATE_ACKNOWLEDGE);

The first parameter to createTopicSession indicates if the session is transacted.

The parameter value is either true or false.

The second parameter to createTopicSession indicates the mode of

acknowledging message receipt (for more information on message

acknowledgment, see section 4.4.13 in the JMS specification and see "Message

Listeners and Threads" on page 3-17).

If the session is transacted, the first parameter to createTopicSession is true,

and the acknowledge mode parameter is ignored. If the session is not transacted,

the first parameter to createTopicSession is false, and the acknowledge mode

parameter must be the following:

MercurySession.IMMEDIATE_ACKNOWLEDGE

Working with Topic Destinations - TopicPublisher and TopicSubscriber
To publish messages to a topic, create a publisher within a session. To receive

messages from a topic, create a subscriber within a session.

Creating a TopicPublisher
Use the TopicSession method createPublisher to create a TopicPublisher.

TopicPublisher publisher;
publisher = session.createPublisher(topic);
JMS Programming 3-15

Publish/Subscribe Messaging
The topic parameter is the topic to send messages to. The topic administrative

object is obtained as described in "Accessing Objects for Point-to-Point Messaging"

on page 3-5.

Creating a TopicSubscriber
Use the TopicSession method createSubscriber to create a TopicSubscriber.

TopicSubscriber subscriber;
subscriber = session.createSubscriber(topic);

The topic parameter is the topic to subscribe to messages. The topic

administrative object is obtained as described in "Accessing Objects for

Point-to-Point Messaging" on page 3-5.

Publishing and Subscribing
Finally, the client program needs to create a message of the appropriate type and

send it to a topic.

Creating and Publishing Messages
This example shows how to create and send a text message.

TextMessage message_out;
message_out = session.createTextMessage();
message_out.setText(“Data”);
publisher.publish(message_out);

Subscribing to Topics
A client can receive messages either synchronously or have the provider

asynchronously deliver the messages as they arrive. For information on

asynchronous delivery and the message listener interface, see section 4.5.2 in the

JMS specification.

The following code shows a synchronous delivery using the

TopicSubscriber.receive method:

TextMessage message_in;
message_in = session.createTextMessage();
message_in = subscriber.receive();
String inData = message_in.getText();
3-16 Administration Guide

Message Listeners and Threads
Shutting Down (Publish/Subscribe)
Client programs run in either Local Mode or Remote Mode (Non-Local Mode). A

client program in either mode needs to shut down when it finishes. Refer to

Chapter 5 for information on Local Mode and Remote Mode clients.

When a client is done with the Oracle Message Broker, it needs to shut down. The

procedure for shutting down is the same for PTP and Publish/Subscribe

Messaging. See "Shutting Down" on page 3-12 for more information.

Message Listeners and Threads
This section lists important points to keep in mind when you are using JMS with

message listeners.

1. When the Oracle Message Broker is running, the following methods can be

called by any thread after a message listener has been registered:

■ Session.close() When message listeners have been registered within a

session, no listeners will be executed when Session.close returns. The

implication is that Session.close blocks if a listener is executing the

onMessage method for that session.

■ MessageConsumer.setMessageListener () only if the connection is

stopped.

2. The MessageConsumer.close() method cannot be called after a listener has

been registered within the session.

3. All JMS methods, other than those mentioned above, can only be called by the

thread executing the message listener. The client-side runtime enforces this

restriction when a listener has been registered in that session.

The following methods must be called by the thread executing the message

listener if one has been registered (they cannot be called by any other thread

after a message listener has been registered):

■ Session.rollack() (can only be called by the listener)

■ Session.commit() (can only be called by the listener)

Session.close and MessageConsumer.setMessageListener are the

only methods that can be called in a session, or in the consumers, producers,

and message listeners within that session once a message listener has been

registered, if the caller is not executing in the thread that executes the message

listeners.
JMS Programming 3-17

Closing JMS Objects and Death Detection
4. As described in the JMS specification [JMS 4.5.2], the result of a

MessageListener throwing a RuntimeException depends on the session’s

acknowledgment mode. In the Oracle Message Broker, the following rules

apply for RuntimeExceptions.

■ MecurySession.IMMEDIATE_ACKNOWLEDGE: the message will not be

redelivered. The message is lost. In this mode, message delivery is

at-most-once delivery.

■ For a transactional session, the next message for the listener is delivered.

The client can then either commit or rollback the Session. A

RuntimeException does not automatically rollback the session. If the client

fails, the Oracle Message Broker performs a rollback for the Session.

5. For a durable subscriber with a message listener, note the following:

■ An unsubscribe cannot be performed when the subscriber is in use.

■ The subscriber is in use until the session is closed. The only way to close a

message consumer once a listener has been registered is to close the session.

■ Since the session cannot be used after it has been closed, to unsubscribe, use

another session to perform the unsubscribe.

■ The subscription created for a durable subscriber is only cancelled by

calling Session.unsubscribe . Subscriptions for non-durable subscribers

are cancelled when the consumer is closed.

Closing JMS Objects and Death Detection
The Oracle Message Broker has a mechanism to detect JMS connections and

sessions that have been closed implicitly (this means the JMS connection is closed

by the finalizer rather than by a call to connection.close or session.close).

When a JMS connection is closed, either implicitly or by calling

connection.close , there is no need to explicitly close the sessions, consumers, or

producers that had been created within that JMS connection.

When message listeners have been registered within a session, no listeners will be

executed when Session.close returns. The implication is that Session.close
blocks if a listener is executing the onMessage method for that session.

Connection.close closes each session within that connection.

Connection.close blocks if a listener is executing within one of the connection’s

sessions. When Connection.close returns, no message listeners will be executed

for any listeners that had been set for the connection’s sessions.
3-18 Administration Guide

Closing JMS Objects and Death Detection
Oracle Message Broker objects other than JMS connections and sessions do not have

a mechanism to detect consumers or producers that have been closed implicitly.

When you are programming with Oracle Message Broker, it is important to

explicitly close sessions, consumers, and producers using the corresponding close

method when you are done with the object. When a session is closed, there is no

need to explicitly close the consumers and producers that had been created within

that session.

When a JMS connection is closed, explicitly or by the finalizer, Oracle Message

Broker frees resources for the JMS connection, and the sessions, consumers, or

producers within that JMS connection. Oracle Message Broker does not free

resources for consumers or producers that have been garbage collected when the

corresponding JMS connection or session has not been garbage collected. Oracle

Message Broker detects client processes that have stopped running. If the Oracle

Message Broker had allocated resource for the client it will cleanup the resources

(rollback transactions, release Database Server connections). Note that the detection

mechanism is not instantaneous, it takes some amount of time.

Leaked Resources and Death Detection
Several conditions may affect performance and available resources. For this section,

use the following definitions:

■ A leaked session is a JMS session for which Session.close has not been called

and Connection.close has not been called on the session's connection.

■ A leaked connection is a JMS connection for which Connection.close has not

been called.

The Oracle Message Broker uses a death detection thread that runs every 20 seconds

to find leaked connections and leaked sessions. Leaked connections and leaked

sessions will be detected within two intervals (40 seconds). Leaked connections and

sessions, and the resources associated with them, are released when the leak is

detected.

The death detection thread is run more frequently when any of the following occur:

1. Low memory is detected in the Oracle Message Broker.

2. The number of sessions in AQ Driver approaches maxPrivateSessions (this

operation is AQ Driver specific).
JMS Programming 3-19

Setting the Message Priority
3. A consumer attempts to use a durable subscriber name that is in use. This is

handled by pinging the current user of the durable subscriber name to detect

when a client exits and then restarts and attempts to create a durable subscriber

with the same name.

Setting the Message Priority
The Oracle Message Broker sets the message priority after a client invokes the send

or publish method on a message. This overwrites any value set by the client using a

call to Message.setJMSPriority() before the message is sent or published.

Oracle Message Broker sets the priority value for a message as follows:

1. The value of the priority argument in the call to send or publish if there is a

priority argument.

2. The priority value set as the default for the message producer if there is not a

priority argument in the call to send or publish. The priority for a message

producer is set using a call to MessageProducer.setPriority() .

Use a call to Message.setJMSPriority() to change the priority value for a

message that has been received.
3-20 Administration Guide

Administ
4

Administration

The Oracle Message Broker supports two means of specifying configuration

information for administration: using an LDAP Directory, and using lightweight

configuration. With lightweight configuration, the Oracle Message Broker reads

configuration information from a file or from Java properties when it begins its

execution. This chapter describes using an LDAP Directory for configuration

information. Refer to Chapter 13, "Lightweight Configuration" for details on using a

configuration file or Java properties to specify configuration information.

When administrative information is stored in an LDAP Directory, directory entries

contain the names and configuration options for Oracle Message Broker

administrative objects such as JMS destinations (topics or queues). This chapter

introduces the LDAP Directory and describes the directory entries. The chapter also

covers the administrative utilities that modify and check directory entries.

When the Oracle Message Broker starts, and it is using the directory, it writes an

address into a directory entry. Clients use this address to contact the Oracle

Message Broker. In addition, while the Oracle Message Broker is running, the

administrative utilities notify it of configuration changes. For example, Oracle

Message Broker is notified when administrators change configuration parameters.

This chapter includes the following sections:

■ What is the Oracle Internet Directory?

■ Oracle Message Broker Directory Information Tree

■ Oracle Message Broker Configuration

■ Dynamic Configuration

■ Command-line Administration Utility - AdminUtil

■ Directory Utilities
ration 4-1

What is the Oracle Internet Directory?
What is the Oracle Internet Directory?
Oracle Internet Directory is a directory service implemented as an application on

the Oracle 8i database. It enables retrieval of information about dispersed users and

network resources. It combines Lightweight Directory Access Protocol (LDAP)

Version 3, the open Internet standard directory access protocol, with the high

performance, scalability, robustness, and availability of the Oracle8i Server.

What is a Directory?
A directory is a way of organizing information so that it can be found easily. It lists

objects—for example, people, books in a library, merchandise in a department

store—and gives details about each one. Information in the directory is stored in a

hierarchy of directory entries. A directory entry consists of attributes and their

values. The directory contains administrative objects that store Oracle Message

Broker configuration options.

What is LDAP?
LDAP (Lightweight Directory Access Protocol) is the emerging Internet standard

for directory services. It is based on the earlier ISO X.500 Directory Access Protocol

(DAP) standard, but simplifies that standard considerably, allowing LDAP to be

more efficient, straightforward, and easier to implement.

Oracle Internet Directory implements Version 3 of LDAP, which was approved as a

proposed Internet Standard by the Internet Engineering Task Force (IETF) in

December 1997.

The LDAP specification is contained in a number of public documents of the

Internet Engineering Task Force called RFCs (Requests for Comments). In

particular, LDAP Version 3 is defined in RFCs 2251-2256. These are available on the

worldwide web at:

http://www.ietf.org/rfc

The building blocks of an LDAP Directory service are called directory entries. Each

entry has a unique name, called a distinguished name. Each entry contains

information items, called attributes. Attributes are grouped into categories, called

object classes.
4-2 Administration Guide

What is the Oracle Internet Directory?
Directory Entries
In a directory, each collection of information about an object is called an entry. For

example, a typical telephone directory includes entries for people, and a library

card catalog contains entries for books. Similarly, the Oracle Message Broker

directory includes entries containing configuration information for Oracle Message

Broker components.

Each entry in a directory is uniquely identified by a distinguished name (DN). The

distinguished name tells you exactly where the entry resides in the directory’s

hierarchy represented by the Directory Information Tree (DIT).

To understand the relation between a distinguished name and a DIT, look at

Figure 4–1.

Figure 4–1 A Directory Information Tree

The DIT shown in Figure 4–1 is structured along geographical and organizational

lines. It diagrammatically represents entries for two employees who have the same

common name (cn), namely, Anne Smith.

The DIT branch on the right represents the entry for the Anne Smith who works in

an organizational unit (ou) named Server Development, in the organization (o)

Oracle, in the country (c) of Switzerland (ch).

root

c=ch

o=Oracle

ou=Sales

cn=Anne Smith

o=Oracle

ou=Server Development

cn=Anne Smith

c=us

cn=Anne Smith

emailaddrs=
printername=
photo=
app preferences=
...
Administration 4-3

What is the Oracle Internet Directory?
The DN for this “Anne Smith” entry is:

cn=Anne Smith,ou=Server Development,o=Oracle,c=ch

Note that the conventional format of a distinguished name places the lowest DIT

component at the left, then follows it with the next highest component, and thus

moving progressively up to the root.

Within a distinguished name, the lowest component is called the relative

distinguished name (RDN). For example, in the above entry for Anne Smith, the

RDN is cn=Anne Smith. Similarly, the RDN for the entry immediately above Anne

Smith’s RDN is ou=Server Development, the RDN for the entry immediately above

ou=Server Development is o=Oracle, and so on. A DN is made up of a sequence of

RDNs separated by commas.

To locate a particular entry within the overall DIT, a client uniquely identifies that

entry by using the entry’s full DN—not simply the RDN. For example, within the

global organization in Figure 4–1, there are two employees with the same RDN,

namely, Anne Smith. To avoid confusion between these two entries, you would use

each one’s full DN. If there are potentially two employees with the same name in

the same organizational unit, you could use additional mechanisms, such as

uniquely identifying each employee with an identification number.

Distinguished Name Format
When you use a DN with the Oracle Message Broker utilities, or in an Oracle

Message Broker client program, be aware of the following:

1. A DN is case-insensitive.

2. The RDN portion of a DN can be separated by either a comma, ',' or a

semi-colon, ';'.

3. White spaces between the components of a DN are ignored.

For example, the following DNs are equivalent:

cn=sales,cn=oracle,c=us
cn=sales;cn=oracle;c=us
cn = sales; cN=oRacLE;C=US
4-4 Administration Guide

What is the Oracle Internet Directory?
4. In a DN, you can escape the following characters using a backslash (\).

Attributes
In a typical telephone directory, an entry for a person contains such information

items as an address and phone number. In an online directory, such information

items are called attributes. Attributes in a typical employee entry could include a

job title, e-mail address, and phone number.

In Figure 4–1, the entry for Anne Smith in Switzerland has several attributes, each

providing specific information about her. These are listed in the balloon to the right

of the tree, and they include emailaddrs=, printername=, jpegPhoto=, and app
preferences=. Moreover, each bullet in Figure 4–1 is also an entry with attributes,

although the attributes for each are not shown.

Each attribute consists of an attribute type and one or more attribute values. The

attribute type identifies the kind of information that the attribute contains—for

example, job title. The attribute value is the particular instance of information

appearing in that entry. For example, in the entry for Anne Smith, the value for the

job title attribute could be manager.

" Quote

, Comma

: Colon

+ Plus

= Equals

; Semi-colon

\ Backslash

Pound

< Less than

> Greater than
Administration 4-5

What is the Oracle Internet Directory?
Kinds of Attribute Information
Attributes contain two kinds of information.

Any given attribute can hold either application information, or operational

information, but not both.

Single-Valued and Multiple-Valued Attributes
Attributes can be either single-valued or multiple-valued. Single-valued attributes

carry only one value in the attribute, whereas multiple-valued attributes can have

more than one value. An example of a multiple-valued attribute is a group

membership list that includes the names of all the members of a given group, such

as an e-mail list.

Object Classes
The Oracle Message Broker defines several directory entries, and assigns object

classes to the entries. These object classes define groups of attributes. An object class

is a category of objects, and it provides both mandatory and optional attributes for

particular objects.

For example, the organizationalPerson object class includes the mandatory attributes

commonName (cn) and surname (sn). The Oracle Internet Directory provides

standard LDAP object classes, several proprietary object classes, as well as object

classes that are added to support the Oracle Message Broker.

Application

Information

This information is maintained and retrieved by the directory

clients and is unimportant to the operation of the directory. A

telephone number, for example, is application information.

Operational

Information

This information pertains to the operation of the directory itself.

Some operational information is specified by the directory to

control the server—for example, the time stamp for an entry. Other

operational information, such as access information, is defined by

administrators and is used by the directory program in its

processing.
4-6 Administration Guide

What is the Oracle Internet Directory?
Schemas
All information about how data is organized in the DIT—that is, metadata such as

object classes, attributes, matching rules, and syntaxes—is contained in the

directory schema. This information is contained in a special class of entry called a

subentry. Oracle Internet Directory holds schema definitions in the subentry called

cn=subSchemaSubentry. To provide directory support for the Oracle Message

Broker the installation includes scripts that add object classes and attributes to the

directory entry cn=subSchemaSubentry.

Accessing LDAP with the Administrative Framework
The Oracle Message Broker and the administrative utilities use the LDAP Directory

to read or modify administrative objects. To facilitate use of the directory, the Oracle

Message Broker includes a support layer called the administrative framework. The

administrative framework provides methods to access entries in the directory,

validate DNs, map LDAP attributes to Oracle Message Broker options, and perform

a number of other functions. The Oracle Message Broker administrative framework

hides LDAP from the administrator and provides significant error checking for

directory modifications. Using the administrative framework and the

administrative utilities, an administrator only needs to use a few commands and

understand distinguished names to perform Oracle Message Broker administration.

The administrative framework uses JNDI to access the directory. Figure 4–2 shows

the Oracle Message Broker components and shows how these components use the

administrative framework to access the directory.
Administration 4-7

Oracle Message Broker Directory Information Tree
Figure 4–2 Directory Access with the Administrative Framework

Oracle Message Broker Directory Information Tree
This section describes the structure and the organization of Oracle Message Broker

administrative information. This structure is defined when the directory is modified

to support the Oracle Message Broker. The steps required to modify the directory

are installation tasks (see the Oracle Message Broker Installation Guide for details).

After the directory is modified, an administrator can use the Oracle Message Broker

administrative utilities to create, delete, or modify Oracle Message Broker entries.

Figure 4–3 shows a DIT containing several Oracle Message Broker instance entries,

and the entries that are created to support the Oracle Message Broker security

service (for information on the security service, see Chapter 12, "Security"). An

Oracle Message Broker instance, OMB Instance, contains the administrative objects

needed to start or modify the Oracle Message Broker. These entries also allow a JMS

client to contact the Oracle Message Broker. Figure 4–4 shows the contents of an

OMB Instance. Table 4–1 describes the OMB Instance entries in more detail.
4-8 Administration Guide

Oracle Message Broker Directory Information Tree
An administrator creates an OMB Instance for each active Oracle Message Broker

(Local Mode allows for sharing of OMB Instances. See Chapter 5, "Oracle Message

Broker Features" for information on running in Local Mode). An administrator

creates multiple OMB Instances to support different working groups in an

organization, for improved performance, or to support multiple networks of

communicating Oracle Message Brokers using one or more directories.

Figure 4–3, Table 4–1, and Figure 4–4 show fixed container entries in bold; the

administrator uses the Oracle Message Broker administration utilities to create these

entries in the directory with the name exactly as shown. User defined container

entries, such as topic1, are shown in italics; these entries can have any name that an

Oracle Message Broker Administrator chooses, and multiple entries are allowed.

Figure 4–3 Top Level Directory Organization

root-of-admin-context

cn=OracleContext

cn=Products

cn=Computers

cn=OMB

cn=OMB_instance1 cn=OMB_instance2 cn=OMB_instancencn=Aclscn=Groups cn=Users
Administration 4-9

Oracle Message Broker Directory Information Tree
Figure 4–4 OMB Instance Directory Organization

cn=OMB_instance1

cn=PropagationJobs

cn=msg_broker

cn=volatile_driver

cn=topic1

cn=propagationjob1

cn=Topics

cn=aq_driver

cn=mq_driver

cn=mcast_driver

cn=rv_driver cn=rv_server

cn=mcast_server

cn=aq_server

cn=mq_server

cn=ConnectionFactories

cn=connection_factory1

cn=DurableSubscribers

cn=durable_sub1

cn=RemoteHttpListeners

cn=remhttp1

cn=RemoteDirectories

cn=remote_dir1

cn=aqlite_server

cn=aqlite_driver cn=ACI

cn=topic_trigger1 cn=queue_trigger1

cn=Queues

cn=queue1

cn=prop_http
4-10 Administration Guide

Oracle Message Broker Directory Information Tree
Table 4–1 OMB Instance Entries

Entry Description

OMB_instance1 This is the top-level of an Oracle Message Broker directory instance. A complete OMB
Instance contains all the entries required to use an Oracle Message Broker, or for a
JMS client to contact an active Oracle Message Broker.

ACI A fixed container defining asynchronous component invocation

queuetrigger1 An entry defining an ACI queue trigger

topictrigger1 An entry defining an ACI topic trigger

aq_driver A driver entry for an Oracle AQ Driver

aq_server An entry for Oracle AQ Server information. An instance may have 0 or 1 aq_server
entries.

aqlite_driver A driver entry for an Oracle AQ Lite Driver.

aqlite_server An entry for Oracle AQ Lite Server information. An instance may have 0 or 1 aqlite_
server entries.

ConnectionFactories A fixed container defining the instance connection factories

connection_factory1 A connection factory entry. At least one connection factory must be defined per
driver.

DurableSubscribers A fixed container defining durable subscribers

durable_sub1 A durable subscriber entry. All attributes for a durable subscriber are
read-only-after-create. This means that you can only view the durable subscriber
attributes. To modify a durable subscriber, delete the entry and then recreate it.

prop_http Specifies the HTTP propagation listener options

mcast_driver A driver entry for an Oracle Multicast Driver

mcast_server An entry for Oracle Multicast Server information. An instance may have 0 or 1 mcast_
server entries.

mq_driver A driver entry for an MQSeries Driver

mq_server An entry for MQSeries Server information. An instance may have 0 or 1 mq_server
entries.

msg_broker A fixed name container for Oracle Message Broker configuration parameters.

A msg_broker entry contains 1 (one) or more driver entries.

PropagationJobs A fixed container defining propagation jobs

propagation_job1 A propagation job entry
Administration 4-11

Oracle Message Broker Configuration
Oracle Message Broker Configuration
This section covers the options for configuring the Oracle Message Broker and

provides tables listing the Oracle Message Broker directory entries and attributes.

Refer to "Working with the Administration Utilities" on page 2-2 for configuration

examples.

To configure an OMB Instance, you perform two types of actions, creating directory

entries and modifying attributes. This section provides information on these

actions.

Oracle Message Broker Configuration Roadmap
After the LDAP Directory and the Oracle Message Broker are installed, you can add

and configure OMB Instances. Using the Oracle Message Broker AdminUtil com-

mand, the following checklist shows the Oracle Message Broker configuration steps:

■ Create an OMB Instance. This step creates the OMB Instance entry, and several

required sub-entries. For more information, see "Creating an Oracle Message

Broker Instance" on page 4-14.

Queues A fixed container defining queues

queue1 A queue entry

RemoteDirectories A fixed container defining remote directories

remote_dir1 A remote directory entry

RemoteHttpListeners A fixed container defining remote HTTP listeners

remotehttp1 An HTTP remote listener entry

rv_driver A driver entry for a TIBCO Driver

rv_server An entry for TIBCO Server information. An instance may have 0 or 1 rv_server entries.

Topics A fixed container defining topics

topic1 A topic entry

volatile_driver A driver entry for an Oracle Volatile Driver

Table 4–1 (Cont.) OMB Instance Entries

Entry Description
4-12 Administration Guide

Oracle Message Broker Configuration
■ Determine which message servers your instance needs to support and create

the message servers. For more information, see "Creating and Configuring

Message Servers" on page 4-15.

■ Create a message broker entry and add drivers for the message servers you

added in the previous step. For more information, refer to "Configuring the

Message Broker Entry and Drivers" on page 4-18.

■ Add at least one connection factory per driver. See "Creating and Configuring

Connection Factories" on page 4-27 for information on adding and configuring

connection factories.

■ (Optional) Add queues as needed. For information on adding queues, see

"Adding Queues" on page 4-28.

■ (Optional) Add topics as needed. For information on adding topics, see

"Adding Topics" on page 4-31.

■ (Optional) Add remote directory entries if you are using remote directories. For

information on remote directories, see "Creating and Configuring Remote

Directories" on page 4-33.

■ (Optional) Add HTTP listener entries and one or more HTTP propagation

entries if you are using HTTP for propagation. For more information, see

"Creating and Configuring Remote HTTP Listeners" on page 4-34 and

"Configuring Message Broker HTTP Propagation Options" on page 4-27.

■ (Optional) Add propagation job entries if you are using propagation. For

information on propagation, see "Creating and Configuring Propagation Jobs"

on page 4-35.

■ (Optional) Add durable subscribers if you are using the administration tools to

create durable subscribers. Normally JMS clients create and delete durable

subscribers, not the administrator. See "Creating and Configuring Durable

Subscribers" on page 4-35 for information on durable subscribers.

■ (Optional) Add Asynchronous Component Invocation (ACI) Triggers if you are

using ACI, see "Creating and Configuring Asynchronous Component

Invocation Triggers" on page 4-36.

■ Review the values in the new entries to make sure that all attribute values meet

your requirements. For more information, see "Showing Directory Attributes

and Entries" on page 4-38.
Administration 4-13

Oracle Message Broker Configuration
Reserved Internal Attributes
The reserved, internal attributes are common to all Oracle Message Broker entries.

These attributes are reserved for internal use or for future use and should never be

used, or modified with the Oracle Message Broker administration utilities, or with

any other utilities that modify Oracle Message Broker entries. The list of attributes

in Table 4–2 applies to all of the following tables: Table 4–3 through Table 4–22.

Creating an Oracle Message Broker Instance
A valid OMB Instance contains all the directory entries required for an

administrator to run an Oracle Message Broker. Each OMB Instance is created with

a user defined container name. The OMB Instance container name is supplied when

the OMB Instance is created. Refer to Figure 4–4 for a view of the contents of an

OMB Instance.

Use the AdminUtil createombinstance command to create an Oracle Message

Broker instance. The following sections show how to add entries and set attribute

values for the entries in the OMB Instance. Refer to "Command-line Administration

Utility - AdminUtil" on page 4-41 for information on using AdminUtil .

For example, to create the OMB Instance named TestOMB using the

createombinstance command (the Oracle Message Broker installation tasks

create the required Oracle Message Broker directory entry named OMB, as well as

other required directory entries).

% AdminUtil
> createombinstance TestOMB cn=OMB ;

Table 4–2 Reserved Attributes (for internal use only)

Attribute Description

binary Reserved for internal use only

internal Reserved for internal use only

xml Reserved for internal use only
4-14 Administration Guide

Oracle Message Broker Configuration
Creating and Configuring Message Servers
Oracle Message Broker server entries provide information about message servers.

Message server entries contain configuration options and access information for a

supported message storage facility. The Oracle Message Broker supports the

following message server types:

■ aq_server – supports the Oracle AQ Driver

■ aqlite_server – supports the Oracle AQ Lite Driver

■ mq_server – supports the IBM MQSeries Driver

■ mcast_server – supports the Oracle Multicast Driver

■ rv_server – supports the TIBCO Driver

The Oracle Message Broker only supports 0 or 1 server entries of a given type

within an OMB Instance. The administration utilities do not prevent you from

creating multiple server entries. The Oracle Message Broker, at startup, reports the

following error if it finds multiple server entries of the same kind in an OMB

Instance:

Error starting broker, caught BadStateException: Entry defined twice

Setting AQ Server Options
An aq_server contains the attributes listed in Table 4–3. To configure the AQ

Server, create the aq_server entry and then set the appropriate attributes.

Note: Since the Oracle Message Broker stores messages for the

Oracle Volatile Driver internally, the Oracle Volatile Driver does not

use a server entry.

Table 4–3 AQ Server Attributes

Attribute Description

aq_password Stores the password required to use AQ on the Oracle 8i Database Server. The
value stored is encrypted in the directory.

aq_service_name Specifies the service name for the AQ Oracle 8i Database Server

prop_recv_log_queue (Optional) Specifies the propagation receive log queue
Administration 4-15

Oracle Message Broker Configuration
Setting AQ Lite Server Options
This entry specifies the AQ Lite database that is associated with a given AQ Lite

Driver, and the password that is needed to access the database.

An aqlite_server contains the attributes listed in Table 4–4. To configure the AQ

Lite Server, create the aqlite_server entry and then set the appropriate attributes.

Setting MQSeries Server Options
The mq_server entry contains the attributes listed in Table 4–5. To configure the

MQSeries Server, create the mq_server entry and then set the appropriate attributes.

prop_send_log_queue (Optional) Specifies the propagation send log queue

aq_username Stores the user name required to use Oracle AQ on the Oracle 8i Database Server

Note: After installation, the AQ password can be changed using

the Database Server Enterprise Manager, or using the Database

Server ALTER USER command.

Table 4–4 AQ Lite Server Attributes

Attribute Description

aqlite_database_name The AQ Lite database name. When the aqlite_database_name is null the
default database is used.

aqlite_database_password Stores the password required to use AQ Lite in the Oracle 8i Lite Database.
The value stored is encrypted in the directory.

prop_recv_log_queue (Optional) The propagation receive log queue

prop_send_log_queue (Optional) The propagation send log queue

Table 4–3 (Cont.) AQ Server Attributes

Attribute Description
4-16 Administration Guide

Oracle Message Broker Configuration
Setting Multicast Server Options
The mcast_server entry contains the attributes listed in Table 4–6. To configure the

Multicast Server, create the mcast_server entry and then set the appropriate

attributes.

Setting TIBCO Server Options
The rv_server entry contains the attributes listed in Table 4–7. To configure the

TIBCO Server, create the rv_server entry and then set the appropriate attributes.

Table 4–5 MQSeries Server Attributes

Attribute Description

connection_type Defines the connection type. Standard is the only connection type supported. A
standard connection is established with the MQSeries Queue manager.

prop_recv_log_queue (Optional) The propagation receive log queue

prop_send_log_queue (Optional) The propagation send log queue

queue_mgr MQSeries queue manager

Table 4–6 Multicast Server Attributes

Attribute Description

ip IP multicast address used by the Oracle Multicast protocol. The value must be between

225.0.0.0 and 239.255.255.255.

port IP multicast port number used by the Oracle Multicast protocol. This is an integer with a
lower limit of 1024 (inclusive) and an upper limit of 65535 (0xFFFF) (inclusive).

Table 4–7 TIBCO Server Attributes

Attribute Description

service The name of the Rendezvous service (see the Rendezvous Administration Guide, for
more information).
Administration 4-17

Oracle Message Broker Configuration
Configuring the Message Broker Entry and Drivers
The message broker entry contains attributes that set general parameters for an

Oracle Message Broker instance. Also, when you add drivers or HTTP propagation

entries, they are added beneath the message broker entry. A HTTP propagation

entry (prop_http) contains configuration information for the HTTP propagation.

Only one message broker entry is allowed per OMB Instance. The message broker

entry, named msg_broker , contains the attributes shown in Table 4–8.

This section covers the following Oracle Message Broker directory entries:

■ Adding an Oracle AQ Driver

■ Adding an Oracle AQ Lite Driver

■ Adding A Volatile Driver

■ Adding An MQSeries Driver

■ Adding A Multicast Driver

■ Adding A TIBCO Driver

■ Configuring Message Broker HTTP Propagation Options

Table 4–8 Message Broker Attributes

Attribute Description

local Specifies that the client and server run as a single JVM process. For more
information, see "Running in Local Mode", in Chapter 5.

The value is a boolean. Default value: false

max_concurrent_reqs Limits the number of concurrent blocking receives to the specified value.
The Oracle Message Broker throws a BusyException when a blocking
receive request exceeds this limit.

A blocking receive is a receive that blocks for at least one (1) second. The
JMS specification provides three types of receive methods: blocking,
timeout, and non-blocking. Therefore, a BusyException is thrown for
blocking receives and timeout receives, when the timeout is 1 second or
more and receives are attempted after the specified limit is reached.

This option also sets the number of threads that the ORB uses to handle
execute method invocations.

The value must be an integer. The lower limit is 10. Default value: 10.

max_memory Heap memory allocated in Megabytes. For more information see, "Oracle
Message Broker Memory Management" on page 4-19.

The value must be an integer. The lower limit is 1. Default value: 16.
4-18 Administration Guide

Oracle Message Broker Configuration
Oracle Message Broker Memory Management
The Oracle Message Broker uses the JVM heap to maintain its state, to store Volatile

Driver messages, control consumers, and to manage producers, sessions, and

connections. Any operation that uses resources can cause an exception when there

is not enough heap memory available.

The max_memory attribute determines the amount of heap memory to use in the

JVM where the Oracle Message Broker runs. However, setting this value is just one

factor in JVM memory management. Keep the following points in mind when

running the Oracle Message Broker:

■ Javasoft JVMs run with a maximum heap size. A default value is used when a

value is not specified on the command line. When you start Oracle Message

Broker using the MsgBroker command, the value set on the command line

with the –heap option specifies the maximum heap size.

■ When the Oracle Message Broker is running, it does not allow max_memory to

be updated to a value that is less than the amount of memory currently in use

(as set with the –heap option on the MsgBroker command line).

■ JVM does not allow the maximum heap size to be queried. The MsgBroker
command sets a property when starting the JVM. This property holds the value

of the maximum heap size. The Oracle Message Broker uses the property to

determine if new values for max_memory are valid.

propagation_http_handlers Specifies the number of HTTP propagation handler threads to start.

The value must be an integer. Default value: 1

propagation_recv_threads Number of receive threads for propagation. Increasing the number of
receive threads allows the propagation manager to handle more
propagation receives concurrently. See Chapter 8 for information on
propagation.

The value must be an integer.

The lower limit is 0 and the upper limit is 100. Default value: 1.

propagation_send_threads Number of send threads for propagation. Increasing the number of send
threads allows the propagation manager to handle more propagation sends
concurrently. See Chapter 8 for information on propagation.

The value must be an integer.

The lower limit is 0 and the upper limit is 100. Default value: 1.

Table 4–8 (Cont.) Message Broker Attributes

Attribute Description
Administration 4-19

Oracle Message Broker Configuration
■ If the value for the max_memory attribute is equal to the value of the –heap
option in the MsgBroker command, the max_memory attribute cannot be

increased at run-time, unless it is first decreased.

■ If you start the Oracle Message Broker using Java on the command line, without

using MsgBroker command, make sure the following relationships are

maintained between the JVM’s initial heap size, the maximum heap size, and

the Oracle Message Broker’s message broker max_memory attribute:

■ The max_memory attribute for the Oracle Message Broker must be set to a

value less than or equal to the JVM maximum heap size.

■ The Oracle Message Broker does not allow the value of max_memory to be

changed to a value greater than the maximum heap size for the JVM.

■ The value set for the JVM initial heap size must equal the JVM maximum

heap size setting.

The Oracle Message Broker forces garbage collection prior to throwing memory

exceptions. It is also possible for the JVM to throw an exception or fail if attempts to

use more memory than is currently available in the JVM.

For example, an application that creates 10,000 Sessions may cause the Oracle

Message Broker to throw an exception after creating 5,689 sessions, if no additional

heap memory is available and garbage collection does not free sufficient memory.

Adding an Oracle AQ Driver
An aq_driver entry contains configuration information for the AQ Driver, including

the DN for the AQ Server. Table 4–9 describes the Oracle AQ Driver attributes. To

add an AQ Driver, set up the AQ Server entry and then the AQ Driver attributes.
4-20 Administration Guide

Oracle Message Broker Configuration
Table 4–9 AQ Driver Administrative Attributes

Attribute Description

max_private_sessions This is the maximum number of concurrent JMS sessions that the driver
allows to be created. The Database Server should be configured to support
more than max_private_sessions connections.

The value must be an integer. The lower limit is 1.

max_shared_sessions The number of JDBC connections that are created in a pool and used
internally for administrative purposes. Administrative uses include
creating and destroying AQ queues and subscriptions. The AQ Driver in
the OCI mode creates one connection per JMS session to provide
operational access to AQ queues. The AQ Driver in the JDBC mode creates
one JDBC connection per JMS session to provide operational access to AQ
queues.

The value must be an integer. The lower limit is 1.

propagation_recv_sessions The number of receive sessions started for propagation. The sum of
propagation_recv_sessions + propagation_send_sessions must be less than
max_private_sessions.

Default value: 2

propagation_send_sessions The number of send sessions started for propagation. The sum of
propagation_recv_sessions + propagation_send_sessions must be less than
max_private_sessions.

Default value: 2

push_sessions The number of threads which will push messages to message listeners.

The value must be an integer. The lower limit is 1.

query_interval The number of milliseconds at which AQ is queried, polled, to determine if
messages are available for message listeners.

The value must be an integer. The lower limit is 1.

server_dns The DN pointing to the server that supports the AQ Driver.

The type of the DN that this references must be aq_server.

thin_jdbc If true, use the thin JDBC based AQ driver. If false, use the OCI based JDBC
AQ Driver.

Default value: false
Administration 4-21

Oracle Message Broker Configuration
Adding an Oracle AQ Lite Driver
A aqlite_driver entry contains configuration information for the Oracle AQ Lite

Driver. Table 4–10 describes the driver entry attributes.

Adding A Volatile Driver
A volatile_driver entry contains configuration information for the Oracle Volatile

Driver. Table 4–11 describes the driver entry attributes.

When using a Volatile Driver, set the msg_broker entry attribute max_memory to an

appropriate value to support both the Oracle Message Broker, and the Volatile

Driver. This attribute determines the total memory available to the JVM running the

Oracle Message Broker. Messages stored using the Volatile Driver consume memory

in the active Oracle Message Broker. The amount of memory consumed per

thin_jdbc_conn_string The URL suffix to use for the JDBC thin connection to AQ.

use_jdbc If true, use JDBC based AQ Driver. If false, use the OCI based AQ Driver.
See "JDBC Mode" and "OCI Mode" on page 7-8 for details on AQ Driver
Modes.

Default value: false

Table 4–10 AQ Lite Driver Administrative Attributes

Attribute Description

max_private_sessions The AQLite Driver ignores this value.

The value must be an integer. The lower limit is 1.

max_shared_sessions The AQLite Driver ignores this value.

The value must be an integer. The lower limit is 1.

query_interval The interval, in milliseconds, at which the AQ Lite Driver is polled to determine
if messages are available for message listeners.

The value must be an integer. The lower limit for this is 1.

push_sessions The number of threads which will push messages to message listeners.

The value must be an integer. The lower limit is 1.

server_dns The dn pointing to the server that supports the AQ Lite Driver.

The type of the dn that this references must be aqlite_server.

Table 4–9 (Cont.) AQ Driver Administrative Attributes

Attribute Description
4-22 Administration Guide

Oracle Message Broker Configuration
message depends on the message type, and the size of the message. When a

message is consumed, the memory associated with the message is freed. The

Volatile Driver stops accepting messages when the JVM running the Oracle

Message Broker does not have enough free memory.

Since the Oracle Message Broker stores messages for the Volatile Driver internally,

the Oracle Volatile Driver does not use an external message server for storing

messages and the volatile_driver entry does not contain a server_dns attribute

(all other driver entries use the server_dns attribute to point to the message

server).

Table 4–11 Volatile Driver Administrative Attributes

Attribute Description

max_private_sessions The Volatile Driver ignores this value.

The value must be an integer. The lower limit is 1.

max_shared_sessions The Volatile Driver ignores this value.

The value must be an integer. The lower limit is 1.

propagation_recv_sessions The number of receive sessions started for propagation.

Default value: 2

propagation_send_sessions The number of send sessions started for propagation.

Default value: 2

push_sessions The number of threads which will push messages to message listeners.

The value must be an integer. The lower limit for this is 1.

query_interval The number of milliseconds at which the Volatile Driver is polled to
determine if messages are available for message listeners.

The value must be an integer. The lower limit for this is 1.
Administration 4-23

Oracle Message Broker Configuration
Adding An MQSeries Driver
An mq_driver entry contains configuration information for the MQSeries Driver.

Table 4–12 describes the MQSeries Driver attributes.

Table 4–12 MQSeries Driver Administrative Attributes

Attribute Description

max_private_sessions The maximum number of connections to the queue manager for the driver.
Each JMS session consumes one connection. If the Oracle Message Broker
is running, and this attribute is updated, a new value that is less than the
old value causes the following behavior. If the current number of sessions
in use exceeds the new maximum value, all existing sessions are allowed to
continue but no new sessions can be created until the number in use drops
below the new maximum value.

The value must be an integer. The lower limit is 1.

max_shared_sessions The maximum number of shared sessions for the driver.

The value must be an integer. The lower limit is 1.

query_interval The number of milliseconds at which the MQSeries Driver is polled to
determine if messages are available for message listeners.

The value must be an integer. The lower limit is 1.

propagation_recv_sessions The number of receive sessions started for propagation. The sum of
propagation_recv_sessions + propagation_send_sessions must be less than
max_private_sessions.

Default value: 2

propagation_send_sessions The number of send sessions started for propagation. The sum of
propagation_recv_sessions + propagation_send_sessions must be less than
max_private_sessions.

Default value: 2

push_sessions The number of threads which will push messages to message listeners.

The value must be an integer. The lower limit is 1.

server_dns The DN pointing to the server that supports the MQSeries Driver.

The value must be a DN that points to an entry of the type mq_server.
4-24 Administration Guide

Oracle Message Broker Configuration
Adding A Multicast Driver
The mcast_driver entry contains configuration information for the Oracle Multicast

Driver. Table 4–13 describes the Multicast Driver attributes.

Table 4–13 Multicast Driver Administrative Attributes

Attribute Description

max_private_sessions The Multicast Driver ignores this value.

The value must be an integer. The lower limit is 1.

max_shared_sessions The Multicast Driver ignores this value.

The value must be an integer. The lower limit is 1.

network The Multicast network interface

propagation_recv_sessions The number of receive sessions started for propagation.

Default value: 2

propagation_send_sessions The number of send sessions started for propagation.

Default value: 2

push_sessions The number of threads which will push messages to message listeners.

The value must be an integer. The lower limit is 1.

query_interval The number of milliseconds at which the Multicast Driver is polled to
determine if messages are available for message listeners.

The value must be an integer. The lower limit is 1.

server_dns The DN pointing to the server that supports the Multicast Driver.

The value must be a valid DN that points to an entry of type mcast_
server.
Administration 4-25

Oracle Message Broker Configuration
Adding A TIBCO Driver
The rv_driver entry contains configuration information for the TIBCO Driver.

Table 4–14 describes the driver entry attributes.

Table 4–14 TIBCO Driver Administrative Attributes

Attribute Description

daemon Rendezvous daemon used by the Oracle Message Broker (see the
Rendezvous Administration Guide, for more information).

max_private_sessions The maximum number of JMS sessions for the driver.

The value must be an integer. The lower limit is 1.

max_shared_sessions The TIBCO Driver ignores this value.

The value must be an integer. The lower limit is 1.

network Network interface used by Rendezvous (see the Rendezvous
Administration Guide, for more information).

propagation_recv_sessions The number of receive sessions started for propagation. The sum of
propagation_recv_sessions + propagation_send_sessions must be less
than max_private_sessions.

Default value: 2

propagation_send_sessions The number of send sessions started for propagation. The sum of
propagation_recv_sessions + propagation_send_sessions must be less
than max_private_sessions.

Default value: 2

push_sessions The number of threads which will push messages to message listeners.

The value must be an integer. The lower limit is 1.

query_interval The number of milliseconds at which the TIBCO Driver is polled to
determine if messages are available for message listeners.

The value must be an integer. The lower limit is 1.

server_dns The DN pointing to the server that supports the TIBCO Driver.

The value must be a valid DN of type rv_server.
4-26 Administration Guide

Oracle Message Broker Configuration
Configuring Message Broker HTTP Propagation Options
A prop_http entry contains configuration information for the HTTP propagation.

Table 4–15 describes the HTTP propagation entry attributes.

Creating and Configuring Connection Factories
The ConnectionFactories entry should contain at least one connection factory for

each driver. A connection factory entry specifies the driver type, the provider (this

is the DN of the associated message broker entry, and other information that allows

a client to connect to the OMB Instance. Table 4–16 describes connection factory

attributes.

Table 4–15 Propagation with HTTP Administrative Attributes

Attribute Description

http_host Specifies the name of the system that the listener runs on. This needs to be set if
the system is a multi-homed system (a system with multiple domain names).

The value is a String. Default value: null

http_port Specifies the port that the HTTP listener to listen on.

The value must be an integer. Default value: none

http_ssl_level Specifies the SSL level used to secure the HTTP connections.

The value must be an integer. Valid values are: 0, 1, 2, or 3. Default value: 0

wallet_location Specifies the wallet location. This is the full path name of the wallet file. Note: this
requires exported wallets.

The value is a String. Default value: null

wallet_password Specifies the wallet password to be applied to the specified wallet file. The value
stored is encrypted in the directory.

The value is a String. Default value: null

Table 4–16 Connection Factory Administrative Attributes

Attribute Description

client_id Used to set the client ID for JMS connection.

driver_type Type of driver associated with the connection factory.

Valid types are: aq , aqlite , vol , mq, mcast , rv .
Administration 4-27

Oracle Message Broker Configuration
Adding Queues
The Queues entry contains all of the OMB Instance queue attributes. Queue

attributes define a queue’s name and the queue’s configuration information.

Table 4–17 describes the queue attributes.

priority The value must be an integer. The lower limit is 0 and the upper limit is 9.

provider_dns This is reserved for future use. Do not set this attribute. If you do set this attribute,
results are unpredictable.

transaction_timeout Transaction timeout in milliseconds.

The value must be an integer. The lower limit is 1.

Table 4–17 Queue Administrative Attributes

Attribute Description

aqlite_message_
grouping

This attribute applies only if the queue is an AQ Lite queue.

This specifies the message grouping for the AQ Lite queue.

The valid values are: NONE, or TRANSACTIONAL. Default value: NONE

aqlite_owner This attribute applies only if the queue is an AQ Lite queue.

This specifies the owner of the AQLite queue. If left blank, the default is used.

aqlite_storage_
clause

This attribute applies only if the queue is an AQ Lite queue.

This specifies the storage clause used to create the AQ Lite queue table.

aq_adt This attribute applies only if the queue is an AQ Queue. This determines the JMS
ADT to use for storing messages to AQ queues. See "AQ Messages" on page 7-5 for
more information.

The valid values are: text, bytes, map, stream, object, all, queriable, raw

Default value: raw

aq_schema This attribute applies only if the queue is an AQ Queue.

This specifies the schema in which the AQ queue resides.

aq_rules This attribute applies only if the queue is an AQ Queue.

If true, use AQ message selection, if false, use Oracle Message Broker message
selection.

The value is a boolean. Default value: false

Table 4–16 (Cont.) Connection Factory Administrative Attributes

Attribute Description
4-28 Administration Guide

Oracle Message Broker Configuration
acl_dn A DN pointing to an Acl entry. Refer to Chapter 12, "Security" for more details.

create_provider_q This attribute is only used for Oracle AQ queues or Oracle AQ Lite queues.

Possible values are yes, no, or conditional. This attribute affects how Oracle AQ
queues or Oracle AQ Lite queues are created when the administrator creates an
LDAP Directory entry corresponding to the AQ queue or the AQ Lite queue using
the administrative utility.

■ yes: the administrative utility creates underlying queue.

■ no: the administrative utility does not access the provider.

■ conditional: if the underlying queue already exists in AQ or AQLite, it is used,
otherwise the queue is created.

Default value: conditional.

is_managed This is only used for MQSeries queues.

Determines if the queue is managed.

is_native Determines if the queue stores JMS messages or native messages.

The value is a boolean.

is_queriable This is only used for Oracle AQ queues. Determines if the queue is queriable.

Note: use of this attribute has been deprecated. Please do not use this attribute.
Equivalent functionality is provided with the aq_adt attribute.

Default value: false

max_messages Sets the maximum number of messages in the queue. Note: the AQ Driver and the
MQSeries Driver do not support this attribute.

The value must be an integer. The lower limit for this attribute is 1.

provider_queue_name This is only used for Oracle AQ and MQSeries queues.

Determines the provider’s name for the queue, if different from the cn. If not
defined, the default provider_queue_name is the same as the topic or queue name
(the cn). See "Notes and Limitations for Configuring Queues" on page 4-30 for
additional information on this attribute.

provider_q_created This attribute is only used for Oracle AQ or Oracle AQ Lite queues. This is a read
only attribute. If the administrative utility creates the Oracle AQ queue or the
Oracle AQ Lite queue, this is set to true otherwise this is set to false.

The value is a boolean.

Table 4–17 (Cont.) Queue Administrative Attributes

Attribute Description
Administration 4-29

Oracle Message Broker Configuration
Notes and Limitations for Configuring Queues
Normally, when setting up Queues, destinations should use unique underlying

queues on the message store. Thus, the administrator should make sure that the

value supplied for the provider_queue_name is unique across all OMB Instances

configured to use the Oracle Message Broker or that queue names are unique.

However, the following configuration example provides a case where the previous

comment is not applicable. An application could require that an AQ

single-consumer queue be accessed as a JMS queue, and the deployment options

could demand that several Oracle Message Broker applications accessing the same

underlying queue use different Database Server credentials (including the

username and password). In the Oracle Message Broker, the Database Server

credentials are associated with an OMB Instance’s AQ Server Entry, when using the

OCI based AQ Driver (see Table 4–3). In this case, the administrator needs to create

several separate OMB Instances to access the underlying AQ queue using the

Oracle Message Broker, and the administrator needs to configure the multiple OMB

Instances using a different username and password in the AQ Server entry. With

this configuration, the different OMB Instances have at least one queue entry in the

directory that points to the same underlying provider queue (AQ single-consumer

queue).

rm_provider_q This attribute is only used for Oracle AQ queues or Oracle AQ Lite queues.

Possible values are yes, no, or conditional. This attribute affects how the
underlying AQ or AQ Lite queues are removed when the administrator removes
an LDAP Directory entry corresponding to the queue using the administrative
utility.

■ yes: the queue is removed from when the entry is removed from the LDAP
Directory.

■ no: the administrative utility does not access the provider and the underlying
AQ or AQ Lite queue is not removed.

■ conditional: the queue is only removed if the Oracle Message Broker
administrative utilities created the queue.

Default value: conditional.

server_dn DN of the server that handles this queue.

The value must be a valid DN. The DN supplied must point to an entry of one of
the following types: msg_broker, aq_server, aqlite_server, mq_server, mcast_
server, or rv_server.

Table 4–17 (Cont.) Queue Administrative Attributes

Attribute Description
4-30 Administration Guide

Oracle Message Broker Configuration
Adding Topics
The Topics entry contains all of the OMB Instance topic entries. Each topic entry

specifies attributes defining a topic name and the topic configuration information.

Table 4–18 describes the topic attributes.

Table 4–18 Topic Administrative Attributes

Attribute Description

aqlite_message_
grouping

This attribute applies only if the topic uses an AQ Lite server.

Specifies the message grouping for the AQ Lite queue.

The valid values are: NONE, or TRANSACTIONAL. Default value: NONE

aqlite_owner This attribute applies only if the topic uses an AQ Lite server.

Specifies the owner of the AQLite queue. If left blank, the default is used.

aqlite_storage_clause This attribute applies only if the topic uses an AQ Lite server.

Specifies the storage clause used to create the AQ Lite queue table.

aq_adt This attribute applies only if the topic uses an AQ server. This determines the
JMS ADT to use for storing messages to AQ queues. See "AQ Messages" on
page 7-5 for more information.

The valid values are: text, bytes, map, stream, object, all, queriable, raw

Default value: raw

aq_schema This attribute applies only if the topic uses an AQ server.

Specifies the schema in which the AQ queue resides.

aq_rules This attribute applies only if the topic uses an AQ server.

If true, use AQ message selection, if false, use Oracle Message Broker message
selection.

The value is a boolean. Default value: false

acl_dn A DN pointing to an Acl entry. Refer to Chapter 12, "Security" for more details.

create_provider_q This is only used for Oracle AQ or AQ Lite topics.

Possible values are yes, no, or conditional. This attribute affects how Oracle AQ
or AQ Lite queues are created when the administrator creates an LDAP Directory
entry corresponding to the AQ or AQ Lite topic using the administrative utility.

■ yes: the administrative utility creates the underlying queue.

■ no: the administrative utility does not access the underlying queue.

■ conditional: if the queue already exists, it is used, otherwise, it is created.

Default value: conditional.
Administration 4-31

Oracle Message Broker Configuration
is_managed This is reserved for future use.

is_native Determines if the topic stores JMS messages or native messages

is_queriable This is only used for Oracle AQ topics.

Determines if the topic is queriable.

The value is a boolean. Default value: false

Note: use of this attribute has been deprecated. Please do not use this attribute.
Equivalent functionality is provided with the aq_adt attribute.

max_messages Sets the maximum number of messages in the topic. Note: the AQ Driver and the
MQSeries Driver do not support this attribute.

The value supplied must be an integer. The lower limit for this attribute is 1.

provider_queue_name Determines the provider’s name for the queue that stores messages for the topic.
For Oracle AQ topics, if this attribute is not defined, the default provider_queue_
name is the same as the supplied cn for the topic.

See "Notes and Limitations for Configuring Topics" on page 4-33 for additional
information on this attribute.

provider_q_created This attribute is only used for Oracle AQ or AQ Lite topics. This is a read only
attribute. If the administrative utility creates the Oracle AQ or AQ Lite topic this
is set to true otherwise this is set to false.

The value is a boolean.

rm_provider_q This attribute is only used for Oracle AQ or AQ Lite topics.

Possible values are yes, no, or conditional. This attribute affects how Oracle AQ
or AQ Lite queues are removed when the administrator removes an LDAP
Directory entry corresponding to the topic using the administrative utility.

■ yes: the queue is removed from Oracle AQ or AQ Lite when the topic is
removed from the LDAP Directory.

■ no: the administrative utility does not access Oracle AQ or AQ Lite.

■ conditional: the queue is only removed if it was created by the Oracle
Message Broker administrative utilities.

Default value: conditional.

server_dn DN of the server that handles this topic.

Table 4–18 (Cont.) Topic Administrative Attributes

Attribute Description
4-32 Administration Guide

Oracle Message Broker Configuration
Notes and Limitations for Configuring Topics
Normally, when setting up topics, destinations should use unique underlying

queues (or topics) on the message store. Thus, the administrator should make sure

that the value supplied for the provider_queue_name is unique across all OMB

Instances configured to use the Oracle Message Broker, or that topic names are

unique.

However, the following configuration example provides a case where the previous

comment is not applicable. An application could require that an AQ

multi-consumer queue be accessed as a JMS topic. This topic could be required by

the application to use an AQ rules engine to specify a message selector. The

application could also require access to the topic that does not use the AQ rules

engine to specify a message selector. The configuration property that determines

whether the AQ rules engine is used for durable subscriber message selectors is

associated with the topic entry in the directory. In this case, the administrator would

set up two directory entries within the OMB Instance that point to the same

underlying AQ multi-consumer queue. One entry would have the aq_rules
attribute set to true, and the other would have the aq_rules attribute set to false.

Creating and Configuring Remote Directories
The RemoteDirectories entry contains remote directory entries. Table 4–19 describes

the remote directory entry attributes. Refer to Chapter 8 for more information on

remote directories and their use with propagation.

re

Table 4–19 Remote Directories Administrative Attributes

Attribute Description

remote_directory_host Specifies the name of the host where the LDAP server runs.

remote_directory_password Specifies the password used for authentication on the LDAP Directory.
The value stored is encrypted in the directory.

remote_directory_port Specifies the port used to connect to the LDAP Directory.

The value must be an integer. Default value: 389.

remote_directory_username Specifies the DN of the user entry that is used for authentication on the
LDAP Directory.
Administration 4-33

Oracle Message Broker Configuration
Creating and Configuring Remote HTTP Listeners
The RemoteHTTPListener entry contains remote HTTP entries. Table 4–20 describes

the remote HTTP entry attributes. Refer to Chapter 8 for more information on

remote HTTP listeners and their use with propagation.

re

Table 4–20 RemoteHTTPListener Administrative Attributes

Attribute Description

proxy_host Specifies the hostname for the proxy server (on the sending side).

The value is a String. Default value: null

proxy_port Specifies the port for the proxy server (on the sending side).

The value must be an integer. Default value: null

remote_http_host Specifies the hostname of the system that the remote HTTP listener runs on.

The value is a String. Default value: none

remote_http_port Specifies port number that the HTTP listener on the remote system listens on.

The value must be an integer. Default value: no default

remote_http_path Specifies the path of the propagation servlet when using servlet based HTTP
propagation. This is the path component of the URL of the HTTP propagation
servlet. For example, the attribute remote_http_path should be set to
/servlet/PropHttpServlet, if the servlet’s URL is:

http://company.com/servlet/PropHttpServlet

The value is a String. Default value: null

remote_http_ssl_level Specifies the SSL level of the remote HTTP listener. The valid values are: 0, 1,
2, or 3.

The value must be an integer. Default value: 0

remote_wallet_location The full pathname of the wallet file on the sending site. The wallet file must be
in “exported file” format.

The value is a String. Default value: null

remote_wallet_password The password applied to the specified wallet file. The value stored is
encrypted in the directory.

The value is a String. Default value: null
4-34 Administration Guide

Oracle Message Broker Configuration
Creating and Configuring Propagation Jobs
The PropagationJobs entry contains propagation job configuration information,

including the specification of the destinations, source and target, for the

propagation job. Table 4–21 describes the propagation job attributes. Refer to

Chapter 8 for more information on propagation, and for information on setting

attributes in a PropagationJobs entry.

Creating and Configuring Durable Subscribers
The DurableSubscribers entry contains durable subscribers. Table 4–22 describes

durable subscriber attributes.

When you create or delete a durable subscriber entry for an AQ topic, the create or

delete results in the creation or deletion of a subscriber in AQ. This allows durable

Table 4–21 Propagation Jobs Administrative Attributes

Attribute Description

activation_state Specifies the activation state of the propagation job. This attribute specifies
whether the propagation job is activated or deactivated. See Activation State
in "Propagation Job Configuration" on page 8-16 for details.

When the value is true, the propagation job is activated.

When the value is false, the propagation job is deactivated.

The value is a boolean. Default value: false

create_timestamp This is reserved for internal use only.

propagation_msg_selector Contains the propagation message selector string. See Propagation Message
Selector "Propagation Job Configuration" on page 8-16 for details.

propagation_password Contains the password to use for the specified username. The value stored is
encrypted in the directory.

propagation_source DN of the source queue or topic.

propagation_target DN of the target queue or topic.

propagation_timeout The timeout value in seconds.

Default value: 120

remote_dn DN of the remote entry. This is used when the propagation_target is
specified in a remote directory or using a remote_http_entry.

propagation_username Contains the username DN to use to access the remote Oracle Message
Broker when the security service authentication is enabled.

valid_status This is reserved for internal use.
Administration 4-35

Oracle Message Broker Configuration
subscribers to be created and messages accumulated for the AQ topic before the

durable subscriber is available.

Creating and Configuring Asynchronous Component Invocation Triggers
The ACI container contains entries for ACI topic triggers and ACI queue triggers.

An ACI trigger entry defines the condition under which a notification is sent to an

EJB. Each trigger acts on one and only one destination (queue or topic). It is not

possible to set triggers that involve multiple destinations. There are two types of

triggers, Queue Triggers and Topic Triggers. Table 4–23 and Table 4–24 describe the

attributes for these two types of triggers.

