
Oracle8 i

Utilities

Release 2 (8.1.6)

December 1999

Part No.  A76955-01



Oracle 8i Utilities, Release 2 (8.1.6)

Part No.  A76955-01

Copyright © 1996, 1999, Oracle Corporation. All rights reserved.

Primary Author: Kathy Rich

Contributors: Karleen Aghevli, Lee Barton, Janet Blowney, Allen Brumm, George Claborn, William
Fisher, Paul Lane, Tracy Lee, Vishnu Narayana, Visar Nimani, Joan Pearson, Paul Reilly, Mike Sakayeda,
James Stenois, Chao Wang, Gail Ymanaka, Hiro Yoshioka

Graphic Designer: Valarie Moore

The Programs (which include both the software and documentation) contain proprietary information of
Oracle Corporation; they are provided under a license agreement containing restrictions on use and
disclosure and are also protected by copyright, patent, and other intellectual and industrial property
laws. Reverse engineering, disassembly, or decompilation of the Programs is prohibited.

The information contained in this document is subject to change without notice. If you find any problems
in the documentation, please report them to us in writing. Oracle Corporation does not warrant that this
document is error free. Except as may be expressly permitted in your license agreement for these
Programs, no part of these Programs may be reproduced or transmitted in any form or by any means,
electronic or mechanical, for any purpose, without the express written permission of Oracle Corporation.

If the Programs are delivered to the U.S. Government or anyone licensing or using the programs on
behalf of the U.S. Government, the following notice is applicable:

Restricted Rights Notice Programs delivered subject to the DOD FAR Supplement are "commercial
computer software" and use, duplication, and disclosure of the Programs, including documentation,
shall be subject to the licensing restrictions set forth in the applicable Oracle license agreement.
Otherwise, Programs delivered subject to the Federal Acquisition Regulations are "restricted computer
software" and use, duplication, and disclosure of the Programs shall be subject to the restrictions in FAR
52.227-19, Commercial Computer Software - Restricted Rights (June, 1987). Oracle Corporation, 500
Oracle Parkway, Redwood City, CA 94065.

The Programs are not intended for use in any nuclear, aviation, mass transit, medical, or other inherently
dangerous applications. It shall be the licensee's responsibility to take all appropriate fail-safe, backup,
redundancy, and other measures to ensure the safe use of such applications if the Programs are used for
such purposes, and Oracle Corporation disclaims liability for any damages caused by such use of the
Programs.

Oracle is a registered trademark, and Oracle8, Oracle8i, Oracle Advanced Queuing, Net8, SQL*Loader,
SQL*Net, SQL*Plus, Oracle7, and PL/SQL are trademarks or registered trademarks of Oracle
Corporation. All other company or product names mentioned are used for identification purposes only
and may be trademarks of their respective owners.



Contents

Send Us Your Comments ................................................................................................................. xix

Preface .......................................................................................................................................................... xxi

Part I  Export/Import

1  Export

What Is the Export Utility?................................................................................................................ 1-2
Reading the Contents of an Export File..................................................................................... 1-3
Access Privileges........................................................................................................................... 1-3

Export Modes ....................................................................................................................................... 1-4
Understanding Table-Level and Partition-Level Export ........................................................ 1-8

Using Export ........................................................................................................................................ 1-8
Before Using Export ..................................................................................................................... 1-9
Invoking Export ............................................................................................................................ 1-9
Getting Online Help ................................................................................................................... 1-11
Specifying Export Parameters on the Command Line or in the Parameter File ............... 1-12

Export Parameters ............................................................................................................................. 1-13
BUFFER........................................................................................................................................ 1-16
COMPRESS.................................................................................................................................. 1-17
CONSISTENT.............................................................................................................................. 1-17
CONSTRAINTS .......................................................................................................................... 1-19
DIRECT ........................................................................................................................................ 1-19
FEEDBACK.................................................................................................................................. 1-19
                                                                               iii



FILE............................................................................................................................................... 1-19
FILESIZE ...................................................................................................................................... 1-20
FULL ............................................................................................................................................. 1-21
GRANTS....................................................................................................................................... 1-21
HELP............................................................................................................................................. 1-21
INCTYPE...................................................................................................................................... 1-21
INDEXES...................................................................................................................................... 1-22
LOG............................................................................................................................................... 1-22
OWNER........................................................................................................................................ 1-22
PARFILE....................................................................................................................................... 1-22
QUERY ......................................................................................................................................... 1-22
RECORD ...................................................................................................................................... 1-23
RECORDLENGTH ..................................................................................................................... 1-24
ROWS ........................................................................................................................................... 1-24
STATISTICS ................................................................................................................................. 1-24
TABLES ........................................................................................................................................ 1-25
TABLESPACES ........................................................................................................................... 1-27
TRANSPORT_TABLESPACE ................................................................................................... 1-27
TRIGGERS.................................................................................................................................... 1-27
USERID (username/password)................................................................................................ 1-27
VOLSIZE ...................................................................................................................................... 1-28
Parameter Interactions ............................................................................................................... 1-28

Example Export Sessions ................................................................................................................. 1-28
Example Export Session in Full Database Mode.................................................................... 1-28
Example Export Session in User Mode.................................................................................... 1-31
Example Export Sessions in Table Mode ................................................................................ 1-32
Example Export Session Using Partition-Level Export......................................................... 1-34

Using the Interactive Method ......................................................................................................... 1-37
Restrictions................................................................................................................................... 1-40

Warning, Error, and Completion Messages ................................................................................. 1-40
Log File ........................................................................................................................................ 1-40
Warning Messages...................................................................................................................... 1-40
Fatal Error Messages .................................................................................................................. 1-41
Completion Messages ................................................................................................................ 1-41

Direct Path Export ............................................................................................................................. 1-42
 iv



Invoking a Direct Path Export .................................................................................................. 1-44
Character Set Conversion ................................................................................................................ 1-44

Performance Issues..................................................................................................................... 1-44
Incremental, Cumulative, and Complete Exports ...................................................................... 1-45

Base Backups ............................................................................................................................... 1-45
Incremental Exports ................................................................................................................... 1-45
Cumulative Exports ................................................................................................................... 1-47
Complete Exports ....................................................................................................................... 1-47
A Scenario .................................................................................................................................... 1-48
Which Data Is Exported? ........................................................................................................... 1-49
Example Incremental Export Session ...................................................................................... 1-50
System Tables.............................................................................................................................. 1-51

Network Considerations ................................................................................................................. 1-53
Transporting Export Files Across a Network......................................................................... 1-53
Exporting and Importing with Net8........................................................................................ 1-53

Character Set and NLS Considerations ........................................................................................ 1-54
Character Set Conversion .......................................................................................................... 1-54
NCHAR Conversion During Export and Import .................................................................. 1-56
Multibyte Character Sets and Export and Import ................................................................. 1-56
Instance Affinity and Export..................................................................................................... 1-56
Fine-Grained Access Support ................................................................................................... 1-56

Considerations in Exporting Database Objects .......................................................................... 1-57
Exporting Sequences .................................................................................................................. 1-57
Exporting LONG and LOB Datatypes..................................................................................... 1-57
Exporting Foreign Function Libraries ..................................................................................... 1-57
Exporting Offline Bitmapped Tablespaces ............................................................................. 1-58
Exporting Directory Aliases...................................................................................................... 1-58
Exporting BFILE Columns and Attributes.............................................................................. 1-58
Exporting Object Type Definitions .......................................................................................... 1-58
Exporting Nested Tables ........................................................................................................... 1-59
Exporting Advanced Queue (AQ) Tables ............................................................................... 1-59
Exporting Synonyms.................................................................................................................. 1-59

Transportable Tablespaces .............................................................................................................. 1-60
Using Different Versions of Export ............................................................................................... 1-60

Using a Previous Version of Export......................................................................................... 1-60
                                                                              v



Using a Higher Version of Export ............................................................................................ 1-61
Creating Oracle Release 8.0 Export Files from an Oracle8i Database..................................... 1-61
Creating Oracle Release 7 Export Files from an Oracle8i Database........................................ 1-63

Excluded Objects......................................................................................................................... 1-63

2     Import

What Is the Import Utility? ............................................................................................................... 2-2
Table Objects: Order of Import ................................................................................................... 2-3
Compatibility................................................................................................................................. 2-4

Import Modes ...................................................................................................................................... 2-4
Understanding Table-Level and Partition-Level Import ........................................................ 2-5

Using Import ........................................................................................................................................ 2-6
Before Using Import ..................................................................................................................... 2-6
Invoking Import............................................................................................................................ 2-6
Getting Online Help ..................................................................................................................... 2-8
The Parameter File........................................................................................................................ 2-9

Privileges Required to Use Import ................................................................................................ 2-10
Access Privileges......................................................................................................................... 2-10
Importing Objects into Your Own Schema............................................................................. 2-11
Importing Grants ........................................................................................................................ 2-12
Importing Objects into Other Schemas.................................................................................... 2-12
Importing System Objects ......................................................................................................... 2-12
User Privileges ............................................................................................................................ 2-13

Importing into Existing Tables ....................................................................................................... 2-13
Manually Creating Tables Before Importing Data................................................................. 2-13
Disabling Referential Constraints............................................................................................. 2-14
Manually Ordering the Import ................................................................................................. 2-14

Import Parameters............................................................................................................................. 2-15
ANALYZE.................................................................................................................................... 2-18
BUFFER ........................................................................................................................................ 2-18
CHARSET .................................................................................................................................... 2-19
COMMIT...................................................................................................................................... 2-19
CONSTRAINTS .......................................................................................................................... 2-19
DATAFILES................................................................................................................................. 2-20
DESTROY..................................................................................................................................... 2-20
 vi



FEEDBACK.................................................................................................................................. 2-20
FILE............................................................................................................................................... 2-20
FILESIZE ...................................................................................................................................... 2-21
FROMUSER................................................................................................................................. 2-21
FULL............................................................................................................................................. 2-22
GRANTS ...................................................................................................................................... 2-22
HELP ............................................................................................................................................ 2-22
IGNORE ....................................................................................................................................... 2-22
INCTYPE...................................................................................................................................... 2-23
INDEXES...................................................................................................................................... 2-24
INDEXFILE.................................................................................................................................. 2-24
LOG .............................................................................................................................................. 2-25
PARFILE ...................................................................................................................................... 2-25
RECALCULATE_STATISTICS................................................................................................. 2-25
RECORDLENGTH ..................................................................................................................... 2-26
ROWS ........................................................................................................................................... 2-26
SHOW........................................................................................................................................... 2-26
SKIP_UNUSABLE_INDEXES................................................................................................... 2-26
TABLES ........................................................................................................................................ 2-27
TABLESPACES ........................................................................................................................... 2-28
TOID_NOVALIDATE................................................................................................................ 2-28
TOUSER ....................................................................................................................................... 2-29
TRANSPORT_TABLESPACE................................................................................................... 2-30
TTS_OWNERS ............................................................................................................................ 2-30
USERID (username/password)................................................................................................ 2-30
VOLSIZE ...................................................................................................................................... 2-31

Using Table-Level and Partition-Level Export and Import ...................................................... 2-31
Guidelines for Using Partition-Level Import ......................................................................... 2-31
Migrating Data Across Partitions and Tables......................................................................... 2-32

Example Import Sessions ................................................................................................................ 2-33
Example Import of Selected Tables for a Specific User......................................................... 2-33
Example Import of Tables Exported by Another User ......................................................... 2-34
Example Import of Tables from One User to Another.......................................................... 2-35
Example Import Session Using Partition-Level Import........................................................ 2-36

Using the Interactive Method......................................................................................................... 2-39
                                                                              vii



Importing Incremental, Cumulative, and Complete Export Files ........................................... 2-41
Restoring a Set of Objects .......................................................................................................... 2-41
Importing Object Types and Foreign Function Libraries ..................................................... 2-42

Controlling Index Creation and Maintenance ............................................................................ 2-42
Index Creation and Maintenance Controls ............................................................................. 2-42
Delaying Index Creation............................................................................................................ 2-43

Reducing Database Fragmentation ............................................................................................... 2-44
Warning, Error, and Completion Messages ................................................................................. 2-44
Error Handling................................................................................................................................... 2-45

Row Errors ................................................................................................................................... 2-45
Errors Importing Database Objects .......................................................................................... 2-46
Fatal Errors................................................................................................................................... 2-47

Network Considerations.................................................................................................................. 2-47
Transporting Export Files Across a Network ......................................................................... 2-47
Exporting and Importing with Net8 ........................................................................................ 2-47

Import and Snapshots ...................................................................................................................... 2-48
Master Table ................................................................................................................................ 2-48
Snapshot Log ............................................................................................................................... 2-48
Snapshots ..................................................................................................................................... 2-48

Import and Instance Affinity .......................................................................................................... 2-49
Fine-Grained Access Support ......................................................................................................... 2-49
Storage Parameters............................................................................................................................ 2-50

Read-Only Tablespaces.............................................................................................................. 2-51
Dropping a Tablespace..................................................................................................................... 2-51
Reorganizing Tablespaces ............................................................................................................... 2-52
Character Set and NLS Considerations ........................................................................................ 2-52

Character Set Conversion .......................................................................................................... 2-53
Import and Single-Byte Character Sets.................................................................................... 2-53
Import and Multibyte Character Sets ...................................................................................... 2-54

Considerations When Importing Database Objects .................................................................. 2-54
Importing Object Identifiers...................................................................................................... 2-54
Importing Existing Object Tables and Tables That Contain Object Types......................... 2-56
Importing Nested Tables ........................................................................................................... 2-56
Importing REF Data ................................................................................................................... 2-57
Importing BFILE Columns and Directory Aliases................................................................. 2-57
 viii



Importing Foreign Function Libraries ..................................................................................... 2-58
Importing Stored Procedures, Functions, and Packages ..................................................... 2-58
Importing Java Objects .............................................................................................................. 2-58
Importing Advanced Queue (AQ) Tables............................................................................... 2-58
Importing LONG Columns....................................................................................................... 2-59
Importing Views ......................................................................................................................... 2-59
Importing Tables......................................................................................................................... 2-59

Transportable Tablespaces .............................................................................................................. 2-60
Importing Statistics .......................................................................................................................... 2-61
Using Export Files from a Previous Oracle Release ................................................................... 2-61

Using Oracle Version 7 Export Files ........................................................................................ 2-62
Using Oracle Version 6 Export Files ........................................................................................ 2-62
Using Oracle Version 5 Export Files ........................................................................................ 2-63
The CHARSET Parameter ......................................................................................................... 2-63

Part II  SQL*Loader

3  SQL*Loader Concepts

SQL*Loader Basics ............................................................................................................................. 3-2
SQL*Loader Control File................................................................................................................... 3-3
Input Data and Datafiles ................................................................................................................... 3-4

Logical Records............................................................................................................................. 3-7
Data Fields ..................................................................................................................................... 3-7

Data Conversion and Datatype Specification ............................................................................... 3-8
Discarded and Rejected Records ................................................................................................... 3-11

The Bad File ................................................................................................................................. 3-11
SQL*Loader Discards................................................................................................................. 3-13

Log File and Logging Information ................................................................................................ 3-13
Conventional Path Load Versus Direct Path Load ..................................................................... 3-14
Loading Objects, Collections, and LOBs ..................................................................................... 3-15

Supported Object Types ............................................................................................................ 3-15
Supported Collection Types...................................................................................................... 3-16
Supported LOB Types................................................................................................................ 3-16
SQL*Loader DDL Behavior and Restrictions ......................................................................... 3-17
SQL*Loader DDL Support for LOBFILES and Secondary Data Files (SDFs) .................... 3-19
                                                                              ix



Partitioned Object Support ............................................................................................................. 3-22
Application Development: Direct Path Load API ...................................................................... 3-22

4  SQL*Loader Case Studies

The Case Studies ................................................................................................................................. 4-2
Case Study Files .................................................................................................................................. 4-3
Tables Used in the Case Studies ...................................................................................................... 4-4

Contents of Table EMP................................................................................................................. 4-4
Contents of Table DEPT............................................................................................................... 4-4

References and Notes ......................................................................................................................... 4-4
Running the Case Study SQL Scripts ............................................................................................. 4-4
Case 1: Loading Variable-Length Data............................................................................................ 4-5

Control File .................................................................................................................................... 4-5
Invoking SQL*Loader .................................................................................................................. 4-6
Log File ........................................................................................................................................... 4-6

Case 2: Loading Fixed-Format Fields .............................................................................................. 4-8
Control File .................................................................................................................................... 4-8
Datafile ........................................................................................................................................... 4-9
Invoking SQL*Loader .................................................................................................................. 4-9
Log File ........................................................................................................................................... 4-9

Case 3: Loading a Delimited, Free-Format File ........................................................................... 4-11
Control File .................................................................................................................................. 4-11
Invoking SQL*Loader ................................................................................................................ 4-13
Log File ......................................................................................................................................... 4-13

Case 4: Loading Combined Physical Records ............................................................................. 4-15
Control File .................................................................................................................................. 4-15
Data File ....................................................................................................................................... 4-16
Invoking SQL*Loader ................................................................................................................ 4-17
Log File ......................................................................................................................................... 4-17
Bad File ......................................................................................................................................... 4-18

Case 5: Loading Data into Multiple Tables.................................................................................. 4-19
Control File .................................................................................................................................. 4-19
Data File ....................................................................................................................................... 4-20
Invoking SQL*Loader ................................................................................................................ 4-20
Log File ......................................................................................................................................... 4-21
 x



Loaded Tables ............................................................................................................................. 4-23
Case 6: Loading Using the Direct Path Load Method................................................................ 4-25

Control File .................................................................................................................................. 4-25
Invoking SQL*Loader ................................................................................................................ 4-26
Log File......................................................................................................................................... 4-26

Case 7: Extracting Data from a Formatted Report....................................................................... 4-28
Data File ....................................................................................................................................... 4-28
Insert Trigger............................................................................................................................... 4-28
Control File .................................................................................................................................. 4-29
Invoking SQL*Loader ................................................................................................................ 4-31
Log File......................................................................................................................................... 4-31
Dropping the Insert Trigger and the Global-Variable Package ........................................... 4-33

Case 8: Loading Partitioned Tables ............................................................................................... 4-34
Control File .................................................................................................................................. 4-34
Table Creation ............................................................................................................................. 4-35
Input Data File ............................................................................................................................ 4-36
Invoking SQL*Loader ................................................................................................................ 4-36
Log File......................................................................................................................................... 4-36

Case 9: Loading LOBFILEs (CLOBs) ............................................................................................. 4-39
Control File .................................................................................................................................. 4-39
Input Data Files........................................................................................................................... 4-40
Invoking SQL*Loader ................................................................................................................ 4-41
Log File......................................................................................................................................... 4-42

Case 10: Loading REF Fields and VARRAYs ............................................................................... 4-44
Control File .................................................................................................................................. 4-44
Invoking SQL*Loader ................................................................................................................ 4-45
Log File......................................................................................................................................... 4-45

5  SQL*Loader Control File Reference

SQL*Loader’s Data Definition Language (DDL) Syntax Diagrams ......................................... 5-3
The SQL*Loader Control File...................................................................................................... 5-3
SQL*Loader DDL Syntax Diagram Notation ........................................................................... 5-3
High-Level Syntax Diagrams...................................................................................................... 5-4

Expanded DDL Syntax..................................................................................................................... 5-15
Control File Basics ............................................................................................................................ 5-17
                                                                              xi



Comments in the Control File ........................................................................................................ 5-17
Specifying Command-Line Parameters in the Control File ..................................................... 5-18

OPTIONS ..................................................................................................................................... 5-18
Specifying Filenames and Objects Names................................................................................... 5-18

Filenames That Conflict with SQL and SQL*Loader Reserved Words .............................. 5-18
Specifying SQL Strings............................................................................................................... 5-19
Operating System Considerations............................................................................................ 5-19

Identifying Data in the Control File with BEGINDATA .......................................................... 5-21
INFILE: Specifying Datafiles .......................................................................................................... 5-22

Naming the File........................................................................................................................... 5-22
Specifying Multiple Datafiles.................................................................................................... 5-23

Specifying READBUFFERS ............................................................................................................ 5-24
Specifying Datafile Format and Buffering................................................................................... 5-24

File Processing Example ............................................................................................................ 5-24
BADFILE: Specifying the Bad File ................................................................................................ 5-25
Rejected Records ............................................................................................................................... 5-26
Specifying the Discard File ............................................................................................................. 5-27
Handling Different Character Encoding Schemes ..................................................................... 5-30

Multibyte (Asian) Character Sets.............................................................................................. 5-30
Input Character Conversion...................................................................................................... 5-30

Loading Data into Empty and Nonempty Tables ....................................................................... 5-32
Loading Data into Empty Tables.............................................................................................. 5-32
INSERT......................................................................................................................................... 5-32
Loading Data into Nonempty Tables ...................................................................................... 5-32
APPEND ...................................................................................................................................... 5-33
REPLACE..................................................................................................................................... 5-33
TRUNCATE................................................................................................................................. 5-33

Continuing an Interrupted Load.................................................................................................... 5-34
Assembling Logical Records from Physical Records................................................................. 5-36

Using CONTINUEIF .................................................................................................................. 5-39
Loading Logical Records into Tables ............................................................................................ 5-39

Specifying Table Names ............................................................................................................ 5-39
Table-Specific Loading Method................................................................................................ 5-40
Table-Specific OPTIONS Keyword .......................................................................................... 5-41
Choosing Which Records to Load............................................................................................ 5-41
 xii



Specifying Default Data Delimiters ......................................................................................... 5-42
Handling Short Records with Missing Data........................................................................... 5-43

Index Options .................................................................................................................................... 5-43
SORTED INDEXES Option ....................................................................................................... 5-44
SINGLEROW Option ................................................................................................................. 5-44

Specifying Field Conditions........................................................................................................... 5-44
Comparing Fields to BLANKS ................................................................................................. 5-46
Comparing Fields to Literals .................................................................................................... 5-46

Specifying Columns and Fields ..................................................................................................... 5-47
Specifying Filler Fields............................................................................................................... 5-47
Specifying the Datatype of a Data Field.................................................................................. 5-48

Specifying the Position of a Data Field ........................................................................................ 5-48
Using POSITION with Data Containing Tabs........................................................................ 5-49
Using POSITION with Multiple Table Loads ........................................................................ 5-50

Using Multiple INTO TABLE Statements ................................................................................... 5-51
Extracting Multiple Logical Records ....................................................................................... 5-51
Distinguishing Different Input Record Formats .................................................................... 5-52
Loading Data into Multiple Tables .......................................................................................... 5-53
Summary...................................................................................................................................... 5-53

Generating Data ................................................................................................................................ 5-54
Loading Data Without Files ...................................................................................................... 5-54
Setting a Column to a Constant Value .................................................................................... 5-54
Setting a Column to the Datafile Record Number................................................................. 5-55
Setting a Column to the Current Date ..................................................................................... 5-55
Setting a Column to a Unique Sequence Number ................................................................. 5-56
Generating Sequence Numbers for Multiple Tables ............................................................. 5-57

SQL*Loader Datatypes .................................................................................................................... 5-58
Nonportable Datatypes ............................................................................................................. 5-59
Portable Datatypes ..................................................................................................................... 5-64
Datatype Conversions................................................................................................................ 5-69
Specifying Delimiters ................................................................................................................. 5-70
Conflicting Character Datatype Field Lengths....................................................................... 5-73

Loading Data Across Different Platforms ................................................................................... 5-74
Determining the Size of the Bind Array ...................................................................................... 5-75

Minimum Requirements............................................................................................................ 5-75
                                                                              xiii



Performance Implications.......................................................................................................... 5-75
Specifying Number of Rows Versus Size of Bind Array....................................................... 5-76
Calculations ................................................................................................................................. 5-76
Minimizing Memory Requirements for the Bind Array ....................................................... 5-79
Multiple INTO TABLE Statements .......................................................................................... 5-80
Generated Data ........................................................................................................................... 5-80

Setting a Column to Null or Zero .................................................................................................. 5-80
DEFAULTIF Clause.................................................................................................................... 5-80
NULLIF Clause ........................................................................................................................... 5-81
Null Columns at the End of a Record...................................................................................... 5-81

Loading All-Blank Fields ................................................................................................................ 5-82
Trimming Blanks and Tabs ............................................................................................................. 5-82

Datatypes ..................................................................................................................................... 5-82
Field Length Specifications........................................................................................................ 5-83
Relative Positioning of Fields.................................................................................................... 5-84
Leading Whitespace ................................................................................................................... 5-85
Trailing Whitespace.................................................................................................................... 5-86
Enclosed Fields............................................................................................................................ 5-86
Trimming Whitespace: Summary ............................................................................................ 5-87

Preserving Whitespace ..................................................................................................................... 5-87
PRESERVE BLANKS Keyword ................................................................................................ 5-87

Applying SQL Operators to Fields ................................................................................................ 5-88
Referencing Fields....................................................................................................................... 5-89
Common Uses ............................................................................................................................. 5-89
Combinations of Operators ....................................................................................................... 5-89
Use with Date Mask ................................................................................................................... 5-90
Interpreting Formatted Fields................................................................................................... 5-90

Loading Column Objects................................................................................................................. 5-90
Loading Column Objects in Stream Record Format.............................................................. 5-90
Loading Column Objects in Variable Record Format ........................................................... 5-91
Loading Nested Column Objects ............................................................................................. 5-92
Specifying NULL Values for Objects ....................................................................................... 5-93

Loading Object Tables ..................................................................................................................... 5-95
Loading REF Columns ..................................................................................................................... 5-97
Loading LOBs .................................................................................................................................... 5-98
 xiv



Internal LOBs (BLOB, CLOB, NCLOB) ................................................................................... 5-98
External LOB (BFILE)............................................................................................................... 5-106

Loading Collections (Nested Tables and VARRAYs)............................................................... 5-107
Memory Issues When Loading VARRAY Columns ........................................................... 5-111

6  SQL*Loader Command-Line Reference

SQL*Loader Command Line ........................................................................................................... 6-2
Using Command-Line Keywords .............................................................................................. 6-3
Specifying Keywords in the Control File .................................................................................. 6-3

Command-Line Keywords ................................................................................................................ 6-3
BAD (bad file)................................................................................................................................ 6-3
BINDSIZE (maximum size)......................................................................................................... 6-4
CONTROL (control file) .............................................................................................................. 6-4
DATA (datafile) ............................................................................................................................ 6-4
DIRECT (data path)...................................................................................................................... 6-5
DISCARDFILE (file name) .......................................................................................................... 6-5
DISCARDMAX (integer) ............................................................................................................. 6-5
ERRORS (errors to allow)............................................................................................................ 6-5
FILE (file to load into) .................................................................................................................. 6-6
LOAD (records to load) ............................................................................................................... 6-6
LOG (log file)................................................................................................................................. 6-6
PARALLEL (parallel load) .......................................................................................................... 6-6
PARFILE (parameter file) ............................................................................................................ 6-6
READSIZE (read buffer).............................................................................................................. 6-7
ROWS (rows per commit) ........................................................................................................... 6-7
SILENT (feedback mode) ............................................................................................................ 6-8
SKIP (records to skip)................................................................................................................... 6-9
USERID (username/password).................................................................................................. 6-9

Index Maintenance Options ............................................................................................................. 6-9
SKIP_INDEX_MAINTENANCE................................................................................................ 6-9
SKIP_UNUSABLE_INDEXES................................................................................................... 6-10

Exit Codes for Inspection and Display ......................................................................................... 6-10

7  SQL*Loader: Log File Reference

Header Information............................................................................................................................ 7-2
                                                                              xv



Global Information............................................................................................................................. 7-2
Table Information ............................................................................................................................... 7-3
Datafile Information ........................................................................................................................... 7-3
Table Load Information ..................................................................................................................... 7-4
Summary Statistics ............................................................................................................................. 7-4

Oracle Statistics That Are Logged .............................................................................................. 7-5

8  SQL*Loader: Conventional and Direct Path Loads

Data Loading Methods....................................................................................................................... 8-2
Conventional Path Load .............................................................................................................. 8-2
Direct Path Load ........................................................................................................................... 8-3

Using Direct Path Load .................................................................................................................... 8-10
Setting Up for Direct Path Loads.............................................................................................. 8-10
Specifying a Direct Path Load................................................................................................... 8-10
Building Indexes ......................................................................................................................... 8-10
Indexes Left in Index Unusable State....................................................................................... 8-11
Data Saves .................................................................................................................................... 8-12
Recovery....................................................................................................................................... 8-13
Loading LONG Data Fields....................................................................................................... 8-14

Maximizing Performance of Direct Path Loads .......................................................................... 8-16
Preallocating Storage for Faster Loading ................................................................................ 8-16
Presorting Data for Faster Indexing......................................................................................... 8-16
Infrequent Data Saves ................................................................................................................ 8-18
Minimizing Use of the Redo Log.............................................................................................. 8-19
Disabling Archiving ................................................................................................................... 8-19
Specifying UNRECOVERABLE................................................................................................ 8-19
Setting the NOLOG Attribute ................................................................................................... 8-20

Avoiding Index Maintenance ......................................................................................................... 8-20
Direct Loads, Integrity Constraints, and Triggers ...................................................................... 8-20

Integrity Constraints .................................................................................................................. 8-21
Database Insert Triggers ............................................................................................................ 8-22
Permanently Disabled Triggers and Constraints................................................................... 8-24
Alternative: Concurrent Conventional Path Loads ............................................................... 8-25

Parallel Data Loading Models ........................................................................................................ 8-25
Concurrent Conventional Path Loads ..................................................................................... 8-26
 xvi



Intersegment Concurrency with Direct Path.......................................................................... 8-26
Intrasegment Concurrency with Direct Path.......................................................................... 8-26
Restrictions on Parallel Direct Path Loads.............................................................................. 8-27
Initiating Multiple SQL*Loader Sessions................................................................................ 8-27
Options Keywords for Parallel Direct Path Loads ................................................................ 8-28
Enabling Constraints After a Parallel Direct Path Load ....................................................... 8-29
PRIMARY KEY and UNIQUE KEY constraints..................................................................... 8-29

General Performance Improvement Hints .................................................................................. 8-30

Part III Offline Database Verification Utility

9  DBVERIFY: Offline Database Verification Utility

Restrictions........................................................................................................................................... 9-1
Syntax .................................................................................................................................................... 9-2

Parameters ..................................................................................................................................... 9-2
Sample DBVERIFY Output .............................................................................................................. 9-3

Part IV  Appendixes

A  SQL*Loader Reserved Words

Reserved Word List and Information ............................................................................................. A-2

B  DB2/DXT User Notes

Using the DB2 RESUME Option ..................................................................................................... B-2
Inclusions for Compatibility ............................................................................................................ B-2

LOG Statement.............................................................................................................................. B-3
WORKDDN Statement ................................................................................................................ B-3
SORTDEVT and SORTNUM Statements .................................................................................. B-3
DISCARD Specification ............................................................................................................... B-3

Restrictions........................................................................................................................................... B-3
FORMAT Statement ..................................................................................................................... B-4
PART Statement............................................................................................................................ B-4
SQL/DS Option ............................................................................................................................ B-4
DBCS Graphic Strings.................................................................................................................. B-4
                                                                              xvii



SQL*Loader Syntax with DB2-Compatible Statements .............................................................. B-4

Index
 xviii



Send Us Your Comments

Oracle 8 i Utilities, Release 2 (8.1.6)

Part No.  A76955-01

Oracle Corporation welcomes your comments and suggestions on the quality and usefulness of this

publication. Your input is an important part of the information used for revision.

■ Did you find any errors?

■ Is the information clearly presented?

■ Do you need more information?  If so, where?

■ Are the examples correct?  Do you need more examples?

■ What features did you like most about this manual?

If you find any errors or have any other suggestions for improvement, please indicate the chapter,

section, and page number (if available). You can send comments to us in the following ways:

■ E-mail - nedc_doc@us.oracle.com

■ FAX - 603-897-3819   Attn: Oracle8i Utilities Documentation

■ postal service:

Oracle Corporation

Oracle 8i Utilities Documentation

One Oracle Drive

Nashua, NH 03062-2698

USA

If you would like a reply, please give your name, address, and telephone number below.

If you have problems with the software, please contact your local Oracle Support Services.
xix



xx



Preface

This manual describes how to use the Oracle8i utilities for data transfer, data

maintenance, and database administration.

Oracle8i Utilities contains information that describes the features and functionality

of the Oracle8i and the Oracle8i Enterprise Edition products. Oracle8i and Oracle8i
Enterprise Edition have the same basic features. However, several advanced

features are available only with the Enterprise Edition, and some of these are

optional.

For information about the differences between Oracle8i and the Oracle8i Enterprise

Edition and the features and options that are available to you, see Getting to Know
Oracle8i.

The Oracle Utilities
This manual describes the basic concepts behind each utility and provides examples

to show how the utilities are used.

Audience
This manual is for database administrators (DBAs), application programmers,

security administrators, system operators, and other Oracle users who perform the

following tasks:

■ Archive data, back up an Oracle database, or move data between Oracle

databases using the Export/Import utilities

■ Load data into Oracle tables from operating system files using SQL*Loader

■ Create and maintain user-defined character sets (NLS utilities) and other Oracle

NLS data

To use this manual, you need a working knowledge of SQL and Oracle

fundamentals, information that is contained in Oracle8i Concepts. In addition,

SQL*Loader requires that you know how to use the file management facilities of

your operating system.
xxi



Note: This manual does not contain instructions for installing the utilities, which is

operating system-specific. Installation instructions for the utilities can be found in

your operating system-specific Oracle documentation.

How Oracle8 i Utilities Is Organized
This manual is divided into the following parts:

Part I: Export/Import
Chapter 1, "Export"

This chapter describes how to use Export to write data from an Oracle database into

transportable files. It discusses export guidelines, export modes, interactive and

command-line methods, parameter specifications, and describes Export object

support. It also provides example Export sessions.

Chapter 2, "Import"

This chapter describes how to use Import to read data from Export files into an

Oracle database. It discusses import guidelines, interactive and command-line

methods, parameter specifications, and describes Import object support. It also

provides several examples of Import sessions.

Part II: SQL*Loader
Chapter 3, "SQL*Loader Concepts"

This chapter introduces SQL*Loader and describes its features. It also introduces

data loading concepts (including object support). It discusses input to SQL*Loader,

database preparation, and output from SQL*Loader.

Chapter 4, "SQL*Loader Case Studies"

This chapter presents case studies that illustrate some of the features of

SQL*Loader. It demonstrates the loading of variable-length data, fixed-format

records, a free-format file, multiple physical records as one logical record, multiple

tables, direct path loads, and loading objects, collections, and REF columns.

Chapter 5, "SQL*Loader Control File Reference"

This chapter describes the control file syntax you use to configure SQL*Loader and

to describe to SQL*Loader how to map your data to Oracle format. It provides

detailed syntax diagrams and information about specifying data files, tables and

columns, the location of data, the type and format of data to be loaded, and more.

Chapter 6, "SQL*Loader Command-Line Reference"
xxii



This chapter describes the command-line syntax used by SQL*Loader. It discusses

command-line arguments, suppressing SQL*Loader messages, sizing the bind array,

and more.

Chapter 7, "SQL*Loader: Log File Reference"

This chapter describes the information contained in SQL*Loader log file output.

Chapter 8, "SQL*Loader: Conventional and Direct Path Loads"

This chapter describes the differences between a conventional path load and a direct

path load. A direct path load is a high performance option that significantly reduces

the time required to load large quantities of data.

Part III: Offline Database Verification Utility
Chapter 9, "DBVERIFY: Offline Database Verification Utility"

This chapter describes how to use the offline database verification utility,

DBVERIFY.

Part IV: Appendixes
Appendix A, "SQL*Loader Reserved Words"

This appendix lists the words reserved for use only by SQL*Loader.

Appendix B, "DB2/DXT User Notes"

This appendix describes differences between the data definition language syntax of

SQL*Loader and DB2 Load Utility control files. It discusses SQL*Loader extensions

to the DB2 Load Utility, the DB2 RESUME option, options (included for

compatibility), and SQL*Loader restrictions.

What Is New in Oracle8 i?
This section lists new and changed features for the Import, Export, and SQL*Loader

utilities. Cross-references are provided that tell you where you can find more

detailed information on each feature.

New in Release 8.1.5
The following sections describe features that were new or changed as of release

8.1.5.

■ New Export Features

■ New Import Features
xxiii



■ New SQL*Loader DDL Behavior and Restrictions

New Export Features
The following are new Export features as of release 8.1.5:

■ Export of subpartitions. See Understanding Table-Level and Partition-Level

Export on page 1-8.

■ The ability to specify multiple dump files for an export command. See the

parameters FILE on page 1-19 and FILESIZE on page 1-20.

■ The ability to specify a query for the SELECT statements that Export uses to

unload tables. See QUERY on page 1-22.

■ The maximum number of bytes in an export file on each volume of tape has

been increased. See VOLSIZE on page 1-28.

■ The ability to export tables containing LOBs and objects, even if direct path is

specified on the command line. See Invoking a Direct Path Export on page 1-44.

■ The ability to export and import precalculated optimizer statistics instead of

recomputing the statistics at import time. (This feature is only applicable to

certain exports and tables.) See STATISTICS on page 1-24.

■ Developers of domain indexes can export application-specific metadata

associated with an index using the new ODCIIndexGetMetadata method on the

ODCIIndex interface. See the Oracle8i Data Cartridge Developer’s Guide for more

information.

■ Export of procedural objects. The data definition language for procedural

objects is now implemented as PL/SQL rather than SQL, for example,

Advanced Queues and Resource Scheduler objects.

■ Export of transportable tablespace metadata. See TRANSPORT_TABLESPACE

on page 1-27.

New Import Features
The following are new Import features as of release 8.1.5:

■ Import of subpartitions. See Using Table-Level and Partition-Level Export and

Import on page 2-31.

■ The ability to specify multiple dump files for an import command. See the

parameters FILE on page 2-20 and FILESIZE on page 2-21.
xxiv



■ The Import parameter TOID_NOVALIDATE, which allows you to cause Import

to omit validation of object types (used typically when the types were created

by a cartridge installation). See TOID_NOVALIDATE on page 2-28.

■ The maximum number of bytes in an export file on each volume of tape has

been increased. See VOLSIZE on page 2-31.

■ Fine-grained access support. See Fine-Grained Access Support on page 2-49.

■ The ability to export and import precalculated optimizer statistics instead of

recomputing the statistics at import time. (This feature is only applicable to

certain exports and tables.) See RECALCULATE_STATISTICS on page 2-25.

■ Import of transportable tablespace metadata. See TRANSPORT_TABLESPACE

on page 2-30.

New SQL*Loader DDL Behavior and Restrictions
In order to provide object support, the behavior of certain DDL clauses and certain

restrictions has been changed from previous releases. These changes apply in all

cases, not just when you are loading objects, collections, or LOBs.  See SQL*Loader

DDL Behavior and Restrictions on page 3-17 for a description of these changes.

Conventions Used in This Manual
This manual follows textual and typographic conventions explained in the

following sections.

Text of the Manual
The following conventions are used in the text of this manual:

UPPERCASE  Words Uppercase text is used to call attention to command keywords,
object names, parameters, filenames, and so on, for example:

"If you create a private rollback segment, its name must be included
in the ROLLBACK_SEGMENTS parameter in the PARAMETER
file."

Italicized Words Italicized words are used at the first occurrence and definition of a
term, as in the following example:

"A database is a collection of data to be treated as a unit. The general
purpose of a database is to store and retrieve related information, as
needed."

Italicized words are used also to indicate emphasis, book titles, and
to highlight names of performance statistics.
xxv



PL/SQL, SQL, and SQL*Plus commands and statements are displayed in a

fixed-width font using the following conventions, separated from normal text as in

the following example:

ALTER TABLESPACE users   ADD DATAFILE ’users2.ora’ SIZE 50K;

Punctuation:

 ,  ’  "

Example statements may include punctuation such as commas or
quotation marks. All punctuation given in example statements is
required. Depending on the application in use, a semicolon or
other terminator may or may not be required to end a statement.

UPPERCASE Words:
INSERT, SIZE

Uppercase words in example statements indicate the keywords
in Oracle SQL. However, when you issue statements, keywords
are not case-sensitive.

lowercase Words:
emp, users2.ora

Lowercase words in example statements indicate words supplied
only for the context of the example. For example, lowercase
words may indicate the name of a table, column, or file. Some
operating systems are case-sensitive. Refer to your installation or
user’s manual to find whether you must pay attention to case.
xxvi



Part I

Export/Import





E

1

Export

This chapter describes how to use the Export utility to write data from an Oracle

database into an operating system file in binary format. This file is stored outside

the database, and it can be read into another Oracle database using the Import

utility (described in Chapter 2). This chapter covers the following topics:

■ What Is the Export Utility?

■ Export Modes

■ Using Export

■ Export Parameters

■ Example Export Sessions

■ Using the Interactive Method

■ Warning, Error, and Completion Messages

■ Direct Path Export

■ Character Set Conversion

■ Incremental, Cumulative, and Complete Exports

■ Network Considerations

■ Character Set and NLS Considerations

■ Considerations in Exporting Database Objects

■ Transportable Tablespaces

■ Using Different Versions of Export

■ Creating Oracle Release 8.0 Export Files from an Oracle8i Database

■ Creating Oracle Release 7 Export Files from an Oracle8i Database
xport 1-1



What Is the Export Utility?
What Is the Export Utility?
Export provides a simple way for you to transfer data objects between Oracle

databases, even if they reside on platforms with different hardware and software

configurations. Export extracts the object definitions and table data from an Oracle

database and stores them in an Oracle binary-format Export dump file located

typically on disk or tape.

Such files can then be transferred using FTP or physically transported (in the case of

tape) to a different site. The files can then be used with the Import utility to transfer

data between databases that are on machines not connected through a network. The

files can also be used as backups in addition to normal backup procedures.

The Export and Import utilities can also facilitate certain aspects of Oracle

Advanced Replication functionality such as offline instantiation. See Oracle8i
Replication for more information.

Export dump files can only be read by the Oracle utility, Import (see Chapter 2). If

you need to read load data from ASCII fixed-format or delimited files, see Part II of

this manual for information on SQL*Loader.

When you run Export against an Oracle database, objects (such as tables) are

extracted, followed by their related objects (such as indexes, comments, and grants)

if any, and then written to the Export file. See Figure 1–1.
1-2 Oracle8i Utilities



What Is the Export Utility?
Figure 1–1 Exporting a Database

Reading the Contents of an Export File
Export files are stored in Oracle-binary format. Export files generated by Export

cannot be read by utilities other than Import. Export files created by Export cannot

be read by earlier versions of the Import utility. However, Import can read files

written by the current and previous releases of Export, but cannot read files in other

formats. To load data from ASCII fixed-format or delimited files, see Part II of this

manual for information about SQL*Loader.

You can, however, display the contents of an export file by using the Import SHOW

parameter. For more information, see SHOW on page 2-26.

Access Privileges
To use Export, you must have the CREATE SESSION privilege on an Oracle

database. To export tables owned by another user, you must have the EXP_FULL_

DATABASE role enabled. This role is granted to all DBAs.

Table 1 Table 5Table 3

Index 1 Index 5Table 4

Table 2 Table 6Index 4

Database

Table 1

Table 2

Table 3

Table 4

Table 5

Table 6

Export file

Index 5

Index 1

Index 4
Export 1-3



Export Modes
If you do not have the system privileges contained in the EXP_FULL_DATABASE

role, you cannot export objects contained in another user’s schema. For example,

you cannot export a table in another user’s schema, even if you created a synonym

for it.

Note also that the following schema names are reserved and will not be processed

by Export:

■ ORDSYS

■ MDSYS

■ CTXSYS

■ ORDPLUGINS

Export Modes
The Export utility provides four modes of export. All users can export in table mode

and user mode. A user with the EXP_FULL_DATABASE role (a privileged user) can

export in table mode, user mode, tablespace, and full database mode. The database

objects that are exported depend on the mode you choose. Tablespace mode allows

you to move a set of tablespaces from one Oracle database to another. See

Transportable Tablespaces on page 1-60 and the Oracle8i Administrator’s Guide for

details about how to move or copy tablespaces to another database. For an

introduction to the transportable tablespaces feature, see Oracle8i Concepts.

See Export Parameters on page 1-13 for information on specifying each mode.

You can use conventional path Export or direct path Export to export in any of the

first three modes. The differences between conventional path export and direct path

Export are described in Direct Path Export on page 1-42.
1-4 Oracle8i Utilities



Export Modes
Table 1–1 shows the objects that are exported and imported in each mode.

Table 1–1  Objects Exported and Imported in Each Mode

Table Mode User Mode
Full
Database Mode Tablespace Mode

For each table in the
TABLES list, users
can export and
import:

For each user in the
Owner list, users can
export and import:

Privileged users can
export and import all
database objects
except those owned
by SYS, and those in
the ORDSYS,
CTXSYS, MDSYS
and ORDPLUGINS
schemas:

For each tablespace in
the TABLESPACES
list, a privileged user
can export and import
the DDL for the
following objects:

pre-table procedural
actions

foreign function
libraries

tablespace definitions cluster definitions

object type definitions
used by table

object types profiles

table definitions database links user definitions For each table within
the current tablespace,
the following objects’
DDL is included:

pre-table actions sequence numbers roles

table data by partition cluster definitions system privilege
grants

pre-table procedural
actions

nested table data In addition, for each
table that the
specified user owns,
users can export and
import:

role grants

default roles

tablespace quotas

object type definitions
used by the table

owner’s table grants

owner’s table indexes

table constraints
(primary, unique,
check)

pre-table procedural
actions

resource costs table definition (table
rows are not included)

analyze tables object type definitions
used by table

rollback segment
definitions

pre-table actions
Export 1-5



Export Modes
column and table
comments

table definitions database links table grants

auditing information pre-table actions sequence numbers table indexes

security policies for
table

table data by partition all directory aliases table constraints
(primary, unique,
check)

table referential
constraints

nested table data application contexts column and table
comments

owner’s table triggers owner’s table grants all foreign function
libraries

referential integrity
constraints

post-table actions owner’s table indexes

(1)
all object types

all cluster definitions

bitmap indexes (note:
not functional or
domain indexes)

post-table procedural
actions and objects

table constraints
(primary, unique,
check)

default and system
auditing

post-table actions

analyze table triggers

In addition,
privileged users can
export and import:

column and table
comments

For each table, the
privileged user can
export and import:

post-table procedural
actions and objects

triggers owned by
other users

auditing information pre-table procedural
actions

indexes owned by
other users

security policies for
table

object type definitions
used by table

table referential
constraints

table definitions

private synonyms pre-table actions

user views table data by partition

user stored
procedures, packages,
and functions

nested table data

referential integrity
constraints

table grants

operators table indexes

Table 1–1 (Cont.)  Objects Exported and Imported in Each Mode

Table Mode User Mode
Full
Database Mode Tablespace Mode
1-6 Oracle8i Utilities



Export Modes
triggers (2) table constraints
(primary, unique,
check)

post-table actions analyze table

indextypes column and table
comments

snapshots and
materialized views

auditing information

snapshot logs all referential integrity
constraints

job queues all synonyms

refresh groups all views

dimensions all stored procedures,
packages, and
functions

procedural objects post-table actions

post-table procedural
actions and objects

operators

post-schema
procedural actions
and objects

indextypes

post-table actions

all triggers

analyze cluster

all snapshots and
materialized views

all snapshot logs

all job queues

all refresh groups and
children

dimensions

password history

system auditing

Table 1–1 (Cont.)  Objects Exported and Imported in Each Mode

Table Mode User Mode
Full
Database Mode Tablespace Mode
Export 1-7



Using Export
Understanding Table-Level and Partition-Level Export
In table-level Export, an entire partitioned or nonpartitioned table, along with its

indexes and other table-dependent objects, is exported. All of the partitions and

subpartitions of a partitioned table are exported. (This applies to both direct path

Export and conventional path Export.) All Export modes (full database, user, table,

and transportable tablespace) support table-level Export.

In partition-level Export, the user can export one or more specified partitions or

subpartitions of a table. Full database, user, and transportable tablespace mode

Export do not support partition-level Export; only table mode Export does.

Because incremental Exports (incremental, cumulative, and complete) can be done

only in full database mode, partition-level Export cannot be specified for

incremental exports.

In all modes, partitioned data is exported in a format such that partitions or

subpartitions can be imported selectively.

For information on how to specify a partition-level Export, see TABLES on

page 1-25.

Using Export
This section describes how to use the Export utility, including what you need to do

before you begin exporting and how to invoke Export.

post-table procedural
actions and objects

post-schema
procedural actions
and objects

1. Nonprivileged users can export and import only indexes they own on tables they own. They
cannot export indexes they own that are on tables owned by other users, nor can they export
indexes owned by other users on their own tables. Privileged users can export and import
indexes on the specified users’ tables, even if the indexes are owned by other users. Indexes
owned by the specified user on other users’ tables are not included, unless those other users are
included in the list of users to export.

2. Nonprivileged and privileged users can export and import all triggers owned by the user, even
if they are on tables owned by other users.

Table 1–1 (Cont.)  Objects Exported and Imported in Each Mode

Table Mode User Mode
Full
Database Mode Tablespace Mode
1-8 Oracle8i Utilities



Using Export
Before Using Export
To use Export, you must run the script CATEXP.SQL or CATALOG.SQL (which runs

CATEXP.SQL) after the database has been created.

Note: The actual names of the script files depend on your operating system. The

script file names and the method for running them are described in your Oracle

operating system-specific documentation.

CATEXP.SQL or CATALOG.SQL needs to be run only once on a database. You do

not need to run it again before you perform the export. The script performs the

following tasks to prepare the database for Export:

■ Creates the necessary export views

■ Assigns all necessary privileges to the EXP_FULL_DATABASE role

■ Assigns EXP_FULL_DATABASE to the DBA role

Before you run Export, ensure that there is sufficient disk or tape storage space to

write the export file. If there is not enough space, Export terminates with a

write-failure error.

You can use table sizes to estimate the maximum space needed. Table sizes can be

found in the USER_SEGMENTS view of the Oracle data dictionary. The following

query displays disk usage for all tables:

select sum(bytes) from user_segments where segment_type=’TABLE’;

The result of the query does not include disk space used for data stored in LOB

(large object) or VARRAY columns or partitions.

See the Oracle8i Reference for more information about dictionary views.

Invoking Export
You can invoke Export in one of the following ways:

■ Enter the following command:

exp username/password PARFILE=filename

PARFILE is a file containing the export parameters you typically use. If you use

different parameters for different databases, you can have multiple parameter

files. This is the recommended method.

■ Enter the following command, adding any needed parameters:
Export 1-9



Using Export
exp username/password

Note: The number of parameters cannot exceed the maximum length of a

command line on the system.

■ Enter only the command exp username/password  to begin an interactive

session and let Export prompt you for the information it needs. The interactive

method provides less functionality than the parameter-driven method. It exists

for backward compatibility.

You can use a combination of the first and second options. That is, you can list

parameters both in the parameters file and on the command line. In fact, you can

specify the same parameter in both places. The position of the PARFILE parameter

and other parameters on the command line determines what parameters override

others. For example, assume the parameters file params.dat  contains the

parameter INDEXES=Y and Export is invoked with the following line:

exp system/manager PARFILE=params.dat INDEXES=N

In this case, because INDEXES=N occurs after PARFILE=params.dat , INDEXES=N
overrides the value of the INDEXES parameter in the PARFILE.

You can specify the username and password in the parameter file, although, for

security reasons, this is not recommended. If you omit the username/password

combination, Export prompts you for it.

See Export Parameters on page 1-13 for descriptions of the parameters.

To see how to specify an export from a remote database, refer to Exporting and

Importing with Net8 on page 1-53.

Invoking Export As SYSDBA
SYSDBA is used internally and has specialized functions; its behavior is not the

same as for generalized users. Therefore, you should not typically need to invoke

Export as SYSDBA. However, there may be a few situations in which you need to

do so, usually at the request of Oracle technical support.

To invoke Export as SYSDBA, use the following syntax:

exp username/password AS SYSDBA

or, optionally:

exp username/password@instance AS SYSDBA
1-10 Oracle8i Utilities



Using Export
Note: Because the string "AS SYSDBA" contains a blank, most operating

systems require that entire string ’username/password AS SYSDBA’ be placed

in quotation marks or marked as a literal by some method. Some operating

systems also require that quotation marks on the command line be preceded by

an escape character. Please see your operating system-specific documentation

for information about special and reserved characters on your system. If either

the username or password is omitted, Export will prompt you for it.

If you prefer to use the Export interactive mode, please see Interactively Invoking

Export As SYSDBA on page 1-37 for more information.

Getting Online Help
Export provides online help. Enter exp help=y  on the command line to invoke it.

Export: Release 8.1.6.0.0 - Production on Wed Oct 6 15:23:43 1999

(c) Copyright 1999 Oracle Corporation.  All rights reserved.

You can let Export prompt you for parameters by entering the EXP
command followed by your username/password:

     Example: EXP SCOTT/TIGER

Or, you can control how Export runs by entering the EXP command followed
by various arguments. To specify parameters, you use keywords:

     Format:  EXP KEYWORD=value or KEYWORD=(value1,value2,...,valueN)
     Example: EXP SCOTT/TIGER GRANTS=Y TABLES=(EMP,DEPT,MGR)
               or TABLES=(T1:P1,T1:P2), if T1 is partitioned table

USERID must be the first parameter on the command line.

Keyword  Description (Default)        Keyword      Description (Default)
--------------------------------------------------------------------------
USERID   username/password            FULL         export entire file (N)
BUFFER   size of data buffer          OWNER        list of owner usernames
FILE     output files (EXPDAT.DMP)    TABLES       list of table names
COMPRESS import into one extent (Y)   RECORDLENGTH length of IO record
GRANTS   export grants (Y)            INCTYPE      incremental export type
INDEXES  export indexes (Y)           RECORD       track incr. export (Y)
ROWS     export data rows (Y)         PARFILE      parameter filename
CONSTRAINTS export constraints (Y)    CONSISTENT   cross-table consistency
LOG      log file of screen output    STATISTICS   analyze objects (ESTIMATE)
Export 1-11



Using Export
DIRECT   direct path (N)              TRIGGERS     export triggers (Y)
FEEDBACK display progress every x rows (0)
FILESIZE maximum size of each dump file
QUERY    select clause used to export a subset of a table
VOLSIZE  number of bytes to write to each tape volume

The following keywords only apply to transportable tablespaces
TRANSPORT_TABLESPACE export transportable tablespace metadata (N)
TABLESPACES list of tablespaces to transport

Export terminated successfully without warnings.

Specifying Export Parameters on the Command Line or in the Parameter File
You can specify Export parameters in three ways: from a command-line entry, by

allowing Export to prompt you for parameter values, or in the parameter file.

Command-Line Parameter Entry
You can specify all valid parameters and their values from the command line using

the following syntax:

exp KEYWORD=value

or

exp KEYWORD=(value1,value2,...,value n)

Export Parameter Prompts
If you prefer to let Export prompt you for the value of each parameter, you can use

the following syntax:

exp username/password

Export will display each parameter with a request for you to enter a value.

The Parameter File
The parameter file allows you to specify Export parameters in a file where they can

easily be modified or reused. Create the parameter file using any flat file text editor.

The command-line option PARFILE=filename  tells Export to read the parameters

from the specified file rather than from the command line. For example:

exp PARFILE=filename
exp username/password PARFILE=filename
1-12 Oracle8i Utilities



Export Parameters
The syntax for parameter file specifications is one of the following:

KEYWORD=value
KEYWORD=(value)
KEYWORD=(value1, value2, ...)

The following example shows a partial parameter file listing:

FULL=Y
FILE=DBA.DMP
GRANTS=Y
INDEXES=Y
CONSISTENT=Y

Additional Information: The maximum size of the parameter file may be

limited by the operating system. The name of the parameter file is subject to the

file naming conventions of the operating system. See your Oracle operating

system-specific documentation for more information.

You can add comments to the parameter file by preceding them with the pound (#)

sign. Export ignores all characters to the right of the pound (#) sign.

Export Parameters
The following diagrams show the syntax for the parameters that you can specify in

the parameter file or on the command line. The remainder of this section describes

each parameter.

Export_start

exp

HELP = Y

username / password
@ connect_string AS SYSDBA

ExpModes ExpOpts
Export 1-13



Export Parameters
ExpModes

ExpTTSOpts (tablespaces_spec)

FULL = Y

INCTYPE =

INCREMENTAL

CUMULATIVE

COMPLETE
RECORD =

Y

N

OWNER = ( username

,

)

TABLES = (
schemaname .

tablename
: partition_name

,

)

TRANSPORT_TABLESPACE = Y ExpTTSOpts

TABLESPACES = ( tablespace_name

,

)

1-14 Oracle8i Utilities



Export Parameters
ExpOpts

ExpFileOpts

LOG = filename

COMPRESS =
Y

N

ROWS =
Y

N

QUERY = SQL_string

DIRECT =
Y

N

FEEDBACK = integer

STATISTICS =

COMPUTE

ESTIMATE

NONE

INDEXES =
Y

N

CONSTRAINTS =
Y

N

GRANTS =
Y

N

TRIGGERS =
Y

N

CONSISTENT =
Y

N

BUFFER = integer

,

Export 1-15



Export Parameters
ExpFileOpts

BUFFER
Default: operating system-dependent. See your Oracle operating system-specific

documentation to determine the default value for this parameter.

Specifies the size, in bytes, of the buffer used to fetch rows. As a result, this

parameter determines the maximum number of rows in an array fetched by Export.

Use the following formula to calculate the buffer size:

buffer_size = rows_in_array * maximum_row_size

If you specify zero, the Export utility fetches only one row at a time.

Tables with LONG, LOB, BFILE, REF, ROWID, LOGICAL ROWID, DATE, or type

columns are fetched one row at a time.

Note: The BUFFER parameter applies only to conventional path Export. It has

no effect on a direct path Export.

Example
This section shows an example of how to calculate buffer size.

Consider that the following table is created:

create table sample (name varchar(30), weight number);

The maximum size of the name column is 30, plus 2 bytes for the indicator. The

maximum size of the weight column is 22 (the size of the internal representation for

Oracle numbers), plus 2 bytes for the indicator.

Therefore, the maximum row size is 56 (30+2+22+2).

PARFILE = filename

FILE = filename

FILESIZE = number_of_bytes

VOLSIZE = number_of_bytes

LOG = filename

RECORDLENGTH = integer
1-16 Oracle8i Utilities



Export Parameters
To perform array operations for 100 rows, a buffer size of 5600 should be specified.

COMPRESS
Default: Y

Specifies how Export and Import manage the initial extent for table data.

The default, COMPRESS=Y, causes Export to flag table data for consolidation into

one initial extent upon Import. If extent sizes are large (for example, because of the

PCTINCREASE parameter), the allocated space will be larger than the space

required to hold the data.

If you specify COMPRESS=N, Export uses the current storage parameters,

including the values of initial extent size and next extent size. The values of the

parameters may be the values specified in the CREATE TABLE or ALTER TABLE

statements or the values modified by the database system. For example, the NEXT

extent size value may be modified if the table grows and if the PCTINCREASE

parameter is nonzero.

Note: Although the actual consolidation is performed upon import, you can specify

the COMPRESS parameter only when you export, not when you import. The Export

utility, not the Import utility, generates the data definitions, including the storage

parameter definitions. Thus, if you specify COMPRESS=Y when you export, you

can import the data in consolidated form only.

Note: LOB data is not compressed. For LOB data, the original values of initial extent

size and next extent size are used.

CONSISTENT
Default: N

Specifies whether or not Export uses the SET TRANSACTION READ ONLY

statement to ensure that the data seen by Export is consistent to a single point in

time and does not change during the execution of the export command. You should

specify CONSISTENT=Y when you anticipate that other applications will be

updating the target data after an export has started.

If you specify CONSISTENT=N (the default), each table is usually exported in a

single transaction. However, if a table contains nested tables, the outer table and

each inner table are exported as separate transactions. If a table is partitioned, each

partition is exported as a separate transaction.
Export 1-17



Export Parameters
Therefore, if nested tables and partitioned tables are being updated by other

applications, the data that is exported could be inconsistent. To minimize this

possibility, export those tables at a time when updates are not being done.

The following chart shows a sequence of events by two users: USER1 exports

partitions in a table and USER2 updates data in that table.

If the export uses CONSISTENT=Y, none of the updates by USER2 are written to the

export file.

If the export uses CONSISTENT=N, the updates to TAB:P1 are not written to the

export file. However, the updates to TAB:P2 are written to the export file because

the update transaction is committed before the export of TAB:P2 begins. As a result,

USER2’s transaction is only partially recorded in the export file, making it

inconsistent.

If you use CONSISTENT=Y and the volume of updates is large, the rollback

segment will be large. In addition, the export of each table will be slower because

the rollback segment must be scanned for uncommitted transactions.

Restrictions
■ You cannot specify CONSISTENT=Y with an incremental export.

■ CONSISTENT=Y is unsupported for exports performed using AS SYSDBA.

Keep in mind the following points about using CONSISTENT=Y:

■ To minimize the time and space required for such exports, you should export

tables that need to remain consistent separately from those that do not.

For example, export the EMP and DEPT tables together in a consistent export,

and then export the remainder of the database in a second pass.

■ A "snapshot too old" error occurs when rollback space is used up, and space

taken up by committed transactions is reused for new transactions. Reusing

Time
Sequence USER1 USER2

    1 Begins export of TAB:P1

    2 Updates TAB:P2
Updates TAB:P1
Commit transaction

    3 Ends export of TAB:P1

    4 Exports TAB:P2
1-18 Oracle8i Utilities



Export Parameters
space in the rollback segment allows database integrity to be preserved with

minimum space requirements, but it imposes a limit on the amount of time that

a read-consistent image can be preserved.

If a committed transaction has been overwritten and the information is needed

for a read-consistent view of the database, a "snapshot too old" error results.

To avoid this error, you should minimize the time taken by a read-consistent

export. (Do this by restricting the number of objects exported and, if possible,

by reducing the database transaction rate.) Also, make the rollback segment as

large as possible.

CONSTRAINTS
Default: Y

Specifies whether or not the Export utility exports table constraints.

DIRECT
Default: N

Specifies whether you use direct path or conventional path Export.

Specifying DIRECT=Y causes Export to extract data by reading the data directly,

bypassing the SQL Command Processing layer (evaluating buffer). This method can

be much faster than a conventional path Export.

For more information about direct path Exports, see Direct Path Export on

page 1-42.

FEEDBACK
Default: 0 (zero)

Specifies that Export should display a progress meter in the form of a dot for n
number of rows exported. For example, if you specify FEEDBACK=10, Export

displays a dot each time 10 rows are exported. The FEEDBACK value applies to all

tables being exported; it cannot be set on a per-table basis.

FILE
Default: expdat.dmp
Export 1-19



Export Parameters
Specifies the names of the export files. The default extension is .dmp, but you can

specify any extension. Because Export supports multiple export files (see the

parameter FILESIZE on page 1-20), you can specify multiple filenames to be used.

When Export reaches the value you have specified for the maximum FILESIZE,

Export stops writing to the current file, opens another export file with the next

name specified by the parameter FILE and continues until complete or the

maximum value of FILESIZE is again reached. If you do not specify sufficient

export filenames to complete the export, Export will prompt you to provide

additional filenames.

FILESIZE
Export supports writing to multiple export files and Import can read from multiple

export files. If you specify a value (byte limit) for the FILESIZE parameter, Export

will write only the number of bytes you specify to each dump file.

When the amount of data Export must write exceeds the maximum value you

specified for FILESIZE, it will get the name of the next export file from the FILE

parameter (see FILE  on page 1-19 for more information) or, if it has used all the

names specified in the FILE parameter, it will prompt you to provide a new export

filename. If you do not specify a value for FILESIZE (note that a value of 0 is

equivalent to not specifying FILESIZE), then Export will write to only one file,

regardless of the number of files specified in the FILE parameter.

Note: If the space requirements of your export file exceed the available disk

space, Export will abort and you will have to repeat the Export after making

sufficient disk space available.

The FILESIZE parameter has a maximum value equal to the maximum value that

can be stored in 64 bits.

Table 1–2 shows that the maximum size for dump files depends on the operating

system you are using and on the version of the Oracle server that you are using.

Table 1–2 Maximum SIze for Dump Files

Operating System Version of Oracle Server Maximum Size

Any Prior to 8.1.5 2g

32-bit 8.1.5 2g

64-bit 8.1.5 and later Unlimited

32-bit with 32-bit files Any 2g

32-bit with 64-bit files 8.1.6 and later Unlimited
1-20 Oracle8i Utilities



Export Parameters
Note: The maximum value that can be stored in a file is dependent on your

operating system. You should verify this maximum value in your operating

system-specific documentation before specifying FILESIZE. You should also

ensure that the file size you specify for Export is supported on the system on

which Import will run.

The FILESIZE value can also be specified as a number followed by K (number of

kilobytes). For example, FILESIZE=2K is the same as FILESIZE=2048. Similarly, M

specifies megabytes (1024 * 1024) while G specifies gigabytes (1024**3). B remains

the shorthand for bytes; the number is not multiplied to obtain the final file size

(FILESIZE=2048b is the same as FILESIZE=2048).

FULL
Default: N

Indicates that the Export is a full database mode Export (that is, it exports the entire

database). Specify FULL=Y to export in full database mode. You need the

EXP_FULL_DATABASE role to export in this mode.

GRANTS
Default: Y

Specifies whether or not the Export utility exports object grants. The object grants

that are exported depend on whether you use full database or user mode. In full

database mode, all grants on a table are exported. In user mode, only those granted

by the owner of the table are exported. Note that system privilege grants are always

exported.

HELP
Default: N

Displays a help message with descriptions of the Export parameters.

INCTYPE
Default: none

Specifies the type of incremental Export. The options are COMPLETE,

CUMULATIVE, and INCREMENTAL. See Incremental, Cumulative, and Complete

Exports on page 1-45 for more information.
Export 1-21



Export Parameters
INDEXES
Default: Y

Specifies whether or not the Export utility exports indexes.

LOG
Default: none

Specifies a filename to receive informational and error messages. For example:

exp system/manager LOG=export.log

If you specify this parameter, messages are logged in the log file and displayed to

the terminal display.

OWNER
Default: undefined

Indicates that the Export is a user-mode Export and lists the users whose objects

will be exported. If the user initiating the export is the DBA, multiple users may be

listed.

PARFILE
Default: undefined

Specifies a filename for a file that contains a list of Export parameters. For more

information on using a parameter file, see Specifying Export Parameters on the

Command Line or in the Parameter File on page 1-12.

QUERY
Default: none

This parameter allows you to select a subset of rows from a set of tables when doing

a table mode export. The value of the query parameter is a string that contains a

WHERE clause for a SQL SELECT statement that will be applied to all tables (or

table partitions) listed in the TABLE parameter.

For example, if user SCOTT wants to export only those employees whose job title is

SALESMAN and whose salary is greater than 1600, he could do the following (note

that this example is UNIX-based):
1-22 Oracle8i Utilities



Export Parameters
exp scott/tiger tables=emp query=\"where job=\'SALESMAN\' and sal\<1600\"

Note: Because the value of the QUERY parameter contains blanks, most

operating systems require that the entire strings where job=\'SALESMAN\'
and sal\<1600  be placed in double quotation marks or marked as a literal by

some method. Operating system reserved characters also need to be preceded

by an escape character. See your operating system-specific documentation for

information about special and reserved characters on your system.

When executing this command, Export builds a SQL SELECT statement similar to

this:

SELECT * FROM EMP where job=’SALESMAN’ and sal <1600;

The QUERY is applied to all tables (or table partitions) listed in the TABLE

parameter. For example, the following statement will unload rows in both EMP and

BONUS that match the query:

exp scott/tiger tables=emp,bonus query=\"where job=\'SALESMAN\' and sal\<1600\"

Again, the SQL statements that Export executes are similar to these:

SELECT * FROM EMP where where job=’SALESMAN’ and sal <1600;

SELECT * FROM BONUS where where job=’SALESMAN’ and sal <1600;

If a table is missing the columns specified in the QUERY clause, an error message

will be produced and no rows will be exported for the offending table.

Restrictions
■ The parameter QUERY cannot be specified for full, user, or transportable

tablespace mode exports.

■ The parameter QUERY must be applicable to all specified tables.

■ The parameter QUERY cannot be specified in a direct path export (DIRECT=Y)

■ The parameter QUERY cannot be specified for tables with inner nested tables.

■ You will not be able to determine from the contents of the export file whether

the data is the result of a QUERY export.

RECORD
Default: Y
Export 1-23



Export Parameters
Indicates whether or not to record an incremental or cumulative export in the

system tables SYS.INCEXP, SYS.INCFIL, and SYS.INCVID. For information about

these tables, see System Tables on page 1-51.

RECORDLENGTH
Default: operating system-dependent

Specifies the length, in bytes, of the file record. The RECORDLENGTH parameter is

necessary when you must transfer the export file to another operating system that

uses a different default value.

If you do not define this parameter, it defaults to your platform-dependent value for

BUFSIZ. For more information about the BUFSIZ default value, see your operating

system-specific documentation.

You can set RECORDLENGTH to any value equal to or greater than your system’s

BUFSIZ. (The highest value is 64KB.) Changing the RECORDLENGTH parameter

affects only the size of data that accumulates before writing to the disk. It does not

affect the operating system file block size.

Note: You can use this parameter to specify the size of the Export I/O buffer.

Additional Information: See your Oracle operating system-specific

documentation to determine the proper value or to create a file with a different

record size.

ROWS
Default: Y

Specifies whether or not the rows of table data are exported.

STATISTICS
Default: ESTIMATE

Specifies the type of database optimizer statistics to generate when the exported

data is imported. Options are ESTIMATE, COMPUTE, and NONE. See Oracle8i
Concepts for information about the optimizer and the statistics it uses. See also the

Import parameter RECALCULATE_STATISTICS on page 2-25 and Importing

Statistics on page 2-61.

In some cases, Export will place the precomputed statistics in the export file as well

as the ANALYZE commands to regenerate the statistics.
1-24 Oracle8i Utilities



Export Parameters
However, the precomputed optimizer statistics will not be used at export time if:

■ A table has indexes with system-generated names (including LOB indexes)

■ A table has columns with system-generated names

■ There were row errors while exporting

■ The client character set or NCHARSET does not match the server character set

or NCHARSET

■ You have specified a QUERY clause

■ Only certain partitions or subpartitions are to be exported

■ Tables have indexes based upon constraints that have been analyzed (check,

unique, and primary key constraints)

■ Tables have indexes with system-generated names that have been analyzed

(IOTs, nested tables, type tables that have specialized constraint indexes)

Note: Specifying ROWS=N does not preclude saving the precomputed statistics

in the Export file. This allows you to tune plan generation for queries in a

nonproduction database using statistics from a production database.

TABLES
Default: none

Specifies that the Export is a table-mode Export and lists the table names and

partition and subpartition names to export. You can specify the following when you

specify the name of the table:

■ schemaname specifies the name of the user’s schema from which to export the

table or partition. The schema names ORDSYS, MDSYS, CTXSYS, and

ORDPLUGINS are reserved by Export.

■ tablename specifies the name of the table to be exported. Table-level Export lets

you export entire partitioned or nonpartitioned tables. If a table in the list is

partitioned and you do not specify a partition name, all its partitions and

subpartitions are exported.

■ partition_name indicates that the export is a partition-level Export.

Partition-level Export lets you export one or more specified partitions or

subpartitions within a table.

The syntax you use to specify the preceding is in the form:

schemaname.tablename:partitionname
Export 1-25



Export Parameters
schemaname.tablename:subpartitionname

If you use tablename:partitionname, the specified table must be partitioned, and

partitionname must be the name of one of its partitions or subpartitions.

See Example Export Session Using Partition-Level Export on page 1-34 for several

examples of partition-level exports.

Additional Information: Some operating systems, such as UNIX, require that

you use escape characters before special characters, such as a parenthesis, so

that the character is not treated as a special character. On UNIX, use a backslash

(\) as the escape character, as shown in the following example:

TABLES=\(EMP,DEPT\)

Table-Name Restrictions
Table names specified on the command line cannot include a pound (#) sign, unless

the table name is enclosed in quotation marks. Similarly, in the parameter file, if a

table name includes a pound (#) sign, the Export utility interprets the rest of the line

as a comment, unless the table name is enclosed in quotation marks.

For example, if the parameter file contains the following line, Export interprets

everything on the line after EMP# as a comment and does not export the tables

DEPT and MYDATA:

TABLES=(EMP#, DEPT, MYDATA)

However, given the following line, the Export utility exports all three tables:

TABLES=("EMP#", DEPT, MYDATA)

Note: When you specify the table name using quotation marks, the name is

case-sensitive. The name must exactly match the table name stored in the

database. By default, table names in a database are stored as uppercase.

In the previous example, a table named EMP# is exported, not a table named emp#.

Because the tables DEPT and MYDATA are not specified in quotation marks, the

names are not case-sensitive.

Additional Information: Some operating systems require single quotation

marks rather than double quotation marks, or vice versa; see your Oracle

operating system-specific documentation. Different operating systems also have

other restrictions on table naming.
1-26 Oracle8i Utilities



Export Parameters
For example, the UNIX C shell attaches a special meaning to a dollar sign ($) or

pound sign (#) (or certain other special characters). You must use escape

characters to get such characters in the name past the shell and into Export.

TABLESPACES
Default: none

When TRANSPORT_TABLESPACE is specified as Y, use this parameter to provide a

list of the tablespaces to be exported from the database into the export file.

See Transportable Tablespaces on page 1-60 for more information.

TRANSPORT_TABLESPACE
Default: N

When specified as Y, this parameter enables the export of transportable tablespace

metadata. See the Oracle8i Administrator’s Guide and Oracle8i Concepts for more

information.

TRIGGERS
Default: Y

Specifies whether or not the Export utility exports triggers.

USERID (username/password)
Default: none

Specifies the username/password  (and optional connect string) of the user

initiating the export. If you omit the password, Export will prompt you for it.

USERID can also be:

username/password AS SYSDBA

or

username/password@instance AS SYSDBA

See Invoking Export As SYSDBA on page 1-10 for more information. Your operating

system may require you to treat AS SYSDBA as a special string, in which case the

entire string would be enclosed in quotation marks.
Export 1-27



Example Export Sessions
Optionally, you can specify the @connect_string clause for Net8. See the user’s guide

for your Net8 protocol for the exact syntax of @connect_string. See also Oracle8i
Distributed Database Systems.

VOLSIZE
Specifies the maximum number of bytes in an export file on each volume of tape.

The VOLSIZE parameter has a maximum value equal to the maximum value that

can be stored in 64 bits. See your operating system-specific documentation for more

information.

The VOLSIZE value can be specified as number followed by K (number of

kilobytes). For example, VOLSIZE=2K is the same as VOLSIZE=2048. Similarly, M

specifies megabytes (1024 * 1024) while G specifies gigabytes (1024**3). B remains

the shorthand for bytes; the number is not multiplied to get the final file size

(VOLSIZE=2048b is the same as VOLSIZE=2048).

Parameter Interactions
Certain parameters can conflict with each other. For example, because specifying

TABLES can conflict with an OWNER specification, the following command causes

Export to terminate with an error:

exp system/manager OWNER=jones TABLES=scott.emp

Similarly, OWNER and TABLE conflict with FULL=Y.

Although ROWS=N and INCTYPE=INCREMENTAL can both be used, specifying

ROWS=N (no data) defeats the purpose of incremental exports, which is to make a

backup copy of tables that have changed.

Example Export Sessions
The following examples show you how to use the command line and parameter file

methods in the full database, user, and table modes.

Example Export Session in Full Database Mode
Only users with the DBA role or the EXP_FULL_DATABASE role can export in full

database mode. In this example, an entire database is exported to the file dba.dmp

with all GRANTS and all data.
1-28 Oracle8i Utilities



Example Export Sessions
Parameter File Method

> exp system/manager parfile=params.dat

The params.dat file contains the following information:

FILE=dba.dmp
GRANTS=y
FULL=y
ROWS=y

Command-Line Method

> exp system/manager full=Y file=dba.dmp grants=Y rows=Y

Export Messages
Export: Release 8.1.6.0.0 - Production on Wed Oct 6 15:23:51 1999

(c) Copyright 1999 Oracle Corporation.  All rights reserved.

Connected to: Oracle8i Enterprise Edition Release 8.1.6.0.0 - Production
With the Partitioning and Java options
PL/SQL Release 8.1.6.0.0 - Production
Export done in WE8DEC character set and WE8DEC NCHAR character set

About to export the entire database ...
. exporting tablespace definitions
. exporting profiles
. exporting user definitions
. exporting roles
. exporting resource costs
. exporting rollback segment definitions
. exporting database links
. exporting sequence numbers
. exporting directory aliases
. exporting context namespaces
. exporting foreign function library names
. exporting object type definitions
. exporting system procedural objects and actions
. exporting pre-schema procedural objects and actions
. exporting cluster definitions
. about to export SYSTEM's tables via Conventional Path ...
. . exporting table                    DEF$_AQCALL          0 rows exported
. . exporting table                   DEF$_AQERROR          0 rows exported
. . exporting table                  DEF$_CALLDEST          0 rows exported
Export 1-29



Example Export Sessions
. . exporting table               DEF$_DEFAULTDEST          0 rows exported

. . exporting table               DEF$_DESTINATION          0 rows exported

. . exporting table                     DEF$_ERROR          0 rows exported

. . exporting table                       DEF$_LOB          0 rows exported

. . exporting table                    DEF$_ORIGIN          0 rows exported

. . exporting table                DEF$_PROPAGATOR          0 rows exported

. . exporting table       DEF$_PUSHED_TRANSACTIONS          0 rows exported

. . exporting table                  DEF$_TEMP$LOB          0 rows exported

. . exporting table        SQLPLUS_PRODUCT_PROFILE          0 rows exported

. about to export OUTLN's tables via Conventional Path ...

. . exporting table                            OL$          0 rows exported

. . exporting table                       OL$HINTS          0 rows exported

. about to export DBSNMP's tables via Conventional Path ...

. about to export SCOTT's tables via Conventional Path ...

. . exporting table                          BONUS          0 rows exported

. . exporting table                           DEPT          4 rows exported

. . exporting table                            EMP         14 rows exported

. . exporting table                       SALGRADE          5 rows exported

. about to export ADAMS's tables via Conventional Path ...

. about to export JONES's tables via Conventional Path ...

. about to export CLARK's tables via Conventional Path ...

. about to export BLAKE's tables via Conventional Path ...

. . exporting table                           DEPT          8 rows exported

. . exporting table                        MANAGER          4 rows exported

. exporting referential integrity constraints

. exporting synonyms

. exporting views

. exporting stored procedures

. exporting operators

. exporting indextypes

. exporting bitmap, functional and extensible indexes

. exporting posttables actions

. exporting triggers

. exporting snapshots

. exporting snapshot logs

. exporting job queues

. exporting refresh groups and children

. exporting dimensions

. exporting post-schema procedural objects and actions

. exporting user history table

. exporting default and system auditing options

. exporting statistics
Export terminated successfully without warnings.
1-30 Oracle8i Utilities



Example Export Sessions
Example Export Session in User Mode
Exports in user mode can back up one or more database users. For example, a DBA

may want to back up the tables of deleted users for a period of time. User mode is

also appropriate for users who want to back up their own data or who want to

move objects from one owner to another. In this example, user SCOTT is exporting

his own tables.

Parameter File Method

> exp scott/tiger parfile=params.dat

The params.dat file contains the following information:

FILE=scott.dmp
OWNER=scott
GRANTS=y
ROWS=y
COMPRESS=y

Command-Line Method

> exp scott/tiger file=scott.dmp owner=scott grants=Y rows=Y compress=y

Export Messages
Export: Release 8.1.6.0.0 - Production on Wed Oct 6 15:24:25 1999

(c) Copyright 1999 Oracle Corporation.  All rights reserved.

Connected to: Oracle8i Enterprise Edition Release 8.1.6.0.0 - Production
With the Partitioning and Java options
PL/SQL Release 8.1.6.0.0 - Production
Export done in WE8DEC character set and WE8DEC NCHAR character set
. exporting pre-schema procedural objects and actions
. exporting foreign function library names for user SCOTT
. exporting object type definitions for user SCOTT
About to export SCOTT's objects ...
. exporting database links
. exporting sequence numbers
. exporting cluster definitions
. about to export SCOTT's tables via Conventional Path ...
. . exporting table                          BONUS          0 rows exported
. . exporting table                           DEPT          4 rows exported
. . exporting table                            EMP         14 rows exported
. . exporting table                       SALGRADE          5 rows exported
Export 1-31



Example Export Sessions
. exporting synonyms

. exporting views

. exporting stored procedures

. exporting operators

. exporting referential integrity constraints

. exporting triggers

. exporting indextypes

. exporting bitmap, functional and extensible indexes

. exporting posttables actions

. exporting snapshots

. exporting snapshot logs

. exporting job queues

. exporting refresh groups and children

. exporting dimensions

. exporting post-schema procedural objects and actions

. exporting statistics
Export terminated successfully without warnings.

Example Export Sessions in Table Mode
In table mode, you can export table data or the table definitions. (If no rows are

exported, the CREATE TABLE statement is placed in the export file, with grants and

indexes, if they are specified.)

A user with the EXP_FULL_DATABASE role can use table mode to export tables

from any user’s schema by specifying TABLES=schemaname.tablename.

If schemaname is not specified, Export defaults to the previous schemaname from

which an object was exported. If there is not a previous object, Export defaults to

the exporter’s schema. In the following example, Export defaults to the SYSTEM

schema for table a and to SCOTT for table c :

> exp system/manager tables=(a, scott.b, c, mary.d)

A user without the EXP_FULL_DATABASE role can export only tables that the user

owns. A user with the EXP_FULL_DATABASE role can export dependent objects

that are owned by other users. A nonprivileged user can export only dependent

objects for the specified tables that the user owns.

Exports in table mode do not include cluster definitions. As a result, the data is

exported as unclustered tables. Thus, you can use table mode to uncluster tables.
1-32 Oracle8i Utilities



Example Export Sessions
Example 1
In this example, a DBA exports specified tables for two users.

Parameter File Method

> exp system/manager parfile=params.dat

The params.dat file contains the following information:

FILE=expdat.dmp
TABLES=(scott.emp,blake.dept)
GRANTS=y
INDEXES=y

Command-Line Method

> exp system/manager tables=(scott.emp,blake.dept) grants=Y indexes=Y

Export Messages

Export: Release 8.1.6.0.0 - Production on Wed Oct 6 15:24:34 1999

(c) Copyright 1999 Oracle Corporation.  All rights reserved.

Connected to: Oracle8i Enterprise Edition Release 8.1.6.0.0 - Production
With the Partitioning and Java options
PL/SQL Release 8.1.6.0.0 - Production
Export done in WE8DEC character set and WE8DEC NCHAR character set

About to export specified tables via Conventional Path ...
Current user changed to SCOTT
. . exporting table                            EMP         14 rows exported
Current user changed to BLAKE
. . exporting table                           DEPT          8 rows exported
Export terminated successfully without warnings.

Example 2
In this example, user BLAKE exports selected tables that he owns.

Parameter File Method

> exp blake/paper parfile=params.dat
Export 1-33



Example Export Sessions
The params.dat file contains the following information:

FILE=blake.dmp
TABLES=(dept,manager)
ROWS=Y
COMPRESS=Y

Command-Line Method

> exp blake/paper file=blake.dmp tables=(dept, manager) rows=y compress=Y

Export Messages
Export: Release 8.1.6.0.0 - Production on Wed Oct 6 15:24:38 1999

(c) Copyright 1999 Oracle Corporation.  All rights reserved.

Connected to: Oracle8i Enterprise Edition Release 8.1.6.0.0 - Production
With the Partitioning and Java options
PL/SQL Release 8.1.6.0.0 - Production
Export done in WE8DEC character set and WE8DEC NCHAR character set

About to export specified tables via Conventional Path ...
. . exporting table                           DEPT          8 rows exported
. . exporting table                        MANAGER          4 rows exported
Export terminated successfully without warnings.

Example Export Session Using Partition-Level Export
In partition-level export, you can specify the partitions and subpartitions of a table

that you want to export.

Example 1
Assume EMP is a table that is partitioned on employee name. There are two

partitions, M and Z. As this example shows, if you export the table without

specifying a partition, all of the partitions are exported.

Parameter File Method

> exp scott/tiger parfile=params.dat
1-34 Oracle8i Utilities



Example Export Sessions
The params.dat file contains the following:

TABLES=(emp)
ROWS=y

Command-Line Method

> exp scott/tiger tables=emp rows=Y

Export Messages
Export: Release 8.1.6.0.0 - Production on Wed Oct 6 15:24:46 1999

(c) Copyright 1999 Oracle Corporation.  All rights reserved.

Connected to: Oracle8i Enterprise Edition Release 8.1.6.0.0 - Production
With the Partitioning and Java options
PL/SQL Release 8.1.6.0.0 - Production
Export done in WE8DEC character set and WE8DEC NCHAR character set

About to export specified tables via Conventional Path ...
. . exporting table                            EMP
. . exporting partition                              M          8 rows exported
. . exporting partition                              Z          6 rows exported
Export terminated successfully without warnings.

Example 2
Assume EMP is a table that is partitioned on employee name. There are two

partitions, M and Z. As this example shows, if you export the table and specify a

partition, only the specified partition is exported.

Parameter File Method

> exp scott/tiger parfile=params.dat

The params.dat file contains the following:

TABLES=(emp:m)
ROWS=y

Command-Line Method

> exp scott/tiger tables=emp:m rows=Y

Export Messages
Export 1-35



Example Export Sessions
Export: Release 8.1.6.0.0 - Production on Wed Oct 6 15:24:48 1999

(c) Copyright 1999 Oracle Corporation.  All rights reserved.

Connected to: Oracle8i Enterprise Edition Release 8.1.6.0.0 - Production
With the Partitioning and Java options
PL/SQL Release 8.1.6.0.0 - Production
Export done in WE8DEC character set and WE8DEC NCHAR character set

About to export specified tables via Conventional Path ...
. . exporting table                            EMP
. . exporting partition                              M          8 rows exported
Export terminated successfully without warnings.

Example 3
Assume EMP is a partitioned table with two partitions, M and Z. Table EMP is

partitioned using the composite method. M has subpartitions sp1 and sp2, and Z

has subpartitions sp3 and sp4. As the example shows, if you export the composite

partition M, all its subpartitions (sp1 and sp2) will be exported. If you export the

table and specify a subpartition (sp4), only the specified subpartition is exported.

Parameter File Method

> exp scott/tiger partfile=params.dat

The params.dat file contains the following:

TABLES=(emp:m,emp:sp4)
ROWS=Y

Command-Line Method

> exp scott/tiger tables=(emp:m, emp:sp4) rows=Y

Export Messages

Export: Release 8.1.6.0.0 - Production on Wed Oct 6 15:24:48 1999

(c) Copyright 1999 Oracle Corporation.  All rights reserved.

Connected to: Oracle8i Enterprise Edition Release 8.1.6.0.0 - Production
With the Partitioning and Java options
PL/SQL Release 8.1.6.0.0 - Production
Export done in WE8DEC character set and WE8DEC NCHAR character set
1-36 Oracle8i Utilities



Using the Interactive Method
About to export specified tables via Conventional Path ...

. . exporting table                            EMP

. . exporting composite partition                    M

. . exporting subpartition                           SP1         4 rows exported

. . exporting subpartition                           SP2         0 rows exported

. . exporting composite partition                    Z

. . exporting subpartition                           SP4         1 rows exported
Export terminated successfully without warnings.

Using the Interactive Method
Starting Export from the command line with no parameters initiates the interactive

method. The interactive method does not provide prompts for all Export

functionality. The interactive method is provided only for backward compatibility.

If you do not specify a username/password combination on the command line, the

Export utility prompts you for this information.

Interactively Invoking Export As SYSDBA
Typically, you should not need to invoke Export as SYSDBA. However, you may

have occasion to do so under specific circumstances at the request of Oracle

technical support.

If you use the Export interactive mode, you will not be prompted to specify whether

you want to connect as SYSDBA or @instance. You must specify "AS SYSDBA"

and/or "@instance" with the username.

The following is an example of the response to the Export interactive username

prompt:

username/password@instance as sysdba
username/password@instance
username/password as sysdba
username/password
username@instance as sysdba  (prompts for password)
username@instance            (prompts for password)
username                     (prompts for password)
username AS sysdba           (prompts for password)
/    as sysdba               (no prompt for password, OS authentication
                             is used)
Export 1-37



Using the Interactive Method
/                            (no prompt for password, OS authentication
                             is used)
/@instance as sysdba         (no prompt for password, OS authentication
                             is used)
/@instance                   (no prompt for password, OS authentication
                             is used)

Note: If you omit the password and allow Export to prompt you for it, you

cannot specify the @instance string as well. You can specify @instance only with

username.

Then, Export displays the following prompts:

Export: Release 8.1.6.0.0 - Production on Wed Oct 6 15:24:54 1999

(c) Copyright 1999 Oracle Corporation.  All rights reserved.

Connected to: Oracle8i Enterprise Edition Release 8.1.6.0.0 - Production
With the Partitioning and Java options
PL/SQL Release 8.1.6.0.0 - Production
Enter array fetch buffer size: 4096 >
Export file: expdat.dmp >
(1)E(ntire database), (2)U(sers), or (3)T(ables): (2)U >
Export grants (yes/no): yes >
Export table data (yes/no): yes >
Compress extents (yes/no): yes >
Export done in WE8DEC character set and WE8DEC NCHAR character set

About to export the entire database ...
. exporting tablespace definitions
. exporting profiles
. exporting user definitions
. exporting roles
. exporting resource costs
. exporting rollback segment definitions
. exporting database links
. exporting sequence numbers
. exporting directory aliases
. exporting context namespaces
. exporting foreign function library names
. exporting object type definitions
. exporting system procedural objects and actions
. exporting pre-schema procedural objects and actions
. exporting cluster definitions
. about to export SYSTEM's tables via Conventional Path ...
. . exporting table                    DEF$_AQCALL          0 rows exported
1-38 Oracle8i Utilities



Using the Interactive Method
. . exporting table                   DEF$_AQERROR          0 rows exported

. . exporting table                  DEF$_CALLDEST          0 rows exported

. . exporting table               DEF$_DEFAULTDEST          0 rows exported

. . exporting table               DEF$_DESTINATION          0 rows exported

. . exporting table                     DEF$_ERROR          0 rows exported

. . exporting table                       DEF$_LOB          0 rows exported

. . exporting table                    DEF$_ORIGIN          0 rows exported

. . exporting table                DEF$_PROPAGATOR          0 rows exported

. . exporting table       DEF$_PUSHED_TRANSACTIONS          0 rows exported

. . exporting table                  DEF$_TEMP$LOB          0 rows exported

. . exporting table        SQLPLUS_PRODUCT_PROFILE          0 rows exported

. about to export OUTLN's tables via Conventional Path ...

. . exporting table                            OL$          0 rows exported

. . exporting table                       OL$HINTS          0 rows exported

. about to export DBSNMP's tables via Conventional Path ...

. about to export SCOTT's tables via Conventional Path ...

. . exporting table                          BONUS          0 rows exported

. . exporting table                           DEPT          4 rows exported

. . exporting table                            EMP         14 rows exported

. . exporting table                       SALGRADE          5 rows exported

. about to export ADAMS's tables via Conventional Path ...

. about to export JONES's tables via Conventional Path ...

. about to export CLARK's tables via Conventional Path ...

. about to export BLAKE's tables via Conventional Path ...

. . exporting table                           DEPT          8 rows exported

. . exporting table                        MANAGER          4 rows exported

. exporting referential integrity constraints

. exporting synonyms

. exporting views

. exporting stored procedures

. exporting operators

. exporting indextypes

. exporting bitmap, functional and extensible indexes

. exporting posttables actions

. exporting triggers

. exporting snapshots

. exporting snapshot logs

. exporting job queues

. exporting refresh groups and children

. exporting dimensions

. exporting post-schema procedural objects and actions

. exporting user history table

. exporting default and system auditing options

. exporting statistics
Export terminated successfully without warnings.
Export 1-39



Warning, Error, and Completion Messages
You may not see all prompts in a given Export session because some prompts

depend on your responses to other prompts. Some prompts show a default answer.

If the default is acceptable, press Enter.

Restrictions
Keep in mind the following points when you use the interactive method:

■ In user mode, Export prompts for all user names to be included in the export

before exporting any data. To indicate the end of the user list and begin the

current Export session, press Enter.

■ In table mode, if you do not specify a schema prefix, Export defaults to the

exporter’s schema or the schema containing the last table exported in the

current session.

For example, if BETH is a privileged user exporting in table mode, Export

assumes that all tables are in BETH’s schema until another schema is specified.

Only a privileged user (someone with the EXP_FULL_DATABASE role) can

export tables in another user’s schema.

■ If you specify a null table list to the prompt "Table to be exported," the Export

utility exits.

Warning, Error, and Completion Messages
This section discusses the messages that Export issues in certain situations.

Log File
You can capture all Export messages in a log file, either by using the LOG parameter

(see LOG on page 1-22) or, for those systems that permit it, by redirecting Export’s

output to a file. The Export utility writes a log of detailed information about

successful unloads and any errors that may occur. Refer to the operating

system-specific Oracle documentation for information on redirecting output.

Warning Messages
Export does not terminate after nonfatal errors. For example, if an error occurs

while exporting a table, Export displays (or logs) an error message, skips to the next

table, and continues processing. These nonfatal errors are known as warnings.

Export issues a warning whenever it encounters an invalid object.
1-40 Oracle8i Utilities



Warning, Error, and Completion Messages
For example, if a nonexistent table is specified as part of a table-mode export, the

Export utility exports all other tables.

Then, it issues a warning and terminates successfully, as shown in the following

listing:

> exp scott/tiger tables=xxx,emp

Export: Release 8.1.6.0.0 - Production on Wed Oct 6 15:25:15 1999

(c) Copyright 1999 Oracle Corporation.  All rights reserved.

Connected to: Oracle8i Enterprise Edition Release 8.1.6.0.0 - Production
With the Partitioning and Java options
PL/SQL Release 8.1.6.0.0 - Production
Export done in WE8DEC character set and WE8DEC NCHAR character set

About to export specified tables via Conventional Path ...
EXP-00011: SCOTT.XXX does not exist
. . exporting table                            EMP         14 rows exported
Export terminated successfully with warnings.

Fatal Error Messages
Some errors are fatal and terminate the Export session. These errors typically occur

because of an internal problem or because a resource, such as memory, is not

available or has been exhausted. For example, if the CATEXP.SQL script is not

executed, Export issues the following fatal error message:

EXP-00024: Export views not installed, please notify your DBA

Additional Information: Messages are documented in the Oracle8i Error
Messages and in your Oracle operating system-specific documentation.

Completion Messages
When Export completes without errors, Export displays the message "Export

terminated successfully without warnings." If one or more nonfatal errors occurs

but Export is able to continue to completion, Export displays the message "Export

terminated successfully with warnings." If a fatal error occurs, Export terminates

immediately with the message "Export terminated unsuccessfully."
Export 1-41



Direct Path Export
Direct Path Export
Export provides two methods for exporting table data:

■ Conventional path Export

■ Direct path Export

Conventional path Export uses the SQL SELECT statement to extract data from

tables. Data is read from disk into a buffer cache, and rows are transferred to the

evaluating buffer. The data, after passing expression evaluation, is transferred to the

Export client, which then writes the data into the export file.

Direct path Export extracts data much faster than a conventional path export. Direct

path Export achieves this performance gain by reading data directly, bypassing the

SQL command processing layer and saves on data copies whenever possible.

Figure 1–2 on page 1-43 shows how data extraction differs between conventional

path Export and direct path Export.

In a direct path Export, data is read from disk into the buffer cache and rows are

transferred directly to the Export client. The evaluating buffer is bypassed. The data

is already in the format that Export expects, thus avoiding unnecessary data

conversion. The data is transferred to the Export client, which then writes the data

into the export file.
1-42 Oracle8i Utilities



Direct Path Export
Figure 1–2 Database Reads on Conventional Path and Direct Path

Oracle Server

Export

Dump File Generate SQL
Commands

SQL Command
Processing

Buffer Cache
Management

Evaluating
Buffer

Read
Database

Blocks

Private
Buffer

or
Buffer
Cache

Oracle Server

Conventional Path Direct Path

Export

Dump File Generate SQL
Commands

SQL Command
Processing

Buffer Cache
Management

Evaluating
Buffer

Read
Database

Blocks

Database

Private
Buffer

or
Buffer
Cache

Database
Export 1-43



Character Set Conversion
Invoking a Direct Path Export
To use direct path Export, specify the DIRECT=Y parameter on the command line or

in the parameter file. The default is DIRECT=N, which extracts the table data using

the conventional path.

In versions of SQL*Loader prior to 8.1.5, you could not use direct path export for

tables containing objects and LOBs. If you tried to, they were exported using the

conventional path method. This behavior has changed and you can now use direct

path export for tables containing objects and LOBs.

Note: The Export parameter BUFFER applies only to conventional path exports.

For direct path Export, use the parameter RECORDLENGTH to specify the size

of the buffer that Export uses for writing to the export file.

Character Set Conversion
Direct path Export exports in the database server character set only. If the character

set of the export session is not the same as the database character set when an

export is initiated, Export displays a warning and aborts. Using the NLS_LANG

parameter, specify the session character set to be the same as that of the database

before retrying the export.

Performance Issues
You may be able to improve performance by increasing the value of the

RECORDLENGTH parameter when you invoke a direct path Export. Your exact

performance gain varies depending upon the following factors:

■ DB_BLOCK_SIZE

■ The types of columns in your table

■ Your I/O layout (The drive receiving the export file should be separate from the

disk drive where the database files reside.)

When using direct path Export, set the RECORDLENGTH parameter equal to the

DB_BLOCK_SIZE database parameter, so that each table scan returns a full

database block worth of data. If the data does not fit in the export I/O buffer, the

Export utility performs multiple writes to the export file for each database block.
1-44 Oracle8i Utilities



Incremental, Cumulative, and Complete Exports
The following values are generally recommended for RECORDLENGTH:

■ Multiples of the file system I/O block size

■ Multiples of DB_BLOCK_SIZE

Restriction: You cannot use the interactive method to invoke direct path Export.

Incremental, Cumulative, and Complete Exports
Important: Incremental, cumulative, and complete Exports are obsolete features

that will be phased out in a subsequent release. You should begin now to migrate to

Oracle’s Backup and Recovery Manager for database backups. See Oracle8i
Operating System Backup and Recovery Guide for more information.

Restrictions:

■ You can do incremental, cumulative, and complete exports only in full

database mode (FULL=Y). Only users who have the role

EXP_FULL_DATABASE can run incremental, cumulative, and complete

Exports. This role contains the privileges needed to modify the system

tables that track incremental exports. System Tables on page 1-51 describes

those tables.

■ You cannot specify incremental Exports as read-consistent.

Base Backups
If you use cumulative and incremental Exports, you should periodically perform a

complete Export to create a base backup. Following the complete Export, perform

frequent incremental Exports and occasional cumulative Exports. After a given

period of time, you should begin the cycle again with another complete Export.

Incremental Exports
An incremental Export backs up only tables that have changed since the last

incremental, cumulative, or complete Export. An incremental Export exports the

table definition and all its data, not just the changed rows. Typically, you perform

incremental Exports more often than cumulative or complete Exports.

Assume that a complete Export was done at Time 1. Figure 1–3 on page 1-46 shows

an incremental Export at Time 2, after three tables have been modified. Only the

modified tables and associated indexes are exported.
Export 1-45



Incremental, Cumulative, and Complete Exports
Figure 1–3  Incremental Export at Time 2

Figure 1–4 shows another incremental Export at Time 3, after two tables have been

modified since Time 2. Because Table 3 was modified a second time, it is exported at

Time 3 as well as at Time 2.

Figure 1–4 Incremental Export at Time 3

Index 1

Table 1Table 1 Table 5Table 3

Index 1 Index 5Table 4

Table 2 Table 6Index 4

Database Export file

Table 6

Table 3

Index 4

Table 3Table 1 Table 5Table 3

Index 1 Index 5Table 4

Table 2 Table 6Index 4

Database Export file

Table 4
1-46 Oracle8i Utilities



Incremental, Cumulative, and Complete Exports
Cumulative Exports
A cumulative Export backs up tables that have changed since the last cumulative or

complete Export. A cumulative Export compresses a number of incremental Exports

into a single cumulative export file. It is not necessary to save incremental export

files taken before a cumulative export because the cumulative export file replaces

them.

Figure 1–5 shows a cumulative Export at Time 4. Tables 1 and 6 have been modified

since Time 3. All tables modified since the complete Export at Time 1 are exported.

Figure 1–5  Cumulative Export at Time 4

This cumulative export file includes the changes from the incremental Exports from

Time 2 and Time 3. Table 3, which was modified at both times, occurs only once in

the export file. In this way, cumulative exports save space over multiple incremental

Exports.

Complete Exports
A complete Export establishes a base for incremental and cumulative Exports. It is

equivalent to a full database Export, except that it also updates the tables that track

incremental and cumulative Exports.

Figure 1–6 on page 1-48 shows a complete Export at Time 5. With the complete

Export, all objects in the database are exported regardless of when (or if) they were

modified.

Index 1

Index 4

Table 1Table 1 Table 5Table 3

Index 1 Index 5Table 4

Table 2 Table 6Index 4

Database Export file

Table 4

Table 6

Table 3
Export 1-47



Incremental, Cumulative, and Complete Exports
Figure 1–6 Complete Export at Time 5

A Scenario
The scenario described in this section shows how you can use cumulative and

incremental Exports.

Assume that as manager of a data center, you do the following tasks:

■ A complete Export (X) every three weeks

■ A cumulative Export (C) every Sunday

■ An incremental Export (I) every night

Your export schedule follows:

DAY: 1 2  3  4  5  6  7  8  9 10 11 12 13 14 15 16 17 18 19 20 21 22
     X  I  I  I  I  I  I  C  I  I  I  I  I  I  C  I  I  I  I  I  I  X
    Sun                  Sun                  Sun                  Sun

Table 1 Table 5Table 3

Index 1 Index 5Table 4

Table 2 Table 6Index 4

Database Export file

Table 5

Index 4

Index 1

Index 5

Table 6

Table 4

Table 3

Table 2

Table 1
1-48 Oracle8i Utilities



Incremental, Cumulative, and Complete Exports
To restore through day 18, first you import the system information from the

incremental Export taken on day 18. Then, you import the data from:

1. The complete Export taken on day 1

2. The cumulative Export taken on day 8

3. The cumulative Export taken on day 15

4. Three incremental Exports taken on days 16, 17, and 18

The incremental Exports on days 2 through 7 can be discarded on day 8, after the

cumulative Export is done, because the cumulative Export incorporates all

incremental Exports. Similarly, the incremental Exports on days 9 through 14 can be

discarded after the cumulative Export on day 15.

Note: The section INCTYPE on page 1-21 explains the syntax to specify incremental,

cumulative, and complete Exports.

Which Data Is Exported?
The purpose of an incremental or cumulative Export is to identify and export only

those database objects (such as clusters, tables, views, and synonyms) that have

changed since the last Export. Each table is associated with other objects, such as the

data, indexes, grants, audits, triggers, and comments.

The entire grant structure for tables or views is exported with the underlying base

tables. Indexes are exported with their base table, regardless of who created the

index. If the base view is included, "instead of" triggers on views are included.

Any modification (UPDATE, INSERT, or DELETE) on a table automatically qualifies

that table for incremental Export. When a table is exported, all of its inner nested

tables and LOB columns are exported also. Modifying an inner nested table column

causes the outer table to be exported. Modifying a LOB column causes the entire

table containing the LOB data to be exported.

Also, the underlying base tables and data are exported if database structures have

changed in the following ways:

■ A table is created.

■ A table definition is changed by an ALTER TABLE statement.

■ Comments are added or edited.

■ Auditing options are updated.

■ Grants (of any level) are altered.
Export 1-49



Incremental, Cumulative, and Complete Exports
■ Indexes are added or dropped.

■ Index storage parameters are changed by an ALTER INDEX statement.

In addition to the base tables and data, the following data is exported:

■ All system objects (including tablespace definitions, rollback segment

definitions, and user privileges, but not including temporary segments)

■ Information about dropped objects

■ Clusters, tables, views, procedures, functions, dimensions, and synonyms

created since the last export

■ All type definitions

Note: Export does not export grants on data dictionary views for security

reasons that affect Import. If such grants were exported, access privileges would

be changed and the user would not be aware of this. Also, not forcing grants on

import allows the user more flexibility to set up appropriate grants on import.

Example Incremental Export Session
The following example shows an incremental Export session after the tables

SCOTT.EMP and SCOTT.DEPT are modified:

> exp system/manager full=y inctype=incremental

Export: Release 8.1.6.0.0 - Production on Wed Oct 6 15:25:47 1999

(c) Copyright 1999 Oracle Corporation.  All rights reserved.

Connected to: Oracle8i Enterprise Edition Release 8.1.6.0.0 - Production
With the Partitioning and Java options
PL/SQL Release 8.1.6.0.0 - Production
Export done in WE8DEC character set and WE8DEC NCHAR character set

About to export the entire database ...
. exporting tablespace definitions
. exporting profiles
. exporting user definitions
. exporting roles
. exporting resource costs
. exporting rollback segment definitions
. exporting database links
. exporting sequence numbers
. exporting directory aliases
1-50 Oracle8i Utilities



Incremental, Cumulative, and Complete Exports
. exporting context namespaces

. exporting foreign function library names

. exporting object type definitions

. exporting system procedural objects and actions

. exporting pre-schema procedural objects and actions

. exporting cluster definitions

. about to export SYSTEM's tables via Conventional Path ...

. about to export OUTLN's tables via Conventional Path ...

. about to export DBSNMP's tables via Conventional Path ...

. about to export SCOTT's tables via Conventional Path ...

. . exporting table                           DEPT          8 rows exported

. . exporting table                            EMP         23 rows exported

. about to export ADAMS's tables via Conventional Path ...

. about to export JONES's tables via Conventional Path ...

. about to export CLARK's tables via Conventional Path ...

. about to export BLAKE's tables via Conventional Path ...

. exporting referential integrity constraints

. exporting synonyms

. exporting views

. exporting stored procedures

. exporting operators

. exporting indextypes

. exporting bitmap, functional and extensible indexes

. exporting posttables actions

. exporting triggers

. exporting snapshots

. exporting snapshot logs

. exporting job queues

. exporting refresh groups and children

. exporting dimensions

. exporting post-schema procedural objects and actions

. exporting user history table

. exporting default and system auditing options

. exporting information about dropped objects

. exporting statistics
Export terminated successfully without warnings.

System Tables
The user SYS owns three tables (INCEXP, INCFIL, and INCVID) that are maintained

by Export. These tables are updated when you specify RECORD=Y (the default).

You should not alter these tables in any way.
Export 1-51



Incremental, Cumulative, and Complete Exports
SYS.INCEXP
The table SYS.INCEXP tracks which objects were exported in specific exports.

This table contains the following columns:

OWNER# The userid of the schema containing the table.

NAME The object name. The primary key consists of OWNER#, NAME, and TYPE.

TYPE The type of the object (a code specifying INDEX, TABLE, CLUSTER, VIEW,

SYNONYM, SEQUENCE, PROCEDURE, FUNCTION, PACKAGE, TRIGGER,

DIMENSION, OPERATOR, INDEXTYPE, SNAPSHOT, SNAPSHOT LOG, or

PACKAGE BODY).

CTIME The date and time of the last cumulative export that included this object.

ITIME The date and time of the last incremental export that included this object.

EXPID The ID of the incremental or cumulative export, also found in the table

SYS.INCFIL.

You can use this information in several ways. For example, you could generate a

report from SYS.INCEXP after each export to document the export file. You can use

the views DBA_EXP_OBJECTS, DBA_EXP_VERSION, and DBA_EXP_FILES to

display information about incremental exports.

SYS.INCFIL
The table SYS.INCFIL tracks the incremental and cumulative exports and assigns a

unique identifier to each.

This table contains the following columns:

EXPID The ID of the incremental or cumulative export, also found in the table

SYS.INCEXP.

EXPTYPE The type of export (incremental or cumulative).

EXPFILE The name of the export file.

EXPDATE The date of the export.

EXPUSER The USERNAME of the individual who initiated the export.
1-52 Oracle8i Utilities



Network Considerations
When you export with the parameter INCTYPE = COMPLETE, all previous entries

are removed from SYS.INCFIL and a new row is added specifying an "x" in the

column EXPTYPE.

SYS.INCVID
The table SYS.INCVID contains one column for the EXPID of the last valid export.

This information determines the EXPID of the next export.

Network Considerations
This section describes factors to take into account when you use Export and Import

across a network.

Transporting Export Files Across a Network
Because the export file is in binary format, use a protocol that supports binary

transfers to prevent corruption of the file when you transfer it across a network. For

example, use FTP or a similar file transfer protocol to transmit the file in binary
mode. Transmitting export files in character mode causes errors when the file is

imported.

Exporting and Importing with Net8
With Net8 (and SQL*Net V2), you can perform exports and imports over a network.

For example, if you run Export locally, you can write data from a remote Oracle

database into a local export file. If you run Import locally, you can read data into a

remote Oracle database.

To use Export with Net8, include the @connect_string  after the

username/password  when you enter the exp  command, as shown in the

following example:

exp scott/tiger@SUN2 FILE=export.dmp FULL=Y

Additional Information: For the exact syntax of this clause, see the user’s guide

for your Net8 or SQL*Net protocol. For more information on Net8 or Oracle

Names, see the Net8 Administrator’s Guide.
Export 1-53



Character Set and NLS Considerations
Character Set and NLS Considerations
This section describes the behavior of Export and Import with respect to National

Language Support (NLS).

Character Set Conversion
In conventional mode, the Export utility writes to the export file using the character

set specified for the user session, such as 7-bit ASCII, IBM Code Page 500 (EBCDIC),

or an Oracle NLS character set like JA16EUC,converting from the database server

character set as necessary. Import then converts character data to the user-session

character set if that character set is different from the one in the export file.

The export file identifies the character encoding scheme used for the character data

in the file. If that character set is any single-byte character set (for example, EBCDIC

or USASCII7), and if the character set used by the target database is also a

single-byte character set, the data is automatically converted to the character

encoding scheme specified for the user session during import, as specified by the

NLS_LANG environment variable. After the data is converted to the session

character set, it is then converted to the database character set.

During the conversion, any characters in the export file that have no equivalent in

the target character set are replaced with a default character. (The default character

is defined by the target character set.) To guarantee 100% conversion, the target

character set should be a superset or equivalent of the source character set.

Some 8-bit characters can be lost (that is, converted to 7-bit equivalents) when you

import an 8-bit character set export file. This occurs if the client machine has a

native 7-bit character set or if the NLS_LANG operating system environment

variable is set to a 7-bit character set. Most often, you notice that accented characters

lose their accent mark.

Both Export and Import provide descriptions of any required character set

conversion before exporting or importing the data.

When you use direct path Export, the character set of the user’s session must be the

same as the database character set.
1-54 Oracle8i Utilities



Character Set and NLS Considerations
For more information, see the Oracle8i National Language Support Guide.

Note: If the export character set has a different sorting order than

the import character set, then tables that are partitioned on

character columns may yield unpredictable results. For example,

consider the following table definition, which is produced on a

database having an ASCII character set:

create table partlist
   (
   part     varchar2(10),
   partno   number(2)
   )
partition by range (part)
  (
  partition part_low values less than ('Z')
    tablespace tbs_1,
  partition part_mid values less than ('z')
    tablespace tbs_2,
  partition part_high values less than
(MAXVALUE)
    tablespace tbs_3
  );

 This partitioning scheme makes sense because 'z' comes after 'Z' in

ASCII character sets.

When this table is imported into a database based upon an EBCDIC

character set, all of the rows in the part_mid partition will migrate

to the part_low partition because 'z' comes before 'Z' in EBCDIC

character sets. To obtain the desired results, the owner of partlist

will need to repartition the table following the import.
Export 1-55



Character Set and NLS Considerations
NCHAR Conversion During Export and Import
The Export utility always exports NCHAR data in the national character set of the

Export server. (You specify the national character set with the NATIONAL character

set statement at database creation.)

The Import utility automatically converts the data to the national character set of

the Import server.

For more information, see the Oracle8i National Language Support Guide.

Multibyte Character Sets and Export and Import
An export file that is produced with a multibyte character set (for example, Chinese

or Japanese) must be imported on a system that has the same character set or where

the ratio of the width of the widest character in the import character set to the width

of the smallest character in the export character set is 1. If the ratio is not 1, Import

cannot translate the character data to the Import character set.

Caution: When the character set width differs between the export client and the

export server, truncation of data can occur if conversion causes expansion of

data. If truncation occurs, Export displays a warning message.

Instance Affinity and Export
If you use instance affinity to associate jobs with instances in databases you plan to

import/export, you should refer to the information in the Oracle8i Administrator’s
Guide, Oracle8i Reference, and Oracle8i Parallel Server Concepts and Administration for

information about use of instance affinity with the Import/Export utilities. If you

are using both release 8.0 and 8.1, refer to Oracle8i Migration for possible

compatibility issues.

Fine-Grained Access Support
You can export tables with fine-grained access policies enabled. When doing so,

keep the following considerations in mind:

■ The user who imports from an export file containing such tables must have the

appropriate privileges (specifically, execute privilege on the

DBMS_RLS package so that the tables’ security policies can be reinstated). If a

user without the correct privileges attempts to export a table with fine-grained

access policies enabled, only those rows that the exporter is privileged to read

will be exported.
1-56 Oracle8i Utilities



Considerations in Exporting Database Objects
■ If fine-grained access is enabled on select, then conventional path mode export

may not export the entire table because fine-grained access may rewrite the

query.

■ Only SYS or a user with the EXPORT_FULL_DATABASE role enabled can do

direct path export.

Considerations in Exporting Database Objects
The following sections describe points you should consider when you export

particular database objects.

Exporting Sequences
If transactions continue to access sequence numbers during an export, sequence

numbers can be skipped. The best way to ensure that sequence numbers are not

skipped is to ensure that the sequences are not accessed during the export.

Sequence numbers can be skipped only when cached sequence numbers are in use.

When a cache of sequence numbers has been allocated, they are available for use in

the current database. The exported value is the next sequence number (after the

cached values). Sequence numbers that are cached, but unused, are lost when the

sequence is imported.

Exporting LONG and LOB Datatypes
On export, LONG datatypes are fetched in sections. However, enough memory

must be available to hold all of the contents of each row, including the LONG data.

LONG columns can be up to 2 gigabytes in length.

Note: All data in a LOB column does not need to be held in memory at the same

time. LOB data is loaded and unloaded in sections.

Exporting Foreign Function Libraries
The contents of foreign function libraries are not included in the export file. Instead,

only the library specification (name, location) is included in full database and user

mode export. The database administrator must move the library and update the

library specification if the database is moved to a new location.
Export 1-57



Considerations in Exporting Database Objects
Exporting Offline Bitmapped Tablespaces
If the data you are exporting contains offline bitmapped tablespaces, Export will not

be able to export the complete tablespace definition and will display an error

message. You can still import the data; however, you must first create the offline

bitmapped tablespaces before importing to prevent DDL commands that may

reference the missing tablespaces from failing.

Exporting Directory Aliases
Directory alias definitions are included only in a full database mode Export. To

move a database to a new location, the database administrator must update the

directory aliases to point to the new location.

Directory aliases are not included in user or table mode Export. Therefore, you must

ensure that the directory alias has been created on the target system before the

directory alias is used.

Exporting BFILE Columns and Attributes
The export file does not hold the contents of external files referenced by BFILE

columns or attributes. Instead, only the names and directory aliases for files are

copied on Export and restored on Import. If you move the database to a location

where the old directories cannot be used to access the included files, the database

administrator (DBA) must move the directories containing the specified files to a

new location where they can be accessed.

Exporting Object Type Definitions
In all Export modes, the Export utility includes information about object type

definitions used by the tables being exported. The information, including object

name, object identifier, and object geometry, is needed to verify that the object type

on the target system is consistent with the object instances contained in the export

file. This ensures that the object types needed by a table are created with the same

object identifier at import time.

Note, however, that in table, user, and tablespace mode, the export file does not

include a full object type definition needed by a table if the user running Export

does not have execute access to the object type. In this case, only enough

information is written to verify that the type exists, with the same object identifier

and the same geometry, on the import target system.
1-58 Oracle8i Utilities



Considerations in Exporting Database Objects
The user must ensure that the proper type definitions exist on the target system,

either by working with the DBA to create them, or by importing them from full

database or user mode exports performed by the DBA.

It is important to perform a full database mode export regularly to preserve all

object type definitions. Alternatively, if object type definitions from different

schemas are used, the DBA should perform a user mode export of the appropriate

set of users. For example, if SCOTT’s table TABLE1 contains a column on BLAKE’s

type TYPE1, the DBA should perform a user mode export of both BLAKE and

SCOTT to preserve the type definitions needed by the table.

Exporting Nested Tables
Inner nested table data is exported whenever the outer containing table is exported.

Although inner nested tables can be named, they cannot be exported individually.

Exporting Advanced Queue (AQ) Tables
Queues are implemented on tables. The export and import of queues constitutes the

export and import of the underlying queue tables and related dictionary tables. You

can export and import queues only at queue table granularity.

When you export a queue table, both the table definition information and queue

data are exported. Because the queue table data is exported as well as the table

definition, the user is responsible for maintaining application-level data integrity

when queue table data is imported.

See the Oracle8i Application Developer’s Guide - Advanced Queuing for more

information.

Exporting Synonyms
You should be cautious when exporting compiled objects that reference a name

used as a synonym and as another object. Exporting and importing these objects

will force a recompilation that could result in changes to the object definitions.

The following example helps to illustrate this problem:

create public synonym emp for scott.emp;

connect blake/paper;
create trigger t_emp before insert on emp begin null; end;
create view emp as select * from dual;
Export 1-59



Transportable Tablespaces
If the database in the preceding example were exported, the reference to emp in the

trigger would refer to blake’s view rather than to scott’s table. This would cause an

error when Import tried to reestablish the t_emp trigger.

Transportable Tablespaces
The transportable tablespace feature enables you to move a set of tablespaces from

one Oracle database to another.

To move or copy a set of tablespaces, you must make the tablespaces read-only,

copy the datafiles of these tablespaces, and use Export/Import to move the

database information (metadata) stored in the data dictionary. Both the datafiles

and the metadata export file must be copied to the target database. The transport of

these files can be done using any facility for copying binary files, such as the

operating system copying facility, binary-mode FTP, or publishing on CD-ROMs.

After copying the datafiles and exporting the metadata, you can optionally put the

tablespaces in read/write mode. See Transportable Tablespaces on page 2-60 for

more information about importing from an export file that contains transportable

tablespace metadata.

Export provides the following parameter keywords you can use to enable export of

transportable tablespace metadata.

■ TRANSPORT_TABLESPACE

■ TABLESPACES

See TRANSPORT_TABLESPACE and TABLESPACES on page 1-27 for more

information.