Table 4–22 Durable Subscriber Administrative Attributes

Attribute Description

aqlite_address This attribute applies only if the topic uses an AQ Lite server. Address of the AQ Lite
subscriber.

aqlite_protocol This attribute applies only if the topic uses an AQ Lite server. Protocol used by the
AQ Lite subscriber.

aqlite_rule This attribute applies only if the topic uses an AQ Lite server. Rule use to filter
messages to the AQ Lite subscriber.

client_id This attribute contains the client identifier of the client that registered the durable
subscription (see [JMS 4.3.2] for more information on client identifiers.)

jms_user JMS user

msg_selector Message selector for the user

topic_dn The DN for the topic. The value must be a valid DN.

Table 4–23 ACI Queue Trigger Administrative Attributes

Attribute Description

authentication Specifies the database connection authentication method.

cf The JNDI name of the connection factory.

The value is a String.

component The JNDI name of the EJB component to invoke.

The value is a String.

concurrency The number of ACIs that can execute concurrently for the same event.

The value must be an integer. Default value: 0
4-36 Administration Guide

Oracle Message Broker Configuration
dest The JNDI name of the destination.

enabled Activates or deactivates the ACI trigger.

The value is a boolean. Default value: false

password The database schema password.

retries The number of retries to perform when the ACI does not complete normally.

The value must be an integer. Default value: 0

selector The message selector associated with the trigger.

The value is a String.

threshold The trigger is generated when messages reach a multiple of the threshold.

The value must be an integer. Default value: 1

username The database schema name.

Table 4–24 ACI Topic Trigger Administrative Attributes

Attribute Description

authentication Specifies the database connection authentication method.

cf The JNDI name of the connection factory.

The value is a String.

component The JNDI name of the EJB component to invoke.

The value is a String.

enabled Activates or deactivates the ACI trigger.

The value is a boolean. Default value: false

password The database schema password

retries The number of retries to perform when the ACI does not complete normally.

The value must be an integer. Default value: 0

Table 4–23 (Cont.) ACI Queue Trigger Administrative Attributes

Attribute Description
Administration 4-37

Dynamic Configuration
Showing Directory Attributes and Entries
You can use either AdminUtil , or the Oracle Message Broker Manager to view the

contents of the directory and verify that the entries you created are in the directory.

The command to start the Manager is:

% ombadmin

When you navigate to your OMB Instance, you should verify the entries you

created in the previous steps.

To use AdminUtil to view directory entries, refer to the show command in the

section, "Command-line Administration Utility - AdminUtil" on page 4-41.

Dynamic Configuration
When the Oracle Message Broker is running, the set of valid administration

operations is restricted. This section describes the operations allowed, and the

restrictions on dynamic configuration.

This section covers the following:

■ Create Entry Restrictions

■ Update Entry Restrictions

■ Delete Entry Restrictions

subscription The subscription name for topics.

The value is a String.

threshold The trigger is generated when messages reach a multiple of the threshold.

The value must be an integer. Default value: 1

username The database schema name.

Table 4–24 (Cont.) ACI Topic Trigger Administrative Attributes

Attribute Description
4-38 Administration Guide

Dynamic Configuration
Create Entry Restrictions
The following list contains the entries that cannot be created when the Oracle

Message Broker is active. All other types of entries can be created when the Oracle

Message Broker is active.

Update Entry Restrictions
The following list shows the entries that cannot be updated in any way when the

Oracle Message Broker is active.

Table 4–25 lists the attributes for the specified entries that can be updated when the

Oracle Message Broker is running. Other attributes for these entries are not allowed

to be updated while the Oracle Message Broker is active.

aqlite_driver mcast_server

aqlite_server mq_driver

aq_driver mq_server

aq_server rv_driver

prop_http rv_server

mcast_driver volatile_driver

aq_server mq_server

mcast_server rv_server

Table 4–25 Allowed Update Operations for an Active Oracle Message Broker

Entry Attributes that can be updated

aq_driver query_interval, max_push_sessions

mcast_driver query_interval, max_push_sessions

mq_driver query_interval, max_push_sessions,
max_private_sessions

msg_broker max_memory, max_concurrent_reqs

propagation_job activation_state, remote_dn, propagation_timeout,
propagation_username, propagation_password

prop_http http_sll_level, wallet_location, wallet_password
Administration 4-39

Dynamic Configuration
Delete Entry Restrictions
Table 4–26 contains the entries that cannot be deleted when the Oracle Message

Broker is active. All other types of entries can be deleted when the Oracle Message

Broker is active.

queues max_messages

Note: With the Oracle Message Broker active, max_messages can
only be updated for a queue using the Volatile Driver.

queue_trigger concurrency, enabled, retries, threshold

remote_dir all attributes

remote_http all attributes

rv_driver query_interval, max_push_sessions,
max_private_sessions

topics max_messages

Note: With the Oracle Message Broker active, max_messages can
only be updated for a topic using the Volatile Driver.

topic_trigger enabled, retries, threshold

volatile_driver query_interval, max_push_sessions

Table 4–26 Delete Entry Restrictions

Entry Comment

aqlite_driver

aqlite_server

aq_driver

aq_server

durable_subscriber Allowed only if the durable subscriber is not in use

mcast_driver

mcast_server

mq_driver

mq_server

Table 4–25 (Cont.) Allowed Update Operations for an Active Oracle Message Broker

Entry Attributes that can be updated
4-40 Administration Guide

Command-line Administration Utility - AdminUtil
Deleting a Propagation Job Entry
Deleting an activated propagation job is disallowed when the Oracle Message

Broker is running (an activated propagation job is one with the activation_
state attribute set to true).

To delete a propagation job entry when the Oracle Message Broker is running, first

deactivate the propagation job. Refer to "Activating and Deactivating a Propagation

Jobs" on page 8-26 for more information.

Command-line Administration Utility - AdminUtil
The AdminUtil command-line utility modifies entries in the LDAP Directory and

allows the administrator to create, delete, and manage Oracle Message Broker

configuration information.

The AdminUtil command operates in two modes: interactive and batch:

■ In interactive mode an administrator enters commands at an input prompt. The

interaction continues until the administrator enters a quit or exit command.

■ In batch mode the utility processes files containing AdminUtil commands.

By default, AdminUtil starts in interactive mode and assumes that simple

authentication is required. You are prompted for a user DN and a password if these

are not specified on the command line (using the –noauth option you are not

prompted for a user DN or a password).

msg_broker

prop_http

queue Allowed only if the queue is not in use

remote_dir

remote_http

rv_driver

rv_server

topic Allowed only if the topic is not in use

volatile_driver

Table 4–26 (Cont.) Delete Entry Restrictions

Entry Comment
Administration 4-41

Command-line Administration Utility - AdminUtil
Enter a user DN and password and select the Continue button if your directory is

set up for authentication. If the directory does not use authentication, or if you have

set properties to indicate the user DN and password, leave these fields blank and

select the Continue button. If you select the Exit button, AdminUtil exits (for more

information on setting properties for security, refer to the section, "Enabling SSL and

Authentication for the LDAP Directory" on page 12-20).

This section uses the following abbreviations:

To run AdminUtil , use the following syntax:

AdminUtil [options] [--] [arguments]

Table 4–27 shows AdminUtil options. The command line options are case

sensitive.

The optional arguments can be specified on the command line. If optional arguments

are present, named variables are set for each of the arguments. The variables have

hardwired names of ARGVn where n is the argument number 0..n-1 (for example,

ARGV0, ARGV1, ...). The variable can be used as any other named variables and

managed using the set command.

The following examples illustrate the variables that would be set for the given

command line.

AdminUtil myOmb myQueue
ARGV0: myOmb
ARGV1: myQueue

AdminUtil -f myFile myOmb myQueue
ARGV0: myOmb
ARGV1: myQueue

Note: The LDAP Directory specified using the OMB_IC
environment variable must be running before using AdminUtil
(see "Required Environment Variables" on page 2-10 for details).

cwo the current working object

DN an LDAP distinguished name

RDN an LDAP relative distinguished name
4-42 Administration Guide

Command-line Administration Utility - AdminUtil
AdminUtil -f myFile -- -dashArg abc xyz
ARGV0: -dashArg
ARGV1: abc
ARGV2: xyz

Note: AdminUtil does not remove JNDI related Java

authentication properties. It does set JNDI properties based on

command line options. You can modify the OMB_LP variable to set

security properties, then run AdminUtil with the –noauth option

to access a secured LDAP server.

Table 4–27 Command-line Options for AdminUtil

Option Description

-- Marks the end of the command line options. Use -- when the first optional argument
starts with a dash.

–b LDAP_basedn The LDAP_basedn supplies a base DN to use for the initial context. If you use the –b
option, –h is required.

–D auth_DN The auth_DN supplies the DN to use for user name authentication.

–echo Echoes each input line.

By default, the echo feature is disabled.

–errorlevel level Set the error reporting level. The parameter level is set to an integer value in the range 1-4:

1 – print error message for the top exception

2 – print error messages for all linked exceptions

3 – print stack trace for the top exception

4 – print stack trace for all linked exceptions

The default value for errorlevel is 2.

–f inputFile Process a batch file. The file, inputFile, contains AdminUtil commands. Multiple –f
options specify a sequence of files to be processed. Multiple files are processed in the order
they appear on the command line.

–fullversion Displays the full program version information.

–h LDAP_host Specifies an LDAP server. The host, LDAP_host, must be a host available on the network.

–help Displays the program usage.
Administration 4-43

Command-line Administration Utility - AdminUtil
–ign Causes the program to ignore errors when processing a batch file. If this option is not
specified, processing ends if a batch command fails. This option is ignored for interactive
mode.

–infolevel level Set the information reporting level. The parameter level is set to an integer value in the
range 1-3:

1 – print the minimum amount of informational messages

2 – print the standard amount of informational messages

3 – print the verbose informational messages.

When a command fails, using infolevel 3 causes the command tokens to be shown after
the error. The default value for infolevel is 2.

–int Causes the program to continue in interactive mode after processing any batch files that
may have been listed. Interactive mode is the default if the –f option is not specified.

–n Causes most commands to operate in a "no execute" mode. When a command string is
processed, a certain degree of validation may be performed but the command is not
executed. AdminUtil may display a text message indicating command status. This option
is useful for checking batch files for command syntax problems.

Using AdminUtil , most commands honor the "no execute" flag while some general
commands, including: echo, exit, help, run, set, and setopt behave normally; that is, they
ignore the –n flag.

–noauth Specifies that LDAP authentication is not required on the LDAP server.

–p LDAP_port TCP port to use for the LDAP connection on the LDAP server. If you use the –p option, –h
is required.

–P wallet_password Specifies the wallet password. This is ignored if the value of –U is 0 or 1.

–U value Specifies if SSL is used, and the authentication level. Valid values are: 0, 1, 2, and 3.

0 – no SSL. This is the default if –U is not specified.

1 – SSL with no authentication.

2 – SSL with server-side authentication.

3 – SSL with server-side and client-side authentication.

–version Displays the program version number.

–w auth_passwd Supplies a password, auth_passwd, for authentication on the LDAP server.

–W wallet_path Specifies the path to an exported wallet file. This is ignored if the value of –U is 0 or 1.

Table 4–27 (Cont.) Command-line Options for AdminUtil

Option Description
4-44 Administration Guide

Command-line Administration Utility - AdminUtil
Command Line Syntax
Each AdminUtil command is terminated with a semi-colon ';'. If a literal

semi-colon is required in an input line, it must be escaped or quoted.

A single command can be split over multiple input lines. However, individual

tokens must be fully specified on a given input line, including quoted strings.

Quoted strings are not allowed to start on one input line and continue to the next.

The beginning and ending quote characters must be on the same input line and an

error will occur for unmatched quote characters.

AdminUtil processes commands until a quit or exit command is encountered,

or the end of file is read in batch mode.

AdminUtil is not case sensitive for command names.

Quotation
AdminUtil provides three types of quotation:

■ The escape character

■ Single quotes

■ Double quotes

A non-quoted backslash (\) is used as the escape character. It preserves the literal

value of the following character.

Single quotes preserve the literal value of each character within the quotes. No

escaping is allowed for single quotes so a single quote literal can not occur between

single quotes.

Double quotes provide a weaker form of quotation than single quotes. All enclosed

characters are preserved with the exception of $ and \. The $ character retains its

special meaning within double quotes. The backslash (\) is used as an escape

character only when followed by a $, \, or “ (dollar, backslash and double quote).

For any other character, the \ is treated as a literal character.

A double quote can be part of a quoted string by escaping the double quote with a

backslash (\”). For example,

 "embedded\"quote"
 "embedded\\backslash"
Administration 4-45

Command-line Administration Utility - AdminUtil
Comments and Echo Mode
An input line may contain comments. The '#' character marks the beginning of a

comment. A comment starts when a word begins with '#' and extends to the end of

the line. A '#' in the middle of a word or within a quoted string does not start a

comment.

If a line begins with "#!" the remainder of the line is printed to the screen when echo

mode is disabled. When echo mode is enabled, the entire line is echoed just like any

other input line. This feature is useful for displaying user comments when

processing a batch file.

LDAP Directory Interaction
Many AdminUtil commands result in an LDAP Directory operation. Other

AdminUtil commands provide information for commands and set internal options

to make the program easier to use. For example, attrl allows you to build a list of

attributes for the create or setattr commands. Also, the builddn command

allows you to construct a DN for an entry.

Object Binding
Commands are applied to a specific object reference or to the current bound object.

The cd command sets the current bound object (or the –bind option of the lookup
and create commands). See "Object References" on page 4-59, for more

information on object references.

Named Variables
The named variable feature allows user-defined variable names to be associated

with a string.

The set command associates a string with a named variable. The –set option also

associates a string with a named variable for commands such as cd , pwd, lookup ,

create and builddn .

A named variable is a word consisting of only alphanumeric characters and the

underscore, and must begin with an alphabetic character or underscore ([a-zA-Z_
][a-zA-Z0-9_]*).

There are two forms used to reference a variable: $name and ${name}. Use the

second form when the characters following the name are themselves valid identifier

characters.

Variable expansion is done for any variable reference within a non-quoted string

and double quotes. The $ is treated as a literal character if it occurs within single
4-46 Administration Guide

Command-line Administration Utility - AdminUtil
quotes. A literal $ can be obtained by escaping it with a backslash (‘\$’). A $

followed by a whitespace is taken as literal whether or not it is escaped.

A undefined variable expands to the empty string.

Concatenation of Named Variables
A named variable, referenced as $name or ${name}, can occur at any position in a

command string. The parameter is expanded if it occurs in a non-quoted token or is

within double quotes.

Evaluation Rules
Input is evaluated, expanded and parsed into a command and list of arguments in a

consistent manner. The following outlines the basic steps of the evaluation process:

1. Get an input line.

2. Remove comments.

3. Look for a command terminator (;) at the end of the line. If not found, repeat 1-3

until one is found.

4. Expand and parse the command string (see below).

5. Process the command.

The expansion and parsing rules for step four are as follows:

1. Split the initial command string on word boundaries. Steps 2-4 are applied to

each token.

2. Expand variables. An empty string will be used for any undefined variables.

3. Split the token on word boundaries. This may produce additional arguments if

a variable is not within a quoted string and its value has whitespace characters.

4. Remove quotation. This includes escaped characters in a non-quoted word or

double quotes and the quote characters used to enclose a quoted string.

Be careful when including quotes with variables. Explicit null, empty string,

arguments are retained as arguments, including those that surround undefined

variables (explicit null arguments are sequences of ““ or ‘’). However, implicit null

arguments that result from the expansion of non-quoted parameters are removed.

For example, if you use variables as follows:

>set OPTION “-set name” ;
>cd $OPTION ~/path ;
Administration 4-47

Command-line Administration Utility - AdminUtil
This could create an invalid command, as in the following case when $OPTION is

undefined:

>cd “$OPTION” ~/path;

The following example shows that when $OPTION is undefined, the command is

valid when quotes do not enclose the undefined argument, since the implicit null

arguments are removed:

>cd $OPTION ~/path;

Error Reporting
When AdminUtil processes a script file, and an error occurs, the last command

string is printed after the error information. Printing this information can help

identify the command that failed. The last command string is not printed when an

error occurs in interactive mode.

If an error occurs when the infolevel is set to level 3 (verbose), the command token

strings are printed after the error information. This information shows the actual

command, and the command arguments after expansion is performed on a

command string. The command tokens are printed for both interactive and file

mode.

For example, the following set and cd command sequence causes an error because

the value ‘-opt’ is not a valid option for cd . The last command helps identify the

command that failed. The command tokens show the command and arguments

after the expansion. When the infolevel is set to 3, AdminUtil displays the

following:

set A “-opt abc”;
cd $A;

LAST COMMAND:
cd $A

COMMAND TOKENS:
[0]: cd
[1]: -opt
[2]: abc
4-48 Administration Guide

Command-line Administration Utility - AdminUtil
Command List
Table 4–28 provides a description of the AdminUtil commands in alphabetical

order.

Command Examples
Table 4–29 provides examples of the AdminUtil commands.

Table 4–28 AdminUtil Commands

Command Description

activate [entry] Reserved for future use.

attrl {–a | –r | –s} [args] Manages an attribute list. Builds a set of attributes for commands such as create
and setattr . There is one unnamed internal attribute list.

attrl –a attrName

attrValue . . .

Adds one or more values for an attribute to the attribute list. If the list already
contains an attribute with the name attrName, the values are added to the existing
values.

attrName specifies the attribute name.

attrValue specifies the value(s) to be added for the attribute.

attrl –r

[{* | attrName} [attrValue]]

Removes all attributes from the attribute list or values for a specific attribute.

attrName specifies the name of the attribute for which values are to be removed. If
this is not specified, or it is "*", all attributes are removed from the list.

attrValue specifies the value(s) to be removed for the attribute.

attrl [–s {* | attrName}] Shows the values for all attributes in the list or values for a specific attribute.

attrName specifies the name of the attribute to show. If this is not specified, or it is
"*", the command shows all attributes.

builddn [–set var]

entry

Builds a distinguished name from an entry reference. This is similar to the lookup
command except it does not check whether or not such an entry exists. This is
useful for constructing a full DN and saving it to a named variable for later use as
an attribute value.

entry is a reference from which a DN is constructed

–set var saves the built reference to the named variable var.

cd [–set var]

[entry]

Binds the cwo to the specified entry.

entry is a reference to the object to be bound as the cwo. If entry is not included, the
cwo is bound to the initial context used to access the LDAP Directory.

–set var saves an entry reference to the named variable var.

See "Object References" on page 4-59, for more details on entry references.
Administration 4-49

Command-line Administration Utility - AdminUtil
create [–bind]

[–set var]

[–al]

[{–av "name value"}]

[{–avpasswd name}]

entryType

entryName

[parentEntry]

Creates a new OMB entity.

The attribute values are a combination of those specified and the default values for
all mandatory attributes not specified. Create fails if the object has mandatory
attributes that are not supplied, that is, the user did not specify a value and the
attribute is mandatory and does not have a default value.

entryType specifies the type of object to create.

entryName specifies the name of the object.

parentEntry specifies a reference to the parent of the object being created. If not
specified, use the cwo as the parent.

–bind causes the cwo to be bound to the object that was created.

–set var saves the object reference to the named variable var.

 –al causes attributes from an internal attribute list to be used for object creation.
The attrl command is used to manage the attribute list.

–av explicitly specifies an attribute value. Multiple –av options are allowed. The
–av argument must be a quoted string with two or more words. The first word is
the attribute name, and the subsequent word(s) specify the attribute value(s). Do

not use the –av option when the name or the value contains whitespace or quote
characters. If you need to include whitespace or quote characters, use the attrl
command to set the value in the attribute list, and then use the –al option with the
create command.

–avpasswd displays a dialog that prompts the user for an attribute value. The text
input field shows an echo character rather than the entered text. The dialog is
displayed for both interactive and batch modes. A named variable can be used for
the attribute name.

createombinstance

[–bind]

[–set var]

[–repair]

entryName

[parentEntry]

Constructs an OMB Instance container and other containers that are commonly
found under the instance container. This command can also be used to repair an
OMB Instance container by creating any entries that might be missing. This
command is provided solely for ease of use.

entryName specifies the name of the omb_instance_container to create.

parentEntry specifies a reference to the parent entry. If not specified, use the cwo.

–bind causes the cwo to be bound to the object that was created.

–set var saves the object reference to the named variable var.

–repair allows an existing omb_instance_container to be repaired by only creating
those entries that currently do not exist. If –repair is not specified, the command
fails if the container already exists.

deactivate [entry] Reserved for future use.

Table 4–28 (Cont.) AdminUtil Commands

Command Description
4-50 Administration Guide

Command-line Administration Utility - AdminUtil
delete [–subonly]

[–ign]

[–recurse]

[entry]

Deletes a specific entry, or deletes entries of a subtree.

Note: Use extreme caution when using this command. Depending on the options
used, this command deletes a single object or deletes all entries in the subtree. An
attempt to delete an object might fail even when that object has no children. This
might occur if there is some dependency on that object by another object. The
delete might fail with a notification error.

entry specifies a reference for the target object or without an entry, the cwo.

–ign option tells delete to silently ignore errors if the entry to be deleted does not
exist.

–subonly deletes only entries in the subtree of the target object. The target object is
not deleted, even if –recurse is specified.

–recurse deletes all objects in a subtree.

dir [entry] Lists the contents (children) of an entry.

entry is a reference to the object whose children are listed, or the cwo.

echo [arguments] Writes the arguments to output. This is useful for diagnostic purposes and
displaying variables. The arguments are separated by a blank and terminated with
a newline. If no arguments are supplied, only a newline is output.

exit [all] Exits the current command reader. This is the same as quit .

The option, all for the exit command quits all command readers and terminates
the program. If all is not specified, only the current command reader stops. If the
reader was nested, started using the run command, processing continues using
the previous reader.

help [command]

[–out file]

[command]

Displays usage information, or information for a specific command.

–out file sends the output to the specified file.

command displays help information for a specific command.

lookup [–bind]

[–set var]

entry

Looks up a reference to retrieve such information as the entry name, entry type
and distinguished name.

entry is a reference to the object that is the target of the lookup, or the cwo if not
specified.

–bind causes the cwo to be bound to that object.

–set var saves a reference to the named variable var.

pwd [–set var] Displays information for the current working object.

–set var saves a reference for the current bound object to the named variable var.

Table 4–28 (Cont.) AdminUtil Commands

Command Description
Administration 4-51

Command-line Administration Utility - AdminUtil
quit [all] Exits the current command reader. This is the same as the exit command.

The option, all , for the quit command quits all command readers and
terminates the program. If all is not specified, only the current command reader
terminates. If the reader was nested (started using the run command) processing
continues using the previous reader.

run [filename] Run suspends the current command reader, creates a new command reader and
begins processing commands using the new reader. The current reader is resumed
once the new reader has finished. An interactive reader is started if no filename is
specified, otherwise a file reader is started. This command is useful for nesting
batch files, running a batch file from interactive mode or switching to interactive
mode from a batch file.

When a series of readers have been started (that is, nested run commands) and an
error occurs when processing a command from a file reader, that reader will be
cancelled as well as all preceding file readers, up to the most recent interactive
reader. If no interactive reader was started, the program terminates.

The reader is not cancelled if the "ignore error" flag has been enabled and an error
occurs. The "ignore error" can be enabled using the –ign command line option or
the setopt ignoreerror command.

set [{–u | –s} [args]] Manages named variables.

There are two ways to assign a value to a variable. The set command associates a
string to a named variable. The –set option for cd , pwd, lookup , create and
builddn associates an entry DN to a named variable.

A $varName or ${varName} syntax references the value associated with a named
variable.

set name value Saves an arbitrary string to a named variable. This variable can then be referenced
by other commands (for example, attrl) as $name or ${name} when the value is
needed.

name specifies the variable name.

value specifies the value.

set [–s {* | name}] Shows the value of a specific variable or all variables.

name specifies the named variable to show. If not specified, all named variables are
shown.

set –u [{* | name}] Removes (unsets) a specific variable or removes all variables.

name specifies the named variable to clear. If not specified, all named variables are
cleared.

Table 4–28 (Cont.) AdminUtil Commands

Command Description
4-52 Administration Guide

Command-line Administration Utility - AdminUtil
setattr {[–al]

[{–av "name value "}]

[{–avpasswd name}]}

[entry]

Modifies attributes for an object. The attributes being changed are a combination
of those from an internal attribute list (–al option) and/or those explicitly specified
(–av and –avpasswd option).

entry specifies a reference for the target object. If not specified, use the cwo.

–al causes attributes from an internal attribute list to be used. The attrl
command is used to manage the internal attribute list.

–av allows the user to explicitly specify an attribute value. Multiple –av options
are allowed. The –av argument must be a quoted string which consists of two or
more words. The first word is the attribute name, and the subsequent word(s)

specify the attribute value(s). Do not use the –av option when the name or the
value contains whitespace or quote characters. If you need to include whitespace
or quote characters, use the attrl command to set the value in the attribute list,

and then use the –al option with setattr .

–avpasswd displays a dialog that prompts the user for an attribute value. The text
input field shows an echo character rather than the entered text. The dialog will be
displayed for both interactive and batch modes. A named variable can be used for
the attribute name.

setopt [option [value]] Sets or displays program options.

option specifies the option.

value specifies the new value. If not specified, the current value of the option is
shown.

setopt errorlevel [level] Sets the error reporting level. The parameter level is set to an integer value in the
range 1-4:

1 – print error message for the top exception

2 – print error messages for all linked exceptions

3 – print stack trace for the top exception

4 – print stack trace for all linked exceptions

The –errorlevel command-line option can be used to set the errorlevel when
AdminUtil is first started.

The default value for errorlevel is 2.

setopt infolevel [level] Displays or sets the information level. This gives the user a certain degree of
control over how much information is output. Level should be in the range 0 to 3,
from least to most verbose.

The –infolevel command-line option can be used to set the infolevel when
AdminUtil is first started.

Table 4–28 (Cont.) AdminUtil Commands

Command Description
Administration 4-53

Command-line Administration Utility - AdminUtil
setopt ignoreerror
[true|false]

If enabled (true), ignore errors when processing commands from a batch file and
continue processing the file. If disabled (false), cancel processing the commands if
an error occurs.

The –ign command-line option can be used to enable the ignore error mode when
AdminUtil is first started.

setopt echo

[{true | false}]

Sets the mode for echoing input lines. When echo mode is enabled, each input line
is displayed. When echo is disabled, the input line is not echoed.

show ameta

[–long | –short]

[–type]

[entry [attrName]]

Shows attribute metadata for an existing entry or an entry type.

entry specifies a entry reference or entry type for which attribute metadata is
displayed. This can be "." to reference the cwo.

attrName specifies the name of the attribute. If not specified, metadata for all
attributes is displayed.

–long, provides detailed information (the default for a single attribute).

–short, provides abbreviated information (the default for multiple attributes).

–type, the entry argument specifies an entry type rather than an entry reference.

show attrs [entry] Shows attribute values for an object reference.

entry specifies a object reference whose attributes are displayed or without an
entry, the attributes of the cwo.

show emeta

[–long | –short]

[–type]

[entry]

Shows entry metadata for an existing entry, a specific type of entry or all entry
types.

entry specifies a entry reference or entry type for which entry metadata is
displayed. This can be "." to reference the cwo.

–long, provides detailed information (the default for a single entry).

–short, provides abbreviated information (the default for multiple types).

–type, the entry argument specifies an entry type rather than an entry reference. If
–type is specified and entry is not specified, entry metadata for all entry types is
displayed.

Table 4–28 (Cont.) AdminUtil Commands

Command Description
4-54 Administration Guide

Command-line Administration Utility - AdminUtil
show lasterror [elevel] Shows information about the last error, at the specified error level. When using
interactive mode, this command is useful for displaying information at a specific
level for a specific command. See setopt errorlevel for information on
setting the error level.

elevel specifies the error level setting, and is set to an integer value in the range 1-4.

unsetattr { { –a { name | *}}
... } [entry]

Unsets the value for an optional attribute or the values for all optional attributes of
an entry. Only optional attributes that are not read-only after creation can be unset.

–a specifies the name of the attribute to unset. Multiple –a options are allowed.
Using –a with * for the name unsets all optional attributes for the entry.

entry specifies a reference for the target object or without an entry, the cwo.

Table 4–29 AdminUtil Examples

Example Description

activate; Sends an activate command to the object referenced by the currently
bound object.

attrl -a provider_queue_name "queue1";

attrl -a server_dn “$MYBRK_DN”;

attrl -a max_messages 250;

Adds the value queue1 to provider_queue_name.

Adds the value of MYBRK_DN to server_dn.

Adds the value 250 to max_messages.

attrl –r max_memory;

attrl –r *;

Removes all values for an attribute.

Removes all attributes from list.

attrl –s max_memory;

attrl –s;

Shows value for max_memory.

Shows all attributes in list.

builddn -set MYBASE1
"/c=us/o=C1/cn=OracleContext/cn=Product
s/cn=OMB";

builddn -set MYBASE2 "/$CO/$FIXEDDIT";

builddn -set MYOMB_DN "~/cn=myomb";

Builds a DN for an entry reference that is relative to the root and
made up of atomic names. The DN is saved to the variable MYBASE1.

Builds a DN for an entry reference that is relative to the root and
made up of named variables. The DN is saved to MYBASE2.

Builds a DN for an entry reference that is relative to the initial context.
The DN is saved to the variable MYOMB_DN.

cd;

cd ~;

cd ..;

Binds the cwo to the initial context.

Binds the cwo to the initial context.

Binds the cwo to the parent of the current cwo.

cd $BRK_DN; Binds the cwo to the entry referenced by the named variable BRK_DN
that is a child of the current cwo.

Table 4–28 (Cont.) AdminUtil Commands

Command Description
Administration 4-55

Command-line Administration Utility - AdminUtil
cd -set BRK_DN "~/$OMB_DN/msg_broker"; Binds the cwo to an entry having the entry name msg_broker that is a
child of an entry referenced by the named variable OMB_DN which is
relative to the initial context. The reference is saved to BRK_DN.

cd -set BRK_DN "./omb1/msg_broker"; Binds the cwo to the entry referenced by an entry path made up of
simple names. The entry reference is saved to BRK_DN.

cd ~/cn=omb1/cn=Queues/queue1; Binds the cwo to an entry referenced by a path that is relative to the
initial context and made up of simple and atomic name components.

create msg_broker msg_broker "~/$OMB_
DN";

Creates a new object under the entry referenced by the named
variable OMB_DN. Use default values for the attributes.

create -al topic topictest; Creates a new object under the cwo. The object is created using values
from the internal attribute list and defaults for all others.

create -bind -set MYTOPIC -al topic
topicTest "~/$TOPICS";

Creates a new object under the entry referenced by the named
variable TOPICS. Uses attributes from the internal attribute list and
default value for all other attributes. Binds the newly created object as
the cwo and saves an object reference to the named variable
MYTOPIC.

create -set BRK_DN -al -av "max_memory
5" -av "max_concurrent_reqs $MAXREQ"
msg_broker msg_broker "~/cn=myomb";

Creates a new object under an entry named cn=myomb that is relative
to the initial context. The creation attributes are a combination of
those from the internal attribute list, those explicitly given via the –av
options and defaults for all others. The value for the max_concurrent_
reqs attribute is the value of the named variable MAXREQ. The
reference to the new entry is saved to BRK_DN.

create -set AQSVR -av
"aq_service_name $SVCNAME" -avpasswd
aq_password aq_server aqsvTest
~/cn=myomb ;

Creates a new object under an entry named cn=myomb that is relative
to the initial context. The aq_service_name attribute is set to the value
of the SVCNAME variable. A dialog prompts for the value of the aq_
password attribute. The reference to the new entry is saved to the
named variable AQSVR.

createombinstance -set OMB_DN
ombtest ~;

Creates a new OMB Instance container named ombtest and its
associated sub–containers. It is created at the initial context and the
reference saved to the named variable OMB_DN. This fails if ombtest
already exists.

createombinstance -set OMB_DN -repair
ombtest "/$MYBASE";

Repairs, or creates, an OMB Instance container whose parent is the
entry referenced by the named variable MYBASE. This creates any
entries that do not exist, including the OMB Instance container itself.
The reference is saved to the named variable OMB_DN.

deactivate "$BRK_DN"; Sends a deactivate command to the object reference by the named
variable BRK_DN.

delete; Deletes the cwo. This will fail if any objects exist under the target
object, cwo in this example.

delete "~/$OMB/Queues/$QUEUE1"; Deletes the referenced entry.

delete -subonly; Deletes only the immediate children (one level) of the target object,
the cwo. The target object is not deleted. Since the recurse option is
not specified, any object which has children of its own is not deleted.

Table 4–29 (Cont.) AdminUtil Examples

Example Description
4-56 Administration Guide

Command-line Administration Utility - AdminUtil
delete -subonly "~/$OMB_DN/Queues"; Deletes the immediate children of the referenced entry.

delete -recurse "~/$OMB_DN"; Deletes all objects in the subtree of the object referenced by the named
variable OMB_DN, including the target object.

delete -subonly -recurse "~/$OMB_DN"; Deletes all objects in the subtree of the object referenced by the named
variable OMB_DN. The target object is not deleted.

dir .; Lists the contents of the current bound object.

dir "~/$OMB_DN"; Lists the contents of the entry referenced by the named variable
OMB_DN.

echo A=$A ; Display the resulting string after the standard expansion and parsing
has taken place.

echo /$MYOMB_DN/cn=queues/cn=$MYQUEUE ; Display the resulting string after the standard expansion and parsing
has taken place.

help; Displays help for all commands.

help set; Displays help for the set command.

help –out cmd.hlp –all ; Writes help information for all commands to a file named cmd.hlp.

lookup -bind -set OMB_DN ~/cn=ombtest; Looks up an atomic name that is relative to the initial context, binds
the cwo to that object and saves an object reference to the named
variable OMB_DN.

lookup -var MYTOPIC
~/cn=topic1,cn=Topics,cn=ombtest;

Looks up an object that is relative to the initial context and saves the
entry DN to the named variable MYTOPIC.

lookup msg_broker; Looks up an object which is a child of the cwo and has an entry name
of msg_broker.

lookup "~/$BRK_DN"; Looks up the object that is relative to the initial context and referenced
by the named variable BRK_DN.

lookup -set BRK_DN ~/ombtest/msg_
broker;

Looks up the object which from the initial context, there is an object
that has an entry name of ombtest which has a child whose name is
msg_broker. The entry DN is saved to BRK_DN.

pwd; Displays information for the current bound object.

pwd -set BRK_DN; Displays information for the current bound object and saves its
reference to the named variable BRK_DN.

run myfile ; Starts a new command reader for a file.

run ; Starts a new interactive reader.

set MYROOT
"cn=OMB,cn=Products,cn=OracleContext,o=
Comp,c=us";

Sets a distinguished name value for the named variable MYROOT.

set MAXMEM 5; Sets the value of MAXMEM to 5.

set -s MYROOT; Shows value for MYROOT.

Table 4–29 (Cont.) AdminUtil Examples

Example Description
Administration 4-57

Command-line Administration Utility - AdminUtil
set -s *; Shows all named variables.

set -u MYROOT; Clears variable MYROOT.

set -u *; Clears all named variables.

set FIXEDDIT
cn=OMB,cn=Products,cn=OracleContext;

Sets the value for the named variable FIXEDDIT.

set COMP1 o=Comp1,c=us; Sets COMP1 to the specified value.

setattr -al; Modifies attributes for the cwo using values from the internal
attribute list.

setattr -av "max_memory 6"; Modifies a specific attribute for the cwo.

setattr -al -av "max_memory 5"
-av "max_concurrent_reqs $MAXREQ"
~/cn=myOmb ;

Modifies attributes for an object having atomic name of cn=myOmb
that is relative to the initial context. The attributes being set are a
combination of those from the internal attribute list and those
explicitly given via the –av options. The value for the max_
concurrent_reqs attribute comes from MAXREQ.

setAttr -av "aq_service_name $SVCNAME"
-avpasswd aq_password ~/cn=myOmb ;

Modifies attributes for an object having atomic name of cn=myOmb
that is relative to the initial context. The value for the aq_service_
name attribute comes from the named variable SVCNAME. A dialog
prompts for the value of the aq_password attribute.

setopt infolevel ; Show current information level.

setopt infolevel 3 ; Sets a new information output level setopt.

setopt ignoreerror ; Display the current ingore error setting.

setopt ignoreerror true; Enable ignore error mode.

setopt errorlevel 3; Set a new error information level.

setopt errorlevel ; Display the current error information level.

setopt echo; Shows the current echo mode.

setopt echo true; Enables the input line echo mode.

show lasterror 4; Display error information for the last error. A stack trace for all linked
exceptions is displayed.

show emeta . ; Shows entry metadata for the current cwo.

show emeta ~/ombtest/msg_broker ; Shows entry metadata for a referenced entry.

show emeta -type ; Shows entry metadata for all entry types.

show emeta -type msg_broker; Shows entry metadata for a specific entry type.

show ameta . ; Shows attribute metadata for the current cwo.

show ameta . max_memory; Shows attribute metadata for a specific attribute of the cwo. By
default, detailed information is displayed.

Table 4–29 (Cont.) AdminUtil Examples

Example Description
4-58 Administration Guide

Command-line Administration Utility - AdminUtil
Object References
Using AdminUtil , an object can be referenced using its LDAP distinguished name.

This can be a full DN or an DN relative to an initial context. References use a

most-significant to least-significant naming convention. For example, the following

is a full DN for cn=myOmb:

cn=myOmb,cn=OMB,cn=Products,cn=OracleContext,ou=sales,o=oracle,c=us

If the initial context were set to the following: cn=Products,cn=OracleContext,

ou=sales,o=oracle,c=us, the DN specified would be:

cn=myOmb,cn=OMB

AdminUtil supports a path syntax for entry references. The syntax uses a

least-significant to most-significant naming convention (right to left). Each path

component is separated by a '/' character. An absolute or relative path may be

specified. A path reference that starts with "/" is interpreted as an absolute path. A

path that starts with "~/" is interpreted as relative to the initial context. Anything

else is interpreted as relative to the currently bound object.

For example, AdminUtil resolves the following reference to a full DN:

/c=us/o=oracle/ou=sales/cn=OracleContext/cn=Products/cn=OMB/cn=myOmb

show ameta ~/ombtest/bkrtst max_memory; Shows attribute metadata for a specific attribute of a referenced entry.

show ameta -type msg_broker; Shows attribute metadata for all attributes of a specific entry type.

show ameta -type msg_broker max_memory; Show attribute metadata for a specific attribute of a specific entry
type.

show attrs . ; Shows attributes for the current cwo.

show attrs ~/cn=ombtest/cn=msg_broker ; Shows attributes for the referenced entry.

unsetattr -a max_memory ; Unsets the max_memory attribute for the cwo.

unsetattr -a propagation_send_threads
-a propagation_recv_threads;

Unsets two attributes for the cwo.

unsetattr -a * ~/cn=myOmb/cn=msg_
broker;

Unsets all optional attributes for a msg_broker entry.

Table 4–29 (Cont.) AdminUtil Examples

Example Description
Administration 4-59

Command-line Administration Utility - AdminUtil
For the initial context, cn=Products,cn=OracleContext,ou=sales,o=oracle,c=us, a

path reference could be:

~/cn=OMB/cn=myOmb

Using AdminUtil , do not use any paths that place the current working object

above the initial context set in OMB_IC. For example, if the initial context is set to

the following:

ldap://system1/cn=inst1,cn=OMB,cn=Products,cn=OracleContext,ou=dept,o=comp,c=us

Then, if the current working object is inst1 , you cannot use the command cd.. to

the change the current working object to cn=OMB. The upper limit in this example

is:

cn=inst1

However, the buildDn command can use a path referring to an entry above the

initial context. For example, if the current working object is inst1 , then the

command below sets the BROKER variable to the distinguished name of a broker

under a different omb_instance_container :

buildDn -set BROKER ../cn=inst2/cn=abroker;

Valid path components include the following:

Table 4–30 shows several sample object references.

~ The initial context currently being used. This is similar to the Unix home
reference.

. The current working object (cwo).

.. The parent of the cwo.

DN An LDAP distinguished name.

RDN An LDAP relative distinguished name.

name The simple name (for example, the Products part of cn=Products).

atomic An LDAP atomic name (for example, o=oracle or cn=OracleContext).

$varName A reference associated with the named variable varName.
4-60 Administration Guide

Command-line Administration Utility - AdminUtil
Entry Attributes
Each entry type has attributes that define the type of data associated with the entry.

Metadata exists for both the entry types and the attributes associated with the

entries. Using show emeta displays the entry metadata for an existing entry or an

entry type. Using show ameta displays attribute meta information for attributes of

an existing entry or an entry type.

Table 4–30 Sample Object References

Reference Description

~ The initial context.

. The cwo.

.. Parent of the cwo.

~/ombtest An object named ombtest, a child of the initial context.

msg_broker An object having an entry name of msg_broker that is a child of the
cwo.

cn=msg_broker An object using an atomic name that is a child of the cwo.

$BRK_DN An object referenced by the named variable BRK_DN, a child of the
cwo.

$OMB_DN/msg_broker An object having the entry name msg_broker that is a child of the
object referenced by the named variable OMB_DN which in turn is a
child of the cwo.

../msg_broker An object named msg_broker that is a child of the parent of the cwo.
The msg_broker object is a sibling of the cwo (hierarchical-wise).

../msg_broker/aq_driver An object named aq_driver which is a child of an object named msg_
broker which in turn is a child of the parent of the cwo.

~/cn=ombtest/msg_broker An object path relative to the initial context that has atomic and entry
name components.

~/cn=ombtest/$QUEUES/qtest An object path relative to the initial context that has atomic, named
variable and entry name components.

/cn=OMB,cn=Products,
cn=OracleContext,o=oracle,
c=us/ombtest/msg_broker

An absolute object path which has RDN, atomic, and entry name
components.

/c=us/o=oracle/
cn=OracleContext/cn=Products/
cn=OMB/ombtest/msg_broker

An absolute object path which has RDN, atomic, and entry name
components.
Administration 4-61

Command-line Administration Utility - AdminUtil
The attribute metadata details various information that might prove useful to the

user. It indicates whether the attribute is single-valued or multi-valued. It indicates

whether the attribute value can be set by the user when the entry is first created and

if it can be modified once the entry has been created. It also indicates the syntax or

format of the value.

The attribute syntax can be one of the following types.

Table 4–31 Entry Attribute Syntax

Value Type Description

String The value is a string.

Integer The value is a string representing a numeric integer value.

Float The value is a string representing a numeric float value.

Boolean The value is a string that should be either "true" or "false".

Distinguished Name The value is a string representing an LDAP distinguished name (DN). The DN string
should be the full DN versus a DN relative to the initial context.

For example, the full distinguished name of an entry that is relative the following
initial context would be:

Initial Context:

cn=OMB,cn=Products,cn=OracleContext,o=oracle,c=us

Given DN:

cn=msg_broker,cn=testOmb

Resulting DN:

cn=msg_broker,cn=testOmb,cn=OMB,cn=Products,
cn=OracleContext,o=oracle,c=us

Octet String The value is an octet (byte) array. No value is displayed. This attribute type is used
for binary data. The value stored is the UTF-8 encoding of the user-specified string.

Name Value Pair The value is a string that represents a set of name value pairs. The value for such an
attribute has a required syntax of name=value.
4-62 Administration Guide

Directory Utilities
AdminUtil Limitations
1. The set command assigns an arbitrary string to a named variable. When used

for a path component, a named variable will usually be the entry's simple

name, atomic name or an RDN. If a simple name is specified but is not unique

at the hierarchical level for which it is being used, it is arbitrary as to which

object would actually be referenced. In that case, an atomic name must be used

for that particular component to guarantee that the desired object is referenced.

2. It is recommended that double quotes be added to object references for a named

variable. The double quotes are required if the variable value contains an

embedded blank.

3. It is possible to delete the initial context from within an interactive session of

AdminUtil . However, AdminUtil cannot perform any other actions if the

initial context is deleted. To perform other actions, exit AdminUtil and set the

initial context to an existing entry, and then restart AdminUtil .

4. Be careful when modifying the server_dn or provider_queue_name
attributes for an existing Oracle AQ topic entry or Oracle AQ queue entry. Refer

to the create_provider_q , rm_provider_q , and provider_q_created
attribute information for queues and topics to determine the actions that are

taken to create or remove a corresponding AQ queue when the Oracle Message

Broker administrative tools modify queues or topics in the LDAP Directory.

5. The LDAP Directory server should not be shutdown when running AdminUtil.

Directory Utilities
This section covers the Oracle Message Broker utilities that allow you to check

directory entries and migrate directory entries from previous Oracle Message

Broker releases.

This section covers the following:

■ Checking Directory Entries with AdminDirCheck

■ Migrating Directory Entries Between Releases
Administration 4-63

Directory Utilities
Checking Directory Entries with AdminDirCheck
The AdminDirCheck command performs basic validation for Oracle Message

Broker configuration data. It identifies problems with Oracle Message Broker

entries in an LDAP Directory. The command uses Java Naming and Directory

Interface (JNDI) to access the directory and then it checks either a single entry or all

entries in a subtree. Starting at a given entry relative to the initial context,

AdminDirCheck checks:

■ Unknown entries and reports possible problems with the unknown entries.

■ That required Oracle Message Broker DNs exist and are of the correct type.

■ That entries are in the correct location in the Oracle Message Broker DIT

hierarchy.

■ That entries with attributes that are constrained to a set of predefined values, or

a predefined range, contain valid values.

AdminDirCheck only accesses the LDAP Directory to check entries, it does not

connect to an active Oracle Message Broker or validate any other Oracle Message

Broker components.

You can use AdminDirCheck whenever the Oracle Message Broker is having

unexpected problems or throwing unexpected exceptions. Such problems might

range from problems a JMS client is having as it tries to use a queue, topic or

connection factory obtained using JNDI to problems starting Oracle Message

Broker.

If AdminDirCheck reports a problem, it does not attempt to fix the problem. You

need to take the appropriate action based on the report to fix the problem. This may

involve either modifying an entry or deleting and recreating an entry. An entry that

contains a bad DN reference or a value out-of-range can be updated and the

problem will be fixed by assigning a new, valid value.

AdminDirCheck classifies LDAP entries into three categories:

■ An Oracle Message Broker entry

■ An unknown entry

■ A corrupt Oracle Message Broker entry. A corrupt Oracle Message Broker entry

is an unknown entry that AdminDirCheck determines to be an Oracle Message

Broker entry with invalid or missing data.

AdminDirCheck uses the OMB_IC environment variable to determine the LDAP

server to connect to.
4-64 Administration Guide

Directory Utilities
AdminDirCheck Options
AdminDirCheck uses the following syntax:

AdminDirCheck [initial_DN] [options]

By default, the program uses the following options: +all, –def, –unk. By default

simple authentication is required. You are prompted for the user and password if

these are not specified on the command line (using the –noauth option you are not

prompted for a user and password).

Table 4–32 AdminDirCheck Options

Option Description

initial_DN Specifies the LDAP entry that is the starting point for the validation. This is the DN of the
entry, relative to the initial context used to connect to the LDAP Directory. By default, the

validation includes all entries in the entire subtree. Use –nosubtree to limit validation to a
single entry.

{+|–}all Enables or disables all validation options. This is generally used in combination with

other options to enable or disable a set of options. For example, +all –dit enables all

validation options except DIT checking; –all +ref enables only reference checking.

+all enables all validation options

–all disables all validation options

–b LDAP_baseDN The LDAP_baseDN supplies a base DN to use for the initial context. If you use the –b
option, –h is required.

–D auth_DN The auth_DN supplies the DN to use for authentication.

{+|–}def Enables or disables default value checking. Some attributes have a default value that is
used if a value is not explicitly assigned for that attribute.

+def searches for attributes that do not have an assigned value but have a default

–def disables default value checking

{+|–}dit Enables or disables DIT validation. Checks the hierarchy of the entries to insure the correct
parent and child relationship exists. AdminDirCheck does not validate the topmost entry
if the topmost entry has the same DN as the initial context.

+dit enables DIT hierarchy checking

–dit disables DIT hierarchy checking
Administration 4-65

Directory Utilities
–errorlevel level Set the error reporting level. The parameter level is set to an integer value in the range 1-4:

1 – print error message for the top exception

2 – print error messages for all linked exceptions

3 – print stack trace for the top exception

4 – print stack trace for all linked exceptions

The default value for errorlevel is 2.

–help Displays the program usage

–h LDAP_host Specifies an LDAP server. The host, LDAP_host must be a host available on the network.

–fullversion Displays the full program version information.

–noauth Specifies that LDAP authentication is not required on the LDAP server

–nosubtree Limits the validation to a single entry specified by the initial_DN parameter. If this
option is not specified, all entries in the subtree are checked.

{+|–}omb Enables or disables corrupt Oracle Message Broker entry checking. This option attempts to
distinguish corrupt Oracle Message Broker entries from non-Oracle Message Broker
entries.

+omb searches for unknown entries that are likely to be corrupt Oracle Message Broker
entries

–omb disables corrupt Oracle Message Broker entry checking

–p LDAP_port TCP port to use for the LDAP connection on the LDAP server. If you use the –p option, –h
is required.

–P wallet_password Specifies the wallet password. This is ignored if the value of –U is 0 or 1.

Table 4–32 (Cont.) AdminDirCheck Options

Option Description
4-66 Administration Guide

Directory Utilities
{+|–}ref Enables or disables reference validation. Checks certain types of attributes that reference
other entries. For example, a DN attribute is checked to see whether the referenced entry
exists, and if possible, that the referenced entry is of the correct type.

+ref enables reference checking

–ref disables reference checking

For reference validation, it is possible for an entry referenced by a DN attribute to be
reported as not existing, when, in fact, it does exist. This might occur for a variety of
reasons. For example in the following cases:

■ If the referenced entry is not accessible by the initial context

■ If the user does not have access rights to the referenced entry

■ If the reference is to an entry on another LDAP server

For an entry that contains an attribute that is a DN, using the +ref option
AdminDirCheck does not check whether the DN is within the same OMB Instance. It
only tries to verify that the entry exists and that the referenced entry is the correct Oracle
Message Broker entry type (if applicable).

{+|–}rng Enables or disables range validation. Checks the attributes of an Oracle Message Broker
entry for range violations such as being outside the lower or upper limits or a value not
from a set of valid values. Many attributes have no value limitations.

+rng enables range checking

–rng disables range checking

–U value Specifies if SSL is used, and the authentication level. Valid values are: 0, 1, 2, and 3.

0 – no SSL. This is the default if –U is not specified.

1 – SSL with no authentication.

2 – SSL with server-side authentication.

3 – SSL with server-side and client-side authentication.

{+|–}unk Enables or disables unknown entry checking. The subtree being scanned may have both
Oracle Message Broker (known) and non-Oracle Message Broker (unknown) entries. This
option can be used to search for non-Oracle Message Broker entries. An attempt is made
to distinguish between a corrupt Oracle Message Broker entry and a non-Oracle Message
Broker entry and report only a non-Oracle Message Broker entry.

+unk reports any unknown (non-Oracle Message Broker) entries

–unk disables unknown entry reporting

Table 4–32 (Cont.) AdminDirCheck Options

Option Description
Administration 4-67

Directory Utilities
Migrating Directory Entries Between Releases
The Oracle Message Broker provides a migration utility for migrating directory

entries from release 1.0 to release 2.0. The migration utility performs the following

actions:

■ Changes the container name cn=oraclesoftware to cn=oraclecontext. This is one

requirement to migrate from release 1.0 to release 2.0.

■ Changes all attributes that have DNs using the oraclesoftware component to

oraclecontext.

■ Creates the new containers required for release 2.0.

–version Displays the program version number.

–w auth_password Supplies a password, auth_password, for authentication on the LDAP server.

–W wallet_path Specifies the path to an exported wallet file. This is ignored if the value of –U is 0 or 1.

Note: AdminDirCheck does not remove JNDI related Java

authentication properties. It does set certain JNDI properties based

on command line options. Thus, you could modify the OMB_LP

environment variable to set the JNDI security properties and run

AdminDirCheck with the –noauth option, and still access a

secured LDAP server based on the properties defined in OMB_LP.

Note: For a complete migration, the Oracle Message Broker 2.0

version of the command LDAPSchema must be run on the LDAP

Directory. It is not sufficient to only run Migrate10To20 . See the

Oracle Message Broker Installation Guide for your platform for

information on running LDAPSchema.

Table 4–32 (Cont.) AdminDirCheck Options

Option Description
4-68 Administration Guide

Directory Utilities
Use this utility with caution. Some LDAP Directories, for example the Netscape

Directory, do not allow renaming of an entry which is not a leaf entry. The change

from cn=oraclesoftware to cn=oraclecontext requires to migration utility to delete

all of the entries underneath cn=oraclesoftware and then recreate them.

Partial failures or cancelling the command before it completes can lead to problems.

Before deleting any entries, the utility saves the Oracle Message Broker directory

data in a file named OMB10DATA.ldif, LDIF format, in the current directory.

Take the following precautions while running the Migrate10To20 :

1. While Migrate10To20 is in use, there should be no other directory operations

in progress.

2. The base DN (–b option) should be carefully selected. Make the base DN match

the initial context set in the environment variable OMB_IC (and remove the

leading components, cn=Products,cn=OracleSoftware,).

3. The Migrate10To20 does not work correctly if an entry, cn=OracleSoftware,

which is of type container exists underneath an entry, cn=OracleSoftware,

which is also of type container.

That is, if both of the following entries exist in the same LDAP Directory, and

both entries are of type container:

cn=OracleSoftware,ou=bizzare,o=acme,c=us,
cn=OracleSoftware,cn=foo,cn=foo,cn=OMB,cn=Products,cn=OracleSoftware,ou=bizz
are,o=acme,c=us

Migrate10To20 Options
Migrate10To20 uses the following syntax:

Migrate10To20 [options]

Table 4–33 shows the available options. By default, the program uses no options,

and assumes that simple authentication is required. You are prompted for the user

and password if these are not specified on the command line (using the –noauth

option you are not prompted for a user and password).

For example:

% Migrate10To20 -h hal -p 389 -b ou=bizarre,o=acme,c=us
Administration 4-69

Directory Utilities
Authorization for Running Migrate10To20
The LDAP Directory username and password associated with the Migrate10To20
are supplied on the command-line using the –D and –w options (or provided from

the values supplied in the pop-up window if command-line options are not

supplied). Migrate10To20 uses the supplied username and password when it

accesses the LDAP Directory.

The username provided needs to have create and delete permissions in the subtree

rooted at the supplied base DN or initial context (supplied with the –b option). It is

recommended that the username should be the superuser (or equivalent, such as

administrator).

If there are user entries underneath cn=oraclesoftware, they are migrated and any

password associated with the entry is not changed. However, the username, which

Table 4–33 Migrate10To20 Options

Option Description

–b LDAP_baseDN The LDAP_baseDN , or the initial context supplies a base DN to use for the initial context.

–D auth_DN The auth_DN supplies the DN to use for authentication.

–h LDAP_host Specifies an LDAP server. The host, LDAP_host must be a host available on the network.

–fullversion Displays the full program version information.

–ldapv2 Use this option when the LDAP Directory only supports LDAP version 2. The default,
without this option is support for LDAP version 3.

–noauth Specifies that LDAP authentication is not required on the LDAP server

–p LDAP_port TCP port to use for the LDAP connection on the LDAP server.

–P wallet_password Specifies the wallet password. This is ignored if the value of –U is 0 or 1.

–U value Specifies if SSL is used, and the authentication level. Valid values are: 0, 1, 2, and 3.

0 – no SSL. This is the default if –U is not specified.

1 – SSL with no authentication.

2 – SSL with server-side authentication.

3 – SSL with server-side and client-side authentication.

–version Displays the program version number.

–w auth_password Supplies a password, auth_password, for authentication on the LDAP server.

–W wallet_path Specifies the path to an exported wallet file. This is ignored if the value of –U is 0 or 1.
4-70 Administration Guide

Directory Utilities
is the DN of the entry, does change due to replacing cn=oraclesoftware with

cn=oraclecontext.

For example, if the following two entries show the old, and the new username,

before, and after running Migrate10To20 :

cn=akarmark,cn=users,cn=omb,cn=products,cn=oraclesoftware,<initial-context>
cn=akarmark,cn=users,cn=omb,cn=products,cn=oraclecontext,<initial-context>

All encrypted attributes, such as the AQ password stored in the aq_password are

migrated without changes.

ACIs that are set on an LDAP Directory entry are migrated without changes.

However, if the ACIs grant/refuse permission to a user/group which is directly

underneath the container, cn=oraclesoftware, that was migrated, then the ACIs are

invalid, since the DN is not longer valid.
Administration 4-71

Directory Utilities
4-72 Administration Guide

Oracle Message Broker Fea
5

Oracle Message Broker Features

This chapter covers JMS programming features and provides information on

programming using the Oracle Message Broker’s implementation of JMS.

Chapter 6, "Oracle Message Broker Extensions" covers additional Oracle specific

features of the Oracle Message Broker.

This chapter covers the following:

■ Working With JMS Messages

■ Using a QueueBrowser

■ Using Durable Subscribers

■ Using the PL/SQL Operational Interface

■ Running in Local Mode

■ Running in Remote Mode

■ Oracle Message Broker Version Checking
tures 5-1

Working With JMS Messages
Working With JMS Messages
This sections covers information on JMS messages. The Oracle Message Broker

supports all JMS message types. Each JMS message consists of the following parts:

■ Header – header fields contain values used by clients and by the Oracle

Message Broker to identify and route messages.

■ Properties – properties fields add a built-in facility for adding optional header

information. Properties are a variable-length list of name/value pairs.

■ Body – JMS defines several types of message body. The Oracle Message Broker

supports all JMS body types. The body contains the actual message data, the

format of which depends on the type of the JMS message: TextMessage,

BytesMessage, MapMessage, ObjectMessage, or StreamMessage.

Message Properties
JMS supports message properties that provide a built-in facility for adding optional

header fields to a message. Properties allow Oracle Message Broker to support

message selectors that select specific messages to distribute to a destination (see

"Using Message Selectors" on page 5-3, for more information). The JMS specification

includes three types of properties:

■ Application-specific properties

■ JMS standard properties

■ Provider specific properties

Using the JMS_Oracle_Delay Message Property
The Oracle Message Broker defines the JMS_Oracle_Delay provider specific

property. The JMS_Oracle_Delay is an integer whose value represents the number

of milliseconds to delay before the message is available for delivery. Using Remote

Mode, the JMS_Oracle_Delay property is an offset from the current time on the

system on which the remote mode Oracle Message Broker runs. Client programs

can set this property based on the current time to assure that messages are only sent

during specific periods, for example, at night.

JMS_Oracle_Delay is only supported for the Volatile Driver and the AQ Driver.

For example to set the delivery delay property to 60 seconds:

// Delay delivery for 60 seconds
javax.jms.Message msg = ...;
msg.setIntProperty("JMS_Oracle_Delay", 60000);
5-2 Administration Guide

Working With JMS Messages
And the following code sets the delivery delay to 10 seconds:

// Delay delivery for 10 seconds
javax.jms.Message msg = ...;
msg.setObjectProperty("JMS_Oracle_Delay", new Integer(10000));

Using Message Selectors
Message selectors allow the Oracle Message Broker to filter the messages that are

sent to consumers based on a message selection criteria. This allows the Oracle

Message Broker to handle filtering so that the client application does not need to

receive messages that it is not interested in. Message selectors simplify a JMS client

application and eliminate the overhead associated with sending messages to a client

that it does not need.