Additional Information: See the Oracle8i Administrator’s Guide for details about

managing transportable tablespaces. For an introduction to the transportable

tablespaces feature, see Oracle8i Concepts.

Using Different Versions of Export
This section describes the general behavior and restrictions of running an Export

version that is different from Oracle8i.

Using a Previous Version of Export
In general, you can use the Export utility from any Oracle release 7 to export from

an Oracle8i server and create an Oracle release 7 export file. (This procedure is
1-60 Oracle8i Utilities



Creating Oracle Release 8.0 Export Files from an Oracle8i Database
described in Creating Oracle Release 7 Export Files from an Oracle8i Database on

page 1-63.)

Oracle Version 6 (or earlier) Export cannot be used against an Oracle8i database.

Whenever a lower version Export utility runs with a higher version of the Oracle

database server, categories of database objects that did not exist in the lower version

are excluded from the export. (See Excluded Objects on page 1-63 for a complete list

of Oracle8i objects excluded from an Oracle release 7 Export.)

Note: When backward compatibility is an issue, use the earlier release or

version of the Export utility against the Oracle8i database, and use conventional

path Export.

Attention: Export files generated by Oracle8i Export, either direct path or

conventional path, are incompatible with earlier releases of Import and can be

imported only with Oracle8i Import.

Using a Higher Version of Export
Attempting to use a higher version of Export with an earlier Oracle database server

often produces the following error:

EXP-37: Database export views not compatible with Export utility
EXP-0:  Export terminated unsuccessfully

The error occurs because views that the higher version of Export expects are not

present. To avoid this problem, use the version of the Export utility that matches the

Oracle database server.

Creating Oracle Release 8.0 Export Files from an Oracle8 i Database
You do not need to take any special steps to create an Oracle Release 8.0 export file

from an Oracle8i database; however, certain features are not supported.

■ Export does not export rows from tables containing objects and LOBs when you

use Export release 8.0 on an Oracle8i database and have specified a direct path

load (DIRECT=Y).

■ Export does not export dimensions when you use Export release 8.0 on an

Oracle8i database.

■ Functional and domain indexes will not be exported when you use Export

release 8.0 on an Oracle8i database.
Export 1-61



Creating Oracle Release 8.0 Export Files from an Oracle8i Database
■ Secondary objects (tables, indexes, sequences, and so on, created in support of a

domain index) will not be exported when you use Export release 8.0 on an

Oracle8i database.

■ Views, procedures, functions, packages, type bodies, and types containing

references to new release 8.1 features may not compile when you use Export

release 8.0 on an Oracle8i database.

■ Objects whose DDL is implemented as a stored procedure rather than SQL will

not be exported when you use Export release 8.0 on an Oracle8i (or earlier)

database.

■ Triggers whose action is a CALL statement will not be exported when you use

Export release 8.0 on an Oracle8i database.

■ Tables containing logical ROWID columns, primary key refs, or user-defined

OID columns will not be exported when you use Export release 8.0 on an

Oracle8i database.

■ Temporary tables will not be exported when you use Export release 8.0 on an

Oracle8i database.

■ Index Organized Tables (IOTs) will revert to an uncompressed state when you

use Export release 8.0 on an Oracle 8i database.

■ Partitioned IOTs will lose their partitioning information when you use Export

release 8.0 on an Oracle8i database.

■ Indextypes and operators will not be exported when you use Export release 8.0

on an Oracle8i database.

■ Bitmapped and temporary tablespaces will not be exported when you use

Export release 8.0 on an Oracle8i database.

■ Java source/class/resource will not be exported when you use Export release

8.0 on an Oracle8i database.

■ Varying-width CLOBs, collection enhancements, and LOB-storage clauses for

VARRAY columns or nested table enhancements will not be exported when you

use Export release 8.0 on an Oracle8i database.

■ Fine-grained access security policies are not preserved when you use Export

release 8.0 on an Oracle8i database.
1-62 Oracle8i Utilities



Creating Oracle Release 7 Export Files from an Oracle8i Database
Creating Oracle Release 7 Export Files from an Oracle8 i Database
You can create an Oracle release 7 export file from an Oracle8i database by running

Oracle release 7 Export against an Oracle8i server. To do so, however, the user SYS

must first run the CATEXP7.SQL script, which creates the export views that make

the database look, to Export, like an Oracle release 7 database.

Note: An Oracle8i Export requires that the CATEXP.SQL script is run against

the database before performing the Export. CATEXP.SQL is usually run

automatically when the user SYS runs CATALOG.SQL to create the necessary

views. CATEXP7.SQL, however, is not run automatically and must be executed

manually. CATEXP7.SQL and CATEXP.SQL can be run in any order; after one of

these scripts has been run, it need not be run again.

Excluded Objects
The Oracle release 7 Export utility produces an Oracle release 7 export file by

issuing queries against the views created by CATEXP7.SQL. These views are fully

compatible with Oracle release 7 and consequently do not contain the new Oracle8i
objects listed in Creating Oracle Release 8.0 Export Files from an Oracle8i Database

on page 1-61 or the following Oracle8 objects:

■ Directory aliases

■ Foreign function libraries

■ Object types

■ Tables containing objects introduced in Oracle8 (such objects include LOB, REF,

and BFILE columns and nested tables)

■ Partitioned tables

■ Index Organized Tables (IOT)

■ Tables containing more than 254 columns

■ Tables containing NCHAR columns

■ Tables containing VARCHAR columns longer than 2,000 characters

■ Reverse indexes

■ Password history

■ System/schema event triggers

■ Tables with universal ROWID columns
Export 1-63



Creating Oracle Release 7 Export Files from an Oracle8i Database
■ Bitmap indexes

Enterprise Manager and Oracle7 Export If you want to use Enterprise Manager to export

7.3.2 databases, you must use Enterprise Manager release 1.4.0 or higher.
1-64 Oracle8i Utilities



I

2

Import

This chapter describes how to use the Import utility, which reads an export file into

an Oracle database.

Import reads only files created by Export. For information on how to export a

database, see Chapter 1. To load data from other operating system files, see the

discussion of SQL*Loader in Part II of this manual.

This chapter discusses the following topics:

■ What Is the Import Utility?

■ Import Modes

■ Using Import

■ Privileges Required to Use Import

■ Importing into Existing Tables

■ Import Parameters

■ Using Table-Level and Partition-Level Export and Import

■ Example Import Sessions

■ Using the Interactive Method

■ Importing Incremental, Cumulative, and Complete Export Files

■ Controlling Index Creation and Maintenance

■ Reducing Database Fragmentation

■ Warning, Error, and Completion Messages

■ Error Handling

■ Network Considerations
mport 2-1



What Is the Import Utility?
■ Import and Snapshots

■ Import and Instance Affinity

■ Fine-Grained Access Support

■ Storage Parameters

■ Dropping a Tablespace

■ Reorganizing Tablespaces

■ Character Set and NLS Considerations

■ Considerations When Importing Database Objects

■ Transportable Tablespaces

■ Importing Statistics

■ Using Export Files from a Previous Oracle Release

What Is the Import Utility?
The basic concept behind Import is very simple. Import inserts the data objects

extracted from one Oracle database by the Export utility (and stored in an Export

dump file) into another Oracle database. Export dump files can only be read by

Import. See Chapter 1 for more information about Oracle’s Export utility.

Import reads the object definitions and table data that the Export utility extracted

from an Oracle database and stored in an Oracle binary-format Export dump file

located typically on disk or tape.

Such files can then be transferred using FTP or physically transported (in the case of

tape) to a different site. The files can then be used with the Import utility to transfer

data between databases that are on machines not connected through a network. The

files can also be used as backups in addition to normal backup procedures.

Note: Export dump files can only be read by the Oracle utility Import. If you

need to load data from ASCII fixed-format or delimited files, see Part II of this

manual.

The Export and Import utilities can also facilitate certain aspects of Oracle

Advanced Replication functionality, such as offline instantiation. See Oracle8i
Replication for more information.

Figure 2–1 illustrates the process of importing from an Export dump file.
2-2 Oracle8i Utilities



What Is the Import Utility?
Figure 2–1 Importing an Export File

Table Objects: Order of Import
Table objects are imported as they are read from the export file. The export file

contains objects in the following order:

1. Type definitions

2. Table definitions

3. Table data

4. Table indexes

5. Integrity constraints, views, procedures, and triggers

6. Bitmap, functional, and domain indexes

First, new tables are created. Then, data is imported and indexes are built. Then

triggers are imported, integrity constraints are enabled on the new tables, and any

bitmap, functional, and/or domain indexes are built. This sequence prevents data

from being rejected due to the order in which tables are imported. This sequence

also prevents redundant triggers from firing twice on the same data (once when it

was originally inserted and again during the import).

Table 1

Table 2

Table 3

Table 4

Table 5

Table 6

Table 1 Table 5Table 3

Index 1 Index 5Table 4

Table 2 Table 6Index 4

DatabaseExport file

Index 1

Index 4

Index 5
Import 2-3



Import Modes
For example, if the EMP table has a referential integrity constraint on the DEPT

table and the EMP table is imported first, all EMP rows that reference departments

that have not yet been imported into DEPT would be rejected if the constraints were

enabled.

When data is imported into existing tables, however, the order of import can still

produce referential integrity failures. In the situation just given, if the EMP table

already existed and referential integrity constraints were in force, many rows could

be rejected.

A similar situation occurs when a referential integrity constraint on a table

references itself. For example, if SCOTT’s manager in the EMP table is DRAKE, and

DRAKE’s row has not yet been loaded, SCOTT’s row will fail, even though it would

be valid at the end of the import.

Suggestion: For the reasons mentioned previously, it is a good idea to disable

referential constraints when importing into an existing table. You can then

reenable the constraints after the import is completed.

Compatibility
Import can read export files created by Export release 5.1.22 and higher.

Import Modes
The Import utility provides four modes of import. The objects that are imported

depend on the Import mode you choose and the mode that was used during the

export. All users have two choices of import mode. A user with the

IMP_FULL_DATABASE role (a privileged user) has four choices:

TABLES This mode allows you to import specific tables and
partitions. A privileged user can qualify the tables by
specifying the schema that contains them.

FROMUSER This mode allows you to import all objects that belong to
you (such as tables, grants, indexes, and procedures). A
privileged user importing in user mode can import all
objects in the schemas of a specified set of users.

FULL Only users with the IMP_FULL_DATABASE role can
import in this mode, which imports a full database export
dump file.

TRANSPORT_
TABLESPACES

This mode allows a privileged user to move a set of
tablespaces from one Oracle database to another.
2-4 Oracle8i Utilities



Import Modes
See Import Parameters on page 2-15 for information on specifying each mode.

A user with the IMP_FULL_DATABASE role must specify one of these options or

specify an incremental import. Otherwise, an error results. If a user without the

IMP_FULL_DATABASE role fails to specify one of these options, a user-level

import is performed.

Table 1–1 on page 1-5 shows the objects that are exported and imported in each

mode.

Understanding Table-Level and Partition-Level Import
You can import tables, partitions, and subpartitions in the following ways:

■ Table-level Import: imports all data from the specified tables in an Export file.

■ Partition-level Import: imports only data from the specified source partitions

or subpartitions.

You must set the parameter IGNORE=Y when loading data into an existing table.

See IGNORE on page 2-22 for more information.

Table-Level Import
For each specified table, table-level Import imports all rows of the table. With

table-level Import:

■ All tables exported using any Export mode (Full, User, Table) can be imported.

■ Users can import the entire (partitioned or nonpartitioned) table, partitions, or

subpartitions from a table-level export file into a (partitioned or nonpartitioned)

target table with the same name.

If the table does not exist, and if the exported table was partitioned, table-level

Import creates a partitioned table. If the table creation is successful, table-level

Import reads all source data from the export file into the target table. After Import,

the target table contains the partition definitions of all partitions and subpartitions

associated with the source table in the Export file. This operation ensures that the

physical and logical attributes (including partition bounds) of the source partitions

are maintained on Import.

Partition-Level Import
Partition-level Import imports a set of partitions or subpartitions from a source table

into a target table. Note the following points:
Import 2-5



Using Import
■ Import always stores the rows according to the partitioning scheme of the target

table.

■ Partition-level Import lets you selectively load data from the specified partitions

or subpartitions in an export file.

■ Partition-level Import inserts only the row data from the specified source

partitions or subpartitions.

■ If the target table is partitioned, partition-level Import rejects any rows that fall

above the highest partition of the target table.

■ Partition-level Import can be specified only in table mode.

For more information, see Using Table-Level and Partition-Level Export and Import

on page 2-31.

Using Import
This section describes what you need to do before you begin importing and how to

invoke and use the Import utility.

Before Using Import
To use Import, you must run either the script CATEXP.SQL or CATALOG.SQL

(which runs CATEXP.SQL) after the database has been created or migrated to

release 8.1.

Additional Information: The actual names of the script files depend on your

operating system. The script file names and the method for running them are

described in your Oracle operating system-specific documentation.

CATEXP.SQL or CATALOG.SQL need to be run only once on a database. You do not

need to run either script again before performing future import operations. Both

scripts perform the following tasks to prepare the database for Import:

■ Assign all necessary privileges to the IMP_FULL_DATABASE role.

■ Assign IMP_FULL_DATABASE to the DBA role.

■ Create required views of the data dictionary.

Invoking Import
You can invoke Import in three ways:
2-6 Oracle8i Utilities



Using Import
■ Enter the following command:

imp username/password PARFILE=filename

PARFILE is a file containing the Import parameters you typically use. If you use

different parameters for different databases, you can have multiple parameter

files. This is the recommended method. See The Parameter File on page 2-9 for

information on how to use the parameter file.

■ Enter the following command

imp username/password <parameters>

Replace <parameters> with various parameters you intend to use. The number

of parameters cannot exceed the maximum length of a command line on your

operating system.

■ To begin an interactive session, enter the following command:

imp username/password

Let Import prompt you for the information it needs. Note that the interactive

method does not provide as much functionality as the parameter-driven

method. It exists for backward compatibility.

You can use a combination of the first and second options. That is, you can list

parameters both in the parameters file and on the command line. In fact, you can

specify the same parameter in both places. The position of the PARFILE parameter

and other parameters on the command line determines what parameters override

others. For example, assume the parameters file params.dat  contains the

parameter INDEXES=Y and Import is invoked with the following line:

imp system/manager PARFILE=params.dat INDEXES=N

In this case, because INDEXES=N occurs after PARFILE=params.dat , INDEXES=N
overrides the value of the INDEXES parameter in the PARFILE.

You can specify the username and password in the parameter file, although, for

security reasons, this is not recommended.

If you omit the username and password, Import prompts you for it.

See Import Parameters on page 2-15 for a description of each parameter.
Import 2-7



Using Import
Invoking Import As SYSDBA
SYSDBA is used internally and has specialized functions; its behavior is not the

same as for generalized users. Therefore, you should not typically need to invoke

Import as SYSDBA. However, there may be a few situations in which you need to

do so, usually at the request of Oracle technical support.

To invoke Import as SYSDBA, use the following syntax:

imp username/password AS SYSDBA

or, optionally:

imp username/password@instance AS SYSDBA

Note: Because the string "AS SYSDBA" contains a blank, most operating

systems require that entire string ’username/password AS SYSDBA’ be placed

in quotation marks or marked as a literal by some method. Some operating

systems also require that quotation marks on the command line be preceded by

an escape character. See your operating system-specific Oracle documentation

for information about special and reserved characters on your system.

If either the username or password is omitted, Import will prompt you for it.

If you use the Import interactive mode, you will not be prompted to specify

whether you want to connect as SYSDBA or @instance. You must specify "AS

SYSDBA" and/or "@instance" with the username.

Getting Online Help
Import provides online help. Enter imp help=y  on the command line to invoke it.

You will see a display similar to the following:

Import: Release 8.1.6.0.0 - Production on Wed Oct 6 15:26:12 1999

(c) Copyright 1999 Oracle Corporation.  All rights reserved.

You can let Import prompt you for parameters by entering the IMP
command followed by your username/password:

     Example: IMP SCOTT/TIGER

Or, you can control how Import runs by entering the IMP command followed
by various arguments. To specify parameters, you use keywords:

     Format:  IMP KEYWORD=value or KEYWORD=(value1,value2,...,valueN)
2-8 Oracle8i Utilities



Using Import
     Example: IMP SCOTT/TIGER IGNORE=Y TABLES=(EMP,DEPT) FULL=N
               or TABLES=(T1:P1,T1:P2), if T1 is partitioned table

USERID must be the first parameter on the command line.

Keyword  Description (Default)       Keyword      Description (Default)
--------------------------------------------------------------------------
USERID   username/password           FULL         import entire file (N)
BUFFER   size of data buffer         FROMUSER     list of owner usernames
FILE     input files (EXPDAT.DMP)    TOUSER       list of usernames
SHOW     just list file contents (N) TABLES       list of table names
IGNORE   ignore create errors (N)    RECORDLENGTH length of IO record
GRANTS   import grants (Y)           INCTYPE      incremental import type
INDEXES  import indexes (Y)          COMMIT       commit array insert (N)
ROWS     import data rows (Y)        PARFILE      parameter filename
LOG      log file of screen output   CONSTRAINTS  import constraints (Y)
DESTROY  overwrite tablespace data file (N)
INDEXFILE write table/index info to specified file
SKIP_UNUSABLE_INDEXES  skip maintenance of unusable indexes (N)
ANALYZE  execute ANALYZE statements in dump file (Y)
FEEDBACK display progress every x rows(0)
TOID_NOVALIDATE  skip validation of specified type ids
FILESIZE maximum size of each dump file
RECALCULATE_STATISTICS recalculate statistics (N)
VOLSIZE  number of bytes in file on each volume of a file on tape

The following keywords only apply to transportable tablespaces
TRANSPORT_TABLESPACE import transportable tablespace metadata (N)
TABLESPACES tablespaces to be transported into database
DATAFILES datafiles to be transported into database
TTS_OWNERS users that own data in the transportable tablespace set

Import terminated successfully without warnings.

The Parameter File
The parameter file allows you to specify Import parameters in a file where they can

be easily modified or reused. Create a parameter file using any flat file text editor.

The command-line option PARFILE=<filename>  tells Import to read the

parameters from the specified file rather than from the command line. For example:

imp parfile=filename

or
Import 2-9



Privileges Required to Use Import
imp username/password parfile=filename

The syntax for parameter file specifications is one of the following:

KEYWORD=value
KEYWORD=(value)
KEYWORD=(value1, value2, ...)

You can add comments to the parameter file by preceding them with the pound (#)

sign. All characters to the right of the pound (#) sign are ignored. The following is

an example of a partial parameter file listing:

FULL=y
FILE=DBA.DMP
GRANTS=Y
INDEXES=Y # import all indexes

See Import Parameters on page 2-15 for a description of each parameter.

Privileges Required to Use Import
This section describes the privileges you need to use the Import utility and to

import objects into your own and others’ schemas.

Access Privileges
To use Import, you need the privilege CREATE SESSION to log on to the Oracle

database server. This privilege belongs to the CONNECT role established during

database creation.

You can do an import even if you did not create the export file. However, if the

export file was created by someone other than you, you can import that file only if

you have the IMP_FULL_DATABASE role.
2-10 Oracle8i Utilities



Privileges Required to Use Import
Importing Objects into Your Own Schema
Table 2–1 lists the privileges required to import objects into your own schema.  All

of these privileges initially belong to the RESOURCE role.

Table 2–1 Privileges Required to Import Objects into Your Own Schema

Object Privileges
Privilege
Type

clusters CREATE CLUSTER system

And: tablespace quota, or

UNLIMITED TABLESPACE system

database links CREATE DATABASE LINK system

And: CREATE SESSION on remote
db

system

triggers on tables CREATE TRIGGER system

triggers on schemas CREATE ANY TRIGGER system

indexes CREATE INDEX system

And: tablespace quota, or

UNLIMITED TABLESPACE system

integrity constraints ALTER TABLE object

libraries CREATE ANY LIBRARY system

packages CREATE PROCEDURE system

private synonyms CREATE SYNONYM system

sequences CREATE SEQUENCE system

snapshots CREATE SNAPSHOT system

stored functions CREATE PROCEDURE system

stored procedures CREATE PROCEDURE system

table data INSERT TABLE object

table definitions CREATE TABLE system

(including
comments and audit
options)

And: tablespace quota, or
UNLIMITED TABLESPACE

system

views CREATE VIEW system

And: SELECT on the base table, or object

SELECT ANY TABLE system

object types CREATE TYPE system

foreign function
libraries

CREATE LIBRARY system
Import 2-11



Privileges Required to Use Import
Importing Grants
To import the privileges that a user has granted to others, the user initiating the

import must either own the objects or have object privileges with the WITH

GRANT OPTION. Table 2–2 shows the required conditions for the authorizations to

be valid on the target system.

Importing Objects into Other Schemas
To import objects into another user’s schema, you must have the IMP_FULL_

DATABASE role enabled.

Importing System Objects
To import system objects from a full database export file, the role IMP_FULL_

DATABASE must be enabled. The parameter FULL specifies that these system

objects are included in the import when the export file is a full export:

■ Profiles

■ Public database links

■ Public synonyms

■ Roles

■ Rollback segment definitions

dimensions CREATE DIMENSION system

operators CREATE OPERATOR system

indextypes CREATE INDEXTYPE system

Table 2–2 Privileges Required to Import Grants

Grant Conditions

object privileges Object must exist in the user’s schema, or user
must have the object privileges with the WITH
GRANT OPTION.

system privileges User must have system privileges as well as the
WITH ADMIN OPTION.

Table 2–1 (Cont.) Privileges Required to Import Objects into Your Own Schema

Object Privileges
Privilege
Type
2-12 Oracle8i Utilities



Importing into Existing Tables
■ Resource costs

■ Foreign function libraries

■ Context objects

■ System procedural objects

■ System audit options

■ System privileges

■ Tablespace definitions

■ Tablespace quotas

■ User definitions

■ Directory aliases

■ System event triggers

User Privileges
When user definitions are imported into an Oracle database, they are created with

the CREATE USER command. So, when importing from export files created by

previous versions of Export, users are not granted CREATE SESSION privileges

automatically.

Importing into Existing Tables
This section describes factors to take into account when you import data into

existing tables.

Manually Creating Tables Before Importing Data
When you choose to create tables manually before importing data into them from

an export file, you should use either the same table definition previously used or a

compatible format. For example, although you can increase the width of columns

and change their order, you cannot do the following:

■ Add NOT NULL columns

■ Change the datatype of a column to an incompatible datatype (LONG to

NUMBER, for example)

■ Change the definition of object types used in a table
Import 2-13



Importing into Existing Tables
Disabling Referential Constraints
In the normal import order, referential constraints are imported only after all tables

are imported. This sequence prevents errors that could occur if a referential

integrity constraint existed for data that has not yet been imported.

These errors can still occur when data is loaded into existing tables. For example, if

table EMP has a referential integrity constraint on the MGR column that verifies

that the manager number exists in EMP, a perfectly legitimate employee row might

fail the referential integrity constraint if the manager’s row has not yet been

imported.

When such an error occurs, Import generates an error message, bypasses the failed

row, and continues importing other rows in the table. You can disable constraints

manually to avoid this.

Referential constraints between tables can also cause problems. For example, if the

EMP table appears before the DEPT table in the export file, but a referential check

exists from the EMP table into the DEPT table, some of the rows from the EMP table

may not be imported due to a referential constraint violation.

To prevent errors like these, you should disable referential integrity constraints

when importing data into existing tables.

Manually Ordering the Import
When the constraints are reenabled after importing, the entire table is checked,

which may take a long time for a large table. If the time required for that check is

too long, it may be beneficial to order the import manually.

To do so, perform several imports from an export file instead of one. First, import

tables that are the targets of referential checks. Then, import the tables that reference

them. This option works if tables do not reference each other in circular fashion, and

if a table does not reference itself.
2-14 Oracle8i Utilities



Import Parameters
Import Parameters
The following diagrams show the syntax for the parameters that you can specify in

the parameter file or on the command line.

Import_start

ImpModes

imp

HELP = Y

username / password
@ connect_string AS SYSDBA

ImpModes ImpOpts

FULL = Y

INCTYPE =
SYSTEM

RESTORE TOUSER = username

FROMUSER = ( username

,

)
ImpUserOpts ImpTableOpts

ImpTableOpts

TRANSPORT_TABLESPACE =
Y

N
ImpTTSOpts ImpTTSFiles
Import 2-15



Import Parameters
ImpUserOpts

ImpTableOpts

ImpTTSOpts

ImpTTSFiles

TOUSER = ( username

,

)

TABLES = ( tablename

:
partition

subpartition

,

)

TABLESPACES = ( tablespacename

,

) TTS_OWNERS = ( schemaname

,

)

DATAFILES = ( filename

,

)

2-16 Oracle8i Utilities



Import Parameters
ImpOpts

ImpFileOpts

ROWS =
Y

N

COMMIT =
Y

N

FEEDBACK = integer

BUFFER = integer

IGNORE =
Y

N

DESTROY =
Y

N

INDEXES =
Y

N

CONSTRAINTS =
Y

N

SKIP_UNUSABLE_INDEXES =
Y

N

GRANTS =
Y

N

ANALYZE =
Y

N

RECALCULATE_STATISTICS =
Y

N

TOID_NOVALIDATE = (
schemaname .

typename

,

)

SHOW =
Y

N

,

Import 2-17



Import Parameters
ImpFileOpts

The following sections describe parameter functionality and default values.

ANALYZE
Default: Y

Specifies whether or not the Import utility executes SQL ANALYZE statements

found in the export file or loads optimizer statistics for tables, indexes, and columns

that were precomputed on the Export system. See also the Import parameter

RECALCULATE_STATISTICS on page 2-25 and Importing Statistics on page 2-61.

BUFFER
Default: operating system-dependent

The buffer-size is the size, in bytes, of the buffer through which data rows are

transferred.

The parameter BUFFER (buffer size) determines the number of rows in the array

inserted by Import. The following formula gives an approximation of the buffer size

that inserts a given array of rows:

buffer_size = rows_in_array * maximum_row_size

For tables containing LONG, LOB, BFILE, REF, ROWID, LOGICAL ROWID, DATE,

or type columns, rows are inserted individually. The size of the buffer must be large

enough to contain the entire row, except for LOB and LONG columns. If the buffer

cannot hold the longest row in a table, Import attempts to allocate a larger buffer.

PARFILE = filename

FILE = filename

FILESIZE = number_of_bytes

VOLSIZE = number_of_bytes

LOG = filename

RECORDLENGTH = integer

INDEXFILE = filename
2-18 Oracle8i Utilities



Import Parameters
Additional Information: See your Oracle operating system-specific

documentation to determine the default value for this parameter.

CHARSET
Note: This parameter applies to Oracle Version 5 and 6 export files only. Use of this

parameter is not recommended. It is provided only for compatibility with previous

versions. Eventually, it will no longer be supported. See The CHARSET Parameter

on page 2-63 if you still need to use this parameter.

COMMIT
Default: N

Specifies whether Import should commit after each array insert. By default, Import

commits only after loading each table, and Import performs a rollback when an

error occurs, before continuing with the next object.

If a table has nested table columns or attributes, the contents of the nested tables are

imported as separate tables. Therefore, the contents of the nested tables are always

committed in a transaction distinct from the transaction used to commit the outer

table.

If COMMIT=N and a table is partitioned, each partition and subpartition in the

Export file is imported in a separate transaction.

Specifying COMMIT=Y prevents rollback segments from growing inordinately

large and improves the performance of large imports. Specifying COMMIT=Y is

advisable if the table has a uniqueness constraint. If the import is restarted, any

rows that have already been imported are rejected with a nonfatal error.

If a table does not have a uniqueness constraint, Import could produce duplicate

rows when you reimport the data.

For tables containing LONG, LOB, BFILE, REF, ROWID, UROWID, DATE, or type

columns, array inserts are not done. If COMMIT=Y, Import commits these tables

after each row.

CONSTRAINTS
Default: Y

Specifies whether or not table constraints are to be imported. Note that the default

is to import constraints. If you do not want constraints to be imported, you must set

the parameter value to N.
Import 2-19



Import Parameters
DATAFILES
Default: none

When TRANSPORT_TABLESPACE is specified as Y, use this parameter to list the

datafiles to be transported into the database.

See Transportable Tablespaces on page 2-60 for more information.

DESTROY
Default: N

Specifies whether or not the existing data files making up the database should be

reused. That is, specifying DESTROY=Y causes Import to include the REUSE option

in the datafile clause of the CREATE TABLESPACE command, which causes Import

to reuse the original database’s data files after deleting their contents.

Note that the export file contains the data file names used in each tablespace. If you

specify DESTROY=Y and attempt to create a second database on the same machine

(for testing or other purposes), the Import utility will overwrite the first database’s

data files when it creates the tablespace. In this situation you should use the default,

DESTROY=N, so that an error occurs if the data files already exist when the

tablespace is created. Also, when you need to import into the original database, you

will need to specify IGNORE=Y to add to the existing data files without replacing

them.

Caution: If data files are stored on a raw device, DESTROY=N does not prevent files

from being overwritten.

FEEDBACK
Default: 0 (zero)

Specifies that Import should display a progress meter in the form of a dot for n
number of rows imported. For example, if you specify FEEDBACK=10, Import

displays a dot each time 10 rows have been imported. The FEEDBACK value

applies to all tables being imported; it cannot be set on a per-table basis.

FILE
Default: expdat.dmp
2-20 Oracle8i Utilities



Import Parameters
Specifies the names of the export files to import. The default extension is .dmp.

Because Export supports multiple export files (see the following description of the

FILESIZE parameter), you may need to specify multiple filenames to be imported.

You need not be the user who exported the export files; however, you must have

read access to the files. If you were not the exporter of the export files, you must

also have the IMP_FULL_DATABASE role granted to you.

FILESIZE
Export supports writing to multiple export files, and Import can read from multiple

export files. If, on export, you specify a value (byte limit) for the Export FILESIZE

parameter, Export will write only the number of bytes you specify to each dump

file. On import, you must use the Import parameter FILESIZE to tell Import the

maximum dump file size you specified on export.

Note: The maximum value that can be stored in a file is operating

system-dependent. You should verify this maximum value in your operating

system-specific documentation before specifying FILESIZE.

The FILESIZE value can be specified as a number followed by K (number of

kilobytes). For example, FILESIZE=2K is the same as FILESIZE=2048. Similarly, M

specifies megabytes (1024 * 1024) while G specifies gigabytes (1024**3). B remains

the shorthand for bytes; the number is not multiplied to obtain the final file size

(FILESIZE=2048b is the same as FILESIZE=2048).

For information on the maximum size of dump files, see FILESIZE on page 1-20.

FROMUSER
Default: none

A comma-separated list of schemas to import. This parameter is relevant only to

users with the IMP_FULL_DATABASE role. The parameter enables you to import a

subset of schemas from an export file containing multiple schemas (for example, a

full export dump file or a multischema, user mode export dump file).

You will typically use FROMUSER in conjunction with the Import parameter

TOUSER, which you use to specify a list of usernames whose schemas will be

targets for import (see TOUSER on page 2-29). However, if you omit specifying

TOUSER, Import will:

■ Import objects into the FROMUSER’s schema if the export file is a full dump or

a multischema, user mode export dump file
Import 2-21



Import Parameters
■ Create objects in the importer’s schema (regardless of the presence of or absence

of the FROMUSER schema on import) if the export file is a single-schema, user

mode export dump file created by an unprivileged user

Note: Specifying FROMUSER=SYSTEM causes only schema objects belonging

to user SYSTEM to be imported; it does not cause system objects to be imported.

FULL
Default: N

Specifies whether to import the entire export file.

GRANTS
Default: Y

Specifies whether to import object grants.

By default, the Import utility imports any object grants that were exported. If the

export was a user-mode Export, the export file contains only first-level object grants

(those granted by the owner).

If the export was a full database mode Export, the export file contains all object

grants, including lower-level grants (those granted by users given a privilege with

the WITH GRANT OPTION). If you specify GRANTS=N, the Import utility does

not import object grants. (Note that system grants are imported even if

GRANTS=N.)

Note: Export does not export grants on data dictionary views for security

reasons that affect Import. If such grants were exported, access privileges would

be changed and the importer would not be aware of this.

HELP
Default: N

Displays a description of the Import parameters.

IGNORE
Default: N

Specifies how object creation errors should be handled. If you specify IGNORE=Y,

Import overlooks object creation errors when it attempts to create database objects
2-22 Oracle8i Utilities



Import Parameters
and continues without reporting the errors. Even if IGNORE=Y, Import will not

replace an existing object; instead, it will skip the object.

If you accept the default, IGNORE=N, Import logs and/or displays the object

creation error before continuing.

For tables, IGNORE=Y causes rows to be imported into existing tables. No message

is given. If a table already exists, IGNORE=N causes an error to be reported, and the

table is skipped with no rows inserted. Also, objects dependent on tables, such as

indexes, grants, and constraints, will not be created if a table already exists and

IGNORE=N.

Note that only object creation errors are ignored; other errors, such as operating

system, database, and SQL errors, are not ignored and may cause processing to stop.

In situations where multiple refreshes from a single export file are done with

IGNORE=Y, certain objects can be created multiple times (although they will have

unique system-defined names). You can prevent this for certain objects (for

example, constraints) by doing an import with the value of the parameter

CONSTRAINTS set to N. If you do a full import with the CONSTRAINTS

parameter set to N, no constraints for any tables are imported.

If you want to import data into tables that already exist—perhaps because you want

to use new storage parameters, or because you have already created the table in a

cluster—specify IGNORE=Y. The Import utility imports the rows of data into the

existing table.

Caution: When you import into existing tables, if no column in the table is

uniquely indexed, rows could be duplicated if they were already present in the

table. (This applies to nonincremental imports only. Incremental imports replace

the table from the last complete export and then rebuild it to its last backup

state from a series of cumulative and incremental exports.)

INCTYPE
Default: undefined

Specifies the type of incremental import.
Import 2-23



Import Parameters
The options are:

See Importing Incremental, Cumulative, and Complete Export Files on page 2-41 for

more information about the INCTYPE parameter.

INDEXES
Default: Y

Specifies whether or not to import indexes. System-generated indexes such as LOB

indexes, OID indexes, or unique constraint indexes are re-created by Import

regardless of the setting of this parameter.

You can postpone all user-generated index creation until after Import completes, by

specifying INDEXES=N.

If indexes for the target table already exist at the time of the import, Import

performs index maintenance when data is inserted into the table.

INDEXFILE
Default: none

Specifies a file to receive index-creation commands.

When this parameter is specified, index-creation commands for the requested mode

are extracted and written to the specified file, rather than used to create indexes in

the database. No database objects are imported.

If the Import parameter CONSTRAINTS is set to Y, Import also writes table

constraints to the index file.

The file can then be edited (for example, to change storage parameters) and used as

a SQL script to create the indexes.

SYSTEM Imports the most recent version of system objects. You
should specify the most recent incremental export file
when you use this option. A SYSTEM import imports
system objects such as foreign function libraries and
object type definitions, but does not import user data or
objects.

RESTORE Imports all user database objects and data contained in
the export file, excluding system objects.
2-24 Oracle8i Utilities



Import Parameters
To make it easier to identify the indexes defined in the file, the export file’s CREATE

TABLE statements and CREATE CLUSTER statements are included as comments.

Perform the following steps to use this feature:

1. Import using the INDEXFILE parameter to create a file of index-creation

commands.

2. Edit the file, making certain to add a valid password to the CONNECT strings.

3. Rerun Import, specifying INDEXES=N.

(This step imports the database objects while preventing Import from using the

index definitions stored in the export file.)

4. Execute the file of index-creation commands as a SQL script to create the index.

The INDEXFILE parameter can be used only with the FULL=Y, FROMUSER,

TOUSER, or TABLES parameters.

LOG
Default: none

Specifies a file to receive informational and error messages. If you specify a log file,

the Import utility writes all information to the log in addition to the terminal

display.

PARFILE
Default: undefined

Specifies a filename for a file that contains a list of Import parameters. For more

information on using a parameter file, see The Parameter File on page 2-9.

RECALCULATE_STATISTICS
Default: N

Setting this parameter to Y will cause database optimizer statistics to generate when

the exported data is imported. See Oracle8i Concepts for information about the

optimizer and the statistics it uses. See also the Export parameter STATISTICS on

page 1-24, the Import parameter ANALYZE on page 2-18, and Importing Statistics

on page 2-61.
Import 2-25



Import Parameters
RECORDLENGTH
Default: operating system-dependent

Specifies the length, in bytes, of the file record. The RECORDLENGTH parameter is

necessary when you must transfer the export file to another operating system that

uses a different default value.

If you do not define this parameter, it defaults to your platform-dependent value for

BUFSIZ. For more information about the BUFSIZ default value, see your operating

system-specific documentation.

You can set RECORDLENGTH to any value equal to or greater than your system’s

BUFSIZ. (The highest value is 64KB.) Changing the RECORDLENGTH parameter

affects only the size of data that accumulates before writing to the database. It does

not affect the operating system file block size.

Note: You can use this parameter to specify the size of the Import I/O buffer.

Additional Information: See your Oracle operating system-specific

documentation to determine the proper value or to create a file with a different

record size.

ROWS
Default: Y

Specifies whether or not to import the rows of table data.

SHOW
Default: N

When SHOW=Y, the contents of the export file are listed to the display and not

imported. The SQL statements contained in the export are displayed in the order in

which Import will execute them.

The SHOW parameter can be used only with the FULL=Y, FROMUSER, TOUSER,

or TABLES parameters.

SKIP_UNUSABLE_INDEXES
Default: N

Specifies whether or not Import skips building indexes that were set to the Index

Unusable state (by either system or user). Refer to the ALTER SESSION statement in
2-26 Oracle8i Utilities



Import Parameters
the Oracle8i SQL Reference manual for details. Other indexes (not previously set

Index Unusable) continue to be updated as rows are inserted.

This parameter allows you to postpone index maintenance on selected index

partitions until after row data has been inserted. You then have the responsibility to

rebuild the affected index partitions after the Import.

You can use the INDEXFILE parameter in conjunction with INDEXES=N to provide

the SQL scripts for re-creating the index. Without this parameter, row insertions that

attempt to update unusable indexes will fail.

TABLES
Default: none

Specifies a list of table names to import. Use an asterisk (*) to indicate all tables.

When specified, this parameter initiates a table mode import, which restricts the

import to tables and their associated objects, as listed in Table 1–1 on page 1-5. The

number of tables that can be specified at the same time is dependent on

command-line limits.

Although you can qualify table names with schema names (as in SCOTT.EMP)

when exporting, you cannot do so when importing. In the following example, the

TABLES parameter is specified incorrectly:

imp system/manager TABLES=(jones.accts, scott.emp,scott.dept)

The valid specification to import these tables is:

imp system/manager FROMUSER=jones TABLES=(accts)
imp system/manager FROMUSER=scott TABLES=(emp,dept)

Additional Information: Some operating systems, such as UNIX, require that

you use escape characters before special characters, such as a parenthesis, so

that the character is not treated as a special character. On UNIX, use a backslash

(\) as the escape character, as shown in the following example:

TABLES=\(EMP,DEPT\)

Table Name Restrictions
Table names specified on the command line or in the parameter file cannot include a

pound (#) sign, unless the table name is enclosed in quotation marks.
Import 2-27



Import Parameters
For example, if the parameter file contains the following line, Import interprets

everything on the line after EMP# as a comment. As a result, DEPT and MYDATA

are not imported.

TABLES=(EMP#, DEPT, MYDATA)

However, if the parameter file contains the following line, the Import utility imports

all three tables:

TABLES=("EMP#, DEPT, MYDATA)

Note: When you specify the table name in quotation marks, it is case-sensitive.

The name must exactly match the table name stored in the database. By default,

database names are stored as uppercase.

Additional Information: Some operating systems require single quotation

marks instead of double quotation marks. See your Oracle operating

system-specific documentation.

TABLESPACES
Default: none

When TRANSPORT_TABLESPACE is specified as Y, use this parameter to provide a

list of tablespaces to be transported into the database.

See Transportable Tablespaces on page 2-60 for more information.

TOID_NOVALIDATE
Default: none

When you import a table that references a type, but a type of that name already

exists in the database, Import attempts to verify that the preexisting type is, in fact,

the type used by the table (rather than a different type that just happens to have the

same name).

To do this, Import compares the type's unique identifier (TOID) with the identifier

stored in the export file. Import will not import the table rows if the TOIDs do not

match.

In some situations, you may not want this validation to occur on specified types (for

example, if the types were created by a cartridge installation). You can use the

TOID_NOVALIDATE parameter to specify types to exclude from TOID

comparison.
2-28 Oracle8i Utilities



Import Parameters
The syntax is as follows:

toid_novalidate=([schemaname.]typename [, ...])

For example:

imp scott/tiger table=foo toid_novalidate=bar
imp scott/tiger table=foo toid_novalidate=(fred.type0,sally.type2,type3)

If you do not specify a schemaname for the type, it defaults to the schema of the

importing user. For example, in the first preceding example, the type "bar" defaults

to "scott.bar".

The output of a typical import with excluded types would contain entries similar to

the following:

[...]
. importing IMP3's objects into IMP3
. . skipping TOID validation on type IMP2.TOIDTYP0
. . importing table                  "TOIDTAB3"
[...]

Note: When you inhibit validation of the type identifier, it is your responsibility

to ensure that the attribute list of the imported type matches the attribute list of

the existing type. If these attribute lists do not match, results are unpredictable.

TOUSER
Default: none

Specifies a list of usernames whose schemas will be targets for import. The

IMP_FULL_DATABASE role is required to use this parameter. To import to a

different schema than the one that originally contained the object, specify TOUSER.

For example:

imp system/manager FROMUSER=scott TOUSER=joe TABLES=emp

If multiple schemas are specified, the schema names are paired. The following

example imports SCOTT’s objects into JOE’s schema, and FRED’s objects into TED’s

schema:

imp system/manager FROMUSER=scott,fred TOUSER=joe,ted

Note: If the FROMUSER list is longer than the TOUSER list, the remaining

schemas will be imported into either the FROMUSER schema, or into the
Import 2-29



Import Parameters
importer’s schema, based on normal defaulting rules. You can use the following

syntax to ensure that any extra objects go into the TOUSER schema:

imp system/manager FROMUSER=scott,adams TOUSER=ted,ted

Note that user Ted is listed twice.

TRANSPORT_TABLESPACE
Default: N

When specified as Y, instructs Import to import transportable tablespace metadata

from an export file.

See Transportable Tablespaces on page 2-60 for more information.

TTS_OWNERS
Default: none

When TRANSPORT_TABLESPACE is specified as Y, use this parameter to list the

users who own the data in the transportable tablespace set.

See Transportable Tablespaces on page 2-60 for more information.

USERID (username/password)
Default: undefined

Specifies the username/password  (and optional connect string) of the user

performing the import.

USERID can also be:

username/password AS SYSDBA

or

username/password@instance AS SYSDBA

See Invoking Import As SYSDBA on page 2-8 for more information. Note that your

operating system may require you to treat AS SYSDBA as a special string, requiring

you to enclose the entire string in quotation marks.

Optionally, you can specify the @connect_string clause for Net8. See the user’s guide

for your Net8 protocol for the exact syntax of @connect_string. See also Oracle8i

Distributed Database Systems
2-30 Oracle8i Utilities



Using Table-Level and Partition-Level Export and Import
VOLSIZE
Specifies the maximum number of bytes in an export file on each volume of tape.

The VOLSIZE parameter has a maximum value equal to the maximum value that

can be stored in 64 bits. See your Operating system-specific documentation for more

information.

The VOLSIZE value can be specified as number followed by K (number of

kilobytes). For example, VOLSIZE=2K is the same as VOLSIZE=2048. Similarly, M

specifies megabytes (1024 * 1024) while G specifies gigabytes (1024**3). B remains

the shorthand for bytes; the number is not multiplied to get the final file size

(VOLSIZE=2048b is the same as VOLSIZE=2048).

Using Table-Level and Partition-Level Export and Import
Both table-level Export and partition-level Export can migrate data across tables,

partitions, and subpartitions.

Guidelines for Using Partition-Level Import
This section provides detailed information about partition-level Import. For general

information, see Understanding Table-Level and Partition-Level Import on

page 2-5.

Partition-level Import cannot import a nonpartitioned exported table. However, a

partitioned table can be imported from a nonpartitioned exported table using

table-level Import. Partition-level Import is legal only if the source table (that is, the

table called tablename at export time) was partitioned and exists in the Export file.

■ If the partition or subpartition name is not a valid partition in the export file,

Import generates a warning.

■ The partition or subpartition name in the parameter refers to only the partition

or subpartition in the Export file, which may not contain all of the data of the

table on the export source system.

If ROWS=Y (default), and the table does not exist in the Import target system, the

table is created and all rows from the source partition or subpartition are inserted

into the partition or subpartition of the target table.

If ROWS=Y (default) and IGNORE=Y, but the table already existed before Import,

all rows for the specified partition or subpartition in the table are inserted into the

table. The rows are stored according to the existing partitioning scheme of the target

table.
Import 2-31



Using Table-Level and Partition-Level Export and Import
If the target table is partitioned, Import reports any rows that are rejected because

they fall above the highest partition of the target table.

If ROWS=N, Import does not insert data into the target table and continues to

process other objects associated with the specified table and partition or

subpartition in the file.

If the target table is nonpartitioned, the partitions and subpartitions are imported

into the entire table. Import requires IGNORE=Y to import one or more partitions

or subpartitions from the Export file into a nonpartitioned table on the import target

system.

Migrating Data Across Partitions and Tables
The presence of a table-name:partition-name with the TABLES parameter results in

reading from the Export file only data rows from the specified source partition or

subpartition. If you do not specify the partition or subpartition name, the entire

table is used as the source. If you specify a partition name for a composite partition,

all subpartitions within the composite partition are used as the source.

Import issues a warning if the specified partition or subpartition is not in the export

file.

Data exported from one or more partitions or subpartitions can be imported into

one or more partitions or subpartitions. Import inserts rows into partitions or

subpartitions based on the partitioning criteria in the target table.

In the following example, the partition specified by the partition-name is a

composite partition. All of its subpartitions will be imported:

imp system/manager FILE = expdat.dmp FROMUSER = scott TABLES=b:py

The following example causes row data of partitions qc and qd of table scott.e to

be imported into the table scott.e :

imp scott/tiger FILE = expdat.dmp TABLES = (e:qc, e:qd) IGNORE=y

If table "e"  does not exist in the Import target database, it is created and data is

inserted into the same partitions. If table "e"  existed on the target system before

Import, the row data is inserted into the partitions whose range allows insertion.

The row data can end up in partitions of names other than qc  and qd .

Note: With partition-level Import to an existing table, you must set up the target

partitions or subpartitions properly and use IGNORE=Y.
2-32 Oracle8i Utilities



Example Import Sessions
Example Import Sessions
This section gives some examples of import sessions that show you how to use the

parameter file and command-line methods. The examples illustrate four scenarios:

■ Tables imported by an administrator into the same schema from which they

were exported

■ Tables imported by a user from another schema into the user’s own schema

■ Tables imported into a different schema by an administrator

■ Tables imported using partition-level Import

Example Import of Selected Tables for a Specific User
In this example, using a full database export file, an administrator imports the

DEPT and EMP tables into the SCOTT schema.

Parameter File Method

> imp system/manager parfile=params.dat

The params.dat file contains the following information:

FILE=dba.dmp
SHOW=n
IGNORE=n
GRANTS=y
FROMUSER=scott
TABLES=(dept,emp)

Command-Line Method

> imp system/manager file=dba.dmp fromuser=scott tables=(dept,emp)

Import Messages
Import: Release 8.1.6.0.0 - Production on Wed Oct 6 15:26:15 1999

(c) Copyright 1999 Oracle Corporation.  All rights reserved.

Connected to: Oracle8i Enterprise Edition Release 8.1.6.0.0 - Production
With the Partitioning and Java options
PL/SQL Release 8.1.6.0.0 - Production

Export file created by EXPORT:V08.01.06 via conventional path
Import 2-33



Example Import Sessions
import done in WE8DEC character set and WE8DEC NCHAR character set
. importing SCOTT's objects into SCOTT
. . importing table                         "DEPT"          4 rows imported
. . importing table                          "EMP"         14 rows imported
Import terminated successfully without warnings.

Example Import of Tables Exported by Another User
This example illustrates importing the UNIT and MANAGER tables from a file

exported by BLAKE into the SCOTT schema.

Parameter File Method

> imp system/manager parfile=params.dat

The params.dat file contains the following information:

FILE=blake.dmp
SHOW=n
IGNORE=n
GRANTS=y
ROWS=y
FROMUSER=blake
TOUSER=scott
TABLES=(unit,manager)

Command-Line Method

           > imp system/manager fromuser=blake touser=scott file=blake.dmp tables=(unit,manager)

Import Messages
Import: Release 8.1.6.0.0 - Production on Wed Oct 6 15:26:18 1999

(c) Copyright 1999 Oracle Corporation.  All rights reserved.

Connected to: Oracle8i Enterprise Edition Release 8.1.6.0.0 - Production
With the Partitioning and Java options
PL/SQL Release 8.1.6.0.0 - Production

Export file created by EXPORT:V08.01.06 via conventional path

Warning: the objects were exported by BLAKE, not by you

import done in WE8DEC character set and WE8DEC NCHAR character set
2-34 Oracle8i Utilities



Example Import Sessions
. . importing table                         "UNIT"          4 rows imported

. . importing table                      "MANAGER"          4 rows imported
Import terminated successfully without warnings.

Example Import of Tables from One User to Another
In this example, a DBA imports all tables belonging to SCOTT into user BLAKE’s

account.

Parameter File Method

> imp system/manager parfile=params.dat

The params.dat file contains the following information:

FILE=scott.dmp
FROMUSER=scott
TOUSER=blake
TABLES=(*)

Command-Line Method

> imp system/manager file=scott.dmp fromuser=scott touser=blake tables=(*)

Import Messages
Import: Release 8.1.6.0.0 - Production on Wed Oct 6 15:26:19 1999

(c) Copyright 1999 Oracle Corporation.  All rights reserved.

Connected to: Oracle8i Enterprise Edition Release 8.1.6.0.0 - Production
With the Partitioning and Java options
PL/SQL Release 8.1.6.0.0 - Production

Export file created by EXPORT:V08.01.06 via conventional path

Warning: the objects were exported by SCOTT, not by you

import done in WE8DEC character set and WE8DEC NCHAR character set
. importing SCOTT's objects into BLAKE
. . importing table                        "BONUS"          0 rows imported
. . importing table                         "DEPT"          4 rows imported
. . importing table                          "EMP"         14 rows imported
. . importing table                     "SALGRADE"          5 rows imported
Import terminated successfully without warnings.
Import 2-35



Example Import Sessions
Example Import Session Using Partition-Level Import
This section describes an import of a table with multiple partitions, a table with

partitions and subpartitions, and repartitioning a table on different columns.

Example 1: A Partition-Level Import
In this example, emp is a partitioned table with three partitions: p1, p2, and p3.

A table-level export file was created using the following command:

> exp scott/tiger tables=emp file=exmpexp.dat rows=y

About to export specified tables via Conventional Path --
. . exporting table                       EMP
. . exporting partition                        P1          7 rows exported
. . exporting partition                        P2         12 rows exported
. . exporting partition                        P3          3 rows exported

Export terminated successfully without warnings.

In a partition-level import you can specify the specific partitions of an exported

table that you want to import. In this example, these are p1 and p3 of table emp:

> imp scott/tiger tables=(emp:p1,emp:p3) file=exmpexp.dat rows=y

Export file created by EXPORT:V08.01.06 via direct path
import done in WE8DEC character set and WE8DEC NCHAR character set
. importing SCOTT’s objects into SCOTT
. . importing partition "EMP":"P1" 7 rows imported
. . importing partition "EMP":"P3" 3 rows imported
Import terminated successfully without warnings.

Example 2: A Partition-Level Import of a Composite Partitioned Table
This example demonstrates that the partitions and subpartitions of a composite

partitioned table are imported. EMP is a partitioned table with two composite

partitions: p1 and p2. P1 has three subpartitions: p1_sp1, p1_sp2, and p1_sp3. P2

has two subpartitions: p2_sp1 and p2_sp2.

A table-level export file was created using the following command:

> exp scott/tiger tables=emp file=exmpexp.dat rows=y

About to export specified tables via Conventional Path --
. . exporting table                       EMP
. . exporting partition                        P1
2-36 Oracle8i Utilities



Example Import Sessions
. . exporting subpartition                     P1_SP1         11 rows exported

. . exporting subpartition                     P1_SP2         17 rows exported

. . exporting subpartition                     P1_SP3          3 rows exported

. . exporting partition                        P2

. . exporting subpartition                     P2_SP1          5 rows exported

. . exporting subpartition                     P2_SP2         12 rows exported

Export terminated successfully without warnings.

The following import command results in the importing of subpartition p1_sp2 and

p1_sp3 of composite partition p1 in table EMP and all subpartitions of composite

partition p2 in table EMP.

> imp scott/tiger tables=(emp:p1_sp2,emp:p1_sp3,emp:p2) file=exmpexp.dat rows=y

Export file created by EXPORT:V08.01.06 via conventional path
import done in WE8DEC character set and WE8DEC NCHAR character set
. importing SCOTT’s objects into SCOTT
. . importing table               EMP
. . importing subpartition        "EMP":"P1_SP2"               17 rows imported
. . importing subpartition        "EMP":"P1_SP3"                3 rows imported
. . importing subpartition        "EMP":"P2_SP1"                5 rows imported
. . importing subpartition        "EMP":"P2_SP2"               12 rows imported

Import terminated successfully without warnings.

Example 3: Repartitioning a Table on a Different Column
This example assumes the EMP table has two partitions, based on the EMPNO

column. This example repartitions the EMP table on the DEPTNO column.

Perform the following steps to repartition a table on a different column:

1. Export the table to save the data.

2. Delete the table from the database.

3. Create the table again with the new partitions.

4. Import the table data.

The following example shows how to repartition a table on a different column:

> exp scott/tiger tables=emp file=empexp.dat

Export: Release 8.1.6.0.0 - Production on Wed Oct 6 15:26:34 1999

(c) Copyright 1999 Oracle Corporation.  All rights reserved.
Import 2-37



Example Import Sessions
Connected to: Oracle8i Enterprise Edition Release 8.1.6.0.0 - Production
With the Partitioning and Java options
PL/SQL Release 8.1.6.0.0 - Production
Export done in WE8DEC character set and WE8DEC NCHAR character set

About to export specified tables via Conventional Path ...
. . exporting table                            EMP
. . exporting partition                        EMP_LOW          4 rows exported
. . exporting partition                       EMP_HIGH         10 rows exported
Export terminated successfully without warnings.

SQL> drop table emp cascade constraints;
Table dropped.
SQL> create table emp
     2>    (
     3>    empno    number(4) not null,
     4>    ename    varchar2(10),
     5>    job      varchar2(9),
     6>    mgr      number(4),
     7>    hiredate date,
     8>    sal      number(7,2),
     9>    comm     number(7,2),
    10>    deptno   number(2)
    11>    )
    12> partition by range (deptno)
    13>   (
    14>   partition dept_low values less than (15)
    15>     tablespace tbs_1,
    16>   partition dept_mid values less than (25)
    17>     tablespace tbs_2,
    18>   partition dept_high values less than (35)
    19>     tablespace tbs_3
    20>   );
Table created.
SQL> exit

> imp scott/tiger tables=emp file=empexp.dat ignore=y

Import: Release 8.1.6.0.0 - Production on Wed Oct 6 15:26:38 1999

(c) Copyright 1999 Oracle Corporation.  All rights reserved.

Connected to: Oracle8i Enterprise Edition Release 8.1.6.0.0 - Production
With the Partitioning and Java options
2-38 Oracle8i Utilities



Using the Interactive Method
PL/SQL Release 8.1.6.0.0 - Production

Export file created by EXPORT:V08.01.06 via conventional path
import done in WE8DEC character set and WE8DEC NCHAR character set
. importing SCOTT's objects into SCOTT
. . importing partition                "EMP":"EMP_LOW"          4 rows imported
. . importing partition               "EMP":"EMP_HIGH"         10 rows imported
Import terminated successfully without warnings.

The following SELECT statements show that the data is partitioned on the DEPTNO

column:

SQL> select empno, deptno from emp partition (dept_low);
EMPNO      DEPTNO
---------- ----------
      7782         10
      7839         10
      7934         10
3 rows selected.
SQL> select empno, deptno from emp partition (dept_mid);
EMPNO      DEPTNO
---------- ----------
      7369         20
      7566         20
      7788         20
      7876         20
      7902         20
5 rows selected.
SQL> select empno, deptno from emp partition (dept_high);
EMPNO      DEPTNO
---------- ----------
      7499         30
      7521         30
      7654         30
      7698         30
      7844         30
      7900         30
6 rows selected.

Using the Interactive Method
Starting Import from the command line with no parameters initiates the interactive

method. The interactive method does not provide prompts for all Import

functionality. The interactive method is provided only for backward compatibility.
Import 2-39



Using the Interactive Method
If you do not specify a username/password on the command line, the Import utility

prompts you for this information. The following example shows the interactive

method:

> imp system/manager

Import: Release 8.1.6.0.0 - Production on Wed Oct 6 15:26:46 1999

(c) Copyright 1999 Oracle Corporation.  All rights reserved.

Connected to: Oracle8i Enterprise Edition Release 8.1.6.0.0 - Production
With the Partitioning and Java options
PL/SQL Release 8.1.6.0.0 - Production

Import file: expdat.dmp >
Enter insert buffer size (minimum is 8192) 30720>
Export file created by EXPORT:V08.01.06 via conventional path

Warning: the objects were exported by BLAKE, not by you

import done in WE8DEC character set and WE8DEC NCHAR character set
List contents of import file only (yes/no): no >
Ignore create error due to object existence (yes/no): no >
Import grants (yes/no): yes >
Import table data (yes/no): yes >
Import entire export file (yes/no): no >
. importing BLAKE's objects into SYSTEM
. . importing table                         "DEPT"          4 rows imported
. . importing table                      "MANAGER"          3 rows imported
Import terminated successfully without warnings.

You may not see all prompts in a given Import session because some prompts

depend on your responses to other prompts. Some prompts show a default answer;

if the default is acceptable, press Enter.

Note: If you specify No at the previous prompt, Import prompts you for a schema

name and the table names you want to import for that schema:

Enter table(T) or partition(T:P) names. Null list means all tables for user

Entering a null table list causes all tables in the schema to be imported. You can

specify only one schema at a time when you use the interactive method.
2-40 Oracle8i Utilities



Importing Incremental, Cumulative, and Complete Export Files
Importing Incremental, Cumulative, and Complete Export Files
An incremental export extracts only tables that have changed since the last

incremental, cumulative, or complete export. Therefore, an import from an

incremental export file imports the table definition and all of its data, not just the
changed rows.

Because imports from incremental export files are dependent on the method used to

export the data, you should also read Incremental, Cumulative, and Complete

Exports on page 1-45.

It is important to note that, because importing an incremental export file imports

new versions of existing objects, existing objects are dropped before new ones are

imported. This behavior differs from a normal import. During a normal import,

objects are not dropped and an error is usually generated if the object already exists.

Restoring a Set of Objects
The order in which incremental, cumulative, and complete exports are done is

important. A set of objects cannot be restored until a complete export has been run

on a database. Once that has been done, take the following steps to restore objects:

1. Import the most recent incremental export file (specify INCTYPE=SYSTEM for

the import) or cumulative export file, if no incremental exports have been taken.

This step imports the correct system objects (for example, users, object types,

and so forth) for the database.

2. Import the most recent complete export file. (Specify INCTYPE=RESTORE for

the import.)

3. Import all cumulative export files after the last complete export. (Specify

INCTYPE=RESTORE for the import.)