A JMS client specifies message selection criteria when it creates a message consumer

(either a QueueReceiver, QueueBrowser, or TopicSubscriber). JMS message selectors

always reference either a header field or a message property. JMS message selectors

do not apply to the message body. Table 5–1 lists the parts of the message header

that can be specified in a message selector.

Note: The AQ Driver supports JMS message selectors and AQ

Rules based selectors. Refer to "Using AQ Rules for Message

Selection" on page 6-18 for information on AQ Rules.

Table 5–1 Message Selector Identifier References

Reference Description

JMSPriority The corresponding message header field

JMSDeliveryMode The corresponding message header field

JMSMessageID The corresponding message header field

JMS_Oracle_Delay See "Using the JMS_Oracle_Delay Message
Property" on page 5-2 for details

JMSTimeStamp The corresponding message header field

JMSCorrelationID The corresponding message header field

A name that does not begin with JMS An application specific property name
Oracle Message Broker Features 5-3

Working With JMS Messages
Message Selector Format
A message selector is a Java String whose syntax is based on the SQL92 conditional

expression syntax. Section 3.8.1.1 of the JMS Specification defines the message

selector syntax. In addition, Section 3.10 of the Java Language Specification defines

the syntax for floating-point and integer literals that are valid in message selectors.

Keep the following points in mind when creating a message selector:

1. Integer literals of type long must have a suffix of 'l' or 'L'.

2. Floating point literals of type float must have a suffix of 'f' or 'F'.

3. Floating point literals of type double can have a suffix of 'd' or 'D'.

4. The exponent indicator can be 'e' or 'E'.

Example 5–1 shows code for a sample message selector for both point-to-point and

publish/subscribe messaging.

Example 5–1 Sample Message Selector

String selector;
QueueReceiver receiver;
TopicSubscriber subscriber;

selector = new String("JMSType = ’car’ ");
receiver = session.createReceiver(queue, selector);
subscriber = session.createSubscriber(topic, selector);

QueueReceivers and Message Selectors (Limitation)
Queue receivers that use message selectors can be inefficient. When a queue

receiver is created with a message selector, any message that does not satisfy the

selector cannot be delivered to that receiver and the message remains on the queue.

This implies that the Oracle Message Broker performs a non-destructive read to

examine the messages and then uses the message ID to dequeue messages when a

message is found that satisfies the message selector.

To satisfy these requirements for a QueueReceiver, the Oracle Message Broker reads

messages twice for QueueReceivers using message selectors. The first read is a

non-destructive read and the second read is the dequeue by message ID.

Another inefficiency for QueueReceivers using message selectors is due to the

separation between the Oracle Message Broker and the persistent message store.
5-4 Administration Guide

Using a QueueBrowser
There is not an efficient technique to determine when messages have been added to

a queue.

Because the Oracle Message Broker cannot always detect state changes in the

message store, it must execute non-blocking reads when it attempts to retrieve new

messages. Therefore, if there are 10 messages on a queue, and there is an

outstanding request for a message by a receiver with a message selector, The Oracle

Message Broker must poll the queue.

Therefore, when there is a QueueReceiver and a selector, polling is required.

Using a QueueBrowser
The Oracle Message Broker supports JMS QueueBrowsers. A QueueBrowser

enables a client to look at messages on a queue without removing the messages.

How the QueueBrowser functions depends upon the driver:

Volatile Driver Messages that may be fetched are those ready for

delivery when the browser is created and any

messages sent and committed after the browser is

created.

AQ Driver (OCI Mode) Messages that may be fetched are messages ready

for delivery when the browser is created. Messages

that are ready for delivery or those in state 0 (see the

Oracle 8i Database Server documentation for more

information).

AQ Driver (JDBC Mode) Messages may be fetched are those available using

browsing as implemented by Oracle AQ.

AQ Lite Driver Messages that may be fetched are messages ready

for delivery when the browser is created. Messages

that are ready for delivery when the browser is

created.

MQ Driver Uses native MQ browse functions.
Oracle Message Broker Features 5-5

Using Durable Subscribers
Using Durable Subscribers
JMS publish/subscribe messaging defines methods for both non-durable and

durable subscriptions. Non-durable subscriptions only last while the subscriber is

active, and the client using the subscriber only sees the messages that are published

while the subscriber is active. The Oracle Message Broker supports durable

subscribers that retain the messages that are published to a topic until the durable

subscriber, identified by a unique ID, receives the messages or until the messages

expire (refer to Chapter 7, "Message Servers and Drivers" and the Oracle Message
Broker Release Notes for limitations and for information on driver specific features

related to durable subscribers).

The Oracle Message Broker manages durable subscribers by adding entries to the

LDAP Directory for each durable subscriber. As JMS clients create durable

subscribers, durable subscriber directory entries are added, and as clients delete

durable subscribers directory entries are removed. There are several cases where the

Oracle Message Broker handles special conditions for durable subscribers. The

following is a list of some of these conditions:

1. If a JMS client creates a durable subscriber and the following are both true then

the Oracle Message Broker throws an exception:

■ The durable subscriber exists

■ The durable subscriber is in-use. A durable subscriber is in-use when there

is an active subscriber

2. If a JMS client creates a durable subscriber and the following are all true, then

the current subscription is deleted and a new subscription is created. Any

messages that were in the topic for the durable subscriber are lost when the

subscription is deleted.

■ The durable subscriber exists

■ The durable subscriber is not in use

■ A different filter has been specified for the durable subscriber

3. If a durable subscriber is created and the Oracle Message Broker cannot modify

the LDAP Directory with the durable subscriber information, the Oracle

Message Broker throws an exception.

4. All the directory attributes for a durable subscriber entry are

read-only-after-create. This means that you can only view the durable

subscriber attributes. If you need to modify a durable subscriber entry, delete

the entry and then recreate it.
5-6 Administration Guide

Using the PL/SQL Operational Interface
Using the PL/SQL Operational Interface
The PL/SQL package, ombaqpublic , implements the Oracle Message Broker’s

publicly supported PL/SQL operational interface to AQ queues and topics

(multi-consumer AQ queues). This package allows PL/SQL applications running

inside the Database Server to enqueue and dequeue messages directly from AQ

queues and topics. The AQ Queues must have been created using the Oracle

Message Broker administrative utilities, and they must use one of the following

supported types:

■ OMBAQ_TEXT_MSG

■ OMBAQ_BYTES_MSG

■ MESSAGE_T

Oracle Message Broker can dequeue messages enqueued using the ombaqpublic
PL/SQL interface, and convert them into a JMSTextMessage or a JMSBytesMessage

format. The messages can then pass to JMS clients or be propagated between Oracle

Message Brokers without any loss of information. In addition PL/SQL applications

are able to browse or dequeue messages enqueued by the Oracle Message Broker

into AQ queues using the ombaqpublic package (as long as the AQ Queues are in

one of the supported types shown above).

The Oracle Message Broker PL/SQL package, ombaqpublic , is modeled after the

AQ PL/SQL operational interface. The package allows setting of AQ message

properties, including priority, delay, and expiration. The package also supports

Oracle AQ enqueue options including: visibility and relative messageid. And the

package supports the Oracle AQ dequeue options including dequeue mode and

navigation using the types and constants defined by the Oracle AQ PL/SQL

interfaces. Oracle Message Broker PL/SQL package, ombaqpublic , allows for JMS

specific message properties to be set, for which there are no corresponding

analogues in AQ. These properties include the SQL equivalents of JMSProperties,

JMSType and JMSReplyTo.

The package provides four enqueue and four dequeue subroutines. Table 5–2 shows

the Oracle Message Broker PL/SQL package subroutines.

Exceptions, are thrown when the package is improperly used and should be

handled by the PL/SQL application developer.

The source for the PL/SQL routines is available in the following files:

$OMB_HOME/admin/plsql/ombaqpublic.sql
$OMB_HOME/admin/plsql/ombaqpublicb.sql
Oracle Message Broker Features 5-7

Running in Local Mode
or, on Windows NT systems:

%OMB_HOME%\admin\plsql\ombaqpublic.sql
%OMB_HOME%\admin\plsql\ombaqpublicb.sql

Running in Local Mode
The Oracle Message Broker provides two modes of operation, Remote Mode and

Local Mode (Remote Mode is also called Non-Local Mode). When configured in

Local Mode, one active Oracle Message Broker is created in each client JVM (that is,

in each program that uses the JMS API). Local Mode provides a decentralized

architecture, supporting a more efficient and more robust system with no single

point of failure.

Local Mode Oracle Message Brokers are especially useful for applications using the

Oracle Multicast Driver or the TIBCO Driver with multicast communication. In a

typical Local Mode configuration, multiple Oracle Message Brokers, that is multiple

clients, use a single directory instance. Running in Local Mode allows the Oracle

Message Broker to operate very efficiently, without utilizing significant system

resources.

Table 5–2 PL/SQL Client Interface Subroutines

PL/SQL Subroutine Description

dequeue_blob() Is used to dequeue messages from AQ queues in the form of BLOB messages.

dequeue_clob() Is used to dequeue CLOB messages from AQ queues of type OMBAQ_TEXT_MSG and
MESSAGE_T.

dequeue_raw() Is used to dequeue messages from AQ queues in the form of RAW messages from
queues of type OMBAQ_BYTES_MSG.

dequeue_varchar() Is used to dequeue VARCHAR messages from AQ queues of type OMBAQ_TEXT_MSG
and MESSAGE_T.

enqueue_blob() Is used to enqueue BLOB messages into AQ queues of type OMBAQ_BYTES_MSG.

enqueue_clob() Is used to enqueue CLOB messages into AQ queues of type OMBAQ_TEXT_MSG and
MESSAGE_T.

enqueue_raw() Is used to enqueue RAW messages into AQ queues of type OMBAQ_BYTES_MSG.

enqueue_varchar() Is used to enqueue VARCHAR messages into AQ queues of type OMBAQ_TEXT_MSG
and MESSAGE_T.
5-8 Administration Guide

Running in Local Mode
In Local Mode, as in Remote Mode, the Oracle Message Broker provides two

choices storing administrative objects:

■ Using an LDAP Directory (see Chapter 4 for information on LDAP Directory

configuration)

■ Using Lightweight Configuration (see Chapter 13 for information on

lightweight configuration)

This chapter describes how to use Oracle Message Broker Local Mode with an

LDAP Directory, and how to use Oracle Message Broker Local Mode without an

LDAP Directory.

Using Local Mode with an LDAP Directory
Operation in Local Mode is the only situation where multiple, active Oracle

Message Brokers can share an Oracle Message Broker Instance in the LDAP

Directory. Since Oracle Message Brokers working together using the Oracle

Multicast Driver or the TIBCO Driver must define the same topics, Local Mode

allows LDAP Directory administration to be significantly simplified. Using the

LDAP Directory, only one Oracle Message Broker Instance needs to be maintained,

since the multiple active Oracle Message Brokers share a single Oracle Message

Broker Instance. Alternatively, using lightweight configuration, only one

configuration file needs to be maintained.

A Local Mode Oracle Message Broker process is created when the local attribute

in the Oracle Message Broker Instance’s msg_broker entry is true, and an Oracle

Message Broker client creates a connection (you do not use the MsgBroker
command for Local Mode).

Using Local Mode, the client uses the same JVM as the Oracle Message Broker

instance. That is, the client and the broker are not only on the same system, but are

also in the same process. Using Local Mode, the Oracle Message Broker instance is

limited to local operation for the local client.

When a client looks up a connection factory associated with a local Oracle Message

Broker, it creates an active OMB Instance in the client’s JVM. Because a connection

factory establishes a connection with an active Oracle Message Broker, a client

program may use Local Mode and Remote Mode Oracle Message Brokers at the

Note: A remote client cannot use a Local Mode Oracle Message

Broker.
Oracle Message Broker Features 5-9

Running in Local Mode
same time by creating multiple connection factories. Note that only one local OMB

Instance is allowed per JVM process.

When starting a client that uses a local Oracle Message Broker, start the Java

interpreter with the following flags:

Where mem is the memory, in megabytes, that you want to allocate to the Oracle

Message Broker process. The mem value should be at least 8, specifying 8 megabytes

per instance. If max_memory is set in the msg_broker entry, the mem value, as

shown above, must be greater than or equal to the value of max_memory.

Table 2–3 shows the environment variables that Oracle Message Broker Local Mode

programs need to start. The environment variables shown are defined in the Oracle

Message Broker startup files. See "Working with the Administration Utilities" on

page 2-2 for more information on the startup environment.

Authentication in Local Mode
The authentication information and mode used by a JMS client to look up the

connection factory will be the same information that the local OMB Instance uses

when it is started. Thus, the authentication, user and password, are the same for the

client and the Oracle Message Broker when running in Local Mode.

Stopping Oracle Message Broker in Local Mode (using an LDAP Directory)
A client program running the Oracle Message Broker should stop the Oracle

Message Broker when it is finished. For information on stopping the Oracle

Message Broker, see "Shutting Down" on page 3-12.

–mxmemm (for Java 1.1.x)

–Xmxmemm (for Java 1.2)

Java JVM maximum heap size.

–msmemm (for Java 1.1.x)

–Xmsmemm (for Java 1.2)

Java JVM startup heap size.

–Doracle.oas.mercury.maxheap= mem (Optional) – this is used to inform the

Oracle Message Broker of the

maximum JVM heap size.
5-10 Administration Guide

Running in Local Mode
Using Local Mode with Lightweight Configuration
Using Local Mode, the client uses the same JVM as the Oracle Message Broker

instance. That is, the client and the broker are not only on the same system, but are

also in the same process.

Local Mode Limitations
In Local Mode, the following limitations apply:

1. Propagation is disabled – see Chapter 8, "Oracle Message Broker Propagation"

for details on using propagation in Remote Mode.

2. DMS is disabled – see "Collecting Runtime Metrics" on page 6-3 for information

on displaying runtime metrics in Remote Mode.

3. The MsgBroker command is not used.

4. The messages in the Volatile Driver can only be accessed from a single Oracle

Message Broker Instance. If the Oracle Message Broker Instance is running in

local mode, then all clients must access it from within the same process. Due to

this restriction, Oracle Message Broker Remote Mode is recommended when

using destinations with the Volatile Driver.

Sample Local and Remote Mode Client Programs
To illustrate a client program that uses a local Oracle Message Broker, we present a

sample stock quote system. This system is composed of a stock quote database, one

or several publishers, and any number of subscribers that represent the clients

requesting quotes.

In this application, the publishers retrieve quotes from the databases and publish

them to topics. The application supports any number of subscribers. Each

subscriber subscribes to topics according to its interest, and receives quotes

asynchronously. Topics can be mapped to individual stock quotes (for example,

ORCL, for Oracle Corp. quotes), or to sets of similar stock quotes (for example, the

high-tech market).

Stock Quotes Using a Remote Oracle Message Broker
When using a Remote Mode Oracle Message Broker to implement the stock quote

application, all publishers and subscribers use a centralized Oracle Message Broker

to forward stock quotes from the publishers to all of the subscribers (see

Figure 5–1). Although this architecture is straightforward to deploy and maintain, it

suffers from some limitations when applied to the stock quote application: it does
Oracle Message Broker Features 5-11

Running in Local Mode
not scale well to hundreds of subscribers since quotes are typically sent to all

subscribers using a sequence of point-to-point messages, and a failure of the

centralized Oracle Message Broker completely stops the service for all subscribers.

Figure 5–1 Remote Mode Oracle Message Broker Quote System

Stock Quotes Using Local Mode Oracle Message Brokers
When using a local Oracle Message Broker with either the TIBCO Driver or the

Oracle Multicast Driver to implement the stock quote application, all publishers

and subscribers use their own local copy of the Oracle Message Broker. All local

Oracle Message Brokers use the same OMB instance in the directory, and thus

define the same topics. Quotes sent by publishers are directly multicast to all

subscribers without the intervention of a central Oracle Message Broker.
5-12 Administration Guide

Running in Local Mode
Figure 5–2 shows the stock quotes application configured with the local attribute

set to true. This local architecture is decentralized, does not present a single point of

failure, and scales to any number of subscribers. The local architecture is inherently

scalable, since it uses multicast-based communication: multicast communication

allows a single message to be sent to many destinations as a single operation,

without using a sequence of point-to-point messages.

Figure 5–2 Local Mode Oracle Message Broker Quote System
Oracle Message Broker Features 5-13

Running in Remote Mode
Running in Remote Mode
The Oracle Message Broker provides two modes of operation, Remote Mode and

Local Mode (Remote Mode is also called Non-Local Mode). When configured in

Local Mode, one active Oracle Message Broker is created in each client JVM (that is,

in each program that uses the JMS API). When configured in Remote Mode, Oracle

Message Brokers run as a process using their own JVM.

Running in Remote Mode provides the following features:

■ Connection pooling in the AQ driver provides a fixed number of OCI

connections that can service a much larger number of application programs.

Clients are guaranteed access to the connection pool, even when some clients

perform blocking receives.

■ Remote Mode Oracle Message Brokers can be accessed by remote processes,

and by local processes. A Remote Mode Oracle Message Broker must be used if

multiple processes need to share messages using the Volatile Driver.

■ Clients may not have the privileges to connect directly to a database. In this

case, the Oracle Message Broker may perform the database access.

■ Propagation can be enabled – see Chapter 8, "Oracle Message Broker

Propagation" for details on using propagation.

■ Dynamic Monitoring System (DMS) can be enabled – see "Collecting Runtime

Metrics" on page 6-3 for information on displaying runtime metrics in Remote

Mode.

Starting Oracle Message Broker in Remote Mode
Table 2–3 shows the environment variables that Oracle Message Broker requires to

start in Remote Mode. The environment variables shown are defined in the Oracle

Message Broker startup files. See "Working with the Administration Utilities" on

page 2-2 for more information on the startup environment.

A remote Oracle Message Broker writes its address, an IOR, to the directory when it

starts. The address is used by clients to establish connections, by the propagation

manager to transfer messages, and to shutdown the Oracle Message Broker. Refer

to "Starting and Stopping the Oracle Message Broker" on page 2-6 for information

on the MsgBroker command.
5-14 Administration Guide

Running in Remote Mode
Starting Oracle Message Broker Clients in Remote Mode
Table 2–3 shows the environment variables that Oracle Message Broker clients need

to set to contact the Oracle Message Broker. The environment variables shown are

defined in the Oracle Message Broker startup files. See "Working with the

Administration Utilities" on page 2-2 for more information on the startup

environment.

Remote Mode Limitations
When the Oracle Message Broker is starting in Remote Mode, it checks to see if

there is another active Remote Mode Oracle Message Broker process using the same

OMB Instance in the same LDAP Directory. If so, the new Oracle Message Broker

prints an error message and shuts down. This procedure is intended to prevent two

remote Oracle Message Brokers from using the same OMB Instance.

The Oracle Message Broker may fail to detect another active Oracle Message Broker

process in two scenarios:

1. If both Oracle Message Broker processes are started at the same time (race

condition).

2. If one Oracle Message Broker process is configured to use SSL over IIOP, while

the other Oracle Message Broker does not use SSL over IIOP.

Note: If multiple remote Oracle Message Broker use the same

OMB Instance, the results may be unpredictable, see the section

"Starting Oracle Message Broker Clients in Remote Mode" on

page 5-15 for more information.

Note: If two remote Oracle Message Broker use the same OMB

Instance in the LDAP Directory, the second Oracle Message Broker

overwrites the first address. This would likely cause problems for

one or more clients, and result in unpredictable Oracle Message

Broker behavior.
Oracle Message Broker Features 5-15

Oracle Message Broker Version Checking
Oracle Message Broker Version Checking
When an Oracle Message Broker JMS client contacts an active Oracle Message

Broker, the Oracle Message Broker checks that the client is using a compatible

version of the Oracle Message Broker client libraries. If the client is not running

with a compatible version, the Oracle Message Broker throws a version exception.

The Oracle Message Broker and the JMS client-side runtime throws an exception if

either are started with an unsupported JVM version. Refer to the release notes for

information on supported JVM versions.

When the system property oracle.oas.mercury.anyjvm is set, the Oracle Message

Broker and the client-side runtime do not check the JVM version.
5-16 Administration Guide

Oracle Message Broker Exten
6

Oracle Message Broker Extensions

This chapter covers features that are not part of the JMS specification. These features

are Oracle Message Broker specific features or extensions to the JMS specification.

This chapter covers the following:

■ Using XML Messages

■ Collecting Runtime Metrics

■ Creating Destinations

■ Using Client-Side Callouts

■ Universal Connections and Universal Sessions

■ Receiving with a Message ID

■ Using AQ Rules for Message Selection

■ Obtaining the JDBC Connection in Local Mode
sions 6-1

Using XML Messages
Using XML Messages
Oracle Message Broker supports methods that translate between JMS messages and

XML with the source being either an XML document or a JMS message. Each

message translation retains all information. The translation methods depend on the

Document Type Definition (DTD) defined in jms.dtd. The DTD is defined in the

directory $OMB_HOME/src on Unix systems or %OMB_HOME%\src on Windows

NT.

The jms.dtd provides a complete mapping of JMS message components to XML,

including: the message header, standard message properties, and all JMS message

body types.

Sending and Receiving XML Messages
Oracle Message Broker supports the following behavior for an application that uses

HTTP. The client receives XML data from an HTTP post command. The client then

uses the Oracle Message Broker translation methods to convert the XML data to

JMS messages. If the destination queue or topic were included in the XML data, the

client enqueues or publishes the JMS message.

Assuming that HTTP is the transport by which the XML capable application

interacts with JMS, the Oracle Message Broker supports the following actions:

■ A JMS client could receive HTTP get commands that request a message from a

queue or topic. The client would perform a non-blocking receive on the queue

or topic, and then translate the JMS message to XML, and return the XML data

using HTTP.

■ The destination queue or topic name is included in the XML data. The client

would then enqueue or publish the message.

The XML_to_JMS Method
The XML_to_JMS method in the package oracle.oas.mercury.MercuryXML returns

a JMS message. Table 6–1 shows the XML_to_JMS parameters. Refer to the Javadoc

supplied with the Oracle Message Broker for a complete description of the

parameters (the Javadoc distributed with the Oracle Message Broker is in the

directory $OMB_HOME/doc/javadoc or %OMB_HOME%\doc\javadoc on

Windows NT).
6-2 Administration Guide

Collecting Runtime Metrics
The JMS_to_XML Method
The JMS_to_XML method found in the oracle.oas.mercury.MercuryXML package

returns an XML document from the supplied JMS message. Table 6–2 shows the

JMS_to_XML parameters. Refer to the Javadoc supplied with the Oracle Message

Broker for a complete description of the parameters (the Javadoc distributed with

the Oracle Message Broker is in the directory $OMB_HOME/doc/javadoc or

%OMB_HOME%\doc\javadoc on Windows NT).

Collecting Runtime Metrics
Oracle Message Broker collects metrics so that you can monitor Oracle Message

Broker performance and activity. You can save the Oracle Message Broker metrics

using the MsgBroker -stats option. Table 6–3 shows the metrics available for

queues and topics. Table 6–4 shows the metrics available for Oracle Message Broker

instances (for each active msg_broker entry in the directory). Table 6–5 shows the

metrics available for the Oracle Message Broker process.

Table 6–1 XML_to_JMS parameters

Parameter Description

xmlDoc The XML document to be converted to a JMS message.

Table 6–2 JMS_to_XML parameters

Parameter Description

msg The converted JMS message

dtdpath The dtd describing a JMS message as XML. This should be of the
form file:/omb/src/jms.dtd. The path can be changed.
Oracle Message Broker Extensions 6-3

Collecting Runtime Metrics
Table 6–3 Oracle Message Broker Queue and Topic Metrics

Metric Description

message_count Number of available messages. An available message is a message that can be
received by a message consumer. An available message has been sent from a
non-transacted session, or from a transacted session where a commit completed after
the send. The available message has not been received, or any attempted receives
have been rolled back.

receives_attempted Number of times that a receive has been attempted for a destination. A receive that
times out is counted in receives_attempted, but not in receives_completed. A receive
that is blocked is counted in receives_attempted.

receives_completed Number of times receive completed.

sends Number of times that a message has been sent to a destination.

Table 6–4 Oracle Message Broker Instance Metrics

Metric Description

memory_used Number of kilobytes of JVM heap used by the Oracle Message Broker.

percent_memory_free The percent of the JVM heap used by the Oracle Message Broker.

connections Number of JMS connections.

commits Number of times that a transacted session is committed.

rollbacks Number of times that a transacted session is rolled back.

receives_rejected Number of times that a blocking receive request is rejected because the maximum
number of concurrent requests has been reached.

requests_rejected Number of requests rejected because the server was low on memory.

Table 6–5 Oracle Message Broker Process Metrics

Metric Description

uptime Time in seconds since start of the JVM process running the Oracle Message Broker.

cputime The cpu time in microseconds used by the JVM process running the Oracle Message
Broker.

heapsize The size of the heap allocated to the JVM process running the Oracle Message Broker.

freemem Memory in kilobytes allocated by the JVM process running the Oracle Message
Broker.
6-4 Administration Guide

Collecting Runtime Metrics
Using DMS
Use the MsgBroker command with the -stats option to save the collected

Dynamic Monitoring Service metrics to the DMS log file. MsgBroker -stats saves

the DMS log file to a file with the same name as the associated Oracle Message

Broker log (omblog) file, prepended with “dms-”. Refer to "Working with Log Files"

on page 10-1 for information on the omblog file name, and the directory where the

DMS log file is written.

The -stats option includes a parameter that specifies whether information is

appended to the DMS log file, or if an existing log file is replaced. The -stats
option also specifies the format for the data in the DMS log file. Refer to Table 2–2

on page 2-7 for detailed information on the available MsgBroker -stats options.

DMS Format Options - Standard and Pretty
When DMS metrics are saved using MsgBroker -stats , the display options are

standard format and pretty format. The pretty format allows easy viewing and uses

indenting to illustrate the DMS directory hierarchy. The standard format is easy to

parse with scripts and prints the full DMS pathnames on every line. Both formats

use XML-like tags to delimit the metrics and the timestamps.

Each DMS metric save starts with a DMSDUMP tag as shown below (there may be

more than one DMSDUMP saved in a DMS log file):

<DMSDUMP version = 2.0>

The DMSDUMP tag is always followed by a timestamp, of the form:

<timestamp> timestamp formatted-timestamp </timestamp>

Where:

timestamp represents milliseconds since the epoch (Jan 1, 1970)

formatted-timestamp is formatted and readable version of the same timestamp.

The timestamp is included for quick ordering and sorting.

Dumps end with a closing DMSDUMP tag of the form:

</DMSDUMP>
Oracle Message Broker Extensions 6-5

Collecting Runtime Metrics
DMS Pretty Format
The following lines contain describe the pretty format data:

 jspy_uptime.value: 0 secs
 testNoun
 testState.value: 55 msecs
 testEvent.count: 3 ops
 testPhase.time: 0 msecs
 JDMS
 JVM
 jvmTotalMem.max: 6144.0 kbytes

Each line represents either a DMS Noun or Metric. Refer to Example 6–1 for more

sample pretty format output.

Noun Format Nouns are single strings on their own. Nouns never contain control

characters or whitespace.

Metric Format Metrics have the form:

metricname: value [units]

metricname fields never contain control characters or whitespace.

value field contains the metric’s value. If the metric is a String metric, then this field

may contain whitespace. Otherwise it is an integer or floating point number with no

whitespace.

units field is optional.

The pretty format indenting indicates containment, so in this case

testState.value is a child of testNoun , and its siblings include

testEvent.count and testPhase.time .

DMS Standard Format
The following lines contain sample standard format data:

/jspy_uptime.value: 0
/testNoun/testState.value: 55
/testNoun/testEvent.count: 3
/testNoun/testPhase.time: 0
/JDMS/JVM/jvmTotalMem.max: 6144.0
/JDMS/JVM/jvmTotalMem.min: 6144.0
6-6 Administration Guide

Collecting Runtime Metrics
Each line represents a metric. Units are not included. Names for Nouns and Metrics

have no control characters or whitespace. Refer to Example 6–2 for more sample

pretty format output.

Noun Format With standard format, noun names must be deduced from the metric

names. Containment is indicated with the path separator ‘/’ characters.

DMS-defined metrics
In addition to the Oracle Message Broker metrics, a DMS dump may contain any of

the following pre-defined metrics:

/jspy_uptime.value: -- number of seconds since the process started
/JDMS/JVM/jvmTotalMem.max -- maximum observed JVM heap size
/JDMS/JVM/jvmTotalMem.min -- minimum observed JVM heap size
/JDMS/JVM/jvmTotalMem.value -- current JVM heap size
/JDMS/JVM/jvmFreeMem.max -- maximum observed amount of free JVM heap space
/JDMS/JVM/jvmFreeMem.min -- minimum observed amount of free JVM heap space
/JDMS/JVM/jvmFreeMem.value -- current amount of free JVM heap space
/JDMS/Measurement/nodes.max -- maximum number of metrics+nouns allocated by DMS
/JDMS/Measurement/nodes.value -- # nouns + # metrics allocated by DMS
/JDMS/Measurement/lastID.value -- last noun/metric identifier allocated
/JDMS/Measurement/nounCreate.count -- number of DMS nouns created
/JDMS/Measurement/nounDestroy.count -- number of DMS nouns destroyed
/JDMS/Measurement/sensorCreate.count -- number of DMS sensors created
/JDMS/Measurement/sensorDestroy.count -- number of DMS sensors destroyed
/JDMS/Measurement/sampleVal.count -- # metric values served by DMS so far
/JDMS/Log/archiveCount.count -- number of rollovers for the DMS log
/JDMS/Log/bytesWritten.value -- bytes written by DMS logging
/JDMS/Log/init.count -- number of times that DMS log was initialized
/JDMS/Log/attribute_changed.count -- count of changes to DMS logging attributes

Example 6–1 Sample Dump Using Pretty Format

<DMSDUMP version = 2.0>
<timestamp>958084102187 (Thu May 11 15:28:22 PDT 2000)</timestamp>

 jspy_uptime.value: 0 secs
 testNoun
 testState.value: 55 msecs
 testEvent.count: 3 ops
 testPhase.time: 0 msecs

 JDMS
 JVM
Oracle Message Broker Extensions 6-7

Collecting Runtime Metrics
 jvmTotalMem.max: 6144.0 kbytes
 jvmTotalMem.min: 6144.0 kbytes
 jvmTotalMem.value: 6144 kbytes
 jvmFreeMem.max: 5665.0 kbytes
 jvmFreeMem.min: 5306.0 kbytes
 jvmFreeMem.value: 5306 kbytes
 Measurement
 nodes.max: 28.0
 nodes.value: 28
 lastID.value: 27
 nounCreate.count: 2 ops
 nounDestroy.count: 0 ops
 sensorCreate.count: 8 ops
 sensorDestroy.count: 0 ops
 sampleVal.count: 150 ops
 Log
 archiveCount.count: 0 ops
 bytesWritten.value: 0 bytes
 init.count: 1 ops
 attribute_changed.count: 0 ops
</DMSDUMP>

Example 6–2 Sample DMS Output Using Standard Format

<DMSDUMP version = 2.0>
<timestamp>958084102111 (Thu May 11 15:28:22 PDT 2000)</timestamp>
/jspy_uptime.value: 0
/testNoun/testState.value: 55
/testNoun/testEvent.count: 3
/testNoun/testPhase.time: 0
/JDMS/JVM/jvmTotalMem.max: 6144.0
/JDMS/JVM/jvmTotalMem.min: 6144.0
/JDMS/JVM/jvmTotalMem.value: 6144
/JDMS/JVM/jvmFreeMem.max: 5665.0
/JDMS/JVM/jvmFreeMem.min: 5366.0
/JDMS/JVM/jvmFreeMem.value: 5366
/JDMS/Measurement/nodes.max: 28.0
/JDMS/Measurement/nodes.value: 28
/JDMS/Measurement/lastID.value: 27
/JDMS/Measurement/nounCreate.count: 2
/JDMS/Measurement/nounDestroy.count: 0
/JDMS/Measurement/sensorCreate.count: 8
/JDMS/Measurement/sensorDestroy.count: 0
/JDMS/Measurement/sampleVal.count: 106
/JDMS/Log/archiveCount.count: 0
6-8 Administration Guide

Collecting Runtime Metrics
/JDMS/Log/bytesWritten.value: 0
/JDMS/Log/init.count: 1
/JDMS/Log/attribute_changed.count: 0
</DMSDUMP>

AQ Driver Runtime Metrics
The AQ Driver optionally exports Oracle AQ specific statistics using DMS. Since

DMS monitoring can consume processor and other resources, by default the AQ

specific metric collection is disabled.

Table 6–6 shows the available AQ Driver runtime metrics.

The AQ Driver runtime metrics are collected for JMS queues and topics

(multi-consumer AQ queues and single-consumer AQ queues). AQ implements a

multi-consumer queue with:

■ A base table with one row per message.

■ A subscriber table with one row per subscriber.

■ An index table with one row per pair (message_id, subscriber_id)

The per-subscriber metric ready_count is computed by querying the index table.

The per-topic metrics (ready_count , expired_count , deferred_count) are

computed by querying the basetable. If the ready_count for a topic is 0, then the

ready_count for all subscribers to that topic will be 0. If the ready_count for a

topic is 10, the ready_count for any subscriber to that topic will be less than or

equal to 10 (the ready_count for all subscriber can be 10).

Note: AQ Driver runtime metrics are always disabled when the

Oracle Message Broker runs in Local Mode.

Table 6–6 AQ Driver Runtime Metrics

AQ Driver Metric Description

deferred_count Number of messages with deferred delivery time in the future. Applies for queues and
topics.

expired_count Number of messages for which delivery deadline expired. Applies for queues and topics.

ready_count Number of messages that can be received. Applies for queues, topics, and subscribers.
Oracle Message Broker Extensions 6-9

Creating Destinations
It is possible for schemas to show no queues or topics when there are queues/topics

in that schema. This occurs when the username/password used to establish the

JDBC connection by the AQ driver does not have access to execute queries on the

tables created by AQ within that schema.

AQ Driver Runtime Metric Administration
Table 6–7 shows the Java properties that control AQ Driver runtime metric

collection. The Oracle Message Broker does not support LDAP Directory based

administration for AQ Driver runtime metrics.

Creating Destinations
Oracle Message Broker clients can use several methods to create destinations that

are not JMS administered objects. A client uses these destinations to send or to

publish messages without referencing the Oracle Message Broker administrative

directory. Refer to the JMS specification, section 4.4.4, for a brief description of

domain-specific destinations.

The methods Oracle Message Broker provides to create and use destinations are:

Table 6–7 AQ Driver Runtime Metric Properties

Property Description

oracle.oas.mercury.dmsaq To enable the AQ Driver specific DMS metrics, set the Java System
property to true. The AQ DMS runtime metrics are disabled by default
because the DBMS queries consume resources.

oracle.oas.mercury.dmsaqInterval The default interval at which AQ Driver queries the DBMS to find new AQ
queues, single-consumer and multi-consumer, for DMS monitoring is 120
seconds. Set the Java System property to an integer value to adjust the
query interval. The accepted range for the DMS query interval is between
10 and 600 seconds. When an invalid value is specified, the default value is
used. It determines the interval at which the AQ driver queries the DBMS
to determine which AQ queues have been created. It also determines the
interval at which the AQ driver updates the DMS resource hierarchy. The
resource hierarchy must be updated when a subscriber is added/deleted
and when AQ queues are added/deleted

QueueSession.createQueue to create a queue

TopicSession.createTopic to create a topic
6-10 Administration Guide

Using Client-Side Callouts
Defining Destination Strings
The createQueue and createTopic methods each take a String argument that

defines a destination. To describe a destination, use the following syntax for the

destination string:

tag =value [, tag =value]*

The order of tags is not significant, nor is the case. The destination string syntax

does not allow whitespace, embedded commas, or embedded "=" signs.

The createQueue and createTopic methods each require two tags: name and

driver. The name and driver tag are defined as follows:

In addition, when the driver is mq, the following tags are also required:

For example, the following code creates an MQ Series queue using createQueue :

QueueSession qs = ...;
Queue q = qs.createQueue("driver=mq,name=q1,manager=mgr1,queue=mqq");

The following code creates a Volatile queue using createQueue :

QueueSession qs = ...;
Queue q = qs.createQueue("driver=vol,name=volq1");

Using Client-Side Callouts
Oracle Message Broker provides a facility for creating and using client-side callouts.

Client-side callouts define message transformations or other user defined

processing that is applied when messages are produced or consumed. Callout

methods can be written in Java or C/C++.

name The destination name

driver The driver name. The driver name must be one of the

following: aq , aqlite , vol , mq, zyg , or rv .

queue The MQ specific queue name

manager The name of the queue manager
Oracle Message Broker Extensions 6-11

Using Client-Side Callouts
A Callout method defines the transformations or processing that a message

consumer performs before receiving messages. Likewise, message producers can

also use callout methods to perform transformations or processing before sending

messages. Since callout methods execute on the client-side, the Oracle Message

Broker knows nothing of the transformations or of the callout methods.

This section covers the following:

■ Defining Callout Methods

■ Using Callouts in a Message Producer

■ Using Callouts in a Message Consumer

■ Using Properties to Indicate Callouts

■ Sample Client Side Callout Programs

Defining Callout Methods
Oracle Message Broker supports both Java and C/C++ callout methods. Use the

interfaces shown in this section to define callout methods. Example 6–3 shows a

sample Java stub for a callout method.

Defining Java Callouts
To define a callout method in Java, implement the following Oracle Message Broker

client-side interface (defined in oracle.oas.mercury.jmsClient.callout):

interface Callout
{
 public Message invoke(Message message) throws JMSException;
}

Example 6–3 Java Callout Sample Stub

import oracle.oas.mercury.jmsClient.callout.Callout;
class mapName implements Callout
{
public Message invoke(Message message)
{
/* Include invoke method code for MapName message transformation. */
return message;
}

6-12 Administration Guide

Using Client-Side Callouts
To supply parameters to a callout method, a message producer sets the JMSType

message header field to indicate the message type. A message producer can set this

value to indicate the message type and the callout method can use this field as a flag

for callout transformation processing.

C/C++ Callouts
To define a callout method in C/C++, implement the following Oracle Message

Broker JNI. Use this JNI to create a dynamic library for each callout and include the

following in the callout source:

#include <jni.h>
#ifdef __cplusplus
extern "C" {
#endif
JNIEXPORT void JNICALL Java_oracle_oas_mercury_jmsClient_callout_CMaps_invoke
(JNIEnv jenv*, jobject javathis, jobject message);
#ifdef __cplusplus
}
#endif

This is the signature for the native method. Implement the callout transformation

with this signature and then create a dynamic library. The name of the dynamic

library is the same as the name of the callout.

To supply parameters to a callout method, a message producer sets the JMSType

message header field to indicate the message type. A message producer can set this

value to indicate the message type and the callout method can use this field as a flag

for callout transformation processing.

For additional information on callouts, refer to the README file in the sample

directory $OMB_HOME/samples/client/java/callout.

Using Callouts in a Message Producer
To register a callout in a message producer, either a QueueSender or a

TopicPublisher, use the following method:

void MercuryProducer.setCallout(String calloutName) throws CalloutException

For example:

((MercuryProducer)sender).setCallout(pcallout);
Oracle Message Broker Extensions 6-13

Using Client-Side Callouts
To unregister a callout, use the following method:

MercuryProducer.setCallout(null);

To find the name of any registered callouts, use the following method:

String MercuryProducer.getCallout()

This returns a registered callout or null if a callout is not registered.

A client can use the following method to handle exceptions and return the original

message:

Message MercuryProducer.getMsg()

This returns the original message, as it was before the callout transformation was

attempted. The getMsg method returns a null value if no message was supplied to

the callout routine.

The setCallout method specifies a transformation method, or a handler method

that hands off messages to the appropriate transformation method.

When setCallout is invoked with a name, for example calloutName, the callout

manager checks to see if a Java class, calloutName, can be found. If the name is

available, the class is dynamically loaded. If the class is not available, the callout

manager attempts to load a dynamic library with the name calloutName. If this fails

the callout manager throws a CalloutException and the callout is set to null.

Subsequent messages do not use any callouts until setCallout successfully

completes.

After a queue sender calls send or a topic publisher calls publish , the Oracle

Message Broker JMS client-side code sends messages to the CalloutManager, which

invokes the transformation methods registered with setCallout(..) , and

returns the transformed message, which is then passed on to the Oracle Message

Broker. If the callout fails, the callout manager throws a callout exception that

contains the original message.

For additional information on callouts and samples showing callouts, refer to the

README file in the sample directory $OMB_HOME/samples/client/java/callout.
6-14 Administration Guide

Using Client-Side Callouts
Using Callouts in a Message Consumer
To register a callout in a message consumer, either a QueueReceiver or a

TopicSubscriber, use the following method:

void setCallout(String calloutName) throws CalloutException

To unregister a callout, use the following method:

MercuryConsumer.setCallout(null);

To find the name of any registered callouts, use the following method:

String MercuryConsumer.getCallout()
This returns a registered callout or null if no callout is registered.

Handle exceptions using the following method:

Message CalloutException.getMsg()

This returns the original message, as it was before the callout transformation was

attempted. The getMsg method returns a null value if no message was supplied to

the callout routine.

The setCallout methods specifies a transformation method, or a handler method

that hands off messages to the appropriate transformation method.

When setCallout is invoked with a name, for example calloutName, the callout

manager checks to see if a Java class, calloutName, can be found. If the name is

available, the class is dynamically loaded. If the class is not available, the callout

manager attempts to load a dynamic library with the name calloutName. If this fails

the callout manager throws a CalloutException and the callout is set to null.

Subsequent messages do not use any callouts until setCallout successfully

completes.

After a queue receiver calls receive or a topic subscriber calls receive , the

Oracle Message Broker JMS client-side code sends messages to the callout manager,

which invokes the transformation method registered with setCallout(..), and returns

the transformed message, which is then passed on to the Oracle Message Broker. If

the callout fails, the callout manager throws a callout exception that contains the

original message.

For additional information on callouts, refer to the README file in the sample

directory $OMB_HOME/samples/client/java/callout.
Oracle Message Broker Extensions 6-15

Universal Connections and Universal Sessions
Using Properties to Indicate Callouts
When the message consumer or producer does not indicate a callout method by

explicitly using setCallout , the application can use a Java property to specify a

default callout method for either a producer or a consumer.

A message consumer can indicate a routine to be called upon receipt of messages by

setting oracle.oas.mercury.callout.consumer. A message producer can indicate a

method to be called when sending or publishing messages with the property

oracle.oas.mercury.callout.producer.

For example the following property sets a callout method that specifies that the

client TestClient should use the consumer callout method named myMap for

callout transformations:

java -Doracle.oas.mercury.callout.consumer= myMap TestClient

Each message is sent to the user-indicated callout. By default, if the message

consumer or producer does not explicitly specify a callout transformation, the Java

property oracle.oas.mercury.callout.producer is checked. If this property is set, and

the callout exists, that callout is used. Otherwise, no callout transformation is

attempted.

To supply parameters to a callout method, a message producer sets the JMSType

message header field to indicate the message type. A message producer can set this

value to indicate the message type and the callout method can use this field as a flag

for callout transformation processing.

For additional information on callouts, refer to the README file in the sample

directory $OMB_HOME/samples/client/java/callout.

Sample Client Side Callout Programs
For additional information on callouts and examples showing callouts, refer to the

README file in the sample directory $OMB_HOME/samples/client/java/callout.

Universal Connections and Universal Sessions
The Oracle Message Broker supports a JMS connection and session extension called

Universal Connections and Universal Sessions. This extension allows a JMS

connection to support both topic and queue connections with a single, Universal

Connection. Likewise, a JMS session can support both topic and queue sessions

with a single Universal Session.
6-16 Administration Guide

Receiving with a Message ID
This extension is implemented as follows, for connections and sessions:

■ Instances of javax.jms.TopicConnection and

javax.jms.QueueConnection returned from calls to Oracle Message

Broker’s ConnectionFactories implement the interface

oracle.oas.mercury.MercuryConnection .

■ The interface oracle.oas.mercury.MercuryConnection implements both

TopicConnection and QueueConnection . Thus, you can cast a newly

created connection, either topic or queue, to MercuryConnection .

■ Instances of oracle.oas.mercury.MercuryConnection can create both

TopicSession s and QueueSession s.

■ Instances of javax.jms.QueueSession and javax.jms.TopicSession
returned from calls to the Oracle Message Broker’s version of TopicConnection,

QueueConnection , or MercuryConnection can be cast to the type

oracle.oas.mercury.MercurySession . MercurySession implements

both TopicSession and QueueSession .

With this feature, you only need to create one connection, either a topic connection

or a queue connection. The result can be cast to type MercuryConnection . The

MercuryConnection implements both javax.jms.TopicConnection and

javax.jms.QueueConnection and can be used wherever a

javax.jms.*Connection is expected.

Likewise, you only need to create one session, either a topic session or a queue

session. The result can be cast to type MercurySession . MercurySession
implements both javax.jms.TopicSession and javax.jms.QueueSession
and can be used wherever a javax.jms.*Session is expected.

Thus, using Universal Connections and Universal Sessions, access to a queue and a

topic can be performed in the same transaction.

Receiving with a Message ID
The Oracle Message Broker provides a JMS extension to receive messages by

specifying a message ID. This is facilitated by using the receive method for a

message consumer. The receive returns a Message. Refer to the Oracle Message

Broker Javadoc for the package oracle.oas.mercury.MercuryConsumer for a

full description of receive (the Javadoc is available in the directory $OMB_

HOME/doc/javadoc, or %OMB_HOME%\doc\javadoc on Windows NT).
Oracle Message Broker Extensions 6-17

Using AQ Rules for Message Selection
Using AQ Rules for Message Selection
The Oracle Message Broker supports two types of message selectors when messages

are stored using the AQ Driver, including:

■ Standard Oracle Message Broker messages selectors (refer to "Using Message

Selectors" on page 5-3 for more information).

■ AQ Rules based messages selectors. AQ Rules based message selectors are

passed to Oracle AQ when an Oracle Message Broker JMS durable subscription

is created for a topic using the AQ Driver (an Oracle AQ multi-consumer

queue). AQ Rules based message selectors use Oracle AQ features to select

specific messages that are stored in an AQ multi-consumer queue (JMS topic).

The benefits of using AQ Rules include:

■ Scalability – AQ Rules provide better performance when there are many

subscribers for a single topic.

■ Lower storage requirements – Using AQ Rules, the rules are evaluated on

enqueue. This allows Oracle AQ to avoid storing a message when the message

does not satisfy any of the specified selectors. The Oracle Message Broker

evaluates standard message selectors on dequeue, so with standard message

selectors, all messages are stored in the underlying message store.

■ Durability – With AQ Rules based message selectors, the message selector is as

durable as the subscription. The Oracle Message Broker records both the AQ

Rule based message selector and the durable subscription in the underlying

Oracle 8i database tables representing the queue.

■ Better selectors – AQ Rules accepts a more general syntax for message selectors.

AQ Rules can also access a message body, while standard Oracle Message

Broker message selectors cannot use the message body.

■ AQ rules can call stored procedures supplied by Oracle or created by an Oracle

8i Database Server user.

Note: The Oracle Message Broker only supports AQ Rules based

messages selectors for messages stored using the AQ Driver.
6-18 Administration Guide

Using AQ Rules for Message Selection
Creating AQ Rules Based Message Selectors
Oracle Message Broker standard message selectors are specified according to the

syntax in the JMS specification (refer to "Using Message Selectors" on page 5-3 for

more information). The AQ Rules engine accepts a more general message selectors

syntax. Application developers create AQ Rules during the development of Oracle

Message Broker applications.

To create AQ Rules based message selectors, application developers must

understand the following:

■ Oracle8 ADTs used to store Oracle Message Broker messages (see Appendix A,

"Oracle AQ Driver ADTs").

■ PL/SQL (see the Oracle 8i Database Server documentation).

■ PL/SQL helper functions (see "PL/SQL Functions Supporting AQ Rules" on

page 6-21). The Oracle Message Broker support for AQ Rules requires

developers to access property values explicitly using function calls rather than

implicitly as described in the JMS specification. The helper functions assist

developers in accessing property values.

■ Oracle AQ Rules. See the Oracle 8i Documentation Library for complete

information on Oracle AQ and AQ Rules.

Message Selector Format
When Oracle Message Broker applications use AQ Rules based message selectors,

the message selector must be a string. The string must be constructed so that it

would be valid as the WHERE clause of a SQL statement. The message selector

string is also restricted; it can only access columns in the underlying AQ queue

table representing the JMS topic that the AQ Rule is to be applied to.

To determine the available columns that AQ Rules can be applied to, execute the

following SQLPLUS command:

sqlplus> DESCRIBE queue_table

Where queue_table is the name of the queue table in which the JMS messages are

stored (a queue table holds an AQ queue that stores a JMS topic in the Oracle 8i
Database). When the AQ queue table is created, the Oracle Message Broker

administrator specifies the Oracle8 ADT for the queue_table’s user_data column. The

types for all other queue_table columns are fixed for each queue table. Table 7–2 and

Table 7–3 show the available types for the Oracle Message Broker AQ based queue

table user_data column.
Oracle Message Broker Extensions 6-19

Using AQ Rules for Message Selection
Table 6–8 describes how the ADT specified for the underlying AQ queue table

affects the parts of JMS messages that can be selected using an AQ Rules based

message selector. Each entry in Table 6–8 lists the type of the AQ Driver and the

parts of the JMS message that can be accessed using a message selector for the

specified ADT. All queues that Oracle Message Broker accesses use one of the eight

data types for the user_data column shown in Table 6–8.

Keep the following in mind for the Exposes field in Table 6–8.

■ Exposes nothing means the message is stored as a stream of bytes serialized in

Java. The message is stored in the Database Server as a blob and should not be

accessed using PL/SQL or AQ Rules based message selectors.

■ Exposes message body and properties means the type used to create the queue

table is an Oracle8 JMS ADT (see Appendix A, "Oracle AQ Driver ADTs").

Message properties and the message body can be accessed using PL/SQL or

AQ Rules based message selectors.

.

Table 6–8 JDBC AQ Driver Queue Message Options

Oracle8 i ADT Used
for Queue Table Driver

Message Types
Allowed Exposes

OMBAQ_BYTES_MSG JDBC AQ bytes Exposes message body and properties

OMBAQ_MAP_MSG JDBC AQ map Exposes message body and properties

OMBAQ_OBJECT_MSGJDBC AQ object Exposes message body and properties

OMBAQ_STREAM_MSGJDBC AQ stream Exposes message body and properties

OMBAQ_TEXT_MSG JDBC AQ text Exposes message body and properties

OMBAQ_SERIAL_MSGJDBC AQ All JMS
Message Types

Exposes nothing

RAW OCI AQ Non-queriable Exposes nothing

OMBAQ_MESSAGE_T OCI AQ Queriable Exposes the message body.

Does not expose the message properties.
6-20 Administration Guide

Using AQ Rules for Message Selection
PL/SQL Functions Supporting AQ Rules
This section provides tables showing the PL/SQL helper functions that the Oracle

Message Broker provides for developers to use AQ Rules as message selectors. The

helper functions are part of the aq.ombaq PL/SQL package that is included with the

Oracle Message Broker installation. Each entry in Table 6–9, Table 6–10, Table 6–11,

Table 6–12, and Table 6–13 shows a helper function, with its description, and an

example showing how to use the function. The tables listing helper functions are

specific to each message type ADT, as specified in Table 6–8.

An AQ Rule rule is specified as a boolean expression (one that evaluates to true or

false) using syntax similar to the WHERE clause of a SQL query. This boolean

expression can include conditions on:

1. The fixed columns from queue table. This allows an AQ Rule to access the fixed

columns from a queue table as part of the AQ Rule, regardless of the type of the

user_data column. For example, the following example uses the priority and

corrid columns from a queue table:

tab.priority > 2 AND tab.corrid = ‘PAYMENT’

2. The JMS message body, as stored in the queue table. The helper functions can

assist in providing access to the JMS message body, as stored in the queue table

with Oracle Message Broker ADTs, for particular message types, as shown in

Table 6–8.

3. The JMS message properties, as stored in the queue table. The helper functions

can assist in providing access to the JMS message properties, as stored in the

queue table with Oracle Message Broker ADTs, for particular message types, as

shown in Table 6–8.

4. The message body and the message properties can also be explicitly accessed

from the user_data column. For example, the following example accesses

properties from the user_data column:

tab.user_data.ombaq_property.name = ‘X.X’

Using Helper Functions
When using the PL/SQL helper functions, the function name must be fully

specified. For example, aq.ombaq.str_text is fully specified. However, the

function, str_text is not fully specified.
Oracle Message Broker Extensions 6-21

Using AQ Rules for Message Selection
The helper functions can only be used with queue table user_data columns of the

following types:

■ OMBAQ_MAP_MSG

■ OMBAQ_STREAM_MSG

■ OMBAQ_TEXT_MSG

■ OMBAQ_BYTE_MSG

■ OMBAQ_OBJECT_MSG

Some functions return an integer when they should return a boolean. Functions that

return a boolean cannot be used with AQ Rules for an AQ subscriber. To overcome

this limitation, these functions return 0 to indicate false and 1 to indicate true.

Number Property Helper Functions The num_prop functions search the varray in which

properties are stored and return the property that matches the specified name if the

property value is stored as a SQL Number.

The num_prop functions return null if there is no property element with a matching

name or if there is an element that matches, but the value is stored as a SQL

varchar2. Properties in a JMS message with the following types are stored as a SQL

Number:

■ boolean

■ byte

■ short

■ integer

■ long

■ float - float values may lose precision when converted from a Java float to a SQL

Number and then back to a Java float.

String Property Helper Functions The str_prop functions search the varray in which

properties are stored and return the property that matches the specified name if the

property is stored as a SQL varchar2.

The str_prop functions return null if there is no property element with a matching

name or if there is an element that matches, but the value is stored as a SQL
6-22 Administration Guide

Using AQ Rules for Message Selection
number. Properties in a JMS message with the following types are stored as a SQL

varchar2:

■ double - doubles are stored as a string since SQL Number cannot store the valid

range of a Java double.

■ string

Type of Property Helper Functions The type_prop functions search the varray in which

properties are stored and return a SQL integer that is the value of the ombaq_type

field for the ombaq_property varray element. The value of the ombaq_type field

determines whether str_prop or num_prop should be used to access the value of the

property. The values for the types are defined in the package aq.ombaq. The type_

prop functions return:

■ The value of the ombaq _type field if there is a property element that matches

and the property element is valid. The symbolic values for the types are defined

in the aq.ombaq PL/SQL package installed with Oracle Message Broker.

■ Null otherwise

In Property Test Helper Functions The in_prop functions search the varray in which the

properties are stored and return a SQL integer. The returned value is:

■ 1 if there is a name that matches and the property element is valid.

■ 0 otherwise.

Functions for aq.ombaq_bytes_msg Messages
Table 6–9 shows the AQ Rules message selector helper functions for messages

stored in queue tables of type OMBAQ_BYTES_MSG ADT.
Oracle Message Broker Extensions 6-23

Using AQ Rules for Message Selection
Functions for aq.ombaq_map_msg Messages
Table 6–10 shows the AQ Rules message selector helper functions for messages

stored in queue tables with the OMBAQ_MAP_MSG ADT type.

The functions num_map, str_map, in_map, and type_map are similar to the

functions num_prop, str_prop, in_prop, and type_prop. The difference is the set of

values that are searched. Functions of the form *_map search the varray that

contains the map elements from a map message (the body of a map message).

Table 6–9 OMBAQ_BYTES_MSG Helper Functions

Function Description

num_prop function num_prop(msg in ombaq_bytes_msg, name in varchar2) return number;

This function returns the value of a property that would be stored as a SQL Number type.

aq.ombaq.num_prop(tab.user_data, ‘shortProperty’) = 13

This example selects messages that have a property stored as a SQL Number with a value of 13
and the name ‘shortProperty’.

str_prop function str_prop(msg in ombaq_bytes_msg, name in varchar2) return varchar2;

This function returns the value of a property that would be stored as a SQL varchar2 type.

aq.ombaq.str_prop(tab.user_data, ‘stringProperty’) = ‘foo’

This example select messages that have a property stored as a SQL varchar2, the value ‘foo’,
and the name ‘stringProperty’.

in_prop function in_prop(msg in ombaq_bytes_msg, name in varchar2) return integer;

This function returns 1 if there is a property element with the specified name and 0 otherwise.

aq.ombaq.in_prop(tab.user_data, ‘doNotSelectProperty’) == 0

This example selects messages that do not contain a property with the name
‘doNotSelectProperty’.

type_prop function type_prop(msg in ombaq_bytes_msg, name in varchar2) return integer;

This returns the value of the ombaq_type field for the property element with the specified
name and null otherwise. The symbolic values for the types are defined in the aq.ombaq
PL/SQL package installed with Oracle Message Broker.

aq.ombaq.type_prop(tab.user_data, ‘booleanProperty’) = 1

This example selects messages that have a boolean property with the name ‘booleanProperty’.
6-24 Administration Guide

Using AQ Rules for Message Selection
Functions of the form *_prop search the varray that contains the message

properties.

Table 6–10 OMBAQ_MAP_MSG Helper Functions

Function Description

num_map function num_map(msg in ombaq_map_msg, name in varchar2) return number;

This function returns the value of a map element if the value is stored as a SQL Number, the
name of the map element matches the specified name, and the map element is valid. Map values
with the following Java types from a JMS message are stored as a SQL Number: boolean, byte,
short, integer, long, float, char.

Note: float values may lose precision when converted from a Java float to a SQL Number and
then back to a Java float.

aq.ombaq.num_map(tab.user_data, ‘mapElemName’) = 13

This example selects messages that have a map element stored as a SQL Number with a value of
13 and the name ‘mapElemName’.

str_map function str_map(msg in ombaq_map_msg, name in varchar2) return varchar2;

This function returns the value of a map element if the value is stored as a SQL varchar2, the
name of the map element matches the specified name, and the map element is valid. Map values
with the following Java types from a JMS message are stored as a SQL varchar2: double, string,
byte array.

aq.ombaq.str_map(tab.user_data, ‘stringMapElem’) = ‘foo’

This example selects messages that have a map element stored as a SQL varchar2, the value
‘foo’, and the name ‘stringMapElem’.

in_map function in_map(msg in ombaq_map_msg, name in varchar2) return integer;

This function returns 1 if there is a valid map element with a name field that matches the
specified name. Otherwise, it returns 0.

aq.ombaq.in_map(tab.user_data, ‘doNotSelectElem’) == 0

This example selects messages that do not contain a map element with the name
‘doNotSelectElem’.
Oracle Message Broker Extensions 6-25

Using AQ Rules for Message Selection
type_map function type_map(msg in ombaq_map_msg, name in varchar2) return integer;

This function return the value of the ombaq_type field of a map element if there is a valid map
element that matches the specified name. Otherwise, it returns null. The symbolic values for the
types are defined in the aq.ombaq PL/SQL package installed with Oracle Message Broker.

aq.ombaq.type_map(tab.user_data, ‘booleanMapElem’) = 1

This example selects messages that have a boolean map element with the name
‘booleanMapElem’.

num_prop function num_prop(msg in ombaq_map_msg, name in varchar2) return number;

This function returns the value of a property that would be stored as a SQL Number type.

aq.ombaq.num_prop(tab.user_data, ‘shortProperty’) = 13

This example selects messages that have a property stored as a SQL Number with a value of 13
and the name ‘shortProperty’.

str_prop function str_prop(msg in ombaq_map_msg, name in varchar2) return varchar2;

This function returns the value of a property that would be stored as a SQL varchar2 type.

aq.ombaq.str_prop(tab.user_data, ‘stringProperty’) = ‘foo’

This example selects messages that have a property stored as a SQL varchar2, the value ‘foo’,
and the name ‘stringProperty’.

in_prop function in_prop(msg in ombaq_map_msg, name in varchar2) return integer;

This function returns 1 if there is a property element with the specified name and 0 otherwise.

aq.ombaq.in_prop(tab.user_data, ‘doNotSelectProperty’) == 0

This example selects messages that do not contain a property with the name
‘doNotSelectProperty’.

type_prop function type_prop(msg in ombaq_map_msg, name in varchar2) return integer;

This returns the value of the ombaq_type field for the property element with the specified name
and null otherwise. The symbolic values for the types are defined in the aq.ombaq PL/SQL
package installed with Oracle Message Broker.

aq.ombaq.type_prop(tab.user_data, ‘booleanProperty’) = 1

This example selects messages that have a boolean property with the name ‘booleanProperty’.