4. Import all incremental export files after the last cumulative export. (Specify

INCTYPE=RESTORE for the import.)

For example, assume that you have the following situation:

■ One complete export called X1

■ Two cumulative exports called C1 and C2

■ Three incremental exports called I1, I2, and I3

Then you should import in the following order:

imp system/manager INCTYPE=SYSTEM  FULL=Y FILE=I3
Import 2-41



Controlling Index Creation and Maintenance
imp system/manager INCTYPE=RESTORE FULL=Y FILE=X1
imp system/manager INCTYPE=RESTORE FULL=Y FILE=C1
imp system/manager INCTYPE=RESTORE FULL=Y FILE=C2
imp system/manager INCTYPE=RESTORE FULL=Y FILE=I1
imp system/manager INCTYPE=RESTORE FULL=Y FILE=I2
imp system/manager INCTYPE=RESTORE FULL=Y FILE=I3

Notes:

■ You import the last incremental export file twice; once at the beginning to

import the most recent version of the system objects, and once at the end to

apply the most recent changes made to the user data and objects.

■ When restoring tables with this method, you should always start with a clean

database (that is, no user tables) before starting the import sequence.

Importing Object Types and Foreign Function Libraries
For incremental imports only, object types and foreign function libraries are

handled as system objects. That is, their definitions are only imported with the other

system objects when INCTYPE=SYSTEM. This imports the most recent definition of

the object type (including the object identifier) and the most recent definition of the

library specification.

Then, as tables are imported from earlier incremental export files using

INCTYPE=RESTORE, Import verifies that any object types needed by the table exist

and have the same object identifier. If the object type does not exist, or if it exists but

its object identifier does not match, the table is not imported. This indicates that the

object type had been dropped or replaced subsequent to the incremental export,

requiring that all tables dependent on the object also had been dropped.

Controlling Index Creation and Maintenance
This section describes the behavior of Import with respect to index creation and

maintenance.

Index Creation and Maintenance Controls
If SKIP_UNUSABLE_INDEXES=Y, the Import utility postpones maintenance on all

indexes that were set to Index Unusable before Import. Other indexes (not

previously set Index Unusable) continue to be updated as rows are inserted. This

approach saves on index updates during Import of existing tables.
2-42 Oracle8i Utilities



Controlling Index Creation and Maintenance
Delayed index maintenance may cause a violation of an existing unique integrity

constraint supported by the index. The existence of a unique integrity constraint on

a table does not prevent existence of duplicate keys in a table that was imported

with INDEXES=N. The supporting index will be in an UNUSABLE state until the

duplicates are removed and the index is rebuilt.

Delaying Index Creation
Import provides you with the capability of delaying index creation and

maintenance services until after completion of the import and insertion of exported

data. Performing index creation, re-creation, or maintenance after import completes

is generally faster than updating the indexes for each row inserted by Import.

Index creation can be time consuming, and therefore can be done more efficiently

after the import of all other objects has completed. You can postpone creation of

indexes until after the Import completes by specifying INDEXES=N. (INDEXES=Y

is the default.) You can then store the missing index definitions in a SQL script by

running Import while using the INDEXFILE parameter. The index-creation

commands that would otherwise be issued by Import are instead stored in the

specified file.

After the import is complete, you must create the indexes, typically by using the

contents of the file (specified with INDEXFILE) as a SQL script after specifying

passwords for the connect statements.

If the total amount of index updates are smaller during data insertion than at index

rebuild time after import, users can choose to update those indexes at table data

insertion time by setting INDEXES=Y.

Example of Postponing Index Maintenance
For example, assume that partitioned table t with partitions p1 and p2 exists on the

Import target system. Assume that local indexes p1_ind  on partition p1  and p2_
ind  on partition p2  exist also. Assume that partition p1  contains a much larger

amount of data in the existing table t , compared with the amount of data to be

inserted by the Export file (expdat.dmp). Assume that the reverse is true for p2 .

Consequently, performing index updates for p1_ind  during table data insertion

time is more efficient than at partition index rebuild time. The opposite is true for

p2_ind .

Users can postpone local index maintenance for p2_ind  during Import by using

the following steps:

1. Issue the following SQL statement before Import:
Import 2-43



Reducing Database Fragmentation
ALTER TABLE t MODIFY PARTITION p2 UNUSABLE LOCAL INDEXES;

2. Issue the following Import command:

        imp scott/tiger FILE=expdat.dmp TABLES = (t:p1, t:p2) IGNORE=Y SKIP_UNUSABLE_INDEXES=Y

This example executes the ALTER SESSION SET SKIP_UNUSABLE_INDEXES=Y

statement before performing the import.

3. Issue the following SQL statement after Import:

ALTER TABLE t MODIFY PARTITION p2 REBUILD UNUSABLE LOCAL INDEXES;

In this example, local index p1_ind  on p1  will be updated when table data is

inserted into partition p1  during Import. Local index p2_ind  on p2  will be

updated at index rebuild time, after Import.

Reducing Database Fragmentation
A database with many noncontiguous, small blocks of free space is said to be

fragmented. A fragmented database should be reorganized to make space available

in contiguous, larger blocks. You can reduce fragmentation by performing a full

database export and import as follows:

1. Do a full database export (FULL=Y) to back up the entire database.

2. Shut down Oracle after all users are logged off.

3. Delete the database. See your Oracle operating system-specific documentation

for information on how to delete a database.

4. Re-create the database using the CREATE DATABASE command.

5. Do a full database import (FULL=Y) to restore the entire database.

See the Oracle8i Administrator’s Guide for more information about creating

databases.

Warning, Error, and Completion Messages
By default, Import displays all error messages. If you specify a log file by using the

LOG parameter, Import writes the error messages to the log file in addition to

displaying them on the terminal. You should always specify a log file when you

import. (You can redirect Import’s output to a file on those systems that permit I/O

redirection.)
2-44 Oracle8i Utilities



Error Handling
Additional Information: See LOG on page 2-25. Also see your operating

system-specific documentation for information on redirecting output.

When an import completes without errors, the message "Import terminated

successfully without warnings" is issued. If one or more nonfatal errors occurred,

and Import was able to continue to completion, the message "Import terminated

successfully with warnings" occurs. If a fatal error occurs, Import ends immediately

with the message "Import terminated unsuccessfully."

Additional Information: Messages are documented in Oracle8i Error Messages
and your operating system-specific documentation.

Error Handling
This section describes errors that can occur when you import database objects.

Row Errors
If a row is rejected due to an integrity constraint violation or invalid data, Import

displays a warning message but continues processing the rest of the table. Some

errors, such as "tablespace full," apply to all subsequent rows in the table. These

errors cause Import to stop processing the current table and skip to the next table.

Failed Integrity Constraints
A row error is generated if a row violates one of the integrity constraints in force on

your system, including:

■ Not null constraints

■ Uniqueness constraints

■ Primary key (not null and unique) constraints

■ Referential integrity constraints

■ Check constraints

See the Oracle8i Application Developer’s Guide - Fundamentals and Oracle8i Concepts for

more information on integrity constraints.

Invalid Data
Row errors can also occur when the column definition for a table in a database is

different from the column definition in the export file. The error is caused by data
Import 2-45



Error Handling
that is too long to fit into a new table’s columns, by invalid data types, and by any

other INSERT error.

Errors Importing Database Objects
Errors can occur for many reasons when you import database objects, as described

in this section. When such an error occurs, import of the current database object is

discontinued. Import then attempts to continue with the next database object in the

export file.

Object Already Exists
If a database object to be imported already exists in the database, an object creation

error occurs. What happens next depends on the setting of the IGNORE parameter.

If IGNORE=N (the default), the error is reported, and Import continues with the

next database object. The current database object is not replaced. For tables, this

behavior means that rows contained in the export file are not imported.

If IGNORE=Y, object creation errors are not reported. The database object is not

replaced. If the object is a table, rows are imported into it. Note that only object
creation errors are ignored; all other errors (such as operating system, database, and

SQL errors) are reported and processing may stop.

Caution: Specifying IGNORE=Y can cause duplicate rows to be entered into a

table unless one or more columns of the table are specified with the UNIQUE

integrity constraint. This could occur, for example, if Import were run twice.

Sequences
If sequence numbers need to be reset to the value in an export file as part of an

import, you should drop sequences. A sequence that is not dropped before the

import is not set to the value captured in the export file, because Import does not

drop and re-create a sequence that already exists. If the sequence already exists, the

export file’s CREATE SEQUENCE statement fails and the sequence is not imported.

Resource Errors
Resource limitations can cause objects to be skipped. When you are importing

tables, for example, resource errors can occur as a result of internal problems, or

when a resource such as memory has been exhausted.

If a resource error occurs while you are importing a row, Import stops processing

the current table and skips to the next table. If you have specified COMMIT=Y,

Import commits the partial import of the current table. If not, a rollback of the
2-46 Oracle8i Utilities



Network Considerations
current table occurs before Import continues. (See the description of COMMIT on

page 2-19 for information about the COMMIT parameter.)

Domain Index Metadata
Domain indexes can have associated application-specific metadata that is imported

using anonymous PL/SQL blocks. These PL/SQL blocks are executed at import

time prior to the CREATE INDEX statement. If a PL/SQL block causes an error, the

associated index is not created because the metadata is considered an integral part

of the index.

Fatal Errors
When a fatal error occurs, Import terminates. For example, if you enter an invalid

username/password combination or attempt to run Export or Import without

having prepared the database by running the scripts CATEXP.SQL or

CATALOG.SQL, a fatal error occurs and causes Import to terminate.

Network Considerations
This section describes factors to take into account when using Export and Import

across a network.

Transporting Export Files Across a Network
When transferring an export file across a network, be sure to transmit the file using

a protocol that preserves the integrity of the file. For example, when using FTP or a

similar file transfer protocol, transmit the file in binary mode. Transmitting export

files in character mode causes errors when the file is imported.

Exporting and Importing with Net8
Net8 lets you export and import over a network. For example, running Import

locally, you can read data into a remote Oracle database.

To use Import with Net8, you must include the connection qualifier string @connect_
string when entering the username/password in the exp or imp command. For the

exact syntax of this clause, see the user’s guide for your Net8 protocol. For more

information on Net8, see the Net8 Administrator’s Guide. See also Oracle8i Distributed
Database Systems.
Import 2-47



Import and Snapshots
Import and Snapshots
Note: In certain situations, particularly those involving data warehousing,

snapshots may be referred to as materialized views. This section retains the term

snapshot.

The three interrelated objects in a snapshot system are the master table, optional

snapshot log, and the snapshot itself. The tables (master table, snapshot log table

definition, and snapshot tables) can be exported independently of one another.

Snapshot logs can be exported only if you export the associated master table. You

can export snapshots using full database or user-mode Export; you cannot use

table-mode Export.

This section discusses how fast refreshes are affected when these objects are

imported. See also Oracle8i Replication, for Import-specific information about

migration and compatibility and for more information about snapshots and

snapshot logs.

Master Table
The imported data is recorded in the snapshot log if the master table already exists

for the database to which you are importing and it has a snapshot log.

Snapshot Log
When a ROWID snapshot log is exported, ROWIDs stored in the snapshot log have

no meaning upon import. As a result, each ROWID snapshot’s first attempt to do a

fast refresh fails, generating an error indicating that a complete refresh is required.

To avoid the refresh error, do a complete refresh after importing a ROWID snapshot

log. After you have done a complete refresh, subsequent fast refreshes will work

properly. In contrast, when a primary key snapshot log is exported, the keys’ values

do retain their meaning upon Import. Therefore, primary key snapshots can do a

fast refresh after the import. See Oracle8i Replication for information about primary

key snapshots.

Snapshots
A snapshot that has been restored from an export file has "gone back in time" to a

previous state. On import, the time of the last refresh is imported as part of the

snapshot table definition. The function that calculates the next refresh time is also

imported.
2-48 Oracle8i Utilities



Fine-Grained Access Support
Each refresh leaves a signature. A fast refresh uses the log entries that date from the

time of that signature to bring the snapshot up to date. When the fast refresh is

complete, the signature is deleted and a new signature is created. Any log entries

that are not needed to refresh other snapshots are also deleted (all log entries with

times before the earliest remaining signature).

Importing a Snapshot
When you restore a snapshot from an export file, you may encounter a problem

under certain circumstances.

Assume that a snapshot is refreshed at time A, exported at time B, and refreshed

again at time C. Then, because of corruption or other problems, the snapshot needs

to be restored by dropping the snapshot and importing it again. The newly

imported version has the last refresh time recorded as time A. However, log entries

needed for a fast refresh may no longer exist. If the log entries do exist (because

they are needed for another snapshot that has yet to be refreshed), they are used,

and the fast refresh completes successfully. Otherwise, the fast refresh fails,

generating an error that says a complete refresh is required.

Importing a Snapshot into a Different Schema
Snapshots, snapshot logs, and related items are exported with the schema name

explicitly given in the DDL statements; therefore, snapshots and their related items

cannot be imported into a different schema.

If you attempt to use FROMUSER/TOUSER to import snapshot data, an error will

be written to the Import log file and the items will not be imported.

Import and Instance Affinity
If you use instance affinity to associate jobs with instances in databases you plan to

import/export, you should refer to the information in the Oracle8i Administrator’s
Guide, the Oracle8i Reference, and Oracle8i Parallel Server Concepts and Administration
for information about the use of instance affinity with the Import/Export utilities.

Fine-Grained Access Support
You can export tables with fine-grained access policies enabled. When doing so,

keep the following considerations in mind:

■ To restore the policies, the user who imports from an export file containing such

tables must have the appropriate privileges (specifically execute privilege on
Import 2-49



Storage Parameters
the DBMS_RLS package so that the tables’ security policies can be reinstated). If

a user without the correct privileges attempts to import from an export file that

contains tables with fine-grained access policies, a warning message will be

issued. Therefore, it is advisable for security reasons that the exporter/importer

of such tables be the DBA.

■ If fine-grained access is enabled on select, then conventional path mode export

may not export the entire table because fine-grained access may rewrite the

query.

■ Only SYS or a user with the EXPORT_FULL_DATABASE role enabled can do

direct path export.

Storage Parameters
By default, a table is imported into its original tablespace.

If the tablespace no longer exists, or the user does not have sufficient quota in the

tablespace, the system uses the default tablespace for that user, unless the table:

■ Is partitioned

■ Is a type table

■ Contains LOB or VARRAY columns

■ Has an Index-Only Table (IOT) overflow segment

If the user does not have sufficient quota in the default tablespace, the user’s tables

are not imported. (See Reorganizing Tablespaces on page 2-52 to see how you can

use this to your advantage.)

The OPTIMAL Parameter
The storage parameter OPTIMAL for rollback segments is not preserved during

export and import.

Storage Parameters for OID INDEXes and LOB Columns
Tables are exported with their current storage parameters. For object tables, the

OIDINDEX is created with its current storage parameters and name, if given. For

tables that contain LOB or VARRAY columns, LOB or VARRAY data is created with

their current storage parameters.

If you alter the storage parameters of existing tables prior to export, the tables are

exported using those altered storage parameters. Note, however, that storage
2-50 Oracle8i Utilities



Dropping a Tablespace
parameters for LOB data cannot be altered prior to export (for example, chunk size

for a LOB column, whether a LOB column is CACHE or NOCACHE, and so forth).

Note that LOB data might not reside in the same tablespace as the containing table.

The tablespace for that data must be read/write at the time of import or the table

will not be imported.

If LOB data resides in a tablespace that does not exist at the time of import or the

user does not have the necessary quota in that tablespace, the table will not be

imported. Because there can be multiple tablespace clauses, including one for the

table, Import cannot determine which tablespace clause caused the error.

Overriding Storage Parameters
Before using the Import utility to import data, you may want to create large tables

with different storage parameters. If so, you must specify IGNORE=Y on the

command line or in the parameter file.

The Export COMPRESS Parameter
By default at export time, storage parameters are adjusted to consolidate all data

into its initial extent. To preserve the original size of an initial extent, you must

specify at export time that extents are not to be consolidated (by setting

COMPRESS=N). See COMPRESS on page 1-17 for a description of the COMPRESS

parameter.

Read-Only Tablespaces
Read-only tablespaces can be exported. On import, if the tablespace does not

already exist in the target database, the tablespace is created as a read/write

tablespace. If you want read-only functionality, you must manually make the

tablespace read-only after the import.

If the tablespace already exists in the target database and is read-only, you must

make it read/write before the import.

Dropping a Tablespace
You can drop a tablespace by redefining the objects to use different tablespaces

before the import. You can then issue the import command and specify IGNORE=Y.

In many cases, you can drop a tablespace by doing a full database export, then

creating a zero-block tablespace with the same name (before logging off) as the

tablespace you want to drop. During import, with IGNORE=Y, the relevant
Import 2-51



Reorganizing Tablespaces
CREATE TABLESPACE statement will fail and prevent the creation of the unwanted

tablespace.

All objects from that tablespace will be imported into their owner’s default

tablespace with the exception of partitioned tables, type tables, and tables that

contain LOB or VARRAY columns or index-only tables with overflow segments.

Import cannot determine which tablespace caused the error. Instead, you must first

create a table and then import the table again, specifying IGNORE=Y.

Objects are not imported into the default tablespace if the tablespace does not exist

or you do not have the necessary quotas for your default tablespace.

Reorganizing Tablespaces
If a user’s quotas allow it, the user’s tables are imported into the same tablespace

from which they were exported. However, if the tablespace no longer exists or the

user does not have the necessary quota, the system uses the default tablespace for

that user as long as the table is unpartitioned, contains no LOB or VARRAY

columns, is not a type table, and is not an index-only table with an overflow

segment. This scenario can be used to move a user’s tables from one tablespace to

another.

For example, you need to move JOE’s tables from tablespace A to tablespace B after

a full database export. Follow these steps:

1. If JOE has the UNLIMITED TABLESPACE privilege, revoke it. Set JOE’s quota

on tablespace A to zero. Also revoke all roles that might have such privileges or

quotas.

Note: Role revokes do not cascade. Therefore, users who were granted other

roles by JOE will be unaffected.

2. Export JOE’s tables.

3. Drop JOE’s tables from tablespace A.

4. Give JOE a quota on tablespace B and make it the default tablespace.

5. Import JOE’s tables. (By default, Import puts JOE’s tables into

tablespace B.)

Character Set and NLS Considerations
This section describes the character set conversions that can take place during

export and import operations.
2-52 Oracle8i Utilities



Character Set and NLS Considerations
Character Set Conversion
The following sections describe character conversion for CHAR and NCHAR data.

CHAR Data
Up to three character set conversions may be required for character data during an

export/import operation:

1. Export writes export files using the character set specified in the NLS_LANG

environment variable for the user session. A character set conversion is

performed if the value of NLS_LANG differs from the database character set.

2. If the character set in the export file is different than the Import user session

character set, Import performs a character set conversion to its user session

character set. Import can perform this conversion only if the ratio of the width

of the widest character in its user session character set to the width of the smallest
character in the export file character set is 1.

3. A final character set conversion may be performed if the target database’s

character set is different from Import’s user session character set.

To minimize data loss due to character set conversions, it is advisable to ensure that

the export database, the export user session, the import user session, and the import

database all use the same character set.

NCHAR Data
Data of datatypes NCHAR, NVARCHAR2, and NCLOB are written to the export

file directly in the national character set of the source database. If the national

character set of the source database is different than the national character set of the

import database, a conversion is performed.

Import and Single-Byte Character Sets
Some 8-bit characters can be lost (that is, converted to 7-bit equivalents) when you

import an 8-bit character set export file. This occurs if the machine on which the

import occurs has a native 7-bit character set, or the NLS_LANG operating system

environment variable is set to a 7-bit character set. Most often, this is apparent when

accented characters lose the accent mark.

To avoid this unwanted conversion, you can set the NLS_LANG operating system

environment variable to be that of the export file character set.
Import 2-53



Considerations When Importing Database Objects
When importing an Oracle Version 5 or 6 export file with a character set different

from that of the native operating system or the setting for NLS_LANG, you must set

the CHARSET import parameter to specify the character set of the export file.

See Character Set Conversion on page 1-54.

Import and Multibyte Character Sets
For multibyte character sets, Import can convert data to the user-session character

set only if the ratio of the width of the widest character in the import character set to

the width of the smallest character in the export character set is 1. If the ratio is not

1, the user-session character set should be set to match the export character set, so

that Import does no conversion.

During the conversion, any characters in the export file that have no equivalent in

the target character set are replaced with a default character. (The default character

is defined by the target character set.) To guarantee 100% conversion, the target

character set must be a superset (or equivalent) of the source character set.

For more information, refer to the Oracle8i National Language Support Guide.

Considerations When Importing Database Objects
This section describes the behavior of various database objects during Import.

Importing Object Identifiers
The Oracle database server assigns object identifiers to uniquely identify object

types, object tables, and rows in object tables. These object identifiers are preserved

by import.

When you import a table that references a type, but a type of that name already

exists in the database, Import attempts to verify that the preexisting type is, in fact,

the type used by the table (rather than a different type that just happens to have the

same name).

To do this, Import compares the type's unique identifier (TOID) with the identifier

stored in the export file. Import will not import the table rows if the TOIDs do not

match.

In some situations, you may not want this validation to occur on specified types (for

example, if the types were created by a cartridge installation). You can use the

parameter TOID_NOVALIDATE to specify types to exclude from TOID

comparison. See TOID_NOVALIDATE on page 2-28 for more information.
2-54 Oracle8i Utilities



Considerations When Importing Database Objects
Caution: Be very careful about using TOID_NOVALIDATE, because type validation

provides an important capability that helps avoid data corruption. Be sure you feel

confident of your knowledge of type validation and how it works before attempting

to import with this feature disabled.

Import uses the following criteria to decide how to handle object types, object

tables, and rows in object tables:

■ For object types, if IGNORE=Y and the object type already exists and the object

identifiers match, no error is reported. If the object identifiers do not match and

the parameter TOID_NOVALIDATE has not been set to ignore the object type,

an error is reported and any tables using the object type are not imported.

■ For object types, if IGNORE=N and the object type already exists, an error is

reported. If the object identifiers do not match and the parameter TOID_

NOVALIDATE has not been set to ignore the object type, any tables using the

object type are not imported.

■ For object tables, if IGNORE=Y and the table already exists and the object

identifiers match, no error is reported. Rows are imported into the object table.

Import of rows may fail if rows with the same object identifier already exist in

the object table. If the object identifiers do not match and the parameter TOID_

NOVALIDATE has not been set to ignore the object type, an error is reported

and the table is not imported.

■ For object tables, if IGNORE=N and the table already exists, an error is reported

and the table is not imported.

Because Import preserves object identifiers of object types and object tables, note the

following considerations when you import objects from one schema into another

schema using the FROMUSER and TOUSER parameters:

■ If the FROMUSER’s object types and object tables already exist on the target

system, errors occur because the object identifiers of the TOUSER’s object types

and object tables are already in use. The FROMUSER’s object types and object

tables must be dropped from the system before the import is started.

■ If an object table was created using the OID AS option to assign it the same

object identifier as another table, both tables cannot be imported. One may be

imported, but the second receives an error because the object identifier is

already in use.
Import 2-55



Considerations When Importing Database Objects
Importing Existing Object Tables and Tables That Contain Object Types
Users frequently create tables before importing data to reorganize tablespace usage

or change a table's storage parameters. The tables must be created with the same

definitions as were previously used or a compatible format (except for storage

parameters). For object tables and tables that contain columns of object types,

format compatibilities are more restrictive.

For tables containing columns of object types, the same object type must be

specified, and that type must have the same object identifier as the original. If the

parameter TOID_NOVALIDATE has been set to ignore the object type, the object

IDs do not need to match.

Export writes information about object types used by a table in the Export file,

including object types from different schemas. Object types from different schemas

used as top level columns are verified for matching name and object identifier at

import time. Object types from different schemas that are nested within other object

types are not verified.

If the object type already exists, its object identifier is verified. If the parameter

TOID_NOVALIDATE has been set to ignore the object type, the object IDs do not

need to match. Import retains information about what object types it has created, so

that if an object type is used by multiple tables, it is created only once.

Note: In all cases, the object type must be compatible in terms of the internal format

used for storage. Import does not verify that the internal format of a type is

compatible. If the exported data is not compatible, the results can be unpredictable.

Importing Nested Tables
Inner nested tables are exported separately from the outer table. Therefore,

situations may arise where data in an inner nested table might not be properly

imported:

■ Suppose a table with an inner nested table is exported and then imported

without dropping the table or removing rows from the table. If the IGNORE=Y

parameter is used, there will be a constraint violation when inserting each row

in the outer table. However, data in the inner nested table may be successfully

imported, resulting in duplicate rows in the inner table.

■ If fatal errors occur inserting data in outer tables, the rest of the data in the outer

table is skipped, but the corresponding inner table rows are not skipped. This

may result in inner table rows not being referenced by any row in the outer

table.
2-56 Oracle8i Utilities



Considerations When Importing Database Objects
■ If an insert to an inner table fails after a nonfatal error, its outer table row will

already have been inserted in the outer table and data will continue to be

inserted in it and any other inner tables of the containing table. This

circumstance results in a partial logical row.

■ If fatal errors occur inserting data in an inner table, Import skips the rest of that

inner table’s data but does not skip the outer table or other nested tables.

You should always carefully examine the logfile for errors in outer tables and inner

tables. To be consistent, table data may need to be modified or deleted.

Because inner nested tables are imported separately from the outer table, attempts

to access data from them while importing may produce unexpected results. For

example, if an outer row is accessed before its inner rows are imported, an

incomplete row may be returned to the user.

Importing REF Data
REF columns and attributes may contain a hidden ROWID that points to the

referenced type instance. Import does not automatically recompute these ROWIDs

for the target database. You should execute the following command to reset the

ROWIDs to their proper values:

ANALYZE TABLE [schema.]table VALIDATE REF UPDATE

See Oracle8i SQL Reference for more information about the ANALYZE TABLE

statement.

Importing BFILE Columns and Directory Aliases
Export and Import do not copy data referenced by BFILE columns and attributes

from the source database to the target database. Export and Import only propagate

the names of the files and the directory aliases referenced by the BFILE columns. It

is the responsibility of the DBA or user to move the actual files referenced through

BFILE columns and attributes.

When you import table data that contains BFILE columns, the BFILE locator is

imported with the directory alias and file name that was present at export time.

Import does not verify that the directory alias or file exists. If the directory alias or

file does not exist, an error occurs when the user accesses the BFILE data.

For operating system directory aliases, if the directory syntax used in the export

system is not valid on the import system, no error is reported at import time.

Subsequent access to the file data receives an error.
Import 2-57



Considerations When Importing Database Objects
It is the responsibility of the DBA or user to ensure the directory alias is valid on the

import system.

Importing Foreign Function Libraries
Import does not verify that the location referenced by the foreign function library is

correct. If the formats for directory and file names used in the library's specification

on the export file are invalid on the import system, no error is reported at import

time. Subsequent usage of the callout functions will receive an error.

It is the responsibility of the DBA or user to manually move the library and ensure

the library's specification is valid on the import system.

Importing Stored Procedures, Functions, and Packages
When a local stored procedure, function, or package is imported, it retains its

original specification timestamp. The procedure, function, or package is recompiled

upon import. If the compilation is successful, it can be accessed by remote

procedures without error.

Procedures are exported after tables, views, and synonyms; therefore, they usually

compile successfully because all dependencies already exist. However, procedures,

functions, and packages are not exported in dependency order. If a procedure,

function, or package depends on a procedure, function, or package that is stored

later in the Export dump file, it will not compile successfully. Later use of the

procedure, function, or package will automatically cause a recompile and, if

successful, will change the timestamp. This may cause errors in the remote

procedures that call it.

Importing Java Objects
When a Java source or class is imported, it retains its original resolver (the list of

schemas used to resolve Java full names). If the object is imported into a different

schema, that resolver may no longer be valid. For example, the default resolver for a

Java object in SCOTT’s schema is ((* SCOTT) (* PUBLIC)). If the object is imported

into BLAKE’s schema, it may be necessary to alter the object so that the resolver

references BLAKE’s schema.

Importing Advanced Queue (AQ) Tables
Importing a queue also imports any underlying queue tables and the related

dictionary tables. A queue can be imported only at the granularity level of the
2-58 Oracle8i Utilities



Considerations When Importing Database Objects
queue table. When a queue table is imported, export pre-table and post-table action

procedures maintain the queue dictionary.

See Oracle8i Application Developer’s Guide - Advanced Queuing for more information.

Importing LONG Columns
LONG columns can be up to 2 gigabytes in length. In importing and exporting, the

LONG columns must fit into memory with the rest of each row’s data. The memory

used to store LONG columns, however, does not need to be contiguous because

LONG data is loaded in sections.

Importing Views
Views are exported in dependency order. In some cases, Export must determine the

ordering, rather than obtaining the order from the server database. In doing so,

Export may not always be able to duplicate the correct ordering, resulting in

compilation warnings when a view is imported and the failure to import column

comments on such views.

In particular, if VIEWA uses the stored procedure PROCB and PROCB uses the view

VIEWC, Export cannot determine the proper ordering of VIEWA and VIEWC. If

VIEWA is exported before VIEWC and PROCB already exists on the import system,

VIEWA receives compilation warnings at import time.

Grants on views are imported even if a view has compilation errors. A view could

have compilation errors if an object it depends on, such as a table, procedure, or

another view, does not exist when the view is created. If a base table does not exist,

the server cannot validate that the grantor has the proper privileges on the base

table with the GRANT OPTION.

Therefore, access violations could occur when the view is used, if the grantor does

not have the proper privileges after the missing tables are created.

Importing views that contain references to tables in other schemas requires that the

importer have SELECT ANY TABLE privilege. If the importer has not been granted

this privilege, the views will be imported in an uncompiled state. Note that granting

the privilege to a role is insufficient. For the view to be compiled, the privilege must

be granted directly to the importer.

Importing Tables
Import attempts to create a partitioned table with the same partition or subpartition

names as the exported partitioned table, including names of the form SYS_Pnnn. If a
Import 2-59



Transportable Tablespaces
table with the same name already exists, Import processing depends on the value of

the IGNORE parameter.

Unless SKIP_UNUSABLE_INDEXES=Y, inserting the exported data into the target

table fails if Import cannot update a nonpartitioned index or index partition that is

marked Indexes Unusable or otherwise not suitable.

Transportable Tablespaces
The transportable tablespace feature enables you to move a set of tablespaces from

one Oracle database to another.

To do this, you must make the tablespaces read-only, copy the datafiles of these

tablespaces, and use Export/Import to move the database information (metadata)

stored in the data dictionary. Both the datafiles and the metadata export file must be

copied to the target database. The transport of these files can be done using any

facility for copying flat, binary files, such as the operating system copying facility,

binary-mode FTP, or publishing on CD-ROMs.

After copying the datafiles and importing the metadata, you can optionally put the

tablespaces in read/write mode.

See Transportable Tablespaces on page 1-60 for information on creating an Export

file containing transportable tablespace metadata.

Import provides the following parameter keywords to enable import of

transportable tablespaces metadata.

■ TRANSPORT_TABLESPACE

■ TABLESPACES

■ DATAFILES

■ TTS_OWNERS

See TRANSPORT_TABLESPACE on page 2-30, TABLESPACES on page 2-28,

DATAFILES on page 2-20, and TTS_OWNERS on page 2-30 for more information.

Additional Information: See the Oracle8i Administrator’s Guide for details about

how to move or copy tablespaces to another database. For an introduction to

the transportable tablespaces feature, see Oracle8i Concepts.
2-60 Oracle8i Utilities



Using Export Files from a Previous Oracle Release
Importing Statistics
If statistics are requested at export time and analyzer statistics are available for a

table, Export will place the ANALYZE command to recalculate the statistics for the

table into the dump file. In certain circumstances, Export will also write the

precalculated optimizer statistics for tables, indexes, and columns to the dump file.

See the description of the Export parameter STATISTICS on page 1-24 and the

Import parameter RECALCULATE_STATISTICS on page 2-25.

Because of the time it takes to perform an ANALYZE statement, it is usually

preferable for Import to use the precalculated optimizer statistics for a table (and its

indexes and columns), rather than executing the ANALYZE statement saved by

Export. However, in the following cases, Import will ignore the precomputed

statistics because they are potentially unreliable:

■ Character set translations between the dump file and the import client and the

import database could potentially change collating sequences that are implicit

in the precalculated statistics.

■ Row errors occurred while importing the table.

■ A partition level import is performed (column statistics will no longer be

accurate).

Note: Specifying ROWS=N will not prevent the use of precomputed statistics. This

feature allows plan generation for queries to be tuned in a nonproduction database

using statistics from a production database.

In certain situations, the importer might want to always use ANALYZE statements

rather than precomputed statistics. For example, the statistics gathered from a

fragmented database may not be relevant when the data is imported in a

compressed form. In these cases, the importer may specify

RECALCULATE_STATISTICS=Y to force the recalculation of statistics.

If you do not want any statistics to be established by Import, you can specify

ANALYZE=N, in which case, the RECALCULATE_STATISTICS parameter is

ignored. See ANALYZE on page 2-18.

Using Export Files from a Previous Oracle Release
The following sections describe considerations to keep in mind when you import

data from earlier versions of the Oracle database server into an Oracle8i server.
Import 2-61



Using Export Files from a Previous Oracle Release
Using Oracle Version 7 Export Files
This section describes guidelines and restrictions that apply when you import data

from an Oracle version 7 database into an Oracle8i server. See Oracle8i Migration for

additional information.

Check Constraints on DATE Columns
In Oracle8i, check constraints on DATE columns must use the TO_DATE function to

specify the format of the date. Because this function was not required in earlier

Oracle versions, data imported from an earlier Oracle database might not have used

the TO_DATE function. In such cases, the constraints are imported into the Oracle8i
database, but they are flagged in the dictionary as invalid.

The catalog views DBA_CONSTRAINTS, USER_CONSTRAINTS, and ALL_

CONSTRAINTS can be used to identify such constraints. Import issues a warning

message if invalid date constraints are in the database.

Using Oracle Version 6 Export Files
This section describes guidelines and restrictions that apply when you import data

from an Oracle Version 6 database into an Oracle8i server. See Oracle8i Migration for

additional information.

CHAR columns
Oracle Version 6 CHAR columns are automatically converted into the Oracle

VARCHAR2 datatype.

Syntax of Integrity Constraints
Although the SQL syntax for integrity constraints in Oracle Version 6 is different

from the Oracle7 and Oracle8i syntax, integrity constraints are correctly imported

into Oracle8i.

Status of Integrity Constraints
NOT NULL constraints are imported as ENABLED. All other constraints are

imported as DISABLED.

Length of DEFAULT Column Values
A table with a default column value that is longer than the maximum size of that

column generates the following error on import to Oracle8i:
2-62 Oracle8i Utilities



Using Export Files from a Previous Oracle Release
ORA-1401: inserted value too large for column

Oracle Version 6 did not check the columns in a CREATE TABLE statement to be

sure they were long enough to hold their DEFAULT values so these tables could be

imported into a Version 6 database. The Oracle8i server does make this check,

however. As a result, tables that could be imported into a Version 6 database may

not import into Oracle8i.

If the DEFAULT is a value returned by a function, the column must be large enough

to hold the maximum value that can be returned by that function. Otherwise, the

CREATE TABLE statement recorded in the export file produces an error on import.

Note: The maximum value of the USER function increased in Oracle7, so columns

with a default of USER may not be long enough. To determine the maximum size

that the USER function returns, execute the following SQL command:

DESCRIBE user_sys_privs

The length shown for the USERNAME column is the maximum length returned by

the USER function.

Using Oracle Version 5 Export Files
Oracle8i Import reads Export dump files created by Oracle release 5.1.22 and higher.

Keep in mind the following:

■ CHAR columns are automatically converted to VARCHAR2.

■ NOT NULL constraints are imported as ENABLED.

■ Import automatically creates an index on any clusters to be imported.

The CHARSET Parameter
Default: none

Note: This parameter applies to Oracle Version 5 and 6 export files only. Use of this

parameter is not recommended. It is provided only for compatibility with previous

versions. Eventually, it will no longer be supported.

Oracle Version 5 and 6 export files do not contain the NLS character set identifier.

However, a version 5 or 6 export file does indicate whether the user session

character set was ASCII or EBCDIC.
Import 2-63



Using Export Files from a Previous Oracle Release
Use this parameter to indicate the actual character set used at export time. The

import utility will verify whether the specified character set is ASCII or EBCDIC

based on the character set in the export file.

If you do not specify a value for the CHARSET parameter and the export file is

ASCII, Import will verify that the user session character set is ASCII. Or, if the

export file is EBCDIC, Import will verify that the user session character set is

EBCDIC.

If you are using an Oracle7 or Oracle8i export file, the character set is specified

within the export file, and conversion to the current database’s character set is

automatic. Specification of this parameter serves only as a check to ensure that the

export file’s character set matches the expected value. If not, an error results.
2-64 Oracle8i Utilities



Part II

 SQL*Loader





SQL*Loader Con
3

SQL*Loader Concepts

This chapter explains the basic concepts of loading data into an Oracle database

with SQL*Loader. This chapter covers the following topics:

■ SQL*Loader Basics

■ SQL*Loader Control File

■ Input Data and Datafiles

■ Data Conversion and Datatype Specification

■ Discarded and Rejected Records

■ Log File and Logging Information

■ Conventional Path Load Versus Direct Path Load

■ Loading Objects, Collections, and LOBs

■ Partitioned Object Support

■ Application Development: Direct Path Load API
cepts 3-1



SQL*Loader Basics
SQL*Loader Basics
SQL*Loader loads data from external files into tables of an Oracle database.

The following are some basic points about SQL*Loader:

■ Has a powerful data parsing engine that puts little limitation on the format of

the data in the datafile.

■ Can load data from multiple datafiles during the same load session.

■ Can load data into multiple tables during the same load session.

■ Is character set aware (you can specify the character set of the data).

■ Can selectively load data (you can load records based on the records’ values).

■ Can manipulate the data before loading it, using SQL functions.

■ Can generate unique sequential key values in specified columns.

■ Can use the operating system’s file system to access the datafiles.

■ Can load data from disk, tape, or named pipe.

■ Does sophisticated error reporting, which greatly aids troubleshooting.

■ Supports two loading paths: conventional and direct. While conventional path

loading is very flexible, direct path loading provides superior loading

performance (see Chapter 8).

■ Can load arbitrarily complex object-relational data.

■ Supports secondary datafiles for loading of LOBs and collections.

■ Is to a large degree compatible with the DB2 Load Utility from IBM. With no or

few changes, a DB2 Load Utility control file can be used as a SQL*Loader

control file. See Appendix B.

Figure 3–1 shows the basic components of a SQL*Loader session.
3-2 Oracle8i Utilities



SQL*Loader Control File
Figure 3–1 SQL*Loader Overview

SQL*Loader takes as input a control file, which controls the behavior of SQL*Loader,

and one or more datafiles. The output of SQL*Loader is an Oracle database (where

the data is loaded), a log file, a bad file, and potentially, a discard file.

SQL*Loader Control File
The control file is a text file written in a language that SQL*Loader understands.

The control file describes the task that SQL*Loader is to carry out. The control file

tells SQL*Loader where to find the data, how to parse and interpret the data, where

to insert the data, and more. See Chapter 4 for example control files.

Although not precisely defined, a control file can be said to have three sections.

The first section contains session-wide information, for example:

■ Global options such as bindsize, rows, records to skip, and so on

■ INFILE clauses to specify where the input data is located

■ Data character set specification

Discard
Files

Bad
Files

Database

SQL*Loader

Loader
Control

File

Bad
Files

Log
File

Discard
Files

Bad
FilesInput

Datafiles

TableTableIndexes
TableTableTables
SQL*Loader Concepts 3-3



Input Data and Datafiles
The second section consists of one or more "INTO TABLE" blocks. Each of these

blocks contains information about the table into which the data is to be loaded, such

as the table name and the columns of the table.

The third section is optional and, if present, contains input data.

Some control file syntax considerations to keep in mind are:

■ The syntax is free-format (statements can extend over multiple lines).

■ It is case insensitive; however, strings enclosed in single or double quotation

marks are taken literally, including case.

■ In control file syntax, comments extend from the two hyphens (--) that mark the

beginning of the comment to the end of the line. Note that the optional third

section of the control file is interpreted as data rather than as control file syntax;

consequently, comments in this section are not supported.

■ Certain words have special meaning to SQL*Loader and are therefore reserved

(see Appendix A for a complete list). If a particular literal or a database object

name (column name, table name, and so on) is also a reserved word (keyword),

it must be enclosed in single or double quotation marks.

See Chapter 5 for details about control file syntax and its semantics.

Input Data and Datafiles
The other input to SQL*Loader, other than the control file, is the data. SQL*Loader

reads data from one or more files (or operating system equivalents of files) specified

in the control file. See INFILE: Specifying Datafiles on page 5-22. From

SQL*Loader’s perspective, the data in the datafile is organized as records. A

particular datafile can be in fixed record format, variable record format, or stream

record format.

Important: If data is specified inside the control file (that is, INFILE * was specified

in the control file), then the data is interpreted in the stream record format with the

default record terminator.

Fixed Record Format
When all records in a datafile are the same byte length, the file is in fixed record

format. Although this format is the least flexible, it does result in better performance

than variable or stream format. Fixed format is also simple to specify, for example:

INFILE <datafile_name> "fix n"
3-4 Oracle8i Utilities



Input Data and Datafiles
This example specifies that SQL*Loader should interpret the particular datafile as

being in fixed record format where every record is n bytes long.

Example 3–1 shows a control file that specifies a datafile that should be interpreted

in the fixed record format. The datafile in the example contains five physical

records. The first physical record is [001,   cd, ] which is exactly eleven bytes

(assuming a single-byte character set). The second record is [0002,fghi,] followed by

the newline character (which is the eleventh byte), and so on.

Example 3–1 Loading Data in Fixed Record Format

load data
infile ’example.dat’  "fix 11"
into table example
fields terminated by ’,’ optionally enclosed by ’"’
(col1 char(5),
 col2 char(7))

example.dat:
001,   cd, 0002,fghi,
00003,lmn,
1, "pqrs",
0005,uvwx,

Variable Record Format
When you specify that a datafile is in variable record format, SQL*Loader expects to

find the length of each record in a character field at the beginning of each record in

the datafile. This format provides some added flexibility over the fixed record

format and a performance advantage over the stream record format. For example,

you can specify a datafile that is to be interpreted as being in variable record format

as follows:

INFILE "datafile_name" "var n"

In this example, n specifies the number of bytes in the record length field. If n is not

specified, SQL*Loader assumes a length of 5. Specifying n larger than 2^32 -1 will

result in an error.

Example 3–2 shows a control file specification that tells SQL*Loader to look for data

in the datafile example.dat and to expect variable record format where the record

length fields are 3 bytes long. The example.dat datafile consists of three physical

records. The first is specified to be 009 (that is, 9) bytes long, the second is 010 bytes

long, and the third is 012 bytes long. This example also assumes a single-byte

character set for the datafile.
SQL*Loader Concepts 3-5



Input Data and Datafiles
Example 3–2 Loading Data in Variable Record Format

load data
infile ’example.dat’  "var 3"
into table example
fields terminated by ’,’ optionally enclosed by ’"’
(col1 char(5),
 col2 char(7))

example.dat:
009hello,cd,010world,im,
012my,name is,

Stream Record Format (SRF)
Stream record format is the most flexible format. There is, however, some effect on

performance. In stream record format, records are not specified by size. Instead,

SQL*Loader forms records by scanning for the record terminator.

The specification of a datafile to be interpreted as being in stream record format

looks like the following:

INFILE <datafile_name> ["str ’terminator_string’"]

In this example, the ’terminator_string’ is a string specified using alphanumeric

characters. However, in the following cases, the terminator_string should be

specified as a hexadecimal string (which, if character-encoded in the character set of

the datafile, would form the desired terminator_string):

■ When the terminator_string contains special (nonprintable) characters

■ When the terminator_string contains newline or carriage return characters

■ When specifying the terminator_string for a datafile in a character set different

than that of the client’s (control file’s)

If no terminator_string is specified, it defaults to the newline (end-of-line) character

(line feed in UNIX-based platforms, carriage return followed by a line feed on

Microsoft platforms, and so on).

Example 3–3 illustrates loading in stream record format where the terminator string

is specified using a hexadecimal string. The string X’7c0a’, assuming an ASCII

character set, translates to ’|’ followed by the newline character ’\n’. The datafile in

the example consists of two records, both properly terminated by the ’|\n’ string

(that is, X’7c0a’).
3-6 Oracle8i Utilities



Input Data and Datafiles
Example 3–3 Loading Data in Stream Record Format

load data
infile ’example.dat’  "str X’7c0a’"
into table example
fields terminated by ’,’ optionally enclosed by ’"’
(col1 char(5),
 col2 char(7))

example.dat:
hello,world,|
james,bond,|

Logical Records
SQL*Loader organizes the input data into physical records, according to the

specified record format. By default a physical record is a logical record, but for

added flexibility, SQL*Loader can be instructed to combine a number of physical

records into a logical record.

SQL*Loader can be instructed to follow one of the following two logical record

forming strategies:

■ Combine a fixed number of physical records to form each logical record.

■ Combine physical records into logical records while a certain condition is true.

Case 4: Loading Combined Physical Records on page 4-15 demonstrates using

continuation fields to form one logical record from multiple physical records.

For more information, see Assembling Logical Records from Physical Records on

page 5-36.

Data Fields
Once a logical record is formed, field setting on the logical record is done. Field

setting is the process where SQL*Loader, based on the control file field

specifications, determines what part of the data in the logical record corresponds to

which field in the control file. It is possible for two or more field specifications to

claim the same data; furthermore, a logical record can contain data that is claimed

by no control file field specification.

Most control file field specifications claim a particular part of the logical record.

This mapping takes the following forms:
SQL*Loader Concepts 3-7



Data Conversion and Datatype Specification
■ The byte position of the datafield’s beginning, end, or both, can be specified.

This specification form is not the most flexible, but it enjoys high field setting

performance. See Specifying the Position of a Data Field on page 5-48.

■ The strings delimiting (enclosing and/or terminating) a particular datafield can

be specified. A delimited datafield is assumed to start where the last datafield

ended, unless the byte position of the start of the datafield is specified. See

Specifying Delimiters on page 5-70.

■ The byte offset and/or the length of the datafield can be specified. This way

each field starts a specified number of bytes from where the last one ended and

continues for a specified length. See Specifying the Position of a Data Field on

page 5-48.

■ Length-value datatypes can be used. In this case, the first x number of bytes of

the data field contain information about how long the rest of the data field is.

See SQL*Loader Datatypes on page 5-58.

Data Conversion and Datatype Specification
Figure 3–2 shows the stages in which datafields in the datafile are converted into

columns in the database during a conventional path load (direct path loads are

conceptually similar, but the implementation is different.) The top of the diagram

shows a data record containing one or more datafields. The bottom shows the

destination database column. It is important to understand the intervening steps

when using SQL*Loader.

Figure 3–2 depicts the division of labor between SQL*Loader and the Oracle

database server. The field specifications tell SQL*Loader how to interpret the format

of the datafile. The Oracle database server then converts that data and inserts it into

the database columns, using the column datatypes as a guide. Keep in mind the

distinction between a field in a datafile and a column in the database. Remember also

that the field datatypes defined in a SQL*Loader control file are not the same as the

column datatypes.

SQL*Loader uses the field specifications in the control file to parse the input data

and populate the bind arrays that correspond to a SQL insert statement using that

data. The insert statement is then executed by the Oracle database server to be

stored in the table. The Oracle database server uses the datatype of the column to

convert the data into its final, stored form. There are two conversion steps:

1. SQL*Loader identifies a field in the datafile, interprets the data, and passes it to

the Oracle database server using a bind buffer.
3-8 Oracle8i Utilities



Data Conversion and Datatype Specification
2. The Oracle database server accepts the data and stores it in the database.

Figure 3–2 Translation of Input Data Field to Oracle Database Column

In Figure 3–3, two CHAR fields are defined for a data record. The field

specifications are contained in the control file. Note that the control file CHAR

specification is not the same as the database CHAR specification. A data field

defined as CHAR in the control file merely tells SQL*Loader how to create the row

insert. The data could then be inserted into a CHAR, VARCHAR2, NCHAR,

NVARCHAR, or even a NUMBER column in the database, with the Oracle8i server

handling any necessary conversions.

DATA FILE

Data Field

How to interpret the
field to recognize data.

CONTROL
 FILE

FIELD
SPECIFICATION

DATABASE TABLE
SPECIFICATION

COLUMN
DATATYPE

SQL
LOADER

SERVER

ROW
INSERT

DATA TO
INSERT

How to convert and
store the data.

DATABASE
COLUMN

STORED
DATA
SQL*Loader Concepts 3-9



Data Conversion and Datatype Specification
By default, SQL*Loader removes trailing spaces from CHAR data before passing it

to the database. So, in Figure 3–3, both field 1 and field 2 are passed to the database

as three-column fields. When the data is inserted into the table, however, there is a

difference.

Figure 3–3 Example of Field Conversion

Column 1 is defined in the database as a fixed-length CHAR column of length 5. So

the data (aaa) is left-justified in that column, which remains five characters wide.

The extra space on the right is padded with blanks. Column 2, however, is defined

as a varying length field with a maximum length of five characters. The data for that

column (bbb) is left-justified as well, but the length remains three characters.

The name of the field tells SQL*Loader what column to insert the data into.

It is useful to keep the following points in mind:

DATA
FILE

ROW
INSERT

DATABASE

SQL
LOADER

SERVER

Field 1

aaa bbb

Column 1 Column 2

Table

CHAR (5) VARCHAR (5)Column Datatypes

CHAR (5) CHAR (5)Control File Specifications

a a a _ _ b b b

a a a b b b

Field 2
3-10 Oracle8i Utilities



Discarded and Rejected Records
■ The name of the data field corresponds to the name of the table column into

which the data is to be loaded.

■ The datatype of the field tells SQL*Loader how to treat the data in the datafile

(for example, bind type). It is not the same as the column datatype. SQL*Loader

input datatypes are independent of the column datatype.

■ Data is converted from the datatype specified in the control file to the datatype

of the column in the database.

■ SQL*Loader converts data stored in VARRAYs before storing the VARRAY data.

■ There is a distinction between logical records and physical records.

Discarded and Rejected Records
Records read from the input file might not be inserted into the database. Figure 3–4

shows the stages at which records may be rejected or discarded.

The Bad File
The bad file contains records that were rejected, either by SQL*Loader or by Oracle.

Some of the possible reasons for rejection are discussed in the next sections.

SQL*Loader Rejects
Records are rejected by SQL*Loader when the input format is invalid. For example,

if the second enclosure delimiter is missing, or if a delimited field exceeds its

maximum length, SQL*Loader rejects the record. Rejected records are placed in the

bad file. For details on how to specify the bad file, see BADFILE: Specifying the Bad

File on page 5-25.
SQL*Loader Concepts 3-11



Discarded and Rejected Records
Figure 3–4 Record Filtering

SQL*Loader

When-clause
Evaluation

RDBMS

RecordRecord

Read in

Rejected

RejectedDiscarded Selected

Inserted

Bad
File

Database

Accepted

SQL*Loader

Field Processing

Discard
File
3-12 Oracle8i Utilities



Log File and Logging Information
Oracle Rejects
After a record is accepted for processing by SQL*Loader, a row is sent to Oracle for

insertion. If Oracle determines that the row is valid, then the row is inserted into the

database. If not, the record is rejected, and SQL*Loader puts it in the bad file. The

row may be rejected, for example, because a key is not unique, because a required

field is null, or because the field contains invalid data for the Oracle datatype.

Because the bad file is written in the same format as the datafile, rejected data can

be loaded with the existing control file after necessary corrections are made.

Case 4: Loading Combined Physical Records on page 4-15 contains an example of

the use of a bad file.

SQL*Loader Discards
As SQL*Loader executes, it may create a file called the discard file. This file is created

only when it is needed, and only if you have specified that a discard file should be

enabled (see Specifying the Discard File on page 5-27). The discard file contains

records that were filtered out of the load because they did not match any

record-selection criteria specified in the control file.

The discard file therefore contains records that were not inserted into any table in

the database. You can specify the maximum number of such records that the discard

file can accept. Data written to any database table is not written to the discard file.

The discard file is written in the same format as the datafile. The discard data can be

loaded with the existing control file, after any necessary editing or correcting.

Case 4: Loading Combined Physical Records on page 4-15 shows how the discard

file is used. For more details, see Specifying the Discard File on page 5-27.

Log File and Logging Information
When SQL*Loader begins execution, it creates a log file. If it cannot create a log file,

execution terminates. The log file contains a detailed summary of the load,

including a description of any errors that occurred during the load. For details on

the information contained in the log file, see Chapter 7. All of the case studies in

Chapter 4 also contain sample log files.
SQL*Loader Concepts 3-13



Conventional Path Load Versus Direct Path Load
Conventional Path Load Versus Direct Path Load
SQL*Loader provides two methods to load data: conventional path, which uses a

SQL INSERT statement with a bind array, and direct path, which loads data directly

into a database. These modes are discussed in the following sections and, more

thoroughly, in Chapter 8. The tables to be loaded must already exist in the database.

SQL*Loader never creates tables, it loads existing tables. Tables may already contain

data, or they may be empty.

The following privileges are required for a load:

■ You must have INSERT privileges on the table to be loaded.

■ You must have DELETE privilege on the table to be loaded, when using the

REPLACE or TRUNCATE option to empty out the table’s old data before

loading the new data in its place.

Conventional Path
During conventional path loads, the input records are parsed according to the field

specifications, and each data field is copied to its corresponding bind array. When

the bind array is full (or there is no more data left to read), an array insert is

executed. For more information on conventional path loads, see Data Loading

Methods on page 8-2. For information on the bind array, see Determining the Size of

the Bind Array on page 5-75.

Note that SQL*Loader stores LOB fields after a bind array insert is done. Thus, if

there are any errors in processing the LOB field (for example, the LOBFILE could

not be found), the LOB field is left empty.

There are no special requirements for tables being loaded through the conventional

path.

Direct Path
A direct path load parses the input records according to the field specifications,

converts the input field data to the column datatype, and builds a column array.

The column array is passed to a block formatter, which creates data blocks in Oracle

database block format. The newly formatted database blocks are written directly to

the database, bypassing most RDBMS processing. Direct path load is much faster

than conventional path load, but entails several restrictions. For more information

on direct path load, see Direct Path Load on page 8-3.

Note: You cannot use the direct path load method for LOBs, VARRAYs, objects, or

nested tables.
3-14 Oracle8i Utilities



Loading Objects, Collections, and LOBs
Parallel Direct Path
A parallel direct path load allows multiple direct path load sessions to concurrently

load the same data segments (allows intrasegment parallelism). Parallel direct path

is more restrictive than direct path. For more information on the parallel direct path

load method, see Parallel Data Loading Models on page 8-25.

Loading Objects, Collections, and LOBs
You can use SQL*Loader to bulk load objects, collections, and LOBs. It is assumed

that you are familiar with the concept of objects and with Oracle’s implementation

of object support as described in Oracle8i Concepts and in the  Oracle8i
Administrator’s Guide.

Supported Object Types
SQL*Loader supports loading of the following two object types:

column-objects
When a column of a table is of some object type, the objects in that column are

referred to as column-objects. Conceptually such objects are stored in entirety in a

single column position in a row. These objects do not have object identifiers and

cannot be referenced.

row objects
These objects are stored in tables, known as object tables, that have columns

corresponding to the attributes of the object. The object tables have an additional

system-generated column, called SYS_NC_OID$, that stores system-generated

unique identifiers (OIDs) for each of the objects in the table. Columns in other tables

can refer to these objects by using the OIDs.

See Loading Column Objects on page 5-90 and Loading Object Tables on page 5-95

for details on using SQL*Loader control file data definition language to load these

object types.
SQL*Loader Concepts 3-15



Loading Objects, Collections, and LOBs
Supported Collection Types
SQL*Loader supports loading of the following two collection types:

Nested Tables
A nested table is a table that appears as a column in another table. All operations

that can be performed on other tables can also be performed on nested tables.

VARRAYs
VARRAYs are variable sized arrays. An array is an ordered set of built-in types or

objects, called elements. Each array element is of the same type and has an index,
which is a number corresponding to the element’s position in the VARRAY.

When creating a VARRAY type, you must specify the maximum size. Once you

have declared a VARRAY type, it can be used as the datatype of a column of a

relational table, as an object type attribute, or as a PL/SQL variable.

Please see Loading Collections (Nested Tables and VARRAYs) on page 5-107 for

details on using SQL*Loader control file data definition language to load these

collection types.

Supported LOB Types
A LOB is a large object type. This release of SQL*Loader supports loading of four

LOB types:

■ BLOB: a LOB containing unstructured binary data.

■ CLOB: a LOB containing single-byte character data.

■ NCLOB: a LOB containing fixed-size characters from a national character set.

■ BFILE: a BLOB stored outside of the database tablespaces in a server-side OS

file.

LOBs can be column datatypes, and with the exception of the NCLOB, they can be

an object’s attribute datatypes. LOBs can have an actual value, they can be NULL,

or they can be "empty."

Please see Loading LOBs on page 5-98 for details on using SQL*Loader control file

data definition language to load these LOB types.
3-16 Oracle8i Utilities



Loading Objects, Collections, and LOBs
SQL*Loader DDL Behavior and Restrictions
In order to provide object support, the behavior of certain DDL clauses and certain

restrictions is different starting with release 8.1.5. The following list describes these

changes. The changes apply in all cases, not just when you are loading objects,

collections, or LOBs.

■ Records:

– There is no requirement that a LOB from a LOBFILE fit in memory.

SQL*Loader reads LOBFILEs in 64K chunks. To load physical records larger

than 64K, you can use the READSIZE parameter to specify a larger physical

record size. See SQL*Loader DDL Support for LOBFILES and Secondary

Data Files (SDFs) on page 3-19, READSIZE (read buffer) on page 6-7, and

SDF_spec on page 5-14.

– Logical records must fit completely into the client’s available memory. This

excludes any data that is part of a particular record, but which is read from

a secondary datafile. This logical record size restriction also applies to

subrecords within secondary data files (SDFs). See SQL*Loader DDL

Support for LOBFILES and Secondary Data Files (SDFs) on page 3-19.

■ Record formats:

– Stream record format

In stream record format, the newline character marks the end of a physical

record. Starting with release 8.1, you can specify a custom record separator

in the operating system file-processing string (os_file_proc_clause).

– Variable record format

The usual syntax of following the INFILE directive with the "var" string (see

Oracle8i Concepts) has been extended to include the number of characters, at

the beginning of each record, which are to be interpreted as the record

length specifiers. See the syntax information in Chapter 5.

If no value is specified, the default is 5 characters. The maximum size of a

variable record is 2^32-1; specifying larger values will result in an error.

■ DEFAULTIF and NULLIF

If the field_condition is true, the DEFAULTIF clause initializes the LOB or

collection to empty (not null).

If the field_condition is true, the NULLIF clause initializes the LOB or collection

to null, as it does for other datatypes.
SQL*Loader Concepts 3-17



Loading Objects, Collections, and LOBs
You can chain field_condition arguments using the AND logical operator. See

Chapter 5 for syntax details.

Note the following:

– A NULLIF or DEFAULTIF clause cannot refer to a field in a secondary data

file (SDF) unless the clause is on a field in the same secondary data file.

– NULLIF or DEFAULTIF field conditions cannot be based on fields read

from LOBFILEs.

■ Field delimiters

In previous versions of SQL*Loader, you could load fields that were delimited

(terminated or enclosed) by a character. Beginning with release 8.1.5, the

delimiter can be one or more characters long. The syntax to specify delimited

fields remains the same, except that you can specify entire strings of characters

as delimiters.

As with single-character delimiters, when you specify string delimiters, you

should consider the character set of the datafile. When the character set of the

datafile is different than that of the control file, you can specify the delimiters in

hexadecimal (that is, X’<hexadecimal string>’). If the delimiters are specified in

hexadecimal notation, the specification must consist of characters that are valid

in the character set of the input datafile. In contrast, if hexadecimal specification

is not used, the delimiter specification is considered to be in the client’s (that is,

the control file’s) character set. In this case, the delimiter is converted into the

datafile's character set before SQL*Loader searches for the delimiter in the

datafile.

Note the following:

– Stutter syntax is supported with string delimiters as it was with

single-character delimiters (that is, the closing enclosure delimiter can be

stuttered).

– Leading whitespaces in the initial multicharacter enclosure delimiter are

not allowed.

– If a field is terminated by WHITESPACE, the leading whitespaces are

trimmed.

■ SQL strings

SQL strings are not supported for LOBs, BFILEs, object columns, nested tables,

or VARRAYS; therefore, you cannot specify SQL strings as part of a FILLER

field specification.
3-18 Oracle8i Utilities



Loading Objects, Collections, and LOBs
■ Filler fields

To facilitate loading, you have available a new keyword, FILLER. You use this

keyword to specify a FILLER field, which is a datafile mapped field that does not
correspond to a database column.

The FILLER field is assigned values from the datafield to which it is mapped.

The FILLER field can be used as an argument to a number of functions, for

example, NULLIF. See Chapter 5 for information on which functions support

the FILLER field as an argument.

The syntax for a FILLER field is same as that for a column-based field, except

that a FILLER field's name is followed by the keyword FILLER.

Filler fields can be used in field condition specifications in NULLIF,

DEFAULTIF, and WHEN clauses. However, they cannot be used in SQL strings.

Filler field specifications cannot contain a NULLIF/DEFAULTIF clause. See

Chapter 5 for more detail on the FILLER field syntax.

Filler fields are initialized to NULL if the TRAILING NULLCOLS is specified

and applicable. If another field references a nullified FILLER field, an error is

generated.

SQL*Loader DDL Support for LOBFILES and Secondary Data Files (SDFs)
The data to be loaded into some of the new datatypes, like LOBs and collections,

can potentially be very lengthy. Consequently, it is likely that you will want to have

such data instances out of line from the rest of the data. LOBFILES and secondary

data files (SDFs) provide a method to separate lengthy data.

■ LOBFILES

LOBFILES are relatively simple datafiles that facilitate LOB loading. The

attribute that distinguishes LOBFILEs from the primary datafiles is that in

LOBFILEs there is no concept of a record. In LOBFILEs the data is in any of the

following type fields:

– Predetermined size fields (fixed length fields)

– Delimited fields (that is, TERMINATED BY or ENCLOSED BY)

Note: The clause PRESERVE BLANKS is not applicable to fields read from a

LOBFILE.

– Length-value pair fields (variable length fields)—VARRAW, VARCHAR, or

VARCHARC loader datatypes—are used for loading from this type of field
SQL*Loader Concepts 3-19



Loading Objects, Collections, and LOBs
– A single LOB field into which the entire contents of a file can be read

See LOBFILE_spec on page 5-11 for LOBFILE syntax.

Note: A field read from a LOBFILE cannot be used as an argument to a clause

(for example, the NULLIF clause).

■ Secondary Data Files (SDFs)

Secondary data files (SDFs) are similar in concept to primary datafiles. Like

primary datafiles, SDFs are a collection of records, and each record is made up

of fields. The SDFs are specified on a per control-file-field basis.

You use the SDF keyword to specify SDFs. The SDF keyword can be followed

by either the file specification string, or a FILLER field that is mapped to a

datafield containing one or more file specification strings.

As for a primary datafile, the following can be specified for each SDF:

– The record format (fixed, stream, or variable). Also, if stream record format

is used, you can specify the record separator.

– The RECORDSIZE.

– The character set for a SDF can be specified using the CHARACTERSET

clause (see Handling Different Character Encoding Schemes on page 5-30).

– A default delimiter (using the delimiter specification) for the fields that

inherit a particular SDF specification (all member fields/attributes of the

collection that contain the SDF specification, with exception of the fields

containing their own LOBFILE specification).

– To load SDFs larger than 64K, you must use the READSIZE parameter to

specify a larger physical record size. You can specify the READSIZE

parameter either from the command line or as part of an OPTIONS

directive (see OPTIONS on page 5-18). See READSIZE (read buffer) on

page 6-7, and SDF_spec on page 5-14.

Full Field Names
Be aware that with SQL*Loader support for complex datatypes like column-objects,

the possibility arises that two identical field names could exist in the control file,

one corresponding to a column, the other corresponding to a column object’s

attribute. Certain clauses can refer to fields (for example, WHEN, NULLIF,

DEFAULTIF, SID, OID, REF, BFILE, and so on), causing a naming conflict if

identically named fields exist in the control file.
3-20 Oracle8i Utilities



Loading Objects, Collections, and LOBs
Therefore, if you use clauses that refer to fields, you must specify the full name. For

example, if field fld1 is specified to be a COLUMN OBJECT and it contains field

fld2, when specifying fld2 in a clause such as NULLIF, you must use the full field

name fld1.fld2.

When to Use LOBFILEs or SDFs
An example situation in which you might use LOBFILES or SDFs would be if you

needed to load employee names, employee IDs, and employee resumes. You could

read the employee names and IDs from the main datafiles and you could read the

resumes, which can be quite lengthy, from LOBFILEs.

Dynamic Versus Static LOBFILE and SDF Specifications
You can specify SDFs and LOBFILEs either statically (you specify the actual name of

the file) or dynamically (you use a FILLER field as the source of the filename). In

either case, when the EOF of an SDF or LOBFILE is reached, the file is closed and

further attempts at sourcing data from that particular file produce results equivalent

to sourcing data from an empty field.

In the case of the dynamic secondary file specification, this behavior is slightly

different. Whenever the specification changes to reference a new file, the old file is

closed and the data is read from the beginning of the newly referenced file.

The dynamic switching of the datasource files has a resetting effect. For example,

when switching from the current file to a previously opened file, the previously

opened file is reopened, and the data is read from the beginning of the file.

You should not specify the same SDF or LOBFILE as the source of two different

fields. If you do so, typically, the two fields will read the data independently.

Restrictions
■ If a nonexistent SDF or LOBFILE is specified as a data source for a particular

field, that field is initialized to empty. If the concept of empty does not apply to

the particular field type, the field is initialized to null.

■ The POSITION directive cannot be used in fields that read data from LOBFILEs.

■ Table level delimiters are not inherited by fields that are read from an SDF or

LOBFILE.
SQL*Loader Concepts 3-21



Partitioned Object Support
Partitioned Object Support
The Oracle8i SQL*Loader supports loading partitioned objects in the database. A

partitioned object in Oracle is a table or index consisting of partitions (pieces) that

have been grouped, typically by common logical attributes. For example, sales data

for the year 1997 might be partitioned by month. The data for each month is stored

in a separate partition of the sales table. Each partition is stored in a separate

segment of the database and can have different physical attributes.

Oracle8i SQL*Loader partitioned object support enables SQL*Loader to load the

following:

■ A single partition of a partitioned table

■ All partitions of a partitioned table

■ A nonpartitioned table

Oracle8i SQL*Loader supports partitioned objects in all three paths (modes):

■ Conventional path: changed minimally from Oracle7, as mapping a row to a

partition is handled transparently by SQL.

■ Direct path: changed significantly from Oracle7 to accommodate mapping rows

to partitions of tables and composite partitions, to support local indexes,

functional indexes, and to support global indexes, which can also be

partitioned; direct path bypasses SQL and loads blocks directly into the

database.

■ Parallel direct path: changed from Oracle7 to include support for concurrent

loading of an individual partition and also a partitioned table; allows multiple

direct path load sessions to load the same segment or set of segments

concurrently.

Parallel direct path loads are used for intrasegment parallelism. Intersegment

parallelism can be achieved by concurrent single partition direct path loads,

with each load session loading a different partition of the same table.

Application Development: Direct Path Load API
Oracle provides a direct path load API for application developers. See the Oracle
Call Interface Programmer’s Guide for more information.
3-22 Oracle8i Utilities



SQL*Loader Case St
4

SQL*Loader Case Studies

The case studies in this chapter illustrate some of the features of SQL*Loader. These

case studies start simply and progress in complexity.

This chapter contains the following sections:

■ The Case Studies

■ Case Study Files

■ Tables Used in the Case Studies

■ References and Notes

■ Running the Case Study SQL Scripts

■ Case 1: Loading Variable-Length Data

■ Case 2: Loading Fixed-Format Fields

■ Case 3: Loading a Delimited, Free-Format File

■ Case 4: Loading Combined Physical Records

■ Case 5: Loading Data into Multiple Tables

■ Case 6: Loading Using the Direct Path Load Method

■ Case 7: Extracting Data from a Formatted Report

■ Case 8: Loading Partitioned Tables

■ Case 9: Loading LOBFILEs (CLOBs)

■ Case 10: Loading REF Fields and VARRAYs
udies 4-1



The Case Studies
The Case Studies
This chapter contains the following case studies:

Case 1: Loading Variable-Length Data  Loads stream format records in which the fields

are delimited by commas and may be enclosed by quotation marks. The data is

found at the end of the control file.

Case 2: Loading Fixed-Format Fields : Loads data from a separate datafile.

Case 3: Loading a Delimited, Free-Format File  Loads data from stream format records

with delimited fields and sequence numbers. The data is found at the end of the

control file.

Case 4: Loading Combined Physical Records Combines multiple physical records into

one logical record corresponding to one database row.

Case 5: Loading Data into Multiple Tables Loads data into multiple tables in one run.

Case 6: Loading Using the Direct Path Load Method  Loads data using the direct path

load method.

Case 7: Extracting Data from a Formatted Report Extracts data from a formatted report.

Case 8: Loading Partitioned Tables Loads partitioned tables.

Case 9: Loading LOBFILEs (CLOBs) Adds a CLOB column called RESUME to the table

EMP, uses a FILLER field (RES_FILE), and loads multiple LOBFILEs into the EMP

table.

Case 10: Loading REF Fields and VARRAYs Loads a customer table that has a primary

key as its OID and stores order items in a VARRAY. Loads an order table that has a

REF to the customer table and the order times in a VARRAY.
4-2 Oracle8i Utilities



Case Study Files
Case Study Files
The distribution media for SQL*Loader contains files for each case:

■ Control files (for example, ULCASE1.CTL)

■ Data files (for example, ULCASE2.DAT)

■ Setup files (for example, ULCASE3.SQL)

If the sample data for the case study is contained in the control file, then there will

be no .DAT file for that case.

If there are no special setup steps for a case study, there may be no .SQL file for that

case. Starting (setup) and ending (cleanup) scripts are denoted by an S or E after the

case number.

Table 4–1 lists the files associated with each case.

Additional Information: The actual names of the case study files are operating

system-dependent. See your Oracle operating system-specific documentation for

the exact names.

Table 4–1 Case Studies and Their Related Files

CASE .CTL .DAT .SQL

1 x x

2 x x

3 x x

4 x x x

5 x x x

6 x x x

7 x x x S, E

8 x x x

9 x x x

10 x x
SQL*Loader Case Studies 4-3



Tables Used in the Case Studies
Tables Used in the Case Studies
The case studies are based upon the standard Oracle demonstration database tables,

EMP and DEPT, owned by SCOTT/TIGER. (In some case studies, additional

columns have been added.)

Contents of Table EMP
(empno           NUMBER(4) NOT NULL,
 ename           VARCHAR2(10),
 job             VARCHAR2(9),
 mgr             NUMBER(4),
 hiredate        DATE,
 sal             NUMBER(7,2),
 comm            NUMBER(7,2),
 deptno          NUMBER(2))

Contents of Table DEPT
(deptno          NUMBER(2) NOT NULL,
 dname           VARCHAR2(14),
 loc             VARCHAR2(13))

References and Notes
The summary at the beginning of each case study directs you to the sections of this

guide that discuss the SQL*Loader feature being demonstrated in more detail.

In the control file fragment and log file listing shown for each case study, the

numbers that appear to the left are not actually in the file; they are keyed to the

numbered notes following the listing. Do not use these numbers when you write

your control files.

Running the Case Study SQL Scripts
You should run the SQL scripts ULCASE1.SQL and ULCASE3.SQL through

ULCASE10.SQL to prepare and populate the tables. There is no ULCASE2.SQL,

because Case 2 is handled by ULCASE1.SQL.
4-4 Oracle8i Utilities



Case 1: Loading Variable-Length Data
Case 1: Loading Variable-Length Data
Case 1 demonstrates:

■ A simple control file identifying one table and three columns to be loaded.

■ Including data to be loaded from the control file itself, so there is no separate

datafile. See Identifying Data in the Control File with BEGINDATA on

page 5-21.

■ Loading data in stream format, with both types of delimited fields: terminated

and enclosed. See Field Length Specifications on page 5-83.

Control File
The control file is ULCASE1.CTL:

1) LOAD DATA
2) INFILE *
3) INTO TABLE dept
4) FIELDS TERMINATED BY ’,’ OPTIONALLY ENCLOSED BY ’"’
5) (deptno, dname, loc)
6) BEGINDATA
   12,RESEARCH,"SARATOGA"
   10,"ACCOUNTING",CLEVELAND
   11,"ART",SALEM
   13,FINANCE,"BOSTON"
   21,"SALES",PHILA.
   22,"SALES",ROCHESTER
   42,"INT’L","SAN FRAN"

Notes:

1. The LOAD DATA statement is required at the beginning of the control file.

2. INFILE * specifies that the data is found in the control file and not in an external

file.

3. The INTO TABLE statement is required to identify the table to be loaded

(DEPT) into. By default, SQL*Loader requires the table to be empty before it

inserts any records.

4. FIELDS TERMINATED BY specifies that the data is terminated by commas, but

may also be enclosed by quotation marks. Datatypes for all fields default to

CHAR.
SQL*Loader Case Studies 4-5



Case 1: Loading Variable-Length Data
5. The names of columns to load are enclosed in parentheses. Because no datatype

is specified, the default is a character of length 255.

6. BEGINDATA specifies the beginning of the data.

Invoking SQL*Loader
Before invoking SQL*Loader, run the script ULCASE1.SQL as SCOTT/TIGER.

Then invoke SQL*Loader at the command line:

sqlldr userid=scott/tiger control=ulcase1.ctl log=ulcase1.log

SQL*Loader loads the DEPT table and creates the log file.

Additional Information: The command sqlldr  is a UNIX-specific invocation. To

invoke SQL*Loader on your operating system, refer to your Oracle operating

system-specific documentation.

Log File
The following shows a portion of the log file:

Control File:   ulcase1.ctl
Data File:      ulcase1.ctl
  Bad File:     ulcase1.bad
  Discard File:  none specified

 (Allow all discards)

Number to load: ALL
Number to skip: 0
Errors allowed: 50
Bind array:     64 rows, maximum of 65536 bytes
Continuation:    none specified
Path used:      Conventional

Table DEPT, loaded from every logical record.
Insert option in effect for this table: INSERT

   Column Name                  Position   Len  Term Encl Datatype
------------------------------ ---------- ----- ---- ---- ---------------------
1) DEPTNO                            FIRST     *   ,  O(") CHARACTER
  DNAME                              NEXT     *   ,  O(") CHARACTER
2) LOC                                NEXT     *   ,  O(") CHARACTER
4-6 Oracle8i Utilities



Case 1: Loading Variable-Length Data
Table DEPT:
  7 Rows successfully loaded.
  0 Rows not loaded due to data errors.
  0 Rows not loaded because all WHEN clauses were failed.
  0 Rows not loaded because all fields were null.

Space allocated for bind array:                  65016 bytes(84 rows)
Space allocated for memory besides bind array:        0 bytes

Total logical records skipped:          0
Total logical records read:             7
Total logical records rejected:         0
Total logical records discarded:        0

Run began on Sun Nov 08 11:08:19 1998
Run ended on Sun Nov 08 11:08:20 1998

Elapsed time was:     00:00:01.16
CPU time was:         00:00:00.10

Notes:

1. Position and length for each field are determined for each record, based on

delimiters in the input file.

2.  The notation O(") signifies optional enclosure by quotation marks.
SQL*Loader Case Studies 4-7



Case 2: Loading Fixed-Format Fields
Case 2: Loading Fixed-Format Fields
Case 2 demonstrates:

■ A separate datafile. See INFILE: Specifying Datafiles on page 5-22.

■ Data conversions. See Datatype Conversions on page 5-69.

In this case, the field positions and datatypes are specified explicitly.

Control File
The control file is ULCASE2.CTL.

1) LOAD DATA
2) INFILE ’ulcase2.dat’
3) INTO TABLE emp
4) (empno         POSITION(01:04)   INTEGER EXTERNAL,
   ename          POSITION(06:15)   CHAR,
   job            POSITION(17:25)   CHAR,
   mgr            POSITION(27:30)   INTEGER EXTERNAL,
   sal            POSITION(32:39)   DECIMAL EXTERNAL,
   comm           POSITION(41:48)   DECIMAL EXTERNAL,
5) deptno         POSITION(50:51)   INTEGER EXTERNAL)

Notes:

1. The LOAD DATA statement is required at the beginning of the control file.

2. The name of the file containing data follows the keyword INFILE.

3. The INTO TABLE statement is required to identify the table to be loaded into.

4. Lines 4 and 5 identify a column name and the location of the data in the datafile

to be loaded into that column. EMPNO, ENAME, JOB, and so on are names of

columns in table EMP. The datatypes (INTEGER EXTERNAL, CHAR,

DECIMAL EXTERNAL) identify the datatype of data fields in the file, not of

corresponding columns in the EMP table.

5. Note that the set of column specifications is enclosed in parentheses.
4-8 Oracle8i Utilities



Case 2: Loading Fixed-Format Fields
Datafile
The following are a few sample data lines from the file ULCASE2.DAT. Blank fields

are set to null automatically.

7782 CLARK      MANAGER   7839 2572.50           10
7839 KING       PRESIDENT      5500.00           10
7934 MILLER     CLERK     7782  920.00           10
7566 JONES      MANAGER   7839 3123.75           20
7499 ALLEN      SALESMAN  7698 1600.00   300.00  30
7654 MARTIN     SALESMAN  7698 1312.50  1400.00  30

Invoking SQL*Loader
Before invoking SQL*Loader, make sure you have run the script ULCASE1.SQL as

SCOTT/TIGER. (The ULCASE1.SQL script handles both Case 1 and Case 2.)

Then invoke SQL*Loader at the command line:

sqlldr userid=scott/tiger control=ulcase2.ctl log=ulcase2.log

EMP records loaded in this example contain department numbers. Unless the DEPT

table is loaded first, referential integrity checking rejects these records (if referential

integrity constraints are enabled for the EMP table).

Additional Information: The command sqlldr  is a UNIX-specific invocation. To

invoke SQL*Loader on your operating system, refer to your Oracle operating

system-specific documentation.

Log File
The following shows a portion of the log file:

Control File:   ulcase2.ctl
Data File:      ulcase2.dat
  Bad File:     ulcase2.bad
  Discard File:  none specified

 (Allow all discards)

Number to load: ALL
Number to skip: 0
Errors allowed: 50
Bind array:     64 rows, maximum of 65536 bytes
Continuation:    none specified
Path used:      Conventional
SQL*Loader Case Studies 4-9



Case 2: Loading Fixed-Format Fields
Table EMP, loaded from every logical record.
Insert option in effect for this table: INSERT

   Column Name                  Position   Len  Term Encl Datatype
------------------------------ ---------- ----- ---- ---- ---------------------
EMPNO                                 1:4     4           CHARACTER
ENAME                                6:15    10           CHARACTER
JOB                                 17:25     9           CHARACTER
MGR                                 27:30     4           CHARACTER
SAL                                 32:39     8           CHARACTER
COMM                                41:48     8           CHARACTER
DEPTNO                              50:51     2           CHARACTER

Table EMP:
  7 Rows successfully loaded.
  0 Rows not loaded due to data errors.
  0 Rows not loaded because all WHEN clauses were failed.
  0 Rows not loaded because all fields were null.

Space allocated for bind array:                  65520 bytes(1092 rows)
Space allocated for memory besides bind array:        0 bytes

Total logical records skipped:          0
Total logical records read:             7
Total logical records rejected:         0
Total logical records discarded:        0

Run began on Sun Nov 08 11:09:31 1998
Run ended on Sun Nov 08 11:09:32 1998

Elapsed time was:     00:00:00.63
CPU time was:         00:00:00.16
4-10 Oracle8i Utilities



Case 3: Loading a Delimited, Free-Format File
Case 3: Loading a Delimited, Free-Format File
Case 3 demonstrates:

■ Loading data (enclosed and terminated) in stream format. See Delimited Fields

on page 5-83.

■ Loading dates using the datatype DATE. See DATE on page 5-65.

■ Using SEQUENCE numbers to generate unique keys for loaded data. See

Setting a Column to a Unique Sequence Number on page 5-56.

■ Using APPEND to indicate that the table need not be empty before inserting

new records. See Loading Data into Empty and Nonempty Tables on page 5-32.

■ Using Comments in the control file set off by two hyphens. See Control File

Basics on page 5-17.

Control File
This control file loads the same table as in Case 2, but it loads three additional

columns (HIREDATE, PROJNO, LOADSEQ). The demonstration table EMP does

not have columns PROJNO and LOADSEQ. To test this control file, add these

columns to the EMP table with the command:

ALTER TABLE EMP ADD (PROJNO NUMBER, LOADSEQ NUMBER);

The data is in a different format than in Case 2. Some data is enclosed in quotation

marks, some is set off by commas, and the values for DEPTNO and PROJNO are

separated by a colon.

1)   -- Variable-length, delimited and enclosed data format
   LOAD DATA
2) INFILE *
3) APPEND
   INTO TABLE emp
4) FIELDS TERMINATED BY "," OPTIONALLY ENCLOSED BY ’"’
   (empno, ename, job, mgr,
5) hiredate DATE(20) "DD-Month-YYYY",
   sal, comm, deptno CHAR TERMINATED BY ’:’,
   projno,
6) loadseq  SEQUENCE(MAX,1))
7) BEGINDATA
8) 7782, "Clark", "Manager", 7839, 09-June-1981, 2572.50,,  10:101
   7839, "King", "President", , 17-November-1981,5500.00,,10:102
   7934, "Miller", "Clerk", 7782, 23-January-1982, 920.00,, 10:102
SQL*Loader Case Studies 4-11



Case 3: Loading a Delimited, Free-Format File
   7566, "Jones", "Manager", 7839, 02-April-1981, 3123.75,, 20:101
   7499, "Allen", "Salesman", 7698, 20-February-1981, 1600.00,

(same line continued)                  300.00, 30:103
   7654, "Martin", "Salesman", 7698, 28-September-1981, 1312.50,

(same line continued)                 1400.00, 3:103
   7658, "Chan", "Analyst", 7566, 03-May-1982, 3450,,  20:101

Notes:

1. Comments may appear anywhere in the command lines of the file, but they

should not appear in data. They are preceded with two hyphens that may

appear anywhere on a line.

2. INFILE * specifies that the data is found at the end of the control file.

3. Specifies that the data can be loaded even if the table already contains rows.

That is, the table need not be empty.

4. The default terminator for the data fields is a comma, and some fields may be

enclosed by double quotation marks (").

5. The data to be loaded into column HIREDATE appears in the format

DD-Month-YYYY. The length of the date field is a maximum of 20. If a length is

not specified, the length is a maximum of 20. If a length is not specified, then

the length depends on the length of the date mask.

6. The SEQUENCE function generates a unique value in the column LOADSEQ.

This function finds the current maximum value in column LOADSEQ and adds

the increment (1) to it to obtain the value for LOADSEQ for each row inserted.

7. BEGINDATA specifies the end of the control information and the beginning of

the data.

8. Although each physical record equals one logical record, the fields vary in

length, so that some records are longer than others. Note also that several rows

have null values for COMM.
4-12 Oracle8i Utilities



Case 3: Loading a Delimited, Free-Format File
Invoking SQL*Loader
Before invoking SQL*Loader, run the script ULCASE3.SQL as SCOTT/TIGER.

Then invoke SQL*Loader at the command line:

sqlldr userid=scott/tiger control=ulcase3.ctl log=ulcase3.log

Additional Information: The command sqlldr  is a UNIX-specific invocation. To

invoke SQL*Loader on your operating system, see your Oracle operating

system-specific documentation.

Log File
The following shows a portion of the log file:

Control File:   ulcase3.ctl
Data File:      ulcase3.ctl
  Bad File:     ulcase3.bad
  Discard File:  none specified

 (Allow all discards)

Number to load: ALL
Number to skip: 0
Errors allowed: 50
Bind array:     64 rows, maximum of 65536 bytes
Continuation:    none specified
Path used:      Conventional

Table EMP, loaded from every logical record.
Insert option in effect for this table: APPEND

   Column Name                  Position   Len  Term Encl Datatype
------------------------------ ---------- ----- ---- ---- ---------------------
EMPNO                               FIRST     *   ,  O(") CHARACTER
ENAME                                NEXT     *   ,  O(") CHARACTER
JOB                                  NEXT     *   ,  O(") CHARACTER
MGR                                  NEXT     *   ,  O(") CHARACTER
HIREDATE                             NEXT    20   ,  O(") DATE DD-Month-YYYY
SAL                                  NEXT     *   ,  O(") CHARACTER
COMM                                 NEXT     *   ,  O(") CHARACTER
DEPTNO                               NEXT     *   :  O(") CHARACTER
PROJNO                               NEXT     *   ,  O(") CHARACTER
LOADSEQ                                                   SEQUENCE (MAX, 1)
SQL*Loader Case Studies 4-13



Case 3: Loading a Delimited, Free-Format File
Table EMP:
  7 Rows successfully loaded.
  0 Rows not loaded due to data errors.
  0 Rows not loaded because all WHEN clauses were failed.
  0 Rows not loaded because all fields were null.

Space allocated for bind array:                  65379 bytes(31 rows)
Space allocated for memory besides bind array:        0 bytes

Total logical records skipped:          0
Total logical records read:             7
Total logical records rejected:         0
Total logical records discarded:        0

Run began on Sun Nov 08 11:13:41 1998
Run ended on Sun Nov 08 11:13:46 1998

Elapsed time was:     00:00:04.83
CPU time was:         00:00:00.09
4-14 Oracle8i Utilities



Case 4: Loading Combined Physical Records
Case 4: Loading Combined Physical Records
Case 4 demonstrates:

■ Combining multiple physical records to form one logical record with

CONTINUEIF; see Assembling Logical Records from Physical Records on

page 5-36.

■ Inserting negative numbers.

■ Indicating with REPLACE that the table should be emptied before the new data

is inserted; see Loading Data into Empty and Nonempty Tables on page 5-32.

■ Specifying a discard file in the control file using DISCARDFILE; see Specifying

the Discard File on page 5-27.

■ Specifying a maximum number of discards using DISCARDMAX; see

Specifying the Discard File on page 5-27.

■ Rejecting records due to duplicate values in a unique index or due to invalid

data values; see Rejected Records on page 5-26.

Control File
The control file is ULCASE4.CTL:

   LOAD DATA
   INFILE ’ulcase4.dat’
1) DISCARDFILE ’ulcase4.dsc’
2) DISCARDMAX 999
3) REPLACE
4) CONTINUEIF THIS (1) = ’*’
   INTO TABLE emp
  (empno         POSITION(1:4)         INTEGER EXTERNAL,
   ename         POSITION(6:15)        CHAR,
   job           POSITION(17:25)       CHAR,
   mgr           POSITION(27:30)       INTEGER EXTERNAL,
   sal           POSITION(32:39)       DECIMAL EXTERNAL,
   comm          POSITION(41:48)       DECIMAL EXTERNAL,
   deptno        POSITION(50:51)       INTEGER EXTERNAL,
   hiredate      POSITION(52:60)       INTEGER EXTERNAL)

Notes:

1. DISCARDFILE specifies a discard file named ULCASE4.DSC.
SQL*Loader Case Studies 4-15



Case 4: Loading Combined Physical Records
2. DISCARDMAX specifies a maximum of 999 discards allowed before

terminating the run (for all practical purposes, this allows all discards).

3. REPLACE specifies that if there is data in the table being loaded, then

SQL*Loader should delete that data before loading new data.

4. CONTINUEIF THIS specifies that if an asterisk is found in column 1 of the

current record, then the next physical record after that record should be

appended to it to from the logical record. Note that column 1 in each physical

record should then contain either an asterisk or a nondata value.

Data File
The datafile for this case, ULCASE4.DAT, looks as follows. Note the asterisks in the

first position and, though not visible, a new line indicator is in position 20. Note

that CLARK’s commission is -10, and SQL*Loader loads the value converting it to a

negative number.

*7782 CLARK
MANAGER   7839 2572.50    -10    2512-NOV-85
*7839 KING
PRESIDENT      5500.00           2505-APR-83
*7934 MILLER
CLERK     7782 920.00            2508-MAY-80
*7566 JONES
MANAGER   7839 3123.75           2517-JUL-85
*7499 ALLEN
SALESMAN  7698 1600.00   300.00  25 3-JUN-84
*7654 MARTIN
SALESMAN  7698 1312.50  1400.00  2521-DEC-85
*7658 CHAN
ANALYST   7566 3450.00           2516-FEB-84
*     CHEN
ANALYST   7566 3450.00           2516-FEB-84
*7658 CHIN
ANALYST   7566 3450.00           2516-FEB-84

Rejected Records
The last two records are rejected, given two assumptions. If there is a unique index

created on column EMPNO, then the record for CHIN will be rejected because his

EMPNO is identical to CHAN’s. If EMPNO is defined as NOT NULL, then CHEN’s

record will be rejected because it has no value for EMPNO.
4-16 Oracle8i Utilities



Case 4: Loading Combined Physical Records
Invoking SQL*Loader
Before invoking SQL*Loader, run the script ULCASE4.SQL as SCOTT/TIGER.

Then invoke SQL*Loader at the command line:

sqlldr userid=scott/tiger control=ulcase4.ctl log=ulcase4.log

Additional Information: The command sqlldr  is a UNIX-specific invocation. To

invoke SQL*Loader on your operating system, see your operating Oracle

system-specific documentation.

Log File
The following is a portion of the log file:

Control File:   ulcase4.ctl
Data File:      ulcase4.dat
  Bad File:     ulcase4.bad
  Discard File: ulcase4.dis
 (Allow 999 discards)

Number to load: ALL
Number to skip: 0
Errors allowed: 50
Bind array:     64 rows, maximum of 65536 bytes
Continuation:   1:1 = 0X2a(character ’*’), in current physical record
Path used:      Conventional

Table EMP, loaded from every logical record.
Insert option in effect for this table: REPLACE

   Column Name                  Position   Len  Term Encl Datatype
------------------------------ ---------- ----- ---- ---- ---------------------
EMPNO                                 1:4     4           CHARACTER
ENAME                                6:15    10           CHARACTER
JOB                                 17:25     9           CHARACTER
MGR                                 27:30     4           CHARACTER
SAL                                 32:39     8           CHARACTER
COMM                                41:48     8           CHARACTER
DEPTNO                              50:51     2           CHARACTER
HIREDATE                            52:60     9           CHARACTER

Record 8: Rejected - Error on table EMP.
ORA-01400: cannot insert NULL into ("SCOTT"."EMP"."EMPNO")
SQL*Loader Case Studies 4-17



Case 4: Loading Combined Physical Records
Record 9: Rejected - Error on table EMP.
ORA-00001: unique constraint (SCOTT.EMPIX) violated

Table EMP:
  7 Rows successfully loaded.
  2 Rows not loaded due to data errors.
  0 Rows not loaded because all WHEN clauses were failed.
  0 Rows not loaded because all fields were null.

Space allocated for bind array:                  65520 bytes(910 rows)
Space allocated for memory besides bind array:        0 bytes

Total logical records skipped:          0
Total logical records read:             9
Total logical records rejected:         2
Total logical records discarded:        0

Run began on Sun Nov 08 11:49:42 1998
Run ended on Sun Nov 08 11:49:42 1998

Elapsed time was:     00:00:00.69
CPU time was:         00:00:00.13

Bad File
The bad file, shown in the following display, lists records 8 and 9 for the reasons

stated earlier. (The discard file is not created.)

*     CHEN         ANALYST
      7566         3450.00           2516-FEB-84
*     CHIN         ANALYST
      7566         3450.00           2516-FEB-84
4-18 Oracle8i Utilities



Case 5: Loading Data into Multiple Tables
Case 5: Loading Data into Multiple Tables
Case 5 demonstrates:

■ Loading multiple tables. See Loading Data into Multiple Tables on page 5-53.

■ Using SQL*Loader to break down repeating groups in a flat file and to load the

data into normalized tables. In this way, one file record may generate multiple

database rows.

■ Deriving multiple logical records from each physical record. See Using Multiple

INTO TABLE Statements on page 5-51.

■ Using a WHEN clause. See Choosing Which Records to Load on page 5-41.

■ Loading the same field (EMPNO) into multiple tables.

Control File
The control file is ULCASE5.CTL.

-- Loads EMP records from first 23 characters
   -- Creates and loads PROJ records for each PROJNO listed
   -- for each employee
   LOAD DATA
   INFILE ’ulcase5.dat’
   BADFILE ’ulcase5.bad’
   DISCARDFILE ’ulcase5.dsc’
1) REPLACE
2)  INTO TABLE emp
   (empno   POSITION(1:4)     INTEGER EXTERNAL,
   ename    POSITION(6:15)    CHAR,
   deptno   POSITION(17:18)   CHAR,
   mgr      POSITION(20:23)   INTEGER EXTERNAL)
2) INTO TABLE proj
   -- PROJ has two columns, both not null: EMPNO and PROJNO
3) WHEN projno != ’   ’
   (empno   POSITION(1:4)     INTEGER EXTERNAL,
3) projno   POSITION(25:27)   INTEGER EXTERNAL)   -- 1st proj
2) INTO TABLE proj
4) WHEN projno != ’   ’
   (empno   POSITION(1:4)     INTEGER EXTERNAL,
4) projno   POSITION(29:31    INTEGER EXTERNAL)   -- 2nd proj

2) INTO TABLE proj
5) WHEN projno != ’   ’
SQL*Loader Case Studies 4-19



Case 5: Loading Data into Multiple Tables
   (empno   POSITION(1:4)    INTEGER EXTERNAL,
5)  projno  POSITION(33:35)  INTEGER EXTERNAL)   -- 3rd proj

Notes:

1. REPLACE specifies that if there is data in the tables to be loaded (EMP and

PROJ), SQL*loader should delete the data before loading new rows.

2. Multiple INTO clauses load two tables, EMP and PROJ. The same set of records

is processed three times, using different combinations of columns each time to

load table PROJ.

3. WHEN loads only rows with nonblank project numbers. When PROJNO is

defined as columns 25...27, rows are inserted into PROJ only if there is a value

in those columns.

4. When PROJNO is defined as columns 29...31, rows are inserted into PROJ only

if there is a value in those columns.

5. When PROJNO is defined as columns 33...35, rows are inserted into PROJ only

if there is a value in those columns.

Data File
1234 BAKER      10 9999 101 102 103
1234 JOKER      10 9999 777 888 999
2664 YOUNG      20 2893 425 abc 102
5321 OTOOLE     10 9999 321  55  40
2134 FARMER     20 4555 236 456
2414 LITTLE     20 5634 236 456  40
6542 LEE        10 4532 102 321  14
2849 EDDS       xx 4555     294  40
4532 PERKINS    10 9999  40
1244 HUNT       11 3452 665 133 456
123  DOOLITTLE  12 9940         132
1453 MACDONALD  25 5532     200

Invoking SQL*Loader
Before invoking SQL*Loader, run the script ULCASE5.SQL as SCOTT/TIGER.

Then invoke SQL*Loader at the command line:

sqlldr userid=scott/tiger control=ulcase5.ctl log=ulcase5.log
4-20 Oracle8i Utilities



Case 5: Loading Data into Multiple Tables
Additional Information: The command sqlldr is a UNIX-specific invocation. To

invoke SQL*Loader on your operating system, see your Oracle operating

system-specific documentation.

Log File
The following is a portion of the log file:

Control File:   ulcase5.ctl
Data File:      ulcase5.dat
  Bad File:     ulcase5.bad
  Discard File: ulcase5.dis
 (Allow all discards)

Number to load: ALL
Number to skip: 0
Errors allowed: 50
Bind array:     64 rows, maximum of 65536 bytes
Continuation:    none specified
Path used:      Conventional

Table EMP, loaded from every logical record.
Insert option in effect for this table: REPLACE

   Column Name                  Position   Len  Term Encl Datatype
------------------------------ ---------- ----- ---- ---- ---------------------
EMPNO                                 1:4     4           CHARACTER
ENAME                                6:15    10           CHARACTER
DEPTNO                              17:18     2           CHARACTER
MGR                                 20:23     4           CHARACTER

Table PROJ, loaded when PROJNO != 0X202020(character ’   ’)
Insert option in effect for this table: REPLACE

   Column Name                  Position   Len  Term Encl Datatype
------------------------------ ---------- ----- ---- ---- ---------------------
EMPNO                                 1:4     4           CHARACTER
PROJNO                              25:27     3           CHARACTER

Table PROJ, loaded when PROJNO != 0X202020(character ’   ’)
Insert option in effect for this table: REPLACE

   Column Name                  Position   Len  Term Encl Datatype
------------------------------ ---------- ----- ---- ---- ---------------------
EMPNO                                 1:4     4           CHARACTER
SQL*Loader Case Studies 4-21



Case 5: Loading Data into Multiple Tables
PROJNO                              29:31     3           CHARACTER

Table PROJ, loaded when PROJNO != 0X202020(character ’   ’)
Insert option in effect for this table: REPLACE

   Column Name                  Position   Len  Term Encl Datatype
------------------------------ ---------- ----- ---- ---- ---------------------
EMPNO                                 1:4     4           CHARACTER
PROJNO                              33:35     3           CHARACTER

1) Record 2: Rejected - Error on table EMP, column DEPTNO.
1) ORA-00001: unique constraint (SCOTT.EMPIX) violated

1) Record 8: Rejected - Error on table EMP, column DEPTNO.
1) ORA-01722: invalid number

1) Record 3: Rejected - Error on table PROJ, column PROJNO.
1) ORA-01722: invalid number

Table EMP:
2)  9 Rows successfully loaded.
2)  3 Rows not loaded due to data errors.
2)  0 Rows not loaded because all WHEN clauses were failed.
2)  0 Rows not loaded because all fields were null.

Table PROJ:
3)  7 Rows successfully loaded.
3)  2 Rows not loaded due to data errors.
3)  3 Rows not loaded because all WHEN clauses were failed.
3)  0 Rows not loaded because all fields were null.

Table PROJ:
4)  7 Rows successfully loaded.
4)  3 Rows not loaded due to data errors.
4)  2 Rows not loaded because all WHEN clauses were failed.
4)  0 Rows not loaded because all fields were null.

Table PROJ:
5)  6 Rows successfully loaded.
5)  3 Rows not loaded due to data errors.
5)  3 Rows not loaded because all WHEN clauses were failed.
4-22 Oracle8i Utilities



Case 5: Loading Data into Multiple Tables
5)  0 Rows not loaded because all fields were null.

Space allocated for bind array:                  65536 bytes(1024 rows)
Space allocated for memory besides bind array:        0 bytes

Total logical records skipped:          0
Total logical records read:            12
Total logical records rejected:         3
Total logical records discarded:        0

Run began on Sun Nov 08 11:54:39 1998
Run ended on Sun Nov 08 11:54:40 1998

Elapsed time was:     00:00:00.67
CPU time was:         00:00:00.16

Notes:

1. Errors are not encountered in the same order as the physical records due to

buffering (array batch). The bad file and discard file contain records in the same

order as they appear in the log file.

2. Of the 12 logical records for input, three rows were rejected (rows for JOKER,

YOUNG, and EDDS). No data was loaded for any of the rejected records.

3. Nine records met the WHEN clause criteria, and two (JOKER and YOUNG)

were rejected due to data errors.

4. Ten records met the WHEN clause criteria, and three (JOKER, YOUNG, and

EDDS) were rejected due to data errors.

5. Nine records met the WHEN clause criteria, and three (JOKER, YOUNG, and

EDDS) were rejected due to data errors.

Loaded Tables
These are results of this execution of SQL*Loader:

SQL> SELECT empno, ename, mgr, deptno FROM emp;
EMPNO      ENAME           MGR           DEPTNO
------     ------          ------        ------
1234       BAKER           9999          10
5321       OTOOLE          9999          10
2134       FARMER          4555          20
2414       LITTLE          5634          20
SQL*Loader Case Studies 4-23



Case 5: Loading Data into Multiple Tables
6542       LEE             4532          10
4532       PERKINS         9999          10
1244       HUNT            3452          11
123        DOOLITTLE       9940          12
1453       MACDONALD       5532          25

SQL> SELECT * from PROJ order by EMPNO;

EMPNO              PROJNO
------             ------
123                132
1234               101
1234               103
1234               102
1244               665
1244               456
1244               133
1453               200
2134               236
2134               456
2414               236
2414               456
2414               40
4532               40
5321               321
5321               40
5321               55
6542               102
6542               14
6542               321
4-24 Oracle8i Utilities



Case 6: Loading Using the Direct Path Load Method
Case 6: Loading Using the Direct Path Load Method
This case study loads the EMP table using the direct path load method and

concurrently builds all indexes. It illustrates the following functions:

■ Use of the direct path load method to load and index data. See Chapter 8.

■ How to specify the indexes for which the data is presorted. See Presorting Data

for Faster Indexing on page 8-16.

■ Loading all-blank numeric fields as null. See Loading All-Blank Fields on

page 5-82.

■ The NULLIF clause. See NULLIF Clause on page 5-81.

In this example, field positions and datatypes are specified explicitly.

Control File
The control file is ULCASE6.CTL.

   LOAD DATA
   INFILE ’ulcase6.dat’
   INSERT
   INTO TABLE emp
1)   SORTED INDEXES (empix)
2)  (empno POSITION(01:04) INTEGER EXTERNAL NULLIF empno=BLANKS,
   ename  POSITION(06:15) CHAR,
   job    POSITION(17:25) CHAR,
   mgr    POSITION(27:30) INTEGER EXTERNAL NULLIF mgr=BLANKS,
   sal    POSITION(32:39) DECIMAL EXTERNAL NULLIF sal=BLANKS,
   comm   POSITION(41:48) DECIMAL EXTERNAL NULLIF comm=BLANKS,
   deptno POSITION(50:51) INTEGER EXTERNAL NULLIF deptno=BLANKS)

Notes:

1. The SORTED INDEXES statement identifies indexes:presorting data:case study

the indexes on which the data is sorted. This statement indicates that the

datafile is sorted on the columns in the EMPIX index. It allows SQL*Loader to

optimize index creation by eliminating the sort phase for this data when using

the direct path load method.

2. The NULLIF...BLANKS clause specifies that the column should be loaded as

NULL if the field in the datafile consists of all blanks. For more information,

refer to Loading All-Blank Fields on page 5-82.
SQL*Loader Case Studies 4-25



Case 6: Loading Using the Direct Path Load Method
Invoking SQL*Loader
Before invoking SQL*Loader, run the script ULCASE6.SQL as SCOTT/TIGER.

Then invoke SQL*Loader at the command line:

sqlldr scott/tiger ulcase6.ctl direct=true log=ulcase6.log

Additional Information: The command sqlldr  is a UNIX-specific invocation. To

invoke SQL*Loader on your operating system, see your Oracle operating

system-specific documentation.

Log File
The following is a portion of the log file:

Control File:   ulcase6.ctl
Data File:      ulcase6.dat
  Bad File:     ulcase6.bad
  Discard File:  none specified

 (Allow all discards)

Number to load: ALL
Number to skip: 0
Errors allowed: 50
Continuation:    none specified
Path used:      Direct

Table EMP, loaded from every logical record.
Insert option in effect for this table: REPLACE

   Column Name                  Position   Len  Term Encl Datatype
------------------------------ ---------- ----- ---- ---- ---------------------
EMPNO                                 1:4     4           CHARACTER
ENAME                                6:15    10           CHARACTER
JOB                                 17:25     9           CHARACTER
MGR                                 27:30     4           CHARACTER
    NULL if MGR = BLANKS
SAL                                 32:39     8           CHARACTER
    NULL if SAL = BLANKS
4-26 Oracle8i Utilities



Case 6: Loading Using the Direct Path Load Method
COMM                                41:48     8           CHARACTER
    NULL if COMM = BLANKS
DEPTNO                              50:51     2           CHARACTER
    NULL if EMPNO = BLANKS

The following index(es) on table EMP were processed:
index SCOTT.EMPIX loaded successfully with 7 keys

Table EMP:
  7 Rows successfully loaded.
  0 Rows not loaded due to data errors.
  0 Rows not loaded because all WHEN clauses were failed.
  0 Rows not loaded because all fields were null.

Bind array size not used in direct path.
Space allocated for memory besides bind array:        0 bytes

Total logical records skipped:          0
Total logical records read:             7
Total logical records rejected:         0
Total logical records discarded:        0

Run began on Sun Nov 08 11:15:28 1998
Run ended on Sun Nov 08 11:15:31 1998

Elapsed time was:     00:00:03.22
CPU time was:         00:00:00.10
SQL*Loader Case Studies 4-27



Case 7: Extracting Data from a Formatted Report
Case 7: Extracting Data from a Formatted Report
In this case study, SQL*Loader string processing functions extract data from a

formatted report. This case illustrates the following:

■ Using SQL*Loader with an INSERT trigger (see the chapter on database triggers

in Oracle8i Application Developer’s Guide - Fundamentals).

■ Use of the SQL string to manipulate data; see Applying SQL Operators to Fields

on page 5-88.

■ Different initial and trailing delimiters; see Specifying Delimiters on page 5-70.

■ Use of SYSDATE; see Setting a Column to the Current Date on page 5-55.

■ Use of the TRAILING NULLCOLS clause; see TRAILING NULLCOLS on

page 5-43.

■ Ambiguous field length warnings; see Conflicting Native Datatype Field

Lengths on page 5-68 and Conflicting Character Datatype Field Lengths on

page 5-73.

Note: This example creates a trigger that uses the last value of unspecified fields.

Data File
The following listing of the report shows the data to be loaded:

         Today’s Newly Hired Employees
Dept  Job       Manager   MgrNo  Emp Name  EmpNo  Salary    (Comm)
----  --------  --------  -----  --------  -----  --------- ------
20    Salesman  Blake     7698  Shepard    8061   $1,600.00   (3%)
                                Falstaff   8066   $1,250.00   (5%)
                                Major      8064   $1,250.00  (14%)
30    Clerk     Scott     7788  Conrad     8062   $1,100.00
                                Ford       7369
                                DeSilva    8063     $800.00
      Manager   King      7839  Provo      8065   $2,975.00

Insert Trigger
In this case, a BEFORE INSERT trigger is required to fill in department number, job

name, and manager’s number when these fields are not present on a data line.

When values are present, they should be saved in a global variable. When values

are not present, the global variables are used.
4-28 Oracle8i Utilities



Case 7: Extracting Data from a Formatted Report
The INSERT trigger and the package defining the global variables is:

CREATE OR REPLACE PACKAGE uldemo7 AS   -- Global Package Variables
    last_deptno   NUMBER(2);
    last_job      VARCHAR2(9);
    last_mgr      NUMBER(4);
    END uldemo7;
/
CREATE OR REPLACE TRIGGER uldemo7_emp_insert
  BEFORE INSERT ON emp
  FOR EACH ROW
BEGIN
  IF :new.deptno IS NOT NULL THEN
     uldemo7.last_deptno := :new.deptno;  -- save value for later
  ELSE
     :new.deptno := uldemo7.last_deptno;  -- use last valid value
  END IF;
  IF :new.job IS NOT NULL THEN
     uldemo7.last_job := :new.job;
  ELSE
     :new.job := uldemo7.last_job;
  END IF;
  IF :new.mgr IS NOT NULL THEN
     uldemo7.last_mgr := :new.mgr;
  ELSE
     :new.mgr := uldemo7.last_mgr;
  END IF;
END;
/
Note: The phrase FOR EACH ROW is important. If it was not specified, the INSERT

trigger would only fire once for each array of inserts because SQL*Loader uses the

array interface.

Control File
The control file is ULCASE7.CTL.

   LOAD DATA
   INFILE ’ULCASE7.DAT’
   APPEND
   INTO TABLE emp
1)     WHEN (57) = ’.’
2)   TRAILING NULLCOLS
3)   (hiredate SYSDATE,
4)      deptno POSITION(1:2)  INTEGER EXTERNAL(3)
SQL*Loader Case Studies 4-29



Case 7: Extracting Data from a Formatted Report
5)             NULLIF deptno=BLANKS,
      job    POSITION(7:14)  CHAR  TERMINATED BY WHITESPACE
6)             NULLIF job=BLANKS  "UPPER(:job)",
7)    mgr    POSITION(28:31) INTEGER EXTERNAL
             TERMINATED BY WHITESPACE, NULLIF mgr=BLANKS,
      ename  POSITION(34:41) CHAR
             TERMINATED BY WHITESPACE  "UPPER(:ename)",
      empno  POSITION(45) INTEGER EXTERNAL
             TERMINATED BY WHITESPACE,
      sal    POSITION(51) CHAR  TERMINATED BY WHITESPACE
8)             "TO_NUMBER(:sal,’$99,999.99’)",
9)    comm   INTEGER EXTERNAL  ENCLOSED BY ’(’ AND ’%’
             ":comm * 100"
   )

Notes:

1. The decimal point in column 57 (the salary field) identifies a line with data on

it. All other lines in the report are discarded.

2. The TRAILING NULLCOLS clause causes SQL*Loader to treat any fields that

are missing at the end of a record as null. Because the commission field is not

present for every record, this clause says to load a null commission instead of

rejecting the record when only six fields are found instead of the expected

seven.

3. Employee’s hire date is filled in using the current system date.

4. This specification generates a warning message because the specified length

does not agree with the length determined by the field’s position. The specified

length (3) is used.

5. Because the report only shows department number, job, and manager when the

value changes, these fields may be blank. This control file causes them to be

loaded as null, and an RDBMS insert trigger fills in the last valid value.

6. The SQL string changes the job name to uppercase letters.

7. It is necessary to specify starting position here. If the job field and the manager

field were both blank, then the job field’s TERMINATED BY WHITESPACE

clause would cause SQL*Loader to scan forward to the employee name field.

Without the POSITION clause, the employee name field would be mistakenly

interpreted as the manager field.
4-30 Oracle8i Utilities



Case 7: Extracting Data from a Formatted Report
8. Here, the SQL string translates the field from a formatted character string into a

number. The numeric value takes less space and can be printed with a variety of

formatting options.

9. In this case, different initial and trailing delimiters pick the numeric value out of

a formatted field. The SQL string then converts the value to its stored form.

Invoking SQL*Loader
Before invoking SQL*Loader, run the script ULCASE7.SQL as SCOTT/TIGER.

Then invoke SQL*Loader at the command line:

sqlldr scott/tiger ulcase7.ctl ulcase7.log

Additional Information: The command sqlldr  is a UNIX-specific invocation. To

invoke SQL*Loader on your operating system, refer to your Oracle operating

system-specific documentation.

Log File
The following is a portion of the log file:

1)  SQL*Loader-307: Warning: conflicting lengths 2 and 3 specified for column
DEPTNO table EMP
Control File:   ulcase7.ctl
Data File:      ulcase7.dat
  Bad File:     ulcase7.bad
  Discard File:  none specified

 (Allow all discards)

Number to load: ALL
Number to skip: 0
Errors allowed: 50
Bind array:     64 rows, maximum of 65536 bytes
Continuation:    none specified
Path used:      Conventional

Table EMP, loaded when 57:57 = 0X2e(character ’.’)
Insert option in effect for this table: APPEND
TRAILING NULLCOLS option in effect

   Column Name                  Position   Len  Term Encl Datatype
------------------------------ ---------- ----- ---- ---- ---------------------
SQL*Loader Case Studies 4-31



Case 7: Extracting Data from a Formatted Report
HIREDATE                                                  SYSDATE
DEPTNO                                1:2     3           CHARACTER
    NULL if DEPTNO = BLANKS
JOB                                  7:14     8  WHT      CHARACTER
    NULL if JOB = BLANKS
    SQL string for column : "UPPER(:job)"
MGR                                 28:31     4  WHT      CHARACTER
    NULL if MGR = BLANKS
ENAME                               34:41     8  WHT      CHARACTER
    SQL string for column : "UPPER(:ename)"
EMPNO                                NEXT     *  WHT      CHARACTER
SAL                                    51     *  WHT      CHARACTER
    SQL string for column : "TO_NUMBER(:sal,’$99,999.99’)"
COMM                                 NEXT     *        (  CHARACTER
                                                        %
    SQL string for column : ":comm * 100"

2) Record 1: Discarded - failed all WHEN clauses.
  Record 2: Discarded - failed all WHEN clauses.
  Record 3: Discarded - failed all WHEN clauses.
  Record 4: Discarded - failed all WHEN clauses.
  Record 5: Discarded - failed all WHEN clauses.
  Record 6: Discarded - failed all WHEN clauses.
  Record 10: Discarded - failed all WHEN clauses.

Table EMP:
    6 Rows successfully loaded.
    0 Rows not loaded due to data errors.
2)   7 Rows not loaded because all WHEN clauses were failed.
    0 Rows not loaded because all fields were null.

Space allocated for bind array:                  65286 bytes(81 rows)
Space allocated for memory besides bind array:        0 bytes

   Total logical records skipped:          0
   Total logical records read:            13
   Total logical records rejected:         0
2)  Total logical records discarded:        7

Run began on Sun Nov 08 11:16:30 1998
Run ended on Sun Nov 08 11:16:31 1998

Elapsed time was:     00:00:00.75
CPU time was:         00:00:00.09
4-32 Oracle8i Utilities



Case 7: Extracting Data from a Formatted Report
Notes:

1. A warning is generated by the difference between the specified length and the

length derived from the position specification.

2. The six header lines at the top of the report are rejected, as is the blank separator

line in the middle.

Dropping the Insert Trigger and the Global-Variable Package
After running the example, run the script ULCASE7E.SQL to drop the insert trigger

and global-variable package.
SQL*Loader Case Studies 4-33



Case 8: Loading Partitioned Tables
Case 8: Loading Partitioned Tables
Case 8 demonstrates:

■ Partitioning of data. See Oracle8i Concepts for more information on partitioned

data concepts.

■ Explicitly defined field positions and datatypes.

■ Loading using the fixed record length option. See Input Data and Datafiles on

page 3-4.

Control File
The control file is ULCASE8.CTL. It loads the LINEITEM table with fixed length

records, partitioning the data according to shipment date.

LOAD DATA
1)  INFILE ’ulcase8.dat’ "fix 129"
BADFILE ’ulcase8.bad’
TRUNCATE
INTO TABLE lineitem
PARTITION (ship_q1)
2)  (l_orderkey      position   (1:6) char,
    l_partkey       position   (7:11) char,
    l_suppkey       position  (12:15) char,
    l_linenumber    position  (16:16) char,
    l_quantity      position  (17:18) char,
    l_extendedprice position  (19:26) char,
    l_discount      position  (27:29) char,
    l_tax           position  (30:32) char,
    l_returnflag    position  (33:33) char,
    l_linestatus    position  (34:34) char,
    l_shipdate      position  (35:43) char,
    l_commitdate    position  (44:52) char,
    l_receiptdate   position  (53:61) char,
    l_shipinstruct  position  (62:78) char,
    l_shipmode      position  (79:85) char,
    l_comment       position (86:128) char)

Notes:

1. Specifies that each record in the datafile is of fixed length (129 characters in this

example).
4-34 Oracle8i Utilities



Case 8: Loading Partitioned Tables
2. Identifies the column name and location of the data in the datafile to be loaded

into each column.

Table Creation
In order to partition the data, the LINEITEM table is created using four partitions

according to the shipment date:

create table lineitem
(l_orderkey     number,
l_partkey       number,
l_suppkey       number,
l_linenumber    number,
l_quantity      number,
l_extendedprice number,
l_discount      number,
l_tax           number,
l_returnflag    char,
l_linestatus    char,
l_shipdate      date,
l_commitdate    date,
l_receiptdate   date,
l_shipinstruct  char(17),
l_shipmode      char(7),
l_comment       char(43))
partition by range (l_shipdate)
(
partition ship_q1 values less than (TO_DATE(’01-APR-1996’, ’DD-MON-YYYY’))
tablespace p01,
partition ship_q2 values less than (TO_DATE(’01-JUL-1996’, ’DD-MON-YYYY’))
tablespace p02,
partition ship_q3 values less than (TO_DATE(’01-OCT-1996’, ’DD-MON-YYYY’))
tablespace p03,
partition ship_q4 values less than (TO_DATE(’01-JAN-1997’, ’DD-MON-YYYY’))
tablespace p04
)

SQL*Loader Case Studies 4-35



Case 8: Loading Partitioned Tables
Input Data File
The datafile for this case, ULCASE8.DAT, looks as follows. Each record is 129

characters in length. Five blanks precede each record in the file.

     1 151978511724386.60 7.04.0NO09-SEP-6412-FEB-9622-MAR-96DELIVER IN
PERSONTRUCK  iPBw4mMm7w7kQ zNPL i261OPP
     1 2731 73223658958.28.09.06NO12-FEB-9628-FEB-9620-APR-96TAKE BACK RETURN
MAIL   5wM04SNyl0AnghCP2nx lAi
     1 3370 3713 810210.96 .1.02NO29-MAR-9605-MAR-9631-JAN-96TAKE BACK RETURN
REG AIRSQC2C 5PNCy4mM
     1 5214 46542831197.88.09.06NO21-APR-9630-MAR-9616-MAY-96NONE
AIR    Om0L65CSAwSj5k6k
     1 6564  6763246897.92.07.02NO30-MAY-9607-FEB-9603-FEB-96DELIVER IN
PERSONMAIL   CB0SnyOL PQ32B70wB75k 6Aw10m0wh
     1 7403 160524 31329.6 .1.04NO30-JUN-9614-MAR-9601 APR-96NONE
FOB    C2gOQj OB6RLk1BS15 igN
     2 8819 82012441659.44  0.08NO05-AUG-9609-FEB-9711-MAR-97COLLECT COD
AIR    O52M70MRgRNnmm476mNm
     3 9451 721230 41113.5.05.01AF05-SEP-9629-DEC-9318-FEB-94TAKE BACK RETURN
FOB    6wQnO0Llg6y
     3 9717  1834440788.44.07.03RF09-NOV-9623-DEC-9315-FEB-94TAKE BACK RETURN
SHIP   LhiA7wygz0k4g4zRhMLBAM
     3 9844 1955 6 8066.64.04.01RF28-DEC-9615-DEC-9314-FEB-94TAKE BACK RETURN
REG AIR6nmBmjQkgiCyzCQBkxPPOx5j4hB 0lRywgniP1297

Invoking SQL*Loader
Before invoking SQL*Loader, run the script ULCASE8.SQL as SCOTT/TIGER.

Then invoke SQL*Loader at the command line:

sqlldr scott/tiger control=ulcase8.ctl data=ulcase8.dat

Additional Information: The command sqlldr  is a UNIX-specific invocation. To

invoke SQL*Loader on your operating system, refer to your Oracle operating

system-specific documentation.