Table 6–10 (Cont.) OMBAQ_MAP_MSG Helper Functions

Function Description
6-26 Administration Guide

Using AQ Rules for Message Selection
Functions for aq.ombaq_object_msg Messages
Table 6–11 shows the AQ Rules message selector helper functions for messages

stored in queue tables with the OMBAQ_OBJECT_MSG ADT type.

Table 6–11 OMBAQ_OBJECT_MSG Helper Functions

Function Description

num_prop function num_prop(msg in ombaq_object_msg, name in varchar2) return number;

This function returns the value of a property that would be stored as a SQL Number type.

aq.ombaq.num_prop(tab.user_data, ‘shortProperty’) = 13

This example selects messages that have a property stored as a SQL Number with a value of 13
and the name ‘shortProperty’.

str_prop function str_prop(msg in ombaq_object_msg, name in varchar2) return varchar2;

This function returns the value of a property that would be stored as a SQL varchar2 type.

aq.ombaq.str_prop(tab.user_data, ‘stringProperty’) = ‘foo’

This example selects messages that have a property stored as a SQL varchar2, the value ‘foo’,
and the name ‘stringProperty’.

in_prop function in_prop(msg in ombaq_object_msg, name in varchar2) return integer;

This function returns 1 if there is a property element with the specified name and 0 otherwise.

aq.ombaq.in_prop(tab.user_data, ‘doNotSelectProperty’) == 0

This example selects messages that do not contain a property with the name
‘doNotSelectProperty’.

type_prop function type_prop(msg in ombaq_object_msg, name in varchar2) return integer;

This returns the value of the ombaq_type field for the property element with the specified
name and null otherwise. The symbolic values for the types are defined in the aq.ombaq
PL/SQL package installed with Oracle Message Broker.

aq.ombaq.type_prop(tab.user_data, ‘booleanProperty’) = 1

This example selects messages that have a boolean property with the name ‘booleanProperty’.
Oracle Message Broker Extensions 6-27

Using AQ Rules for Message Selection
Functions for aq.ombaq_stream_msg Messages
Table 6–12 shows the AQ Rules message selector helper functions for messages

stored in queue tables with the OMBAQ_STREAM_MSG ADT type.

The functions num_stream, str_stream, and type_stream are similar to the functions

num_prop, str_prop, and type_prop. The difference is the set of values that are

searched and the argument use to specify how elements are matched. Functions of

the form *_stream search the varray that contains the stream elements from a stream

message (the body of a map message). Functions of the form *_prop search the

varray that contains the message properties. Also, the *_stream function accept an

integer that represents the index within a stream rather than a name. Since stream

elements do not contain a name field, the only way to specify a stream element is to

specify its position within the stream varray. The first element in a varray is at index

1, not at index 0.

Table 6–12 OMBAQ_STREAM_MSG Helper Functions

Function Description

num_stream function num_stream(msg in ombaq_stream_msg, stream_index in integer) return
number;

This function returns the value of the stream element at index ‘stream_index’ within the varray
if the value is stored as a SQL Number, and the stream element is valid. Stream values with the
following Java types from a JMS message are stored as a SQL Number: boolean, byte, short,
integer, long, float, char.

Note: float values may lose precision when converted from a Java float to a SQL Number and
then back to a Java float.

aq.ombaq.num_stream(tab.user_data,1) = -1

This example selects messages that have a stream element at index 1 within the stream stored
as a SQL Number, the value -1, and the name ‘numStreamElem’.

str_stream function str_stream(msg in ombaq_stream_msg, stream_index in integer) return
varchar2;

This function returns the value of a stream element at index ‘stream_index’ within the varray if
the value is stored as a SQL varchar2 and the map element is valid. Stream values with the
following Java types from a JMS message are stored as a SQL varchar2: double, string, byte
array.

aq.ombaq.str_stream(tab.user_data, 1) = ‘foo’

This example selects messages that have a stream element at index 1 within the stream stored
as a SQL varchar2, the value ‘foo’, and the name ‘stringStreamElem’.
6-28 Administration Guide

Using AQ Rules for Message Selection
type_stream function type_stream(msg in ombaq_stream_msg, stream_index in integer) return
varchar2;

This function return the value of the ombaq_type field of a stream element at index ‘stream_
index’ within the varray if the stream element is valid. Otherwise, it returns null.

aq.ombaq.type_stream(tab.user_data, 2) = 6

This example selects messages that have a stream element at index 2 within the stream with
type float.

num_prop function num_prop(msg in ombaq_stream_msg, name in varchar2) return number;

This function returns the value of a property that would be stored as a SQL Number type.

aq.ombaq.num_prop(tab.user_data, ‘shortProperty’) = 13

This example selects messages that have a property stored as a SQL Number with a value of 13
and the name ‘shortProperty’.

str_prop function str_prop(msg in ombaq_stream_msg, name in varchar2) return varchar2;

This function returns the value of a property that would be stored as a SQL varchar2 type.

aq.ombaq.str_prop(tab.user_data, ‘stringProperty’) = ‘foo’

This example selects messages that have a property stored as a SQL varchar2, the value ‘foo’,
and the name ‘stringProperty’.

in_prop function in_prop(msg in ombaq_stream_msg, name in varchar2) return integer;

This function returns 1 if there is a property element with the specified name and 0 otherwise.

aq.ombaq.in_prop(tab.user_data, ‘doNotSelectProperty’) == 0

This example selects messages that do not contain a property with the name
‘doNotSelectProperty’.

type_prop function type_prop(msg in ombaq_stream_msg, name in varchar2) return integer;

This returns the value of the ombaq_type field for the property element with the specified
name and null otherwise.

aq.ombaq.type_prop(tab.user_data, ‘booleanProperty’) = 1

This example selects messages that have a boolean property with the name ‘booleanProperty’.

Table 6–12 (Cont.) OMBAQ_STREAM_MSG Helper Functions

Function Description
Oracle Message Broker Extensions 6-29

Using AQ Rules for Message Selection
Functions for aq.ombaq_text_msg Messages
Table 6–13 shows the AQ Rules message selector helper functions for messages

stored in queue tables of type OMBAQ_TEXT_MSG.

Table 6–13 OMBAQ_TEXT_MSG Helper Functions

Function Description

str_text function str_text(msg in ombaq_text_msg) return varchar2;

This function returns the body of a text message.
It returns at most 4000 characters. If the body is null, it returns null.

aq.ombaq.str_text(tab.user_data) = ‘textbody’

This example selects messages that have the text body ‘textbody’. The result of str_text can be
used as the argument to another function call.

size_text function size_text(msg in ombaq_text_msg) return integer;

This function returns the size of the body of a text message. It returns the following values:

-1 to indicate null

0 to indicate a zero length body

> 0 to indicate a non-zero length body

aq.ombaq.size_text(tab.user_data) > 100

This example selects messages that have a text body with at least 100 characters.

num_prop function num_prop(msg in ombaq_text_msg, name in varchar2) return number;

This function returns the value of a number property with the given name. The returned value
is a SQL Number type.

aq.ombaq.num_prop(tab.user_data, ‘shortProperty’) = 13

This example selects messages that have a property stored as a SQL Number with a value of 13
and the name ‘shortProperty’.
6-30 Administration Guide

Using AQ Rules for Message Selection
Selectors for aq.ombaq_serial_msg
The following selectors can be used when the type of the user_data column of the

queue table is aq.ombaq_serial_msg. There are no helper functions available for this

message type. AQ Rules can use fixed columns from the queue table. For example,

tab.priority > 2 and tab.corrid = ‘PAYMENT’

Selectors for raw
The following selectors can be used when the type of the user_data column of the

queue table is aq.ombaq_serial_msg. There are no helper functions available for this

message type. AQ Rules can use fixed columns from the queue table. For example,

tab.priority > 2 and tab.corrid = ‘PAYMENT’

str_prop function str_prop(msg in ombaq_text_msg, name in varchar2) return varchar2;

This function returns the value of a string property that is stored as a SQL varchar2 type.

aq.ombaq.str_prop(tab.user_data, ‘stringProperty’) = ‘foo’

This example selects messages that have a property stored as a SQL varchar2, the value ‘foo’,
and the name ‘stringProperty’.

in_prop function in_prop(msg in ombaq_text_msg, name in varchar2) return integer;

This function returns 1 if there is a property element with the specified name and 0 otherwise.

aq.ombaq.in_prop(tab.user_data, ‘doNotSelectProperty’) == 0

This example selects messages that do not contain a property with the name
‘doNotSelectProperty’.

type_prop function type_prop(msg in ombaq_text_msg, name in varchar2) return integer;

This returns the value of the ombaq_type field for the property element with the specified
name and null otherwise.

aq.ombaq.type_prop(tab.user_data, ‘booleanProperty’) = 1

This example select messages that have a boolean property with the name ‘booleanProperty’.

Table 6–13 (Cont.) OMBAQ_TEXT_MSG Helper Functions

Function Description
Oracle Message Broker Extensions 6-31

Obtaining the JDBC Connection in Local Mode
Selectors for aq.message_t
The following selectors can be used when the type of the ‘user_data’ column of the

queue table is aq.ombaq_serial_msg. There are no helper functions available for this

message type. AQ Rules can use fixed columns from the queue table. For example,

tab.priority > 2 and tab.corrid = ‘PAYMENT’

Obtaining the JDBC Connection in Local Mode
Using the AQ Driver, in JDBC Mode, Oracle Message Broker clients can access the

JDBC connection associated with a transacted session, and perform JDBC

operations within the transaction. Only when running in local mode, the method,

oracle.oas.mercury.MercurySession.getJdbcConnection() allows you to obtain the

JDBC connection.

Since all Oracle Message Broker JMS sessions that the Oracle Message Broker

creates are instances of MercurySession, any connection that uses the AQ Driver in

JDBC mode, with the following requirements, use the method getJdbcConnection():

■ The configuration must be set up so that the session uses the JDBC AQ Driver

■ The Oracle Message Broker must be running in local mode

■ The session must be transacted

If a message listener has been registered for the session, the JDBC connection can

only be used when a registered message listener is active for the session. A message

listener is active when the ‘onMessage’ method is executing or on the call stack for a

method that is executing.

Note 1: The Oracle Message Broker client must not close the JDBC

connection.

Note 2: The Oracle Message Broker client should not commit or

rollback the JDBC connection. Instead, it should use

javax.jms.Session.commit and javax.jms.Session.rollback.
6-32 Administration Guide

Obtaining the JDBC Connection in Local Mode
Sample Code Using a JDBC Connection
The following example uses the getJdbcConnection method in a JMS client.

Example 6–4 Sample JDBC Connection Using getJdbcConnection()

private static void addMessage(MercurySession qs,
 QueueSender snd, int i)
 throws Exception
 {
 TextMessage msg = qs.createTextMessage();
 msg.setText(“this is message: “ + msg.getJMSMessageID());

snd.send(msg);
Connection conn = null;

 PreparedStatement stmt = null;
try

 {
 conn = qs.getJdbcConnection();

String cmd = “insert into jdbc_tmp_tbl VALUES (?)”;
 stmt = conn.prepareStatement(cmd);

 System.out.println(“adding messageID: “ +
msg.getJMSMessageID());
 stmt.setString(1, msg.getJMSMessageID());

 stmt.executeUpdate();
 }
 catch (Exception e)
 {
 if (stmt != null) { stmt.close(); }
 throw e;
 }

 if ((i % 2) == 0)
 {
 System.out.println(“commit session”);
 qs.commit();
 }
 else
 {
 System.out.println(“rollback session”);
 qs.rollback();
 }
 }
Oracle Message Broker Extensions 6-33

Obtaining the JDBC Connection in Local Mode
6-34 Administration Guide

Message Servers and D
7

Message Servers and Drivers

Oracle Message Broker includes drivers that access message storage and

distribution facilities. Drivers allow client programs to produce and consume

messages and allow the Oracle Message Broker to store messages. Oracle Message

Broker supports several drivers, each having different characteristics, and

depending on the driver, supporting JMS point-to-point or Publish/Subscribe

messaging.

This chapter covers the following:

■ Driver Configuration

■ Driver Features Summary

■ Oracle Advanced Queuing Driver

■ Oracle AQ Lite Driver

■ Oracle Volatile Driver

■ IBM MQSeries Driver

■ Oracle Multicast Driver

■ TIB/Rendezvous Driver
rivers 7-1

Driver Configuration
Driver Configuration
Oracle Message Broker administration facilities store driver configuration

information. For information on driver configuration using an LDAP Directory, see

Chapter 4, "Administration". For information on driver configuration using

lightweight configuration, without the LDAP Directory, see Chapter 13,

"Lightweight Configuration".

Driver Features Summary
This section summarizes the features of the Oracle Message Broker Drivers in

Table 7–1. Where references to the JMS specification are included, they are in the

form [JMS X.X], where chapter and section number. For additional driver specific

limitations and general Oracle Message Broker limitations, refer to the Oracle
Message Broker Release Notes.

Note 1: Durable Subscribers for the Volatile Driver, Mutlicast Driver, and the TIBCO

Driver are only as durable as the process in which the Oracle Message Broker runs.

The JMS specification describes the features shown in the headings of Table 7–1 in

the following sections: Persistent Delivery – [JMS 4.7], Non-Persistent Delivery [JMS
4.7], Publish/Subscribe [JMS 6], Point-to-Point [JMS 5], Queue Browsers [JMS 5.1],

Transacted Sessions [JMS 4.4.7], Durable Subscriber [JMS 6.3].

Refer to the Java Message Service specification available from Javasoft at the

following site for more information on JMS:

http://www.javasoft.com/products/jms

Table 7–1 JMS Features Supported by Oracle Message Broker Drivers

Driver
Persistent
Delivery

Non
persistent
delivery

JMS Publish
Subscribe

JMS Point
to Point

Queue
Browsers

Transacted
Sessions

Durable
Subscriber

Oracle AQ ✓ No ✓ ✓ ✓ ✓ ✓

AQ Lite ✓ No No ✓ No ✓ No

Volatile No ✓ ✓ ✓ ✓ ✓ ✓ (Note 1)

Multicast No ✓ ✓ No No No ✓ (Note 1)

MQSeries ✓ ✓ No ✓ ✓ ✓ No

TIBCO No ✓ ✓ No No No ✓ (Note 1)
7-2 Administration Guide

Oracle Advanced Queuing Driver
Oracle Advanced Queuing Driver
The Oracle Advanced Queuing Driver (Oracle AQ Driver) supports persistent

delivery of JMS messages using the Oracle 8i Database Server Advanced Queueing

(AQ) messaging infrastructure (see the Oracle 8i Application Developers Guide for

more information on AQ).

See the section, "Driver Features Summary" on page 7-2 for a list of the features and

limitations of the Oracle AQ Driver.

In addition, the features shown in Table 7–1, the AQ Driver supports Oracle specific

extensions that expose functionality unique to Oracle AQ. These extensions include:

■ AQ Rules based message selection

■ AQ Driver specific runtime metrics

The AQ Driver maps JMS topics to AQ multi-consumer queues and JMS queues to

AQ single-consumer queues. Thus, the AQ Driver supports both JMS topics and

JMS queues using Oracle AQ queues. The format of the AQ message stored in

Oracle AQ is configurable using the Oracle Message Broker administrative facilities.

The AQ Driver converts JMS messages to and from AQ messages during enqueues

and dequeues respectively.

This section covers the following Oracle Message Broker AQ Driver topics:

■ AQ Driver Connection Types

■ AQ Messages

■ JDBC Mode

■ OCI Mode

■ AQ Message Persistence

■ AQ Tuning and Configuration

■ AQ Failure Recovery
Message Servers and Drivers 7-3

Oracle Advanced Queuing Driver
AQ Driver Connection Types
The AQ Driver uses one of two connection types to access Oracle AQ: JDBC

connections or OCI connections. To support these connection types, the AQ Driver

operates in one of two modes: JDBC Mode, or OCI Mode. The Oracle Message

Broker administration facilities determine the AQ Driver Mode.

To specify OCI Mode for the OCI connections, or JDBC Mode for the JDBC

connections, use the use_jdbc attribute for directory based administration, (see

Table 4–9). Using Lightweight configuration, the property

oracle.oas.mercury.driver.aq.useJdbc determines the AQ Driver Mode (see

Table 13–5 for information on this property).

The benefits of using JDBC connections include:

■ This configuration provides a rich set of data types (ADTs) for storing JMS

messages. Using these ADTs, programmers can access the messages in AQ

using the Oracle Message Broker with the AQ Driver or with other applications,

such as PL/SQL.

■ Portability - this configuration can use pure Java. Pure Java may be a better fit

for most Oracle Message Broker applications, which are usually written in Java.

■ Interoperability - the Oracle Message Broker is easier to use for application

integration. Oracle Message Broker clients can share AQ queues with native

Oracle applications.

■ Message management - the message warehousing functionality of Oracle AQ is

exposed to Oracle Message Broker clients. JMS messages stored in AQ can be

can be queried using SQL.

■ With an understanding of the native storage mechanism, PL/SQL applications

can enqueue messages into a queue from which Oracle Message Broker JMS

clients dequeue messages. PL/SQL applications can also dequeue messages

that are enqueued by an Oracle Message Broker JMS client.

■ Enables AQ rules - the AQ rules engine is available directly, since all the data in

the JMS message that is stored in AQ is queriable.

■ Easier debugging - when problems arise, the JDBC configuration is easier to

debug, as compared with the OCI configuration which is implemented in C.

■ A JDBC connection used to access Oracle AQ can be shared with the client if the

Oracle Message Broker is running in Local Mode. This enables the client to

access the Oracle Database Server in the same transaction as the Oracle Message

Broker’s Oracle AQ access.
7-4 Administration Guide

Oracle Advanced Queuing Driver
The benefits of using OCI connections include:

■ For some applications, the OCI configuration may provide a performance

advantage for large messages. The actual performance characteristics for any

given application depend on the size of the messages being sent, the number of

messages sent, the tuning and configuration parameter settings, and many

other factors.

■ The OCI based AQ Driver uses a maximum timeout of 5 seconds for any

blocking call, (other than create subscriber and destroy subscriber which can

block due to deadlocks in the Database Server). The OCI based driver can be

used with a Database Server in MTS mode, and it does not unnecessarily lock

resources on the shared servers.

AQ Messages
The AQ Driver supports several underlying AQ queue table types for storing JMS

messages to destinations. The types of underlying AQ queue tables are referred to

as Abstract Data Types (ADTs). A destination’s configuration determines the ADT

that the AQ Driver uses to store a message.

The administrator sets the configuration and assigns an ADT for a destination when

the destination, queue or topic, is created. The AQ Driver sends JMS messages to a

destination using the specified ADT. If the underlying AQ queue table does not

support the ADT that the AQ Driver is sending, the Oracle Message Broker throws

an exception.

The message types that the AQ Driver supports depends on the mode the AQ

Driver is using. This section describes the message types for both AQ Driver modes.

■ JDBC Mode Message Types

■ OCI Mode Message Types

Note: An Oracle Message Broker process can start the Oracle AQ

Driver using only one AQ Driver Mode, either the OCI Mode or the

JDBC Mode. For an active Oracle Message Broker to change the

mode of its AQ Driver, the Oracle Message Broker must be

shutdown and then restarted using the new mode.
Message Servers and Drivers 7-5

Oracle Advanced Queuing Driver
JDBC Mode Message Types
Table 7–2 shows the ADTs supported in JDBC mode. Oracle Message Broker

supports different AQ queue table ADTs for each JMS message type, plus a generic

AQ queue table ADT that supports all JMS messages. A queue created with any of

the ADTs other than the generic type can only store one type of JMS message,

either: map, stream, bytes, object, or text.

Developers use one of the AQ Driver’s JDBC JMS ADTs when they want to do one

or more of the following:

■ Share queues between the Oracle Message Broker and PL/SQL applications

and other Oracle8i applications.

■ Use the AQ rules engine (see the Oracle 8i Application Developers Guide for more

information).

■ Use Oracle AQ message warehousing features (see the Oracle 8i Application
Developers Guide for more information).

To access and use the underlying AQ messages using PL/SQL, or other Oracle

tools, you need to understand how JMS messages are mapped into AQ queues.

Refer to Appendix A, "Oracle AQ Driver ADTs" to for a complete description of the

mapping between JMS messages and AQ queue tables.

Note: the queue configuration specified in the Queue Configuration column is

specified using the queue or topic attribute aq_adt . See Table 4–17 and Table 4–18

for the list of valid values for the aq_adt attribute.

Table 7–2 JDBC AQ Driver Queue Message Options

Queue
Configuration Description

Oracle8 i ADT Used
for Queue Table

bytes The underlying AQ Queue only supports JMS bytes messages. OMBAQ_BYTES_MSG

map The underlying AQ Queue only supports JMS map messages. OMBAQ_MAP_MSG

object The underlying AQ Queue only supports JMS object messages. OMBAQ_OBJECT_MSG

stream The underlying AQ Queue only supports JMS stream messages. OMBAQ_STREAM_MSG

text The underlying AQ Queue only supports JMS text messages. OMBAQ_TEXT_MSG

all The underlying AQ Queue supports all JMS message types. With this
type of AQ Queue, the message is serialized and stored as a stream
of bytes. A queue that uses this type can store all message types, but
is not queriable.

OMBAQ_SERIAL_MSG
7-6 Administration Guide

Oracle Advanced Queuing Driver
OCI Mode Message Types
Table 7–3 lists the types supported for the AQ Driver in OCI mode.To access and

use the underlying AQ messages using PL/SQL, or other Oracle tools, you need to

understand how JMS messages are mapped into AQ queues. Refer to Appendix A,

"Oracle AQ Driver ADTs" to for a complete description of the mapping between

JMS messages and AQ queue tables.

Note: the queue configuration specified in the Queue Configuration column is

specified using the queue or topic attribute aq_adt . See Table 4–17 and Table 4–18

for the list of valid values for the aq_adt attribute.

AQ Message Priority
When sending messages using the AQ Driver, the JMSPriority field is mapped to an

associated AQ message priority (for message types where the JMS properties are

retained). Native AQ priorities have a PL/SQL type BINARY_INTEGER, and the

priority can be negative. Using the native AQ message system, a priority with a

smaller value indicates a higher priority. However, with JMS messages, the valid

values for the JMSPriority header fields are one of: 0, 1, 2, 3, 4, 5, 6, 7, 8, 9. The

Note: The AQ Driver in OCI mode does not support access to AQ

queues created with any of the AQ Driver’s JDBC queue

configurations.

Table 7–3 OCI AQ Driver Queue Message Options

Queue
Configuration Description

Oracle8 i ADT Used for
Queue Table

raw The Oracle Message Broker administrator should select raw
(non-queriable) mode when there is no need to query the
contents of stored messages using SQL. The JMS message is
serialized and stored as a raw payload in an AQ message.
Non-queriable mode supports all the JMS message types.
For non-queriable messages, the maximum message size is
restricted only by the Oracle AQ payload size.

RAW

queriable Administrators should select queriable mode to support
queriable JMS messages (using SQL). The contents of the
JMS message are mapped onto an AQ Driver defined
abstract datatype (ADT). Using this type, the JMS properties
are not saved.

OMBAQ_MESSAGE_T
Message Servers and Drivers 7-7

Oracle Advanced Queuing Driver
values 0 - 4 are normal priority messages, and the values 5 - 9 are expedited priority

messages (refer to [JMS 3.4.10] for more information).

The Oracle Message Broker converts the priority values as follows, when it is

sending/publishing a message using the AQ Driver:

Priority stored in AQ = (10 - JMS_priority)

The Oracle Message Broker converts the priority value as follows, when it is

receiving a message using the AQ Driver:

JMS_priority = (10 - AQ_priority)

Thus after a send and receive, the original JMS priority is returned.

JDBC Mode
The AQ Driver in the JDBC mode creates one JDBC connection per JMS session to

provide operational access to AQ queues. The Oracle Message Broker also creates

the administrative JDBC connections when the Oracle Message Broker is initialized.

The AQ Driver uses the service name stored using the administrative facilities for

connecting using JDBC connections. The JDBC driver supports local and host

naming, so the service name must be a host name or a local name (for more

information, see the Oracle SQL*Net/DCE Administrator’s Guide).

The AQ Driver creates a pool of JDBC connections to support administrative access

(create/destroy subscriptions, create/destroy AQ queues).

The number of JDBC connections used for administrative purposes by the AQ

Driver can be specified as a parameter using the Oracle Message Broker

administrative facilities (maxSharedSessions). These administrative JDBC

connections are used to create durable subscriptions, destroy durable subscriptions,

create AQ queues, and destroy AQ queues.

The AQ Driver in JDBC mode supports both transacted and non-transacted JMS

sessions.

Obtaining the JDBC Connection in Local Mode
Using the AQ Driver in JDBC Mode, with the Oracle Message Broker running in

Local Mode, the JMS Client can obtain a JDBC connection associated with a

transaction. For information on obtaining the JDBC connection, see "Obtaining the

JDBC Connection in Local Mode" on page 6-32.
7-8 Administration Guide

Oracle Advanced Queuing Driver
OCI Mode
The AQ Driver in the OCI mode uses OCI connections to provide operational access

to AQ queues. One Database Server connection is created per JMS session. Using

the OCI mode, the AQ Driver and the Oracle Message Broker AQ administrative

tools use JDBC connections for administrative access to AQ queues. Oracle Message

Broker creates the OCI and JDBC connections when the Oracle Message Broker is

initialized.

The AQ Driver uses the service name stored in the directory to establish OCI and

JDBC connections. The JDBC driver supports local and host naming, so the service

name must be a host name or a local name (for more information, see the Oracle
SQL*Net/DCE Administrator’s Guide).

The AQ Driver supports both transacted and non-transacted JMS sessions. For

non-transacted JMS sessions, operations are done in the context of local

transactions. If the Oracle Message Broker is running in Local Mode, and it is killed

using Control-C, or it dies for any reason, transactions are rolled back by the

Database Server as soon as the Database Server notices that the client connections

have failed.

The AQ Driver supports JMS queue browsers. A query is executed when the queue

browser is created which returns the message IDs of available messages. Messages

enqueued after the browser has been created will be returned if retention is enabled

for the AQ queue. There is a limit on the number of messages that can be returned

by the browser (for information on AQ limitations, refer to the Oracle Message Broker
Release Notes).

AQ Message Persistence
The AQ Driver supports only JMS persistent delivery mode. When the Oracle

Message Broker sends a message using the AQ Driver, it sets the header value for

JMSDeliveryMode to the value PERSISTENT.
Message Servers and Drivers 7-9

Oracle Advanced Queuing Driver
Availability (JDBC Mode Only)
When running in JDBC mode, the AQ Driver can recover from Database Server

failures. If the Database Server fails, and is then restarted after the Oracle Message

Broker has been started:

■ New JMS sessions can be created.

■ Existing JMS sessions receive a rollback exception but can be used.

■ Administrative access is possible using Oracle Message Broker administrative

facilities after the DBMS has been restarted.

AQ User Identities
The Oracle AQ Driver supports multiple Database Server schemas. Oracle Message

Broker allows schemas other than the default, the ‘aq’ schema to be used to access

the underlying AQ queues. When additional schemas are not needed, the AQ

Driver supports the ‘aq’ user and schema as the default for accessing the Database

Server.

The AQ Driver uses two identities for its connections to the Database Server:

1. The admin identity – performs administrative actions with the AQ Driver.

Administrative actions include:

■ Create or destroy subscribers

■ Create or destroy queues and queue tables

■ Query the number of available messages in a single-consumer queue

■ Query the number of available messages for a subscriber to a

multi-consumer queue.

■ Query the names of subscribers at broker startup to a multi-consumer

queue.

■ Query the status of a queue at broker startup.

2. The user identity – performs operational actions with the AQ Driver.

Operational actions include:

■ Enqueue or dequeue messages from an underlying AQ queue.
7-10 Administration Guide

Oracle Advanced Queuing Driver
Admin Identities
When Oracle Message Broker is configured using the LDAP Directory, the

administrative identity is set using the following AQ Server entry attributes:

aq_username
aq_password

When Oracle Message Broker is configured using Lightweight Configuration, the

administrative identity is set with the following properties:

oracle.oas.mercury.driver.aq.adminUser
oracle.oas.mercury.driver.aq.adminPassword

User Identities
Oracle Message Broker clients can specify both a user identity and a password, or

neither, when creating JMS connections with javax.jms.createTopicConnection or

javax.jms.createQueueConnection.

When the user identity and the password are not supplied, the credentials used to

create a Database Server connection to DBMS are those set as follows:

■ When Oracle Message Broker is configured using the LDAP Directory, the user

identity for operational access is set using the AQ Server entry attributes:

aq_username
aq_password

■ When Oracle Message Broker is configured using Lightweight Configuration,

the user identity is set with the properties:

oracle.oas.mercury.driver.aq.adminUser
oracle.oas.mercury.driver.aq.adminPassword

When the user identity and the password are supplied as arguments in the either

the method javax.jms.createTopicConnection, or javax.jms.createQueueConnection,

the credentials used to create a Database Server connection to the underlying DBMS

are:

■ When Oracle Message Broker is configured using the LDAP Directory, the

password is used, as supplied in the argument. The user identity is set using the

name component of the supplied username argument. The supplied username

argument is a full DN for an LDAP Directory user.

For example, if the username is supplied as an argument in the

createTopicConnection or createQueueConnection method, and the LDAP
Message Servers and Drivers 7-11

Oracle Advanced Queuing Driver
Directory is used for configuration, then the AQ driver uses the component,

“william” as the username:

cn=william,cn=users,,cn=omb,cn=products,cn=oraclecontext,<initial-context>

■ When Oracle Message Broker is configured using Lightweight Configuration,

the username and password are used as exactly as supplied in the arguments to

javax.jms.createTopicConnection, or javax.jms.createQueueConnection.

Using Different AQ Identities for AQ Administration
To perform administrative access on queues in a schema “foo” when the Oracle

Message Broker aq_server username is not equal to “foo” (assume it is “bar” and

the queue to be accessed is foo.q1):

1. Grant the role ombadmin to the user bar.

2. Grant select privileges on the queue table in which the queue foo.q1 has been

created to the user bar.

3. Grant update privileges on the queue table in which the queue foo.q1 has been

created to the user bar.

4. If foo.q1 is a multi-consumer queue, grant select on table_name.aq$_q1_s and

table_name.aq$_q1_i to the user bar.

Where table_name is the name of the queue table in which the queue foo exists.

Using Different AQ Identities for AQ Operational Access
To perform operational access on queues in schema “foo” when the Database Server

connection is authenticated with a name other than “foo” (assume it is bar and the

queue to be accessed is foo.q1):

1. Grant the role ombuser to the user bar.

2. Grant enqueue and dequeue privileges to bar on the queue foo.q1 using a call to

dbms_aqadm.grant_queue_privelege.

3. Specify bar as the username and the correct password in the call to

javax.jms.createTopicConnection or javax.jms.createQueueConnection.

4. Grant select privileges on the queue table in which the queuefoo.q1 has been

created to the user bar.

5. Grant update privileges on the queue table in which the queue foo.q1 has been

created to the user bar.
7-12 Administration Guide

Oracle Advanced Queuing Driver
AQ Tuning and Configuration
An administrator should tune the Database Server if an Oracle Message Broker is

performing a large number of administrative operations. However, metrics are not

provided to measure the waiting time for AQ related administrative operations. An

Oracle Message Broker that performs a large number of administrative operations is

likely to generate a large number of DBMS deadlocks since creating and destroying

subscriptions requires exclusive locks to resources for which operational access,

enqueues and dequeues, requires shared locks. It is safer to perform administrative

actions offline, when there is no operational access to the queues.

AQ Queue Configuration
Oracle Message Broker administrative utilities create AQ queues and AQ queue

tables. These AQ queues and AQ queue tables have an administrative interface that

is available using PL/SQL with the package dbms_aqadm. This PL/SQL package

can be used to alter the message retention set for a queue, and to alter other AQ

specific table and queue parameters. By default, the use the Oracle Message Broker

sets the following values when it creates AQ queues:

max_retries = 2147483647 (java.lang.Integer.MAX_VALUE)
retry_delay = 0
retention_time = 0

To alter any of these values, use the procedure dbms_aqadm.alter_queue.

AQ Failure Recovery
JMS applications that use the AQ Driver should be able to recover from a Database

Server restart without restarting the Oracle Message Broker. The application does

need to create new JMS sessions after the Database Server restart.

When the Database Server fails, it may need to be restarted. Consult the Oracle8i
Documentation to determine when the Database Server must be restarted.

When an Oracle Message Broker client encounters an unexpected Oracle error, the

client may need create a new JMS session, which will create a new Database Server

connection. The Oracle Message Broker does not have to be restarted when

unexpected Database Server errors occur.
Message Servers and Drivers 7-13

Oracle Advanced Queuing Driver
AQ Driver Restrictions
1. The AQ Driver throws an exception when a message is enqueued to a

multi-consumer queue and there are no consumers registered for that queue.

This means, the Oracle Message Broker throws an exception when messages are

published to a topic that uses an AQ queue and no subscriptions have been

created for that topic.

2. The AQ Driver only supports PERSISTENT JMS delivery mode [JMS 4.7].

3. The AQ Driver, in OCI Mode, only supports JMS text messages when the aq_
adt attribute for the queue or topic is set to the value queriable.

4. JMSProperties are not supported when the aq_adt attribute is set to

queriable .

5. AQ Driver Transaction Limitation:

Using a transacted JMS session, if dequeues are performed on a given topic

using a given subscriber and an unsubscribe operation is then attempted before

the session is committed, or rolled back, then the unsubscribe blocks until the

dequeues are committed or rolled back.

It is recommended that the dequeues that are performed using a given

subscriber be committed, or rolled back, before unsubscribing that subscriber.

Unsubscribe or subscribe should not be attempted when there are uncommitted

sends or receives to the topic.

6. The AQ Driver only supports correlation IDs with less than 129 characters.

When you call javax.jms.Message.setJMSCorrelation() with a value containing

more than 128 characters for the correlation ID, the AQ Driver throws an

exception.

7. The AQ Driver allows durable subscribers to topics. The AQ Driver does not

support non-durable subscribers for topics.

8. If the AQ time manager process is never started, or if it dies, the following may

occur.

Dequeued messages will not be removed from the topic AQ table, even though

the messages have been delivered. This could eventually cause the database to

run out of tablespace.
7-14 Administration Guide

Oracle AQ Lite Driver
Start the AQ time manager by adding aq_tm_processes=1 to the Database

Server initialization file. If the AQ time manager is running, the following

command should return a line showing an active process:

% ps -ef | grep ora_q

9. If an Oracle Message Broker running on a system uses the Oracle8i Database

Server on another system to support Oracle AQ, the NLS_LANG environment

variable should have the same value on both systems, or if the values are

different, they should be compatible values.

If the NLS_LANG environment variable is set on one system, and not set on

another system, receives from topic subscribers from multi-consumer AQ

queues may fail when there are messages available.

10. The JDBC based AQ Driver does not work when the AQ Driver attribute thin_
jdbc is set to true. Do not set thin_jdbc to true when the attribute use_jdbc
is also true.

Oracle AQ Lite Driver
The Oracle Message Broker Advanced Queueing (AQ) Lite Driver provides support

for storing persistent messages to AQ Lite. AQ Lite is Oracle’s Advanced Queuing

product based on Oracle 8i Lite Release 4.0. The AQ Lite driver should not be

confused with the Oracle Message Broker AQ Driver. These two drivers support

substantially different Oracle AQ implementations (see "Oracle Advanced Queuing

Driver" on page 7-3 for information on the AQ Driver.)

The AQ Lite Driver supports installations that do not demand the performance or

scalabiity of the Oracle Message Broker’s full AQ driver. The AQ Lite Driver is

easier to maintain and consumes fewer system resources than the full AQ Driver.

The AQ Lite Driver supports JMS in a smaller configuration, intended for small

scale, or individual use.

Note: The Oracle Message Broker AQ Lite Driver is only

supported on Windows NT and requires JDK 1.2.x.The Oracle AQ

Lite Driver and the AQ Driver, either JDBC or OCI, are mutually

exclusive. Only one of these drivers can be active in a given OMB

Instance at a given time.
Message Servers and Drivers 7-15

Oracle AQ Lite Driver
The AQ Lite Driver runs against one and only one instance of an Oracle Lite

database and there can be only one AQ Lite Driver per OMB Instance.

Connection Management
AQ Lite provides administrative and operational access to its AQ queues using

connections known as Java Access Class (JAC) connections. The AQ Lite Driver

uses JAC connections to communicate with AQ Lite queues as well as the Oracle

Lite database. JAC connections created on a system can only connect to Oracle Lite

database instances on the same system. Therefore, an OMB instance using the AQ

Lite Driver must be co-located with the Oracle Lite database instance assigned to

the AQ Lite Driver.

Using the AQ Lite Driver JAC connections are not pooled. A JAC connection is

created each time a JMS session is created, and the connection is associated with the

JMS Session for the life of the session. A JAC connection is closed when its

corresponding JMS Session is terminated.

Transacted JMS Sessions
The AQ Lite Driver supports both transacted and non-transacted JMS sessions. The

AQ Lite Driver implicitly commits at the end of each operation on an AQ Lite

queue for JAC connections with non transacted JMS Sessions.

Note: The AQ Driver provides better overall performance, higher

concurrency, and offers richer functionality than the AQ Lite

Driver. The AQ Lite Driver implements a subset of the AQ Driver’s

functionality. Refer to "Oracle Advanced Queuing Driver" on

page 7-3 for a description of the AQ Driver.

Note: An Oracle Message Broker using the AQ Lite Driver must

be co-located with the Oracle8i Lite database instance assigned to

the AQ Lite Driver.
7-16 Administration Guide

Oracle Volatile Driver
AQ Lite Message Persistence
The AQ Lite Driver supports only JMS persistent delivery mode. When the Oracle

Message Broker sends a message using the AQ Driver, it sets the header value for

JMSDeliveryMode to the value PERSISTENT.

AQ Lite Message Mapping
AQ Lite only supports message payloads of the type RAW. Thus, the AQ Lite

Driver serializes all JMS messages and stores them as a RAW message payload. The

JMS Message ID, Correlation ID, Expiration, and Priority header fields have similar

analogues in the AQ Lite message header. The AQ Lite Driver maps these JMS

header fields to the AQ Lite message header when it stores a message, and maps the

JMS message. Similarly, when the AQ Lite Driver maps messages from AQ Lite to

JMS, it copies these AQ Lite message header fields to the corresponding JMS

message header fields.

AQ Lite Driver Propagation
The AQ Lite Driver supports message propagation using the Oracle Message Broker

propagation facilities (see Chapter 8, "Oracle Message Broker Propagation" for more

information).

Oracle Volatile Driver
The Oracle Message Broker Volatile Driver supports lightweight and quick delivery

of JMS messages using in-memory communication facilities. The Volatile Driver is

useful when high throughput of messages is required. For example, an application

using current stock price information, where speed is required and persistence is

not required. The Volatile Driver is also useful for communicating in any

application where the messaging system does not require that messages be logged

to stable storage.

The Volatile Driver stores messages using the same process and the same memory

as the active JVM running the Oracle Message Broker.Messages sent using the

Volatile Driver are only as persistent as the process in which the Oracle Message

Broker runs.

Note: The Volatile Driver only supports NON-PERSISTENT JMS

delivery mode [JMS 4.7].
Message Servers and Drivers 7-17

IBM MQSeries Driver
IBM MQSeries Driver
The IBM MQSeries Driver is based on IBM MQSeries V5.1. The MQSeries Driver

supports the features, and has the limitations as described in the section, "Driver

Features Summary" on page 7-2.

In addition, the features shown in Table 7–1, the MQSeries Driver supports the

following:

■ All JMS message types in JMS mode and only the JMS TextMessage and JMS

BytesMessage types in Native mode.

■ Native mode support for interoperability with MQSeries applications

■ Maximum MQSeries message size of 4 MB. The actual size of a JMS Message

body that can be sent using the MQSeries Driver depends on which Driver

mode is used (native or JMS). For either mode, the maximum size is smaller

than 4 MB, although it is not possible to specify the exact maximum message

size, due to differences in the size of the header information that is sent, and

due to other overhead associated with sending messages.

MQSeries Message Mapping
Clients using the MQSeries Driver need to distinguish between messages passing

between JMS clients and native MQSeries applications. This distinction is required

due to limitations in MQSeries, and the fact that JMS requires that JMS messages be

delivered to JMS clients without changes. Also, an existing native MQSeries

application that uses its own message formats needs to be able to exchange

messages with a JMS based application; this implies that a JMS implementation

must be able to pass native message formats. Due to this distinction, an Oracle

Message Broker administrator needs to configure queues that use the MQSeries

Driver to indicate whether the queue is used with a native MQSeries application.

In this section, the terms, native message and native queue are used for messages

exchanged through a queue configured for native MQSeries applications, and the

Note: There is a restriction for the Oracle Message Broker when it

is running in Local Mode. When sending messages using the

Volatile Driver, both the message producer using a volatile

destination and the message consumer for the destination must

reside in the same JVM. Due to this restriction, Remote Mode is

recommended for the Volatile Driver.
7-18 Administration Guide

IBM MQSeries Driver
terms, JMS message and JMS queue refer to messages exchanged through a queue

configured for JMS clients.

Native Queues
For native queues, only the JMS TextMessage and JMS BytesMessage body types are

supported.

Sending a JMS TextMessage to a native queue translates the message into an

MQSeries message with the format MQFMT_STRING; the message buffer contains

the characters of the Java String in the character set currently in use by the

MQSeries queue manager.

The JMS BytesMessage body type can interoperate with a native MQSeries

application that has defined its own message formats. MQSeries data conversion

exits must be supplied for these message formats on the queue manager accessed

by Oracle Message Broker (for more information on data conversion exits, see the

MQSeries Application Programming Guide).

Table 7–4 shows the native message mapping.

Table 7–4 Native Queues Message Header Mapping

JMS Header MQSeries Mapping

JMSMessageID MQSeries messageID field

JMSCorrelationID MQSeries correlationID field

JMSDeliveryMode MQSeries persistence field

JMSExpiration MQSeries expiry field

JMSPriority MQSeries priority field

JMSType For JMS BytesMessage body type, the JMSType header field is mapped to the
MQSeries format field.

MQSeries format field set to MQFMT_STRING for JMS TextMessage messages.
Message Servers and Drivers 7-19

IBM MQSeries Driver
JMS Queues
For JMS queues, messages are serialized and sent as raw bytes and then

deserialized upon receipt.

The MQSeries Driver maps a JMS message header to fields in the MQSeries

message descriptor. Table 7–5 shows the mapping between JMS header fields and

MQSeries header fields.

JMSReplyTo For native messages, the JMSReplyTo field must refer to another MQSeries queue.

If the destination specified in the JMSReplyTo field is configured for this broker:

■ the provider_queue_name for that destination is used to set the MQSeries
replyToQueueName field

■ the replyToQueueManagerName is not set and will be set by the MQSeries
queue manager.

If the JMSReplyTo destination is not configured for this broker:

■ both the replyToQueueName and the replyToQueueManagerName fields are
set from the destination

■ destinations not configured for the broker are created either via createQueue () or
upon receipt of a native message which has the replyToQueueName and
replyToQueueManagerName fields set

■ ReplyTo queues that are not defined locally require the use of the DefXmitQName
feature of MQSeries.

Table 7–5 JMS to MQSeries Message Header Mapping

JMS Header MQSeries Mapping

JMSMessageID MQSeries messageID field

JMSCorrelationID not mapped

JMSDeliveryMode MQSeries persistence field

JMSExpiration MQSeries expiry field

JMSPriority MQSeries priority field

JMSType MQSeries format field set to MQFMT_NONE

JMSReplyTo not mapped

Table 7–4 (Cont.) Native Queues Message Header Mapping

JMS Header MQSeries Mapping
7-20 Administration Guide

IBM MQSeries Driver
Connections to MQSeries Queue Managers
Each JMS session has its own connection to a MQSeries queue manager. The

connection is established when the session is created and closed when the session is

closed.

Transaction Support
 JMS transacted sessions are supported using the native MQSeries transaction

support.

Multiple Queue Manager Support
Currently, the MQSeries Driver supports connections to only one MQSeries queue

manager.

MQSeries Driver Configuration
Configuring the Oracle Message Broker with the MQSeries Driver involves

performing both MQSeries queue administration using the native MQSeries

administrative tools and Oracle Message Broker administration using the Oracle

Message Broker administrative tools.

Administrators use the MQSeries administrative tools to perform all MQSeries

administrative tasks, such as creating queues in an MQSeries queue manager. For

details on using the MQSeries administration tools, refer to:

http://www.software.ibm.com/ts/mqseries/library/manuals/

The administrator also has to use the Oracle Message Broker administrative tools to

configure the Oracle Message Broker to use MQSeries. See "Oracle Message Broker

Configuration" on page 4-12 for more information.

Message Persistence
The MQSeries Driver supports both the JMS non persistent delivery mode and

persistent delivery mode. When the Oracle Message Broker sends a message using

Note: Setup and configuration of MQSeries queues is solely the

MQSeries administrator’s task. Oracle Message Broker does not

provide utilities for MQSeries administration.
Message Servers and Drivers 7-21

Oracle Multicast Driver
the MQSeries Driver, the default value for the JMSDeliveryMode header is set to

PERSISTENT.

MQSeries Driver Limitations
1. The MQSeries driver supports only the JMS point-to-point (PTP) model.

2. The Oracle Message Broker MQSeries Driver only supports connections to one

MQSeries Queue Manager.

3. The Oracle Message Broker must be executing on the same system as the

MQSeries queue manager.

4. The maximum MQSeries message size is 4 MB. For JMS mode, this implies that

the entire JMS message in its serialized form must be less than 4 MB. In native

mode, it is just the message body that is limited to 4 MB.

5. Use the native MQSeries administrative tools for all MQSeries administration.

Use the Oracle Message Broker administrative utilities to define queues in the

directory that are accessed using the MQSeries Driver.

6. The MQSeries Driver does not support the programmatic creation and deletion

of queues.

Oracle Multicast Driver
The Oracle Message Broker Multicast Driver supports lightweight and quick

delivery of JMS messages using multicast communication facilities. The Multicast

Driver is based on the Oracle Application Server Multicast Communication

libraries.

The Oracle Application Server Multicast communication protocol gathers processes

into logical groups, and issues messages to these groups using an efficient, reliable

communication protocol. The Oracle Multicast Protocol uses hardware multicast

facilities and is scalable to any number of recipients within a Local Area Network

(LAN). The Multicast Driver supports delivery of JMS messages using the Oracle

Multicast Protocol.

You can set up a JMS Publish/Subscribe domain using Oracle Message Broker by

distributing providers across participating sites within the domain. In this set up, an

individual provider does not represent a performance bottleneck or a single point of

failure for the domain. On a domain using the Oracle Message Broker and the

Multicast Driver, when an individual provider is unavailable, all the remaining

providers are able to publish, and subscribe to topics.
7-22 Administration Guide

Oracle Multicast Driver
Understanding Multicast Driver Operation
Before using Oracle Message Broker with the Oracle Multicast Driver, it is

important to understand the driver’s functional behavior. Improper usage can

result in unexpected system behavior and poor performance.

Oracle Message Broker's multicast facilities define the notion of group. A group is a

virtual entity that gathers processes together. A group is defined by an IP multicast

address and a port number, and contains:

■ All Oracle Message Broker instances in a LAN that use the Oracle Multicast

Driver with the same IP multicast address and port number.

■ All the instances of the mcastsrv program in a LAN that also use the same IP

multicast address and port number. Refer to "Starting and Stopping the

Multicast Bootstrap Server" on page 7-25 for more information on mcastsrv .

The group membership is defined as the set of processes that are part of the group.

The group membership changes dynamically, with processes being started,

terminated, or failing. There are two important rules:

■ At least one instance of the mcastsrv program must be running prior to

starting any Oracle Message Broker instance that uses the Multicast Driver.

■ At any point in time, when the group membership changes, the new

membership of the group must contain a majority of processes of the previous

membership.

The second rule means that only a strict minority of processes can be terminated or

fail at the same time. At the same time means before a new membership is recorded,

which is typically in the order of 1 second for a failure. This implies that, when

there are only two processes in the group, a mcastsrv program and a single Oracle

Message Broker, the failure of one of these prevents the other from functioning

properly. To protect against this situation, you should start more than one instance

of the mcastsrv program.

Distributed Topics
The Multicast Driver maps JMS topics to Oracle Multicast communication groups.

These groups support distributed topics and permit simultaneous message

communication to many destinations; the JMS client publishing a message does not

know the identity, location, or number of these destinations. When the Oracle

Message Broker sends messages using the Multicast Driver, communication of the

messages occurs without relying on a single, centralized component.
Message Servers and Drivers 7-23

Oracle Multicast Driver
The Multicast Driver manages the distribution of information across remote Oracle

Message Brokers. The Multicast Driver does not store messages in a centralized

location, each message is distributed to subscribers as it is published. Multiple

instances of the Oracle Message Broker using the Multicast Driver are distributed

on all participating sites. The multiple instances of the Multicast Driver

communicate to manage the production and consumption of messages in an

efficient, and reliable manner.

Messages
The Multicast Driver transmits JMS messages and does not interpret them. When a

JMS client consumes a message using the Multicast Driver, the message is expected

to have been produced by another JMS client using the Multicast Driver.

Message Persistence
The Multicast Driver only supports the non persistent delivery mode. When the

Oracle Message Broker sends a message using the Multicast Driver, the

JMSDeliveryMode header field is expected to have the value NON_PERSISTENT.

Multicast Server Configuration
This section covers information an administrator needs to know to configure the

Oracle Message Broker’s Multicast Driver environment.

Setting Multicast Server Options
To use the Multicast Driver, an administrator needs to configure the IP multicast

address and port number pair. Set these values using the Oracle Message Broker

administrative tools. If multiple Oracle Message Brokers using the Multicast Driver

are set up as a single domain, they need to use the same IP multicast address and

port number pair. When an Oracle Message Broker starts, it prints the IP multicast

address and port number in the Oracle Message Broker log file.

Warning: Results are unpredictable if an application other than

another Oracle Message Broker uses the same IP multicast address

and port number pair.
7-24 Administration Guide

Oracle Multicast Driver
Starting and Stopping the Multicast Bootstrap Server
To initialize a domain with the Oracle Message Broker using the Multicast Driver,

an Oracle Multicast bootstrap server, the mcastsrv program, needs to be running.

The bootstrap server is only required while there are fewer than two Oracle

Message Brokers using the Multicast Driver. After two Oracle Message Brokers are

running, the bootstrap server can fail without affecting the ability of additional

brokers to start up, or the distribution of messages in the domain. This section

shows the command to start the bootstrap server.

A network of Oracle Message Brokers using the Multicast Driver requires one

instance of a bootstrap server for initialization. The bootstrap server needs to use

the same IP multicast address and port number pair as the group of Oracle Message

Brokers using the Multicast Driver.

Start the Oracle Multicast bootstrap server using the command:

% mcastsrv ip-address port-number [network]

Where ip-address and port-number specify the address and port used for

multicast communication. The network parameter can be used to specify a IP

address if the system has more than one network card (more than one IP address).

When the bootstrap server starts, it prints its IP multicast address and port number

to the console.

The mcastsrv program shuts down automatically once all the Oracle Message

Broker instances that use the Oracle Multicast Driver with the same IP address and

port number as the mcastsrv program, have been stopped.

MultiCast Driver Performance
The Oracle Multicast Driver implements only minimal flow control; it is the

application’s responsibility to avoid saturating the network with messages. If an

application sends messages as fast as possible, the Oracle Message Broker may fail

because it runs out of memory (the Oracle Message Broker keeps a copy of the

messages it sends until it is sure that they have been received by all consumers).

When an application tries to send too many messages using the Oracle Multicast

Driver, the underlying communication mechanism may be unable to free its buffers.

A throughput of up to 300 messages per second is a possible maximum, depending

on the characteristics of the network and depending on the systems running the

Oracle Multicast Drivers. This throughout is calculated as the sum of the individual

throughputs of all publishers using a single OMB instance. However, there is no
Message Servers and Drivers 7-25

TIB/Rendezvous Driver
specific maximum, the throughput limit depends both on the speed of the

consumers and the load on the network.

MultiCast Driver Limitations
1. The Multicast Driver supports only the JMS publish/subscribe model.

2. The Multicast Driver only supports NON-PERSISTENT JMS delivery mode

[JMS 4.7].

3. The Multicast Driver does not support transacted sessions [JMS 4.4.7].

4. The maximum length for a topic name is 120 characters. Using the Oracle

Message Broker administrative utilities, limit topic names to less than 120

characters.

5. If a JMS Client performs a very large number of publishes with no delay

between each publish, or is running on a highly loaded system, errors may

result. The workaround for this is to delay between each publish. As an

indication of this problem, the following JMSException is written to the omblog

file: driver state is invalid.

6. Using the Multicast Driver on a highly loaded system, it is possible that the

driver will be deactivated. In this case, any subsequent invocation of the

Multicast Driver driver generates an invalid driver exception. All other drivers

in the Oracle Message Broker process are fully functional. In this case, to use the

Multicast Driver again, the Oracle Message Broker must be restarted. When

running in local mode, the JMS client that instantiated the Oracle Message

Broker needs to be restarted.

TIB/Rendezvous Driver
The TIB/Rendezvous(tm) (TIBCO) Driver is based on TIB/Rendezvous Release

5.x or TIB/Rendezvous Pro Release 5.x (when using the JDK 1.2 version of Oracle

Message Broker, TIB/Rendezvous Pro Release 5.x is required). The TIBCO Driver

provides lightweight and quick delivery of transient messages based on multicast

communication facilities.

TIB/Rendezvous is a Message Oriented Middleware (MOM) product based on the

Publish/Subscribe model. Applications on heterogeneous platforms communicate

by exchanging data on specific subjects. An application can listen to one or more

subjects using TIBCO's subject-based addressing technology. TIB/Rendezvous

provides lightweight reliable broadcast communication facilities that scale across
7-26 Administration Guide

TIB/Rendezvous Driver
multiple LANs. The TIBCO Driver allows the Oracle Message Broker to distribute

JMS messages using TIB/Rendezvous.

An administrator can set up a JMS Publish/Subscribe domain using the Oracle

Message Broker (provider) and the TIBCO Driver by distributing providers across

participating sites within the domain. In this set up, an individual provider does not

represent a performance bottleneck or a single point of failure for the domain. On a

domain using the Oracle Message Broker and the TIBCO Driver, when an

individual provider is unavailable, all the remaining providers are able to publish,

and subscribe to topics.

Distributed Topics
The TIBCO Driver maps JMS topics to TIB/Rendezvous subjects. TIB/Rendezvous

subjects support distributed topics and permit simultaneous communication of

messages to several destinations; the JMS client publishing a message does not

know the identity, location, or number of these destinations. Communication occurs

without relying on a single, centralized component.

Messages
By default, the TIBCO Driver transmits JMS messages and does not interpret them.

Messages received by a JMS client using the TIBCO Driver are expected to be

produced by another JMS client using the TIBCO Driver. Optionally, the TIBCO

Driver supports message mapping for converting JMS format messages to native

TIB/Rendezvous format (refer to "TIB/Rendezvous Message Mapping" on

page 7-27).

Message Persistence
The TIBCO Driver only supports the JMS non persistent delivery mode. When the

Oracle Message Broker sends a message using the TIBCO Driver, the

JMSDeliveryMode header field is expected to have the value NON_PERSISTENT.

TIB/Rendezvous Message Mapping
The Oracle Message Broker Administrator supports a configuration where the

TIBCO Driver converts JMS messages to native TIB/Rendezvous format. When the

TIBCO Driver sends messages in native format, it maps JMS messages to structured

self-describing TIB/Rendezvous messages. The TIBCO Driver performs this

conversion for all JMS message types, including: TextMessage, BytesMessage,

MapMessage, StreamMessage, and ObjectMessage. The native mapping option
Message Servers and Drivers 7-27

TIB/Rendezvous Driver
affects only topic publishers; topic subscribers can read both standard JMS and

TIBCO Driver generated messages.

TIB/Rendezvous messages have a self-describing format composed of name/value

pairs. A value is a basic type or another message. All the basic types valid in JMS

messages have a corresponding type in the generated TIB/Rendezvous message,

except the Java char type that is converted into a string containing a single

character. Since native TIB/Rendezvous applications do not use this type, this

limitation applies only when using the TIBCO Driver with the native mapping

enabled to communicate messages between two JMS applications.

With the native mapping option enabled, the TIBCO Driver translates JMS header

fields into a name/value pair with the name mapped to the header field name.

Table 7–6 shows the native mapping for the JMS message header.

The TIBCO Driver translates JMS properties into an equivalent TIB/Rendezvous

name/value pair stored in a nested message named Properties . Table 7–7 shows

the native mapping for JMS properties.

Table 7–6 TIBCO Driver Native Header Mapping

JMS Message Header TIB/Rendezvous Native Message

JMSDestination: Destination ("JMSDestination", String)

JMSDeliveryMode: int ("JMSDeliveryMode", int)

JMSExpiration: long ("JMSException", long)

JMSPriority: int ("JMSPriority", int)

JMSMessageID: String ("JMSMessageID", String)

JMSTimestamp: long ("JMSTimestamp", long)

JMSCorrelationID: String ("JMSCorrelationID", String)

JMSReplyTo: Destination ("JMSReplyTo", String)

JMSType: String ("JMSType", String)

JMSRedelivered: boolean ("JMSRedelivered", boolean)
7-28 Administration Guide

TIB/Rendezvous Driver
The body of a JMS message is stored in a name/value pair named Body. The

message has different values depending on the message type. A JMS message body

is translated to include the message content, and an additional field, named

BodyType that describes the type of the data in the body (Text , Bytes , Map,

Stream , or Object). Table 7–8 shows the different mappings for the message body.

Table 7–9 shows the translation values for a TextMessage. Table 7–10 shows the

translation values for a BytesMessage. Table 7–11 shows the translation values for a

MapMessage. Table 7–12 shows the translation values for a StreamMessage.

Table 7–13 shows the translation values for the ObjectMessage type.

Table 7–7 TIBCO Driver Native Properties Mapping

JMS Message Properties TIB/Rendezvous Native Message

("Properties", RvMsg)

("Name1", type1) ("Name1", type1)

("Name2", type2) ("Name2", type2)

("Namen", type n) ("Namen", type n)

Table 7–8 JMS Message Body Translation for Native TIB/Rendezvous

JMS Message Type Translation

TextMessage String

BytesMessage An opaque array of bytes

ObjectMessage An opaque array of bytes

MapMessage A nested TIB/Rendezvous message

StreamMessage A nested TIB/Rendezvous message

Table 7–9 TextMessage TIBCO Driver Native Body Mapping

JMS Message Body TIB/Rendezvous Native Message

 ("BodyType", "Text")

String ("Body", String)
Message Servers and Drivers 7-29

TIB/Rendezvous Driver
Table 7–10 BytesMessage TIBCO Driver Native Body Mapping

JMS Message Body TIB/Rendezvous Native Message

("BodyType", "Bytes")

byte[] ("Body", RvOpaque)

Table 7–11 MapMessage TIBCO Driver Native Body Mapping

JMS Message Body TIB/Rendezvous Native Message

("BodyType", "Map")

("Body", RvMsg)

("Name1", type1) ("Name1", type1)

("Name2", type2) ("Name2", type2)

("Namen", type n) ("Namen", type n)

Table 7–12 StreamMessage TIBCO Driver Native Body Mapping

JMS Message Body TIB/Rendezvous Native Message

("BodyType", "Stream")

("Body", RvMsg)

type1 ("1", type1)

type2 ("2", type2)

type n ("n", type n)

Table 7–13 ObjectMessage TIBCO Driver Native Body Mapping

JMS Message Body TIB/Rendezvous Native Message

("BodyType","Object")

Object ("Body", RvOpaque)
7-30 Administration Guide

TIB/Rendezvous Driver
Sessions
The number of TIB/Rendezvous sessions is limited by the maxPrivateConnections

attribute of the ServerEntry. A TIB/Rendezvous session is created for each JMS

session that has at least one producer or one consumer, and for each durable

subscriber.

TIB/Rendezvous Installation and Administration
To use the Oracle Message Broker with the TIBCO Driver an administrator needs to

install and configure TIB/Rendezvous Release 5.x or TIB/Rendezvous Pro Release

5.x. For information on TIB/Rendezvous installation and administration refer to the

TIB/Rendezvous Administrator’s Guide. For more information on TIB/Rendezvous see

the following web site, http://www.rv.tibco.com/

TIB/Rendezvous Driver Limitations
1. The TIB


/Rendezvous™

 (TIBCO) Driver supports only the JMS

publish/subscribe model.

2. The TIBCO Driver only supports NON-PERSISTENT JMS delivery mode [JMS
4.7].

3. The TIBCO Driver does not support transacted sessions [JMS 4.4.7].

4. The TIBCO Driver uses the max_private_sessions attribute to limit the

number of sessions connected to the Rendezvous daemon. A session is created

when a JMS session is created, and when a new durable subscriber is created.

Therefore, creating a durable subscriber may cause an exception to be thrown

because the Oracle Message Broker creates a Rendezvous session for the

subscriber, even though it already maintains a valid JMS session. If an exception

is thrown in this case, increase the value for the max_private_sessions
attribute to increase the limit on the number of sessions connected to the

Rendezvous daemon.

5. Using the JDK 1.2 version of Oracle Message Broker, TIB/Rendezvous Pro

Release 5.x is required.

Note: Setup and configuration of TIB/Rendezvous is solely the

TIB/Rendezvous administrators task. Oracle Message Broker does

not provide utilities for TIB/Rendezvous administration.
Message Servers and Drivers 7-31

TIB/Rendezvous Driver
7-32 Administration Guide

Oracle Message Broker Propag
8

Oracle Message Broker Propagation

This chapter describes the Oracle Message Broker propagation manager. The Oracle

Message Broker uses a propagation manager to transfer messages between JMS

destinations, either within a single Oracle Message Broker, or on different Oracle

Message Brokers running in a distributed environment. The propagation manager

supports propagation between Oracle Message Brokers using either the IIOP

protocol or the HTTP protocol.

This chapter covers the following:

■ Overview of Oracle Message Broker Propagation

■ Propagation Transport Protocols

■ Administration and Configuration

■ Propagation Security

■ Propagation Control

■ Propagation Limitations
ation 8-1

Overview of Oracle Message Broker Propagation
Overview of Oracle Message Broker Propagation
In order to transfer messages from one JMS destination to another JMS destination,

an entry for a propagation job needs to be created in the Oracle Message Broker

administrative LDAP Directory. A propagation job defines a propagation source, a

propagation target, and a propagation transport protocol. The Oracle Message

Broker that dequeues messages from the source destination is the sending broker,
while the Oracle Message Broker that enqueues messages into the target destination

is the receiving broker. The sending broker and receiving broker for a propagation

job can be the same broker if the source destination and the target destination of the

propagation job are managed by the same Oracle Message Broker.

When a propagation job is activated, the sending broker works with the receiving

broker to move messages from the source destination to the target destination. If

both the source destination and the target destination are persistent, messages are

guaranteed to be delivered from the source to the target reliably (in order, with no

loss, and no duplicates). If either the source or the target of a propagation job is

non-persistent, the sending broker and receiving broker make every effort to deliver

messages reliably. However, non-persistent messages may be lost in the case of

failures of either the sending or the receiving broker, or any of the underlying

messaging systems.

This section covers the following:

■ Types of Propagation

■ Propagation with Message Selectors

Types of Propagation
Oracle Message Broker message propagation can be used for the following

purposes:

■ Message Distribution – to transfer messages across sites.

■ Message Server Conversion – to convert messages between message servers

(different message servers use different Oracle Message Broker drivers).

■ Domain Conversion – to convert messages between different JMS message

domains (queue to topic or topic to queue).

Note: The propagation feature is only available when running the

Oracle Message Broker in Remote Mode.
8-2 Administration Guide

Overview of Oracle Message Broker Propagation
To perform one of these types of propagation, the Oracle Message Broker

administrator configures a propagation job. The characteristics of the source and the

target destinations determines the type of propagation that is performed, either:

message distribution, message server conversion, or domain conversion.

Message Distribution
Using message distribution propagation, the Oracle Message Broker uses its

propagation feature to transfer messages between destinations. To use this type of

propagation, the administrator configures a propagation job and specifies the

source queue (or topic) and the target queue (or topic).

For example, Figure 8–1 shows message distribution for Volatile Queue Q1 on site

A, to Volatile Queue Q2 on site B.

Figure 8–1 Sample Message Distribution with Propagation
Oracle Message Broker Propagation 8-3

Overview of Oracle Message Broker Propagation
Message Server Conversion
Using message server conversion, the Oracle Message Broker transfers messages

between different supported message servers. The Oracle Message Broker supports

message servers using the available Oracle Message Broker drivers (for more

information see Chapter 7, "Message Servers and Drivers").

The propagation manager supports message server conversion between the

following drivers: Oracle Advanced Queuing (AQ) Driver, IBM MQSeries Driver,

Oracle Volatile Driver, Oracle Multicast Driver, and the TIBCO/Rendezvous Driver.

Figure 8–2 shows message server conversion from AQ Queue Q1 on Site A to MQ

Series Queue Q2 on Site B.

Figure 8–2 Sample Propagation Message Server Conversion

Domain Conversion
The domain conversion feature uses the Oracle Message Broker to transfer

messages between supported JMS messaging domains. Domain conversion allows

the Oracle Message Broker to send messages from a JMS queue to a JMS topic, or

from a JMS topic to a JMS queue (in either direction).

For example, Figure 8–3 shows message propagation from AQ topic T1 to AQ

queue Q1.
8-4 Administration Guide

Overview of Oracle Message Broker Propagation
Figure 8–3 Sample Propagation Domain Conversion

Propagation with Message Selectors
Some applications in a distributed environment require messages to be distributed

among messaging systems based on message properties. Oracle Message Broker

propagation supports this feature by allowing the administrator to associate a

message selector with a propagation job. Using this feature, only the messages that

satisfy the message selector are propagated from the source to the target.

A message selector for a propagation job must be defined as a valid JMS message

selector (for more information on the valid message selector format, see "Message

Selector Format" on page 5-4). Refer to "Propagation Job Configuration" on

page 8-16 for more information on specifying propagation job message selectors.

Figure 8–4 shows an example of this type of propagation, where the messages in the

queue, q_color on broker-1, are distributed to many destinations on other Oracle

Message Brokers (queue q_red on broker-2, queue q_green on broker-3 and queue

q_red_blue on broker-4). Messages are selected for distribution based on message

Note: Message selectors can be specified only for a propagation

job whose source is a topic. Message selectors are not supported

when the propagation source is a queue.
Oracle Message Broker Propagation 8-5

Overview of Oracle Message Broker Propagation
properties using selectors. For example, the colors red, blue, and green, stored in a

JMS properties could be selected for propagation to the specified color queues on

the target Oracle Message Brokers.

By accessing the queue q_red, an application on broker-2 receives all and only the

“red” messages that were propagated from the queue q-color on broker 1.

To distribute messages as shown in Figure 8–4, the source q_color must be a topic,

and three propagation jobs need to have the color message selectors defined, as

shown in the figure.

Figure 8–4 One-to-many Propagation using Message Selectors
8-6 Administration Guide

Propagation Transport Protocols
Propagation Transport Protocols
The Oracle Message Broker propagation manager allows propagation between

queues and topics using two transport protocols:

■ IIOP Propagation – messages are propagated between the sending broker and

the receiving broker using the IIOP protocol.

■ HTTP Propagation – messages are propagated between the sending broker and

the receiving broker using the HTTP protocol.

IIOP Propagation
Using IIOP propagation, messages are propagated between the sending broker and

the receiving broker using the CORBA IIOP protocol. This is the default transport

protocol.

Local Propagation
When the propagation manager finds a single broker is used as both the sending

broker and the receiving broker, the propagation manager uses local procedure calls

rather than IIOP.

HTTP Propagation
The Oracle Message Broker HTTP propagation manager supports two types of

HTTP propagation:

■ Direct HTTP Propagation

■ Servlet Based Propagation

This section describes the two HTTP propagation types.

Direct HTTP Propagation
Oracle Message Broker can be configured to use Oracle Message Broker’s built-in

HTTP listeners. If a sending broker can directly access the HTTP built-in listeners

on a receiving broker and create HTTP connections, direct HTTP propagation can

be setup between the sending broker and the receiving broker (see Figure 8–5).

Compared with servlet based propagation, direct HTTP propagation is easier to

setup and usually has better performance characteristics.
Oracle Message Broker Propagation 8-7

Propagation Transport Protocols
Figure 8–5 HTTP Direct Propagation

Servlet Based Propagation
A built-in HTTP listener running in the receiving broker behind a firewall may not

be directly accessible to a sending broker outside the firewall. Some organizations

require, for security reasons, that all HTTP traffic pass through centralized web

servers. In this case, an Oracle Message Broker HTTP propagation servlet needs to

be deployed on the web server to forward messages from the web server to the

receiving broker (See Figure 8–6). Using servlet based propagation, Oracle Message

Broker propagation jobs that send messages to the receiving broker are configured

as though the messages are sent to the servlet. The HTTP propagation servlet then

transfers the messages to the receiving broker.

An HTTP propagation servlet communicates with one and only one Oracle Message

Broker built-in HTTP listener of a receiving broker. If there are more than one

receiving brokers behind the same firewall, multiple propagation servlets must be

configured (each using a different virtual path).

The configuration parameters of the HTTP propagation servlet include a host name,

the HTTP listener port number, SSL level, and wallet information for the associated

receiving broker (for more information, see "HTTP Propagation Servlet

Configuration" on page 8-21.)
8-8 Administration Guide

Administration and Configuration
Figure 8–6 HTTP Propagation Using a Servlet

Administration and Configuration
Propagation configuration tasks differ depending on whether the administrator is

configuring the sending broker or the receiving broker (a broker may be both a

sending broker and a receiving broker). To set up and configure the Oracle Message

Broker for propagation and to create propagation jobs, the Oracle Message Broker

administrator needs to perform one or more of the following tasks:

■ Sending Broker Configuration

■ Receiving Broker Configuration

■ Propagation Job Configuration

■ HTTP Propagation Servlet Configuration

Note: Some details of propagation configuration are different for

the HTTP and IIOP protocols. This section covers details specific to

both of the supported protocols: IIOP or HTTP.
Oracle Message Broker Propagation 8-9

Administration and Configuration
Sending Broker Configuration
Configuring and setting up a sending broker for propagation includes the following

tasks:

■ Configuring the Message Broker Entry (for the Sender)

■ Configuring Persistent Message Servers and Drivers

■ Configuring Remote Directories (for IIOP Propagation Only)

■ Configuring Remote HTTP Listeners (for HTTP Propagation Only)

Configuring the Message Broker Entry (for the Sender)
To configure the msg_broker entry for propagation on the sending broker, use the

Oracle Message Broker administrative utilities. Table 4–8 shows the msg_broker
entry attributes, including the sending broker related attributes:

■ propagation_send_threads

■ propagation_http_handlers

Setting Propagation Send Threads By default, the propagation_send_threads
attribute is set to one (1). The administrator can change the default value to tune the

Oracle Message Broker to handle propagation more efficiently, based on the

available resources and on the desired number of concurrent active propagation

jobs.

Setting Propagation HTTP Handlers (for HTTP Propagation only) When an Oracle Message

Broker participates in HTTP propagation as a sending broker, the administrator

needs to configure the propagation_http_handlers attribute (see Table 4–8).

This specifies the number of HTTP propagation handler threads that are used to

process acknowledgments and flow control requests from receiving brokers.

Do not use the administration utilities to modify the propagation_http_
handlers attribute when the Oracle Message Broker is active (this is a msg_
broker entry attribute). If attempted, the updated value is added to the directory,

but the existing, old value is used until the Oracle Message Broker is restarted.

Note: The administrator only needs to perform this step once, no

matter how many propagation jobs are created.
8-10 Administration Guide

Administration and Configuration
Configuring Persistent Message Servers and Drivers
If a broker is expected to process propagation jobs that use persistent destinations as

source, the associated persistent message server needs to be configured to support

propagation. The message servers that support persistent messages are:

■ Oracle AQ Driver

■ IBM MQSeries Driver

Using persistent queues or topics with propagation, the administrator needs to

perform the following actions to setup the message server and the driver:

1. Create Propagation Logging Queue For Sending

2. Configure Message Server Logging Queue Attribute

3. Configure Driver Propagation Send Sessions Attribute

Create Propagation Logging Queue For Sending The propagation manager uses the

propagation logging queue to log the state of propagation jobs. The propagation

manager uses logging information for propagation job recovery in case of failure.

This propagation configuration step requires the following actions:

a. For MQSeries or Oracle AQ, create the sending log queue entry. The

sending log queue entry is created like any other queue using the Oracle

Message Broker administration utilities. For AQ queues, this step should

also create the native AQ queue.

b. For MQSeries, use the native MQSeries administration tools to create the

native queue.

The sending log queue and the receiving log queue can be the same. Using separate

queues for the logging queues should provide better performance.

Note: If the propagation job involves a non-persistent queue or

topic, the message server entry does not need to be modified to

support propagation. This includes the Oracle Volatile Driver, the

Oracle Multicast Driver, and the TIBCO Driver.

Note: The administrator only needs to perform the steps in this

section for propagation jobs with a destination using the Oracle AQ

Driver or the IBM MQSeries Driver.
Oracle Message Broker Propagation 8-11

Administration and Configuration
For propagation with an AQ source, the associated sending log queue must be

configured using the following specification for the aq_adt attribute.

■ OCI Mode: When the AQ Driver is configured in OCI Mode, the logging queue

must set the aq_adt to the type raw. See Table 4–17 and Table 4–18 for

information on the aq_adt attribute.

■ JDBC Mode: When the AQ Driver is configured in JDBC Mode, the logging

queue must set the aq_adt to the type stream. See Table 4–17 and Table 4–18

for information on the aq_adt attribute.

Configure Message Server Logging Queue Attribute After creating the required sending

log queue, set the prop_send_log_queue in the message server entry to the DN

of the sending log queue.

Configure Driver Propagation Send Sessions Attribute For the driver associated with the

propagation source destination, set the driver’s propagation_send_sessions
attribute to the desired number of sessions on the driver. This value determines the

degree of concurrency for the propagation sending process. When setting this value,

note the following restriction:

propagation_recv_sessions + propagation_send_sessions < max_private_sessions

Configuring Remote Directories (for IIOP Propagation Only)
A Remote Directories entry represents a foreign, or remote, LDAP Server. A remote

directory entry provides information about how to access a remote LDAP Server to

resolve a propagation target DN in the propagation job entry.

A remote directories entry only needs to be specified when an Oracle Message

Broker is involved in IIOP propagation as a sender. See Table 4–19 for a description

of the Remote Directories entry attributes.

Note: You only need to set both of the prop_send_log_queue
and the prop_recv_log_queue attributes only if the server is

used for both the sending and receiving.
8-12 Administration Guide

Administration and Configuration
Configuring Remote HTTP Listeners (for HTTP Propagation Only)
A Remote HTTP Listener entry represents a foreign, or remote, Oracle Message

Broker built-in HTTP listener, or a propagation servlet.

A Remote HTTP Listener entry only needs to be specified when an Oracle Message

Broker is involved in HTTP propagation as a sender. See Table 4–20 for a

description of the remote HTTP listener entry attributes.

Receiving Broker Configuration
Configuring and setting up a receiving broker for propagation includes the

following tasks:

■ Configuring the Message Broker Entry (for the Receiver)

■ Configuring Persistent Message Servers and Drivers

■ Configuring the HTTP Listener (for HTTP Propagation Only)

Configuring the Message Broker Entry (for the Receiver)
To configure the msg_broker entry for propagation on the receiving broker, use

the Oracle Message Broker administrative utilities. Table 4–8 shows the msg_
broker entry attributes, including the receiving broker related attributes:

■ propagation_recv_threads

■ propagation_http_handlers

Setting Propagation Receive Threads By default, the propagation_recv_threads
attribute is set to one (1). The administrator can change the default value to tune the

Oracle Message Broker to handle propagation more efficiently, based on the

available resources and on the desired number of concurrent active propagation

jobs.

Note: The attributes remote_wallet_location and remote_wallet_

password specify a “local” wallet information on the sending site

Note: The administrator only needs to perform this step once, no

matter how many propagation jobs are created.
Oracle Message Broker Propagation 8-13

Administration and Configuration
Setting Propagation HTTP Handlers (for HTTP Propagation only) When an Oracle Message

Broker participates in HTTP propagation as a receiving broker, the administrator

needs to configure the propagation_http_handlers attribute (see Table 4–8).

This specifies the number of HTTP propagation handler threads that are used to

process propagation requests from sending brokers.

Do not use the administration utilities to modify the propagation_http_
handlers attribute when the Oracle Message Broker is active (this is a msg_
broker entry attribute). If attempted, the updated value is added to the directory,

but the existing, old value is used until the Oracle Message Broker is restarted.

Configuring Persistent Message Servers and Drivers
If a broker is expected to process propagation jobs that use persistent destinations as

targets, the associated persistent message server needs to be configured to support

propagation. The message servers that support persistent messages are:

■ Oracle AQ Driver

■ IBM MQSeries Driver

Using persistent queues or topics with propagation, the administrator needs to

perform the following actions to setup the message server, and the driver:

1. Create Propagation Logging Queue for Receiving

2. Configure Message Server Logging Queue Attribute

3. Configure Driver Propagation Receive Sessions Attribute

Note: If the propagation job involves a non-persistent queue or

topic, the message server entry does not need to be modified to

support propagation. This includes the Oracle Volatile Driver, the

Oracle Multicast Driver, and the TIBCO Driver.

Note: The administrator only needs to perform the steps in this

section for propagation jobs with a destination using the Oracle AQ

Driver, or the IBM MQSeries Driver.
8-14 Administration Guide

Administration and Configuration
Create Propagation Logging Queue for Receiving The propagation manager uses the

propagation logging queue to log the state of propagation jobs. The propagation

manager uses logging information for propagation job recovery in case of failure.

This propagation configuration step requires the following actions:

a. For MQSeries or Oracle AQ, create the receiving log queue entry. The

receiving log queue entry is created like any other queue using the Oracle

Message Broker administration utilities. For AQ queues, this step should

also create the native AQ queue.

b. For an MQSeries queue, use the native MQSeries administration tools to

create the queue manager.

The sending log queue and the receiving log queue can be the same. Using separate

queues for the logging queues should provide better performance.

For propagation with an AQ target, the associated receiving log queue must be

configured using the following specification for the aq_adt attribute.

■ ACI Mode: When the AQ Driver is configured in OCI Mode, the logging queue

for the associated source or target must set the aq_adt to the type raw. See

Table 4–17 and Table 4–18 for information on the aq_adt attribute.

■ JDBC Mode: When the AQ Driver is configured in JDBC Mode, the logging

queue for the associated source or target must set the aq_adt to the type

stream. See Table 4–17 and Table 4–18 for information on the aq_adt attribute.

Configure Message Server Logging Queue Attribute After creating the required receiving

log queue, set the prop_receive_log_queue in the message server entry to the

DN of the receiving log queue.

Configure Driver Propagation Receive Sessions Attribute For the driver associated with

the propagation target destination, set the driver’s propagation_recv_
sessions attribute to the desired number of sessions on the driver. This value

determines the degree of concurrency for the propagation receiving process. When

setting this value, keep the following restriction in mind:

propagation_recv_sessions + propagation_send_sessions < max_private_sessions + 4

Note: You only need to set both of the prop_send_log_queue
and the prop_recv_log_queue attributes only if the server is

used for both the sending and receiving.
Oracle Message Broker Propagation 8-15

Administration and Configuration
Configuring the HTTP Listener (for HTTP Propagation Only)
For a receiving broker participating in HTTP propagation, HTTP listeners must be

configured by creating prop_http entries. A receiving broker can have multiple

HTTP listeners listening on different ports. After creating a prop_http entry, set its

attributes. Refer to Table 4–15 for details on the attributes.

Propagation Job Configuration
The propagation job entry specifies configuration information for the propagation

job, such as the source, the target, and the transport protocol. The propagation job

entry must be created in the same OMB Instance as its source. This section provides

further information on the propagation job attributes shown in Table 4–21.

This section describes the following propagation job attributes:

■ Propagation Source

■ Propagation Target

■ Remote DN

■ Propagation Message Selector

■ Activation State

■ Propagation Username

■ Propagation Password

■ Propagation Timeout

■ Create Timestamp

■ Valid Status

Note: The HTTP Listener entry only needs to be created and

configured on the receiving broker.

Note: A propagation job entry is only defined on the sending side.
8-16 Administration Guide

Administration and Configuration
Propagation Source
The propagation source holds the DN of a queue or topic from which messages are

propagated.

Note the following limitations when defining a propagation source:

1. A queue can be the source destination of at most one propagation job, otherwise

unrecoverable propagation failures may occur. It is the administrator’s

responsibility to define only one propagation job per queue as the propagation

source.

If a topic is specified as the source for a propagation job, the topic can be used

as the source for other propagation jobs.

2. Applications should not receive messages from propagation source queues.

Receiving messages from the propagation source queue may result in

unrecoverable propagation failures. Applications can receive messages from

propagation source topics.

Propagation Target
The propagation target holds the DN of a queue or topic to which messages are

propagated. This DN is a location on an Oracle Message Broker LDAP Directory. It

is not necessarily the local LDAP Directory that stores the propagation source. The

target location is determined by the combination of the remote_dn attribute and

the propagation_target attribute (see "Remote DN" on page 8-18).

When the propagation target is an AQ queue or an AQ topic, the administrator

must make sure the types of all messages in the source destination are compatible

with the target destination. Otherwise, propagation processing may fail. For

example, consider a propagation job that uses a volatile queue as the propagation

source, and an AQ queue that is configured with the aq_adt attribute type text for

the propagation target. If the source queue contains a message of JMS object type,

then the propagation job fails when the object type message is propagated to the

target, since the types of messages that the AQ queue specified aq_adt attribute set

to text is limited to text messages (see Table 8–1 for limitations on propagation using

AQ destinations as the source and AQ destinations as the target).

See "Propagation Limitations" on page 8-28 for information on how to avoid

creating looped propagation jobs.

When the propagation source and target both use the AQ Driver, they must use

compatible types. To configure AQ destination types, set the aq_adt attribute for

the topic or the queue. Table 8–1 lists compatible types for AQ propagation.
Oracle Message Broker Propagation 8-17

Administration and Configuration
Remote DN
The remote DN attribute determines the transport protocol for the propagation job

and allows the propagation manager to find the receiving broker and resolves the

target destination name. The remote DN attribute value is set to null, a remote

directory entry DN, or a remote HTTP entry DN.

The remote_dn attribute should contain one of the values shown in Table 8–2.

Table 8–1 Propagation Using the AQ Driver

Source ADT Supported Destination ADT

all all, raw

bytes all, bytes, raw

map all, map, raw

object all, object, raw

queriable all, queriable, raw

raw all, raw

stream all, stream, raw

text all, text, raw

Table 8–2 Remote DN Values

Value Description

null The value of the remote_dn attribute is set to null if the propagation target DN shared
the LDAP Server as the propagation source DN.

If the sending broker and the receiving broker use different OMB instances, then IIOP
protocol is used for propagating messages from the source to the target.

If the sending broker and the receiving broker are the same broker, then local procedure
calls are used to propagate messages from the source to the target.

Remote Directory
entry DN

When the remote_dn attribute is set to the DN of a Remote Directory entry, the
information in the remote directory entry associated with the DN is used to access a
remote LDAP Server in order to fetch the propagation target destination entry and the
receiving broker entry. This implies using IIOP for the propagation job.

Remote HTTP entry
DN

When the remote_dn attribute is set to the DN of a Remote HTTP entry, the remote
HTTP entry specifies information about how to access the remote HTTP handler. This
implies using HTTP for the propagation job.
8-18 Administration Guide

Administration and Configuration
Propagation Message Selector
The propagation_msg_selector attribute sets the message selector for the

propagation job.

A message selector for a propagation job must be a string that is a valid JMS

message selector (for more information on the valid message selector format, see

"Message Selector Format" on page 5-4.

The propagation manager processes each propagation job independently. Therefore,

a message in a source topic can be propagated to multiple target destinations if its

properties satisfy more than one message selector for propagation jobs that use the

same topic as propagation source. When messages are only intended to propagate

from the source topic to a single target destination, it is the administrator’s

responsibility to specify exclusive message selectors, among all propagation jobs

that use the same topic as source.

Propagation Message Selector Notes

1. Message selectors cannot be updated. To change a message selector, the

associated propagation job entry must be deleted and re-created, using the new

message selector.

2. Deleting a propagation job with a topic as a source results in removing

remaining messages. Thus, changing a message selector by deleting a

propagation job entry could result in lost messages.

3. When defining message selectors for propagation jobs using AdminUtil ,

administrators should pay attention to the special characters, such as “, ‘, and $,

so that the selector to be parsed correctly by AdminUtil (quotes must precede

some special characters). If the message selectors are defined using the GUI

interface provided with ombadmin , this is not an issue.

4. Since AQ queues that use the aq_adt attribute, and set its value to queriable do

not support JMS properties, propagation message selectors should not be

specified for propagation jobs with aq_adt set to queriable (for the

propagation source).

Note: Message selectors can be specified only for propagation jobs

whose source destination is a topic. Message selectors are not

supported when the propagation source destination is a queue.
Oracle Message Broker Propagation 8-19

Administration and Configuration
Activation State
The activation_state attribute specifies whether the propagation job is

activated or deactivated. When a propagation job is deactivated, the propagation

manager stops sending messages for the propagation job from the sending broker to

the receiving broker. See "Activating and Deactivating a Propagation Jobs" on

page 8-26 for more information.

Propagation Username
The propagation_username attribute is used along with the propagation_
password attribute for authentication and authorization at the receiving site.

Propagation Password
The propagation_password attribute is used along with the propagation_
username attribute for authentication and authorization at the receiving site.

Propagation Timeout
The propagation manager at the sending site expects an acknowledgment from the

receiving site for each propagation request that it sends. This occurs before the

sending site commits operations associated with a request. If the acknowledgment

does not arrive within the time specified by the propagation timeout attribute, the

propagation manager assumes a failure has occurred with the associated

propagation job. The propagation manager then stops the propagation job and

automatically tries to recover and continue the propagation job after a delay.

When messages in the following format are shown in the Oracle Message Broker

log file, this signifies a potential propagation problem:

Deactivating propagation job [job id] because its requests have timed-out.

The propagation problem could be caused by any of the following:

■ Very large messages are being propagated

■ The receiving broker or message server is busy, or not running

■ Communication lines are congested

■ The propagation timeout value is set to a value that is too small

If the message servers, and the Oracle Message Broker, and the network, and all

other components are running properly, then the propagation requests may require

more time for processing. In this case, the propagation timeout value should be

increased.
8-20 Administration Guide

Administration and Configuration
Create Timestamp
The create_timestamp attribute is reserved for internal use only. This attribute

stores the creation time of the propagation job entry.

Valid Status
The valid_status attribute is used internally by the propagation manager as a

flag to indicate if a propagation job entry is valid. An invalid propagation job is

caused by an unsuccessful create or delete of a propagation job entry. If a

propagation entry is invalid the value of this attribute is set to false. The

propagation manager does not process propagation jobs with valid_status in

the false state.

To avoid accumulating messages for an invalid propagation job, users should

remove invalid propagation jobs.

HTTP Propagation Servlet Configuration
The HTTP propagation servlet requires that the Oracle Message Broker be installed

on the system where the servlet runs. After the Oracle Message Broker is installed,

the propagation servlet file (PropHttpServlet.class) needs be copied from $OMB_

HOME/servlets/propagation/PropHttpServlet.class to the location where the

servlet is hosted in the web server (on Windows NT systems, %OMB_

HOME%\servlets\propagation\PropHttpServlet.class).

When running with JDK 1.2, the propagation HTTP servlet requires the following

three jar files in the classpath:

$OMB_HOME/classess/mercury.jar
$ORACLE_HOME/jlib/jssl-1_2.jar
$ORACLE_HOME/jlib/javax-ssl-1_2.jar

When running with JDK 1.1.8, the propagation HTTP servlet requires the following

three jar files in the classpath:

$OMB_HOME/classess/mercury.jar
$ORACLE_HOME/jlib/jssl-1_1.jar
$ORACLE_HOME/jlib/javax-ssl-1_1.jar

Also, $ORACLE_HOME/lib needs to be included in the LD_LIBRARY_PATH

environment variable.
Oracle Message Broker Propagation 8-21

Administration and Configuration
JServ Sample Servlet Configuration
Here is an example for Jserv on Solaris, using JDK1.2, with the following

environment variables set to the following values:

ORACLE_HOME = /u/oracle/product/oracle/8.1.6
OMB_HOME = /u/oracle/product/oralce/8.1.6/omb/2.0

In this sample configuration, to enable the servlet, add the following lines in the file

jserv.properties:

wrapper.classpath=/u/oracle/product/oracle/8.1.6/omb/2.0/mercury.jar
wrapper.classpath=/u/oracle/product/oracle/8.1.6/jlib/jssl-1_2.jar
wrapper.classpath=/u/oracle/product/oracle/8.1.6/jlib/javax-ssl-1_2.jar
wrapper.env=LD_LIBRARY_PATH=/u/oracle/product/oracle/8.1.6/lib

The initial parameters for the HTTP propagation servlet specify the Oracle Message

Broker built-in HTTP listener of a receiving broker that the servlet sends messages

to. Table 8–3 shows the HTTP servlet parameters.

For example, using Jserv, set these parameters as follows:

servlet.PropHttpServlet.initArgs=host=recvhost,port=80,ssl=1,wallet=/wallets/w1
passwd=welcome

You can access the servlet through a browser to check if the HTTP propagation

servlet is installed and setup correctly. The servlet tries to connect to the receiving

broker to obtain the propagation version number, upon receiving a request from the

Table 8–3 HTTP Propagation Servlet Parameters

Name Description Default

host Host name of the machine that the receiving broker runs on. mandatory

port Port number that the receiving HTTP listener listens to. 80 if ssl=0

443 if ssl>0

ssl SSL level of the receiving HTTP listener uses. 0

wallet Full path name of wallet file used by the servlet.

passwd Password applied to the wallet file used by the servlet.

proxyHost Host name of the proxy server for the servlet.

proxyPort Port number of the proxy server for the servlet.
8-22 Administration Guide

Propagation Security
browser. The receiving broker and its HTTP listener must be running for this test to

run successfully.

Propagation Security
The Oracle message Broker supports the SSL protocol to secure propagation

connections. Table 8–4 shows the SSL levels that an Oracle Message Broker

administrator can specify for propagation.

Keep the following points in mind when configuring SSL for propagation:

■ For SSL connections, the server determines whether the client certificate is

required. With propagation, in terms of SSL, the server is the receiving broker

and the client is the sending broker.

■ If the sending broker uses SSL level 2, and receiving broker uses SSL level 3,

then the receiving broker requests the sending broker to send its certificate.

Since on the sending broker, a wallet is set that contains a valid certificate, the

certificate from the wallet on the sending broker is sent to the receiving broker.

There is no way to control this. In this case, the SSL level established is level 3.

■ If the sending broker uses SSL level 3, and receiving broker uses SSL level 2, the

receiving broker never requests the sending broker to send its certificate. In this

case, the SSL level established is level 2.

In summary, if the sending broker uses SSL level 3 and receiving broker uses SSL

level 2, the SSL connection is established using SSL level 2. If the sending broker

uses SSL level 2 and the receiving broker uses SSL level 3, the SSL connection is

established at SSL level 3 (see "Propagation Limitations" on page 8-28 for

information additional limitations).

Table 8–4 SSL Levels Supported for Propagation

SSL Level Description

0 This specifies no authentication and no encryption on both the sending and
the receiving sides. This is the default SSL level.

1 This level specifies only encryption on both sending and receiving sides.

2 This level specifies encryption and receiving side authentication.

3 This level specifies authentication and encryption on both the sending and
the receiving sides.
Oracle Message Broker Propagation 8-23

Propagation Security
IIOP propagation Security
If a receiving broker is SSL enabled, it requires that connections from sending

brokers be secured using SSL. See "Oracle Message Broker SSL Options" on

page 12-26 for information on enabling SSL. On the propagation sending side, users

specify SSL information, including the SSL level, wallet location, and wallet

password, in the remote directories entry associated with propagation jobs that

send messages to the SSL enabled receiving broker (see Table 4–19 for details on the

remote directories entry).

To prevent unauthorized propagation, the administrator can protect the receiving

broker. When starting a propagation job, the sending broker retrieves information

from the receiving broker’s directory entry to allow the sending broker to contact

the receiving broker. The receiving side protects the LDAP Directory entries using

LDAP Directory access control, which allows only authorized users with valid

passwords access to the directory entries. At the sending side, a valid username and

password must be provided in the remote directories entry for a propagation job to

access a protected LDAP Directory (see Table 4–19 for details on the remote

directories entry). Correct SSL information, including the SSL level, wallet location

and wallet password must be included in the remote directories entry if the LDAP

Directory is SSL enabled.

 HTTP Propagation Security
The Oracle message Broker supports the SSL protocol to secure HTTPS

propagation. This section covers the following:

■ Enabling SSL on the Receiving Broker

■ Enabling SSL on the Sending Broker

■ Enabling SSL for Servlet Based Propagation

Enabling SSL on the Receiving Broker
Enable the HTTP Propagation security features using attributes in the prop_http
entry under the msg_broker entry on the receiving broker (see Table 4–15 for the

list of attributes). To enable SSL for a receiving broker, configure the built-in HTTP

listener with a SSL level using a value greater than 0. When the SSL level is set to a

value greater than 1, you need to include the proper wallet information (the wallet

location and password).
8-24 Administration Guide

Propagation Control
Enabling SSL on the Sending Broker
Enable the HTTP Propagation security features on the sending broker using

attributes in the RemoteHTTPListener entry associated with a propagation job (see

Table 4–20 for the list of propagation job attributes). In order for a sending broker to

process a propagation job whose receiving broker is SSL enabled, the associated

remote HTTP listener entry of the propagation job must be set properly. The

sending broker and the receiving broker negotiate SSL options, using the attributes

specified in the remote HTTP listener entry on the sending side and the built-in

HTTP listener SSL settings on the receiving side (see Table 4–15 for the list of prop_
http attributes).

Enabling SSL for Servlet Based Propagation
For servlet based HTTP propagation, there are two HTTP connections (or two

HTTPS connections, see Figure 8–6). In order to secure the HTTP connection

between the sending broker and the HTTP propagation servlet, the web server must

be SSL enabled, and the remote HTTP listener entry at the sending side that

represents the propagation servlet must be set properly with respect to the web

server’s SSL configuration. That is, the SSL level in the remote HTTP listener entry

must be set properly to correspond with the level in the web server, and the wallet

must be valid with common trust points with that of the web server. In order to

secure the HTTP connection between the servlet and the receiving broker, the

receiving broker must be SSL enabled and the servlet must set its initial parameters

(SSL, wallet, passwd) properly with respect to the SSL setting of the receiving

broker.

Propagation Control
This section covers the following:

■ Creating and Deleting Propagation Jobs

■ Activating and Deactivating a Propagation Jobs

■ Error Handling and Recovery

Note: The propagation manager is automatically disabled when

the Oracle Message Broker is running in Local Mode. Thus, the

Oracle Message Broker never activates propagation when it is

running in Local Mode. Refer to the section, "Running in Local

Mode" on page 5-8 for details on running in Local Mode.
Oracle Message Broker Propagation 8-25

Propagation Control
Creating and Deleting Propagation Jobs
Propagation jobs can be created and deleted with the Oracle Message Broker

running or shutdown. When a propagation job is created, if the source destination

of the job is a topic, the propagation manager creates a durable subscriber on the

topic, regardless of whether the Oracle Message Broker is running or whether the

propagation job is activated. The durable subscriber does not have corresponding

entries in the LDAP directory (as a user-created durable subscriber would). The

durable subscriber is deleted when the associated propagation job is deleted.

When deleting a propagation job, first deactivate the propagation job. You are not

allowed to delete an activated propagation job.

Before deleting a propagation job, first check the message log to make sure that

there are no uncommitted propagation requests for the propagation job (see

"Activating and Deactivating a Propagation Jobs" on page 8-26 for details). Deleting

a propagation job with uncommitted propagation requests may leave messages in

the source destination and the target destination, since the propagation manager

only removes propagation jobs from the source destination as the last step before

the propagation manager’s actions are committed.

In order to avoid uncommitted requests, you can activate and deactivate the

propagation job. Repeat this process until there are no more log messages indicating

that there are uncommitted propagation requests for the propagation job.

It is possible that creating or deleting a propagation job may fail. This could leave

the propagation job in invalid state. A propagation job in invalid state may cause

unnecessary message accumulation if the job has a topic as its propagation source.

Propagation jobs in invalid state should be deleted.

Activating and Deactivating a Propagation Jobs
The Oracle Message Broker administrator activates and deactivates a propagation

job by setting the attribute activation_state in the propagation job entry. To

activate a propagation job, set the attribute to true. To deactivate a propagation job,

set the attribute to false (see Table 4–21 for a list of the propagation job attributes).

Activating a propagation job means the propagation manager can start processing

the propagation job, and the sending broker starts sending messages to the

receiving broker. Deactivating a propagation job means stopping to process the

propagation job, the sending broker stops sending messages to the receiving broker.

For a propagation job with a topic as propagation source, deactivating the

propagation job stops only sending, not subscribing. Messages published to the
8-26 Administration Guide

Propagation Control
topic when the job is deactivated will be sent to the receiving broker once the job is

activated again.

When a propagation job is being deactivated, the propagation manager attempts,

for up to ten(10) seconds to complete uncommitted propagation requests for the

propagation job. If the propagation manager cannot complete the requests, for

example if the receiving broker is down, it writes a message to the Oracle Message

Broker log file, in the format:

There are [number] uncommitted propagation requests for [job id].

Followed by a message similar to the following deactivated message:

propagation job [job id] has been deactivated.

Error Handling and Recovery
When starting the Oracle Message Broker, administrators should pay a close

attention to the Oracle Message Broker message log file. Check to see that

propagation manager and any propagation jobs start successfully. For example,

check to see if HTTP listeners start successfully for a receiving broker, and if

propagation jobs are activated successfully for a sending broker.

When the propagation manager encounters failures, it stops the related propagation

job and writes log messages into the Oracle Message Broker log file. A log message

in the log file for the sending broker, in the following form indicates that some

failures occurred when processing the propagation job:

 propagation job [job id] has been stopped.

The propagation manager attempts to restart and recover failed propagation jobs

once every two minutes, until it successfully recovers the jobs or the propagation

job is deactivated.

Note: If uncommitted requests exist and a propagation job is

deleted, the uncommitted requests will never be completed. This

may cause duplicated messages if a user later tries to recreate the

same propagation job.
Oracle Message Broker Propagation 8-27

Propagation Limitations
Propagation Limitations
This section lists several limitations that apply for propagation, and for configuring

propagation.

1. replyTo Limitation – If a client receives a message that was propagated from a

remote queue by a foreign Oracle Message Broker, and the client tries to reply

using the replyTo destination found in the message header, the following

restriction applies:

When the replyTo destination is not a local destination for the client, the

Oracle Message Broker throws the exception:

java.jms.InvalidDestinationException

2. Looped Propagation Jobs Limitation – looped propagation jobs, where there is a

chain of propagation jobs, with a target in the chain pointing back to a source,

are not detected by Oracle Message Broker. When and if propagation jobs are

setup in a loop, messages will be transferred in an infinite loop. This behavior is

also true for a single propagation job where the source and the target are the

same destination. It is the Oracle Message Broker Administrator’s responsibility

to avoid creating looped propagation jobs.

3. Propagation is not supported for Oracle Message Brokers running in local

mode.

4. Propagation is not supported for Oracle Message Brokers using lightweight

configuration.

5. Propagation logging queues restriction. The propagation logging queues are

used internally by the propagation manager. Client applications should never

use these queues. Using either the propagation sending log queue or the

propagation receiving log queue may result in unrecoverable propagation

failures.

6. If an administrator specifies a mismatch between the security SSL setting for a

propagation job on the sending broker and the receiving broker, the mismatch

may cause propagation threads to hang when the propagation job is processed.

This can occur when the SSL level is set to 1, 2, or 3, on the sending broker and

the security SSL level for the associated HTTP listener on the receiving broker is

set to 0 (non-SSL).

7. HTTP propagation does not support HTTP request redirect.
8-28 Administration Guide

Oracle Message Broker C+
9

Oracle Message Broker C++ API

This chapter describes the Oracle Message Broker C++ API. Using the C++ API,

clients written in C++ can use the Oracle Message Broker services and interoperate

with clients written in Java.

The sample programs for the examples shown in this chapter are available in the

directory, $OMB_HOME/samples/client/cpp.

This chapter covers the following:

■ Introduction

■ Major Differences between the Java and C++ APIs

■ Sample Application

Introduction
The Oracle Message Broker provides a C++ API by defining a set of C++ classes that

clone the JMS Java classes and interfaces (these are defined in the javax.jms
package for Java). The C++ API uses the same names and follows the same class

hierarchy as the JMS Java API counterparts. If you are a C++ programmer familiar

with the JMS specification you do not need to learn a new API to use the Oracle

Message Broker C++ API. However, you need to learn several conversion rules

between Java and C++. This chapter covers the C++ API, and shows the conversion

rules for working with the C++ API and the Oracle Message Broker.

System Requirements
To compile applications that use the Oracle Message Broker C++ API, you need to

use an ISO C++ compiler (ISO/IEC FDIS 14882). In addition, the Oracle Message

Broker C++ API requires support for the long long type (this type is not
+ API 9-1

Major Differences between the Java and C++ APIs
mandated by the ISO standard, but most compilers provide it). Some pre-ISO

compilers may work, if they support namespaces, runtime type information, and

the C++ Standard Template Library (STL).

Limitations
The Oracle Message Broker C++ API implements most of the features of the Java

API, except:

■ Only the TextMessage and BytesMessage classes are implemented. In

BytesMessage , only the reset() , readByte() , readUnsignedByte() ,

readBytes() , writeByte() , and writeBytes() methods are

implemented. Functions which are not implemented throw a

NotImplementedException exception.

■ Queues and topics cannot be fetched directly from the directory by a C++

application. They must be created using the createQueue() and

createTopic() methods declared on sessions. The parameter to these

methods is the distinguished name (dn) of the queue or topic in the directory.

The Oracle Message Broker will use this name to fetch itself the queue or topic

from the directory.

Major Differences between the Java and C++ APIs

Declaration
The Oracle Message Broker C++ API is declared in the scope of the "jms" C++

namespace. All the class declarations are imported by including the jmscpp.hh
header file. An additional implementation-specific header file,

ImplDepFactory.hh , must be included to obtain initial references to the Oracle

Message Broker instance; once these initial references are obtained, only standard

JMS constructs are used.
9-2 Administration Guide

Major Differences between the Java and C++ APIs
Types
While Java’s basic types have well-specified sizes, the C++ specification is less

restrictive concerning the size of built-in types. The Oracle Message Broker C++ API

maps Java basic types to C++ basic types that have at least the same size, according

to the ISO standard. Table 9–1 shows the mapping.

Memory Management
While Java has built-in garbage collection, the C++ programmer must explicitly

allocate and deallocate memory. The rules for C++ memory management are as

follows:

■ Parameters passed by reference to a Oracle Message Broker C++ method are

never deallocated by an Oracle Message Broker C++ library; they must be

explicitly deallocated by the caller.

■ Parameters passed by value by an Oracle Message Broker C++ method are

copied during invocation and the caller is responsible for deallocating the

original value; the Oracle Message Broker C++ library manages the life cycle of

the copy.

■ Parameters returned by reference by an Oracle Message Broker C++ method

must be deallocated explicitly by the caller, even if they have been allocated by

the Oracle Message Broker C++ library.

■ Parameters returned by value by an Oracle Message Broker C++ method are

copied during invocation and the caller is responsible for the returned copy’s

life cycle.

Table 9–1 Mapping Between Java and C++ Types

Java C++

short short

int long

long long long

float float

double double

byte unsigned char

string wstring (basic_string<wchar_t>)

byte[] vector<unsigned char>
Oracle Message Broker C++ API 9-3

Sample Application
Sample Application
This section presents a sample Oracle Message Broker C++ application composed of

two programs: a queue sender and a queue receiver. Most of the code for the sender

and the receiver is similar. The code sections that differ are marked as sender or

receiver specific.

Start the sender with arguments for the queue name and a text message. Start the

receiver with a queue name. The queue name for the Oracle Message Broker C++

API is the dn of the queues entry in the directory. For example:

% sender cn=myQueue,cn=Queues,cn=MyOMB,cn=OMB,cn=Products,cn=OracleContext,
ou=oas,o=oracle,c=us "Hello World!"
% receiver cn=myQueue,cn=Queues,cn=MyOMB,cn=OMB,cn=Products, cn=OracleContext,
ou=oas,o=oracle,c=us

General Declarations
Both the sender and the receiver code include the Oracle Message Broker C++

headers, and define a utility function for converting a C string into a wide string

and printing a wide string to the console. This common code is as follows:

#include <jmscpp.hh>
#include <ImplDepFactory.hh>

wstring to_wstring(char *str)
{
 string s(str);
 wstring ws(s.length(), ’ ’);
 copy(s.begin(), s.end(), ws.begin());
 return ws;
}

ostream& operator <<(ostream& os, const wstring& ws)
{
 copy(ws.begin(), ws.end(), ostream_iterator<char>(os));
 return os;
}

9-4 Administration Guide

Sample Application
Initialization
The sender and the receiver first obtain a reference to an Oracle Message Broker

specific ImplDepFactory object that creates a JMS connection factory. There are

two different constructors for the ImplDepFactory object:

 ImplDepFactory(const wstring& ior_file, const wstring& driver_name,
 bool unused, const wstring& cid, long priority,
 long tx_timeout);

Where the arguments are as follows:

 ImplDepFactory(const wstring& provider_ior, const wstring& driver_name,
 const wstring& cid, long priority, long tx_timeout);

Where the arguments are as follows:

C++ applications can fetch the Oracle Message Broker IOR directly from the

directory using OID’s LDAP C libraries. A sample program that performs this task

is included with the C++ samples.

ior_file The name of a file that contains the Oracle Message Broker

IOR. This IOR can be obtained from the msg_broker entry in

the directory or from the Oracle Message Broker log file.

driver_name The driver name, this can be one of: vol, aq, mq, mcast, rv.

unused An unused boolean value.

cid Arbitrary name identifying of the client

priority Default priority of messages

tx_timeout Default transaction timeout

provider_ior The Oracle Message Broker IOR. This IOR can be obtained

from the msg_broker entry in the directory or from the

Oracle Message Broker log file.

driver_name The driver name, this can be one of: vol, aq, mq, mcast, rv.

cid Arbitrary name identifying of the client

priority Default priority of messages

tx_timeout Default transaction timeout
Oracle Message Broker C++ API 9-5

Sample Application
The sender and the receiver next create a queue connection factory, a queue

connection, a queue session, a queue, and finally start the connection.

The following code shows these steps.

int main(int argc, char **argv)
{
 try {
 ImplDepFactory idf(L"JMSProvider", L"vol", true, L"client", 4, 0);
 QueueConnectionFactory *cf = idf.createQueueConnectionFactory();

 // Create connection and session
 QueueConnection *conn = cf->createQueueConnection();
 QueueSession *sess = conn->createQueueSession(false,

Session::IMMEDIATE_ACKNOWLEDGE);
 Queue *queue = sess->createQueue(to_wstring(argv[1]));

 // Start connection
 conn->start();

}
}

Sending Messages (Sender Specific)
The queue sender creates a sender, constructs a text message, and sends the text

message using the sender. The message and the sender are then explicitly

deallocated.

 // Sender-specific code
 QueueSender *sender = sess->createSender(queue);
 // Create and send message
 Message *msg = sess->createTextMessage(to_wstring(argv[2]));
 sender->send(msg);
 sender->close();
 delete msg;
 delete sender;

Receiving Messages (Receiver Specific)
The queue receiver creates a receiver, waits for a text message, prints the text

message, closes the receiver, and deallocates the message and the receiver.

 // Receiver-specific code
 QueueReceiver *receiver = sess->createReceiver(queue);
 // Receive message
 Message *msg = receiver->receive();
9-6 Administration Guide

Sample Application
 TextMessage *tm = dynamic_cast<TextMessage*>(msg);
 if(tm != NULL)
 cout << "Received message: " << tm->getText() << endl;
 receiver->close();
 delete msg;
 delete receiver;

Cleanup
Finally, the sender and the receiver close open sessions and connections, and

deallocate all Oracle Message Broker C++ objects.

 conn->stop();
 sess->close();
 conn->close();
 delete queue;
 delete sess;
 delete conn;
 delete cf;
 } catch(JMSException e) {
 cerr << "Unexpected exception: " << e.getMessage() << endl;
 }
 return 0;
}

Oracle Message Broker C++ API 9-7

Sample Application
9-8 Administration Guide

Logging and Troubl
10

Logging and Troubleshooting

This chapter covers the format and location of the Oracle Message Broker log file.

This chapter has the following sections:

■ Working with Log Files

■ Logging Security Exceptions

■ Problems and Common Solutions

Working with Log Files
The Oracle Message Broker stores status and error messages in Oracle Message

Broker log files. A log file includes information that is helpful for diagnosing

problems and for tracking the operation of the Oracle Message Broker. Log files

allow Oracle Message Broker administration and support personnel to diagnose

problems with the system.

By default, the log file is named omblog with the appended values as shown below,

or the name is specified using the string defined in the Java property

oracle.oas.mercury.logName.

omblog-hostname-time

where:

hostname is the name of the system where the Oracle Message Broker is running.

time is the value of the current time, in milliseconds, when the omblog file is

created.
eshooting 10-1

Working with Log Files
Logging Directory
When running in remote mode, the Oracle Message Broker creates log files in the

directory $OMB_HOME/logs if $OMB_HOME is defined and $OMB_HOME/logs

is writable (on Windows NT systems, the directory is %OMB_HOME%\logs if

%OMB_HOME% is defined and %OMB_HOME%\logs is writable). Otherwise, log

files are created in the current directory.

When running in local mode, the Oracle Message Broker creates the log file in one

of the following two directories:

■ The current directory

■ The directory that is specified using the Java property

oracle.oas.mercury.logDirectory. The directory specified with the

oracle.oas.mercury.logDirectory property must be writable.

When running in Local Mode, the Oracle Message Broker appends information to

the log file, if the specified log file already exists. It does not overwrite existing

logging information.

The Oracle Message Broker administrator is responsible for deleting unused log

files.

DMS Metric Log Files
Use the MsgBroker command with the -stats option to save the collected

Dynamic Monitoring Service metrics to the DMS log file. MsgBroker -stats saves

the DMS log file to a file with the same name as the associated Oracle Message

Broker log (omblog) file, prepended with “dms-”. Refer to "Working with Log Files"

on page 10-1 for information on the omblog file name and the directory where the

file is written.

The -stats option includes a parameter that specifies whether information is

appended to the DMS log file, or if an existing log file is replaced. The -stats
option also specifies the format for the data in the DMS log file. Refer to Table 2–2

on page 2-7 for detailed information on the available MsgBroker -stats options.

Refer to "Collecting Runtime Metrics" on page 6-3 for information on the format of

the information saved to the DMS log file.
10-2 Administration Guide

Problems and Common Solutions
Logging Security Exceptions
The Java property oracle.oas.mercury.sec.trace set the level of logging for

conditional tracing of security exceptions (SecException). If this system property is

set, either on the command line or programmatically, then all

authentication/authorization exceptions are traced in the Oracle Message Broker

log file. The value of the property is not considered, but only if it is set, or not.

If this property is not set, then only security exceptions (SecException) arising out of

internal errors, invalid configurations, or client attempts to unsuccessfully spoof

JMS connections are traced in the Oracle Message Broker log file.

Problems and Common Solutions
This section describes some common problems, and workarounds for these

problems. The section is divided as follows:

MQ Series Driver Problems
MQSeries driver: instantiation failure - can’t find MQSeries
java binding

The CLASSPATH does not include the MQSeries java support. Assuming a normal

MQSeries 5.1 installation, the following must be added to the CLASSPATH:

/opt/mqm/java/lib /opt/mqm/java/lib/com.ibm.mqbind.jar
/opt/mqm/java/lib/com.ibm.mq.jar

Note: Oracle Message Broker must be running on the same system as the MQSeries

queue manager.

The log queue specified in the MQSeries server entry for Oracle Message Broker,

must have been separately created in the queue manager using MQSeries

administration tools.
Logging and Troubleshooting 10-3

Problems and Common Solutions
Runtime Exceptions

Security Exceptions
When an incorrect exported wallet password is given, the Java SSL throws the

following exceptions:

1. Incorrect wallet password specified at the server:

■ Exception seen at the server side:

Exception: javax.net.ssl.SSLException: SSL handshake failed:
SSLBadParameterErr

■ Exception seen at the client side:

javax.net.ssl.SSLException: SSL handshake failed:
SSLConnectionClosedGraceful

2. Incorrect wallet password specified at the client:

■ Exception seen at the server side:

Exception: javax.net.ssl.SSLException: SSL handshake failed:
SSLConnectionClosedGraceful

■ Exception seen at the client side:

javax.net.ssl.SSLException: SSL handshake failed: SSLUnknownErr

LDAP Directory Naming Exceptions
When an entry specified as a DN does not exist in the directory, javax.naming

reports the following exception:

javax.naming.NameNotFoundException

Administration Problems When Running ombadmin
When starting the utility ombadmin , the following exception indicates your

environment may not be appropriately initialized. To initialize your environment,

use the ombenv scripts found in the bin directory (refer to "Working with the

Administration Utilities" on page 2-2 for more information). Also this exception

occurs if the DISPLAY variable is not set correctly on Solaris.

Can’t find class oracle.oas.admin.gui.ombadmin
10-4 Administration Guide

Administr
11

Administration GUI

This chapter describes the features of the Oracle Message Broker Manager. The

Oracle Message Broker Manager creates and manages configuration information

stored in the Oracle Message Broker’s LDAP Directory. This chapter covers the

following Oracle Message Broker Manager topics:

■ Terminology

■ Starting Oracle Message Broker Manager

■ Connecting to a Directory Server

■ Navigating Oracle Message Broker Manager

■ Disconnecting from a Directory Server

■ Performing Administration Tasks

For a list of the terms used in this chapter, see "Terminology" on page 11-2.

Note: Oracle Message Broker Manager allows you to work with

configuration information that is stored as directory entries in an

LDAP Directory. The directory entries are OMB entries. OMB

entries are entries that are created with the Oracle Message Broker

administrative tools. An LDAP Directory also contains non-OMB

entries. For non-OMB entries, Oracle Message Broker Manager

allows you to view and delete the entries, but not to modify the

entries.
ation GUI 11-1

Terminology
Terminology
Throughout this chapter, we use the following terminology:

Starting Oracle Message Broker Manager
The Oracle Message Broker administration command, ombadmin starts the Oracle

Message Broker Manager. To start the Oracle Message Broker Manager, follow the

instructions for your platform:

The executable is in the $OMB_HOME/bin directory (or %OMB_HOME%\bin on

Windows NT systems).

Connecting to a Directory Server
When you start Oracle Message Broker Manager, you need to connect to an LDAP

Directory server. The LDAP Connection dialog box (Figure 11–1) prompts you for

the server name, port number, initial context, authentication DN, and password for

the LDAP server. The program supplies default values for these fields using the

OMB_LP environment variable. If you want to change the default values, make

your selections in the dialog box.

DN Refers to an LDAP distinguished name

RDN Refers to an LDAP relative distinguished name

Platform Instructions

Windows NT You can either:

■ Type at the Run command:

ombadmin

or

■ Type at a DOS command prompt:

ombadmin

Sun Solaris Type at the system prompt:

ombadmin
11-2 Administration Guide

Connecting to a Directory Server
Figure 11–1 LDAP Connection Dialog Box

In each field of the LDAP Connection dialog, type the information specific to the

LDAP Directory you want to use.

Field Description

Server Name The name of the server running the LDAP Directory that you want to
view or modify.

The icon to the right of the Server Name field presents the Select
Directory Server window that allows you to select a server name and
port combination. Using this window, you can also save or edit
entries on the list.

Port The port number for the server running the LDAP Directory.

Initial Context The initial context for the Oracle Message Broker configuration
entries stored in the LDAP Directory. This is the DN of the LDAP
entry that serves as the base entry. Leave this field blank to connect
to the root context of the directory.

The icon to the right of the Initial Context field presents the Quick
List containing saved DNs that can be selected for the Initial Context
field. Using this window, you can also save or edit Quick List entries
Administration GUI 11-3

Connecting to a Directory Server
When you select the Connect button, a connection to the specified LDAP Directory

is created. If you select the Cancel button, the Oracle Message Broker Manager

screen comes up and a connection is not attempted. From the Manager screen, you

can connect and disconnect to LDAP servers, view entries, create new entries, delete

entries, and modify entries.

Figure 11–2 shows the Oracle Message Broker Manager opening window.

Figure 11–2 Oracle Message Broker Manager Opening Window

Authentication DN The DN of a user entry for LDAP Directory authentication. For
information on LDAP authentication and recommended security
roles, see "LDAP Server Security" on page 12-5.