Log File
The following shows a portion of the log file:

Control File:   ulcase8.ctl
Data File:      ulcase8.dat
  File processing option string: "fix 129"
  Bad File:     ulcase8.bad
4-36 Oracle8i Utilities



Case 8: Loading Partitioned Tables
  Discard File:  none specified

 (Allow all discards)

Number to load: ALL
Number to skip: 0
Errors allowed: 50
Bind array:     64 rows, maximum of 65536 bytes
Continuation:    none specified
Path used:      Conventional

Table LINEITEM, partition SHIP_Q1, loaded from every logical record.
Insert option in effect for this partition: TRUNCATE

   Column Name                  Position   Len  Term Encl Datatype
------------------------------ ---------- ----- ---- ---- ---------------------
L_ORDERKEY                            1:6     6           CHARACTER
L_PARTKEY                            7:11     5           CHARACTER
L_SUPPKEY                           12:15     4           CHARACTER
L_LINENUMBER                        16:16     1           CHARACTER
L_QUANTITY                          17:18     2           CHARACTER
L_EXTENDEDPRICE                     19:26     8           CHARACTER
L_DISCOUNT                          27:29     3           CHARACTER
L_TAX                               30:32     3           CHARACTER
L_RETURNFLAG                        33:33     1           CHARACTER
L_LINESTATUS                        34:34     1           CHARACTER
L_SHIPDATE                          35:43     9           CHARACTER
L_COMMITDATE                        44:52     9           CHARACTER
L_RECEIPTDATE                       53:61     9           CHARACTER
L_SHIPINSTRUCT                      62:78    17           CHARACTER
L_SHIPMODE                          79:85     7           CHARACTER
L_COMMENT                          86:128    43           CHARACTER

Record 4: Rejected - Error on table LINEITEM, partition SHIP_Q1.
ORA-14401: inserted partition key is outside specified partition

Record 5: Rejected - Error on table LINEITEM, partition SHIP_Q1.
ORA-14401: inserted partition key is outside specified partition

Record 6: Rejected - Error on table LINEITEM, partition SHIP_Q1.
ORA-14401: inserted partition key is outside specified partition

Record 7: Rejected - Error on table LINEITEM, partition SHIP_Q1.
ORA-14401: inserted partition key is outside specified partition
SQL*Loader Case Studies 4-37



Case 8: Loading Partitioned Tables
Record 8: Rejected - Error on table LINEITEM, partition SHIP_Q1.
ORA-14401: inserted partition key is outside specified partition

Record 9: Rejected - Error on table LINEITEM, partition SHIP_Q1.
ORA-14401: inserted partition key is outside specified partition

Record 10: Rejected - Error on table LINEITEM, partition SHIP_Q1.
ORA-14401: inserted partition key is outside specified partition

Table LINEITEM, partition SHIP_Q1:
  3 Rows successfully loaded.
  7 Rows not loaded due to data errors.
  0 Rows not loaded because all WHEN clauses were failed.
  0 Rows not loaded because all fields were null.

Space allocated for bind array:                  65532 bytes(381 rows)
Space allocated for memory besides bind array:        0 bytes

Total logical records skipped:          0
Total logical records read:            10
Total logical records rejected:         7
Total logical records discarded:        0

Run began on Sun Nov 08 11:30:49 1998
Run ended on Sun Nov 08 11:30:50 1998

Elapsed time was:     00:00:01.11
CPU time was:         00:00:00.14
4-38 Oracle8i Utilities



Case 9: Loading LOBFILEs (CLOBs)
Case 9: Loading LOBFILEs (CLOBs)
Case 9 demonstrates:

■ Adding a CLOB column called RESUME to the table EMP

■ Using a FILLER field (RES_FILE)

■ Loading multiple LOBFILEs into the EMP table

Control File
The control file is ULCASE9.CTL. It loads new records into EMP, including a

resume for each employee. Each resume is contained in a separate file.

LOAD DATA
INFILE *
INTO TABLE EMP
REPLACE
FIELDS TERMINATED BY ’,’
( EMPNO    INTEGER EXTERNAL,
  ENAME    CHAR,
  JOB      CHAR,
  MGR      INTEGER EXTERNAL,
  SAL      DECIMAL EXTERNAL,
  COMM     DECIMAL EXTERNAL,
  DEPTNO   INTEGER EXTERNAL,
1)   RES_FILE FILLER CHAR,
2)   "RESUME" LOBFILE (RES_FILE) TERMINATED BY EOF NULLIF RES_FILE = ’NONE’
)
BEGINDATA
7782,CLARK,MANAGER,7839,2572.50,,10,ulcase91.dat
7839,KING,PRESIDENT,,5500.00,,10,ulcase92.dat
7934,MILLER,CLERK,7782,920.00,,10,ulcase93.dat
7566,JONES,MANAGER,7839,3123.75,,20,ulcase94.dat
7499,ALLEN,SALESMAN,7698,1600.00,300.00,30,ulcase95.dat
7654,MARTIN,SALESMAN,7698,1312.50,1400.00,30,ulcase96.dat
7658,CHAN,ANALYST,7566,3450.00,,20,NONE

Notes:

1. This is a filler field. The filler field is assigned values from the datafield to

which it is mapped. See SQL*Loader DDL Support for LOBFILES and

Secondary Data Files (SDFs) on page 3-19 for more information.
SQL*Loader Case Studies 4-39



Case 9: Loading LOBFILEs (CLOBs)
2. RESUME is loaded as a CLOB. The LOBFILE function specifies the field name

in which the name of the file that contains data for the LOB field is provided.

See Loading LOB Data Using LOBFILEs on page 5-101 for more information.

Input Data Files
>>ulcase91.dat<<
                          Resume for Mary Clark

Career Objective: Manage a sales team with consistent record breaking
                  performance.
Education:        BA Business University of Iowa 1992
Experience:       1992-1994 - Sales Support at MicroSales Inc.
                  Won "Best Sales Support" award in 1993 and 1994
                  1994-Present - Sales Manager at MicroSales Inc.
                  Most sales in mid-South division for 2 years

>>ulcase92.dat<<

                       Resume for Monica King
Career Objective: President of large computer services company
Education:        BA English Literature Bennington, 1985
Experience:       1985-1986 - Mailroom at New World Services
                  1986-1987 - Secretary for sales management at
                              New World Services
                  1988-1989 - Sales support at New World Services
                  1990-1992 - Salesman at New World Services
                  1993-1994 - Sales Manager at New World Services
                  1995      - Vice President of Sales and Marketing at
                              New World Services
                  1996-Present - President of New World Services

>>ulcase93.dat<<

                         Resume for Dan Miller

Career Objective: Work as a sales support specialist for a services
                  company
Education:        Plainview High School, 1996
Experience:       1996 - Present: Mail room clerk at New World Services

>>ulcase94.dat<<

                      Resume for Alyson Jones
4-40 Oracle8i Utilities



Case 9: Loading LOBFILEs (CLOBs)
Career Objective: Work in senior sales management for a vibrant and
                  growing company
Education:        BA Philosophy Howard Univerity 1993
Experience:       1993 - Sales Support for New World Services
                  1994-1995 - Salesman for New World Services.  Led in
                  US sales in both 1994 and 1995.
                  1996 - present - Sales Manager New World Services.  My
                  sales team has beat its quota by at least 15% each
                  year.

>>ulcase95.dat<<

                          Resume for David Allen

Career Objective: Senior Sales man for agressive Services company
Education:        BS Business Administration, Weber State 1994
Experience:       1993-1994 - Sales Support New World Services
                  1994-present - Salesman at New World Service.  Won sales
                  award for exceeding sales quota by over 20%
                  in 1995, 1996.

>>ulcase96.dat<<

                         Resume for Tom Martin

Career Objective: Salesman for a computing service company
Education:        1988 - BA Mathematics, University of the North
Experience:       1988-1992 Sales Support, New World Services
                  1993-present Salesman New World Services

Invoking SQL*Loader
Before invoking SQL*Loader, run the script ULCASE9.SQL as SCOTT/TIGER.

Then invoke SQL*Loader at the command line:

sqlldr sqlldr/test control=ulcase9.ctl data=ulcase9.dat

Additional Information: The command sqlldr  is a UNIX-specific invocation. To

invoke SQL*Loader on your operating system, refer to your Oracle operating

system-specific documentation.
SQL*Loader Case Studies 4-41



Case 9: Loading LOBFILEs (CLOBs)
Log File
The following shows a portion of the log file:

Control File:   ulcase9.ctl
Data File:      ulcase9.ctl
  Bad File:     ulcase9.bad
  Discard File:  none specified

 (Allow all discards)

Number to load: ALL
Number to skip: 0
Errors allowed: 50
Bind array:     64 rows, maximum of 65536 bytes
Continuation:    none specified
Path used:      Conventional

Table EMP, loaded from every logical record.
Insert option in effect for this table: REPLACE

   Column Name                  Position   Len  Term Encl Datatype
------------------------------ ---------- ----- ---- ---- ---------------------
EMPNO                               FIRST     *   ,       CHARACTER
ENAME                                NEXT     *   ,       CHARACTER
JOB                                  NEXT     *   ,       CHARACTER
MGR                                  NEXT     *   ,       CHARACTER
SAL                                  NEXT     *   ,       CHARACTER
COMM                                 NEXT     *   ,       CHARACTER
DEPTNO                               NEXT     *   ,       CHARACTER
RES_FILE                             NEXT     *   ,       CHARACTER
  (FILLER FIELD)
"RESUME"                          DERIVED     *  WHT      CHARACTER
    Dynamic LOBFILE.  Filename in field RES_FILE
    NULL if RES_FILE = 0X4e4f4e45(character ’NONE’)

Table EMP:
  7 Rows successfully loaded.
  0 Rows not loaded due to data errors.
  0 Rows not loaded because all WHEN clauses were failed.
  0 Rows not loaded because all fields were null.

Space allocated for bind array:                  63984 bytes(31 rows)
Space allocated for memory besides bind array:        0 bytes
4-42 Oracle8i Utilities



Case 9: Loading LOBFILEs (CLOBs)
Total logical records skipped:          0
Total logical records read:             7
Total logical records rejected:         0
Total logical records discarded:        0

Run began on Sun Nov 08 11:31:11 1998
Run ended on Sun Nov 08 11:31:19 1998

Elapsed time was:     00:00:08.14
CPU time was:         00:00:00.09
SQL*Loader Case Studies 4-43



Case 10: Loading REF Fields and VARRAYs
Case 10: Loading REF Fields and VARRAYs
Case 10 demonstrates:

■ Loading a customer table that has a primary key as its OID and stores order

items in a VARRAY.

■ Loading an order table that has a REF to the customer table and the order times

in a VARRAY.

Control File
LOAD DATA
INFILE *
CONTINUEIF THIS (1) = ’*’
INTO TABLE CUSTOMERS
REPLACE
FIELDS TERMINATED BY ","
(
  CUST_NO                       CHAR,
  NAME                          CHAR,
  ADDR                          CHAR
)
INTO TABLE ORDERS
REPLACE
FIELDS TERMINATED BY ","
(
  order_no                      char,
1)   cust_no             FILLER    char,
2)   cust                          REF (CONSTANT ’CUSTOMERS’, cust_no),
1)   item_list_count     FILLER    char,
3)  item_list                     varray count (item_list_count)
  (
4)   item_list                   column object
    (
5)     item                      char,
      cnt                       char,
      price                     char
    )
  )
)
6)  BEGINDATA
*00001,Spacely Sprockets,15 Space Way,
*00101,00001,2,
*Sprocket clips, 10000, .01,
4-44 Oracle8i Utilities



Case 10: Loading REF Fields and VARRAYs
*Sprocket cleaner, 10, 14.00
*00002,Cogswell Cogs,12 Cogswell Lane,
*00100,00002,4,
*one quarter inch cogs,1000,.02,
*one half inch cog, 150, .04,
*one inch cog, 75, .10,
*Custom coffee mugs, 10, 2.50

Notes:

1. This is a filler field. The filler field is assigned values from the datafield to

which it is mapped. See SQL*Loader DDL Support for LOBFILES and

Secondary Data Files (SDFs) on page 3-19 for more information.

2. This field is created as a REF field. See Loading REF Columns on page 5-97 for

more information.

3. item_list is stored in a VARRAY.

4. The second occurrence of item_list identifies the datatype of each element of the

VARRAY. Here, the datatype is a column object.

5. This list shows all attributes of the column object that are loaded for the

VARRAY. The list is enclosed in parentheses. See Loading Column Objects on

page 5-90 for more information.

6. The data is contained in the control file and is preceded by the keyword

BEGINDATA.

Invoking SQL*Loader
Before invoking SQL*Loader, run the script ULCASE10.SQL as SCOTT/TIGER.

Then invoke SQL*Loader at the command line:

sqlldr sqlldr/test control=ulcase10.ctl

Additional Information: The command sqlldr  is a UNIX-specific invocation. To

invoke SQL*Loader on your operating system, refer to your Oracle operating

system-specific documentation.

Log File
The following shows a portion of the log file:

Control File:   ulcase10.ctl
Data File:      ulcase10.ctl
SQL*Loader Case Studies 4-45



Case 10: Loading REF Fields and VARRAYs
  Bad File:     ulcase10.bad
  Discard File:  none specified

 (Allow all discards)

Number to load: ALL
Number to skip: 0
Errors allowed: 50
Bind array:     64 rows, maximum of 65536 bytes
Continuation:   1:1 = 0X2a(character ’*’), in current physical record
Path used:      Conventional

Table CUSTOMERS, loaded from every logical record.
Insert option in effect for this table: REPLACE

   Column Name                  Position   Len  Term Encl Datatype
------------------------------ ---------- ----- ---- ---- ---------------------
CUST_NO                             FIRST     *   ,       CHARACTER
NAME                                 NEXT     *   ,       CHARACTER
ADDR                                 NEXT     *   ,       CHARACTER

Table ORDERS, loaded from every logical record.
Insert option in effect for this table: REPLACE

   Column Name                  Position   Len  Term Encl Datatype
------------------------------ ---------- ----- ---- ---- ---------------------
ORDER_NO                             NEXT     *   ,       CHARACTER
CUST_NO                              NEXT     *   ,       CHARACTER
  (FILLER FIELD)
CUST                              DERIVED                 REF
    Arguments are:
        CONSTANT ’CUSTOMERS’
        CUST_NO
ITEM_LIST_COUNT                      NEXT     *   ,       CHARACTER
  (FILLER FIELD)
ITEM_LIST                         DERIVED     *           VARRAY
    Count for VARRAY
        ITEM_LIST_COUNT

*** Fields in ITEM_LIST
ITEM_LIST                         DERIVED     *           COLUMN OBJECT

*** Fields in ITEM_LIST.ITEM_LIST
ITEM                                FIRST     *   ,       CHARACTER
CNT                                  NEXT     *   ,       CHARACTER
4-46 Oracle8i Utilities



Case 10: Loading REF Fields and VARRAYs
PRICE                                NEXT     *   ,       CHARACTER
*** End of fields in ITEM_LIST.ITEM_LIST

*** End of fields in ITEM_LIST

Table CUSTOMERS:
  2 Rows successfully loaded.
  0 Rows not loaded due to data errors.
  0 Rows not loaded because all WHEN clauses were failed.
  0 Rows not loaded because all fields were null.

Table ORDERS:
  2 Rows successfully loaded.
  0 Rows not loaded due to data errors.
  0 Rows not loaded because all WHEN clauses were failed.
  0 Rows not loaded because all fields were null.

Space allocated for bind array:                  65240 bytes(28 rows)
Space allocated for memory besides bind array:        0 bytes

Total logical records skipped:          0
Total logical records read:             2
Total logical records rejected:         0
Total logical records discarded:        0

Run began on Sun Nov 08 11:46:13 1998
Run ended on Sun Nov 08 11:46:14 1998

Elapsed time was:     00:00:00.65
CPU time was:         00:00:00.16
SQL*Loader Case Studies 4-47



Case 10: Loading REF Fields and VARRAYs
4-48 Oracle8i Utilities



SQL*Loader Control File Refe
5

SQL*Loader Control File Reference

This chapter describes the SQL*Loader control file syntax. The following topics are

included:

SQL*Loader’s Data Definition Language (DDL)
■ SQL*Loader’s Data Definition Language (DDL) Syntax Diagrams

■ Expanded DDL Syntax

SQL*Loader’s Control File: Load Configuration
■ Control File Basics

■ Comments in the Control File

■ Specifying Command-Line Parameters in the Control File

■ Specifying Filenames and Objects Names

■ Identifying Data in the Control File with BEGINDATA

■ INFILE: Specifying Datafiles

■ Specifying READBUFFERS

■ Specifying Datafile Format and Buffering

■ BADFILE: Specifying the Bad File

■ Rejected Records

■ Specifying the Discard File

■ Handling Different Character Encoding Schemes

■ Loading Data into Empty and Nonempty Tables
rence 5-1



■ Continuing an Interrupted Load

■ Assembling Logical Records from Physical Records

SQL*Loader’s Control File: Loading Data
■ Loading Logical Records into Tables

■ Index Options

■ Specifying Field Conditions

■ Specifying Columns and Fields

■ Specifying the Position of a Data Field

■ Using Multiple INTO TABLE Statements

■ Generating Data

■ SQL*Loader Datatypes

■ Loading Data Across Different Platforms

■ Determining the Size of the Bind Array

■ Setting a Column to Null or Zero

■ Loading All-Blank Fields

■ Trimming Blanks and Tabs

■ Preserving Whitespace

■ Applying SQL Operators to Fields

SQL*Loader’s Control File: Loading Objects, LOBs, and Collections
■ Loading Column Objects

■ Loading Object Tables

■ Loading REF Columns

■ Loading LOBs

■ Loading Collections (Nested Tables and VARRAYs)
5-2 Oracle8i Utilities



SQL*Loader’s Data Definition Language (DDL) Syntax Diagrams
SQL*Loader’s Data Definition Language (DDL) Syntax Diagrams
You use SQL*Loader’s data definition language (DDL) to control how SQL*Loader

performs a data load into your database. You can also use DDL to manipulate the

data you are loading.

The SQL*Loader Control File
The SQL*Loader control file is a repository that contains the DDL instructions that

you have created to control where SQL*Loader will find the data to load, how

SQL*Loader expects that data to be formatted, how SQL*Loader will be configured

(memory management, rejecting records, interrupted load handling, and so on) as it

loads the data, and how it will manipulate the data being loaded. You create the

SQL*Loader control file and its contents using a simple text editor such as vi or

xemacs.

For more information about the SQL*Loader control file, see Control File Basics on

page 5-17.

The rest of this chapter explains how to use DDL to achieve your required data

load.

SQL*Loader DDL Syntax Diagram Notation
The SQL*Loader DDL diagrams (sometimes called railroad diagrams) in this

chapter use standard SQL syntax notation. For more information about the syntax

notation used in this chapter, see the PL/SQL User’s Guide and Reference the Oracle8i
SQL Reference.
SQL*Loader Control File Reference 5-3



SQL*Loader’s Data Definition Language (DDL) Syntax Diagrams
High-Level Syntax Diagrams
The following diagrams of DDL syntax are shown with certain clauses collapsed

(such as pos_spec). These diagrams are expanded and explained in more detail in

Expanded DDL Syntax on page 5-15.

Options Clause

Load Statement

Note: The character set specified does not apply to data in the control file.

infile_clause

OPTIONS ( options )

UNRECOVERABLE

RECOVERABLE LOAD

CONTINUE_LOAD

DATA CHARACTERSET char_set_name

infile_clause MAXRECORDSIZE size READBUFFERS integer

INSERT

APPEND

REPLACE

TRUNCATE

concatenate_clause PRESERVE BLANKS
into_table_clause

BEGINDATA

INFILE

INDDN

*

input_filename

os_file_proc_clause

BADFILE filename

BADDN
5-4 Oracle8i Utilities



SQL*Loader’s Data Definition Language (DDL) Syntax Diagrams
os_file_proc_clause

Important: The preceding syntax is specific to the UNIX platform. Please see your

Oracle operating system-specific documentation for the syntax required by your

platform.

concatenate_clause

DISCARDFILE filename

DISCARDDN

DISCARDS

DISCARDMAX
integer

"

var

fix

str

’string’

X’hex_string

integer

"

CONCATENATE
integer

( integer )

CONTINUEIF

THIS

NEXT (
pos_spec

LAST
( operator

str

X’hex_str’

)

SQL*Loader Control File Reference 5-5



SQL*Loader’s Data Definition Language (DDL) Syntax Diagrams
into_table_clause

INTO TABLE name

(
PARTITION name

SUBPARTITION name
)

INSERT

REPLACE

TRUNCATE

APPEND

SORTED
INDEXES

( name ) SINGLEROW

INSERT

REPLACE

TRUNCATE

APPEND

OPTIONS ( FILE=database_filename )

REENABLE DISABLED_CONSTRAINTS EXCEPTIONS table WHEN field_condition

OID_spec

SID_spec FIELDS
delim_spec

TRAILING
NULLCOLS

SKIP n
field_list
5-6 Oracle8i Utilities



SQL*Loader’s Data Definition Language (DDL) Syntax Diagrams
field_condition

delim_spec

full_fieldname

Note: full_fieldname  is the full name of a field specified using dot notation. If

the field col2  is an attribute of a column object col1 , when referring to col2  in

one of the directives, you must use the notation col1.col2 . The column_name
and the full_fieldname  referencing or naming the same entity can be different

because column_name  never includes the full name of the entity (no dot notation).

termination_spec

Note: Only fields that are loaded from a LOBFILE can be terminated by EOF.

( full_fieldname

pos_spec
operator

’char_string’

X’hex_string’

BLANKS

)

AND

enclosure_spec

termination_spec

OPTIONALLY
enclosure_spec

full_fieldname

TERMINATED
BY

WHITESPACE

X’hexstr’

’string’

EOF
SQL*Loader Control File Reference 5-7



SQL*Loader’s Data Definition Language (DDL) Syntax Diagrams
enclosure_spec

Note: Fields terminated by EOF cannot be enclosed.

OID_spec

Note: If the table uses primary key OIDs instead of system-generated OIDs, do not

specify an OID clause.

SID_spec

field_list

Note: The column_name  and the fieldname  referencing or naming the same

entity can be different because column_name  never includes the full name of the

entity (no dot notation).

ENCLOSED
BY

’string’

X’hexstr’
AND

’string’

X’hexstr’

OID ( fieldname )

SID (
fieldname

CONSTANT SID_val
)

( column_name

d_gen_fld_spec

scalar_fld_spec

col_obj_fld_spec

collection_fld_spec

filler_fld_spec

,

)

5-8 Oracle8i Utilities



SQL*Loader’s Data Definition Language (DDL) Syntax Diagrams
d_gen_fld_spec

 REF_spec

Notes:

■ The first argument to the REF directive is assumed to be the table name.

■ If the REF column is a primary key REF, then the relative ordering of the

arguments to the REF directive must match the relative ordering of the

columns making up the primary key REF (that is, the relative ordering of

the columns making up the primary key OID in the object table).

init_spec

(

RECNUM

SYSDATE

CONSTANT val

SEQUENCE

(

COUNT

MAX

integer

, incr

REF_spec

SID_spec

BFILE_spec

init_spec

REF (
fieldname

CONSTANT val

,

)

NULLIF

DEFAULTIF
field_condition

AND
SQL*Loader Control File Reference 5-9



SQL*Loader’s Data Definition Language (DDL) Syntax Diagrams
Note: No field_condition  can be based on fields in a secondary data file (SDF).

BFILE_spec

Note: The first argument to the BFILE directive contains the DIRECTORY OBJECT

(the server_directory alias). The second argument contains the filename.

filler_fld_spec

Note: Conventional path loading does piecing when necessary. During direct path

loads, piecing is done automatically; therefore, it is unnecessary to specify the

PIECED keyword.

scalar_fld_spec

Note: Conventional path loading does piecing when necessary. During direct path

loads, piecing is done automatically; therefore, it is unnecessary to specify the

PIECED keyword. Note also that you cannot specify sql_string  for LOB fields

(regardless of whether LOBFILE_spec is specified).

BFILE (
fieldname

CONSTANT val
,

fieldname

CONSTANT val
)

column_name
FILLER

BOUNDFILLER

pos_spec datatype_spec PIECED

LOBFILE_spec

POSITION pos_spec
datatype_spec PIECED

init_spec " sql_string "
5-10 Oracle8i Utilities



SQL*Loader’s Data Definition Language (DDL) Syntax Diagrams
LOBFILE_spec

Notes:

■ You cannot use pos_spec  if the data is loaded from a LOBFILE.

■ Only LOBs can be loaded from LOBFILES.

pos_spec

LOBFILE (
fieldname

CONSTANT filename

CHARACTERSET name
)

(

start

*
+integer

:

–
end

)

SQL*Loader Control File Reference 5-11



SQL*Loader’s Data Definition Language (DDL) Syntax Diagrams
datatype_spec

delim_spec

INTEGER

FLOAT

EXTERNAL
( length ) delim_spec

DECIMAL

ZONED

EXTERNAL
( length ) delim_spec

( precision
, scale

)

DOUBLE

SMALLINT

BYTEINT

RAW
( length )

GRAPHIC
EXTERNAL ( graphic_char_length )

VARGRAPHIC

VARCHAR

( max_length )

CHAR
( length ) delim_spec

VARCHARC ( length_of_length
, max_size_bytes

)

VARRAWC ( length_of_length
, max_size_bytes

)

LONG
VARRAW (

max_bytes
)

DATE
EXTERNAL ( length  )  "mask" delim_spec
5-12 Oracle8i Utilities



SQL*Loader’s Data Definition Language (DDL) Syntax Diagrams
col_obj_fld_spec

collection_fld_spec

nested_table_spec

Note: field_list  cannot contain a collection_fld_spec

VARRAY_spec

Notes: A col_obj_spec  nested within a VARRAY cannot contain a collection_
fld_spec .

The column_name  specified as part of the field_list  must be the same as the

column_name  preceding the keyword VARRAY.

COLUMN OBJECT
init_spec

field_list

nested_table_spec

varray_spec

NESTED TABLE
SDF_spec count_spec

delim_spec

init_spec
field_list

VARRAY
SDF_spec count_spec

delim_spec

init_spec
field_list
SQL*Loader Control File Reference 5-13



SQL*Loader’s Data Definition Language (DDL) Syntax Diagrams
SDF_spec

Notes:

■ Only a collection_fld_spec  can name a SDF as its data source.

■ The delim_spec is used as the default delimiter for all fields described as

part of the field_list  of a collection_fld_spec.

count_spec

Note: If a field is specified as the argument to the COUNT clause, that field must be

either a number or a character string containing a number.

SDF (

field_name

CONSTANT filename os_file_proc_clause MAXRECORDSIZE size

CHARACTERSET name delim_spec
)

COUNT (
fieldname

CONSTANT positive_integer
)

5-14 Oracle8i Utilities



Expanded DDL Syntax
Expanded DDL Syntax

Position Specification
A position specification (pos_spec ) provides the starting location for a field and,

optionally, the ending location. The syntax for pos_spec syntax is:

The position must be surrounded by parentheses. The starting location can be

specified as a column number, as * (next column), or *+n (next column plus an

offset). The start and end locations can be separated with a colon (:) or a dash (-).

Field Condition
A field condition (field_condition ) compares a named field or an area of the

record to a specified value. When the condition evaluates to true, the specified

function is performed. For example, a true condition might cause the NULLIF

function to insert a NULL data value, or cause DEFAULTIF to insert a default value.

The syntax for field_condition is:

char_string and hex_string can be enclosed in either single quotation marks or

double quotation marks. hex_string is a string of hexadecimal digits, where each

pair of digits corresponds to one byte in the field. The BLANKS keyword allows

you to test a field to see if it consists entirely of blanks. BLANKS is required when

you are loading delimited data and you cannot predict the length of the field, or

when you use a multibyte character set that has multiple blanks.

There must not be any spaces between the operator and the operands. For example:

(

start

*
+integer

:

–
end

)

( full_fieldname

pos_spec
operator

’char_string’

X’hex_string’

BLANKS

)

AND
SQL*Loader Control File Reference 5-15



Expanded DDL Syntax
(1)=’x’

is legal, while

(1) = ’x’

generates an error.

Column Name
The column_name  you specify in a field condition must be one of the columns

defined for the input record. It must be specified with double quotation marks if its

name is a reserved word. See Specifying Filenames and Objects Names on page 5-18

for more details.

Precision Versus Length
The precision of a numeric field is the number of digits it contains. The length of a

numeric field is the number of byte positions on the record. The byte length of a

ZONED decimal field is the same as its precision. However, the byte length of a

(packed) DECIMAL field is (p+1)/2, rounded up, where p is the number’s precision,

because packed numbers contain two digits (or digit and sign) per byte.

Date Mask
The date mask specifies the format of the date value. For more information, see the

DATE datatype on page 5-65.

Delimiter Specification
The delimiter specification (delim_spec ) can specify a termination delimiter,

enclosure delimiters, or a combination of the two, as shown in the following figure:

enclosure_spec

termination_spec

OPTIONALLY
enclosure_spec
5-16 Oracle8i Utilities



Comments in the Control File
Note: Only fields that are loaded from a LOB file can be TERMINATED BY EOF.

Note: Fields TERMINATED BY EOF cannot also be enclosed.

For more information, see Specifying Delimiters on page 5-70.

Control File Basics
The following sections describe the various DDL entries in the SQL*Loader control

file and their function. All statements use the data definition language syntax

described in the previous sections. The control file statements are presented in the

approximate order in which they would appear in the control file.

Comments in the Control File
Comments can appear anywhere in the command section of the file, but they

should not appear within the data. Precede any comment with two hyphens. For

example,

--This is a Comment

All text to the right of the double hyphen is ignored, until the end of the line. An

example of comments in a control file is shown in Case 3: Loading a Delimited,

Free-Format File on page 4-11.

TERMINATED
BY

WHITESPACE

X’hexstr’

’string’

EOF

ENCLOSED
BY

’string’

X’hexstr’
AND

’string’

X’hexstr’
SQL*Loader Control File Reference 5-17



Specifying Command-Line Parameters in the Control File
Specifying Command-Line Parameters in the Control File
The OPTIONS statement is useful when you typically invoke a control file with the

same set of options. The OPTIONS statement precedes the LOAD DATA statement.

OPTIONS
The OPTIONS parameter allows you to specify runtime arguments in the control

file, rather than on the command line. The following arguments can be specified

using the OPTIONS parameter. These arguments are described in greater detail in

Chapter 6.

SKIP = n
LOAD = n
ERRORS =n
ROWS = n
BINDSIZE = n
SILENT = {FEEDBACK | ERRORS | DISCARDS | ALL}
DIRECT = {TRUE | FALSE}
PARALLEL = {TRUE | FALSE}
READSIZE = n

For example:

OPTIONS (BINDSIZE=100000, SILENT=(ERRORS, FEEDBACK) )

Note: Values specified on the command line override values specified in the

OPTIONS statement in the control file.

Specifying Filenames and Objects Names
SQL*Loader follows the SQL standard for specifying object names (for example,

table and column names). This section explains certain exceptions to that standard

and how to specify database objects and filenames in the SQL*Loader control file

that require special treatment. It also shows how the escape character is used in

quoted strings.

Filenames That Conflict with SQL and SQL*Loader Reserved Words
SQL and SQL*Loader reserved words must be specified within double quotation

marks. The reserved words most likely to be column names are:

COUNT     DATA     DATE     FORMAT
OPTIONS   PART     POSITION
5-18 Oracle8i Utilities



Specifying Filenames and Objects Names
So, if you had an inventory system with columns named PART, COUNT, and

DATA, you would specify these column names within double quotation marks in

your SQL*Loader control file. For example:

INTO TABLE inventory
(partnum   INTEGER,
"PART"     CHAR(15),
"COUNT"    INTEGER,
"DATA"     VARCHAR2(30))

See Appendix A for a complete list of SQL*Loader reserved words.

You must use double quotation marks if the object name contains special characters

other than those recognized by SQL ($, #, _), or if the name is case sensitive.

Specifying SQL Strings
You must specify SQL strings within double quotation marks. The SQL string

applies SQL operators to data fields. See Applying SQL Operators to Fields on

page 5-88 for more information.

Restrictions: A control file entry cannot specify a SQL string for any field in the

control file that uses a BFILE, SID, OID, or REF directive.

SQL strings cannot be used with column objects or collections, or attributes of

column objects or collections.

Operating System Considerations
The following sections discuss situations in which your course of action may

depend on the operating system you are using.

Specifying a Complete Path
If you encounter problems when trying to specify a complete pathname, it may be

due to an operating system-specific incompatibility caused by special characters in

the specification. In many cases, specifying the pathname within single quotation

marks prevents errors.

If not, please see your operating system-specific documentation for possible

solutions.
SQL*Loader Control File Reference 5-19



Specifying Filenames and Objects Names
The Backslash Escape Character
In DDL syntax, you can place a double quotation mark inside a string delimited by

double quotation marks by preceding it with the escape character, "\" (if the escape

is allowed on your operating system). The same rule applies when single quotation

marks are required in a string delimited by single quotation marks.

For example, homedir\data"norm\mydata  contains a double quotation mark.

Preceding the double quotation mark with a backslash indicates that the double

quotation mark is to be taken literally:

INFILE ’homedir\data\"norm\mydata’

You can also put the escape character itself into a string by entering it twice:

For example:

"so’\"far"     or  ’so\’"far’     is parsed as   so’"far
"’so\\far’"    or  ’\’so\\far\’’  is parsed as  ’so\far’
"so\\\\far"    or  ’so\\\\far’ is parsed as   so\\far

Note: A double quotation mark in the initial position cannot be preceded by an

escape character. Therefore, you should avoid creating strings with an initial

quotation mark.

Nonportable Strings
There are two kinds of character strings in a SQL*Loader control file that are not

portable between operating systems: filename and file processing option strings. When

converting to a different operating system, these strings will likely need to be

modified. All other strings in a SQL*Loader control file should be portable between

operating systems.

Escaping the Backslash
If your operating system uses the backslash character to separate directories in a

pathname and if the version of Oracle running on your operating system

implements the backslash escape character for filenames and other nonportable

strings, then you must specify double backslashes in your pathnames and use single

quotation marks.

Additional Information: Please see your Oracle operating system-specific

documentation for information about which escape characters are required or

allowed.
5-20 Oracle8i Utilities



Identifying Data in the Control File with BEGINDATA
Escape Character Sometimes Disallowed
The version of Oracle running on your operating system may not implement the

escape character for nonportable strings. When the escape character is disallowed, a

backslash is treated as a normal character, rather than as an escape character

(although it is still usable in all other strings). Then pathnames such as the

following cannot be specified normally:

INFILE ’topdir\mydir\myfile’

Double backslashes are not needed.

Because the backslash is not recognized as an escape character, strings within single

quotation marks cannot be embedded inside another string delimited by single

quotation marks. This rule also holds for double quotation marks. A string within

double quotation marks cannot be embedded inside another string delimited by

double quotation marks.

Identifying Data in the Control File with BEGINDATA
If your data is contained in the control file itself and not in a separate datafile, you

must include it following the load configuration specifications.

Specify the BEGINDATA keyword before the first data record. The syntax is:

BEGINDATA
data

BEGINDATA is used in conjunction with the INFILE keyword by specifying

INFILE*. See INFILE: Specifying Datafiles on page 5-22 for an explanation. Case 1:

Loading Variable-Length Data on page 4-5 provides an example.

Notes:

■ If you omit the BEGINDATA keyword but include data in the control file,

SQL*Loader tries to interpret your data as control information and issues an

error message. If your data is in a separate file, do not use the BEGINDATA

keyword.

■ Do not use spaces or other characters on the same line as the BEGINDATA

parameter, because the line containing BEGINDATA will be interpreted as the

first line of data.

■ Do not put Comments after BEGINDATA, as they will also be interpreted as

data.
SQL*Loader Control File Reference 5-21



INFILE: Specifying Datafiles
INFILE: Specifying Datafiles
You use the INFILE keyword to specify a datafile or datafiles fully followed by a

file-processing options string. You can specify multiple files by using multiple

INFILE keywords. You can also specify the datafile from the command line, using

the DATA parameter described in Command-Line Keywords on page 6-3.

Note: The command-line parameter DATA overrides the INFILE keyword

contained in the control file.

Naming the File
To specify a file that contains the data to be loaded, use the INFILE keyword,

followed by the filename and optional processing options string. Remember that a
filename specified on the command line overrides the first INFILE keyword in the control
file. If no filename is specified, the filename defaults to the control filename with an

extension or file type of DAT.

If the control file itself contains the data to be loaded, specify an asterisk (*). This

specification is described in Identifying Data in the Control File with BEGINDATA

on page 5-21.

where:

INFILE or INDDN This keyword specifies that a datafile specification follows.

Note that INDDN has been retained for situations in which
compatibility with DB2 is required.

input_filename Name of the file containing the data.

Any spaces or punctuation marks in the filename must be enclosed
in single quotation marks. See Specifying Filenames and Objects
Names on page 5-18.

INFILE

INDDN

*

input_filename

os_file_proc_clause

BADFILE filename

BADDN

DISCARDFILE filename

DISCARDDN

DISCARDS

DISCARDMAX
integer
5-22 Oracle8i Utilities



INFILE: Specifying Datafiles
Specifying Multiple Datafiles
To load data from multiple datafiles in one SQL*Loader run, use an INFILE

statement for each datafile. Datafiles need not have the same file processing options,

although the layout of the records must be identical. For example, two files could be

specified with completely different file processing options strings, and a third could

consist of data in the control file.

You can also specify a separate discard file and bad file for each datafile. However,

the separate bad files and discard files must be declared after each datafile name.

For example, the following excerpt from a control file specifies four datafiles with

separate bad and discard files:

INFILE  mydat1.dat  BADFILE  mydat1.bad  DISCARDFILE mydat1.dis
INFILE  mydat2.dat
INFILE  mydat3.dat  DISCARDFILE  mydat3.dis
INFILE  mydat4.dat  DISCARDMAX  10 0

■ For MYDAT1.DAT, both a bad file and discard file are explicitly specified.

Therefore both files are created, as needed.

■ For MYDAT2.DAT, neither a bad file nor a discard file is specified. Therefore,

only the bad file is created, as needed. If created, the bad file has a default

filename and extension. The discard file is not created, even if rows are

discarded.

■ For MYDAT3.DAT, the default bad file is created, if needed. A discard file with

the specified name (mydat3.dis ) is created, as needed.

■ For MYDAT4.DAT, the default bad file is created, if needed. Because the

DISCARDMAX option is used, SQL*Loader assumes that a discard file is

required and creates it with the default name mydat4.dsc .

* If your data is in the control file itself, use an asterisk instead of the
filename. If you have data in the control file as well as datafiles, you
must specify the asterisk first in order for the data to be read.

os_file_proc_clause This is the file-processing options string. It specifies the datafile
format. It also optimizes datafile reads. See Specifying Datafile
Format and Buffering on page 5-24.
SQL*Loader Control File Reference 5-23



Specifying READBUFFERS
Examples

Data Contained in the Control File Itself

INFILE  *

Data Contained in File WHIRL with Default Extension .dat

INFILE  WHIRL

Data in File datafile.dat: Full Path Specified

INFILE ’c:/topdir/subdir/datafile.dat’

Note: Filenames that include spaces or punctuation marks must be enclosed in

single quotation marks. For more details on filename specification, see Specifying

Filenames and Objects Names on page 5-18.

Specifying READBUFFERS
The READBUFFERS keyword controls memory usage by SQL*Loader. This keyword
is used for direct path loads only. For more information, see Using the READBUFFERS

Keyword on page 8-15.

Specifying Datafile Format and Buffering
When configuring SQL*Loader, you can specify an operating system-dependent file
processing options string in the control file to control file processing. You use this

string to specify file format and buffering.

Additional Information: For details on the syntax of the file processing options

string, see your Oracle operating system-specific documentation.

File Processing Example
For example, suppose that your operating system has the following option-string

syntax:

RECSIZE integer BUFFERS integer
5-24 Oracle8i Utilities



BADFILE: Specifying the Bad File
where RECSIZE is the size of a fixed-length record, and BUFFERS is the number of

buffers to use for asynchronous I/O.

To declare a file named MYDATA.DAT as a file that contains 80-byte records and

instruct SQL*Loader to use 8 I/O buffers, you would use the following control file

entry:

INFILE ’mydata.dat’ "RECSIZE 80 BUFFERS 8"

Note: This example uses the recommended convention of single quotation

marks for filenames and double quotation marks for everything else.

BADFILE: Specifying the Bad File
When SQL*Loader executes, it can create a file called a bad file or reject file in which

it places records that were rejected because of formatting errors or because they

caused Oracle errors. If you have specified that a bad file is to be created, the

following applies:

■ If one or more records are rejected, the bad file is logged.

■ If no records are rejected, then the bad file is not created. When this occurs, you

must reinitialize the bad file for the next run.

■ If the bad file is created, it overwrites any existing file with the same name;

ensure that you do not overwrite a file you wish to retain.

Additional Information: On some systems, a new version of the file is created if a

file with the same name already exists. See your Oracle operating system-specific

documentation to find out if this is the case on your system.

To specify the name of this file, use the BADFILE keyword (or BADDN for DB2

compatibility), followed by the bad file filename. If you do not specify a name for

the bad file, the name defaults to the name of the datafile with an extension or file

type of BAD. You can also specify the bad file from the command line with the BAD

parameter described in Command-Line Keywords on page 6-3.

A filename specified on the command line is associated with the first INFILE or

INDDN clause in the control file, overriding any bad file that may have been

specified as part of that clause.

The bad file is created in the same record and file format as the datafile so that the

data can be reloaded after corrections. The syntax is:
SQL*Loader Control File Reference 5-25



Rejected Records
where:

Examples
A bad file with filename UGH and default file extension or file type of .bad:

BADFILE UGH

A bad file with filename BAD0001 and file extension or file type of .rej:

BADFILE BAD0001.REJ
BADFILE ’/REJECT_DIR/BAD0001.REJ’

Rejected Records
A record is rejected if it meets either of the following conditions:

■ Upon insertion the record causes an Oracle error (such as invalid data for a

given datatype).

■ SQL*Loader cannot determine if the data is acceptable. That is, it cannot

determine if the record meets WHEN-clause criteria, as in the case of a field that

is missing its final delimiter.

If the data can be evaluated according to the WHEN-clause criteria (even with

unbalanced delimiters), then it is either inserted or rejected.

If a record is rejected on insert, then no part of that record is inserted into any table.

For example, if data in a record is to be inserted into multiple tables, and most of the

inserts succeed, but one insert fails, then all inserts from that record are rolled back.

The record is then written to the bad file, where it can be corrected and reloaded.

Previous inserts from records without errors are not affected.

BADFILE or
BADDN

(Use BADDN when DB2 compatibility is required.) This
keyword specifies that a filename for the badfile follows.

bad_filename Any valid filename specification for your platform.

Any spaces or punctuation marks in the filename must be
enclosed in single quotation marks. See Specifying Filenames
and Objects Names on page 5-18.

BADFILE

BADDN
bad_filename
5-26 Oracle8i Utilities



Specifying the Discard File
The log file indicates the Oracle error for each rejected record. Case 4: Loading

Combined Physical Records on page 4-15 demonstrates rejected records.

Note: During a multitable load, SQL*Loader ensures that, if a row is rejected from

one table, it is also rejected from all other tables. This is to ensure that the row can

be repaired in the bad file and reloaded to all tables consistently. Also, if a row is

loaded into one table, it should be loaded into all other tables that do not filter it

out. Otherwise, reloading a fixed version of the row from the bad file could cause

the data to be loaded into some tables twice.

Therefore, when SQL*Loader encounters the maximum number of errors allowed

for a multitable load, it continues loading rows to ensure that valid rows loaded

into previous tables are either loaded into all tables or filtered out of all tables.

LOB Files and Secondary Data Files Data from LOB files or secondary data files are not

written to a bad file when there are rejected rows. If there is an error loading a LOB,

the row is not rejected. Rather, the LOB field is left empty (not NULL with a length

of zero (0) bytes).

Specifying the Discard File
During SQL*Loader execution, it can create a discard file for records that do not meet

any of the loading criteria. The records contained in this file are called discarded
records. Discarded records do not satisfy any of the WHEN clauses specified in the

control file. These records differ from rejected records. Discarded records do not
necessarily have any bad data. No insert is attempted on a discarded record.

A discard file is created according to the following rules:

■ You have specified a discard filename and one or more records fail to satisfy all

of the WHEN clauses specified in the control file. (If the discard file is created, it

overwrites any existing file with the same name, so ensure that you do not

overwrite any files you wish to retain.)

■ If no records are discarded, then a discard file is not created.
SQL*Loader Control File Reference 5-27



Specifying the Discard File
To create a discard file, use any of the following syntax:

You can specify the discard file directly with a parameter specifying its name, or

indirectly by specifying the maximum number of discards.

Specifying the Discard File in the Control File
To specify the name of the file, use the DISCARDFILE or DISCARDDN (for

DB2-compatibility) keyword, followed by the filename.

where:

The default filename is the name of the datafile, and the default file extension or file

type is DSC. A discard filename specified on the command line overrides one

specified in the control file. If a discard file with that name already exists, it is either

overwritten or a new version is created, depending on your operating system.

The discard file is created with the same record and file format as the datafile.

Therefore, it can easily be used for subsequent loads with the existing control file,

after you change the WHEN clauses or edit the data.

In a Control File On the Command Line

DISCARDFILE filename DISCARD

DISCARDDN filename
(DB2)

DISCARDMAX

DISCARDS

DISCARDMAX

DISCARDFILE or
DISCARDDN

(Use DISCARDDN when DB2 compatibility is required.) This
keyword specifies that a discard filename follows.

discard_filename Any valid filename specification for your platform.

Any spaces or punctuation marks in the filename must be
enclosed in single quotation marks. See Specifying Filenames
and Objects Names on page 5-18.

DISCARDFILE

DISCARDDN
discard_filename

DISCARDS

DISCARDMAX
integer
5-28 Oracle8i Utilities



Specifying the Discard File
Examples
A discard file with filename CIRCULAR and default file extension or file type of

.dsc :

DISCARDFILE  CIRCULAR

A discard file named notappl  with the file extension or file type of .may :

DISCARDFILE NOTAPPL.MAY

A full path to the discard file forget.me :

DISCARDFILE  ’/DISCARD_DIR/FORGET.ME’

Discarded Records
If there is no INTO TABLE keyword specified for a record, the record is discarded.

This situation occurs when every INTO TABLE keyword in the SQL*Loader control

file has a WHEN clause; and either the record fails to match any of them, or all

fields are null.

No records are discarded if an INTO TABLE keyword is specified without a WHEN

clause. An attempt is made to insert every record into such a table. Therefore,

records may be rejected, but none are discarded.

Case 4: Loading Combined Physical Records on page 4-15 provides an example of

using a discard file.

LOB Files and Secondary Data Files Data from LOB files or secondary data files is not

written to a discard file when there are discarded rows.

Limiting the Number of Discards
You can limit the number of records to be discarded for each datafile by specifying

an integer:

When the discard limit (specified with integer ) is reached, processing of the

datafile terminates and continues with the next datafile, if one exists.

DISCARDS

DISCARDMAX
integer
SQL*Loader Control File Reference 5-29



Handling Different Character Encoding Schemes
You can specify a different number of discards for each datafile. Alternatively, if the

number of discards is only specified once, then the maximum number of discards

specified applies to all files.

If you specify a maximum number of discards, but no discard filename,

SQL*Loader creates a discard file with the default filename and file extension or file

type.

Using a Command-Line Parameter
You can specify the discard file from the command line, with the parameter

DISCARDFILE described in Command-Line Keywords on page 6-3.

A filename specified on the command line overrides any bad file that you may have

specified in the control file.

Handling Different Character Encoding Schemes
SQL*Loader supports different character encoding schemes (called character sets, or

code pages). SQL*Loader uses Oracle’s NLS (National Language Support) features

to handle the various single-byte and multibyte character encoding schemes

available today. See the Oracle8i National Language Support Guide for information

about supported character encoding schemes. The following sections provide a

brief introduction to some of the supported schemes.

Multibyte (Asian) Character Sets
Multibyte character sets support Asian languages. Data can be loaded in multibyte

format, and database objects (fields, tables, and so on) can be specified with

multibyte characters. In the control file, comments and object names may also use

multibyte characters.

Input Character Conversion
SQL*Loader has the capacity to convert data from the datafile character set to the

database character set, when they differ.

When using a conventional path load, data is converted into the session character

set specified by the NLS_LANG initialization parameter for that session. The data is

then loaded using SQL INSERT statements. The session character set is the character set
supported by your terminal.
5-30 Oracle8i Utilities



Handling Different Character Encoding Schemes
During a direct path load, data converts directly into the database character set. The

direct path load method, therefore, allows data in a character set that is not

supported by your terminal to be loaded.

Note: When data conversion is required, the target character set must contain a

representation of all characters that exist in the data. Otherwise, characters that

have no equivalent in the target character set are converted to a default character,

with consequent loss of data.

When you are using the direct path load method, the database character set should

be a superset of, or equivalent to, the datafile character sets. Similarly, during a

conventional path load, the session character set should be a superset of, or

equivalent to, the datafile character sets.

The character set used in each input file is specified with the CHARACTERSET

keyword.

CHARACTERSET Keyword
You use the CHARACTERSET keyword to specify to SQL*Loader which character

set is used in each datafile. Different datafiles can be specified with different

character sets. However, only one character set can be specified for each datafile.

Using the CHARACTERSET keyword causes character data to be automatically

converted when it is loaded into the database. Only CHAR, DATE, and numeric

EXTERNAL fields are affected. If the CHARACTERSET keyword is not specified,

then no conversion occurs.

The CHARACTERSET syntax is as follows:

CHARACTERSET char_set_name

The char_set_name  variable that you supply specifies your particular encoding

scheme.

Additional Information: For more information on supported character sets,

code pages, and the NLS_LANG parameter, see the Oracle8i National Language
Support Guide.

Control File Character Set
The SQL*Loader control file itself is assumed to be in the character set specified for

your session by the NLS_LANG parameter. However, delimiters and comparison

clause values must be specified to match the character set in use in the datafile. To

ensure that the specifications are correct, you may prefer to specify hexadecimal

strings, rather than character string values.
SQL*Loader Control File Reference 5-31



Loading Data into Empty and Nonempty Tables
Any data included after the BEGINDATA statement is also assumed to be in the

character set specified for your session by the NLS_LANG parameter. Data that

uses a different character set must be in a separate file.

Loading Data into Empty and Nonempty Tables
You can specify one of the following methods for loading tables:

Loading Data into Empty Tables
If the tables you are loading into are empty, use the INSERT option.

INSERT
INSERT is SQL*Loader’s default method. It requires the table to be empty before

loading. SQL*Loader terminates with an error if the table contains rows. Case 1:

Loading Variable-Length Data on page 4-5 provides an example.

Loading Data into Nonempty Tables
If the tables you are loading into already contain data, you have three options:

■ APPEND

■ REPLACE

■ TRUNCATE

Caution: When the REPLACE or TRUNCATE keyword is specified, the entire table
is replaced, not just individual rows. After the rows are successfully deleted, a

commit is issued. You cannot recover the data that was in the table before the load,

unless it was saved with Export or a comparable utility.

Note: This section corresponds to the DB2 keyword RESUME; users of DB2 should

also refer to the description of RESUME in Appendix B.

INSERT

APPEND

REPLACE

TRUNCATE
5-32 Oracle8i Utilities



Loading Data into Empty and Nonempty Tables
APPEND
If data already exists in the table, SQL*Loader appends the new rows to it. If data

does not already exist, the new rows are simply loaded. You must have SELECT

privilege to use the APPEND option. Case 3: Loading a Delimited, Free-Format File

on page 4-11 provides an example.

REPLACE
With REPLACE, all rows in the table are deleted and the new data is loaded. The

table must be in your schema, or you must have DELETE privilege on the table.

Case 4: Loading Combined Physical Records on page 4-15 provides an example.

The row deletes cause any delete triggers defined on the table to fire. If DELETE

CASCADE has been specified for the table, then the cascaded deletes are carried

out. For more information on cascaded deletes, see the information about data

integrity in Oracle8i Concepts.

Updating Existing Rows
The REPLACE method is a table replacement, not a replacement of individual rows.

SQL*Loader does not update existing records, even if they have null columns. To

update existing rows, use the following procedure:

1. Load your data into a work table.

2. Use the SQL language UPDATE statement with correlated subqueries.

3. Drop the work table.

For more information, see the UPDATE statement in Oracle8i SQL Reference.

TRUNCATE
Using this method, SQL*Loader uses the SQL TRUNCATE statement to achieve the

best possible performance. For the TRUNCATE statement to operate, the table’s

referential integrity constraints must first be disabled. If they have not been

disabled, SQL*Loader returns an error.

Once the integrity constraints have been disabled, DELETE CASCADE is no longer

defined for the table. If the DELETE CASCADE functionality is needed, then the

contents of the table must be manually deleted before the load begins.

The table must be in your schema, or you must have the DELETE ANY TABLE

privilege.
SQL*Loader Control File Reference 5-33



Continuing an Interrupted Load
Note: Unlike the SQL TRUNCATE statement, this method reuses a table’s extents.

Continuing an Interrupted Load
If SQL*Loader runs out of space for data rows or index entries, the load is

discontinued. (For example, the table might reach its maximum number of extents.)

Discontinued loads can be continued after more space is made available.

State of Tables and Indexes
When a load is discontinued, any data already loaded remains in the tables, and the

tables are left in a valid state. If the conventional path is used, all indexes are left in

a valid state.

If the direct path load method is used, any indexes that run out of space are left in

an unusable state. They must be dropped before the load can continue. Other

indexes are valid provided no other errors occurred. (See Indexes Left in Index

Unusable State on page 8-11 for other reasons why an index might be left in an

unusable state.)

Using the Log File
SQL*Loader’s log file tells you the state of the tables and indexes and the number of

logical records already read from the input datafile. Use this information to resume

the load where it left off.

Dropping Indexes
Before continuing a direct path load, inspect the SQL*Loader log file to make sure

that no indexes are in an unusable state. Any indexes that are left in an unusable

state must be dropped before continuing the load. The indexes can then be

re-created either before continuing or after the load completes.

Continuing Single-Table Loads
To continue a discontinued direct or conventional path load involving only one

table, specify the number of logical records to skip with the command-line

parameter SKIP. If the SQL*Loader log file says that 345 records were previously

read, then the command to continue would look like this:

SQLLDR USERID=scott/tiger CONTROL=FAST1.CTL DIRECT=TRUE SKIP=345
5-34 Oracle8i Utilities



Continuing an Interrupted Load
Continuing Multiple-Table Conventional Loads
It is not possible for multiple tables in a conventional path load to become

unsynchronized. Therefore, a multiple-table conventional path load can also be

continued with the command-line parameter SKIP. Use the same procedure that

you would use for single-table loads, as described in Continuing Single-Table Loads

on page 5-34.

Continuing Multiple-Table Direct Loads
If SQL*Loader cannot finish a multiple-table direct path load, the number of logical

records processed could be different for each table. If so, the tables are not

synchronized and continuing the load is slightly more complex.

To continue a discontinued direct path load involving multiple tables, inspect the

SQL*Loader log file to find out how many records were loaded into each table. If

the numbers are the same, you can use Use the same procedure that you would use

for single-table loads, as described in Continuing Single-Table Loads on page 5-34.

CONTINUE_LOAD If the numbers are different, use the CONTINUE_LOAD keyword

and specify SKIP at the table level, instead of at the load level. These statements

exist to handle unsynchronized interrupted loads.

Instead of specifying:

LOAD DATA...

at the start of the control file, specify:

CONTINUE_LOAD DATA

SKIP Then, for each INTO TABLE clause, specify the number of logical records to

skip for that table using the SKIP keyword:

...
INTO TABLE emp
SKIP 2345
...
INTO TABLE dept
SKIP 514
...
SQL*Loader Control File Reference 5-35



Assembling Logical Records from Physical Records
Combining SKIP and CONTINUE_LOAD
The CONTINUE_LOAD keyword is only needed after a direct load failure because

multiple table loads cannot become unsynchronized when using the conventional

path.

If you specify CONTINUE_LOAD, you cannot use the command-line parameter

SKIP. You must use the table-level SKIP clause. If you specify LOAD, you can

optionally use the command-line parameter SKIP, but you cannot use the table-level

SKIP clause.

Assembling Logical Records from Physical Records
Because Oracle8i supports user-defined record sizes larger than 64k (see READSIZE

(read buffer) on page 6-7), the need to break up logical records into multiple

physical records is reduced. However, there may still be situations in which you

may want to do so. At some point, when you want to combine those multiple

physical records back into one logical record, you can use one of the following

clauses, depending on your data:

CONCATENATE
CONTINUEIF

CONCATENATE is appropriate in the simplest case, when SQL*Loader should

always add the same number of physical records to form one logical record.

The syntax is:

CONCATENATE  integer

where integer  specifies the number of physical records to combine.

If the number of physical records to be continued varies, then CONTINUEIF must

be used. The keyword CONTINUEIF is followed by a condition that is evaluated

for each physical record, as it is read. For example, two records might be combined

if there were a pound sign (#) in character position 80 of the first record. If any other

character were there, the second record would not be added to the first. The full

syntax for CONTINUEIF adds even more flexibility:
5-36 Oracle8i Utilities



Assembling Logical Records from Physical Records
where:

THIS If the condition is true in the current record, then the next
physical record is read and concatenated to the current physical
record, continuing until the condition is false. If the condition is
false, then the current physical record becomes the last physical
record of the current logical record. THIS is the default.

NEXT If the condition is true in the next record, then the current
physical record is concatenated to the current logical record,
continuing until the condition is false.

operator The supported operators are equal and not equal.

For the equal operator, the field and comparison string must
match exactly for the condition to be true. For the not equal
operator, they may differ in any character.

LAST This test is similar to THIS, but the test is always against the last
nonblank character. If the last nonblank character in the current
physical record meets the test, then the next physical record is
read and concatenated to the current physical record, continuing
until the condition is false. If the condition is false in the current
record, then the current physical record is the last physical
record of the current logical record.

pos_spec Specifies the starting and ending column numbers in the
physical record.

Column numbers start with 1. Either a hyphen or a colon is
acceptable (start-end or start:end).

If you omit end, the length of the continuation field is the length
of the byte string or character string. If you use end, and the
length of the resulting continuation field is not the same as that
of the byte string or the character string, the shorter one is
padded. Character strings are padded with blanks, hexadecimal
strings with zeros.

CONTINUEIF

THIS

NEXT

LAST operator
’char_string’

X’hex_str’ (
pos_operator

’char_string’

X’hex_str’

)

SQL*Loader Control File Reference 5-37



Assembling Logical Records from Physical Records
Note: The positions in the CONTINUEIF clause refer to positions in each

physical record. This is the only time you refer to character positions in physical

records. All other references are to logical records.

For CONTINUEIF THIS and CONTINUEIF NEXT, the continuation field is

removed from all physical records before the logical record is assembled. This

allows data values to span the records with no extra characters (continuation

characters) in the middle. Two examples showing CONTINUEIF THIS and

CONTINUEIF NEXT follow:

CONTINUEIF THIS
CONTINUEIF NEXT
(1:2) = ’%%’ (1:2) =’%%’

Assume that physical data records are 12 characters long and that a period means a

space:

%%aaaaaaaa......aaaaaaaa....
%%bbbbbbbb....%%bbbbbbbb....
..cccccccc....%%cccccccc....
%%dddddddddd....dddddddddd..
%%eeeeeeeeee..%%eeeeeeeeee..
..ffffffffff..%%ffffffffff..

The logical records would be the same in each case:

aaaaaaaa....bbbbbbbb....cccccccc....
dddddddddd..eeeeeeeeee..ffffffffff..