Password The password for the user associated with the specified
Authentication DN. For information on LDAP authentication and
recommended security roles, see "LDAP Server Security" on
page 12-5.

Field Description
11-4 Administration Guide

Navigating Oracle Message Broker Manager
Navigating Oracle Message Broker Manager
The Oracle Message Broker Manager window serves as the main window for the

application. From this window, menu options and toolbar buttons allow you to

perform tasks such as:

■ Connecting to a directory server

■ Viewing Oracle Message Broker entries

■ Creating and Modifying Oracle Message Broker entries

■ Deleting Oracle Message Broker entries

The Navigator pane (left side of the double window interface) contains a tree

structure to browse entries that are relative to the initial context of the current server

connection. Entries above the initial context are not accessible. To change the initial

context or the server, you need to disconnect and then connect.

When Oracle Message Broker Manager first opens, the Navigator pane shows only

one tree item, “<Initial Context>.” By clicking the plus sign(+) next to the tree item,

subcomponents of that tree item appear. Tree items that have plus signs in front of

them may have their own sub-tree items. The plus sign becomes a minus sign (-)

when the entry is expanded. You can expand and contract the tree by clicking the

plus signs and minus signs.

For example, if you click the plus sign next to <Initial Context> in the opening

window Navigator pane, the tree expands to show the top level entries in the initial

context to which you are connected, as shown in Figure 11–2.

You can navigate around Oracle Message Broker Manager using one or a

combination of the following options.

■ Select menu items from the menus across the top of the window.

■ Use buttons on the toolbar across the top of the left pane to perform such

actions as create, create-like, and delete.

■ Click the tree items in the Navigator pane. For example, as shown in

Figure 11–3, clicking the Navigator tree item testomb causes the tree item to be

highlighted and the entry’s attributes to be displayed in the right panel. The

attributes shown can be modified by selecting Show Assigned Attributes Only

from the Prefs menu.

Attribute names in Oracle Message Broker Manager are shown in a bold, normal, or

grayed out font.
Administration GUI 11-5

Navigating Oracle Message Broker Manager
■ Bold names indicate mandatory attributes, where a value is required when the

attribute is created (see cn in Figure 11–3).

■ Names using a regular font indicate optional attributes (these can be modified

after creation).

■ Grayed out names indicate read only attributes that cannot be changed using

the Oracle Message Broker Manager.

Figure 11–3 Manager Entry View

Oracle Message Broker Manager Menu Bar
Table 11–1 lists the menus you can access by using the menu bar, and describes the

items in each menu. Menu items may become enabled or disabled depending on the

item you are displaying in Oracle Message Broker Manager.

Note: Many menu options are disabled if a server connection is

not currently established.
11-6 Administration Guide

Navigating Oracle Message Broker Manager
Table 11–1 Menu Bar Items

Menu Menu Items

File Create – Adds an entry. Dialogs guide you through the creation process.

Create Like – Adds a new entry by using the entry selected in the
Navigator pane as a template.

Connect – Establishes a new server connection. Once a connection is
established you must disconnect before connecting to another server.

Disconnect – Disconnects the current server connection.

Exit – Exits Oracle Message Broker Manager.

Edit Modify – Displays a dialog which allows you to modify the attributes for
the currently selected entry. This option only allows Oracle Message Broker
entries to be modified.

Delete – Deletes the currently selected entry.

Quick List – Save information displayed by the Oracle Message Broker
Manager in a quick list that is saved between invocations of the Manager.

Refresh – Refreshes the information displayed in the Manager window.

Prefs Show Assigned Attributes Only – This checkbox, when selected, tells the
Oracle Message Broker Manager to only display attributes that currently
have an assigned value. When not selected, all attributes are displayed.

Confirm Delete – This checkbox, when selected, enables the confirmation
dialog when entries are deleted. When this is not selected, there is no
confirmation for deletes. The default value is to confirm for deletes.

Tools Provides options to run the available OMB Wizards that create entries
using a series of dialogs. For more information, see "Using the
Configuration Wizards to Add Entries" on page 11-15.

Help Contents – Displays the Contents tab page of the Help Navigator.

Hide – Hides the help window, if it is currently displayed.

Index – Displays the help index.

Search for Help On...– Displays the Help Search dialog box which you use
to search for words in the online help guide.

About – Displays Oracle Message Broker Manager version information.
Administration GUI 11-7

Disconnecting from a Directory Server
Oracle Message Broker Manager Toolbar
Figure 11–4 and the accompanying table illustrate and describe the Oracle Message

Broker Manager toolbar. Buttons become enabled or disabled depending on the

item you are displaying in the Oracle Message Broker Manager and the current

state, connected or disconnected.

Figure 11–4 Oracle Message Broker Manager Toolbar

Disconnecting from a Directory Server
To disconnect from a directory server using Oracle Message Broker Manager, go to

the File menu and select Disconnect or select the disconnect icon in the toolbar.

Also, when you exit Oracle Message Broker Manager, the connection is closed.

Button Purpose

1 Connect/Disconnect – Connects or disconnects to or from a directory server.

2 Refresh – Updates data for objects stored in memory to reflect changes in the
directory.

3 Create – Adds a new entry

4 Create Like – Adds a new entry by using another entry as a template

5 Modify – Modifies an entry

6 Delete – Deletes an entry. This can also delete subentries when an entry contains
subentries

7 Help – Displays the Help Navigator

2 3 4 5 6 71
11-8 Administration Guide

Performing Administration Tasks
Performing Administration Tasks
This section gives step-by-step instructions for several common Oracle Message

Broker Manager tasks, including:

■ Viewing Entries

■ Adding Entries

■ Deleting Entries

■ Modifying Entries

■ Using the Configuration Wizards to Add Entries

Viewing Entries
In the Navigator pane, expand the <Initial Context> to show the top level entries in

the directory. The initial context, (top) of the tree is listed first, and then the second

level and so forth, moving from left to right. The subtree lists the RDN of each entry

in hierarchical order. To see the lower level entries within any subtree, click the plus

(+) sign to the left of the parent entry. Once you are at the entry you want to view,

select the entry to view its attributes.

The right panel displays the attributes for a selected entry. This panel can show all

available attributes, or only the attributes which have an assigned value (to change

this option, use the Prefs menu item, “Show Assigned Attributes Only”).

Attribute names in Oracle Message Broker Manager are shown in a bold, normal, or

grayed out font. Bold names indicate mandatory attributes, where a value is

required. Names using a regular font indicate optional attributes. Grayed out names

indicate read only attributes that cannot be changed using the Oracle Message

Broker Manager.

Adding Entries
You can use Oracle Message Broker Manager to add entries as described in the

following sections:

■ Adding A New Entry

■ Adding an Entry by Copying an Existing Entry
Administration GUI 11-9

Performing Administration Tasks
Adding A New Entry
To add entries with Oracle Message Broker Manager, you must have an active

connection to a directory server.

To add a new entry:

1. Either click the Create button on the toolbar or select Create from the File menu.

The New Entry dialog box appears (Figure 11–5).

Figure 11–5 Adding a New Entry

2. Select the desired type from the Type list.

3. Select the parent for the new entry from the Parent list. The Parent list contains

all valid parents within the initial context that may contain the type of entry

you are adding. This list shows <Initial Context> if the only available parent is

the entry corresponding to the initial context. This list shows nothing if no

entries currently exist that can serve as a parent for the selected entry type. The

parent entry must be created before a child entry.

4. Enter the name for the entry you are adding in the Name field and press OK.

The name for some entry types is fixed. For entries with fixed names, you

cannot modify the Name field and the field is grayed out.
11-10 Administration Guide

Performing Administration Tasks
5. After you press OK in the New Entry dialog, the New Entry Attributes dialog

appears (see Figure 11–6). This dialog allows you to view all the attributes for

the new entry, and to supply values for attributes that can be modified.

6. Using the New Entry Attributes dialog, enter the desired attribute values and

press OK to add the entry, or Cancel to cancel the operation.

Figure 11–6 Setting New Entry Attributes

The left panel in Figure 11–6 shows the attributes and provides fields to enter values

or menus containing values for each attribute.

The right panel shows the meta data for the attribute with the current focus.

Moving the mouse over an attribute in the left panel changes the focus to that
Administration GUI 11-11

Performing Administration Tasks
attribute. Meta data lists information such as limits for the data allowed for an

attribute, whether a default value is available, and other attribute information.

Notes for Adding a New Entry
1. There is a fixed hierarchy that governs the parent and child relationship

between OMB entry types. The Parent list presented in the New Entry dialog

box contains only the entries that can serve as the parent of the entry type that

is being added (see Figure 11–5). If the parent does not exist, it must be created

prior to creating an entry. For example, a queue_container entry must exist

before a queue entry can be created.

2. The omb_instance type corresponds to the cn=OMB entry. This entry is created

by the Install process, along with the other entries making up the cn=OMB,

cn=Products, cn=OracleContext DN. The omb_instance_container type is the

topmost entry that can be created using Oracle Message Broker Manager.

3. An attribute of type Distinguished Name requires a string with an LDAP

distinguished name syntax. Specify the full DN for such an attribute; a DN

relative to the initial context is not sufficient. For example, a topic or queue

entry has a server_dn attribute of type Distinguished Name, which must be the

full DN of an existing msg_broker, aq_server, aqlite_server, mq_server, rv_

server, or mcast_server entry. Obtain the full DN for an entry from the Oracle

Message Broker Manager window which displays the currently selected entry’s

DN in a text field along the top of the window.

Adding an Entry by Copying an Existing Entry
You can use Oracle Message Broker Manager to create a new entry by copying from

an existing entry. When you copy from an existing entry, you need to select the

entry that you want to use as the template for the new entry, and you need to select

the name and the parent for the new entry.

To add an entry by copying an existing entry:

1. In the Navigator pane, expand the <Initial Context>. Once you have reached

the entry that you want to copy, select the entry.

2. Either click the Create Like button on the toolbar or select Create Like from the

File menu. The New Entry dialog box appears (see Figure 11–7). Modify the

attributes that you want to change in the new entry.

3. The value in the Type field matches the type of the item you selected. Select the

parent for the new entry from the available choices in the Parent list.

4. Finally, type the name for the entry you want to add and press OK.
11-12 Administration Guide

Performing Administration Tasks
Figure 11–7 New Entry Dialog Box

5. After you press OK in the New Entry dialog, the New Entry Attributes dialog

appears (see Figure 11–6). All the values from the selected entry are copied in

their respective fields to the new entry. Change the fields you need to tailor

your new entry.

Keep the following in mind when editing the attributes for the new entry:

■ Carefully look over the new attributes in the New Entry Attributes dialog.

If any entries are not correct for the new entry, change them. In particular, if

you are using create like with different OMB Instances as parents, make

sure that the new entry uses DNs that point to entries within its OMB

Instance, and not to DNs that point to entries within the parent of the

selected entry.

■ If you are using create like to add a new queue or a topic, make sure that

the DN specified for the server_dn attribute that the queue or topic points

to in the copied entry exists within its parent’s OMB Instance.

■ If you are using create like to add a new queue or topic, make sure that the

value of provider_queue_name attribute is correct. If the value for this

attribute is not correct, results are unpredictable.

6. Finally, press OK to add the entry, or Cancel to cancel the operation.
Administration GUI 11-13

Performing Administration Tasks
Deleting Entries
You can use Oracle Message Broker Manager to delete directory entries. You can

delete OMB entries, which are entries created with the Oracle Message Broker

administrative tools. You can also delete non-OMB entries. The confirm delete

preference is available for deleting entries. When selected, this preference enables

the confirmation dialog for each delete operation. When Confirm Delete is not

selected, there is no confirmation for delete operations.

To delete an entry:

1. In the Navigator pane, expand the Initial Context to show entries in the

directory. Select the entry that you want to delete.

2. Either click the Delete button on the toolbar or select Delete from the Edit

menu.

3. Delete presents a confirmation dialog. Press Yes to delete the entry, or No to

cancel the operation.

Modifying Entries
You can use Oracle Message Broker Manager to modify the attributes of an existing

entry. Non-OMB entries cannot be modified using Oracle Message Broker Manager.

If you need to modify a non-OMB entry, you need to use another tool, for example

oidadmin , or ldapmodify .

Warning: Deleting entries removes the entries from the directory.

When you delete entries, be certain that you are not selecting

entries that you, or other users need. It may be very difficult to

recover deleted entries.

Note: Always use Oracle Message Broker administration tools to

create, modify, and delete OMB entries. Do not use other tools, such

as oidadmin or ldapmodify to create, modify, or delete OMB

entries.
11-14 Administration Guide

Performing Administration Tasks
To modify an entry:

1. In the Navigator pane, expand the <Initial Context> to show entries in the

directory. Once you have reached the entry that you want to modify, select the

entry.

2. Either click the Modify button on the toolbar or select Modify from the Edit

menu. The Edit Entry Attributes dialog appears. The Edit Entry Attributes

dialog looks and behaves similar to the New Entry Attributes dialog (see

Figure 11–6).

3. Edit the attribute values that you want to modify, and press OK to modify the

entry or Cancel to cancel the operation.

Using the Configuration Wizards to Add Entries
You can use Oracle Message Broker Manager to create entries and subentries by

selecting a configuration wizard from the Tools menu. The tools menu provides the

following wizards:

■ OMB Instance Configuration Wizard – this wizard helps you configure an OMB

Instance. An OMB Instance contains all of the directory entries required to run

the Oracle Message Broker.

■ Queue Wizard – this wizard helps you create one or more queues.

■ Topic Wizard – this wizard helps you create one or more topics.

■ Propagation Configuration Wizard – this wizard helps you to configure the

entries required to setup the Oracle Message Broker for propagation.

■ Propagation Job Wizard – this wizard helps you create and configure

propagation jobs.

To run a wizard, do the following:

1. Select, the desired wizard from the Tools menu. For example, if you select the

OMB Instance Configuration Wizard, this wizard appears (see Figure 11–8).

2. Follow the instructions provided with the wizard to create and configure the

entries associated with the wizard.
Administration GUI 11-15

Performing Administration Tasks
Figure 11–8 New OMB Instance Wizard Dialog
11-16 Administration Guide

S

12

Security

The Oracle Message Broker security features are integrated with the Oracle Message

Broker. To ensure a secure system, it is essential that the Oracle Message Broker

administrator understand the security requirements for the installation, and the

security features available with the Oracle Message Broker.

This chapter covers the following:

■ Features and Assumptions

■ Security Components

■ LDAP Directory Server Security Administration

■ Oracle Message Broker Security Administration

■ Provider Security Administration

Figure 12–1 shows the components of a sample Oracle Message Broker deployment.
ecurity 12-1

Features and Assumptions
Figure 12–1 Sample Oracle Message Broker Deployment

Features and Assumptions
To implement its security features, the Oracle Message Broker supports security in

the following areas:

■ LDAP Server Security – including mechanisms for protecting the LDAP

Directory information from unauthorized access. Also, Secure Sockets Layer

(SSL) is used for securing the network connections to the LDAP server.

■ Oracle Message Broker and JMS Client Security – including SSL for securing

network connections and authentication and authorization. This security area

secures the connection between a JMS Client and an active Oracle Message

Broker, and between Oracle Message Brokers when using propagation. This

security area also includes the Oracle Message Broker Security Service to

control access to Oracle Message Broker destinations (queues and topics).

■ Oracle Message Broker Provider Security – the Oracle Message Broker drivers

support several different providers, called message servers, for storing

messages. The Oracle Message Broker supports provider defined security

features specific to particular message servers.
12-2 Administration Guide

Features and Assumptions
In addition, the Oracle Message Broker supports the following security features:

■ An encryption facility to store passwords in the LDAP Directory.

■ Security for all network connections. This provides support for data integrity,

privacy, certificate based authentication, and non-repudiation.

■ Customization of the security features that a particular installation utilizes.

■ Allowing administrators to specify a username and password in connection

factories and using this information as credentials while accessing an

underlying provider (driver).

SSL Overview
Secure Sockets Layer (SSL) is an industry standard protocol for securing network

connections. SSL provides:

■ Encrypted connections (privacy)

■ Authentication - server-side or server-side and client-side

■ Integrity (a third party cannot modify data)

■ Non repudiation

SSL provides authentication through the exchange of certificates that are verified by

trusted certificate authorities. A certificate ensures that an entity’s identity

information is correct. Additional information on SSL is available at the following

web site,

http://home.netscape.com/eng/ssl3/ssl-toc.html

Programming and Administration Control and Assumptions
In order to ensure that an Oracle Message Broker installation is as secure as

possible, in this chapter we assume that an administrator understands the

following:

■ The LDAP Server and its administration

■ SSL

■ JNDI

■ Provider security (Oracle Message Broker drivers)

Furthermore, to ensure Oracle Message Broker security, the application

programmer is responsible for making the correct JNDI and JMS API calls.
Security 12-3

Features and Assumptions
Administration Summary
The following components can be configured independent of each other:

■ LDAP server authentication/authorization – users/groups configuration and

access control information setup for the LDAP server is performed using the

LDAP server configuration tools. If using OiD, ldapsearch /ldapmodify
and/or oidadmin can be used for this purpose.

■ Enabling SSL for the LDAP server SSL configuration is performed using the

LDAP server configuration tools. If using OiD, ldapsearch /ldapmodify
and/or oidadmin can be used for this purpose.

■ Enabling SSL for the ORB – Enabling SSL for the ORB is done through ORB

tools. For SSL connections, Oracle Message Broker uses Oracle Wallets. The

administrator needs to use the Oracle Wallet Manager to manage wallets.

■ Configuring message provider specific security.

■ Enabling proxy and SSL for HTTP propagation.

■ Protecting Oracle Message Broker destinations.

Administration Tasks
It is the administrator’s responsibility to setup security. By default, on installation

security is not enabled. The administrator needs to perform the following optional

tasks to secure Oracle Message Broker:

■ Enabling SSL for the ORB

■ Enabling SSL for the LDAP Directory directory

■ Controlling access to the LDAP Directory entries

■ Using provider/driver specific security features

■ Enabling proxy and SSL for HTTP propagation

■ Creating Oracle Message Broker users, groups, and ACLs.

Error Reporting
All fatal errors and malicious attempts to breach Oracle Message Broker security are

logged in the Oracle Message Broker log file. Security related non-fatal errors are

logged in the Oracle Message Broker log file if the Java property

oracle.oas.mercury.sec.trace is defined.

The Oracle Message Broker never logs passwords in exception messages.
12-4 Administration Guide

Security Components
Security Components
This section covers the following:

■ LDAP Server Security

■ Oracle Message Broker Security

■ Provider Security

■ Security Priority

■ Network Security Overview

■ Supported Cipher Suites

LDAP Server Security
Using LDAP based configuration the Oracle Message Broker stores its configuration

information in the LDAP Directory. By controlling read access to LDAP Directory

entries containing destinations, connection factories, and the msg_broker entry,

the Oracle Message Broker administrator can control access for the JMS Client to the

Oracle Message Broker and to its destinations.

If a JMS client cannot read the msg_broker entry in an OMB Instance stored in an

entry in the LDAP Directory, then it cannot connect to the Oracle Message Broker. A

connection factory is required to connect to the Oracle Message Broker.

If a JMS client does not have read access to a particular Oracle Message Broker

destination entry (topic or queue), it is not aware of the destination and therefore

will not be able to request access to it from the broker.

Access limitations for information in the directory consists of authentication and

authorization. When an LDAP client connects to an LDAP server, the client uses a

username/password to authenticate itself. The server then evaluates the access

control information (ACI) for the directory entry/attribute requested and based on

this evaluation allows the client access to the information or denies it.

Note: This chapter does not cover security with Lightweight

Configuration security.
Security 12-5

Security Components
This section covers the following areas of LDAP Server security:

■ LDAP Directory Authentication

■ LDAP Directory Authorization

■ LDAP Directory Secure Sockets Layer Connections

■ Security Roles

LDAP Directory Authentication
Authentication is the process by which the LDAP Server establishes the true

identity of the user connecting to the LDAP Directory (for information on setting up

user entries, refer to "LDAP Directory Server Security Administration" on

page 12-19).

Directory authentication occurs when an LDAP session is established by connecting

to a directory. Every LDAP session has an associated user identity. This user

identity is also referred to as the authorization ID. To ensure that LDAP Directory

users’ and clients’ identities are correctly known, the Oracle Message Broker

provides two options for connecting to the LDAP Directory: anonymous and simple

authentication. Table 12–1 describes these authentication options.

Table 12–1 Directory Authentication Options in Oracle Message Broker

Authentication Description

Anonymous If the LDAP Directory is available to everyone, then you can allow users
to log in to the directory anonymously. In this case, when using Oracle
Message Broker commands, administrators simply leave the user name
and password fields blank when they are prompted (or specify blank
values using the command line options, or use the -noauth option).
Each anonymous user then exercises whatever privileges are specified
for anonymous users.

Simple In this case, the client identifies itself to the server by means of a bind
DN and a password. The values are sent in the clear over the network
(unless SSL is enabled, in which case the information sent over the
network can be encrypted, depending on the SSL level specified).

The LDAP server verifies that the DN and password sent by the client
match the DN and password stored in the LDAP Directory.
12-6 Administration Guide

Security Components
The following Oracle Message Broker components use LDAP Authentication when

they contact the LDAP Directory:

■ The MsgBroker command at startup – the Oracle Message Broker uses

authentication to validate the user and password for the Oracle Message Broker

whenever, during it execution, it accesses the directory.

■ JMS Client programs that access the LDAP Directory to obtain Oracle Message

Broker administration information (through JNDI) – these programs use

authentication to validate the user and password for LDAP Directory access.

■ The administration utilities, including AdminUtil , AdminDirCheck,
ombadmin , LDAPSchema, and InitDir . These utilities use authentication to

validate the user and password for their LDAP Directory access.

See the following references for more information on providing options for

LDAP Authentication:

LDAP Directory Authorization
Authorization is the process of ensuring that a user reads or updates only the

information for which that user has privileges. When directory operations are

attempted within a directory session, the directory server ensures that the user-

identified by the authorization ID associated with the session has the requisite

permissions to perform those operations. Otherwise, the operation is disallowed.

Through this mechanism, the directory server enforces authorization policies in

order to protect the directory data from unauthorized operations. This mechanism

is called access control.

AdminUtil "Command-line Administration Utility - AdminUtil" on

page 4-41

AdminDirCheck "Checking Directory Entries with AdminDirCheck" on

page 4-64

JMS Client

Programs

"Enabling Propagation Security" on page 12-27

InitDir Oracle Message Broker Installation Guide

LDAPSchema Oracle Message Broker Installation Guide

MsgBroker "Starting and Stopping the Oracle Message Broker" on

page 2-6

ombadmin "Starting Oracle Message Broker Manager" on page 11-2
Security 12-7

Security Components
Access Control Information (ACI) is the directory metadata that captures the

administrative policies relating to access control.

ACI is stored in the directory as user-modifiable operational attributes. Typically, a

list of these ACI attribute values, called an Access Control List (ACL), is associated

with directory objects. The attribute values on that list govern the access policies for

those directory objects.

ACIs are represented and stored as text strings in the directory. These strings must

conform to a well defined format. Each valid value of an ACI attribute represents a

distinct access control policy. These individual policy components are referred to as

ACI Directives or ACI Items and their format is called the ACI Directive format.

ACLs are stored as special operational attributes of an entry. ACLs are inherited by

an entry from its parents and can be overridden.

LDAP Directory Secure Sockets Layer Connections
The Oracle Message Broker supports SSL for connections to the directory from any

of its components (for an overview of SSL, see "SSL Overview" on page 12-3). Each

of the Oracle Message Broker commands that access the directory support options

to specify an SSL connection mode. JMS Clients need to set properties to specify an

SSL connection mode. Note that JMS Clients can have two SSL connections, one

from the JMS Client to the Oracle Message Broker, and another from the JMS Client

to the LDAP Directory. SSL can be enabled for none, one, or both of these JMS

Client connections (for details on JMS Client properties, refer to "Oracle Message

Broker SSL Options" on page 12-26).

Table 12–2 lists the supported SSL connection modes. In the descriptions in

Table 12–2, client refers to an LDAP client.

Note: The following information on ACLs is specific to the Oracle

Internet Directory implementation of LDAP. This may not apply for

other LDAP implementations.

Note: The Oracle Message Broker also supports a connection

mode where SSL is disabled. In this mode, the SSL

encryption/decryption and SSL authentication are both disabled.
12-8 Administration Guide

Security Components
There are performance considerations to keep in mind when using an LDAP

Directory to lookup configuration information. When the Oracle Message Broker

operates using a remote LDAP Directory, each access to the directory involves

network activity. When SSL is enabled, data is encrypted for transmission over the

network. This data encryption, and subsequent decryption can have an impact on

performance. When SSL security is required, and performance is an issue, an SSL

hardware accelerator should be considered.

Security Roles
To limit directory access, and the potential for erroneous or malicious directory

modification, different types of Oracle Message Broker users can be set up to have

different security roles for accessing the LDAP Directory. Each role should be given

a different set of access permissions. The access, and modification of directory

entries is enforced by the LDAP Directory’s access control mechanism.

Table 12–3 shows the recommended security roles that can be setup in the LDAP

Directory to support the Oracle Message Broker.

Table 12–2 SSL Connection Modes

SSL Connection Mode Description

No authentication Neither the client nor the LDAP server authenticates itself. No
certificates are sent or exchanged. In this case, only SSL
encryption/decryption is used. In this configuration, there is
no requirement for certificate management.

One-way authentication Only the LDAP Server authenticates itself to the client. The
LDAP Server sends the client a certificate verifying that the
server is authentic.

Two-way authentication Both client and the LDAP Server authenticate themselves to
each other. Both the client and the LDAP Server send
certificates to each other.
Security 12-9

Security Components
Protecting Credentials
Oracle Message Broker encrypts all passwords that it stores in the LDAP Directory.

The passwords that are encrypted include: AQServerEntry password, Oracle Wallet

password, and passwords used for Oracle Message Broker propagation. This allows

administrators to disable LDAP authentication/authorization without

compromising the passwords used by Oracle Message Broker.

Table 12–3 Security Roles

Role Purpose

Administrator Creates, modifies, and deletes OMB Instances, drivers, queues, topics, servers, and other
Oracle Message Broker administrative entries. The Oracle Message Broker administrator
needs to have authorization and permissions that allows for adding, deleting, and
searching entries underneath the following entry:

cn=OMB,cn=Products,cn=OracleContext,....

MsgBroker
Instance User

Accesses all the entries underneath a single OMB Instance. A MsgBroker Instance User
creates, updates, and deletes entries underneath an OMB Instance. When the Oracle
Message Broker is running, any changes that are made to the LDAP Directory within the
active OMB Instance using either AdminUtil or ombadmin are channeled through the
Oracle Message Broker. This allows the MsgBroker Instance User to act as the
administrator for the active, OMB Instance.

MsgBroker Instance User authentication is set with the user DN and password specified
when the Oracle Message Broker is started using the MsgBroker command. In Local
Mode, the MsgBroker Instance User authentication is set in the call that starts the Oracle
Message Broker. The MsgBroker’s authentication should have access permissions similar
to the Oracle Message Broker Administrator, but permissions for a MsgBroker user could
be limited to a single OMB Instance.

JMS Client User A JMS Client user does not need to create, delete, or modify OMB Instance entries. JMS
Client users require read and search permissions for an Oracle Message Broker’s msg_
broker entry within the OMB Instance, and for queues, topics, and connection factories.
When the Oracle Message Broker is running in Local Mode, the JMS Client user requires
the same permissions as the MsgBroker Instance User.
12-10 Administration Guide

Security Components
Oracle Message Broker Security
This section covers the Oracle Message Broker security facilities that allow you to

protect Oracle Message Broker connections and Oracle Message Broker data. This

section covers the following security areas:

■ Oracle Message Broker Connections to Directory Server

■ JMS Client Connections to Directory Server

■ C++ Client Connections to Directory Server

■ JMS Client Connections to Oracle Message Broker

■ Propagation Security

■ Security Service - Application Level Authentication and Authorization

Oracle Message Broker Connections to Directory Server
The Oracle Message Broker and its administration utilities support SSL for their

connections with the LDAP Directory Server. See the section, "LDAP Directory

Secure Sockets Layer Connections" on page 12-8 for a description of the SSL options

available for these directory connections.

JMS Client Connections to Directory Server
JMS Clients support SSL for their connections with the LDAP Directory Server. See

the section, "LDAP Directory Secure Sockets Layer Connections" on page 12-8 for a

description of the options available for these SSL connections.

C++ Client Connections to Directory Server
C++ Clients support SSL for their connections with the LDAP Directory server. See

the section, "LDAP Directory Secure Sockets Layer Connections" on page 12-8 for a

description of the options available for these SSL connections.

JMS Client Connections to Oracle Message Broker
When a JMS Client is connecting to the Oracle Message Broker it can use SSL in one

of three authentication modes, as shown in Table 12–4.
Security 12-11

Security Components
Propagation Security
The server-to-server interaction, using Oracle Message Broker propagation, is made

secure using IIOP/SSL or HTTP/SSL. A receiving broker authenticates and

authorizes a sending broker, if it is configured to do so, while accepting requests for

propagation. For details on setting up security for propagation, refer to

"Propagation Security" on page 8-23.

Security Service - Application Level Authentication and Authorization
The Oracle Message Broker security service support authentication and

authorization of Oracle Message Broker clients. The security service allows the

Oracle Message Broker to provide an additional level of control for its operations,

including controlling whether a particular user can access and use JMS destinations.

This level of security uses the LDAP Directory for obtaining names and passwords

and storing authentication and authorization information.

Oracle Message Broker uses the security service to provide a finer grained access

control mechanism. The LDAP security provides an all-or-nothing access for Oracle

Message Broker users. The security service provides more control. For example, the

security service allows Oracle Message Broker to distinguish between subscribing

to a topic and publishing to a topic, or sending a message to a queue and receiving a

message from a queue.

Table 12–4 JMS Client SSL Connection Modes

SSL Connection Mode Description

No authentication Neither the client nor the Oracle Message Broker authenticates itself. No
certificates are sent or exchanged. In this case, only SSL encryption/decryption is
used. In this case, there is no requirement for certificate management.

One-way authentication Only the Oracle Message Broker authenticates itself to the client. The Oracle
Message Broker sends the client a certificate verifying that the server is authentic.

Two-way authentication Both client and the Oracle Message Broker authenticate themselves to each other.
Both the client and the Oracle Message Broker send certificates to each other.

Note: For one-way or two-way authentication, both the JMS

Client and the Oracle Message Broker has to manage certificates

using the Oracle Wallet Manager.
12-12 Administration Guide

Security Components
The security service allows Oracle Message Broker administrator to associate access

control lists (ACL)s with destinations. The security service uses the LDAP Directory

to store its configuration information. The Oracle Message Broker management

tools, AdminUtil and ombadmin , are available to manage the security service. The

security service configuration information consists of users, groups and ACLs. For

details on working with these security service components, refer to "Using the

Oracle Message Broker Security Service" on page 12-27.

Provider Security
This section describes the Oracle Message Broker provider facilities that allow you

to protect messages stored using an Oracle Message Broker driver. Administrators

need to manage security features of underlying providers (drivers) using provider

specific facilities.

This section covers the following security areas:

■ Provider Security Summary

■ AQ Driver Security Features

■ Provider Security Limitations

Provider Security Summary
The Oracle Message Broker acts a client of the underlying message provider. If the

message provider is on a separate machine, the data sent between the Oracle

Message Broker and the underlying message provider is sent over the network.

Depending on the security requirements, it may be necessary to protect the privacy

and integrity of this data. In addition, the underlying message provider may have

its own authentication/authorization mechanisms. Table 12–5 shows Oracle

Message Broker support for underlying message provider security.
Security 12-13

Security Components
AQ Driver Security Features
The AQ Driver authenticates Database Server connections with credentials

provided by the following choices:

1. Using LDAP Directory Configuration Options - a user name and password can

be provided using the administrative facilities. These credentials are used to

authenticate the JDBC connections created to support administrative

operations. These credentials are also used to authenticate JDBC connections

created for each user’s JMS session when the user does not specify a user name

and password in the connection methods, as shown in option 2 (below). When

credentials are stored in the LDAP Directory, the passwords are always

encrypted.

2. Invocation Methods in Oracle Message Broker JMS Clients - a user name and

password can be supplied when the Oracle Message Broker JMS Clients create a

topic connection or a queue connection. These credentials authenticate the JDBC

connection when a JMS session is created within the topic or queue connection.

Table 12–5 Message Provider Security in Oracle Message Broker

Provider Security Available

AQ Driver Oracle Message Broker uses the username and password specified in the connection
factory entry stored in the LDAP Directory. That is the credentials used by the JMS Client
to create a JMS connection are used to access AQ. If the username and password are not
defined in the connection factory entry then the username and password specified in the
JMS call that created the connection are used. The Oracle Message Broker process uses
the value of the distinguished attribute as the username. For example, if the username is,
cn=bjensen,cn=users then the username used for the AQ connection would be ‘bjensen’.

Both the AQ OCI driver and AQ JDBC driver can be configured for data privacy and
integrity using the Oracle 8i advanced security option. This is independent of Oracle
Message Broker. See the Oracle 8i administration guide for more information.

Oracle Mcast Driver Does not provide any message provider specific mechanism for
authentication/authorization or for data privacy/integrity.

Tibco Driver Does not provide any message provider specific mechanism for
authentication/authorization.

Volatile Driver Does not provide any message provider specific mechanism for
authentication/authorization or for data privacy/integrity.

MQ Series Driver Authenticates users using the underlying operating system users/groups. The active
Oracle Message Broker and MQ Series must run on the same system. In addition, the
user running the Oracle Message Broker process should have permissions to access all
the MQ Series queues used by the Oracle Message Broker.

The JMS Client credentials are not used to access MQ Series.
12-14 Administration Guide

Security Components
3. Using Lightweight Configuration Properties, the user name and password are

used to authenticate Database Server (AQ Driver) connections.

However the credentials are provided, the user name and password may be used to

authenticate access to the LDAP Directory, to make access control decisions for the

Oracle Message Broker, and to provide access control to the AQ Driver for message

store access.

When the Oracle Message Broker is started with lightweight configuration. The user

name and password used by the AQ Driver must either be stored in a file or

specified on the command line. The Oracle Message Broker administrator should

understand the security risks of both options.

AQ security functionality can be configured external to the Oracle Message Broker

by modifying the sqlnet.ora and tnsnames.ora file.

Provider Security Limitations
Several Oracle Message Broker drivers have resources that Oracle Message Broker

security facilities cannot protect, including the following:

Oracle Mcast Driver – the IP Address and port number

Oracle AQ Driver – Database Server access using PL/SQL, OCI, or JDBC

MQSeries Driver – Native access to MQSeries Queues

Oracle Message Broker security facilities and access control do not and cannot

provide access control for the underlying providers, beyond what the providers

have in place for access control.

Security Priority
Oracle Message Broker has three, optional levels of authentication/authorization

for JMS Client to Oracle Message Broker interactions.

1. LDAP Directory Authentication and Authorization: A JMS Client must be able

to read the LDAP Directory to get access to topics, queues, connection factories,

or the Oracle Message Broker. All Oracle Message Broker configuration data is

stored in an LDAP Directory (unless Oracle Message Broker is run using

Lightweight Configuration). A JMS client must be able to read information from

the LDAP Server to access destinations managed by the Oracle Message Broker.

Access to this information can be controlled through the use of LDAP

authentication and authorization mechanism.

2. Oracle Message Broker Security Service ACLs.
Security 12-15

Security Components
3. Provider Access Control. Once the JMS client has access to the information in

the LDAP Directory, it can connect to the Oracle Message Broker. If an Oracle

Message Broker destination is mapped to a message provider (such as AQ),

then operations on the Oracle Message Broker destination get mapped to

operations on the message provider destination. The broker uses the client’s

credentials to request access from the message provider.

The Oracle Message Broker as a whole uses the following order for assuring

security:

1. LDAP Directory Level Authentication and Authorization

2. Oracle Message Broker Security Service ACLs

3. Provider-Level Access Control (for example AQ authentication/authorization)

If security access fails for any reason at a higher level, access is completely denied

for the lower level.

Network Security Overview
Oracle Message Broker components can use three protocols for communicating

between different components: HTTP, LDAP, and IIOP. All these three protocols can

be layered over SSL. SSL provides encryption and optional server/client side

authentication. SSL provides Oracle Message Broker with privacy of data over the

network, data integrity, and certificate based SSL authentication.

Figure 12–2 shows all the components of an Oracle Message Broker deployment.
12-16 Administration Guide

Security Components
Figure 12–2 Overview of Network Security

Figure 12–2 shows components linked with the following four labels:

1. P1 - Connections between client side ORBs and server side ORBs. Oracle

Message Broker uses the ORB for communicating between the Oracle Message

Broker and JMS Clients. The ORB uses IIOP protocol for communication

between the client and the server. The ORB allows one to run IIOP over SSL.

For more information, refer to "Oracle Message Broker SSL Options" on

page 12-26.

2. P2 - Connections between the LDAP Directory Server and LDAP Clients. LDAP

clients are any of the following: the Oracle Message Broker, JMS Clients, Oracle

Message Broker administration tools. These connections use LDAP over SSL to
Security 12-17

Security Components
the LDAP Directory Server. An SSL socket factory is provided for this purpose.

For more information, refer to "Enabling SSL and Authentication for the LDAP

Directory" on page 12-20.

3. P3 - Connections between Oracle Message Brokers for propagation using HTTP.

Oracle Message Broker supports propagation over HTTP and HTTP over SSL

(HTTPS). Oracle Message Broker propagation also supports HTTP proxies. For

more information, refer to "Enabling Propagation Security" on page 12-27.

4. P4 - Connections between Oracle Message Brokers and underlying message

providers (such as Oracle AQ). Oracle Message Broker supports security

provided by the underlying message provider. For more information, refer to

"Provider Security Administration" on page 12-33.

Supported Cipher Suites
When you use the Oracle Message Broker, SSL is preconfigured to support a default

set of cipher suites. The set of cipher suites supported depends on the SSL level

associated with a connection.

A cipher suite is a set of authentication, encryption, and data integrity algorithms

used for exchanging messages between network nodes. During an SSL handshake,

the two nodes negotiate to see which cipher suite they will use when transmitting

messages back and forth.

To establish an SSL connection between a client and a server, the client and the

server must have at least one common cipher suite. During the SSL handshake the

client and the server agree on the cipher suite to use for the connection.

The Oracle Message Broker supports prioritized cipher suites as shown in

Table 12–6 and Table 12–7. These cipher suites support SSL connections to the

LDAP Directory, and for propagation between Oracle Message Brokers using

HTTPS.

Table 12–6 Authenticated SSL Connections (SSL level 2 and SSL level 3).

Cipher Suite Priority Level

SSL_RSA_WITH_3DES_EDE_CBC_SHA 1

SSL_RSA_WITH_RC4_128_SHA 2

SSL_RSA_WITH_RC4_128_MD5 3

SSL_RSA_WITH_DES_CBC_SHA 4

SSL_RSA_EXPORT_WITH_RC4_40_MD5 5
12-18 Administration Guide

LDAP Directory Server Security Administration
LDAP Directory Server Security Administration
This section covers the following security administration areas:

■ Creating LDAP Users and Working with Access Control Lists

■ Enabling SSL and Authentication for the LDAP Directory

Creating LDAP Users and Working with Access Control Lists
To create LDAP users and groups, and to manage LDAP Directory access control

lists for the users and the groups, use the administrative tools supplied with your

directory, or use the LDAP command line utilities (ldapadd, ldapmodify , or

other commands that modify directory entries).

Before you create users and groups in your LDAP Directory, refer to the section,

"LDAP Server Security" on page 12-5 for a description of the types of users you

may want to create (security roles), and the permissions required to control access

to the Oracle Message Broker.

SSL_RSA_EXPORT_WITH_DES40_CBC_SHA 6

Table 12–7 Un-authenticated SSL Connection (SSL Level 1)

Cipher Suite Priority Level

SSL_DH_anon_WITH_3DES_EDE_CBC_SHA 1

SSL_DH_anon_WITH_RC4_128_MD5 2

SSL_DH_anon_WITH_DES_CBC_SHA 3

SSL_DH_anon_EXPORT_WITH_RC4_40_MD5 4

SSL_DH_anon_EXPORT_WITH_DES40_CBC_SHA 5

Note: All the cipher suites shown in Table 12–6 and Table 12–7

provide encryption and data integrity.

Table 12–6 (Cont.) Authenticated SSL Connections (SSL level 2 and SSL level 3).

Cipher Suite Priority Level
Security 12-19

LDAP Directory Server Security Administration
Oracle Internet Directory Authentication Sample Scripts
The Oracle Message Broker provides sample ldif scripts for setting up directory

authentication in $OMB_HOME/samples/admin/security/ldap/oid (%OMB_

HOME%\samples\admin\security\ldap\oid on Windows NT). Refer to the

README file for instructions on running the authentication setup scripts.

Netscape Directory Server Authentication Sample Scripts (Windows NT Only)
The Oracle Message Broker provides sample ldif scripts for setting up directory

authentication in $OMB_HOME/samples/admin/security/ldap/netscape

(%OMB_HOME%\samples\admin\security\ldap\netscape on Windows NT).

Refer to the README file for instructions on running the authentication setup

scripts.

Enabling SSL and Authentication for the LDAP Directory
When you use Oracle Message Broker components that access the LDAP Directory,

they internally set properties that control simple authentication and SSL, either

based on the values supplied in prompts to the user, or based on values supplied

with command line arguments. JMS Client programs that access the LDAP

Directory and connect with the Oracle Message Broker need to explicitly set these

properties.

JMS clients use JNDI to access the configuration information in the LDAP Directory,

specifically the connection factories and destinations, therefore a JMS client needs to

set JNDI properties to their appropriate values to enable authentication and to

provide credentials.Table 12–8 shows the Java properties must be set to enable

LDAP authentication and SSL for JMS Client connections.

Note: This section describes Oracle Message Broker sample scripts

that set up LDAP authentication. Oracle Message Broker

administrators should modify these scripts, depending on the

security policies needed for their LDAP Directory.
12-20 Administration Guide

LDAP Directory Server Security Administration
Configuring SSL for OiD
When an instance of OiD is started through the OiD Control Utility, a configuration

set entry can be specified. This configuration set entry determines the SSL

configuration for that instance of OiD. A configuration set entry can be

created/modified/deleted using either Oracle Directory Manager or command line

tools. When using Oracle Directory Manager, expand the ‘Server

Management-->Directory Server’ entry (this is for non-replicated directory servers,

for replication refer to the OiD Administration Manual). This will list all the

configuration set entries for the directory server. Add/delete/update operations

can be performed on configuration set entries using Oracle Directory Manager (for

details on configuration sets refer to the OiD Administration Guide).

Configuration Set entries for LDAP server are stored under the container,

cn=osdldapd,cn=subconfigsubentry

The config set entries should belong to the objectclass ‘orclConfigSet’ and

‘orclLDAPSubConfig’, the attribute ‘orclsslenable’ sets (value of 1) or unsets (value

of 0) SSL. The attribute ‘orclsslauthentication’ sets the authentication level for SSL

Table 12–8 Oracle Message Broker Client SSL and Authentication Java Properties

Java Property Description

java.naming.security.authentication When the authentication property is set to the value “simple”, LDAP
authentication is used. If the principal property or the credentials property
are not specified, then anonymous directory authentication is used.

java.naming.security.credentials Use the credentials value to supply a password.

where: password is the password associated with the specified user of the
username set in the property java.naming.security.principal.

java.naming.security.principal Use the principal property to provide a user_name_dn.

where: user_name_dn is the user’s DN in the LDAP Directory. If this is not
set an anonymous bind will be used).

java.naming.security.protocol Set to ‘ssl’ to use SSL connections to the directory.

SSLSocketFactoryImplClass This property should be set to the following value:
oracle.oas.admin.dir.AdminSSLSocketFactoryImpl

oracle.oas.admin.dir.wltloc Set to the location of the exported wallet that is to be used for SSL
authentication. Note: this requires exported wallets.

oracle.oas.admin.dir.wltpassword Set to the wallet password for the wallet to be used for SSL authentication.
Security 12-21

LDAP Directory Server Security Administration
(value of 1 => no authentication, value of 32 => server side authentication and value

of 64 => server and client side authentication). The attribute ‘orclsslwalleturl’ points

to the wallet location and the attribute ‘orclsslwalletpasswd’ contains the value of

the wallet password.

Note: Default ACLs in OiD do not protect the subtree cn=subconfigsubentry for

read operations. Since this subtree can possibly contain wallet passwords, read

operations on this subtree must be protected.

(for replication configuration set entries refer to the OiD Administration Guide)

Sample configuration set entry for SSL without any authentication:

dn: cn=configset1, cn=osdldapd, cn=subconfigsubentry
objectclass: orclConfigSet
objectclass: orclLDAPSubConfig
objectclass: top
cn: configset1
orcldebuglevel: 0
orclsslenable: 1
orclsslport: 636
orclserverprocs: 1
orclsslauthentication: 1
orclmaxcc: 10

Sample configuration set entry for SSL with server side authentication:

dn: cn=configset2, cn=osdldapd, cn=subconfigsubentry
objectclass: top
objectclass: orclConfigSet
objectclass: orclLDAPSubConfig
orclmaxcc: 10
orcldebuglevel: 0
cn: configset2
orclsslauthentication: 32
orclsslenable: 1
orclsslport: 6666
orclsslwalletpasswd: welcome88
orclsslwalleturl: file:/private/oracle/product/oracle/8.1.6/wallets/test_wallet1
orclserverprocs: 1

Sample configuration set entry for SSL with server side and client side

authentication:

dn: cn=configset3, cn=osdldapd, cn=subconfigsubentry
orclsslport: 7777
12-22 Administration Guide

LDAP Directory Server Security Administration
objectclass: orclConfigSet
objectclass: top
objectclass: orclLDAPSubConfig
cn: configset3
orcldebuglevel: 0
orclmaxcc: 10
orclsslauthentication: 64
orclserverprocs: 1
orclsslenable: 1
orclsslwalleturl: file:/private/oracle/product/oracle/8.1.6/wallets/test_wallet1
orclsslwalletpasswd: welcome88

OiD Access Control and Authorization
Authorization is the process of ensuring that a user reads or updates only the

information for which that user has privileges. When directory operations are

attempted within a directory session, the directory server ensures that the user,

identified by the authorization ID associated with the session, has the requisite

permissions to perform those operations. Otherwise, the operation is disallowed.

Through this mechanism, the directory server protects directory data from

unauthorized operations by directory users. This mechanism is called access

control. Access Control Information (ACI) is the directory meta data that captures

the administrative policies relating to access control. ACI is stored in Oracle Internet

Directory as user-modifiable operational attributes. Typically, a list of these ACI

attribute values, called an Access Control List (ACL), is associated with directory

objects. The attribute values on that list govern the access policies for those

directory objects. ACIs are represented and stored as text strings in the directory.

These strings must conform to a well defined format. Each valid value of an ACI

attribute represents a distinct access control policy. These individual policy

components are referred to as ACI Directives or ACI Items and their format is called

the ACI Directive format.

orclACI is a user modifiable optional attribute that represents Access Control List

(ACL) policy information for a subtree starting with the entry where that subtree is

defined. Any entry in the directory can contain values for this attribute. Access to

this attribute itself can be controlled the same way access to any other attributes is

controlled. Access Control Policy Points (ACPs) are entries in which the orclACI

attribute value is set. The orclACI attribute value represents the access policies

inherited by a subtree of entries starting with the ACP as the root of the subtree.

When a hierarchy of multiple ACPs exists in a directory subtree, the subordinate

entries in that subtree inherit the access policies from all of the ACPs that are

superior to the entry. The resulting policy is an aggregation of the policies within
Security 12-23

LDAP Directory Server Security Administration
the ACP hierarchy above the entry. When there are conflicting policies represented

among a hierarchy of ACPs, the directory applies well defined precedence rules

while evaluating the aggregate policy.

The orclACI attribute contains ACL directives that are prescriptive in nature, that is,

the directives apply to all entries in the subtree below the ACP where this attribute

is defined. In addition, it is often convenient to maintain ACL directives specific to a

single entry within that entry. Oracle Internet Directory enables you to do this

through a user modifiable operational attribute called orclEntryLevelACI. Any

directory entry can optionally carry a value for this attribute. This is accomplished

in the Oracle Internet Directory base schema by extending the abstract class top to

include orclEntryLevelACI as an optional attribute. The orclEntryLevelACI

attribute is multivalued and has a structure similar to that of orclACI.

Access Control Information associated with a directory object represents the

permissions on the given object that various directory user entities (or subjects)

have. Thus, semantically, an ACI is a tuple consisting of three components: Object

(to what are you granting access?), Subject (to whom are you granting access,

Operations (what access are you granting?).

Example of ACIs set on the container cn=omb:

dn: cn=OMB,cn=Products,cn=OracleContext,ou=asg,o=oracle,c=us
objectclass: top
objectclass: orcloasentry
objectclass: orclcontainer
cn: OMB
orclaci: access to attr=(*) by * (search , read, nowrite, compare) by group=
“cn=ombdev,cn=groups” (search, read, write, compare)
orclaci: access to entry by * (browse, noadd, nodelete) by group=
“cn=ombdev,cn=groups” (browse, add, delete)
orcloasentrytype: omb_container

Creating users and groups in OiD
A user of OiD (other than cn=orcladmin, cn=guest and cn=proxy) is the DN of the

entry in the directory. This entry should have the attribute, ‘userpassword’. For

example,

dn: cn=bjensen,cn=users
objectclass: top
objectclass: person
cn: bjenson
sn: Jensen
12-24 Administration Guide

LDAP Directory Server Security Administration
userpassword: welcome
The username is “cn=bjensen,cn=users” and the password is “welcome”.

Group entries in Oracle Internet Directory are associated with either the

‘groupOfNames’ or the ‘groupOfUniqueNames’ objectclass. Membership in the

group is specified as a value of the ‘member’ or ‘uniqueMember’ attribute

respectively. It is possible to specify access rights for a group of people or entities.

Such groups are called privilege groups and are associated with the

‘orclPrivilegeGroup’ object class. To grant access rights to a group of users, one has

to create a group entry in the usual way, then associate it with the

‘orclPrivilegeGroup’ object class. The access policies applicable to that group are

then specified. Entries can have either direct memberships to groups, or indirect

memberships to other groups by means of nested groups, thus forming a forest of

privilege groups.

Access policies specified at a given level are applicable to all the members directly

or indirectly below it. Because Oracle Internet Directory evaluates for access control

purposes only groups marked as privilege groups, it does not allow setting access

policies for non-privilege groups. When a user binds with a specific DN, Oracle

Internet Directory computes his or her direct membership in privilege groups. Once

it knows the first level groups for the given DN, Oracle Internet Directory computes

nesting of all these first level groups into other privilege groups. This process

continues until there are no more nested groups to be evaluated. It is imperative

that all groups created for access control purposes, nested or otherwise, be marked

as privilege groups by associating them with the ‘orclPrivilegeGroup’ object class. A

normal group will not be considered for access control purposes even though it may

be a member of a privilege group. Example of a group,

dn: cn=ombdev,cn=groups
objectclass: top
objectclass: groupofnames
objectclass: orclprivilegegroup
cn: ombdev
member: cn=bjensen,cn=users
member: cn=akarmark,cn=users
Security 12-25

Oracle Message Broker Security Administration
Oracle Message Broker Security Administration
This section covers the following security administration areas:

■ Oracle Message Broker SSL Options

■ Enabling Propagation Security

■ Using the Oracle Message Broker Security Service

Oracle Message Broker SSL Options
The Oracle Message Broker commands, including the following commands support

a set of options to control SSL: AdminUtil , AdminDirCheck , MsgBroker ,

LDAPSchema, and InitDir . Table 12–9 describes the command line options that

control SSL.

If the -U2 or -U3 option is used with the commands, and the -W or -P is not used,

then the Oracle Message Broker commands prompt for the SSL wallet directory, the

SSL wallet password, or for both.

Graphical Command SSL Options
When ombadmin starts, you need to enter an SSL level. Table 12–10 shows the SSL

levels supported for ombadmin .

Note: These options specify SSL connections to the LDAP

Directory.

Table 12–9 SSL Command Line Options

Option Description

-U value Specifies if SSL is used, and the authentication level. Valid values are: 0, 1, 2, and 3.

0 – no SSL. This is the default if –U is not specified.

1 – SSL with no authentication.

2 – SSL with server-side authentication.

3 – SSL with server-side and client-side authentication.

–W wallet_path Specifies the path to an exported wallet file. This is ignored if the value of –U is 0 or 1.

–P wallet_password Specifies the wallet password. This is ignored if the value of –U is 0 or 1.
12-26 Administration Guide

Oracle Message Broker Security Administration
Enabling Propagation Security
See the section, "Propagation Security" on page 8-23 for information on

propagation security.

Using the Oracle Message Broker Security Service
The Oracle Message Broker security service provides authentication and

authorization to control whether a user can access JMS destinations. This level of

security uses the LDAP Directory to obtain names and passwords and for storing

authentication and authorization information.

This section covers the following:

■ Managing Users

■ Managing Groups

■ Managing Access Control Lists (ACL)s

■ Security Service Cache

■ Netscape Directory Password Encryption

■ Client Connections using Authentication and Authorization

The security service allows the Oracle Message Broker administrator to associate

access control lists (ACL)s with destinations. The Oracle Message Broker

management tools, AdminUtil and ombadmin , are available to manage the

security service. The security service configuration information consists of users,

groups and ACLs that are stored in the Users, Groups, and ACLs fixed name

containers (see Figure 12–3).

Table 12–10 SSL Levels for ombadmin

SSL Level Description

none No SSL

noauth SSL with no authentication

server auth SSL with server-side authentication

server and client auth SSL with server-side and client-side authentication
Security 12-27

Oracle Message Broker Security Administration
The users, groups, and ACLs defined are not tied to a specific OMB Instance. They

can be used across all OMB Instances defines within the LDAP Directory.

Figure 12–3 Top Level Directory Organization with Users, Groups, and ACLs Containers

Managing Users
A user for the Oracle Message Broker security service consists of a DN, which

represents a user entry. Authentication consists of looking up the DN and matching

the password attribute.

Since the user entry is a DN, standard LDAP user entries and the Oracle Message

Broker security service user entries are both valid user entries. The security service

has the same requirements for a user entry as an LDAP server. Using LDAP server

user entries as security service user entries can reduce the number of administration

tasks.

An LDAP user can be used as an Oracle Message Broker user. However, the

Oracle Message Broker tools, AdminUtil and ombadmin can only modify

Oracle Message Broker user entries (these are defined as user entries under the

cn=users container in the OMB entry in the LDAP Directory).

Table 12–11 shows the user entry attributes. To configure a user entry, create the

user entry and then set the appropriate attributes.

root-of-admin-context

cn=OracleContext

cn=Products

cn=Computers

cn=OMB

cn=OMB_instance1 cn=OMB_instance2 cn=OMB_instancencn=Aclscn=Groups cn=Users
12-28 Administration Guide

Oracle Message Broker Security Administration
Managing Groups
A group entry specifies an Oracle Message Broker group. Table 12–12 shows the

group entry attributes. To configure a group, create the group entry and then define

the appropriate attributes.

Oracle Message Broker group entries are not always LDAP group entries. However,

LDAP group entries are valid to use as Oracle Message Broker group entries (when

using either LDAP as provided by Oracle Internet Directory or Nestscape Directory

Server).

Managing Access Control Lists (ACL)s
Destinations have an optional attribute called acl_dn (see Table 4–17 and

Table 4–18 for destination attributes). The acl_dn value is a DN which points to an

LDAP ACL entry containing security service configuration information. Oracle

Message Broker security service authorization is based on checking the ACL

associated with the destination (to which access is requested).

ACL entries are stored in the ACLs container in the LDAP Directory.

Table 12–13 shows the ACL entry attributes. To configure an ACL entry, create the

entry and then define the access control list.

Table 12–11 User Attributes

Attribute Description

description A description of the user.

password Password associated with the user. This value is encrypted. This
attribute is mapped to the LDAP attribute userpassword . The
LDAP server controls whether this attribute is encrypted.

surname The user’s surname.

Table 12–12 Group Attributes

Attribute Description

description A description of the group.

uniquemember This is a DN that points to a user entry, or to multiple user entries.
The value can also point to other groups. A group cannot have
nested subgroups that include more than 10 levels of nesting.
Security 12-29

Oracle Message Broker Security Administration
The value for an aclEntry is of the form:

DN=num

Where:

DN is the DN for a group, a user, or is the string ‘anonymous’.

num is the permission associated with the user or group, or for the anonymous user.

Table 12–14 shows the possible values for the aclEntry permission, num.

If an ACL is not specified for a destination, topic or queue, the destination is open,

and anyone can subscribe/publish or send/receive messages for that destination.

If an ACL is specified, but no users are given permissions in the ACL, then no one

can subscribe/publish or send/receive messages for that destination. This means

permissions in an ACL have to be explicitly granted. For example, if permission for

a user cn=foo, or a group that user cn=foo belongs to, is not granted in the ACL, it

implies that the permission is denied for that user (also see the description of the

anonymous ACL for information on granting permissions to everyone).

For example, an aclEntry could have the following value:

cn=group1,cn=Groups,cn=OMB,cn=Products,cn=OracleContext,ou=name1,o=acme,c=us=3

This specifies that all the users in the group defined by group1 have read and write

access to the destination.

Table 12–13 Access Control List (ACL) Attributes

Attribute Description

aclEntry Defines the access control list, with a value of the form DN=num
(see the explanation below for details).

Table 12–14 ACL Entry Permissions

Value Permissions

1 Read access. For topics, read access implies granting subscription

rights. For queues, read access implies granting receive rights.

2 Write access. For topics, write access implies granting publication

rights.For queues, write access implies granting send rights.

3 Read and write access.
12-30 Administration Guide

Oracle Message Broker Security Administration
If an aclEntry is specified, and the DN value is specified as the string,

“anonymous”, then everyone, that is any user, is given the permissions specified for

the anonymous aclEntry . When a user attempts to use the destination, and either

a user name is supplied, or a user name is not supplied, the user is granted the

permissions to the destination that are associated with anonymous. In this case,

permissions in an aclEntry do not have to be explicitly granted by user or group.

For example, an aclEntry could have the following value:

anonymous=1

For this example, the permission for anonymous is set to 1, which grants receive or

subscribe permission for all of the destination’s users.

Security Service Cache
The Oracle Message Broker caches security service related LDAP data. This cache is

per JMS connection. The Java property oracle.oas.mercury.sec.cache.expiration

specifies the cache expiration time in milliseconds.

Netscape Directory Password Encryption
The Netscape directory server allows passwords to be encrypted, using SHA or

unix crypt, or passwords may be unencrypted. If the passwords are encrypted, the

security service needs to perform a heavy-weight ldap_bind operation (and create a

new tcp/IP connection) to verify passwords.

If Netscape directory server is used with password encryption, the default setting,

then the property oracle.oas.security.nocompare should be set to true . If this

property is not set for Netscape directory server, with password encryption

enabled, then the Oracle Message Broker always throws a SecException.

Table 12–15 Security Service Java Properties

Java Property Description

oracle.oas.mercury.sec.cache.expiration Specifies the cache expiration time in milliseconds. If the value < 0,
then the cache never expires.

The default value is -1
Security 12-31

Oracle Message Broker Security Administration
Client Connections using Authentication and Authorization
To access the Oracle Message Broker, a JMS client has to create a JMS connection to

the Oracle Message Broker.

There are four JMS APIs to do this:

1. To create an anonymous topic connection to the Oracle Message Broker, use:

TopicConnectionFactory.createTopicConnection()

2. To create an anonymous queue connection to the Oracle Message Broker, use:

QueueConnectionFactory.createQueueConnection()

3. To create a non-anonymous topic connection to the Oracle Message Broker, use:

TopicConnectionFactory.createTopicConnection(String username, String
password)

4. To create a non-anonymous queue connection to the Oracle Message Broker,

use:

QueueConnectionFactory.createQueueConnection(String username, String
password)

If TopicConnectionFactory.createTopicConnection() or

QueueConnectionFactory.createQueueConnection() are used, then the connections

are treated as anonymous.

The username provided in (2) and (4) above should be a DN of a security service

user entry or an LDAP user entry and the password must be the password for the

specified user.

Oracle Message Broker uses the security service to authenticate a user. On a

successful authentication, the Oracle Message Broker gets a ‘ticket’ from the

security service for the specified credentials. The credentials are cached on the client

side runtime and the Oracle Message Broker. The Oracle Message Broker also

caches the ticket. The client side runtime sends these credentials to the Oracle

Message Broker when requesting any operation using this connection. The Oracle

Message Broker authenticates the credentials in memory, without using the security

service, and then uses the security service to authorizes the client request using the

cached ticket.

JMS client credentials are per connection. A new connection should be created for

different credentials. The Oracle Message Broker also uses the same credentials

when it calls the client-side callbacks.
12-32 Administration Guide

Provider Security Administration
Any authentication or authorization error results in a JMSSecurityException being

thrown.

To use SSL connections to the directory an SSL socket factory is provided. For

details on the properties to set to use LDAP authentication/authorization and SSL

connections to the directory refer to "Enabling SSL and Authentication for the

LDAP Directory" on page 12-20.

Caching of tickets results in a performance improvement, as this avoids a round trip

to the LDAP server. ACL information is not cached, so any change in the ACL

associated with a destination will be seen by the Oracle Message Broker

immediately.

Provider Security Administration
This section covers the following security administration areas:

■ Client Connections to the Oracle Message Broker using Authentication

Client Connections to the Oracle Message Broker using Authentication
To access the Oracle Message Broker, a JMS client has to create a JMS connection to

the Oracle Message Broker.

There are four JMS APIs to do this:

1. To create an anonymous topic connection to the Oracle Message Broker, use:

TopicConnectionFactory.createTopicConnection()

2. To create an anonymous queue connection to the Oracle Message Broker, use:

QueueConnectionFactory.createQueueConnection()

3. To create a non-anonymous topic connection to the Oracle Message Broker, use:

TopicConnectionFactory.createTopicConnection(String username, String
password)

Note: Since the credentials (username/password) used by

security service are stored in the directory credentials used for

directory authentication can also be used for security service (in

methods (2) and (4) above).
Security 12-33

Provider Security Administration
4. To create a non-anonymous queue connection to the Oracle Message Broker,

use:

QueueConnectionFactory.createQueueConnection(String username, String
password)

The Oracle Message Broker passes the username and password specified in the

non-anonymous methods to the Driver to authenticate the JMS client.

These credentials are cached by the client-side runtime and reused for all

subsequent calls made on the connection.

If TopicConnectionFactory.createTopicConnection() or

QueueConnectionFactory.createQueueConnection() are used, then the connections

are treated as anonymous.

JMS client credentials are per connection. A new connection should be created for

different credentials. The Oracle Message Broker also uses the same credentials

when it calls the client-side callbacks.

Any authentication or authorization error results in a JMSSecurityException being

thrown.

To use SSL connections to the directory an SSL socket factory is provided. For

details on the properties to set to use LDAP authentication/authorization and SSL

connections to the directory refer to "Enabling SSL and Authentication for the

LDAP Directory" on page 12-20.
12-34 Administration Guide

Lightweight Config
13

Lightweight Configuration

The Oracle Message Broker supports two means of specifying configuration

information for administration: using an LDAP Directory, and using Lightweight

Configuration. With Lightweight Configuration, the Oracle Message Broker reads

configuration information from a file or from Java properties when it begins its

execution. The Oracle Message Broker configuration information specifies the

names and configuration options for all administrative objects, such as the names

and types of JMS destinations (topics or queues).

Lightweight configuration supports a variant called Zero Configuration. Zero

Configuration is only supported for the AQ Driver. Zero Configuration allows the

Oracle Message Broker to start with the AQ Driver as easily as a JDBC connection

starts. The only configuration information required for Zero Configuration is the

AQ Database Server service name, user name, and password. See "Obtaining a

Connection Factory Instance (in Local Mode)" on page 13-9 for more information on

Zero Configuration.

This chapter describes Oracle Message Broker Lightweight Configuration. Refer to

Chapter 4, "Administration" for a description of configuration using the Oracle

Message Broker with an LDAP Directory to specify configuration information.

This chapter includes the following sections:

■ Benefits of Lightweight Configuration

■ Using Lightweight Configuration

■ Lightweight Configuration Properties

■ Sample Configuration Files

■ Lightweight Configuration Constraints and Limitations
uration 13-1

Benefits of Lightweight Configuration
Benefits of Lightweight Configuration
Lightweight configuration allows the Oracle Message Broker to operate without

using an LDAP Directory to store its administrative information. The benefits of

Lightweight Configuration are:

■ A smaller footprint - Use of the directory requires an installation of Oracle8i. If
Oracle8i is installed on the local system, it requires significant disk resources.

■ Increased availability -Using Lightweight Configuration can improve the Oracle

Message Broker availability for Oracle Message Broker clients. When Oracle

Message Broker clients access an Oracle Message Broker as a separate process,

in Remote Mode, the Oracle Message Broker is available when both the

directory server and the Oracle Message Broker process are available. When

Oracle Message Broker clients use the Oracle Message Broker locally, the Oracle

Message Broker is available when the directory server process is available. For

both Local Mode and Remote Mode, using the Lightweight Configuration

removes the requirement that the directory server process be available.

■ Simplicity - installing, configuring, and running the Oracle Message Broker are

less complex tasks using the Lightweight Configuration. Administration and

configuration issues are simplified and the Database Server performance tuning

task is eliminated (using an LDAP Directory Server, the associated Database

Server may require tuning).

■ Reduced startup time - the start up time, including the time required to access

and process configuration information for the Oracle Message Broker is reduced

using Lightweight Configuration.

■ Lightweight configuration requires less overall system memory, as compared to

a single system that is supporting both the Oracle Message Broker and its

associated directory server.
13-2 Administration Guide

Using Lightweight Configuration
Using Lightweight Configuration
To use Lightweight Configuration with Oracle Message Broker, application

developers or administrators controlling the system need to set configuration

options to control the system. The configuration information only needs to be

updated when the system configuration needs to change. The reasons for a

configuration change include:

■ Adding or removing queues or topics.

■ Adding or removing a durable subscriber.

■ Modifying Oracle Message Broker resources (for example memory options).

This section describes the following:

■ Configuration Changes

■ Starting with Lightweight Configuration in Remote Mode

■ Starting with Lightweight Configuration in Local Mode

■ Deploying Using Lightweight Configuration

■ Specifying Configuration Values with Lightweight Configuration

Configuration Changes
With Lightweight Configuration, if the Oracle Message Broker is running in Remote

Mode, it must be shutdown and then restarted before configuration changes take

effect. Dynamic updates of Oracle Message Broker configuration information are

not supported using Lightweight Configuration.

With Lightweight Configuration, if the Oracle Message Broker is running in Local

Mode, the client application that instantiates the Oracle Message Broker needs to

stop and then restart, or the client application needs to close and restart the Oracle

Message Broker, before configuration changes take effect. Refer to Chapter 5,

"Oracle Message Broker Features" for information on Oracle Message Broker Local

Mode operation.
Lightweight Configuration 13-3

Using Lightweight Configuration
Starting with Lightweight Configuration in Remote Mode
In Remote Mode, start the Oracle Message Broker using Lightweight Configuration,

with the command:

% java HEAP [CONFIG] [OPT] oracle.oas.mercury.Mercury -noldap

Where the parameters are:

Op

For example:

% java -mx10m -ms10m -Doracle.oas.mercury.maxheap=10 \
-Doracle.oas.mercury.config=config.pr oracle.oas.mercury.Mercury -noldap

For this example, the file config.pr must be present in the current working directory.

Starting with Lightweight Configuration in Local Mode
When starting a client that uses a local Oracle Message Broker, start the Java

interpreter with the following flags:

–mxmemm (for Java 1.1.x)

–Xmxmemm (for Java 1.2)

–msmemm (for Java 1.1.x)

–Xmsmemm (for Java 1.2

–Doracle.oas.mercury.maxheap=mem

HEAP -mxsize m -ms size m -Doracle.oas.mercury.maxheap= size

where size is: an integer, number of megabytes for JVM heap.

For Java 1.2, use:

-Xmxsize m -Xms size m
-Doracle.oas.mercury.maxheap= size

The HEAP parameters are required.

CONFIG -Doracle.oas.mercury.config= FILE

Where FILE is: a string, representing the name of file in which
configuration information is stored.

The CONFIG file parameter is optional.

OPT Other properties that specify configuration parameters.

–noldap Specifies Oracle Message Broker Lightweight Configuration.
13-4 Administration Guide

Using Lightweight Configuration
Where mem is the memory, in megabytes, that you want to allocate to the process.

The mem value should be at least 8, specifying 8 megabytes per instance. If max_
memory is set in the msg_broker entry, the mem value, as shown above, must be

greater than or equal to the value of max_memory.

Deploying Using Lightweight Configuration
Using Lightweight Configuration, there are two deployment options for an Oracle

Message Broker application:

1. Deploying with Lightweight Configuration in Remote Mode

2. Deploying with Lightweight Configuration in Local Mode

For each deployment option, an Oracle Message Broker application must perform

the following tasks:

1. Obtain a connection factory instance.

2. Obtain a destination instance for a topic or a queue.

3. Cleanup and shutdown.

This section covers these steps for both Local Mode and Remote Mode Oracle

Message Brokers.

Obtaining a ConnectionFactory Instance (in Remote Mode)
When the Oracle Message Broker, using Lightweight Configuration, runs in Remote

Mode it writes its IOR as a UTF string to a file. The name of the IOR file is

JMSProviderkey, where the property oracle.oas.mercury.key specifies the value for

the key (see Table 13–3 for more details). Oracle Message Broker writes the

JMSProviderkey file containing the IOR in the directory where the Oracle Message

Broker runs.

In Remote Mode, Oracle Message Broker clients access the IOR stored in the

JMSProvider file to obtain a connection factory instance. The Oracle Message Broker

provides Mercury package method to access the IOR for this purpose.

The method Mercury.getRemoteConnectionFactory creates an Oracle Message

Broker MercuryConnectionFactory for a given IOR file. The

MercuryConnectionFactory can be cast to either a TopicConnectionFactory or a

QueueConnectionFactory.

The method Mercury.getRemoteConnectionFactory creates a connection factory that

returns connections to a Remote Mode Oracle Message Broker. This method is
Lightweight Configuration 13-5

Using Lightweight Configuration
usually used to establish connections to a Remote Mode Oracle Message Broker that

has been configured using Lightweight Configuration.

Obtaining Remote Connection Factory Instance Given the Oracle Message Broker

JMSProvider file, the API for the JMS getRemoteConnectionFactory access method

is:

package oracle.oas.mercury.Mercury;
import javax.jms.*;

class Mercury {
public static MercuryConnectionFactory

getRemoteConnectionFactory(String iorFile,String driverName,
String clientId)

throws JMSException
}

Where Table 13–1 shows the parameters for the getRemoteConnectionFactory

method.

The method getRemoteConnectionFactory returns a MercuryConnectionFactory

that can be used to create instances of javax.jms.QueueConnection and

javax.jms.TopicConnection.

It throws a JMSException if the IOR is invalid or the ORB cannot be started.

Table 13–1 Connection Factory Access Method Parameters

Parameter Description

ior_file The name of the file in which the Oracle Message Broker IOR is stored.
This file should only contain the string that represents the IOR. An Oracle
Message Broker that is started with Lightweight Configuration writes the
IOR as a UTF string into JMSProviderkey file. Oracle Message Broker
clients should use this file to connect to the Oracle Message Broker when
running in Remote Mode. When the Oracle Message Broker is running in
Local Mode, the client does not need to read the IOR from a file.

driver_name This is one of the following: ‘aq’, ‘mq’, ‘vol’, ‘mcast’, ‘rv’. This specifies the
name of the driver for which connections are created. A connection factory
is limited to creating connections for one driver type.

client_id This specifies the value to use for the connection id. Each JMS connection
can have a connection id set using a call to
javax.jms.Connection.setClientID(String). The value specified by the client_
id parameter is used to implicitly call setClientID() if client_id is not null.
13-6 Administration Guide

Using Lightweight Configuration
Obtaining Destinations
To obtain destinations, the Oracle Message Broker client can use created or

configured destinations. There are two types of destinations, created destinations

and configured destinations. Created destinations are destinations for which an

Oracle Message Broker client provides all the configuration information when the

client creates an instance of the created destination Table 13–2 lists the methods that

support created destinations (these are defined in the package

oracle.oas.mercury.MercurySession). These methods allow client programs to locate

and use topics and queues with Lightweight configuration (without JNDI).

Configured destinations are destinations for which the Oracle Message Broker has

been configured. Part of the configuration information is the name by which the

broker knows the destination. This name is not necessarily the same as the name by

which the message store identifies the destination (refer to Table 13–6 for more

information on destination properties).

Using Created Destinations Oracle Message Broker calls the destinations returned

from the methods shown in Table 13–2 created destinations.

The methods in Table 13–2 are equivalent to TopicSession.createTopic and

QueueSession.createQueue found in javax.jms . The methods in Table 13–2

create an instance of javax.jms.Destination .

Table 13–2 shows the methods for creating destinations, topics or queues, using

Lightweight Configuration. These methods are equivalent to createTopic and

createQueue, but they do not require a specially formatted string to identify the

destination.

Table 13–2 Created Destination Methods for Topics and Queues

Method Description

createAQTopic Locate and create an AQ topic

createAQQueue Locate and create an AQ queue

createVolatileTopic Locate and create an Volatile topic

createVolatileQueue Locate and create an Volatile queue

createMQQueue Locate and create an MQSeries queue

Note: The methods shown in Table 13–2 can be used regardless of

the technique used to configure the Oracle Message Broker, either

an LDAP Directory or Lightweight Configuration.
Lightweight Configuration 13-7

Using Lightweight Configuration
When the Oracle Message Broker is started using an LDAP Directory in either Local

Mode or Remote Mode, created destinations can only be used as the argument in a

call to send or publish. They cannot be used to create a message producer or

message consumer.

Configured Destinations Configured destinations are destinations that are returned

using a JNDI lookup or with a call to the MercuryQueue or MercuryTopic
constructors shown below. To obtain configured destinations, instances of

javax.jms.Topic or javax.jms.Queue, when an LDAP Directory is not used, use one

of the following constructors:

oracle.oas.mercury.MercuryQueue(String queue_name)
oracle.oas.mercury.MercuryTopic(String topic_name)

Where:

To use these constructors, Oracle Message Broker needs to be using Lightweight

Configuration.

Shutting Down
When a client is done with the Oracle Message Broker, it should call

shutdownClient . This shuts down the ORB and performs certain cleanup

operations. Clients call this method as follows:

oracle.oas.mercury.Mercury.shutdownClient()

After the Oracle Message Broker is shut down, keep the following in mind:

■ The ORB cannot be restarted after it is shut down. Thus a client should not call

shutdownClient and then attempt to access a remote Oracle Message Broker

by obtaining a connection factory.

queue_name is the name of the queue

topic_name is the name of the topic

Note: The shutdownClient method is not part of the JMS

specification. It assists the Oracle Message Broker in cleanup, and

allow clients to exit and cleanup.
13-8 Administration Guide

Using Lightweight Configuration
Obtaining a Connection Factory Instance (in Local Mode)
When the Oracle Message Broker, using Lightweight Configuration and running in

Local Mode, obtain a ConnectionFactory Instance for the Oracle Message Broker by

calling one of the getLocalConnectionFactory methods:

■ oracle.oas.mercury.Mercury.getLocalConnectionFactory()

■ oracle.oas.mercury.Mercury.getLocalAQConnectionFactory()

Using getLocalConnectionFactory The method getLocalConnectionFactory starts an

Oracle Message Broker that uses any supported driver. The method

getLocalConnectionFactory requires configuration properties for an Oracle Message

Broker to be added to System properties. Configuration properties can also be

loaded from a file when using Mercury.getLocalConnectionFactory.

Call the following method to start a local Oracle Message Broker using

configuration information specified with Lightweight Configuration:

package oracle.oas.mercury;
import javax.jms.*;

Mercury.getLocalConnectionFactory(String driver_name , String broker_id ,
String client_id);

Where the arguments are:

Use this method when you want to start the Oracle Message Broker in local mode

using Lightweight Configuration and you have either stored the configuration

properties in a file or inserted them into the System properties.

The getLocalConnectionFactory method starts a local Oracle Message Broker

without an LDAP Directory and without using JNDI. When a client executes this

method it creates an active OMB Instance in the client’s JVM.

Using getLocalAQConnectionFactory The method getLocalAQConnectionFactory starts

an Oracle Message Broker that uses the JDBC based AQ driver. This method does

not require any configuration properties set in System properties and it does not

load configuration properties from a configuration file. This variant of lightweight

configuration is called Zero Configuration. Zero Configuration is only supported

driver_name the driver name

broker_id the broker ID

client_id the client ID
Lightweight Configuration 13-9

Using Lightweight Configuration
for the AQ Driver. Zero Configuration allows the Oracle Message Broker to start

with the AQ Driver as easily as a JDBC connection starts.

This method allows the Oracle Message Broker to start with no Oracle Message

Broker-specific configuration. The information required to use start the Oracle

Message Broker is: service_name, admin_user, admin_password. If properties are

set in System properties, the Oracle Message Broker started using

getLocalAQConnectionFactory can start other Oracle Message Broker drivers, in

addition to the AQ Driver.

The API for the getLocalAQConnectionFactory access method is:

package oracle.oas.mercury;
import javax.jms.*;

Mercury.getLocalAQConnectionFactory(String service_name , String admin_user ,
String admin_password , String client_id);

throws JMSException;
};

Where:

Obtaining Destinations (in Local Mode)
The methods to obtain destinations in Local Mode are the same as those available in

Remote Mode. Refer to "Obtaining Destinations" on page 13-7 for details.

Shutting Down (in Local Mode)
A client program running Oracle Message Broker in Local Mode shuts down the

Oracle Message Broker when it finishes. The close() method associated with a

MercuryConnectionFactory initiates the shutdown for the Local Mode Oracle

Message Broker.

For example, local clients can call the following method to stop Oracle Message

Broker:

oracle.oas.mercury.MercuryConnectionFactory.close()

service_name is the name of the net service name used to create JDBC

connections

admin_user is the name of the Database Server user

admin_password is the password for the Database Server user

client_id specifies the client identifier to use for the connection
13-10 Administration Guide

Using Lightweight Configuration
Where MercuryConnectionFactory is a connection factory instance, as shown

in "Obtaining a Connection Factory Instance (in Local Mode)" on page 13-9. This

method initiates the shutdown for the Oracle Message Broker.

The client program can also shut down the Oracle Message Broker using the

method Mercury.shutdownClient, as shown in "Shutting Down" on page 13-8.

Specifying Configuration Values with Lightweight Configuration
Lightweight configuration uses Java properties to specify configuration values.

Properties are specified on the command line or in a file (or both, see "Property

Evaluation Precedence Rules" on page 13-12). The file containing Oracle Message

Broker configuration properties is specified on the command line using the property

oracle.oas.mercury.config (see Table 13–3 for details on this property). The Oracle

Message Broker reads this file once, when it starts.

Specifying Properties
The syntax for specifying properties on the command line is:

-Dproperty_name =property_value

To use properties in a file, you must set the property oracle.oas.mercury.config

which specifies the name of the file that contains configuration values. This is

specified on the command line. Using a file rather than command line properties

may be more appropriate for the following reasons:

■ Command lines only allow a limited number of properties to be set.

■ Using a file prevents a user from having to enter and possibly reenter long

command lines.

The syntax for properties specified in a file is:

property_name =property_value
property_name =property_value
.
.
.
In Java, property names are case sensitive. This may lead to confusion when a user

types a property name that is equivalent, except for case. To prevent confusion,

Oracle Message Broker converts all property names to lower case internally, so that

the property name case, from a users point of view, is not significant.
Lightweight Configuration 13-11

Lightweight Configuration Properties
When properties are read from a file, do not include trailing blanks after the

specified property_value. Trailing blanks may be interpreted as part of the value. For

example, ‘oracle.oas.mercury.maxMemory=3’ is correct, since there are not

any trailing blanks, but ‘oracle.oas.mercury.maxMemory=3 ’ is incorrect.

Properties that are specified on the command line are stored with the JVM’s system

properties. These properties can be retrieved using a call to

java.lang.System.getProperty(String). Oracle Message Broker properties that are

read from a configuration file are not stored as system properties.

Property Evaluation Precedence Rules
The Oracle Message Broker uses the following precedence rules for property values:

1. Retrieve the names of all system properties.

2. Store these properties in a first hash table after converting names to lower case.

3. Read all properties stored in the configuration file specified by

oracle.oas.mercury.config.

4. Store these in second has table after converting all names to lower case.

5. For each property that a user can specify, do the following, in order:

a. Convert the name to lower case.

b. If the property is stored in the first hash table, use its value. Otherwise, if

the property is stored in the local hash table, use the value from the second

hash table. As indicated, the value in system hash table takes precedence.

Lightweight Configuration Properties
This section describes the Oracle Message Broker configuration properties. The set

of all valid Oracle Message Broker configuration property names cannot be

determined in advance, since the values for some properties determines the valid

names for other properties.

For example, using Lightweight Configuration, you can add a destination named

myQueue with the property oracle.oas.mercury.destinations. If myQueue is

Note: This implies that if a property appears in both the system

properties and in the configuration file, the system properties value

is used.
13-12 Administration Guide

Lightweight Configuration Properties
specified as a destination, then the property

oracle.oas.mercury.dest.myQueue.isTopic is also a valid property name.

In Table 13–4, Table 13–5, and Table 13–6, parameterized values appear as part of a

property names when the value is a property value, that is used to generate other

valid property names.

Oracle Message Broker Lightweight Configuration property values can be one of

four types: an integer, a string, a list of strings, or boolean. Strings are not quoted. A

list of strings is comma-delimited and is of the form: string [,string]*. The string and

list of string syntax does not allow for spaces. Valid boolean values are true and

false and strings equivalent to ‘true’ or ‘false’, ignoring case.

Table 13–3 describes the general configuration properties for Oracle Message Broker

Lightweight Configuration.

In Table 13–3, Table 13–4, Table 13–5, and Table 13–6, all property names begin with

oracle.oas.mercury. Optional properties are enclosed in brackets, “[]”.

Table 13–3 Broker Configuration Properties

Property Name Description

[oracle.oas.mercury.

config]

This property specifies the configuration file. If the Oracle Message Broker cannot
open the specified file an exception is thrown and the Oracle Message Broker does
not start.

Default: no default value
Type: String

[oracle.oas.mercury.

key]

The property value is used to construct the name of the file in which the IOR is
stored. The name for this file is constructed as JMSProvider key, where key is the
string provided by this property.

Default: If no value is specified, the Oracle Message Broker uses the value of the
system property, user.name, if the user.name is not set, ‘_default ’ is used.
Type: String

 [oracle.oas.mercury.

maxConcurrent]

The minimum value is 5. The maximum value is 10000.

When the Oracle Message Broker is used in Remote Mode, this value sets the
number of generic ORB threads which can handle requests. It is also used to limit
the number of concurrent blocking calls to a value less than the number of generic
ORB threads. This prevents all of the threads from being stuck in blocking calls.
Blocking calls are calls to create subscribers, destroy subscribers, and some variants
of receive. When setting this parameter, keep in mind that each thread consumes
resources (the resources consumed by a thread includes a 64k stack).

Default: 10
Type: integer
Lightweight Configuration 13-13

Lightweight Configuration Properties
[oracle.oas.mercury.

maxHeap]

The minimum value is 4. The maximum value is java.lang.Integer.MAX_
VALUE.

This property represents the maximum size of the JVM heap, in megabytes, for the
Oracle Message Broker process. When a JVM is started, it has a maximum and initial
heap size. The actual size of the JVM heap will be less than or equal to the
maximum size. The actual size of the JVM heap can be determined at runtime, but
the maximum size cannot. The Oracle Message Broker uses the maxHeap value to
prevent the Oracle Message Broker process from running out of memory.

Default: 4
Type: integer

[oracle.oas.mercury.

maxMemory]

The minimum value is 4. The maximum value is 4096.

This property represents the number of megabytes of the JVM heap that the Oracle
Message Broker can use. This value must be less than or equal to
oracle.oas.mercury.maxHeap. When calls are made that might cause the Oracle
Message Broker to consume memory, it checks the amount of memory in use and
throws an exception if too much memory is in use. Too much memory is in use
when more than (.7 * maxHeap)megabytes of the JVM heap are in use. See the
oracle.oas.mercury.maxHeap property for more information).

Default: 4
Type: integer

 [oracle.oas.mercury.

maxPropRecv]

This property determines the number of threads used to receive messages for
propagation jobs. Propagation is not supported using Oracle Message Broker
Lightweight Configuration.

Default: 1
Type: integer

[oracle.oas.mercury.

maxPropSend]

This property determines the number of threads used to send messages for
propagation jobs. Propagation is not supported using Oracle Message Broker
Lightweight Configuration.

Default: 1
Type: integer

 [oracle.oas.mercury.

propJobFile]

This is ignored using Lightweight Configuration.

Default: no default value
Type: String

Table 13–3 (Cont.) Broker Configuration Properties

Property Name Description
13-14 Administration Guide

Lightweight Configuration Properties
Subscriber Configuration Properties
Table 13–4 describes the subscriber properties for Oracle Message Broker

Lightweight Configuration. The parameter sub_name indicates that the subscriber

name should be included as part of the property name.

Table 13–4 Subscriber Configuration Properties

Property Name Description

[oracle.oas.mercury.

subscribers]

The Oracle Message Broker creates a durable subscription for each subscriber
on the list if the other required properties for the subscriber are also specified.

For the following properties, the names in the string list are substituted for sub_
name.

Default: is an empty list
Type: list of strings.

 [oracle.oas.mercury.

subscriber.sub_name.clientID]

If this property is specified, it will be used as the client ID for the durable
subscription.

Default: no default value
Type: String

[oracle.oas.mercury.

subscriber.sub_name.selector]

If this property is specified, it will be used as the message selector for the
durable subscription.

Default: no default value
Type: String

 oracle.oas.mercury.

subscriber.sub_name.topic

This is the name of the topic for which the durable subscription is created. The
topic must also be defined for the subscription to be created.

Default: no default value
Type: String
Lightweight Configuration 13-15

Lightweight Configuration Properties
Driver Properties
Table 13–5 describes the driver properties. Some properties are particular to an

individual driver. Those properties include the name of the driver rather than

driver_name. Properties that can be specified for any driver include driver_name in

the name of the property. The driver_name should be replaced by the name of the

driver (‘aq’, ‘mq’, ‘vol’, ‘rv’, ‘mcast’).

Table 13–5 Driver Configuration Properties

Property Name Description

[oracle.oas.mercury.

drivers]

The set of strings that can be on the list are {‘vol’, ‘aq’, ’aqlite, ‘mq’,
‘rv’, ‘mcast’}. Additional properties can be specified for each driver
that is named in drivers. The names specified in drivers should be
substituted for ‘driver_name’ in the following properties.

Default: vol
Type: String

[oracle.oas.mercury.

driver.driver_name.maxSharedSessions]

Some drivers use this property to control their resources. This value
is ignored by the drivers: vol, rv, mcast, and mq.

The AQ Driver uses this parameter as the number of JDBC
connections that are created in a pool and used internally for
administrative purposes. Administrative uses include creating and
destroying AQ queues and subscriptions. The AQ Driver in the OCI
mode creates one connection per JMS session to provide operational
access to AQ queues. The AQ Driver in the JDBC mode creates one
JDBC connection per JMS session to provide operational access to
AQ queues.

The minimum value is 2. There is no maximum value.

Default: 8
Type: integer

[oracle.oas.mercury.

driver.driver_name.maxPrivateSessions]

The minimum value is 2. There is no maximum value.

This property is used by some drivers to control resources. This
value is ignored by the drivers: vol, mcast.

The rv driver limits the number of JMS sessions to this value
(approximately).

The mq driver limits the number of JMS sessions to this value.

The aq driver uses this to set the maximum number of concurrent
JMS sessions that the driver allows to be created. The Database
Server should be configured to support more than
maxPrivateSessions.

Default: 8
Type: integer
13-16 Administration Guide

Lightweight Configuration Properties
[oracle.oas.mercury.

driver.driver_name.numPushSessions]

The minimum value is 2. There is no maximum value.

This determines the number of threads started by the Oracle
Message Broker to push messages to message listeners. There will be
at most numPushSessions concurrent pushes to listeners from a
particular driver.

Default: 10
Type: integer

[oracle.oas.mercury.

driver.driver_name.propSessions]

The minimum value is 0. There is no maximum value.

This determines the number propagation threads started by the
Oracle Message Broker for the specified driver.

Default: 10
Type: integer

[oracle.oas.mercury.

driver.driver_name.queryInterval]

The minimum value is 10. There is no maximum value.

It is the number of milliseconds that the per-driver query thread will
sleep in between queries. The query thread queries all queues and
topics for which message listeners have been created to determine
the count of available messages. If this value is too small the Oracle
Message Broker may consume too much CPU time performing the
queries. If this value is too large clients may see a delay between the
time at which a message is available and the time at which the Oracle
Message Broker determines that a message is available.

Default: 1000
Type: integer

oracle.oas.mercury.

driver.driver_name.propSendLogQueue

It is the name of the queue that is used by propagation for logging by
send threads. It can be the same as propRecvLogQueue. Propagation
is not supported using Oracle Message Broker Lightweight
Configuration.

Default: no default value
Type: String

oracle.oas.mercury.

driver.driver_name.propRecvLogQueue

It is the name of the queue that is used by propagation for logging by
receive threads. It can be the same as propSendLogQueue.
Propagation is not supported using Oracle Message Broker
Lightweight Configuration.

Default: no default value
Type: String

Table 13–5 (Cont.) Driver Configuration Properties

Property Name Description
Lightweight Configuration 13-17

Lightweight Configuration Properties
oracle.oas.mercury.

driver.aq.serviceName

It is required when thinJdbc is false or useJdbc is false.

It is the service name used to create OCI connections. It is also used
to create JDBC connections when the OCI based JDBC driver is used.
The URL in the call to java.sql.DriverManager.getConnection is
‘jdbc:oracle:oci8:@serviceName ’ after the value of serviceName is
substituted for ‘serviceName’.

Default: no default value
Type: String

[oracle.oas.mercury.

driver.aq.thinJdbc]

This determines whether the thin or OCI based JDBC driver should
be used. The thin JDBC driver is used when thinJdbc is true. The OCI
based JDBC driver is used when thinJdbc is false.

Default: false
Type: boolean

oracle.oas.mercury.

driver.aq.thinJdbcConnString

It is required when thinJdbc is true. This is used to determine the
URL in the call to java.sql.DriverManager.getConnection. The URL is
‘jdbc:oracle:thin:@thinJdbcConnString’ after the value of
thinJdbcConnString is substituted for ‘thinJdbcConnString’.

Default: no default value
Type: String

oracle.oas.mercury.

driver.aq.adminUser

It is the name used to authenticate DBMS connections by the AQ
Driver.

The OCI based AQ Driver performs all Oracle8 access with this
identity.

The JDBC based AQ Driver performs all administrative access with
this identity. Administrative access includes: create subscription,
destroy subscription, create queue, destroy queue. The JDBC based
AQ Driver also uses this as the default identity when an Oracle
Message Broker client creates a JMS connection without supplying a
name and password. Otherwise, the name and password supplied by
the Oracle Message Broker client will be used to authenticated the
JDBC connection.

Default: no default value
Type: String

oracle.oas.mercury.

driver.aq.adminPassword

This property specifies the password used to authenticate DBMS
connections by the AQ Driver. It is used in association with
oracle.oas.mercury.driver.aq.adminUser.

Default: no default value
Type: String

Table 13–5 (Cont.) Driver Configuration Properties

Property Name Description
13-18 Administration Guide

Lightweight Configuration Properties
[oracle.oas.mercury.

driver.aq.useJdbc]

It determines whether the JDBC based AQ Driver or the OCI based
AQ Driver is started when the Oracle Message Broker uses the AQ
Driver. The JDBC based AQ Driver is started when the value is ‘true’.

Default: false
Type: boolean

[oracle.oas.mercury.

driver.aqlite.dbname]

The name of the AQ Lite database. In case where the name is null,
use the default database.

Default: null
Type: String

[oracle.oas.mercury.

driver.aqlite.dbpasswd]

The password to connect to the AQ Lite database. When the
password is null no password is used.

Default: null
Type: String

oracle.oas.mercury.

driver.rv.certified

When true TIBCO provides a higher quality of service for message
delivery.

Default: false
Type: boolean

[oracle.oas.mercury.

driver.rv.service]

It determines the name of the TIBCO service to use when creating
TIBCO sessions.

Default: null (default service)
Type: String

[oracle.oas.mercury.

driver.rv.network]

It determines the network interface to use when creating TIBCO
sessions.

Default: null (default network interface)
Type: String

[oracle.oas.mercury.

driver.rv.daemon]

It determines the name of the TIBCO daemon to connect to when
creating TIBCO sessions.

Default: null (local daemon)
Type: String

oracle.oas.mercury.

driver.mcast.ip

It determines the IP multicast address to use for multicast
communication. The valid range is between 225.0.0.0 and
239.255.255.255, inclusive.

Default: no default value
Type: String

Table 13–5 (Cont.) Driver Configuration Properties

Property Name Description
Lightweight Configuration 13-19

Lightweight Configuration Properties
Destination Properties
Some properties must be specified for each topic or queue. These include ‘dest_
name’ in the name of the property. ‘dest_name’ should be replaced by the name of the

destination when this property name is used. Some properties are only applicable

when a particular driver is used. Those properties include the name of the driver in

the property name.

oracle.oas.mercury.

driver.mcast.port

The valid range is between 1024 and 65535, inclusive.

It determines the IP multicast port number to use for multicast
communication.

Default: no default value
Type: integer

[oracle.oas.mercury.

driver.mcast.network]

It determines the local IP address of the network interface used by
the mcast driver.

Default: null (default network interface)
Type: String

Table 13–6 Destination Configuration Properties

Property Name Description

[oracle.oas.mercury.

destinations]

This list contains the names of the queues and topics the Oracle
Message Broker can access. Other properties must be specified for each
name on this list. The other properties follow.

Default: empty list
Type: String

[oracle.oas.mercury.

destination.dest_name.isTopic]

This can be specified for each destination in the string lists for topics
and queues. ‘dest_name’ is a topic when this is true. Otherwise, ‘dest_
name’ is a queue.

Default: true
Type: boolean

oracle.oas.mercury.

destination.dest_name.driver

It must be one of: ‘aq’, ‘aqlite, ‘mcast’, ‘mq’, ‘rv’, ‘vol’. This determines
the driver that is used to access the topic or queue. Access to this
destination will fail if the driver cannot be started or if the driver has
not been configured to start.

Default: no default value
Type: String

Table 13–5 (Cont.) Driver Configuration Properties

Property Name Description
13-20 Administration Guide

Lightweight Configuration Properties
[oracle.oas.mercury.

destination.dest_name.vol.maxMsgs]

The minimum value is: 10. The maximum value is:
java.lang.Integer.MAX_VALUE.

This determines the maximum number of messages that can be stored
in a volatile queue or volatile topic. The Oracle Message Broker may not
have enough memory to store the number of messages specified by this
limit. Messages that have been received in a transaction are counted
against this limit until the transaction is committed. The count of
messages in a volatile topic is incremented once for each subscriber that
can receive the message. If a message is published to a topic, and there
are 100 subscribers to the topic, then the count of messages in the topic
will be incremented by 100.

Default: java.lang.Integer.MAX_VALUE
Type: integer

[oracle.oas.mercury.

destination.dest_
name.aq.internalName]

Type: String

It is the name of the AQ queue as used within the Oracle8i Database
Server (single-consumer or multi-consumer), which does not have to be
the same as ‘dest_name’. The name must not include the schema prefix.

Default: ‘dest_name’
Type: String

[oracle.oas.mercury.

destination.dest_name.aq.aqRules]

When this is true the AQ rules engine is used to implement message
selectors for topic subscribers. When this is false, the Oracle Message
Broker message selector engine is used to implement message selectors
for topic subscribers. The Oracle Message Broker message selector
engine is always used to implement message selectors for queue
consumers.

Note: This property is only valid for topics.

Default: false
Type: boolean

oracle.oas.mercury.

destination.dest_name.aq.schema

This is the schema in which the AQ queue resides.

Default: no default value
Type: String

oracle.oas.mercury.

destination.dest_name.

aqlite.owner

Specifies the owner of the AQLite queue or topic.

Default: default user
Type: String

Table 13–6 (Cont.) Destination Configuration Properties

Property Name Description
Lightweight Configuration 13-21

Lightweight Configuration Properties
oracle.oas.mercury.

destination.dest_name.

aqlite.message.grouping

Specifies the grouping of messages in AQ Lite.

Valid values: NONE or TRANSACTIONAL

Default: NONE
Type: String

oracle.oas.mercury.

destination.dest_name.aqlite.storage_
clause

The storage clause used to create the AQ Lite queue table. If the storage
clause is null then no storage clause is used.

Default: null
Type: String

 [oracle.oas.mercury.

destination.dest_
name.mq.internalName]

It is the name of the MQSeries queue, which does not have to be the
same as ‘dest_name’

Default: ‘dest_name’
Type: String

[oracle.oas.mercury.

destination.dest_name.mq.isNative]

When it is false, JMS messages are serialized and stored as a stream of
bytes on an MQSeries queue. Some fields from the MQSeries header are
used to set values in the JMS message. When it is true, only text
messages and bytes messages can be stored on the queue and the body
of the text or bytes message is stored as the body of the MQSeries
message. The properties from the JMS message are not stored in the
MQSeries message.

Default: false
Type: boolean

[oracle.oas.mercury.

destination.dest_
name.mcast.internalName]

It is the name of the mcast topic, which does not have to be the same as
‘dest_name’.

Default: ‘dest_name’
Type: String

[oracle.oas.mercury.

destination.dest_
name.rv.internalName]

It is the name of the rv topic, which does not have to be the same as
‘dest_name’.

Default: ‘dest_name’
Type: String

[oracle.oas.mercury.

destination.dest_name.rv.isNative]

When it is true, JMS messages are stored in a TIBCO specific format.
When it is true, JMS messages are stored as a serialized stream of bytes
that can only be accessed by the Rv driver.

Default: false
Type: boolean

Table 13–6 (Cont.) Destination Configuration Properties

Property Name Description
13-22 Administration Guide

Lightweight Configuration Constraints and Limitations
Sample Configuration Files
Refer to "Starting with Lightweight Configuration in Remote Mode" on page 13-4

for a sample command line showing how to start the Oracle Message Broker using

Lightweight Configuration. The Oracle Message Broker includes lightweight

configuration samples in $OMB_HOME/samples/client/java/lightweight, or on

Windows NT systems, %OMB_HOME%\samples\client\java\lightweight.

Lightweight Configuration Constraints and Limitations
1. Durable Subscriber Limitations

When running the Oracle Message Broker with the LDAP Directory, the Oracle

Message Broker stores information about durable subscribers in directory

entries. The directory entries for durable subscribers are updated at runtime as

they are created and unsubscribed. With Lightweight Configuration, the Oracle

Message Broker does not record the durable subscription, except the message

store (creation subscription to AQ is durable by itself).

If a client creates a durable subscriber, and that durable subscriber has not been

read during startup with Lightweight Configuration, the Oracle Message

Broker does not maintain or update a persistent record of the new durable

subscriber (the Oracle Message Broker does not write Lightweight

Configuration information, it only reads it).

The Oracle Message Broker uses its knowledge of existing subscribers, as it is

provided at startup, or during runtime, to determine when to perform an

implicit unsubscribe when processing a subscribe request. The Oracle Message

Broker performs an implicit unsubscribe when a request is made to create a

subscriber, and there is an existing subscription to that topic with the same

subscriber name, and the existing subscription uses a message selector that is

different than the message selector specified with the subscribe request. This is

only an issue for the AQ Driver since durable subscribers to AQ multiconsumer

queues survive Oracle Message Broker failures. If AQRules is enabled, Oracle

Message Broker queries the message selector stored in the DBMS to see if the

new selector is different. If AQRules are not enabled, Oracle Message Broker

assumes the message selector is the same as long as the Oracle8i Database

Server does not contain a selector for the subscribe.

The Oracle Message Broker creates durable subscribers specified in the

configuration information at startup. However, there is not an administrative

mechanism in Lightweight Configuration that causes the Oracle Message
Lightweight Configuration 13-23

Lightweight Configuration Constraints and Limitations
Broker to unsubscribe to a durable subscriber. Unsubscribes only occur when an

Oracle Message Broker client requests an unsubscribe.

2. Prerequisite Knowledge

The Oracle Message Broker can be configured to use more resources, memory,

DBMS connections, than resource providers (virtual memory system, DBMS)

have been configured to provide. The person specifying configuration values is

responsible for ensuring that appropriate values are specified.

A DBMS that is used by both Oracle Message Broker to access Oracle AQ and

Oracle Internet Directory must support the resource requirements of both

systems.

3. Security Issues

Some of the information that the Oracle Message Broker accesses using

Lightweight Configuration is private. Passwords that are used to authenticate

DBMS connections can be specified using Lightweight Configuration. It is the

responsibility of the Oracle Message Broker user to protect access to both the

command line and the Lightweight Configuration file when they contain

sensitive information such as passwords.

4. If a durable subscriber for an AQ multi-consumer queue is created at runtime,

and that subscriber is not specified in the configuration information processed

at startup, and the AQ rules engine is not used to implement message selectors,

then the Oracle Message Broker will not know when to perform an implicit

unsubscribe. This will cause behavior that violates the JMS specification.

The following scenario demonstrates this failure:

a. The Oracle Message Broker is started using lightweight configuration.

b. No durable subscribers are specified using lightweight configuration.

c. A durable subscriber with no message selector is created to an AQ

multi-consumer queue at runtime.

d. Messages are enqueued to the AQ multi-consumer queue.

e. The Oracle Message Broker is stopped.

f. The Oracle Message Broker is restarted.

g. A durable subscriber with a message selector and the same name as the

durable subscriber in step c is created to the same AQ multi-consumer

queue.
13-24 Administration Guide

Lightweight Configuration Constraints and Limitations
If any messages enqueued in step d satisfy the message selector specified in

step g, these message can be received by durable subscriber created in step g.

But the JMS specification requires that an unsubscribe be done at step g since

the subscriber is created with a different message selector. Since the subscriber

had not been recorded in the configuration information, the Oracle Message

Broker has no way to determine that this is the case. When the AQ rules engine

is used, the Oracle Message Broker will query the existing rule used by an

durable subscriber and this problem will not occur.

5. Command Line Limits

There are limits on the size of a Java command line. Due to this limitation, users

may not be able to specify all of the configuration data that is required on a

command line. This limit may be smaller than 1024 characters. If you reach this

limit, use a configuration file to specify configuration data.

6. Property Limitation

Avoid setting the following combination of property values:

oracle.oas.mercury.driver.aq.useJDBC=true
oracle.oas.mercury.driver.aq.thinJDBC=true

These property values conflict, and results are unpredictable.

With the value of useJDBC set to true, the only value supported for thinJDBC
is false:

oracle.oas.mercury.driver.aq.useJDBC=true
oracle.oas.mercury.driver.aq.thinJDBC=false
Lightweight Configuration 13-25

Lightweight Configuration Constraints and Limitations
13-26 Administration Guide

Asynchronous Component In
14

Asynchronous Component Invocation

This chapter covers the Oracle Message Broker Asynchronous Component

Invocation (ACI) feature. ACI links JMS, as provided by the Oracle Message Broker,

to applications running in the Oracle Database Server. ACI can automatically

invoke Enterprise JavaBeans (EJB), when messages arrive at a JMS destination. The

EJB can subsequently consume and process JMS messages from a queue or topic.

Asynchronous Component Invocation has the following important features:

■ ACI notifies an EJB when a condition on a queue or topic is met. Once notified,

the EJB acts as an Oracle Message Broker client.

■ EJBs that process notifications can use the standard JMS API or higher-level

classes that simplify the JMS calls required to process messages.

■ EJBs can have full programmatic access to Oracle Message Broker using JMS.

■ ACI configuration is performed using the Oracle Message Broker

administration utilities.

This chapter covers the following:

■ ACI Architecture

■ ACI Triggers

■ EJB Adapter

■ Java Helper Classes

■ ACI Tutorial

Note: EJBs can only access remote mode Oracle Message Brokers.

Oracle Message Broker Local mode is not supported.
vocation 14-1

ACI Architecture
ACI Architecture
The Oracle Message Broker ACI feature consists of the following components:

■ ACI Listener – listens to a set of queues or topics (see "ACI Listener" on

page 14-3).

■ ACI Dispatcher - sends notifications to registered EJBs according to the

specified configuration (see "ACI Dispatcher" on page 14-3).

■ ACI Adapters (EJB Adapter) – provide an application-side framework for

receiving asynchronous notifications (see "ACI Adapters" on page 14-4).

■ ACI Helper Classes (Java Framework) - the helper classes can optionally be

used by EJBs to simplify management of JMS messages (see "ACI Helper

Classes" on page 14-4).

Both the ACI Listener and the Dispatcher reside in the same JVM as the Oracle

Message Broker.

Figure 14–1 shows a high-level view of ACI components.

Figure 14–1 ACI Components
14-2 Administration Guide

ACI Architecture
ACI Listener
When a user-defined condition occurs, the ACI Listener generates an event that

sends a notification to an EJB. Each condition, called a trigger, acts on one and only

one JMS destination (queue or topic). It is not possible to set triggers that involve

multiple JMS destinations.

The ACI Listener watches one or more JMS destinations and checks if a condition,

specified by a rule stored in the LDAP Directory, is met. When a condition is met,

the ACI Listener generates a notification event and gives it to the ACI Dispatcher.

When several ACI triggers are set on the same JMS queue, all the triggers that meet

the condition associated with their rules receive a notification. In this situation, it is

possible for several EJBs to receive a notification for the same message. In this case,

only one of the EJBs consumes the message. It is part of the developer’s task to

ensure that multiple ACI triggers set on the same JMS queue do not compete for the

same messages. One way around this problem is to use disjoint message selectors

for the rules associated with a trigger on a queue.

When associating ACI triggers to topics, each trigger acts as a distinct consumer,

and all notified EJBs can consume copies of the same messages.

ACI Dispatcher
The ACI Dispatcher sends notifications to registered EJBs according to the specified

configuration. The EJB can then consume one or more messages using the Java

framework or using JMS.

The ACI Dispatcher invokes EJBs at the request of the ACI Listener. EJB invocations

are asynchronous, that is, many requests can be issued and managed

simultaneously without performance degradation in the Oracle Message Broker.

Using ACI, JMS topics require a durable subscription. Since JMS only allows one

active use of a durable subscription, there must only be only one notification

outstanding at a time for topics. This means that the ACI Dispatcher cannot issue a

notification until the previous notification is completed. This may become a

problem with some trigger configurations if EJBs take time to process notifications,

and there are many messages published on a topic.

If the ACI Dispatcher fails invoking an EJB multiple consecutive times for the same

trigger (this may happen for instance if the Oracle database is not started, or if the

EJB does not provide robust error handling and a queue contains an invalid

message that systematically make the EJB fail), that trigger will be automatically

canceled and a message will be inserted in the log file. To re-enable the trigger, one
Asynchronous Component Invocation 14-3

ACI Triggers
has to explicitly disable and re-enable the trigger using Oracle Message Broker

administrative tools.

ACI Adapters
ACI Adapters (EJB Adapter) - provide an application-side framework for receiving

asynchronous notifications. Each adapter supports a type of component. Currently,

the ACI feature only provides an adapter for Oracle EJBs.

ACI Helper Classes
ACI Helper Classes (Java Framework) - the helper classes can optionally be used by

EJBs to simplify management of JMS messages. Such classes automate the process

of consuming messages by hiding most of the JMS complexity (e.g., creating a

connection, session, and consumer). These APIs make EJB programming easier, as

compared to JMS programming, upon asynchronous invocation.

EJBs that do not use the ACI helper classes and directly use the JMS API have the

following restrictions:

■ EJBs should not use message listeners or exception listeners. An exception will

be thrown if an EJB tries to register such a message or exception listener.

■ EJBs should not directly use JNDI to look up destinations and connection

factories. They should instead use the methods defined in the ACIHelper class.

■ EJBs should only use non-blocking primitives for message reception. A

well-behaved EJB invoked by ACI should process the message available on the

JMS destination, but not wait for new messages.

ACI Triggers
The conditions upon which asynchronous component invocations occur are

specified by setting ACI triggers on a JMS destination using an LDAP Directory

ACI trigger entry. Trigger entries are configured using the Oracle Message Broker

administrative tools.

Note: If an EJB has an opened connection to a broker and does not

access the broker for more than 1 minute, then it is assumed to have

failed. EJBs must close connections before terminating.
14-4 Administration Guide

ACI Triggers
Trigger entries have the following parameters:

■ Information about the destination for which the trigger applies. This

information includes the name of the connection factory, the name of the

destination (topic or queue), an optional message selector (for queues only), and

the name of a durable subscription (for topics only).

■ Name of the component to be invoked when the trigger’s condition is met.

■ User name and password of the schema to which the component belong.

■ The status of the trigger (enabled or disabled).

■ The trigger threshold (see "Setting the ACI Threshold Parameter" on page 14-5).

■ The trigger concurrency (see "Setting the ACI Concurrency Parameter" on

page 14-6).

■ The number of retries upon abnormal ACI termination.

ACI triggers are set by specifying the above parameters on a destination, and by

enabling the trigger using the status parameter. Since some trigger parameters only

apply to queues or topics, there are two ACI trigger entry types: QueueTrigger and

TopicTrigger (for more information on administration for these entries "Creating

and Configuring Asynchronous Component Invocation Triggers" on page 4-36).

Setting the ACI Threshold Parameter
The threshold parameter specifies the number of messages that must be stored in a

destination before an ACI is sent. The ACI subsystem cannot guarantee that an

invocation receives a “threshold” number of messages. The quality of service is best

effort and the number of invocations issued may not match what is expected.

Problems that could result in a different number of messages delivered include:

■ Non-Oracle Message Broker clients consuming messages from the destination

■ EJBs that consume more than the number of messages specified by the

threshold.

■ EJBs that consume less than the number of messages specified by the threshold.

For ACI to work as expected, each component should consume only the number of

messages specified with the “threshold” parameter.
Asynchronous Component Invocation 14-5

EJB Adapter
Setting the ACI Concurrency Parameter
The concurrency parameter specifies the number of concurrent ACIs that can

execute for a given trigger (for queues only). ACI attempts to guarantee that there

are never more invocations in progress for a trigger at one time than the

concurrency parameter. This property will always be true, unless a communication

failure happens while a component is processing the asynchronous notification, and

the dispatcher interprets the communication failure as a component failure.

Note that ACI invocations must not be issued concurrently for topics (therefore the

“concurrency” parameter must be equal to 1). This limitation is implied by the JMS

specification, which specifies that only one session at a time can have a topic

subscriber for a particular durable subscription. Since triggers set on topics require

durable subscriptions, the triggering mechanisms must ensure that there is only one

active invocation at a time.

EJB Adapter
The ACI EJB adapter provides support classes for writing Enterprise JavaBeans that

process incoming JMS messages. The ACI EJB adapter provides two sets of classes

that support the interface between EJBs and the Oracle Message Broker:

■ Notification-driven beans receive an asynchronous notification when some

condition has been met on a destination. They can subsequently consume

messages from that destination using the JMS API.

■ Message-driven beans asynchronously receive JMS messages from a

destination. They do not need to dequeue the message programmatically.

Message-driven beans provide a higher-level abstraction and are easier to use.

Notification-driven beans are more flexible; for instance, they make it possible to

consume several messages as part of the same transaction, or browse a queue to

find a specific message.
14-6 Administration Guide

EJB Adapter
Notification-driven Beans
The EJB adapter defines the following classes and interfaces for notification-driven

beans:

/*
 * ACI exception class.
 */
public class ACIException extends Exception {

// ...
}

/**
 * The description of the JMS destination on which the message(s) reside(s).
 */
public abstract class DestinationDescriptor
{

public String cf; // Connection factory to use
public String dest; // JMS destination to access
public String selector; // Optional message selector
public String subscription; // Durable subscription (for topics only)

}

public class QueueDescriptor extends DestinationDescriptor
{
}

public class TopicDescriptor extends DestinationDescriptor
{

public String subscription; // Durable subscription
public String client_id; // Client identifier

}

/**
 * This interface must be inherited by an EJB “Remote” interface that will get
 * messages from a JMS destination.
 */
public interface ACIRemote
{

public boolean msgPending(DestinationDescriptor dest, int threshold)
throws ACIException;

}

Asynchronous Component Invocation 14-7

EJB Adapter
The “DestinationDescriptor” class defines the information necessary for the EJB to

get the message(s) that triggered the asynchronous invocations. The “cf” and “dest”

members are names that can be used to lookup a connection factory and a

destination. The “selector” member is an optional message selector used by the ACI

Listener. “DestinationDescriptor” is an abstract class. Concrete destination

descriptors are instances of the “QueueDescriptor” or “TopicDescriptor”, which

inherit from “DestinationDescriptor”. “QueueDescriptor” does not add member

variables to “DestinationDescriptor”. “TopicDescriptor” defines an additional

subscription name (“subscription”) and the client identifier (“client_id”), necessary

for consuming messages through a durable subscriber. Note that the topics used

with ACI must always be accessed through durable subscribers. The durable

subscriber associated to a trigger must be created using Oracle Message Broker’s

administrative tools prior to starting the broker.

Notification-driven beans implement the “msgPending” operation, which will be

invoked asynchronously by Oracle Message Broker. As a convenience, the ACI EJB

adapter provides an interface called “ACIRemote” that defines the “msgPending”

method: notification-driven beans simply need to implement this interface. Using

this interface is however not mandatory, and EJBs can directly define “mgsPending”

among their own public methods.

The “msgPending” method must return true if it completed successfully, and false

otherwise (in that case, the method may be re-invoked depending on the

configuration of the ACI trigger). “msgPending” takes a destination descriptor

(instance of “QueueDescriptor” or “TopicDescriptor”) and an integer number which

indicates the number of messages that the component is expected to consume,

based on the configuration of the ACI trigger.

Figure 14-2 illustrates the asynchronous invocation of a notification-driven bean of

type “MyEJB”. Oracle Message Broker first creates an EJB by invoking the “create”

operation of the EJB “Home” object (1). As a result of this request, the EJB receives

an invocation to its “ejbCreate” method (2). Then, Oracle Message Broker sends an

asynchronous invocation to the “msgPending” operation of the EJB “Remote”

object (3), which leads to the actual invocation of the “msgPending” method of the

bean (4).
14-8 Administration Guide

EJB Adapter
Figure 14–2 Asynchronous Invocation of an EJB

Changing a standard EJB into a notification-driven bean is easy: it just requires

adding an inheritance link to the “Remote” bean interface (optional), implementing

the “msgPending” operation, and re-deploying the bean.

Sample Notfication-Driven Bean
The directory $OMB_HOME/samples/aci/jms (or on Windows NT systems

%OMB_HOME%\samples\aci\jms), contains a sample notification-driven bean.

Message-driven Beans
A message-driven bean is a JMS “MessageListener”. A message-driven bean is

invoked implicitly as a result of the arrival of a JMS message. Message-driven beans

must not be created or invoked explicitly by clients. They are anonymous and have

no client-visible identity.

A message-driven bean instance is an instance of a message-driven bean class. To a

client, a message-driven bean is a message consumer that implements some

business logic running on the server.
Asynchronous Component Invocation 14-9

EJB Adapter
A client accesses a message-driven bean through JMS by sending messages to the

JMS destination (queue or topic) for which the message-driven bean is the

“MessageListener”. The “onMessage” method is called when a message has arrived

for the bean to service. The “onMessage” method contains the business logic that

handles the processing of the message. It has a single argument, the incoming

message. Message-driven bean instances have no conversational state. This means

that all bean instances are equivalent when they are not involved in servicing a

client message.

All message-driven beans must implement the “MessageDrivenBean” interface. The

“setMessageDrivenContext” method is called to associate a message-driven bean

instance with its context maintained by the container. Typically a message-driven

bean instance retains its message-driven context as part of its state.

The ACI message-driven bean framework provides the message-driven bean

instance with a “MessageDrivenContext”. The “MessageDrivenContext” interface

has the following methods:

■ The “getCallerPrincipal” method returns the “java.security.Principal” that is

associated with the invocation of the bean instance.

■ The “isCallerInRole” method tests if the principal associated with the

invocation of the message-driven bean instance has a particular role.

■ The “setRollbackOnly” method allows the instance to mark the current

transaction such that the only outcome of the transaction is a rollback. Only

instances of a message-driven bean with container-managed transaction

demarcation can use this method. This method applies only to the EJB’s

transaction, and does not have any influence on JMS transacted sessions.

■ The “getRollbackOnly” method allows the instance to test if the current

transaction has been marked for rollback. Only instances of a message-driven

bean with container-managed transaction demarcation can use this method.

This method applies only to the EJB’s transaction, and does not have any

influence on JMS transacted sessions.

■ The “getUserTransaction” method returns the

“javax.transaction.UserTransaction” interface that the instance can use to

demarcate transactions, and to obtain transaction status. Only instances of a

message-driven bean with bean-managed transaction demarcation can use this

method. This method applies only to the EJB’s transaction, and does not have

any influence on JMS transacted sessions.

■ The “getEJBHome” method is inherited from the “EJBContext” interface.

Message-driven bean instances must not call this method.
14-10 Administration Guide

EJB Adapter
The “ejbRemove” notification signals that the instance is in the process of being

removed by the container. In the “ejbRemove” method, the instance releases the

resources that it is holding.

A message-driven bean is created in three steps. First, the message-driven bean

framework creates a new message-driven bean instance. Second, it calls the

“setMessageDrivenContext” method to pass the context object to the instance.

Third, it calls the instance’s “ejbCreate” method. Each message-driven bean class

must have one “ejbCreate” method, with no arguments.

Calls to each message-driven bean instance are serialized. Therefore, a

message-driven bean does not have to be coded as reentrant. However, many

instances of a message-driven bean class can be executing concurrently, thus

allowing for the concurrent processing of a stream of messages. No guarantees are

made as to the exact order in which messages are delivered to the instances of the

message-driven bean class. Message-driven beans should therefore be prepared to

handle messages that are out of sequence: for example, the message to cancel a

reservation may be delivered before the message to make a reservation.