Notes:

■ CONTINUEIF LAST differs from CONTINUEIF THIS and CONTINUEIF

NEXT. With CONTINUEIF LAST, the continuation character is not removed

from the physical record. Instead, this character is included when the logical

record is assembled.

■ Trailing blanks in the physical records are part of the logical records.

str A string of characters to be compared to the continuation field
defined by start and end, according to the operator. The string
must be enclosed in double or single quotation marks. The
comparison is made character by character, blank padding on
the right if necessary.

X’hex-str’ A string of bytes in hexadecimal format used in the same way as
str. X’1FB033 would represent the three bytes with values 1F, b),
and 33 (hexadecimal).
5-38 Oracle8i Utilities



Loading Logical Records into Tables
■ You cannot fragment records in secondary data files (SDFs) into multiple

physical records.

Using CONTINUEIF
In the first example, you specify that if the current physical record (record1) has an

asterisk(*) in column 1, then the next physical record (record2) should be appended

to it. If record2 also has an asterisk in column 1, then record3 is appended also.

If record2 does not have an asterisk in column 1, then it is still appended to record1,

but record3 begins a new logical record.

CONTINUEIF THIS (1) = "*"

In the next example, you specify that if the current physical record (record1) has a

comma in the last nonblank data column, then the next physical record (record2)

should be appended to it. If a record does not have a comma in the last column, it is

the last physical record of the current logical record.

CONTINUEIF LAST = ","

In the last example, you specify that if the next physical record (record2) has a "10"

in columns 7 and 8, then it should be appended to the preceding physical record

(record1). If a record does not have a "10" in columns 7 and 8, then it begins a new

logical record.

CONTINUEIF NEXT (7:8) = ’10’

Case 4: Loading Combined Physical Records on page 4-15 provides an example of

the CONTINUEIF clause.

Loading Logical Records into Tables
This section describes the way in which you specify:

■ Which tables you want to load

■ Which records you want to load into them

■ Default characteristics for the columns in those records

Specifying Table Names
The INTO TABLE keyword of the LOAD DATA statement allows you to identify

tables, fields, and datatypes. It defines the relationship between records in the
SQL*Loader Control File Reference 5-39



Loading Logical Records into Tables
datafile and tables in the database. The specification of fields and datatypes is

described in later sections.

INTO TABLE
Among its many functions, the INTO TABLE keyword allows you to specify the

table into which you load data. To load multiple tables, you include one INTO

TABLE clause for each table you wish to load.

To begin an INTO TABLE clause, use the keywords INTO TABLE, followed by the

name of the Oracle table that is to receive the data.

The table must already exist. The table name should be enclosed in double

quotation marks if it is the same as any SQL or SQL*Loader keyword, if it contains

any special characters, or if it is case sensitive.

INTO TABLE SCOTT."COMMENT"
INTO TABLE SCOTT."Comment"
INTO TABLE SCOTT."-COMMENT"

The user running SQL*Loader should have INSERT privileges on the table.

Otherwise, the table name should be prefixed by the username of the owner, as

follows:

INTO TABLE SOPHIA.EMP

Table-Specific Loading Method
The INTO TABLE clause may include a table-specific loading method (INSERT,

APPEND, REPLACE, or TRUNCATE) that applies only to that table. Specifying one

of these methods within the INTO TABLE clause overrides the global table-loading

method. The global table-loading method is INSERT, by default, unless a different

method was specified before any INTO TABLE clauses. For more information on

these options, see Loading Data into Empty and Nonempty Tables on page 5-32.

INTO TABLE name

(
PARTITION name

SUBPARTITION name
)

INSERT

REPLACE

TRUNCATE

APPEND
5-40 Oracle8i Utilities



Loading Logical Records into Tables
Table-Specific OPTIONS Keyword
The OPTIONS keyword can be specified for individual tables in a parallel load. (It is

only valid for a parallel load.) For more information, see Options Keywords for

Parallel Direct Path Loads on page 8-28.

Choosing Which Records to Load
You can choose to load or discard a logical record by using the WHEN clause to test

a condition in the record.

The WHEN clause appears after the table name and is followed by one or more

field conditions. The syntax for field_condition is as follows:

For example, the following clause indicates that any record with the value "q" in the

fifth column position should be loaded:

WHEN (5) = ’q’

A WHEN clause can contain several comparisons provided each is preceded by

AND. Parentheses are optional, but should be used for clarity with multiple

comparisons joined by AND. For example

WHEN (DEPTNO = ’10’) AND (JOB = ’SALES’)

To evaluate the WHEN clause, SQL*Loader first determines the values of all fields

in the record. Then the WHEN clause is evaluated. A record is inserted into the

table only if the WHEN clause is true.

Field conditions are discussed in detail in Specifying Field Conditions on page 5-44.

Case 5: Loading Data into Multiple Tables on page 4-19 provides an example of the

WHEN clause.

Using The WHEN Clause with LOB Files and Secondary Data Files If a WHEN directive

fails on a record, that record is discarded (skipped). The skipped record is assumed

( full_fieldname

pos_spec
operator

’char_string’

X’hex_string’

BLANKS

)

AND
SQL*Loader Control File Reference 5-41



Loading Logical Records into Tables
to be contained completely in the main datafile; therefore, a secondary data file will

not be affected if present.

Specifying Default Data Delimiters
If all data fields are terminated similarly in the datafile, you can use the FIELDS

clause to indicate the default delimiters. The syntax is:

Note: Terminators are strings not limited to a single character. Also, TERMINATED

BY EOF applies only to loading LOBs from LOBFILES.

Note: Enclosure strings do not have to be a single character.

You can override the delimiter for any given column by specifying it after the

column name. Case 3: Loading a Delimited, Free-Format File on page 4-11 provides

an example. See Specifying Delimiters on page 5-70 for more information on

delimiter specification.

FIELDS

termination_spec

enclosure_spec

termination_spec
OPTIONALLY

enclosure_spec

TERMINATED
BY

WHITESPACE

X’hexstr’

’string’

EOF

ENCLOSED
BY

’string’

X’hexstr’
AND

’string’

X’hexstr’
5-42 Oracle8i Utilities



Index Options
Handling Short Records with Missing Data
When the control file definition specifies more fields for a record than are present in

the record, SQL*Loader must determine whether the remaining (specified) columns

should be considered null or whether an error should be generated.

If the control file definition explicitly states that a field’s starting position is beyond

the end of the logical record, then SQL*Loader always defines the field as null. If a

field is defined with a relative position (such as DNAME and LOC in the following

example), and the record ends before the field is found; then SQL*Loader could

either treat the field as null or generate an error. SQL*Loader uses the presence or

absence of the TRAILING NULLCOLS clause to determine the course of action.

TRAILING NULLCOLS
TRAILING NULLCOLS tells SQL*Loader to treat any relatively positioned columns

that are not present in the record as null columns.

For example, if the following data

10 Accounting

is read with the following control file

INTO TABLE dept
    TRAILING NULLCOLS
( deptno CHAR TERMINATED BY " ",
  dname  CHAR TERMINATED BY WHITESPACE,
  loc    CHAR TERMINATED BY WHITESPACE
)

and the record ends after DNAME, the remaining LOC field is set to null. Without

the TRAILING NULLCOLS clause, an error would be generated due to missing

data.

Case 7: Extracting Data from a Formatted Report on page 4-28 provides an example

of TRAILING NULLCOLS.

Index Options
This section describes the SQL*Loader options that control how index entries are

created.
SQL*Loader Control File Reference 5-43



Specifying Field Conditions
SORTED INDEXES Option
The SORTED INDEXES option applies to direct path loads. It tells SQL*Loader that

the incoming data has already been sorted on the specified indexes, allowing

SQL*Loader to optimize performance. Syntax for this feature is given in High-Level

Syntax Diagrams on page 5-4. Further details are in the SORTED INDEXES Clause

on page 8-17.

SINGLEROW Option
The SINGLEROW option is intended for use during a direct path load with

APPEND on systems with limited memory, or when loading a small number of

records into a large table. This option inserts each index entry directly into the

index, one record at a time.

By default, SQL*Loader does not use SINGLEROW to append records to a table.

Instead, index entries are put into a separate, temporary storage area and merged

with the original index at the end of the load. This method achieves better

performance and produces an optimal index, but it requires extra storage space.

During the merge, the original index, the new index, and the space for new entries

all simultaneously occupy storage space.

With the SINGLEROW option, storage space is not required for new index entries

or for a new index. The resulting index may not be as optimal as a freshly sorted

one, but it takes less space to produce. It also takes more time because additional

UNDO information is generated for each index insert. This option is suggested for

use when either of the following situations exists:

■ Available storage is limited

■ The number of records to be loaded is small compared to the size of the table (a

ratio of 1:20, or less, is recommended)

Specifying Field Conditions
A field condition is a statement about a field in a logical record that evaluates as

true or false. It is used in the NULLIF and DEFAULTIF clauses, as well as in the

WHEN clause.

A field condition is similar to the condition in the CONTINUEIF clause, with two

important differences. First, positions in the field condition refer to the logical

record, not to the physical record. Second, you may specify either a position in the

logical record or the name of a column that is being loaded.
5-44 Oracle8i Utilities



Specifying Field Conditions
where:

pos_spec Specifies the starting and ending position of the comparison
field in the logical record. Either start-end or start:end is
acceptable. If you omit end, the length of the field is determined
by the length of the comparison string. If the lengths are
different, the shorter field is padded. Character strings are
padded with blanks, hexadecimal strings with zeros.

start Specifies the starting position of the comparison field in the
logical record.

end Specifies the ending position of the comparison field in the
logical record.

full_fieldname full_fieldname is the full name of a field specified using dot
notation. If the field col2 is an attribute of a column object col1,
when referring to col2 in one of the directives, you must use the
notation col1.col2. The column_name and the fieldname
referencing or naming the same entity can be different because
column_name never includes the full name of the entity (no dot
notation).

operator A comparison operator for either equal or not equal.

char_string A string of characters enclosed in single or double quotation
marks that is compared to the comparison field. If the
comparison is true, the current record is inserted into the table.

X’hex_string’ A byte string in hexadecimal format that is used in the same way
as char_string.

BLANKS A keyword denoting an arbitrary number of blanks. See
Comparing Fields to BLANKS on page 5-46.

( full_fieldname

pos_spec
operator

’char_string’

X’hex_string’

BLANKS

)

AND

(

start

*
+integer

:

–
end

)

SQL*Loader Control File Reference 5-45



Specifying Field Conditions
Comparing Fields to BLANKS
The BLANKS keyword makes it possible to determine easily if a field of unknown

length is blank.

For example, use the following clause to load a blank field as null:

full_fieldname ... NULLIF column_name=BLANKS

The BLANKS keyword only recognizes blanks, not tabs. It can be used in place of a

literal string in any field comparison. The condition is TRUE whenever the column

is entirely blank.

The BLANKS keyword also works for fixed-length fields. Using it is the same as

specifying an appropriately sized literal string of blanks. For example, the following

specifications are equivalent:

fixed_field CHAR(2) NULLIF fixed_field=BLANKS
fixed_field CHAR(2) NULLIF fixed_field="  "

Note: There can be more than one blank in a multibyte character set. It is a good

idea to use the BLANKS keyword with these character sets instead of specifying a

string of blank characters.

The character string will match only a specific sequence of blank characters, while

the BLANKS keyword will match combinations of different blank characters. For

more information on multibyte character sets, see Multibyte (Asian) Character Sets

on page 5-30.

Comparing Fields to Literals
When a data field is compared to a literal string that is shorter than the data field,

the string is padded. Character strings are padded with blanks, for example:

NULLIF (1:4)=" "

This example compares the data in position 1:4 with 4 blanks. If position 1:4

contains 4 blanks, then the clause evaluates as true.

Hexadecimal strings are padded with hexadecimal zeros. The clause

NULLIF (1:4)=X’FF’

compares position 1:4 to hexadecimal ’FF000000’.
5-46 Oracle8i Utilities



Specifying Columns and Fields
Specifying Columns and Fields
You may load any number of a table’s columns. Columns defined in the database,

but not specified in the control file, are assigned null values (this is the proper way

to insert null values).

A column specification is the name of the column, followed by a specification for the

value to be put in that column. The list of columns is enclosed by parentheses and

separated with commas as follows:

( columnspec,  columnspec,  ... )

Each column name must correspond to a column of the table named in the INTO

TABLE clause. A column name must be enclosed in quotation marks if it is a SQL or

SQL*Loader reserved word, contains special characters, or is case sensitive.

If the value is to be generated by SQL*Loader, the specification includes the

keyword RECNUM, the SEQUENCE function, or the keyword CONSTANT. See

Generating Data on page 5-54.

If the column’s value is read from the datafile, the data field that contains the

column’s value is specified. In this case, the column specification includes a column
name that identifies a column in the database table, and a field specification that

describes a field in a data record. The field specification includes position, datatype,

null restrictions, and defaults.

It is not necessary to specify all attributes when loading column objects. Any

missing attributes will be set to NULL.

Specifying Filler Fields
Filler fields have names but they are not loaded into the table. However, filler fields

can be used as arguments to init_specs (for example, NULLIF and DEFAULTIF) as

well as to directives (for example, SID, OID, REF, BFILE). Also, filler fields can occur

anyplace in the data file. They can be inside of the field list for an object or inside

the definition of a VARRAY. See SQL*Loader DDL Behavior and Restrictions on

page 3-17 for more information on filler fields and their use.

A sample filler field specification looks as follows:

 field_1_count FILLER char,
 field_1 varray count(field_1_count)
 (
    filler_field1  char{2},
    field_1  column object
SQL*Loader Control File Reference 5-47



Specifying the Position of a Data Field
    (
      attr1 char(2),
      filler_field2  char(2),
      attr2 char(2),
    )
    filler_field3  char(3),
 )
 filler_field4 char(6)

Specifying the Datatype of a Data Field
A field’s datatype specification tells SQL*Loader how to interpret the data in the

field. For example, a datatype of INTEGER specifies binary data, while INTEGER

EXTERNAL specifies character data that represents a number. A CHAR field,

however, can contain any character data.

You may specify one datatype for each field; if unspecified, CHAR is assumed.

SQL*Loader Datatypes on page 5-58 describes how SQL*Loader datatypes are

converted into Oracle datatypes and gives detailed information on each

SQL*Loader datatype.

Before the datatype is specified, the field’s position must be specified.

Specifying the Position of a Data Field
To load data from the datafile, SQL*Loader must know a field’s location and its

length. To specify a field’s position in the logical record, use the POSITION

keyword in the column specification. The position may either be stated explicitly or

relative to the preceding field. Arguments to POSITION must be enclosed in

parentheses, as follows:

where:

start The starting column of the data field in the logical record. The
first character position in a logical record is 1.

(

start

*
+integer

:

–
end

)

5-48 Oracle8i Utilities



Specifying the Position of a Data Field
You may omit POSITION entirely. If you do, the position specification for the data

field is the same as if POSITION(*) had been used.

For example:

ENAME  POSITION (1:20)  CHAR
EMPNO  POSITION (22-26) INTEGER EXTERNAL
ALLOW  POSITION (*+2)   INTEGER EXTERNAL TERMINATED BY "/"

Column ENAME is character data in positions 1 through 20, followed by column

EMPNO, which is presumably numeric data in columns 22 through 26. Column

ALLOW is offset from the end of EMPNO by +2. Therefore, it starts in column 28

and continues until a slash is encountered.

Using POSITION with Data Containing Tabs
When you are determining field positions, be alert for TABs in the datafile. The

following situation is highly likely when using SQL*Loader’s advanced SQL string

capabilities to load data from a formatted report:

■ You look at a printed copy of the report, carefully measuring all character

positions, and create your control file.

■ The load then fails with multiple "invalid number" and "missing field" errors.

These kinds of errors occur when the data contains tabs. When printed, each tab

expands to consume several columns on the paper. In the datafile, however, each

Tab is still only one character. As a result, when SQL*Loader reads the datafile, the

POSITION specifications are wrong.

end The ending position of the data field in the logical record. Either
start-end or start:end is acceptable. If you omit end, the length of
the field is derived from the datatype in the datafile. Note that
CHAR data specified without start or end is assumed to be
length 1. If it is impossible to derive a length from the datatype,
an error message is issued.

* Specifies that the data field follows immediately after the
previous field. If you use * for the first data field in the control
file, that field is assumed to be at the beginning of the logical
record. When you use * to specify position, the length of the field
is derived from the datatype.

+integer You can use an on offset, specified as +integer, to offset the
current field from the previous field. A number of characters, as
specified by +integer, are skipped before reading the value for
the current field.
SQL*Loader Control File Reference 5-49



Specifying the Position of a Data Field
To fix the problem, inspect the datafile for tabs and adjust the POSITION

specifications, or else use delimited fields.

The use of delimiters to specify relative positioning of fields is discussed in detail in

Specifying Delimiters on page 5-70. Especially note how the delimiter

WHITESPACE can be used.

Using POSITION with Multiple Table Loads
In a multiple table load, you specify multiple INTO TABLE clauses. When you

specify POSITION(*) for the first column of the first table, the position is calculated

relative to the beginning of the logical record. When you specify POSITION(*) for

the first column of subsequent tables, the position is calculated relative to the last

column of the last table loaded.

Thus, when a subsequent INTO TABLE clause begins, the position is not set to the

beginning of the logical record automatically. This allows multiple INTO TABLE

clauses to process different parts of the same physical record. For an example, see

the second example in Extracting Multiple Logical Records on page 5-51.

A logical record may contain data for one of two tables, but not both. In this case,

you would reset POSITION. Instead of omitting the position specification or using

POSITION(*+n) for the first field in the INTO TABLE clause, use POSITION(1) or

POSITION(n).

Examples
SITEID  POSITION (*) SMALLINT
SITELOC POSITION (*) INTEGER

If these were the first two column specifications, SITEID would begin in column1,

and SITELOC would begin in the column immediately following.

ENAME  POSITION (1:20)  CHAR
EMPNO  POSITION (22-26) INTEGER EXTERNAL
ALLOW  POSITION (*+2)   INTEGER EXTERNAL TERMINATED BY "/"

Column ENAME is character data in positions 1 through 20, followed by column

EMPNO, which is presumably numeric data in columns 22 through 26. Column

ALLOW is offset from the end of EMPNO by +2, so it starts in column 28 and

continues until a slash is encountered.
5-50 Oracle8i Utilities



Using Multiple INTO TABLE Statements
Using Multiple INTO TABLE Statements
Multiple INTO TABLE statements allow you to:

■ Load data into different tables

■ Extract multiple logical records from a single input record

■ Distinguish different input record formats

In the first case, it is common for the INTO TABLE statements to refer to the same

table. This section illustrates the different ways to use multiple INTO TABLE

statements and shows you how to use the POSITION keyword.

Note: A key point when using multiple INTO TABLE statements is that field
scanning continues from where it left off when a new INTO TABLE statement is

processed. The remainder of this section details important ways to make use of that

behavior. It also describes alternative ways using fixed field locations or the

POSITION keyword.

Extracting Multiple Logical Records
Some data storage and transfer media have fixed-length physical records. When the

data records are short, more than one can be stored in a single, physical record to

use the storage space efficiently.

In this example, SQL*Loader treats a single physical record in the input file as two

logical records and uses two INTO TABLE clauses to load the data into the EMP

table. For example, assume the data is as follows:

1119 Smith      1120 Yvonne
1121 Albert     1130 Thomas

Then the following control file extracts the logical records:

INTO TABLE emp
     (empno POSITION(1:4)  INTEGER EXTERNAL,
      ename POSITION(6:15) CHAR)
INTO TABLE emp
     (empno POSITION(17:20) INTEGER EXTERNAL,
      ename POSITION(21:30) CHAR)

Relative Positioning
The same record could be loaded with a different specification. The following

control file uses relative positioning instead of fixed positioning. It specifies that
SQL*Loader Control File Reference 5-51



Using Multiple INTO TABLE Statements
each field is delimited by a single blank (" "), or with an undetermined number of

blanks and tabs (WHITESPACE):

INTO TABLE emp
     (empno INTEGER EXTERNAL TERMINATED BY " ",
      ename CHAR             TERMINATED BY WHITESPACE)
INTO TABLE emp
     (empno INTEGER EXTERNAL TERMINATED BY " ",
      ename CHAR)            TERMINATED BY WHITESPACE)

The important point in this example is that the second EMPNO field is found

immediately after the first ENAME, although it is in a separate INTO TABLE clause.

Field scanning does not start over from the beginning of the record for a new INTO

TABLE clause. Instead, scanning continues where it left off.

To force record scanning to start in a specific location, you use the POSITION

keyword. That mechanism is described in Distinguishing Different Input Record

Formats on page 5-52 and in Loading Data into Multiple Tables on page 5-53.

Distinguishing Different Input Record Formats
A single datafile might contain records in a variety of formats. Consider the

following data, in which EMP and DEPT records are intermixed:

1 50   Manufacturing       — DEPT record
2 1119 Smith      50       — EMP record
2 1120 Snyder     50
1 60   Shipping
2 1121 Stevens    60

A record ID field distinguishes between the two formats. Department records have

a "1" in the first column, while employee records have a "2". The following control

file uses exact positioning to load this data:

INTO TABLE dept
   WHEN recid = 1
   (recid  POSITION(1:1)  INTEGER EXTERNAL,
    deptno POSITION(3:4)  INTEGER EXTERNAL,
    ename  POSITION(8:21) CHAR)
INTO TABLE emp
   WHEN recid <> 1
   (recid  POSITION(1:1)   INTEGER EXTERNAL,
    empno  POSITION(3:6)   INTEGER EXTERNAL,
    ename  POSITION(8:17)  CHAR,
    deptno POSITION(19:20) INTEGER EXTERNAL)
5-52 Oracle8i Utilities



Using Multiple INTO TABLE Statements
Relative Positioning
The records in the previous example could also be loaded as delimited data. In this

case, however, it is necessary to use the POSITION keyword. The following control

file could be used:

INTO TABLE dept
   WHEN recid = 1
   (recid  INTEGER EXTERNAL TERMINATED BY WHITESPACE,
    deptno INTEGER EXTERNAL TERMINATED BY WHITESPACE,
    dname  CHAR TERMINATED BY WHITESPACE)
INTO TABLE emp
   WHEN recid <> 1
   (recid POSITION(1) INTEGER EXTERNAL TERMINATED BY ’ ’,
    empno  INTEGER EXTERNAL TERMINATED BY ’ ’
    ename  CHAR TERMINATED BY WHITESPACE,
    deptno INTEGER EXTERNAL TERMINATED BY ’ ’)

The POSITION keyword in the second INTO TABLE clause is necessary to load this

data correctly. This keyword causes field scanning to start over at column 1 when

checking for data that matches the second format. Without it, SQL*Loader would

look for the RECID field after DNAME.

Loading Data into Multiple Tables
By using the POSITION clause with multiple INTO TABLE clauses, data from a

single record can be loaded into multiple normalized tables. See Case 5: Loading

Data into Multiple Tables on page 4-19.

Summary
Multiple INTO TABLE clauses allow you to extract multiple logical records from a

single input record and recognize different record formats in the same file.

For delimited data, proper use of the POSITION keyword is essential for achieving

the expected results.

When the POSITION keyword is not used, multiple INTO TABLE clauses process

different parts of the same (delimited data) input record, allowing multiple tables to

be loaded from one record. When the POSITION keyword is used, multiple INTO

TABLE clauses can process the same record in different ways, allowing multiple

formats to be recognized in one input file.
SQL*Loader Control File Reference 5-53



Generating Data
Generating Data
The functions described in this section provide the means for SQL*Loader to

generate the data stored in the database record, rather than reading it from a

datafile. The following functions are described:

■ CONSTANT

■ RECNUM

■ SYSDATE

■ SEQUENCE

Loading Data Without Files
It is possible to use SQL*Loader to generate data by specifying only sequences,

record numbers, system dates, and constants as field specifications.

SQL*Loader inserts as many records as are specified by the LOAD keyword. The

LOAD keyword is required in this situation. The SKIP keyword is not permitted.

SQL*Loader is optimized for this case. Whenever SQL*Loader detects that only
generated specifications are used, it ignores any specified datafile—no read I/O is

performed.

In addition, no memory is required for a bind array. If there are any WHEN clauses

in the control file, SQL*Loader assumes that data evaluation is necessary, and input

records are read.

Setting a Column to a Constant Value
This is the simplest form of generated data. It does not vary during the load, and it

does not vary between loads.

CONSTANT
To set a column to a constant value, use the keyword CONSTANT followed by a

value:

CONSTANT  value

CONSTANT data is interpreted by SQL*Loader as character input. It is converted,

as necessary, to the database column type.
5-54 Oracle8i Utilities



Generating Data
You may enclose the value within quotation marks, and you must do so if it

contains white space or reserved words. Be sure to specify a legal value for the

target column. If the value is bad, every record is rejected.

Numeric values larger than 2**32 - 1 (4,294,967,295) must be enclosed in quotation

marks.

Note: Do not use the CONSTANT keyword to set a column to null. To set a

column to null, do not specify that column at all. Oracle automatically sets that

column to null when loading the record. The combination of CONSTANT and a

value is a complete column specification.

Setting a Column to the Datafile Record Number
Use the RECNUM keyword after a column name to set that column to the number

of the logical record from which that record was loaded. Records are counted

sequentially from the beginning of the first datafile, starting with record 1.

RECNUM is incremented as each logical record is assembled. Thus it increments for

records that are discarded, skipped, rejected, or loaded. If you use the option

SKIP=10, the first record loaded has a RECNUM of 11.

RECNUM
The combination of column name and the RECNUM keyword is a complete column

specification.

column_name  RECNUM

Setting a Column to the Current Date
A column specified with SYSDATE gets the current system date, as defined by the

SQL language SYSDATE function. See the section on the DATE datatype in Oracle8i
SQL Reference.

SYSDATE
The combination of column name and the SYSDATE keyword is a complete column

specification.

column_name  SYSDATE

The database column must be of type CHAR or DATE. If the column is of type

CHAR, then the date is loaded in the form ’dd-mon-yy.’ After the load, it can be
SQL*Loader Control File Reference 5-55



Generating Data
accessed only in that form. If the system date is loaded into a DATE column, then it

can be accessed in a variety of forms that include the time and the date.

A new system date/time is used for each array of records inserted in a conventional

path load and for each block of records loaded during a direct path load.

Setting a Column to a Unique Sequence Number
The SEQUENCE keyword ensures a unique value for a particular column.

SEQUENCE increments for each record that is loaded or rejected. It does not

increment for records that are discarded or skipped.

SEQUENCE
The combination of column name and the SEQUENCE function is a complete

column specification.

where:

If a record is rejected (that is, it has a format error or causes an Oracle error), the

generated sequence numbers are not reshuffled to mask this. If four rows are

assigned sequence numbers 10, 12, 14, and 16 in a particular column, and the row

with 12 is rejected; the three rows inserted are numbered 10, 14, and 16, not 10, 12,

column_name The name of the column in the database to which to assign the
sequence.

SEQUENCE Use the SEQUENCE keyword to specify the value for a column.

integer Specifies the specific sequence number to begin with.

COUNT The sequence starts with the number of records already in the
table plus the increment.

MAX The sequence starts with the current maximum value for the
column plus the increment.

incr The value that the sequence number is to increment after a
record is loaded or rejected.

column_name SEQUENCE

(

integer
, incr

MAX

COUNT

)

5-56 Oracle8i Utilities



Generating Data
14. This allows the sequence of inserts to be preserved despite data errors. When

you correct the rejected data and reinsert it, you can manually set the columns to

agree with the sequence.

Case 3: Loading a Delimited, Free-Format File on page 4-11 provides an example of

the SEQUENCE function.

Generating Sequence Numbers for Multiple Tables
Because a unique sequence number is generated for each logical input record, rather

than for each table insert, the same sequence number can be used when inserting

data into multiple tables. This is frequently useful behavior.

Sometimes, however, you might want to generate different sequence numbers for

each INTO TABLE clause. For example, your data format might define three logical

records in every input record. In that case, you can use three INTO TABLE clauses,

each of which inserts a different part of the record into the same table. Note that,
when you use SEQUENCE(MAX), SQL*Loader will use the maximum from each table,
which can lead to inconsistencies in sequence numbers.

To generate sequence numbers for these records, you must generate unique

numbers for each of the three inserts. There is a simple technique to do so. Use the

number of table-inserts per record as the sequence increment and start the sequence

numbers for each insert with successive numbers.

Example
Suppose you want to load the following department names into the DEPT table.

Each input record contains three department names, and you want to generate the

department numbers automatically.

Accounting     Personnel      Manufacturing
Shipping       Purchasing     Maintenance
...

You could use the following control file entries to generate unique department

numbers:

INTO TABLE dept
(deptno  sequence(1, 3),
 dname   position(1:14) char)
INTO TABLE dept
(deptno  sequence(2, 3),
 dname   position(16:29) char)
INTO TABLE dept
SQL*Loader Control File Reference 5-57



SQL*Loader Datatypes
(deptno  sequence(3, 3),
 dname   position(31:44) char)

The first INTO TABLE clause generates department number 1, the second number

2, and the third number 3. They all use 3 as the sequence increment (the number of

department names in each record). This control file loads Accounting as department

number 1, Personnel as 2, and Manufacturing as 3.

The sequence numbers are then incremented for the next record, so Shipping loads

as 4, Purchasing as 5, and so on.

SQL*Loader Datatypes
SQL*Loader has a rich palette of datatypes. These datatypes are grouped into

portable and nonportable datatypes. Within each of these two groups, the datatypes

are subgrouped into length-value datatypes and value datatypes.

The main grouping, portable versus nonportable, refers to the platform dependency

of the datatype. This issue arises due to a number of platform specifics such as

differences in the byte ordering schemes of different platforms (big-endian versus

little-endian), differences in how many bits a particular platform is (16-bit, 32-bit,

64-bit), differences in signed number representation schemes (2’s complement

versus 1’s complement), and so on. Note that not all of these problems apply to all

nonportable datatypes.

The nonportable datatypes consist of VALUE and LENGTH-VALUE datatypes.

VALUE datatypes assume that a datafield has a single part. LENGTH-VALUE

datatypes require that the datafield consist of two subfields: length and value. The

length subfield specifies the length of the value subfield.
5-58 Oracle8i Utilities



SQL*Loader Datatypes
Nonportable Datatypes

The syntax for the nonportable datatypes is shown in the syntax diagram for

datatype_spec on page 5-12.

INTEGER
The data is a full-word binary integer (unsigned). If you specify start:end in the

POSITION clause, end is ignored. The length of the field is the length of a full-word

integer on your system. (The datatype is LONG INT in C.) This length cannot be

overridden in the control file.

INTEGER

SMALLINT
The data is a half-word binary integer (unsigned). If you specify start:end in the

POSITION clause, end is ignored. The length of the field is the length of a half-word

integer on your system.

SMALLINT

Additional Information: This is the SHORT INT datatype in the C programming

language. One way to determine its length is to make a small control file with no

data and look at the resulting log file. This length cannot be overridden in the

control file. See your Oracle operating system-specific documentation for details.

FLOAT
The data is a single-precision, floating-point, binary number. If you specify end in

the POSITION clause, end is ignored. The length of the field is the length of a

single-precision, floating-point binary number on your system. (The datatype is

FLOAT in C.) This length cannot be overridden in the control file.

VALUE Datatypes LENGTH-VALUE Datatypes

INTEGER

SMALLINT VARGRAPHIC

FLOAT VARCHAR

DOUBLE VARRAW

BYTEINT LONG VARRAW

ZONED

(packed) DECIMAL
SQL*Loader Control File Reference 5-59



SQL*Loader Datatypes
DOUBLE
The data is a double-precision, floating-point binary number. If you specify end in

the POSITION clause, end is ignored. The length of the field is the length of a

double-precision, floating-point binary number on your system. (The datatype is

DOUBLE or LONG FLOAT in C.) This length cannot be overridden in the control

file.

DOUBLE

BYTEINT
The decimal value of the binary representation of the byte is loaded. For example,

the input character x"1C" is loaded as 28. The length of a BYTEINT field is always 1

byte. If POSITION(start:end) is specified, end is ignored. (The datatype is

UNSIGNED CHAR in C.)

The syntax for this datatype is:

BYTEINT

An example is:

(column1 position(1) BYTEINT,
column2 BYTEINT,
...
)

ZONED
ZONED data is in zoned decimal format: a string of decimal digits, one per byte,

with the sign included in the last byte. (In COBOL, this is a SIGN TRAILING field.)

The length of this field is equal to the precision (number of digits) that you specify.

The syntax for this datatype is:

In this syntax, precision is the number of digits in the number, and scale (if given) is

the number of digits to the right of the (implied) decimal point. The following

example specifies an 8-digit integer starting at position 32:

sal POSITION(32) ZONED(8),

ZONED ( precision
, scale

)

5-60 Oracle8i Utilities



SQL*Loader Datatypes
DECIMAL
DECIMAL data is in packed decimal format: two digits per byte, except for the last

byte, which contains a digit and sign. DECIMAL fields allow the specification of an

implied decimal point, so fractional values can be represented.

The syntax for this datatype is:

where:

An example is:

sal DECIMAL (7,2)

This example would load a number equivalent to +12345.67. In the data record, this

field would take up 4 bytes. (The byte length of a DECIMAL field is equivalent to

(N+1)/2, rounded up, where N is the number of digits in the value, and one is

added for the sign.)

VARGRAPHIC
The data is a varying-length, double-byte character string. It consists of a length
subfield followed by a string of double-byte characters (DBCS).

Additional Information: The size of the length subfield is the size of the

SQL*Loader SMALLINT datatype on your system (C type SHORT INT). See

SMALLINT on page 5-59 for more information.

The length of the current field is given in the first 2 bytes. This length is a count of

graphic (double-byte) characters. Therefore, it is multiplied by 2 to determine the

number of bytes to read.

The syntax for this datatype is:

precision The number of digits in a value. The character length of the field,
as computed from digits, is (N+1)/2 rounded up.

scale The scaling factor, or number of digits to the right of the decimal
point. The default is zero (indicating an integer). Scale can be
greater than the number of digits but cannot be negative.

DECIMAL ( precision
, scale

)

SQL*Loader Control File Reference 5-61



SQL*Loader Datatypes
A maximum length specified after the VARGRAPHIC keyword does not include the

size of the length subfield. The maximum length specifies the number of graphic

(double-byte) characters. It is multiplied by 2 to determine the maximum length of

the field in bytes.

The default maximum field length is 4Kb graphic characters, or 8 Kb

(2 * 4Kb). It is a good idea to specify a maximum length for such fields whenever

possible, to minimize memory requirements. See Determining the Size of the Bind

Array on page 5-75 for more details.

If a position specification is specified (using pos_spec) before the VARGRAPHIC

statement, it provides the location of the length subfield, not of the first graphic

character. If you specify pos_spec(start:end), the end location determines a

maximum length for the field. Both start and end identify single-character (byte)

positions in the file. Start is subtracted from (end + 1) to give the length of the field

in bytes. If a maximum length is specified, it overrides any maximum length

calculated from pos_spec. See Position Specification on page 5-15 for more

information about position specifications.

If a VARGRAPHIC field is truncated by the end of the logical record before its full

length is read, a warning is issued. Because a VARGRAPHIC field’s length is

embedded in every occurrence of the input data for that field, it is assumed to be

accurate.

VARGRAPHIC data cannot be delimited.

VARCHAR
A VARCHAR field is a length-value datatype. It consists of a binary length subfield
followed by a character string of the specified length.

Additional Information: The size of the length subfield is the size of the

SQL*Loader SMALLINT datatype on your system (C type SHORT INT). See

SMALLINT on page 5-59 for more information.

The syntax for this datatype is:

VARGRAPHIC
( max_length )

VARCHAR
( max_length )
5-62 Oracle8i Utilities



SQL*Loader Datatypes
A maximum length specified in the control file does not include the size of the

length subfield. If you specify the optional maximum length after the VARCHAR

keyword, then a buffer of that size is allocated for these fields.

The default buffer size is 4 Kb. Specifying the smallest maximum length that is

needed to load your data can minimize SQL*Loader’s memory requirements,

especially if you have many VARCHAR fields. See Determining the Size of the Bind

Array on page 5-75 for more details.

The POSITION clause, if used, gives the location of the length subfield, not of the

first text character. If you specify POSITION(start:end), the end location determines

a maximum length for the field. Start is subtracted from (end + 1) to give the length

of the field in bytes. If a maximum length is specified, it overrides any length

calculated from POSITION.

If a VARCHAR field is truncated by the end of the logical record before its full

length is read, a warning is issued. Because a VARCHAR field’s length is embedded

in every occurrence of the input data for that field, it is assumed to be accurate.

VARCHAR data cannot be delimited.

VARRAW
VARRAW is made up of a 2-byte binary length-subfield followed by a RAW string

value-subfield.

VARRAW results in a VARRAW with 2 byte length-subfield and a maximum size of

4 Kb (that is, the default). VARRAW(65000) results in a VARRAW with a length

subfield of 2 bytes and a maximum size of 65000 bytes.

LONG VARRAW
LONG VARRAW is a VARRAW with a 4-byte length-subfield instead of a 2-byte

length-subfield.

LONG VARRAW results in a VARRAW with 4-byte length subfield and a maximum

size of 4 Kb (that is, the default). LONG VARRAW(300000) results in a VARRAW

with a length subfield of 4 bytes and a maximum size of 300000 bytes.
SQL*Loader Control File Reference 5-63



SQL*Loader Datatypes
Portable Datatypes

The syntax for these datatypes is shown in the diagram for datatype_spec on

page 5-12.

The character datatypes are CHAR, DATE, and the numeric EXTERNAL datatypes.

These fields can be delimited and can have lengths (or maximum lengths) specified

in the control file.

CHAR
The data field contains character data. The length is optional and is taken from the

POSITION specification if it is not present here. If present, this length overrides the

length in the POSITION specification. If no length is given, CHAR data is assumed

to have a length of 1. The syntax is:

A field of datatype CHAR may also be variable-length that is delimited or enclosed.

See Specifying Delimiters on page 5-70.

Attention: If the column in the database table is defined as LONG or a VARCHAR2,

you must explicitly specify a maximum length (maximum for LONG is 2 gigabytes)

either with a length specifier on the CHAR keyword or with the POSITION

keyword. This guarantees that a large enough buffer is allocated for the value and is

necessary even if the data is delimited or enclosed.

VALUE Datatypes LENGTH-VALUE Datatypes

CHAR VARCHARC

DATE VARRAWC

GRAPHIC

GRAPHIC EXTERNAL

Numeric External (INTEGER,
FLOAT, DECIMAL, ZONED)

RAW

CHAR
(length) delim_spec
5-64 Oracle8i Utilities



SQL*Loader Datatypes
DATE
The data field contains character data that should be converted to an Oracle date

using the specified date mask. The syntax is:

For example:

LOAD DATA
INTO TABLE DATES (COL_A POSITION (1:15) DATE "DD-Mon-YYYY")
BEGINDATA
1-Jan-1991
1-Apr-1991 28-Feb-1991

Attention: Whitespace is ignored and dates are parsed from left to right unless

delimiters are present.

The length specification is optional, unless a varying-length date mask is specified.

In the preceding example, the date mask specifies a fixed-length date format of 11

characters. SQL*Loader counts 11 characters in the mask, and therefore expects a

maximum of 11 characters in the field, so the specification works properly. But, with

a specification such as

DATE "Month dd, YYYY"

the date mask is 14 characters, while the maximum length of a field such as

September 30, 1991

is 18 characters. In this case, a length must be specified. Similarly, a length is

required for any Julian dates (date mask "J"). A field length is required any time the

length of the date string could exceed the length of the mask (that is, the count of

characters in the mask).

If an explicit length is not specified, it can be derived from the POSITION clause. It

is a good idea to specify the length whenever you use a mask, unless you are

absolutely sure that the length of the data is less than, or equal to, the length of the

mask.

An explicit length specification, if present, overrides the length in the POSITION

clause. Either of these overrides the length derived from the mask. The mask may

be any valid Oracle date mask. If you omit the mask, the default Oracle date mask

of "dd-mon-yy" is used.

DATE
(length)  "mask" delim_spec
SQL*Loader Control File Reference 5-65



SQL*Loader Datatypes
The length must be enclosed in parentheses and the mask in quotation marks. Case

3: Loading a Delimited, Free-Format File on page 4-11 provides an example of the

DATE datatype.

A field of datatype DATE may also be specified with delimiters. For more

information, see Specifying Delimiters on page 5-70.

A date field that consists entirely of whitespace produces an error unless NULLIF

BLANKS is specified. For more information, see Loading All-Blank Fields on

page 5-82.

GRAPHIC
The data is a string of double-byte characters (DBCS). Oracle does not support

DBCS; however, SQL*Loader reads DBCS as single bytes. Like RAW data,

GRAPHIC fields are stored without modification in whichever column you specify.

The syntax for this datatype is:

For GRAPHIC and GRAPHIC EXTERNAL, specifying POSITION(start:end) gives

the exact location of the field in the logical record.

If you specify the length after the GRAPHIC (EXTERNAL) keyword, however, then

you give the number of double-byte graphic characters. That value is multiplied by

2 to find the length of the field in bytes. If the number of graphic characters is

specified, then any length derived from POSITION is ignored. No delimited

datafield specification is allowed with GRAPHIC datatype specification.

GRAPHIC EXTERNAL
If the DBCS field is surrounded by shift-in and shift-out characters, use GRAPHIC

EXTERNAL. This is identical to GRAPHIC, except that the first and last characters

(the shift-in and shift-out) are not loaded. The syntax for this datatype is:

GRAPHIC
(graphic_char_length)

GRAPHIC EXTERNAL
(graphic_char_length)
5-66 Oracle8i Utilities



SQL*Loader Datatypes
where:

For example, let [ ] represent shift-in and shift-out characters, and let # represent

any double-byte character.

To describe ####, use "POSITION(1:4) GRAPHIC" or "POSITION(1) GRAPHIC(2)".

To describe [####], use "POSITION(1:6) GRAPHIC EXTERNAL" or "POSITION(1)

GRAPHIC EXTERNAL(2)".

Numeric EXTERNAL
The numeric EXTERNAL datatypes are the numeric datatypes (INTEGER, FLOAT,

DECIMAL, and ZONED) specified with the EXTERNAL keyword, with optional

length and delimiter specifications.

These datatypes are the human-readable, character form of numeric data. Numeric

EXTERNAL may be specified with lengths and delimiters, just like CHAR data.

Length is optional, but if specified, overrides position.

The syntax for the numeric EXTERNAL datatypes is shown as part of datatype_

spec on page 5-12.

Note: The data is a number in character form, not binary representation.

Therefore, these datatypes are identical to CHAR and are treated identically,

except for the use of DEFAULTIF. If you want the default to be null, use CHAR; if

you want it to be zero, use EXTERNAL. See also Setting a Column to Null or

Zero and DEFAULTIF Clause on page 5-80.

FLOAT EXTERNAL data can be given in either scientific or regular notation. Both

"5.33" and "533E-2" are valid representations of the same value.

RAW
When raw, binary data is loaded "as is" into a RAW database column, it is not

converted by the Oracle database server. If it is loaded into a CHAR column, Oracle

converts it to hexadecimal. It cannot be loaded into a DATE or number column.

The syntax for this datatype is as follows:

GRAPHIC Data is double-byte characters.

EXTERNAL First and last characters are ignored.

graphic_char_length Length in DBCS (see GRAPHIC).
SQL*Loader Control File Reference 5-67



SQL*Loader Datatypes
The length of this field is the number of bytes specified in the control file. This

length is limited only by the length of the target column in the database and by

memory resources. RAW datafields can not be delimited.

VARCHARC
The datatype VARCHARC consists of a character length-subfield followed by a

character string value-subfield.

For example:

■ VARCHARC results in an error.

■ VARCHARC(7) results in a VARCHARC whose length subfield is 7 bytes long

and whose max size is 4 Kb (that is, the default).

■ VARCHARC(3,500)  results in a VARCHARC whose length subfield is 3 bytes

long and whose maximum size is 500 bytes.

VARRAWC
The datatype VARRAWC consists of a RAW string value-subfield.

For example:

■ VARRAWC results in an error.

■ VARRAWC(7) results in a VARRAWC whose length subfield is 7 bytes long and

whose maximum size is 4 Kb (that is, the default).

■ VARRAWC(3,500) results in a VARRAWC whose length subfield is 3 bytes long

and whose maximum size is 500 bytes.

Conflicting Native Datatype Field Lengths
There are several ways to specify a length for a field. If multiple lengths are

specified and they conflict, then one of the lengths takes precedence. A warning is

issued when a conflict exists. The following rules determine which field length is

used:

1. The size of INTEGER, SMALLINT, FLOAT, and DOUBLE data is fixed. It is not

possible to specify a length for these datatypes in the control file. If starting and

RAW
(length)
5-68 Oracle8i Utilities



SQL*Loader Datatypes
ending positions are specified, the end position is ignored—only the start

position is used.

2. If the length specified (or precision) of a DECIMAL, ZONED, GRAPHIC,

GRAPHIC EXTERNAL, or RAW field conflicts with the size calculated from a

POSITION(start:end) specification, then the specified length (or precision) is

used.

3. If the maximum size specified for a VARCHAR or VARGRAPHIC field conflicts

with the size calculated from a POSITION(start:end) specification, then the

specified maximum is used.

For example, if the native datatype INTEGER is 4 bytes long and the following field

specification is given:

column1 POSITION(1:6) INTEGER

then a warning is issued, and the proper length (4) is used. In this case, the log file

shows the actual length used under the heading "Len" in the column table:

Column Name             Position   Len  Term Encl Datatype
----------------------- --------- ----- ---- ---- ---------
COLUMN1                       1:6     4             INTEGER

Datatype Conversions
The datatype specifications in the control file tell SQL*Loader how to interpret the

information in the datafile. The server defines the datatypes for the columns in the

database. The link between these two is the column name specified in the control file.

SQL*Loader extracts data from a field in the input file, guided by the datatype

specification in the control file. SQL*Loader then sends the field to the server to be

stored in the appropriate column (as part of an array of row inserts).

The server does any necessary data conversion to store the data in the proper

internal format. Note that the client does datatype conversion for fields in collections
columns (VARRAYs and nested tables). It does not do datatype conversion when

loading nested tables as a separate table from the parent.

The datatype of the data in the file does not necessarily need to be the same as the

datatype of the column in the Oracle table. Oracle automatically performs

conversions, but you need to ensure that the conversion makes sense and does not

generate errors. For instance, when a datafile field with datatype CHAR is loaded

into a database column with datatype NUMBER, you must make sure that the

contents of the character field represent a valid number.
SQL*Loader Control File Reference 5-69



SQL*Loader Datatypes
Note: SQL*Loader does not contain datatype specifications for Oracle internal

datatypes such as NUMBER or VARCHAR2. SQL*Loader’s datatypes describe data

that can be produced with text editors (character datatypes) and with standard

programming languages (native datatypes). However, although SQL*Loader does

not recognize datatypes like NUMBER and VARCHAR2, any data that Oracle is

capable of converting may be loaded into these or other database columns.

Specifying Delimiters
The boundaries of CHAR, DATE, or numeric EXTERNAL fields may also be

marked by specific delimiter characters contained in the input data record. You

indicate how the field is delimited by using a delimiter specification after specifying

the datatype.

Delimited data can be TERMINATED or ENCLOSED.

TERMINATED Fields
TERMINATED fields are read from the starting position of the field up to, but not

including, the first occurrence of the delimiter character. If the terminator delimiter

is found in the first column position, the field is null.

TERMINATED BY WHITESPACE
If TERMINATED BY WHITESPACE is specified, data is read until the first

occurrence of a whitespace character (space, tab, newline). Then the current position

is advanced until no more adjacent whitespace characters are found. This allows

field values to be delimited by varying amounts of whitespace.

Enclosed Fields
Enclosed fields are read by skipping whitespace until a nonwhitespace character is

encountered. If that character is the delimiter, then data is read up to the second

delimiter. Any other character causes an error.

If two delimiter characters are encountered next to each other, a single occurrence of

the delimiter character is used in the data value. For example, ’DON’’T’ is stored as

DON’T.However, if the field consists of just two delimiter characters, its value is

null.

You may specify a TERMINATED BY clause, an ENCLOSED BY clause, or both. If

both are used, the TERMINATED BY clause must come first. The syntax for

delimiter specifications is:
5-70 Oracle8i Utilities



SQL*Loader Datatypes
where:

TERMINATED Data is read until the first occurrence of a delimiter.

BY An optional keyword for readability.

WHITESPACE Delimiter is any whitespace character including line feed, form
feed, or carriage return. (Only used with TERMINATED, not
with ENCLOSED.)

OPTIONALLY Data can be enclosed by the specified character. If SQL*Loader
finds a first occurrence of the character, it reads the data value
until if finds the second occurrence. If the data is not enclosed,
the data is read as a terminated field. If you specify an optional
enclosure, you must specify a TERMINATED BY clause (either
locally in the field definition or globally in the FIELDS clause.

ENCLOSED The data will be found between two delimiters.

string The delimiter is a string.

X’hexstr’ The delimiter is a string that has the value specified by X’hexstr’
in the character encoding scheme, such as X’1F’ (equivalent to 31
decimal). "X" must be uppercase.

FIELDS

termination_spec

enclosure_spec

termination_spec
OPTIONALLY

enclosure_spec

TERMINATED
BY

WHITESPACE

X’hexstr’

’string’

EOF

ENCLOSED
BY

’string’

X’hexstr’
AND

’string’

X’hexstr’
SQL*Loader Control File Reference 5-71



SQL*Loader Datatypes
Here are some examples, with samples of the data they describe:

TERMINATED BY ’,’ a data string,
ENCLOSED BY ’"’   a data string"
TERMINATED BY ’,’ ENCLOSED BY ’" a data string",
ENCLOSED BY "(" AND ’)’(a data string)

Delimiter Marks in the Data
Sometimes the same punctuation mark that is a delimiter also needs to be included

in the data. To make that possible, two adjacent delimiter characters are interpreted

as a single occurrence of the character, and this character is included in the data. For

example, this data:

(The delimiters are left parentheses, (, and right parentheses, )).)

with this field specification:

ENCLOSED BY "(" AND ")"

puts the following string into the database:

The delimiters are left parentheses, (, and right parentheses, ).

For this reason, problems can arise when adjacent fields use the same delimiters.

For example, with the following specification:

field1 TERMINATED BY "/"
field2 ENCLOSED by "/"

the following data will be interpreted properly:

This is the first string/      /This is the second string/

But if field1 and field2 were adjacent, then the results would be incorrect, because

This is the first string//This is the second string/

would be interpreted as a single character string with a "/" in the middle, and that

string would belong to field1.

AND This keyword specifies a trailing enclosure delimiter that may be
different from the initial enclosure delimiter. If the AND clause
is not present, then the initial and trailing delimiters are
assumed to be the same.

EOF Indicates that the entire file has been loaded into the LOB. Only
valid when loading data from a LOB file.
5-72 Oracle8i Utilities



SQL*Loader Datatypes
Maximum Length of Delimited Data
The default maximum length of delimited data is 255 bytes. Therefore, delimited

fields can require significant amounts of storage for the bind array. A good policy is

to specify the smallest possible maximum value. See Determining the Size of the

Bind Array on page 5-75.

Loading Trailing Blanks with Delimiters
Trailing blanks can only be loaded with delimited datatypes. If a data field is nine

characters long and contains the value DANIELbbb, where bbb is three blanks, it is

loaded into Oracle as "DANIEL" if declared as CHAR(9). If you want the trailing

blanks, you could declare it as CHAR(9) TERMINATED BY ’:’, and add a colon to

the datafile so that the field is DANIELbbb:. This field is loaded as "DANIEL ", with

the trailing blanks. For more discussion on whitespace in fields, see Trimming

Blanks and Tabs on page 5-82 and Preserving Whitespace on page 5-87.

Conflicting Character Datatype Field Lengths
A control file can specify multiple lengths for the character-data fields CHAR,

DATE, and numeric EXTERNAL. If conflicting lengths are specified, one of the

lengths takes precedence. A warning is also issued when a conflict exists. This

section explains which length is used.

Predetermined Size Fields
If you specify a starting position and ending position for one of these fields, then

the length of the field is determined by these specifications. If you specify a length

as part of the datatype and do not give an ending position, the field has the given

length. If starting position, ending position, and length are all specified, and the

lengths differ, then the length given as part of the datatype specification is used for

the length of the field. For example, if

position(1:10) char(15)

is specified, then the length of the field is 15.

Delimited Fields
If a delimited field is specified with a length, or if a length can be calculated from

the starting and ending position, then that length is the maximum length of the field.

The actual length can vary up to that maximum, based on the presence of the

delimiter. If a starting and ending position are both specified for the field, and if a
SQL*Loader Control File Reference 5-73



Loading Data Across Different Platforms
field length is specified in addition, then the specified length value overrides the

length calculated from the starting and ending position.

If the expected delimiter is absent and no maximum length has been specified, then

the end of record terminates the field. If TRAILING NULLCOLS is specified,

remaining fields are null. If either the delimiter or the end of record produces a field

that is longer than the specified maximum, SQL*Loader generates an error.

Date Field Masks
The length of a date field depends on the mask, if a mask is specified. The mask

provides a format pattern, telling SQL*Loader how to interpret the data in the

record. For example, assume the mask is specified as follows:

"Month dd, yyyy"

Then "May 3, 1991" would occupy 11 character positions in the record, while

"January 31, 1992" would occupy 16.

If starting and ending positions are specified, however, then the length calculated

from the position specification overrides a length derived from the mask. A

specified length such as "DATE (12)" overrides either of those. If the date field is

also specified with terminating or enclosing delimiters, then the length specified in

the control file is interpreted as a maximum length for the field.

See DATE on page 5-65 for more information on the DATE field.

Loading Data Across Different Platforms
When a datafile created on one platform is to be loaded on a different platform, the

data must be written in a form that the target system can read. For example, if the

source system has a native, floating-point representation that uses 16 bytes, and the

target system’s floating-point numbers are 12 bytes, the target system cannot

directly read data generated on the source system.

The best solution is to load data across a Net8 database link, taking advantage of the

automatic conversion of datatypes. This is the recommended approach, whenever

feasible.

Problems with interplatform loads typically occur with native datatypes. In some

situations, it is possible to avoid problems by lengthening a field by padding it with

zeros, or to read only part of the field to shorten it (for example, when an 8-byte

integer is to be read on a system that uses 4-byte integers, or vice versa). Note,
5-74 Oracle8i Utilities



Determining the Size of the Bind Array
however, that incompatible byte-ordering or incompatible datatype implementation

may prevent this.

If you cannot use a Net8 database link, it is advisable to use only the CHAR, DATE,

VARCHARC, and numeric EXTERNAL datatypes. Datafiles written using these

datatypes are longer than those written with native datatypes. They may take more

time to load, but they transport more readily across platforms. However, where

incompatible byte-ordering is an issue, special filters may still be required to reorder

the data.

Determining the Size of the Bind Array
The determination of bind array size pertains to SQL*Loader’s conventional path

option. It does not apply to the direct path load method. Because a direct path load

formats database blocks directly, rather than using Oracle’s SQL interface, it does

not use a bind array.

SQL*Loader uses the SQL array-interface option to transfer data to the database.

Multiple rows are read at one time and stored in the bind array. When SQL*Loader

sends Oracle an INSERT command, the entire array is inserted at one time. After the

rows in the bind array are inserted, a COMMIT is issued.

Minimum Requirements
The bind array must be large enough to contain a single row. If the maximum row

length exceeds the size of the bind array, as specified by the BINDSIZE parameter,

SQL*Loader generates an error. Otherwise, the bind array contains as many rows as

can fit within it, up to the limit set by the value of the ROWS parameter.

The BINDSIZE and ROWS parameters are described in Command-Line Keywords

on page 6-3.

Although the entire bind array need not be in contiguous memory, the buffer for

each field in the bind array must occupy contiguous memory. If the operating

system cannot supply enough contiguous memory to store a field, SQL*Loader

generates an error.

Performance Implications
To minimize the number of calls to Oracle and maximize performance, large bind

arrays are preferable. In general, you gain large improvements in performance with

each increase in the bind array size up to 100 rows. Increasing the bind array size to

be greater than 100 rows generally delivers more modest improvements in
SQL*Loader Control File Reference 5-75



Determining the Size of the Bind Array
performance. The size (in bytes) of 100 rows is typically a good value to use. The

remainder of this section details the method for determining that size.

In general, any reasonably large size will permit SQL*Loader to operate effectively.

It is not usually necessary to perform the detailed calculations described in this

section. This section should be read when maximum performance is desired, or

when an explanation of memory usage is needed.

Specifying Number of Rows Versus Size of Bind Array
When you specify a bind array size using the command-line parameter BINDSIZE

(see BINDSIZE (maximum size) on page 6-4) or the OPTIONS clause in the control

file (see OPTIONS on page 5-18), you impose an upper limit on the bind array. The

bind array never exceeds that maximum.

As part of its initialization, SQL*Loader determines the space required to load a

single row. If that size is too large to fit within the specified maximum, the load

terminates with an error.

SQL*Loader then multiplies that size by the number of rows for the load, whether

that value was specified with the command-line parameter ROWS (see ROWS

(rows per commit) on page 6-7) or the OPTIONS clause in the control file (see

OPTIONS on page 5-18).

If that size fits within the bind array maximum, the load continues—SQL*Loader

does not try to expand the number of rows to reach the maximum bind array size. If
the number of rows and the maximum bind array size are both specified, SQL*Loader always
uses the smaller value for the bind array.

If the maximum bind array size is too small to accommodate the initial number of

rows, SQL*Loader uses a smaller number of rows that fits within the maximum.

Calculations
The bind array’s size is equivalent to the number of rows it contains times the

maximum length of each row. The maximum length of a row is equal to the sum of

the maximum field lengths, plus overhead.

bind array size = ( number of rows ) * ( maximum row length )

where:

( maximum row length ) = SUM( fixed field length s) +
SUM(maximum varying field lengths ) +
SUM(overhead for varying length fields )
5-76 Oracle8i Utilities



Determining the Size of the Bind Array
Many fields do not vary in size. These fixed-length fields are the same for each loaded

row. For those fields, the maximum length of the field is the field size, in bytes, as

described in SQL*Loader Datatypes on page 5-58. There is no overhead for these

fields.

The fields that can vary in size from row to row are:

VARCHAR                VARGRAPHIC
CHAR                   DATE
numeric EXTERNAL

The maximum length of these datatypes is described in SQL*Loader Datatypes on

page 5-58. The maximum lengths describe the number of bytes, or character

positions, that the fields can occupy in the input data record. That length also

describes the amount of storage that each field occupies in the bind array, but the

bind array includes additional overhead for fields that can vary in size.

When the character datatypes (CHAR, DATE, and numeric EXTERNAL) are

specified with delimiters, any lengths specified for these fields are maximum

lengths. When specified without delimiters, the size in the record is fixed, but the

size of the inserted field may still vary, due to whitespace trimming. So internally,

these datatypes are always treated as varying-length fields—even when they are

fixed-length fields.

A length indicator is included for each of these fields in the bind array. The space

reserved for the field in the bind array is large enough to hold the longest possible

value of the field. The length indicator gives the actual length of the field for each

row.

In summary:

bind array size =
    (number of rows) * (  SUM(fixed field lengths)
                        + SUM(maximum varying field lengths)
                        + ( (number of varying length fields)
                             * (size of length indicator) )
                       )

Determining the Size of the Length Indicator
On most systems, the size of the length indicator is 2 bytes. On a few systems, it is 3

bytes. To determine its size, use the following control file:

OPTIONS (ROWS=1)
LOAD DATA
SQL*Loader Control File Reference 5-77



Determining the Size of the Bind Array
INFILE *
APPEND
INTO TABLE DEPT
(deptno POSITION(1:1) CHAR)
BEGINDATA
a

This control file loads a 1-character field using a 1-row bind array. In this example,

no data is actually loaded because a conversion error occurs when the character "a"

is loaded into a numeric column (deptno). The bind array size shown in the log file,

minus one (the length of the character field) is the value of the length indicator.