Message-driven beans are actually implemented using underlying session beans.

Like standard session beans, they have a home and a remote interface. These

interfaces should however not be used explicitly by clients.

An ACI message-driven bean must extend the “MessageDrivenBeanAdapter” class.

All ACI message-driven classes are declared in the “oracle.oas.aci” package.

Messages are consumed on a destination using either a transacted or a

non-transacted session. To use a transacted session, the property

“oracle.oas.mercury.aci.transacted” must be set to “true” in the bean’s environment.

When using a transacted session, each message is consumed in the context of a new

transaction, and the transaction is committed when the “onMessage” method

returns. It is not possible to perform other operations in the context of that

transaction. However, the user transaction returned by the bean’s context can be

used to create an independent transaction in the context of the database.

The directory $OMB_HOME/samples/aci/messagedriven (%OMB_

HOME%\samples\aci\messagedriven on Windows NT), contains a sample

message-driven bean.
Asynchronous Component Invocation 14-11

Java Helper Classes
Java Helper Classes
Oracle Message Broker’s ACI feature provides helper classes that can optionally be

used by EJBs to simplify management of JMS messages. When using the EJB

adapter and notification-driven beans, the developer can use the “ACIHelper” class

to automate the process of consuming JMS messages.

The “ACIHelper” class is instantiated with a destination descriptor, a bean’s session

context, and a boolean flag indicating whether sessions have to be transacted or not.

It provides simple functions for consuming messages, without requiring the EJB to

know whether messages come from a queue or a topic, and to deal explicitly with

connections, sessions, or producers. Note that it does not provide blocking methods

for consuming messages, since such methods should not be used by well-behaved

beans.

The “ACIHelper” class defines the following methods:

class ACIHelper {
 /** Creates a new helper. */
 public ACIHelper(DestinationDescriptor dd,
 SessionContext sc,
 boolean transacted)
 throws ACIException
 { ... }

 /** Close the resources opened by the helper. */
 public void close()
 throws ACIException
 { ... }

 /** Consumes a message from the destination without blocking. */
 public Message consume()
 throws ACIException
 { ... }

 /** Commits the session if it transacted. */
 public void commit()
 throws ACIException
 { ... }
14-12 Administration Guide

Java Helper Classes
// Helper methods for EBJs that use directly the JMS API

/** Create a queue connection factory from a string. */
static public QueueConnectionFactory createQueueConnectionFactory(String id)

 throws JMSException
 { ... }

/** Create a topic connection factory from a string. */
static public TopicConnectionFactory createTopicConnectionFactory(String id)

 throws JMSException
 { ... }

 /** Create a queue from a string. */
static public Queue createQueue(String id)

 throws JMSException
 { ... }

 /** Create a topic from a string. */
static public Topic createTopic(String id)

 throws JMSException
 { ... }
}

Use the ACIHelper methods createTopic , createQueue ,

createTopicConnectionFactory , and createQueueConnectionFactory , to

create destinations and connection factories based on the identifier embedded in the

destination descriptor given to the bean. EJBs should use these methods to create

destinations and connection factories instead of using LDAP. See the code found in

the sample notification driven bean for more details.

A sample bean that uses the ACI helper classes is shown in the directory $OMB_

HOME/samples/aci/helper (%OMB_HOME%\samples\aci\helper on Windows

NT).
Asynchronous Component Invocation 14-13

ACI Tutorial
ACI Tutorial
This section illustrates the different steps of developing and deploying an EJB that

uses ACI. A message-driven bean, of class MyMDBean, receives JMS messages and

prints their content in a log file.

All the code of this tutorial is found in the directory $OMB_

HOME/samples/aci/messagedriven (or on Windows NT systems, $OMB_

HOME%\samples\aci\messagedriven).

The steps of this tutorial follow:

1. Configure Oracle Database

2. Define a Remote Interface

3. Define a Home Interface

4. Implement the EJB

5. Compile and Generate Jar File

6. Deploy the EJB

7. Add a Trigger Entry to Oracle Message Broker

Configure Oracle Database
Before using ACI, load Oracle Message Broker’s client classes in the Oracle

Database Server, and grant permissions to the schema in which the EJB executes

using the following two commands (in this tutorial, we use the sample schema

SCOTT/TIGER):

grant permissions to SCOTT
sqlplus sys/ sys_password @$OMB_HOME/admin/plsql/setupaci.sql SCOTT
Loading OMB client classes
loadjava -r -g SYS -u SCOTT/TIGER ${OMB_HOME}/classes/ombclt.jar

or on Windows NT systems:

sqlplus sys/ sys_password @%OMB_HOME%\admin\plsql\setupaci.sql SCOTT
loadjava -r -g SYS -u SCOTT/TIGER %OMB_HOME%\classes\ombclt.jar

Where:

sys_password is the administrative user sys’s password.
14-14 Administration Guide

ACI Tutorial
Define a Remote Interface
ACI beans must define a remote interface, which extends from ACIRemote. In

addition, like any EJB remote interface, this interface must extend EJBObject. The

remote interface of MyMDBean is defined in file test/MyMDBeanRemote.java as

follows:

package test;

public interface MyMDBeanRemote extends javax.ejb.EJBObject,
 oracle.oas.mercury.aci.ACIRemote
{
}

Define a Home Interface
ACI beans must provide a home interface with a create() method that returns an

instance of the bean and takes no arguments. The home interface is defined in file

test/MyMDBeanHome.java as follows:

package test;

public interface MyMDBeanHome extends javax.ejb.EJBHome {
 public MyMDBeanRemote create()
 throws java.rmi.RemoteException,
 javax.ejb.CreateException;
}

Implement the EJB
A message-driven bean class implements the MessageDrivenBean interface (which

extends MessageListener) and must implement its onMessage() method. In

addition, it must extend the MessageDrivenBeanAdapter class. The message-driven

bean implementation is defined in file test/MyMDBean.java as follows:

package test;

import java.rmi.*;
import javax.ejb.*;
import javax.jms.*;

Note: Run these commands only once for each schema, prior to

deploying EJBs in the schema.
Asynchronous Component Invocation 14-15

ACI Tutorial
import oracle.oas.mercury.aci.*;

public class MyMDBean extends MessageDrivenBeanAdapter
 implements MessageDrivenBean
{
 public void setMessageDrivenContext(MessageDrivenContext ctx) { }

 public void ejbCreate() throws RemoteException, CreateException { }

 public void ejbActivate() { }

 public void ejbPassivate() { }

 public void ejbRemove() { }

 public void onMessage(Message msg)
 {
 try {

if(msg instanceof TextMessage)
 System.out.println("Message is: " + ((TextMessage)msg).getText());
 else
 System.out.println("Message is not of type TextMessage");

} catch(JMSException e) {
 System.out.println(e.getMessage());
 }
 }
}

Compile and Generate Jar File
Files must be compiled and added to a jar file before deployment:

javac test/*.java
jar cf0 server.jar test/*.class

The resulting server.jar file contains all EJB implementation classes.

Note: The standard output of EJBs goes to the a file named

“$ORACLE_HOME/admin/$ORACLE_SID/bdump/${ORACLE_

SID}*.trc”
14-16 Administration Guide

ACI Tutorial
Deploy the EJB
The information necessary for creating the deployment descriptor consists of the

name of the bean, its classes, and its environment. The contents of the “test.ejb” file

used to generate the deployment descriptors is as follows:

SessionBean test.MyMDBean
{
 BeanHomeName = “test/myEJB”;
 RemoteInterfaceClassName = test.MyMDBeanRemote;
 HomeInterfaceClassName = test.MyMDBeanHome;

 AllowedIdentities = { PUBLIC };
 RunAsMode = CLIENT_IDENTITY;
 StateManagementType = STATEFUL_SESSION;

 EnvironmentProperties {
oracle.oas.mercury.aci.transacted = "true";
oracle.oas.mercury.aci.debug = "true";

}
}

The “server.jar” file can then directly be deployed using Oracle Database Server

deployment tools, as follows:

deployejb -republish -temp temp -u SCOTT -p TIGER -descriptor test.ejb \
 -s sess_iiop://localhost:2481:${ORACLE_SID} server.jar

Add a Trigger Entry to Oracle Message Broker
The last step consists configures the trigger entries in the LDAP Directory. Define

two trigger entries. The first trigger is registered on a volatile queue (volqueue) and

is fired every 5 messages with up to 3 concurrent invocations. The second trigger is

registered on a volatile topic and is fired every 10 messages.

The sample configuration file SetupACI shows how to setup these triggers. This file

is located in the directory $OMB_HOME/samples/admin (or on Windows NT

systems, %OMB_HOME%\samples\admin). Lines marked with “USERINFO” may

need to be modified to match your system configuration. Run SetupACI, using the

AdminUtil command.
Asynchronous Component Invocation 14-17

ACI Tutorial
14-18 Administration Guide

Oracle AQ Driver
A

Oracle AQ Driver ADTs

This appendix describes the Oracle8 abstract data types (ADTs) that the AQ Driver

uses to store Oracle Message Broker messages in AQ.

The AQ Driver uses these ADTs is work with messages using the JDBC Mode. For

details on configuring Oracle Message Broker for using JDBC Mode, see, and for

information on specifying ADT types for topics and queues, refer to "AQ Messages"

on page 7-5. In this appendix, we refer to this feature of the AQ Driver as, JMS

ADTs. The JMS ADTs define the data structures in Oracle8i, Oracle AQ Database

Tables, that store Oracle Message Broker JMS messages. Using JMS ADTs, all of the

data types available for a JMS message have corresponding types in the Oracle8

type system.

The JMS ADTs are defined as part of a PL/SQL package that is added to the

Oracle8i Database Server during the Oracle Message Broker installation. The

package includes PL/SQL procedures that support access to the ADTs using JDBC.

This appendix covers the following:

■ JMS ADT Types

■ PL/SQL Package Interface

This appendix assumes that you have knowledge of the following:

■ The JMS specification

■ Oracle AQ administration

■ Oracle AQ operational access

■ The Oracle8i type system

■ Oracle8 AQ Reference Guide

■ Oracle8 SQL Reference Guide
 ADTs A-1

JMS ADT Types
The AQ Driver connects to AQ Queues that have the following characteristics:

1. An AQ queue is stored in a queue table.

2. A queue table is created with a type. That type can be raw or a type defined

using the Oracle8i type system.

3. The Oracle8i type system supports basic types, structures, arrays, and nested

tables.

4. The JMS ADTs define one type for each JMS message type. A queue that uses a

type can only store one message type: map, stream, bytes, object or text.

5. JMS ADTs define a type in which the message is serialized and stored as a

stream of bytes. A queue that uses this type can store all message types, but is

not queriable.

JMS ADT Types
The AQ Driver’s JMS ADTs define abstract data types that store JMS messages in

AQ tables. Five of the JMS ADTs store a particular JMS message type: map, stream,

bytes, object, text. Another JMS ADT can store any of the JMS message types.

The AQ Driver maps data from the Oracle Message Broker JMS messages, to and

from messages in AQ tables. These messages include components that are stored

using SQL types. Table A–1 describes the mapping from JMS message Java types to

SQL table types.

In the mapping shown in Table A–1, when a Java type is always mapped to the

same SQL type, the name of the SQL type is specified. Using the JMS ADT, a SQL

number type holds either a Java int , byte , short , boolean , or float . A type

code determines the actual Java type stored in a SQL number type. The "Type

Code" column lists the values for each Java type.

Table A–1 Mappings of Java Types to SQL Types in the AQ Driver

Java type SQL type Type Code Notes

boolean number ombaq_boolean Used in ombaq_property, ombaq_map_element,
ombaq_stream_element

byte number ombaq_byte Used in ombaq_property, ombaq_map_element,
ombaq_stream_element

short number ombaq_short Used in ombaq_property, ombaq_map_element,
ombaq_stream_element
A-2 Administration Guide

JMS ADT Types
Type ombaq_property
The JMS ADT type ombaq_property stores a message property. An array of

instances of ombaq_property stores all of the message properties set for a

message. Table A–2 describes the fields in ombaq_property .

boolean number ombaq_boolean Used in ombaq_property, ombaq_map_element,
ombaq_stream_element

int number or
integer

ombaq_integer Stored as number when used in ombaq_property,
ombaq_map_element, ombaq_stream_element,
otherwise stored as int.

long number ombaq_long Used in ombaq_property, ombaq_map_element,
ombaq_stream_element.

float number ombaq_float Number can store range but may lose precision

double varchar ombaq_double Number cannot store valid range for double. Store
value as a string.

String varchar ombaq_string

char varchar ombaq_char Used in ombaq_map_element, ombaq_stream_
element.

byte[] varchar ombaq_bytearray Stored as a hexadecimal encoded string. Two
characters are used to encode each byte. The two
characters used are the hexadecimal equivalent of the
two nibbles of each byte.

Table A–2 Type ombaq_property Fields

Field Type Description

name varchar2(100) The name of the property. The JMS specification mandates what names
are valid and invalid. This includes the syntax and prefixes that cannot
be used.

Table A–1 (Cont.) Mappings of Java Types to SQL Types in the AQ Driver

Java type SQL type Type Code Notes
Oracle AQ Driver ADTs A-3

JMS ADT Types
Type ombaq_properties
The JMS ADT type ombaq_properties is a varray of type ombaq_property .

The maximum size of the varray is 1000.

The JMS specification requires that each name used for a property is unique within

a message. This is not enforced by the JMS ADT. A PL/SQL client can enqueue a

message with 10 properties, such that each property has the same name. If an

Oracle Message Broker client dequeues the message, Oracle Message Broker coerces

the duplicate property names by appending a string to the end of the duplicate

property names.

Type ombaq_header
The JMS ADT type ombaq_header contains fields that are common to all JMS

messages. Table A–3 describes the fields in ombaq_header .

str_value varchar2(1000) When ombaq_type is ombaq_string str_value stores the value of the
string. When ombaq_type is ombaq_double str_value is the value of
the double stored as a string per the Java Language Specification.

num_value number When ombaq_type is one of ombaq_boolean, ombaq_byte, ombaq_
short, ombaq_integer, ombaq_long, or ombaq_float, num_value stores
the value of the data.

ombaq_type integer One of: ombaq_boolean, ombaq_byte, ombaq_short, ombaq_integer,
ombaq_long, ombaq_float, ombaq_double, ombaq_string. This
determines whether str_value or num_value is used to store the value
of the property.

Table A–2 (Cont.) Type ombaq_property Fields

Field Type Description
A-4 Administration Guide

JMS ADT Types
Type ombaq_text_msg
The JMS ADT type ombaq_text_msg contains the fields needed to store a JMS text

message. Table A–4 describes the fields in an ombaq_text_msg .

Table A–3 Type ombaq_header Fields

Field Type Description

aq_reply_to_
is_topic

varchar2(1000) This field indicates that the destination named in omb_replyto is
either a topic or a queue.

omb_replyto varchar2(1000) The name of the destination to which a reply should be sent. This field
contains the value that had been specified using a call to
setJMSReplyTo when an Oracle Message Broker client enqueues a
message. This field determines the value returned from a call to
getJMSReplyTo when an Oracle Message Broker client dequeues a
message. The type used in the call to setJMSReplyTo/getJMSReplyTo
is a destination rather than a string. The value of omb_replyto must
be a valid name for a destination and will be used to create an object
of type javax.jms.Destination. If LDAP is used to store configuration
information for the Oracle Message Broker, the Oracle Message
Broker will treat this string as a DN and the DN must be within the
same subtree a the msg_broker directory entry.

type varchar2(100) This field contains the value that had been specified using a call to
setJMSType when an Oracle Message Broker client enqueues a
message. This field determines the value returned from a call to
getJMSType when an Oracle Message Broker client dequeues a
message.

properties ombaq_properties The varray that contains the message properties.

Table A–4 Type ombaq_text_msg Fields

Field Type Description

header ombaq_header The header for the message

null_flag integer An integer that should be 0 or 1. This determines whether the value of
text_vc should be treated as null or the empty string when accessed via
JDBC since JDBC converts the empty string to the null string on
enqueues.

text_vc varchar2(4000) The text body is stored inline if possible.

text_lob clob The text body is stored in a CLOB if it is too large.
Oracle AQ Driver ADTs A-5

JMS ADT Types
When the Oracle Message Broker runtime dequeues a text message using the AQ

Driver, it sets the value of the message body as shown in Table A–5.

When the Oracle Message Broker runtime enqueues a text message, it does the

following:

■ If the message body is null, null_flag is set to 0, text_vc is set to null and

text_lob is set to null

■ If the message body can be stored in text_vc , null_flag is set to 0, text_vc
is set to the value of the message body, and text_lob is set to null.

■ If the message body cannot be stored in text_vc , null_flag is set to 0,

text_vc is set to null, and text_lob is set to the value of the message body.

Type ombaq_bytes_msg
The JMS ADT type ombaq_bytes_msg contains the fields needed to store a JMS

bytes message. Table A–6 describes the fields in an ombaq_bytes_msg .

Table A–5 AQ Driver Dequeue from an ombaq_text_msg

null_flag text_vc text_lob Value of Message Body

0 null null null

0 null non-null text_lob

0 non-null null text_vc

0 non-null non-null text_lob

<> 0 null null null

<> 0 null non-null null

<> 0 non-null null null

<> 0 non-null non-null null

Table A–6 Type ombaq_bytes_msg Fields

Field Type Description

header ombaq_header The header for the message

bytes_raw raw(2000) The bytes body is stored inline if possible

bytes_lob blob The bytes body is stored as a blob if it is too large
A-6 Administration Guide

JMS ADT Types
When the Oracle Message Broker runtime dequeues a bytes message, it sets the

value of the message body as shown in Table A–7.

When the Oracle Message Broker runtime enqueues a bytes message, it does the

following:

■ If the message body is null, bytes_vc is set to null and bytes_lob is set to

null.

■ If the message body can be stored in bytes_vc , bytes_vc is set to the value of

the message body, and bytes_lob is set to null.

■ If the message body cannot be stored in bytes_vc , bytes_vc is set to null,

and bytes_lob is set to the value of the message body.

Type ombaq_object_msg Fields
The JMS ADT type ombaq_object_msg contains the fields needed to store a JMS

object message. Table A–8 describes the fields in an ombaq_object_msg .

When the Oracle Message Broker runtime dequeues an object message, it sets the

value of the message body as shown in Table A–9.

Table A–7 AQ Driver Dequeue from an ombaq_bytes_msg

bytes_vc bytes_lob Value of message body

null null null

null non-null bytes_lob

non-null null bytes_vc

non-null non-null bytes_lob

Table A–8 Type ombaq_object_msg Fields

Field Type Description

header ombaq_header The header for the message

object_raw raw(2000) The object body is stored inline if possible

object_lob blob The object body is stored as a blob if it is too large
Oracle AQ Driver ADTs A-7

JMS ADT Types
When the Oracle Message Broker runtime enqueues an object message, it does the

following:

■ If the message body is null, object_vc is set to null and object_lob is set to

null.

■ If the message body can be stored in object_vc , object_vc is set to the

value of the message body, and object_lob is set to null.

■ If the message body cannot be stored in object_vc , object_vc is set to null,

and object_lob is set to the value of the message body.

Type ombaq_stream_element Fields
The JMS ADT type ombaq_stream_element stores one element that has been set

as part of a stream message body. An array of instances of ombaq_stream_
element is used to store the entire stream message body. Table A–10 describes the

fields in an ombaq_stream_element .

Table A–9 AQ Driver Dequeue for an ombaq_object_msg

object_vc object_lob Value of Message Body

null null null

null non-null object_lob

non-null null object_vc

non-null non-null object_lob

Table A–10 Type ombaq_stream_element Fields

Field Type Description

str_value varchar2(2000) When ombaq_type is ombaq_string str_value stores the value of the string.
When ombaq_type is ombaq_double str_value is the value of the double
stored as a string per the Java Language Specification. When ombaq_type is
ombaq_char, str_value stores the character. When ombaq_type is ombaq_
bytearray, str_value stores the byte array as a hexadecimal encoded string.

num_value number When ombaq_type is one of ombaq_boolean, ombaq_byte, ombaq_short,
ombaq_integer, ombaq_long, or ombaq_float, num_value stores the value of
the data.

ombaq_type integer One of: ombaq_boolean, ombaq_byte, ombaq_short, ombaq_integer,
ombaq_long, ombaq_float, ombaq_double, ombaq_string, ombaq_char,
ombaq_bytearray. This determines whether str_value or num_value is used
to store the value of the property.
A-8 Administration Guide

JMS ADT Types
Type ombaq_stream_elements
The JMS ADT type ombaq_stream_elements is a varray of type ombaq_
stream_element . The maximum size of the varray is 5000.

Type ombaq_stream_msg
The JMS ADT type ombaq_stream_msg contains the fields needed to store a JMS

stream message. Table A–11 describes the fields in an ombaq_stream_msg .

Type ombaq_map_element
The JMS ADT type ombaq_map_element is used to store one element that has

been set as part of a stream message body. An array of instances of ombaq_map_
element is used to store the entire stream message body. Table A–12 describes the

fields in an ombaq_map_element.

Table A–11 Type ombaq_stream_msg Fields

Field Type Description

header ombaq_header The header for the message

elements ombaq_stream_elements The stream message body

Table A–12 Type ombaq_map_element Fields

Field Type Description

name varchar2(100) The name of the map element. The JMS specification requires that all
map elements for a particular map message have a unique name.

str_value varchar2(2000) When ombaq_type is ombaq_string str_value stores the value of the
string. When ombaq_type is ombaq_double str_value is the value of the
double stored as a string per the Java Language Specification. When
ombaq_type is ombaq_char, str_value stores the character. When
ombaq_type is ombaq_bytearray, str_value stores the byte array as a
hexadecimal encoded string.

num_value number When ombaq_type is one of ombaq_boolean, ombaq_byte, ombaq_
short, ombaq_integer, ombaq_long, or ombaq_float, num_value stores
the value of the data.

ombaq_type integer One of: ombaq_boolean, ombaq_byte, ombaq_short, ombaq_integer,
ombaq_long, ombaq_float, ombaq_double, ombaq_string, ombaq_char,
ombaq_bytearray. This determines whether str_value or num_value is
used to store the value of the property.
Oracle AQ Driver ADTs A-9

JMS ADT Types
Type ombaq_map_elements
The JMS ADT ombaq_map_elements is a varray of type ombaq_map_element .

The maximum size of the varray is 5000.

The JMS specification requires that each name used for a map element is unique

within a message. The JMS ADT does not enforce this restriction. A PL/SQL client

can enqueue a map message with 10 map elements such that each map element has

the same name. If an Oracle Message Broker client dequeues the message, Oracle

Message Broker will coerce the duplicate map element names by appending a string

to the end of the duplicate map element names.

Type ombaq_map_msg
The JMS ADT type ombaq_map_msg contains the fields needed to store a JMS map

message. Table A–13 describes the fields in an ombaq_map_msg.

Type ombaq_serial_msg
The JMS ADT type ombaq_serial_msg contains the fields needed to store any

JMS message. This type is meant to store a stream of bytes that represents a JMS

message. The stream of bytes is created by the Oracle Message Broker runtime. This

type is not meant to support access by PL/SQL clients. Table A–14 describes the

fields in an ombaq_serial_msg.

When the Oracle Message Broker runtime dequeues an serial message, it sets the

value of the message body as shown in Table A–15.

Table A–13 Type ombaq_map_msg Fields

Field Type Description

header ombaq_header The header for the message

elements ombaq_map_elements The map message body

Table A–14 Type ombaq_serial_msg Fields

Field Type Description

serial_raw raw(2000) Stores the stream of bytes if possible

serial_lob blob Stores the stream of bytes if serial_vc is too small
A-10 Administration Guide

PL/SQL Package Interface
When the Oracle Message Broker runtime enqueues a message to a queue of type

ombaq_serial_msg , it does the following:

■ If the stream of bytes can be stored in serial_vc , serial_vc is set to the

value of the stream of bytes, and serial_lob is set to null.

■ If the stream of bytes cannot be stored in serial_vc, serial_vc is set to null, and

serial_lob is set to the value of the stream of bytes.

PL/SQL Package Interface
The JMS ADTs are defined in PL/SQL packages included with the Oracle Message

Broker. The JMS ADTs are installed during the AQ Driver specific installation tasks.

Refer to the Oracle Message Broker Installation Guide for information on AQ Driver

specific installation tasks.

This section covers the following:

■ PL/SQL Package Limitations

■ Coercion and Invalid Data

■ Sample Usage from PL/SQL

PL/SQL Package Limitations
AQ queues that are created using the JMS ADTs can be accessed with the Oracle

Message Broker AQ Driver, or with any of the following clients:

■ PL/SQL

■ Oracle OCI

■ JDBC

■ Clients that uses Oracle precompilers

Table A–15 AQ Dequeue for an ombaq_serial_msg

serial_vc serial_lob Value of Message

null null throw exception

null non-null serial_lob

non-null null serial_vc
Oracle AQ Driver ADTs A-11

PL/SQL Package Interface
The JMS specification includes constraints on a JMS message that must be satisfied

to produce a valid JMS message. The PL/SQL JMS ADT definitions do not

automatically imply that types created using the JMS ADT are valid JMS messages.

For example, a valid instance of a ombaq_text_message is not guaranteed to be a

valid instance of javax.jms.TextMessage . This limitation creates the following

problems:

1. The Oracle Message Broker must be able to handle messages that have been

dequeued from an AQ queue, that are valid instances of one of the JMS ADTs,

but that are not valid JMS messages (according to the JMS specification).

The Oracle Message Broker solves this problem using coercion. See "Coercion

and Invalid Data" on page A-12 for more information on how the Oracle

Message Broker handles coercion.

2. The Oracle Message Broker should make it easy for non-Oracle Message Broker

clients to enqueue messages with the guarantee that the message satisfies the

JMS specification.

The Oracle Message Broker solves this problem using the PL/SQL Operational

Interface Package (this package only supports text and bytes messages, and

does not support other message types). See "Using the PL/SQL Operational

Interface" on page 5-7 for information on the facilities available in this package.

Coercion and Invalid Data
The Oracle Message Broker must be prepared to dequeue messages from AQ

queues, when the message was created using JMS ADTs that do not satisfy the JMS

specification. This is true even if PL/SQL helper packages attempt to verify the

enqueued messages.

Table A–16 describes some of the ways in which an AQ JMS ADT message may not

satisfy the JMS specification.

Table A–16 Problems and Solutions for Invalid JMS Messages

Problem Where this Problem may occur

num_value null when it must be non-null ombaq_property, ombaq_stream_element, ombaq_map_
element

str_value null when it must be non-null ombaq_property, ombaq_stream_element, ombaq_map_
element

num_value exceeds range implied by ombaq_type ombaq_property, ombaq_stream_element, ombaq_map_
element
A-12 Administration Guide

PL/SQL Package Interface
The general solution to these problems is coercion. That is, the Oracle Message

Broker AQ Driver corrects the errors in an obvious manner and attempts to avoid

losing data. The intent is to make the errors obvious to Oracle Message Broker

developers so that they will notice what went wrong with the content of a message

and will know how to correct the problem based on the coercion that the Oracle

Message Broker performs.

num_value null when it must be non-null
This occurs when ombaq_type indicates that num_value will be used to store the

value of the property, map element or stream element and num_value is null.

When this occurs the property, map element, or stream element is coerced to a

string with a value of 'NO_VALUE_type' where type is determined by the value of

ombaq_type and is one of 'BOOLEAN', 'BYTE', 'SHORT', 'INT', 'LONG', 'FLOAT',

'CHAR'. The value of the property or map element name is not changed.

str_value null when it must be non-null
This occurs when ombaq_type indicates that str_value will be used to store the

value of the property, map element or stream element and num_value is null.

When this occurs the property, map element or stream element is coerced to a string

with a value of 'NO_VALUE_type' where type is determined by the value of ombaq_
type and is one of 'BYTE_ARRAY', 'DOUBLE', 'STRING'. The value of the property

or map element name is not changed.

num_value exceeds range implied by ombaq_type
This occurs when ombaq_type indicates that num_value will be used to store the

value of the property, map element or stream element and the value of num_value
exceeds the range supported by the Java primitive type. This can occur when

ombaq_type is one of 'OMBAQ_BOOLEAN', 'OMBAQ_BYTE', 'OMBAQ_

invalid value for ombaq_type ombaq_property, ombaq_stream_element, ombaq_map_
element

invalid byte array value in str_value ombaq_stream_element, ombaq_map_element

duplicate values for name in ombaq_property ombaq_properties

invalid value for name ombaq_property

null value for name ombaq_property

Table A–16 (Cont.) Problems and Solutions for Invalid JMS Messages

Problem Where this Problem may occur
Oracle AQ Driver ADTs A-13

PL/SQL Package Interface
SHORT',and 'OMBAQ_CHAR'. When this occurs, the property, map element or

stream element is coerced to a string with a value of 'INVALID_VALUE_type_value'.

type is replaced with one of 'BOOLEAN', 'BYTE', 'SHORT' or 'CHAR'. value is

replaced with the original value that exceeded the range.

invalid value for ombaq_type
This occurs when ombaq_type is null or has a value other than the valid subset

from the set {'OMBAQ_BOOLEAN', 'OMBAQ_BYTE', 'OMBAQ_SHORT',

'OMBAQ_INT', 'OMBAQ_LONG', 'OMBAQ_FLOAT', 'OMBAQ_DOUBLE',

'OMBAQ_STRING', 'OMBAQ_BYTE_ARRAY', 'OMBAQ_CHAR'}. When this occurs

the property, map element or stream element is coerced to a string with the value

'INVALID_TYPE'.

invalid byte array value in str_value
This occurs when ombaq_type is 'OMBAQ_BYTE_ARRAY' and str_value does

not contain a byte array encoded as a string. The byte array encoded as a string

must be a size that is a multiple of 2 and every character in the string must be one of

'0', '1', '2', '3', '4', '5', '6', '7', '8', '9', 'a', 'b', 'c', 'd', 'e', or 'f'. When this occurs, the

property, map element or stream element is coerced to a string with a value of

'INVALID_VALUE_BYTE_ARRAY_value'. The value is replaced with the value of

str_value .

duplicate values for name in ombaq_property, name in ombaq_map_element
This occurs when the ombaq_properties varray contains ombaq_property
instances that use the same value for the name field. This also occurs when the

ombaq_map_elements varray contains ombaq_map_element instances that use

the same value for the name field. When this occurs the duplicate names are made

unique by replacing the duplicate names with 'DUPLICATE_NAME_integer_

original_name'. integer is replaced with a small integer. The original_name is replaced

with the value of name.

invalid value for name
This occurs when the name field in ombaq_property is invalid per the JMS

specification. When this occurs the value of the name field is replaced with

'INVALID_NAME_integer'. integer is replaced with a small integer.
A-14 Administration Guide

PL/SQL Package Interface
null value for name
This occurs when the name field in ombaq_property or ombaq_map_element is

null. When this occurs the value of the name field is replaced with 'NULL_NAME_

integer'. integer is replaced with a small integer.

Sample Usage from PL/SQL
Assuming a queue table had been created with the type ombaq_text_msg , a

PL/SQL client can enqueue a message to this queue that uses this queue table as:

DECLARE
 enq_opt dbms_aq.enqueue_options_t;
 props dbms_aq.message_properties_t;
 msg aq.ombaq_text_msg;
 header aq.ombaq_header;
 msgid raw(16);

BEGIN
 header := aq.ombaq_header(NULL, NULL, 'example', NULL);
 msg := aq.ombaq_text_msg(header, 0, 'example text body', NULL);
 dbms_aq.enqueue(queue_name => 'TextQueue',
 enqueue_options => enq_opt,
 message_properties => props,
 payload => msg,
 msgid => msgid);
 COMMIT;
END;
Oracle AQ Driver ADTs A-15

PL/SQL Package Interface
A-16 Administration Guide

Index

Symbols
$OMB_HOME/logs, 10-1

A
acknowledgment mode

IMMEDIATE_ACKNOWLEDGE, 3-10, 3-15,

3-18

AdminDirCheck, 4-64

administration scripts. See scripts

administrative objects, 3-4

using sample scripts, 2-2

AdminUtil

command line syntax, 4-45

comments, 4-46

echo mode, 4-46

error reporting, 4-48

evaluation rules, 4-47

LDAP Directory, 4-46

named variables, 4-46

object binding, 4-46

quotation, 4-45

AdminUtil Commands

activate, 4-49

attrl, 4-49

builddn, 4-49

cd, 4-49

create, 4-50

createombinstance, 4-50

deactivate, 4-50

delete, 4-51

dir, 4-51

exit, 4-51

help, 4-51

lookup, 4-51

pwd, 4-51

quit, 4-52

set, 4-52

setattr, 4-53

setopt, 4-53

show, 4-54

All, 2-12

API, C++, 9-1

application information, in attributes, 4-6

AQ admin schema, 7-10

AQ schemas, 7-10

AQ user identities, 7-10

AQ user schema, 7-10

attributes

application data, 4-6

conceptual discussion, 4-2

mandatory, 4-6

multiple-valued, 4-6

optional, 4-6

single-valued, 4-6

stored in schema, 4-7

types, 4-5

values, 4-5

B
body, JMS, 5-2

browsing messages, 5-5
Index-1

C
C++ API, 9-1

limitations, 9-2

sample application, 9-4

cleanup, 9-7

general declarations, 9-4

initialization, 9-5

receiving messages (receiver specific), 9-6

sending messages (sender specific), 9-6

system requirements, 9-1

vs. Java API, 9-2

callouts

C and C++, 6-13

client-side, 6-11

indicating with properties, 6-16

Java, 6-12

parameters, 6-13

using in a message consumer, 6-15

using in a message producer, 6-13

client interface

PL/SQL, 5-7

client programming, JMS, 3-4

client-side callouts, 6-11

close

connections, 3-18

JMS objects, 3-18

sessions, 3-18

cn, 4-3

command line tools, 1-9

commands

AdminDirCheck command, 4-64

AdminUtil command, 4-41

InitDir command, 12-7

LDAPSchema command, 12-7

Migrate10To20 command, 4-68

MsgBroker, 2-6, 2-10

ombadmin command, 11-2

shutdown MsgBroker, 2-10

startup MsgBroker, 2-6

stop MsgBroker, 2-10

common name, 4-3

configuration options

AQ driver, 4-20

AQ Lite server, 4-16

AQ server, 4-15

connection factory, 4-27, 4-35

Mcast driver, 4-25

Mcast server, 4-17

message broker entry, 4-18

MQSeries driver, 4-24

MQSeries server, 4-16

propagation jobs, 4-33, 4-34, 4-35

queue, 4-28

Rv driver, 4-26, 4-27

Rv server, 4-17

TIBCO driver, 4-26, 4-27

TIBCO server, 4-17

topic, 4-31

Volatile driver, 4-22

connection factories, 5-9

connection factory

accessing with JNDI, 3-5, 3-7

connection_factory_instance.close() method, 3-12,

3-17, 5-10

connection.close method, 3-18

consumer, messages, 5-3

conventions, xvii

createAQQueue method, 13-7

createAQTopic method, 13-7

createMQQueue method, 13-7

createQueue method, 6-11

createTopic method, 6-11

createVolatileTopic method, 13-7

creating destinations, 6-10

D
death detection

leaked resources, 3-19

defining destination strings, 6-11

delaying messages, 5-2

destination strings, defining, 6-11

destinations, creating, 6-10

Directory Access Protocol (DAP), 4-2

directory entries. See entries.

Directory Information Tree (DIT), 4-3

directory schema, 4-7

displaying runtime metrics, 6-3
Index-2

distinguished names, 4-2, 4-3

components of, 4-4

format, 4-4

DMS

Dynamic Monitoring System, 6-3

DNs. See distinguished names

domain conversion, 8-4

driver configuration scripts, 2-4

drivers

configuration, 7-2

IBM MQSeries driver, 7-18

Oracle Advanced Queuing driver, 7-3

Oracle AQ Lite driver, 7-15

Oracle Multicast Driver, 7-22

TIB/Rendezvous driver, 7-26

durable subscribers

creating, 5-6

deleting, 5-6

exceptions, 5-6

Dynamic Monitoring Service. See DMS

E
entries

conceptual discussion, 4-3

distinguished names of, 4-3

group, 4-6

locating, 4-4

naming, 4-3

error handling

propagation manager, 8-27

exceptions

version level, 5-16

F
filtering messages, 5-3

formats

of distinguished names, 4-4

G
garbage collection, 4-19

getJdbcConnection method, 6-32

getLocalAQConnectionFactory method, 13-9

getLocalConnectionFactory method, 13-9

getRemoteConnectionFactory method, 13-6

group entries, 4-6

H
header, JMS, 5-2

I
IBM MQSeries driver, 7-18

IETF

LDAP approval

IMMEDIATE_ACKNOWLEDGE

message redelivery, 3-18

RuntimeException, 3-18

Internet Engineering Task Force (IETF). See IETF

J
Java Message Service. See JMS

JDBC connection

getting, 6-32

JMS, 1-2

client programming, 3-4

extensions, 6-1

receive method, 6-17

message properties, 5-2

messages, 5-2

programming, 3-1, 5-1

accessing objects in the directory, 3-4

PTP messaging, 3-8

Publish/Subscribe messaging, 3-13

propagation manager, 8-1

sample programs, 2-12

JMS_Oracle_Delay property, 5-2

JMS_to_XML method, 6-3

JMSCorrelationID, 5-3

JMSCorrelationID header, 7-19

JMSDeliveryMode, 5-3

JMSDeliveryMode header, 7-19

JMSExpiration header, 7-19

JMSMessageID, 5-3

JMSMessageID header, 7-19

JMSPriority, 5-3
Index-3

JMSPriority header, 7-19

JMSReplyTo header, 7-20

JMSTimeStamp, 5-3

JMSType header, 7-19

JMSType header field, 6-13

job entry configuration, propagation, 8-16

JVM memory management, 4-19

JVM version level, 5-16

L
LDAP

IETF approval

LDAP directory

accessing objects, 3-4

LDAPSchema, 12-7

leaked resources

death detection, 3-19

leaked connection, 3-19

leaked session, 3-19

lightweight configuration

and configuration changes, 13-3

benefits of, 13-2

configuration values, 13-11

starting in local mode, 13-4

starting in remote mode, 13-4

using, 13-3, 13-5

local

example, 5-11

local attribute, 5-9

Local Mode

getJdbcConnection method, 6-32

local mode, 5-8, 5-14

exit, 5-10

locating

directory entries, 4-4

log file, 10-1

security exceptions, 10-3

M
mandatory attributes, 4-6

matching rules

stored in schema, 4-7

memory exceptions, 4-19

memory management, 4-19

MercuryConnection, 6-16

MercuryQueue method, 13-8

MercurySession, 6-16

getJdbcConnection method, 6-32

MercurySession.IMMEDIATE_ACKNOWLEDGE

mode, 3-10, 3-15

MercuryTopic method, 13-8

message listeners, 3-17

message properties, 5-2

message selectors, 5-3

MessageConsumer

receive method, 6-17

messages

consumers, 5-3

filtering, 5-3

previewing, 5-5

sending and receiving, 3-11

translation, 6-2

metadata, stored in schema, 4-7

metrics, displaying, 6-3

Migrate10To20, 4-68

OMB10DATA.ldif file, 4-68

monitoring metrics, 6-3

MQSeries, 1-4

MsgBroker

register command, 2-12

starting as an NT service, 2-12

unregister command, 2-12

MsgBroker command, 2-6

entry and distinguished names, 2-9

environment variables, 2-10

-ping option, 2-7

security options, 2-8, 2-10

status checking, 2-7

MsgBroker entry

local attribute, 5-9

multiple-valued attributes, 4-6

N
naming directory entries, 4-2, 4-3

non-local mode

exit, 3-12, 3-17

NT service, 2-12
Index-4

O
object classes

definition of, 4-6

stored in schema, 4-7

OMB attributes

aclentry, 12-30

activation_state, 4-35

aq_adt, 4-28, 4-31

aq_password, 4-15

aq_rules, 4-28, 4-31

aq_schema, 4-28, 4-31

aq_service_name, 4-15

aq_username, 4-16

aqlite_address, 4-36

aqlite_database_name, 4-16

aqlite_message_grouping, 4-28, 4-31

aqlite_owner, 4-28, 4-31

aqlite_passwd, 4-16

aqlite_protocol, 4-36

aqlite_rule, 4-36

aqlite_storage_clause, 4-28, 4-31

authentication, 4-37

cf, 4-36, 4-37

client_id, 4-27, 4-36

component, 4-36, 4-37

concurrency, 4-36

connection_type, 4-17

create_provider_q, 4-29, 4-31

create_timestamp, 4-35

daemon, 4-26

description, 12-29

dest, 4-37

driver_type, 4-27

enabled, 4-37

http_host, 4-27

http_path, 4-27

http_port, 4-27

http_ssl_level, 4-27

internal, 4-14

ip, 4-17

is_managed, 4-29, 4-32

is_native, 4-29, 4-32

is_queriable, 4-29, 4-32

jms_user, 4-36

local, 4-18

max_concurrent_reqs, 4-18

max_memory, 4-18

max_messages, 4-29, 4-32

max_private_sessions

AQ driver, 4-21

AQLite driver, 4-22

MQSeries driver, 4-24

Multicast driver, 4-25

TIBCO driver, 4-26

Volatile driver, 4-23

max_shared_sessions

AQ driver, 4-21

AQLite driver, 4-22

MQSeries driver, 4-24

Multicast driver, 4-25

TIBCO driver, 4-26

Volatile driver, 4-23

msg_selector, 4-36

network, 4-25, 4-26

password, 4-37

port, 4-17

priority, 4-28

prop_recv_log_queue, 4-15, 4-16, 4-17

prop_send_log_queue, 4-16, 4-17

propagation_http_handlers, 4-19

propagation_msg_selector, 4-35

propagation_password, 4-35

propagation_recv_sessions

AQ driver, 4-21

MQSeries driver, 4-24

Multicast driver, 4-25

TIBCO driver, 4-26

Volatile driver, 4-23

propagation_recv_threads, 4-19

propagation_send_sessions

AQ Driver, 4-21

MQSeries driver, 4-24

Multicast driver, 4-25

TIBCO driver, 4-26

Volatile driver, 4-23

propagation_send_threads, 4-19

propagation_source, 4-35

propagation_target, 4-35

propagation_timeout, 4-35
Index-5

propagation_username, 4-35

provider_dns, 4-28

provider_q_created, 4-29, 4-32

provider_queue_name, 4-29, 4-32

proxy_host, 4-34

proxy_port, 4-34

push_sessions

AQ driver, 4-21

AQLite driver, 4-22

MQSeries driver, 4-24

Multicast driver, 4-25

TIBCO driver, 4-26

Volatile driver, 4-23

query_interval

AQ driver, 4-21

AQLite driver, 4-22

MQSeries driver, 4-24

Multicast driver, 4-25

TIBCO driver, 4-26

Volatile driver, 4-23

queue_mgr, 4-17

remote_directory_host, 4-33

remote_directory_password, 4-33

remote_directory_port, 4-33

remote_directory_username, 4-33

remote_dn, 4-35

remote_http_host, 4-34

remote_http_path, 4-34

remote_http_port, 4-34

remote_http_ssl_level, 4-34

remote_wallet_location, 4-34

remote_wallet_password, 4-34

retries, 4-37

rm_provider_q, 4-30, 4-32

selector, 4-37

server_dn, 4-30, 4-32

server_dns

AQ driver, 4-21

AQ Lite driver, 4-22

MQSeries driver, 4-24

Multicast driver, 4-25

TIBCO driver, 4-26

service, 4-17

subscription, 4-38

surname, 12-29

thin_jdbc, 4-21

thin_jdbc_conn_string, 4-22

threshold, 4-37, 4-38

topic_dn, 4-36

transaction_timeout, 4-28

use_jdbc, 4-22

username, 4-38

valid_status, 4-35

xml, 4-14

OMB Instance, 1-5, 2-3, 4-8

OMB_EF environment variable, 2-12

OMB_IC environment variable, 2-12

OMB_LP environment variable, 2-12

OMB_OF environment variable, 2-12

OMB10DATA.ldif file, 4-68

ombadmin command, 11-2

ombaqpublic.sql package, 5-7

optional attributes, 4-6

Oracle, 1-4, 1-5

Oracle Advanced Queuing driver, 7-3

Oracle AQ Lite driver, 7-15

Oracle Message Broker, 5-8, 5-14

C++ API, 9-1

components, 1-3

administration utilities, 1-5

client programming interface, 1-6

drivers and message servers, 1-4

LDAP Directory, 1-5

Oracle Message Broker Core, 1-4

configuring, 4-15

Drivers, 7-1

features, 1-7

universal sessions, 3-10

instance, 4-8

local

example, 5-11

local mode, 5-8, 5-14

log file, 10-1

propagation, 8-1

starting, 2-6

version level, 5-16

Oracle Multicast Driver, 7-22

local mode, 5-8

oracle.oas.mercury.anyjvm system property, 5-16

oracle.oas.mercury.callout.consumer, 6-16
Index-6

oracle.oas.mercury.callout.producer, 6-16

oracle.oas.mercury.dmsaq property, 6-10

oracle.oas.mercury.dmsaqInterval property, 6-10

oracle.oas.mercury.MercuryXML class, 6-2, 6-3

oracle.oas.mercury.sec.cache.expiration

property, 12-31

oracle.oas.mercury.sec.trace property, 10-3

P
password, 12-29

pausing messages, 5-2

PL/SQL client package

AQ Driver, 5-7

overview, 1-6

using, 5-7

Point-to-Point messaging. See PTP messaging

previewing messages, 5-5

programming, JMS, 5-1

propagation configuration script, 2-5

propagation manager, 8-1

administration and configuration, 8-9

domain conversion, 8-4

error handling, 8-27

job entry configuration, 8-16

recovery, 8-27

propagation_http_handlers attribute, 4-19

properties

JMS_Oracle_Delay, 5-2

properties, JMS, 5-2

property

oracle.oas.mercury.sec.trace, 10-3

PTP messaging, 3-4

accessing objects, 3-5

connection factory

accessing with JNDI, 3-5

JMS programming, 3-8

messages, sending and receiving, 3-11

queue connection, 3-9

queue destinations, 3-11

queue session, 3-10

queues

accessing with JNDI, 3-6

publishing and subscribing, 3-16

Publish/Subscribe messaging, 3-5

accessing objects, 3-7

connection factory

accessing with JNDI, 3-7

JMS programming, 3-13

topics

accessing with JNDI, 3-8

Q
QueueBrowser

using, 5-5

QueueConnection, 6-16

QueueReceiver, 3-11

QueueReceiver message consumer, 6-15

QueueReceivers

limitations, 5-4

queues

accessing with JNDI, 3-6

connections, 3-9

destinations, 3-11

QueueReceiver, 3-11

QueueSender, 3-11

sessions, 3-10

QueueSender, 3-11

QueueSender message producer, 6-13

QueueSession, 6-16

R
RDNs. See Relative Distinguished Names (RDNs)

receive method

message ID, 6-17

receiving

XML messages, 6-2

receiving broker, 8-2

recovery

propagation manager, 8-27

Register command, 2-12

registering MsgBroker as an NT service, 2-12

related documents, xvii

Relative Distinguished Names (RDNs), 4-4

remote mode, 5-8, 5-14

exit, 13-10

runtime metrics, displaying, 6-3
Index-7

S
sample administration scripts, 2-2

sample programs, 2-12

schema, 4-7

definitions in subSchemaSubentry, 4-7

scripts

driver configuration, 2-4

SetupAQ, 2-4

SetupProp, 2-5

instance configuration, 2-3

SetupMcast, 2-3

SetupMQSeries, 2-3

SetupOMB, 2-3

SetupRv, 2-3

SetupVol, 2-3

overview of, 2-2

propagation configuration, 2-5

security, 12-11

authentication, 12-6

Secure Sockets Layer (SSL), 12-3

sending

XML messages, 6-2

session.close method, 3-18

setCallout method, 6-14, 6-15

shows, 6-10

shutdown(), 3-12, 3-17

shutdownClient method, 13-8

shutdownClient() method, 3-12, 3-17, 13-10

single-valued attributes, 4-6

starting the broker as an NT service, 2-12

statistics, 6-3

stopping in local mode

local mode

stopping, 5-10

stopping in non-local mode

non-local mode

stopping, 3-12, 3-17

stopping in remote mode

remote mode

stopping, 13-10

subentries, 4-7

subSchemaSubentry

adding object classes to, 4-7

holding schema definitions, 4-7

modifying, 4-7

subscribing, publishing and, 3-16

syntaxes

stored in schema, 4-7

T
threads and message listeners, 3-17

TIBCO, 1-5

TIBCO Driver

local mode, 5-8

TIB/Rendezvous driver, 7-26

TopicConnection, 6-16

TopicPublisher, 3-15

TopicPublisher message producer, 6-13

topics

accessing with JNDI, 3-8

connection, 3-14

destinations, 3-15

session, 3-15

TopicPublisher, 3-15

TopicSubscriber, 3-15

TopicSession, 6-16

TopicSubscriber, 3-16

TopicSubscriber message consumer, 6-15

tracing security exceptions, 10-3

transactions

JDBC connections and, 6-32

translation, messages, 6-2

types

of attributes, 4-5

U
universal connection, 6-16

universal session, 6-16

universal sessions, 3-10

Unregister command, 2-12

unregistering MsgBroker, 2-12

utilities

AdminDirCheck, 1-9

AdminUtil, 1-9
Index-8

V
version level, 5-16

X
X.500, 4-2

XML messages, 6-2

receiving, 6-2

sending, 6-2

XML_to_JMS method, 6-2
Index-9

Index-10

	PDF Directory
	Send Us Your Comments
	Preface
	1 Introduction
	What is the Oracle Message Broker?
	What is JMS?
	Oracle Message Broker Components
	Oracle Message Broker Core
	Drivers and Message Servers
	Administrative Components
	Client Programming Interface

	Oracle Message Broker Features
	Administration and Monitoring Utilities
	Command Line Tools
	Graphical User Interface
	Performance Monitoring Service

	Oracle Message Broker Deployment Options
	Configuration Options
	Operation Modes

	2 Quick Start
	Working with the Administration Utilities
	Overview of the Sample Administration Scripts
	Using the Oracle Message Broker Instance Configuration Script
	Using the Driver Configuration Scripts
	Using the Propagation Configuration Script

	Verifying Directory Contents
	Starting and Stopping the Oracle Message Broker
	The msg_broker Entry and Distinguished Names
	Required Environment Variables
	Stopping the Oracle Message Broker
	Checking the Status of the Oracle Message Broker
	Running Oracle Message Broker as an NT Service

	Running the JMS Sample Programs

	3 JMS Programming
	Deployment Options for an Oracle Message Broker Application
	Programming Roadmap (Using an LDAP Directory)
	Accessing Objects in the Directory
	Accessing Objects for Point-to-Point Messaging
	Accessing Objects for Publish/Subscribe Messaging

	Point-to-Point Messaging
	Creating and Starting a Queue Connection
	Getting a Queue Session
	Working with Queue Destinations - QueueSender and QueueReceiver
	Sending and Receiving Messages
	Shutting Down

	Publish/Subscribe Messaging
	Creating and Starting a Topic Connection
	Getting a Topic Session
	Working with Topic Destinations - TopicPublisher and TopicSubscriber
	Publishing and Subscribing
	Subscribing to Topics
	Shutting Down (Publish/Subscribe)

	Message Listeners and Threads
	Closing JMS Objects and Death Detection
	Leaked Resources and Death Detection

	Setting the Message Priority

	4 Administration
	What is the Oracle Internet Directory?
	What is a Directory?
	What is LDAP?
	Directory Entries
	Attributes
	Object Classes
	Schemas
	Accessing LDAP with the Administrative Framework

	Oracle Message Broker Directory Information Tree
	Oracle Message Broker Configuration
	Oracle Message Broker Configuration Roadmap
	Reserved Internal Attributes
	Creating an Oracle Message Broker Instance
	Creating and Configuring Message Servers
	Configuring the Message Broker Entry and Drivers
	Creating and Configuring Connection Factories
	Adding Queues
	Adding Topics
	Creating and Configuring Remote Directories
	Creating and Configuring Remote HTTP Listeners
	Creating and Configuring Propagation Jobs
	Creating and Configuring Durable Subscribers
	Creating and Configuring Asynchronous Component Invocation Triggers
	Showing Directory Attributes and Entries

	Dynamic Configuration
	Create Entry Restrictions
	Update Entry Restrictions
	Delete Entry Restrictions

	Command-line Administration Utility - AdminUtil
	Object References
	Entry Attributes
	AdminUtil Limitations

	Directory Utilities
	Checking Directory Entries with AdminDirCheck
	Migrating Directory Entries Between Releases

	5 Oracle Message Broker Features
	Working With JMS Messages
	Message Properties
	Using Message Selectors

	Using a QueueBrowser
	Using Durable Subscribers
	Using the PL/SQL Operational Interface
	Running in Local Mode
	Using Local Mode with an LDAP Directory
	Using Local Mode with Lightweight Configuration
	Local Mode Limitations
	Sample Local and Remote Mode Client Programs

	Running in Remote Mode
	Starting Oracle Message Broker in Remote Mode
	Starting Oracle Message Broker Clients in Remote Mode
	Remote Mode Limitations

	Oracle Message Broker Version Checking

	6 Oracle Message Broker Extensions
	Using XML Messages
	Sending and Receiving XML Messages
	The XML_to_JMS Method
	The JMS_to_XML Method

	Collecting Runtime Metrics
	Using DMS
	DMS Format Options - Standard and Pretty
	AQ Driver Runtime Metrics

	Creating Destinations
	Defining Destination Strings

	Using Client-Side Callouts
	Defining Callout Methods
	Using Callouts in a Message Producer
	Using Callouts in a Message Consumer
	Using Properties to Indicate Callouts
	Sample Client Side Callout Programs

	Universal Connections and Universal Sessions
	Receiving with a Message ID
	Using AQ Rules for Message Selection
	Creating AQ Rules Based Message Selectors
	PL/SQL Functions Supporting AQ Rules

	Obtaining the JDBC Connection in Local Mode
	Sample Code Using a JDBC Connection

	7 Message Servers and Drivers
	Driver Configuration
	Driver Features Summary
	Oracle Advanced Queuing Driver
	AQ Driver Connection Types
	AQ Messages
	JDBC Mode
	OCI Mode
	AQ Message Persistence
	AQ User Identities
	AQ Tuning and Configuration
	AQ Failure Recovery
	AQ Driver Restrictions

	Oracle AQ Lite Driver
	AQ Lite Message Persistence
	AQ Lite Message Mapping
	AQ Lite Driver Propagation

	Oracle Volatile Driver
	IBM MQSeries Driver
	MQSeries Message Mapping
	Connections to MQSeries Queue Managers
	Transaction Support
	Multiple Queue Manager Support
	MQSeries Driver Configuration
	MQSeries Driver Limitations

	Oracle Multicast Driver
	Understanding Multicast Driver Operation
	Distributed Topics
	Messages
	Multicast Server Configuration
	MultiCast Driver Limitations

	TIB/Rendezvous Driver
	Distributed Topics
	Messages
	Sessions
	TIB/Rendezvous Installation and Administration
	TIB/Rendezvous Driver Limitations

	8 Oracle Message Broker Propagation
	Overview of Oracle Message Broker Propagation
	Types of Propagation
	Propagation with Message Selectors

	Propagation Transport Protocols
	IIOP Propagation
	HTTP Propagation

	Administration and Configuration
	Sending Broker Configuration
	Receiving Broker Configuration
	Propagation Job Configuration
	HTTP Propagation Servlet Configuration

	Propagation Security
	IIOP propagation Security
	HTTP Propagation Security

	Propagation Control
	Creating and Deleting Propagation Jobs
	Activating and Deactivating a Propagation Jobs
	Error Handling and Recovery

	Propagation Limitations

	9 Oracle Message Broker C++ API
	Introduction
	System Requirements
	Limitations

	Major Differences between the Java and C++ APIs
	Declaration
	Types
	Memory Management

	Sample Application
	General Declarations
	Initialization
	Sending Messages (Sender Specific)
	Receiving Messages (Receiver Specific)
	Cleanup

	10 Logging and Troubleshooting
	Working with Log Files
	Logging Directory
	DMS Metric Log Files

	Logging Security Exceptions
	Problems and Common Solutions
	MQ Series Driver Problems
	Runtime Exceptions

	11 Administration GUI
	Terminology
	Starting Oracle Message Broker Manager
	Connecting to a Directory Server
	Navigating Oracle Message Broker Manager
	Oracle Message Broker Manager Menu Bar
	Oracle Message Broker Manager Toolbar

	Disconnecting from a Directory Server
	Performing Administration Tasks
	Viewing Entries
	Adding Entries
	Deleting Entries
	Modifying Entries
	Using the Configuration Wizards to Add Entries

	12 Security
	Features and Assumptions
	SSL Overview
	Programming and Administration Control and Assumptions

	Security Components
	LDAP Server Security
	Oracle Message Broker Security
	Provider Security
	Security Priority
	Network Security Overview
	Supported Cipher Suites

	LDAP Directory Server Security Administration
	Creating LDAP Users and Working with Access Control Lists
	Enabling SSL and Authentication for the LDAP Directory
	Configuring SSL for OiD
	OiD Access Control and Authorization
	Creating users and groups in OiD

	Oracle Message Broker Security Administration
	Oracle Message Broker SSL Options
	Enabling Propagation Security
	Using the Oracle Message Broker Security Service

	Provider Security Administration
	Client Connections to the Oracle Message Broker using Authentication

	13 Lightweight Configuration
	Benefits of Lightweight Configuration
	Using Lightweight Configuration
	Configuration Changes
	Starting with Lightweight Configuration in Remote Mode
	Starting with Lightweight Configuration in Local Mode
	Deploying Using Lightweight Configuration
	Specifying Configuration Values with Lightweight Configuration

	Lightweight Configuration Properties
	Subscriber Configuration Properties
	Driver Properties
	Destination Properties

	Sample Configuration Files
	Lightweight Configuration Constraints and Limitations

	14 Asynchronous Component Invocation
	ACI Architecture
	ACI Listener
	ACI Dispatcher
	ACI Adapters
	ACI Helper Classes

	ACI Triggers
	Setting the ACI Threshold Parameter
	Setting the ACI Concurrency Parameter

	EJB Adapter
	Notification-driven Beans
	Message-driven Beans

	Java Helper Classes
	ACI Tutorial
	Configure Oracle Database
	Define a Remote Interface
	Define a Home Interface
	Implement the EJB
	Compile and Generate Jar File
	Deploy the EJB
	Add a Trigger Entry to Oracle Message Broker

	A Oracle AQ Driver ADTs
	JMS ADT Types
	Type ombaq_property
	Type ombaq_properties
	Type ombaq_header
	Type ombaq_text_msg
	Type ombaq_bytes_msg
	Type ombaq_object_msg Fields
	Type ombaq_stream_element Fields
	Type ombaq_stream_elements
	Type ombaq_stream_msg
	Type ombaq_map_element
	Type ombaq_map_elements
	Type ombaq_map_msg
	Type ombaq_serial_msg

	PL/SQL Package Interface
	PL/SQL Package Limitations
	Coercion and Invalid Data
	Sample Usage from PL/SQL

	Index