Note: A similar technique can determine bind array size without doing any

calculations. Run your control file without any data and with ROWS=1 to

determine the memory requirements for a single row of data. Multiply by the

number of rows you want in the bind array to determine the bind array size.

Calculating the Size of Field Buffers
Table 5–1 through Table 5–4 summarize the memory requirements for each

datatype. "L" is the length specified in the control file. "P" is precision. "S" is the size

of the length indicator. For more information on these values, see SQL*Loader

Datatypes on page 5-58.

Table 5–1 Fixed-Length Fields

Datatype Size (Operating System-Dependent)

INTEGER The size of the INT datatype, in C

SMALLINT The size of SHORT INT datatype, in C

FLOAT The size of the FLOAT datatype, in C

DOUBLE The size of the DOUBLE datatype, in C

BYTEINT The size of UNSIGNED CHAR, in C

VARRAW The size of UNSIGNED CHAR, plus 4096
or whatever is specified as max_length

LONG VARRAW The size of UNSIGNED INT, plus 4096 or
whatever is specified as max_length

VARCHARC Composed of 2 numbers. The first
specifies length, and the second (which is
optional) specifies max_length (default is
4096).
5-78 Oracle8i Utilities



Determining the Size of the Bind Array
Minimizing Memory Requirements for the Bind Array
Pay particular attention to the default sizes allocated for VARCHAR,

VARGRAPHIC, and the delimited forms of CHAR, DATE, and numeric

EXTERNAL fields. They can consume enormous amounts of memory—especially

VARRAWC This datatype is for RAW data. It is
composed of 2 numbers. The first
specifies length, and the second (which is
optional) specifies max_length (default is
4096).

Table 5–2 Nongraphic Fields

Datatype Default Size Specified Size

(packed) DECIMAL None (N+1)/2, rounded up

ZONED None P

RAW None L

CHAR (no delimiters) 1

L+S

DATE (no delimiters) None

numeric EXTERNAL (no delimiters) None

Table 5–3 Graphic Fields

Datatype Default Size
Length Specified
with POSITION

Length Specified
with D ATATYPE

GRAPHIC None L 2*L

GRAPHIC
EXTERNAL

None L - 2 2*(L-2)

VARGRAPHIC 4Kb*2 L+S (2*L)+S

Table 5–4 Variable-Length Fields

Datatype Default Size
Maximum Length
Specified (L)

VARCHAR 4Kb L+S

CHAR (delimited)
DATE (delimited)
numeric EXTERNAL (delimited) 255 L+S

Table 5–1 Fixed-Length Fields
SQL*Loader Control File Reference 5-79



Setting a Column to Null or Zero
when multiplied by the number of rows in the bind array. It is best to specify the

smallest possible maximum length for these fields. For example:

CHAR(10) TERMINATED BY ","

uses (10 + 2) * 64 = 768 bytes in the bind array, assuming that the length indicator is

two bytes long and that 64 rows are loaded at a time. However:

CHAR TERMINATED BY ","

uses (255 + 2) * 64 = 16,448 bytes, because the default maximum size for a delimited

field is 255. This can make a considerable difference in the number of rows that fit

into the bind array.

Multiple INTO TABLE Statements
When calculating a bind array size for a control file that has multiple INTO TABLE

statements, calculate as if the INTO TABLE statements were not present. Imagine all

of the fields listed in the control file as one, long data structure—that is, the format

of a single row in the bind array.

If the same field in the data record is mentioned in multiple INTO TABLE clauses,

additional space in the bind array is required each time it is mentioned. It is

especially important to minimize the buffer allocations for such fields.

Generated Data
Generated data is produced by the SQL*Loader functions CONSTANT, RECNUM,

SYSDATE, and SEQUENCE. Such generated data does not require any space in the

bind array.

Setting a Column to Null or Zero
If you want all inserted values for a given column to be null, omit the column’s

specifications entirely. To set a column’s values conditionally to null based on a test

of some condition in the logical record, use the NULLIF clause; see NULLIF Clause

on page 5-81. To set a numeric column to zero instead of NULL, use the

DEFAULTIF clause, described next.

DEFAULTIF Clause
Using DEFAULTIF on numeric data sets the column to zero when the specified field

condition is true. Using DEFAULTIF on character (CHAR or DATE) data sets the
5-80 Oracle8i Utilities



Setting a Column to Null or Zero
column to null (compare with Numeric EXTERNAL on page 5-67). See also

Specifying Field Conditions on page 5-44 for details on the conditional tests.

DEFAULTIF  field_condition

A column may have both a NULLIF clause and a DEFAULTIF clause, although this

often would be redundant.

Note: The same effects can be achieved with the SQL string and with SQL

DECODE expressions. See Applying SQL Operators to Fields on page 5-88 for

information on SQL strings. See the Oracle8i SQL Reference for information

about DECODE expressions.

NULLIF Clause
Use the NULLIF clause after the datatype and optional delimiter specification,

followed by a condition. The condition has the same format as that specified for a

WHEN clause. The column’s value is set to null if the condition is true. Otherwise,

the value remains unchanged.

NULLIF field_condition

The NULLIF clause may refer to the column that contains it, as in the following

example:

COLUMN1  POSITION(11:17)  CHAR  NULLIF  (COLUMN1 = "unknown")

This specification may be useful if you want certain data values to be replaced by

nulls. The value for a column is first determined from the datafile. It is then set to

null just before the insert takes place. Case 6: Loading Using the Direct Path Load

Method on page 4-25 provides examples of the NULLIF clause.

Note: The same effect can be achieved with the SQL string and the NVL

function. See Applying SQL Operators to Fields on page 5-88 for information on

SQL strings. See the Oracle8i SQL Reference for more information on NVL.

Null Columns at the End of a Record
When the control file specifies more fields for a record than are present in the

record, SQL*Loader must determine whether the remaining (specified) columns

should be considered null or whether an error should be generated. The TRAILING

NULLCOLS clause, described in TRAILING NULLCOLS on page 5-43, explains

how SQL*Loader proceeds in this case.
SQL*Loader Control File Reference 5-81



Loading All-Blank Fields
Loading All-Blank Fields
Totally blank fields for numeric or DATE fields cause the record to be rejected. To

load one of these fields as null, use the NULLIF clause with the BLANKS keyword,

as described in Comparing Fields to BLANKS on page 5-46. Case 6: Loading Using

the Direct Path Load Method on page 4-25 provides examples of how to load

all-blank fields as null with the NULLIF clause.

If an all-blank CHAR field is surrounded by enclosure delimiters, then the blanks

within the enclosures are loaded. Otherwise, the field is loaded as null. More details

on whitespace are presented in Trimming Blanks and Tabs on page 5-82 and in

Preserving Whitespace on page 5-87.

Trimming Blanks and Tabs
Blanks and tabs constitute whitespace. Depending on how the field is specified,

whitespace at the start of a field (leading whitespace) and at the end of a field (trailing
whitespace) may, or may not be, included when the field is inserted into the

database. This section describes the way character data fields are recognized, and

how they are loaded. In particular, it describes the conditions under which

whitespace is trimmed from fields.

Note: Specifying PRESERVE BLANKS changes this behavior. See Preserving

Whitespace on page 5-87 for more information.

Datatypes
The information in this section applies only to fields specified with one of the

character-data datatypes:

■ CHAR datatype

■ DATE datatype

■ Numeric EXTERNAL datatypes:

– INTEGER EXTERNAL

– FLOAT EXTERNAL

– (packed) DECIMAL EXTERNAL

– ZONED (decimal) EXTERNAL
5-82 Oracle8i Utilities



Trimming Blanks and Tabs
VARCHAR Fields
Although VARCHAR fields also contain character data, these fields are never

trimmed. A VARCHAR field includes all whitespace that is part of the field in the

datafile.

Field Length Specifications
There are two ways to specify field length. If a field has a constant length that is

defined in the control file, then it has a predetermined size. If a field’s length is not

known in advance, but depends on indicators in the record, then the field is

delimited.

Predetermined Size Fields
Fields that have a predetermined size are specified with a starting position and

ending position, or with a length, as in the following examples:

loc POSITION(19:31)
loc CHAR(14)

In the second case, even though the field’s exact position is not specified, the field’s

length is predetermined.

Delimited Fields
Delimiters are characters that demarcate field boundaries. Enclosure delimiters

surround a field, like the quotation marks in:

"__aa__"

where "__" represents blanks or tabs. Termination delimiters signal the end of a field,

like the comma in:

__aa__,

Delimiters are specified with the control clauses TERMINATED BY and

ENCLOSED BY, as shown in the following examples:

loc POSITION(19) TERMINATED BY ","
loc POSITION(19) ENCLOSED BY ’"’
loc TERMINATED BY "." OPTIONALLY ENCLOSED BY ’|’
SQL*Loader Control File Reference 5-83



Trimming Blanks and Tabs
Combining Delimiters with Predetermined Size
If a predetermined size is specified for a delimited field, and the delimiter is not

found within the boundaries indicated by the size specification, then an error is

generated. For example, if you specify:

loc POSITION(19:31) CHAR TERMINATED BY ","

and no comma is found between positions 19 and 31 of the input record, then the

record is rejected. If a comma is found, then it delimits the field.

Relative Positioning of Fields
When a starting position is not specified for a field, it begins immediately after the

end of the previous field. Figure 5–1 illustrates this situation when the previous

field has a predetermined size.

Figure 5–1  Relative Positioning After a Fixed Field

If the previous field is terminated by a delimiter, then the next field begins

immediately after the delimiter, as shown in Figure 5–2.

Figure 5–2  Relative Positioning After a Delimited Field

When a field is specified both with enclosure delimiters and a termination delimiter,

then the next field starts after the termination delimiter, as shown in Figure 5–3. If a

nonwhitespace character is found after the enclosure delimiter, but before the

terminator, then SQL*Loader generates an error.

Field 1 CHAR(9)

a a a a b b b b ,

Field 2 TERMINATED BY ","

a a a a , b b b b ,

Field 2 TERMINATED BY ","Field 1 TERMINATED BY ","
5-84 Oracle8i Utilities



Trimming Blanks and Tabs
Figure 5–3  Relative Positioning After Enclosure Delimiters

Leading Whitespace
In Figure 5–3, both fields are stored with leading whitespace. Fields do not include

leading whitespace in the following cases:

■ When the previous field is terminated by whitespace, and no starting position is

specified for the current field

■ When optional enclosure delimiters are specified for the field, and the enclosure

delimiters are not present

These cases are illustrated in the following sections.

Previous Field Terminated by Whitespace
If the previous field is TERMINATED BY WHITESPACE, then all whitespace after

the field acts as the delimiter. The next field starts at the next nonwhitespace

character. Figure 5–4 illustrates this case.

Figure 5–4  Fields Terminated by Whitespace

This situation occurs when the previous field is explicitly specified with the

TERMINATED BY WHITESPACE clause, as shown in the example. It also occurs

when you use the global FIELDS TERMINATED BY WHITESPACE clause.

Optional Enclosure Delimiters
Leading whitespace is also removed from a field when optional enclosure

delimiters are specified but not present.

" a a a a " , b b b b ,

Field 2 TERMINATED BY ","
Field 1 TERMINATED BY ","

ENCLOSED BY ' " '

a a a a b b b b

Field 2 TERMINATED
BY WHITESPACE

Field 1 TERMINATED
BY WHITESPACE
SQL*Loader Control File Reference 5-85



Trimming Blanks and Tabs
Whenever optional enclosure delimiters are specified, SQL*Loader scans forward,

looking for the first delimiter. If none is found, then the first nonwhitespace

character signals the start of the field. SQL*Loader skips over whitespace,

eliminating it from the field. This situation is shown in Figure 5–5.

Figure 5–5  Fields Terminated by Optional Enclosing Delimiters

Unlike the case when the previous field is TERMINATED BY WHITESPACE, this

specification removes leading whitespace even when a starting position is specified

for the current field.

Note: If enclosure delimiters are present, leading whitespace after the initial

enclosure delimiter is kept, but whitespace before this delimiter is discarded. See

the first quotation mark in FIELD1, Figure 5–5.

Trailing Whitespace
Trailing whitespace is only trimmed from character-data fields that have a

predetermined size. It is always trimmed from those fields.

Enclosed Fields
If a field is enclosed, or terminated and enclosed, like the first field shown in

Figure 5–5, then any whitespace outside the enclosure delimiters is not part of the

field. Any whitespace between the enclosure delimiters belongs to the field,

whether it is leading or trailing whitespace.

" a a a a " , b b b b ,

Field 2 TERMINATED BY " , "
OPTIONALLY ENCLOSED BY ' " '

Field 1 TERMINATED BY " , "
OPTIONALLY ENCLOSED BY, ' " '
5-86 Oracle8i Utilities



Preserving Whitespace
Trimming Whitespace: Summary
Table 5–5 summarizes when and how whitespace is removed from input data fields

when PRESERVE BLANKS is not specified. See Preserving Whitespace on page 5-87

for details on how to prevent trimming.

Preserving Whitespace
To prevent whitespace trimming in all CHAR, DATE, and NUMERIC EXTERNAL

fields, you specify PRESERVE BLANKS in the control file. Whitespace trimming is

described in Trimming Blanks and Tabs on page 5-82.

PRESERVE BLANKS Keyword
PRESERVE BLANKS retains leading whitespace when optional enclosure delimiters

are not present. It also leaves trailing whitespace intact when fields are specified

with a predetermined size. This keyword preserves tabs and blanks. For example, if

the field

__aa__,

Table 5–5  Trim Table

Specification Data Result Leading
Whitespace
Present (1)

Trailing
Whitespace
Present (1)

Predetermined Size __aa__ __aa Y N

Terminated __aa__, __aa__ Y Y (2)

Enclosed "__aa__" __aa__ Y Y

Terminated and
Enclosed

"__aa__", __aa__ Y Y

Optional Enclosure
(present)

"__aa__", __aa__ Y Y

Optional Enclosure
(absent)

__aa__, aa__ N Y

Previous Field
Terminated by
Whitespace

__aa__ aa (3) N (3)

(1) When an all-blank field is trimmed, its value is null.

(2) Except for fields that are TERMINATED BY WHITESPACE

(3) Presence of trailing whitespace depends on the current field’s specification, as shown
by the other entries in the table.
SQL*Loader Control File Reference 5-87



Applying SQL Operators to Fields
(where underscores represent blanks) is loaded with the following control clause:

TERMINATED BY ’,’ OPTIONALLY ENCLOSED BY ’"’

then both the leading whitespace and the trailing whitespace are retained if

PRESERVE BLANKS is specified. Otherwise, the leading whitespace is trimmed.

Note: The word BLANKS is not optional. Both words must be specified.

Terminated by Whitespace
When the previous field is terminated by whitespace, then PRESERVE BLANKS

does not preserve the space at the beginning of the next field, unless that field is

specified with a POSITION clause that includes some of the whitespace. Otherwise,

SQL*Loader scans past all whitespace at the end of the previous field until it finds a

nonblank, nontab character.

Applying SQL Operators to Fields
A wide variety of SQL operators can be applied to field data with the SQL string.

This string can contain any combination of SQL expressions that are recognized by

Oracle as valid for the VALUES clause of an INSERT statement. In general, any SQL

function that returns a single value can be used. See the information about

expressions in the Oracle8i SQL Reference.

The column name and the name of the column in the SQL string must match

exactly, including the quotation marks, as in this example of specifying the control

file:

LOAD DATA
INFILE *
APPEND INTO TABLE XXX
( "LAST"   position(1:7)     char   "UPPER(:\"LAST\)",
   FIRST    position(8:15)   char   "UPPER(:FIRST)"
)
BEGINDATA
Phil Locke
Jason Durbin

The SQL string must be enclosed in double quotation marks. In the preceding

example, LAST must be in quotation marks because it is a SQL*Loader keyword.

FIRST is not a SQL*Loader keyword and therefore does not require quotation
5-88 Oracle8i Utilities



Applying SQL Operators to Fields
marks. To quote the column name in the SQL string, you must use escape

characters.

The SQL string appears after any other specifications for a given column. It is

evaluated after any NULLIF or DEFAULTIF clauses, but before a DATE mask. It

cannot be used on RECNUM, SEQUENCE, CONSTANT, or SYSDATE fields. If the

RDBMS does not recognize the string, the load terminates in error. If the string is

recognized, but causes a database error, the row that caused the error is rejected.

Referencing Fields
To refer to fields in the record, precede the field name with a colon (:). Field values

from the current record are substituted. The following example illustrates how a

reference is made to the current field:

field1 POSITION(1:6) CHAR "LOWER(:field1)"
field1 CHAR TERMINATED BY ’,’
       NULLIF ((1) = ’a’) DEFAULTIF ((1)= ’b’)
       "RTRIM(:field1)"
field1 CHAR(7) "TRANSLATE(:field1, ’:field1’, ’:1’)"

In this example, only the :field1 that is not in single quotation marks is interpreted as

a column name. For more information on the use of quotation marks inside quoted

strings, see Specifying Filenames and Objects Names on page 5-18.

Note: SQL strings cannot reference fields in column objects or fields that are loaded

using OID, SID, REF, or BFILE. Also, they cannot reference filler fields.

Common Uses
SQL operators are commonly used for the following tasks:

■ Loading external data with an implied decimal point:

field1 POSITION(1:9) DECIMAL EXTERNAL(8) ":field1/1000"

■ Truncating fields that could be too long:

field1 CHAR TERMINATED BY "," "SUBSTR(:field1, 1, 10)"

Combinations of Operators
Multiple operators can also be combined, as in the following examples:

field1 POSITION(*+3) INTEGER EXTERNAL
       "TRUNC(RPAD(:field1,6,’0’), -2)"
SQL*Loader Control File Reference 5-89



Loading Column Objects
field1 POSITION(1:8) INTEGER EXTERNAL
       "TRANSLATE(RTRIM(:field1),’N/A’, ’0’)"
field1 CHARACTER(10)
       "NVL( LTRIM(RTRIM(:field1)), ’unknown’ )"

Use with Date Mask
When a SQL string is used with a date mask, the date mask is evaluated after the

SQL string. A field specified as:

field1 DATE ’dd-mon-yy’ "RTRIM(:field1)"

would be inserted as:

TO_DATE(RTRIM(<field1_value>), ’dd-mon-yyyy’)

Interpreting Formatted Fields
It is possible to use the TO_CHAR operator to store formatted dates and numbers.

For example:

field1 ... "TO_CHAR(:field1, ’$09999.99’)"

This example could store numeric input data in formatted form, where field1 is a

character column in the database. This field would be stored with the formatting

characters (dollar sign, period, and so on) already in place.

You have even more flexibility, however, if you store such values as numeric

quantities or dates. You can then apply arithmetic functions to the values in the

database, and still select formatted values for your reports.

The SQL string is used in Case 7: Extracting Data from a Formatted Report on

page 4-28 to load data from a formatted report.

Loading Column Objects
Column objects in the control file are described in terms of their attributes. In the

datafile, the data corresponding to each of the attributes of a column object is in a

datafield similar to that corresponding to a simple relational column.

The following sections show examples of loading column objects.

Loading Column Objects in Stream Record Format
Example 5–1 shows a case in which the data is in predetermined size fields.
5-90 Oracle8i Utilities



Loading Column Objects
Example 5–1 Loading Column Objects in Stream Record Format

Control File Contents

LOAD DATA
INFILE ’sample.dat’
INTO TABLE departments
   (dept_no     POSITION(01:03)    CHAR,
    dept_name   POSITION(05:15)    CHAR,
1 dept_mgr    COLUMN OBJECT
      (name     POSITION(17:33)    CHAR,
       age      POSITION(35:37)    INTEGER EXTERNAL,
       emp_id   POSITION(40:46)    INTEGER EXTERNAL) )

Data File (sample.dat)

101 Mathematics  Johny Quest       30   1024
237 Physics      Albert Einstein   65   0000

Note:

1. This type of column object specification can be applied recursively to describe

nested column objects.

Loading Column Objects in Variable Record Format
Example 5–2 shows a case in which the data is in delimited fields.

Example 5–2 Loading Column Objects in Variable Record Format

Control File Contents

LOAD DATA
INFILE ’sample.dat’ "var 6"
INTO TABLE departments
FIELDS TERMINATED BY ’,’ OPTIONALLY ENCLOSED BY ’"’
1 (dept_no
   dept_name,
   dept_mgr       COLUMN OBJECT
      (name       CHAR(30),
      age         INTEGER EXTERNAL(5),
      emp_id      INTEGER EXTERNAL(5)) )
SQL*Loader Control File Reference 5-91



Loading Column Objects
Data File (sample.dat)

2 000034 101,Mathematics,Johny Q.,30,1024,
   000039 237,Physics,"Albert Einstein",65,0000,

Notes:

1. Although no positional specifications are given, the general syntax remains the

same (the column object’s name followed by the list of its attributes enclosed in

parentheses). Also note that an omitted type specification defaults to CHAR of

length 255.

2. The first six characters (italicized) specify the length of the forthcoming record.

See SQL*Loader DDL Behavior and Restrictions on page 3-17. These length

specifications include the newline characters, which are ignored thanks to the

terminators after the emp_id field.

Loading Nested Column Objects
Example 5–3 shows a control file describing nested column objects (one column

object nested in another column object).

Example 5–3 Loading Nested Column Objects

Control File Contents
LOAD DATA
INFILE ̀ sample.dat'
INTO TABLE departments_v2
FIELDS TERMINATED BY ’,' OPTIONALLY ENCLOSED BY ’"’
   (dept_no      CHAR(5),
   dept_name     CHAR(30),
   dept_mgr      COLUMN OBJECT
      (name      CHAR(30),
      age        INTEGER EXTERNAL(3),
      emp_id     INTEGER EXTERNAL(7),
1     em_contact COLUMN OBJECT
         (name      CHAR(30),
         phone_num  CHAR(20))))

Data File (sample.dat)
101,Mathematics,Johny Q.,30,1024,"Barbie",650-251-0010,
237,Physics,"Albert Einstein",65,0000,Wife Einstein,654-3210,

Note:
5-92 Oracle8i Utilities



Loading Column Objects
1. This entry specifies a column object nested within a column object.

Specifying NULL Values for Objects
Specifying null values for nonscalar datatypes is somewhat more complex than for

scalar datatypes. An object can have a subset of its attributes be null, it can have all

of its attributes be null (an attributively null object), or it can be null itself (an

atomically null object).

Specifying Attribute Nulls
In fields corresponding to column objects, you can use the NULLIF clause to specify

the field conditions under which a particular attribute should be initialized to null.

Example 5–4 demonstrates this.

Example 5–4 Specifying Attribute Nulls Using the NULLIF Clause

Control File

LOAD DATA
INFILE ’sample.dat’
INTO TABLE departments
  (dept_no      POSITION(01:03)    CHAR,
  dept_name     POSITION(05:15)    CHAR NULLIF dept_name=BLANKS,

dept_mgr      COLUMN OBJECT
1    ( name     POSITION(17:33)    CHAR NULLIF dept_mgr.name=BLANKS,
1    age        POSITION(35:37)    INTEGER EXTERNAL
                                   NULLIF dept_mgr.age=BLANKS,
1    emp_id     POSITION(40:46)    INTEGER EXTERNAL
                NULLIF dept_mgr.emp_id=BLANKS))

Data File (sample.dat)
2 101             Johny Quest            1024
   237   Physics   Albert Einstein   65   0000

Notes:

1. The NULLIF clause corresponding to each attribute states the condition under

which the attribute value should be NULL.

2. The age attribute of the dept_mgr value is null. The dept_name  value is also

null.
SQL*Loader Control File Reference 5-93



Loading Column Objects
Specifying Atomic Nulls
To specify in the control file the condition under which a particular object should

take null value (atomic null), you must follow that object’s name with a NULLIF

clause based on a logical combination of any of the mapped fields (for example, in

Example 5–4, the named mapped fields would be dept_no , dept_name , name,

age , emp_id , but dept_mgr  would not be a named mapped field because it does

not correspond (is not mapped) to any field in the datafile).

Although the preceding is workable, it is not ideal when the condition under which

an object should take the value of null is independent of any of the mapped fields. In

such situations, you can use filler fields.

You can map a filler field to the field in the datafile (indicating if a particular object

is atomically null or not) and use the filler field in the field condition of the NULLIF

clause of the particular object. This is shown in Example 5–5.

Example 5–5 Loading Data Using Filler Fields

Control File Contents

LOAD DATA
INFILE ’sample.dat’
INTO TABLE departments_v2
FIELDS TERMINATED BY ’,’ OPTIONALLY ENCLOSED BY ’"’
   (dept_no         CHAR(5),
   dept_name        CHAR(30),
1  is_null          FILLER CHAR,
2  dept_mgr         COLUMN OBJECT NULLIF is_null=BLANKS
      (name         CHAR(30) NULLIF dept_mgr.name=BLANKS,
      age           INTEGER EXTERNAL(3) NULLIF dept_mgr.age=BLANKS,
      emp_id        INTEGER EXTERNAL(7)
                    NULLIF dept_mgr.emp_id=BLANKS,
      em_contact    COLUMN OBJECT NULLIF is_null2=BLANKS
         (name      CHAR(30)
                    NULLIF dept_mgr.em_contact.name=BLANKS,
         phone_num  CHAR(20)
                    NULLIF dept_mgr.em_contact.phone_num=BLANKS)),
1  is_null2         FILLER CHAR)

Data File (sample.dat)

101,Mathematics,n,Johny Q.,,1024,"Barbie",608-251-0010,,
237,Physics,,"Albert Einstein",65,0000,,650-654-3210,n,
5-94 Oracle8i Utilities



Loading Object Tables
Notes:

1. The filler field (datafile mapped; no corresponding column) is of type CHAR

(because it is a delimited field, the CHAR defaults to CHAR(255)). Note that the

NULLIF clause is not applicable to the filler field itself.

2. Gets the value of null (atomic null) if, either the is_null field is blank or the

emp_id attribute is blank.

Loading Object Tables
The control file syntax required to load an object table is nearly identical to that

used to load a typical relational table. Example 5–6 demonstrates loading an object

table with primary key object identifiers (OIDs).

Example 5–6 Loading an Object Table with Primary Key OIDs

Control File Contents

LOAD DATA
INFILE ’sample.dat’
DISCARDFILE ’sample.dsc’
BADFILE ’sample.bad’
REPLACE
INTO TABLE employees
FIELDS TERMINATED BY ’,’ OPTIONALLY ENCLOSED BY ’"’
   (name    CHAR(30)                NULLIF name=BLANKS,
   age      INTEGER EXTERNAL(3)     NULLIF age=BLANKS,
   emp_id   INTEGER EXTERNAL(5))

Data File (sample.dat)

Johny Quest, 18, 007,
Speed Racer, 16, 000,

By looking only at the preceding control file you might not be able to determine if

the table being loaded was an object table with system-generated OIDs (real OIDs),

an object table with primary key OIDs, or a relational table.

Note that you may want to load data that already contains real OIDs and may want

to specify that, instead of generating new OIDs, the existing OIDs in the datafile

should be used. To do this, you would follow the INTO TABLE clause with the OID

clause:
SQL*Loader Control File Reference 5-95



Loading Object Tables
:= OID (<fieldname>)

where <fieldname> is the name of one of the fields (typically a filler field) from the

field specification list which is mapped to a datafield that contains the real OIDs.

SQL*Loader assumes that the OIDs provided are in the correct format and that they

preserve OID global uniqueness. Therefore, you should use the Oracle OID

generator to generate the OIDs to be loaded to ensure uniqueness. Note also that

the OID clause can only be used for system-generated OIDs, not primary key OIDs.

Example 5–7 demonstrates loading real OIDs with the row-objects.

Example 5–7 Loading OIDs

Control File

   LOAD DATA
   INFILE ’sample.dat’
   INTO TABLE employees_v2
1  OID (s_oid)
   FIELDS TERMINATED BY ’,’ OPTIONALLY ENCLOSED BY ’"’
      (name    CHAR(30                NULLIF name=BLANKS,
      age      INTEGER EXTERNAL(3)    NULLIF age=BLANKS,
      emp_id   INTEGER EXTERNAL(5)
2     s_oid    FILLER CHAR(32)

Data File (sample.dat)

3  Johny Quest, 18, 007, 21E978406D3E41FCE03400400B403BC3,
   Speed Racer, 16, 000, 21E978406D4441FCE03400400B403BC3,

Notes:

1. The OID clause specifies that the s_oid loader field contains the OID. The

parentheses are required.

2. If s_oid does not contain a valid hexadecimal number, the particular record is

rejected.

3. The OID in the datafile is a character string and is interpreted as a 32-digit

hexadecimal number. The 32-digit hexadecimal number is later converted into a

16-byte RAW and stored in the object table.
5-96 Oracle8i Utilities



Loading REF Columns
Loading REF Columns
SQL*Loader can load real REF columns (REFs containing real OIDs of the

referenced objects) as well as primary key REF columns.

Real REF Columns
SQL*Loader assumes, when loading real REF columns, that the actual OIDs from

which the REF columns are to be constructed are in the datafile with the rest of the

data. The description of the field corresponding to a REF column consists of the

column name followed by the REF directive.

The REF directive takes as arguments the table name and an OID. Note that the

arguments can be specified either as constants or dynamically (using filler fields).

See REF_spec on page 5-9 for the appropriate syntax. Example 5–8 demonstrates

real REF loading.

Example 5–8 Loading Real REF Columns

Control File

LOAD DATA
INFILE ‘sample.dat’
INTO TABLE departments_alt_v2
FIELDS TERMINATED BY ‘,’ OPTIONALLY ENCLOSED BY ‘”’
  (dept_no      CHAR(5),
   dept_name    CHAR(30),
1 dept_mgr     REF(t_name, s_oid),
   s_oid        FILLER CHAR(32),
   t_name       FILLER CHAR(30))

Data File (sample.dat)

22345, QuestWorld, 21E978406D3E41FCE03400400B403BC3, EMPLOYEES_V2,
23423, Geography, 21E978406D4441FCE03400400B403BC3, EMPLOYEES_V2,

Note:

1. If the specified table does not exist, the record is rejected. The dept_mgr  field

itself does not map to any field in the datafile.

Primary Key REF Columns
To load a primary key REF column, the SQL*Loader control-file field description

must provide the column name followed by a REF directive. The REF directive
SQL*Loader Control File Reference 5-97



Loading LOBs
takes for arguments a comma separated list of field names/constant values. The

first argument is the table name followed by arguments that specify the primary

key OID on which the REF column to be loaded is based. See REF_spec on page 5-9

for the appropriate syntax.

Note that SQL*Loader assumes the ordering of the arguments matches the relative

ordering of the columns making up the primary key OID in the referenced table.

Example 5–9 demonstrates loading primary key REFs.

Example 5–9 Loading Primary Key REF Columns

Control File

LOAD DATA
INFILE ‘sample.dat’
INTO TABLE departments_alt
FIELDS TERMINATED BY ‘,’ OPTIONALLY ENCLOSED BY ‘”’
 (dept_no       CHAR(5),
 dept_name      CHAR(30),
 dept_mgr       REF(CONSTANT ‘EMPLOYEES’, emp_id),
 emp_id         FILLER CHAR(32))

Data file (sample.dat)

22345, QuestWorld, 007,
23423, Geography, 000,

Loading LOBs
The following sections discuss using SQL*Loader to load internal LOBs (BLOBs,

CLOBs, and NCLOBs) and external LOBs (BFILEs).

Internal LOBs (BLOB, CLOB, NCLOB)
Because LOBs can be quite large, SQL*Loader is able to load LOB data from either

the main datafile (inline with the rest of the data) or from LOBFILEs. See Loading

LOB Data Using LOBFILEs on page 5-101.

To load LOB data from the main datafile, you can use the standard SQL*Loader

formats. The LOB data instances can be in predetermined size fields, delimited

fields, or length-value pair fields. The following examples illustrate these situations.
5-98 Oracle8i Utilities



Loading LOBs
LOB Data in Predetermined Size Fields
This is a very fast and conceptually simple format in which to load LOBs, as shown

in Example 5–10.

Note: Because the LOBs you are loading may not be of equal size, you can use

whitespace to pad the LOB data to make the LOBs all of equal length within a

particular datafield.

To load LOBs using this format, you should use either CHAR or RAW as the

loading datatype.

Example 5–10 Loading LOB Data in Predetermined Size Fields

Control File Contents

LOAD DATA
INFILE ’sample.dat’ "fix 501"
INTO TABLE person_table
   (name       POSITION(01:21)       CHAR,
1  "RESUME"    POSITION(23:500)      CHAR   DEFAULTIF "RESUME"=BLANKS)

Data File (sample.dat)

Johny Quest      Johny Quest
             500 Oracle Parkway
             jquest@us.oracle.com ...

Note:

1. If the datafield containing the resume is empty, the result is an empty LOB

rather than a null LOB. The opposite would occur if the NULLIF clause were

used instead of the DEFAULTIF clause (see DEFAULTIF Clause on page 5-80

and NULLIF Clause on page 5-81). You can use SQL*Loader datatypes other

than CHAR to load LOBs. For example, when loading BLOBs you would

probably want to use the RAW datatype.

LOB Data in Delimited Fields
This format handles LOBs of different sizes within the same column (datafile field)

without problem. However this added flexibility can affect performance, because

SQL*Loader must scan through the data, looking for the delimiter string. See

SQL*Loader DDL Support for LOBFILES and Secondary Data Files (SDFs) on

page 3-19.
SQL*Loader Control File Reference 5-99



Loading LOBs
Example 5–11 shows an example of loading LOB data in delimited fields.

Example 5–11 Loading LOB Data in Delimited Fields

Control File
LOAD DATA
INFILE ’sample.dat’ "str ’|’"
INTO TABLE person_table
FIELDS TERMINATED BY ’,’
   (name        CHAR(25),
1  "RESUME"     CHAR(507) ENCLOSED BY ’<startlob>’ AND ’<endlob>’)

Data File (sample.dat)

Johny Quest,<startlob>        Johny Quest
                          500 Oracle Parkway
                          jquest@us.oracle.com ...   <endlob>
2  |Speed Racer, .......

Notes:

1. <startlob>  and <endlob>  are the enclosure strings. Note that the maximum

length for a LOB that can be read using the CHAR(507) is 507 bytes.

2. If the record separator ’|’ had been placed right after <endlob> and followed

with the newline character, the newline would have been interpreted as part of

the next record. An alternative would be to make the newline part of the record

separator (for example, ’|\n’ or, in hexadecimal notation, X’7C0A’ ).

LOB Data in Length-Value Pair Fields
You can use VARCHAR (see VARCHAR on page 5-62), VARCHARC, or VARRAW

datatypes to load LOB data organized in length-value pair fields. This method of

loading provides better performance than using delimited fields, but can reduce

flexibility (for example, you must know the LOB length for each LOB before

loading). Example 5–12 demonstrates loading LOB data in length-value pair fields.

Example 5–12 Loading LOB Data in Length-Value Pair Fields

Control File

   LOAD DATA
1 INFILE ’sample.dat’ "str ’<endrec>\n’"
  INTO TABLE person_table
5-100 Oracle8i Utilities



Loading LOBs
  FIELDS TERMINATED BY ’,’
     (name       CHAR(25),
2    "RESUME"    VARCHARC(3,500))

Data File (sample.dat)

  Johny Quest,479                Johny Quest
                             500 Oracle Parkway
                             jquest@us.oracle.com
                                    ... <endrec>
3    Speed Racer,000<endrec>

Notes:

1. If "\" escaping is not supported, the string used as a record separator in the

example could be expressed in hexadecimal notation.

2. "RESUME"is a field that corresponds to a CLOB column. In the control file, it is a

VARCHARC, whose length field is 3 characters long and whose maximum size

is 500 bytes.

3. The length subfield of the VARCHARC is 0 (the value subfield is empty).

Consequently, the LOB instance is initialized to empty.

Loading LOB Data Using LOBFILEs
LOB data can be lengthy enough that it makes sense to load it from a LOBFILE. In

LOBFILEs, LOB data instances are still considered to be in fields (predetermined

size, delimited, length-value), but these fields are not organized into records (the

concept of a record does not exist within LOBFILEs). Therefore, the processing

overhead of dealing with records is avoided. This type of organization of data is

ideal for LOB loading.

One LOB per File In Example 5–13, each LOBFILE is the source of a single LOB. To

load LOB data that is organized in this way, you follow the column or field name

with the LOBFILE datatype specifications.

Example 5–13 Loading LOB DATA Using a Single LOB LOBFILE

Control File

LOAD DATA
INFILE ’sample.dat’
   INTO TABLE person_table
   FIELDS TERMINATED BY ’,’
SQL*Loader Control File Reference 5-101



Loading LOBs
   (name      CHAR(20),
1  ext_fname    FILLER CHAR(40),
2 "RESUME"     LOBFILE(ext_fname) TERMINATED BY EOF)

Data File (sample.dat)

Johny Quest,jqresume.txt,
Speed Racer,’/private/sracer/srresume.txt’,

Secondary Data File (jqresume.txt)

             Johny Quest
         500 Oracle Parkway
            ...

Secondary Data File (srresume.txt)

         Speed Racer
     400 Oracle Parkway
        ...

Notes:

1. The filler field is mapped to the 40-byte long datafield, which is read using the

SQL*Loader CHAR datatype.

2. SQL*Loader gets the LOBFILE name from the ext_fname  filler field. It then

loads the data from the LOBFILE (using the CHAR datatype) from the first byte

to the EOF character, whichever is reached first. If no existing LOBFILE is

specified, the "RESUME" field is initialized to empty. See Dynamic Versus Static

LOBFILE and SDF Specifications on page 3-21.

Predetermined Size LOBs
In Example 5–14, you specify the size of the LOBs to be loaded into a particular

column in the control file. During the load, SQL*Loader assumes that any LOB data

loaded into that particular column is of the specified size. The predetermined size of

the fields allows the data-parser to perform optimally. However, it is often difficult

to guarantee that all LOBs are the same size.

Example 5–14 Loading LOB Data Using Predetermined Size LOBs

Control File

LOAD DATA
INFILE ’sample.dat’
5-102 Oracle8i Utilities



Loading LOBs
INTO TABLE person_table
FIELDS TERMINATED BY ’,’
   (name     CHAR(20),
   ext_fname FILLER CHAR(40),
1 "RESUME"    LOBFILE(CONSTANT ’/usr/private/jquest/jqresume.txt’)
               CHAR(2000))

Data File (sample.dat)

Johny Quest,
Speed Racer,

Secondary Data File (jqresume.txt)

             Johny Quest
         500 Oracle Parkway
            ...
             Speed Racer
         400 Oracle Parkway
            ...

Note:

1. This entry specifies that SQL*Loader load 2000 bytes of data from the

’jqresume.txt’  LOBFILE, using the CHAR datatype, starting with the byte

following the byte loaded last during the current loading session.

Delimited LOBs
In Example 5–15, the LOB data instances in the LOBFILE are delimited. In this

format, loading different size LOBs into the same column is not a problem.

However, this added flexibility can affect performance, because SQL*Loader must

scan through the data, looking for the delimiter string.

Example 5–15 Loading LOB Data Using Delimited LOBs

Control File Contents

LOAD DATA
INFILE ’sample.dat’
INTO TABLE person_table
FIELDS TERMINATED BY ’,’
   (name     CHAR(20),
1 "RESUME"    LOBFILE( CONSTANT ’jqresume’) CHAR(2000)
               TERMINATED BY "<endlob>\n")
SQL*Loader Control File Reference 5-103



Loading LOBs
Data File (sample.dat)

Johny Quest,
Speed Racer,

Secondary Data File (jqresume.txt)

             Johny Quest
         500 Oracle Parkway
            ... <endlob>
             Speed Racer
         400 Oracle Parkway
            ... <endlob>

Note:

1. Because a maximum length of 2000 is specified for CHAR, SQL*Loader knows

what to expect as the maximum length of the field, which can result in memory

usage optimization. If you choose to specify a maximum length, you should be sure
not to underestimate its value. The TERMINATED BY clause specifies the string

that terminates the LOBs. Alternatively, you could use the ENCLOSED BY

clause. The ENCLOSED BY clause allows a bit more flexibility as to the relative

positioning of the LOBs in the LOBFILE (the LOBs in the LOBFILE need not be

sequential).

Length-Value Pair Specified LOBs
In Example 5–16 each LOB in the LOBFILE is preceded by its length. You could use

VARCHAR (see VARCHAR on page 5-62), VARCHARC, or VARRAW datatypes to

load LOB data organized in this way.

This method of loading can provide better performance over delimited LOBs, but at

the expense of some flexibility (for example, you must know the LOB length for

each LOB before loading).

Example 5–16 Loading LOB Data Using Length-Value Pair Specified LOBs

Control File

LOAD DATA
INFILE ’sample.dat’
INTO TABLE person_table
FIELDS TERMINATED BY ’,’

(name          CHAR(20),
1 "RESUME"       LOBFILE(CONSTANT ’jqresume’) VARCHARC(4,2000))
5-104 Oracle8i Utilities



Loading LOBs
Data File (sample.dat)

Johny Quest,
Speed Racer,

Secondary Data File (jqresume.txt)

2      0501Johny Quest
       500 Oracle Parkway
          ...
3      0000

Notes:

1. The entry VARCHARC(4,2000) tells SQL*Loader that the LOBs in the LOBFILE

are in length-value pair format and that first 4 bytes should be interpreted as

the length. The value of 2000 tells SQL*Loader that the maximum size of the

field is 2000 bytes.

2. The entry 0501  preceding Johny Quest  tells SQL*Loader that the LOB

consists of the next 501 characters.

3. This entry specifies an empty (not null) LOB.

Considerations When Loading LOBs from LOBFILES
Keep in mind the following when you load LOBs from LOBFILES:

■ The failure to load a particular LOB does not result in the rejection of the record

containing that LOB. Instead, you will have a record that contains an empty

LOB.

■ It is not necessary to specify the maximum length of field corresponding to a

LOB type column; nevertheless, if a maximum length is specified, SQL*Loader

uses it as a hint to optimize memory usage. Therefore, it is important that the

maximum length specification does not understate the true maximum length.
SQL*Loader Control File Reference 5-105



Loading LOBs
External LOB (BFILE)
The BFILE datatype stores unstructured binary data in operating system files

outside the database. A BFILE column or attribute stores a file locator that points to

the external file containing the data. The file to be loaded as a BFILE does not have

to exist at the time of loading; it can be created later. SQL*Loader assumes that the

necessary directory objects have already been created (a logical alias name for a

physical directory on the server's file system). For more information, see the Oracle8i
Application Developer’s Guide - Large Objects (LOBs).

A control file field corresponding to a BFILE column consists of column name

followed by the BFILE clause. The BFILE clause takes as arguments a DIRECTORY

OBJECT name followed by a BFILE name, both of which can be provided as string

constants, or they can be dynamically loaded through some other field. See the

Oracle8i SQL Reference for more information.

In the next two examples of loading BFILES, Example 5–17 has only the filename

specified dynamically, while Example 5–18 demonstrates specifying both the BFILE

and the DIRECTORY OBJECT dynamically.

Example 5–17 Loading Data Using BFILEs; Only Filename Specified Dynamically

Control File

LOAD DATA
INFILE sample.dat
INTO TABLE planets
FIELDS TERMINATED BY ’,’
   (pl_id    CHAR(3),
   pl_name   CHAR(20),
   fname     FILLER CHAR(30),
1  pl_pict   BFILE(CONSTANT "scoTT_dir1", fname))

Data File (sample.dat)

1,Mercury,mercury.jpeg,
2,Venus,venus.jpeg,
3,Earth,earth.jpeg,

Note:

1. The directory name is quoted; therefore, the string is used as is and is not

capitalized.
5-106 Oracle8i Utilities



Loading Collections (Nested Tables and VARRAYs)
Example 5–18 Loading Data Using BFILEs: Filename and OBJECT_DIRECTORY
Specified Dynamically

Control File

LOAD DATA
INFILE sample.dat
INTO TABLE planets
FIELDS TERMINATED BY ’,’
   (pl_id    NUMBER(4),
   pl_name   CHAR(20),
   fname     FILLER CHAR(30),
1  dname     FILLER CHAR(20));
   pl_pict   BFILE(dname, fname),

Data File (sample.dat)

1, Mercury, mercury.jpeg, scott_dir1,
2, Venus, venus.jpeg, scott_dir1,
3, Earth, earth.jpeg, scott_dir2,

Note:

1. dname is mapped to the datafile field containing the directory name

corresponding to the file being loaded.

Loading Collections (Nested Tables and VARRAYs)
Like LOBs, collections can also be loaded either from the main datafile (data inline)

or from secondary datafiles (data outofline). See SQL*Loader DDL Support for

LOBFILES and Secondary Data Files (SDFs) on page 3-19.

When loading collection data, a mechanism must exist by which SQL*Loader can

tell when the data belonging to a particular collection instance has ended. You can

achieve this in two ways:

■ The number of rows or elements that are to be loaded into each nested table or

VARRAY instance can be specified using the DDL syntax COUNT. Note that the

field used as a parameter to COUNT must be previously described in the

control file before the COUNT clause itself. This positional dependency is

specific to the COUNT clause. COUNT(0) or COUNT(cnt_field), where cnt_

field is 0 for the current row, results in a empty collection (not null), unless

overridden by a NULLIF directive. See count_spec on page 5-14.
SQL*Loader Control File Reference 5-107



Loading Collections (Nested Tables and VARRAYs)
■ A unique collection delimiter can be specified by using the TERMINATED BY

and ENCLOSED BY directives. This method cannot be employed if an SDF

clause is used.

In the control file, collections are described similarly to column objects (see Loading

Column Objects on page 5-90). There are some differences:

■ Collection descriptions employ the two mechanisms discussed in the preceding

list.

■ Collection descriptions can include a secondary datafile (SDF) specification.

■ Clauses or directives that take field names as arguments cannot use a field

name that is in a collection unless the DDL specification is for a field in the

same collection. So, in Example 5–19, name, age , and empid  could not be used

in a field condition specification of a NULLIF or a DEFAULTIF clause for dept_
no , dname, emp_cnt , emps,  or projects .

■ The field list must contain only one nonfiller field and any number of filler

fields. If the VARRAY is a VARRAY of column objects, then the attributes of

each column object will be in a nested field list.

See SQL*Loader’s Data Definition Language (DDL) Syntax Diagrams on page 5-3

for syntax diagrams of both nested tables and VARRAYs.

Example 5–19 demonstrates loading a VARRAY and a nested table.

Example 5–19 Loading a VARRAY and a Nested Table

Control File

   LOAD DATA
   INFILE ‘sample.dat’ “str ‘\n’ ”
   INTO TABLE dept
   REPLACE
   FIELDS TERMINATED BY ‘,’ OPTIONALLY ENCLOSED BY ‘”’
   (
     dept_no       CHAR(3),
     dname         CHAR(25) NULLIF dname=BLANKS,
1    emps          VARRAY TERMINATED BY ':'
     (
       emps        COLUMN OBJECT
       (
         name      CHAR(30),
         age       INTEGER EXTERNAL(3),
2        emp_id    CHAR(7) NULLIF emps.emps.emp_id=BLANKS
5-108 Oracle8i Utilities



Loading Collections (Nested Tables and VARRAYs)
     )
   ),
3   proj_cnt      FILLER CHAR(3),
4 projects NESTED TABLE SDF (CONSTANT "pr.txt" "fix 57") COUNT (proj_cnt)
  (
    projects    COLUMN OBJECT
    (
      project_id        POSITION (1:5) INTEGER EXTERNAL(5),
      project_name      POSITION (7:30) CHAR
                        NULLIF projects.projects.project_name = BLANKS
    )
  )
)

Data File (sample.dat)

                  101,MATH,"Napier",28,2828,"Euclid", 123,9999:0
                  210,"Topological Transforms",:2

Secondary Data File (SDF)(pr.txt)

21034 Topological Transforms
77777 Impossible Proof

Notes:

1. The TERMINATED BY clause specifies the nested table instance terminator

(note that no COUNT clause is used).

2. Full name field references (dot notated) resolve the field name conflict created

by the presence of this filler field.

3. proj_cnt  is a filler field used as an argument to the COUNT clause.

4. This entry specifies the following:

– An SDF called ‘pr.txt’ as the source of data. It also specifies a fixed record

format within the SDF.

– If COUNT is 0, then the collection is initialized to empty. Another way to

initialize a collection to empty is to use a DEFAULTIF clause. See

DEFAULTIF Clause on page 5-80. The main field name corresponding to

the VARRAY field description is the same as the field name of its nested

nonfiller-field, specifically, the name of the column object field description.
SQL*Loader Control File Reference 5-109



Loading Collections (Nested Tables and VARRAYs)
Loading a Parent Table Separately from Its Child Table
When loading a table that contains a nested table column, it may be possible to load

the parent table separately from the child table. You can do independent loading of

the parent and child tables if the SIDs (system-generated or user-defined) are

already known at the time of the load (that is, the SIDs are in the datafile with the

data).

Example 5–20 Loading a Parent Table with User-Provided SIDs

Control File

   LOAD DATA
   INFILE ‘sample.dat’ “str ‘|\n’ ”
   INTO TABLE dept
   FIELDS TERMINATED BY ‘,’ OPTIONALLY ENCLOSED BY ‘”’
   TRAILING NULLCOLS
   ( dept_no   CHAR(3),
   dname       CHAR(20) NULLIF dname=BLANKS ,
   mysid       FILLER CHAR(32),
1  projects    SID(mysid))

Data File (sample.dat)

101,Math,21E978407D4441FCE03400400B403BC3,|
210,”Topology”,21E978408D4441FCE03400400B403BC3,|

Note:

1. mysid  is a filler field that is mapped to a datafile field containing the actual

set-ids and is supplied as an argument to the SID clause.
5-110 Oracle8i Utilities



Loading Collections (Nested Tables and VARRAYs)
Example 5–21 Loading a Child Table (the Nested Table Storage Table) with
User-Provided SIDs

Control File

   LOAD DATA
   INFILE ‘sample.dat’
   INTO TABLE dept
   FIELDS TERMINATED BY ‘,’ OPTIONALLY ENCLOSED BY ‘’
   TRAILING NULLCOLS
1  SID(sidsrc)
   project_id     INTEGER EXTERNAL(5),
   project_name   CHAR(20) NULLIF project_name=BLANKS,
   sidsrc FILLER  CHAR(32))

Data File (sample.dat)

21034, Topological Transforms,21E978407D4441FCE03400400B403BC3,
77777, Impossible Proof,21E978408D4441FCE03400400B403BC3,

Note:

1. The table-level SID clause tells SQL*Loader that it is loading the storage table

for nested tables. sidsrc  is the filler field name that is the source of the real

set-ids.

Memory Issues When Loading VARRAY Columns
The following list describes some issues to keep in mind when you load VARRAY

columns:

■ When you load VARRAY columns, remember that VARRAYs are created in the

client’s memory before they are loaded into the database. Each element of a

VARRAY requires 4 bytes of client memory before loading into the database.

Therefore, when you are loading a VARRAY with a thousand elements, you will

require at least 4000 bytes of client memory for each VARRAY instance prior to

loading the VARRAYs into the database. In many cases, SQL*Loader may

require two to three times that amount of memory to successfully construct and

load such a VARRAY.

■ The BINDSIZE parameter specifies bounds on the memory allocated (default

64K) by SQL*Loader for loading records. Based on the size of each field being

loaded into a table, SQL*Loader determines the number of rows it can load in

one transaction given the number of bytes specified by BINDSIZE. You can use

the ROWS parameter to force SQL*Loader to use a smaller number of rows than
SQL*Loader Control File Reference 5-111



Loading Collections (Nested Tables and VARRAYs)
it might calculate. The larger the value used for ROWS, the fewer transactions

and, therefore, better performance.

■ Loading very large VARRAYs or a large number of smaller VARRAYs could

cause you to run out of memory during the load. If this happens, you should

specify a smaller value for BINDSIZE or ROWS and retry the load.
5-112 Oracle8i Utilities



SQL*Loader Command-Line Refe
6

SQL*Loader Command-Line Reference

This chapter shows you how to run SQL*Loader with command-line keywords. If

you need detailed information about the command-line keywords listed here, see

Chapter 5.

This chapter covers the following subjects:

■ SQL*Loader Command Line

■ Command-Line Keywords

■ Index Maintenance Options

■ Exit Codes for Inspection and Display
rence 6-1



SQL*Loader Command Line
SQL*Loader Command Line
You can invoke SQL*Loader from the command line using certain keywords.

The command to invoke SQL*Loader is operating system-dependent. The following

examples use the UNIX-based name, sqlldr . See your Oracle operating

system-specific documentation for the correct command for your system. If you

invoke SQL*Loader with no keywords, SQL*Loader displays a help screen with the

available keywords and default values. The following example shows default

values that are the same on all operating systems.

sqlldr
...
Valid Keywords:

       userid — Oracle username/password
      control — Control file name
          log — Log file name
          bad — Bad file name
         data — Data file name
      discard — Discard file name
   discardmax — Number of discards to allow
                (Default all)
         skip — Number of logical records to skip
                (Default 0)
         load — Number of logical records to load
                (Default all)
       errors — Number of errors to allow
                (Default 50)
         rows — Number of rows in conventional path bind array
                or between direct path data saves
                (Default: Conventional Path 64, Direct path all)
     bindsize — Size of conventional path bind array in bytes
                (System-dependent default)
       silent — Suppress messages during run
                (header, feedback, errors, discards, partitions, all)
       direct — Use direct path
                (Default FALSE)
      parfile — Parameter file: name of file that contains
                parameter specifications
     parallel — Perform parallel load
                (Default FALSE)
     readsize — Size (in bytes) of the read buffer
         file — File to allocate extents from
6-2 Oracle8i Utilities



Command-Line Keywords
Using Command-Line Keywords
Keywords are optionally separated by commas. They are entered in any order.

Keywords are followed by valid arguments.

For example:

SQLLDR CONTROL=foo.ctl, LOG=bar.log, BAD=baz.bad, DATA=etc.dat
   USERID=scott/tiger, ERRORS=999, LOAD=2000, DISCARD=toss.dis,
   DISCARDMAX=5

Specifying Keywords in the Control File
If the length of the command line exceeds the size of the maximum command line

on your system, you can put some command-line keywords in the control file, using

the control file keyword OPTIONS. See OPTIONS on page 5-18.

They can also be specified in a separate file specified by the keyword PARFILE (see

PARALLEL (parallel load) on page 6-6). These alternative methods are useful for

keyword entries that seldom change. Keywords specified in this manner can still be

overridden from the command line.

Command-Line Keywords
This section describes each available SQL*Loader command-line keyword.

BAD (bad file)
BAD specifies the name of the bad file created by SQL*Loader to store records that

cause errors during insert or that are improperly formatted. If a filename is not

specified, the name of the control file is used by default with the .BAD extension.

This file has the same format as the input datafile, so it can be loaded by the same

control file after updates or corrections are made.

A bad file filename specified on the command line becomes the bad file associated

with the first INFILE statement in the control file. If the bad file filename was also

specified in the control file, the command-line value overrides it.
SQL*Loader Command-Line Reference 6-3



Command-Line Keywords
BINDSIZE (maximum size)
BINDSIZE specifies the maximum size (bytes) of the bind array. The size of the bind

array given by BINDSIZE overrides the default size (which is system dependent)

and any size determined by ROWS. The bind array is discussed in Determining the

Size of the Bind Array on page 5-75. The default value is 65536 bytes. See also

READSIZE (read buffer) on page 6-7.

CONTROL (control file)
CONTROL specifies the name of the control file that describes how to load data. If a

file extension or file type is not specified, it defaults to CTL. If the filename is

omitted, SQL*Loader prompts you for it.

Note: If your control filename contains special characters, your operating

system will require that they be preceded by an escape character. See your

operating system documentation.

If your operating system uses backslashes in its file system paths, you need to

keep the following in mind:

■ A backslash followed by a nonbackslash is treated normally.

■ Two consecutive backslashes are treated as one backslash.

■ Three consecutive backslashes are treated as two backslashes.

■ Placing the path in quotation marks eliminates the need to use multiple

escape characters. However, some operating systems require that quotation

marks themselves be preceded by an escape character.

DATA (datafile)
DATA specifies the name of the datafile containing the data to be loaded. If a

filename is not specified, the name of the control file is used by default. If you do

not specify a file extension or file type, the default is .DAT.

Note: If you specify a file processing option when loading data from the control file,

a warning message will be issued.
6-4 Oracle8i Utilities



Command-Line Keywords
DIRECT (data path)
DIRECT specifies the data path, that is, the load method to use, either conventional

path or direct path. TRUE specifies a direct path load. FALSE specifies a

conventional path load. The default is FALSE. Load methods are explained in

Chapter 8.

DISCARDFILE (file name)
DISCARDFILE specifies a discard file (optional) to be created by SQL*Loader to

store records that are neither inserted into a table nor rejected. If a filename is not

specified, it defaults to DSC.

This file has the same format as the input datafile, so it can be loaded by the same

control file after appropriate updates or corrections are made.

A discard file filename specified on the command line becomes the discard file

associated with the first INFILE statement in the control file. If the discard file

filename is specified also in the control file, the command-line value overrides it.

DISCARDMAX (integer)
DISCARDMAX specifies the number of discard records to allow before data loading

is terminated. The default value is all discards are allowed. To stop on the first

discarded record, specify one (1).

ERRORS (errors to allow)
ERRORS specifies the maximum number of insert errors to allow. If the number of

errors exceeds the value of the ERRORS parameter, SQL*Loader terminates the

load. The default is 50. To permit no errors at all, set ERRORS=0. To specify that all

errors be allowed, use a very high number.

On a single-table load, SQL*Loader terminates the load when errors exceed this

error limit. Any data inserted up that point, however, is committed.

SQL*Loader maintains the consistency of records across all tables. Therefore,

multitable loads do not terminate immediately if errors exceed the error limit. When

SQL*loader encounters the maximum number of errors for a multitable load, it

continues to load rows to ensure that valid rows previously loaded into tables are

loaded into all tables and/or rejected rows filtered out of all tables.

In all cases, SQL*Loader writes erroneous records to the bad file.
SQL*Loader Command-Line Reference 6-5



Command-Line Keywords
FILE (file to load into)
FILE specifies the database file to allocate extents from. It is used only for parallel

loads. By varying the value of the FILE parameter for different SQL*Loader

processes, data can be loaded onto a system with minimal disk contention. For more

information, see Parallel Data Loading Models on page 8-25.

LOAD (records to load)
LOAD specifies the maximum number of logical records to load (after skipping the

specified number of records). By default all records are loaded. No error occurs if

fewer than the maximum number of records are found.

LOG (log file)
LOG specifies the log file that SQL*Loader will create to store logging information

about the loading process. If a filename is not specified, the name of the control file

is used by default with the default extension (LOG).

PARALLEL (parallel load)
PARALLEL specifies whether direct loads can operate in multiple concurrent

sessions to load data into the same table. For more information on PARALLEL

loads, see Parallel Data Loading Models on page 8-25.

PARFILE (parameter file)
PARFILE specifies the name of a file that contains commonly used command-line

parameters. For example, the command line could read:

SQLLDR PARFILE=example.par

The parameter file could have the following contents:

userid=scott/tiger
control=example.ctl
errors=9999
log=example.log

Note: Although it is not usually important, on some systems it may be

necessary to have no spaces around the equal sign (=) in the parameter

specifications.
6-6 Oracle8i Utilities



Command-Line Keywords
READSIZE (read buffer)
The READSIZE parameter lets you specify (in bytes) the size of the read buffer. The

default value is 65536 bytes; however, you can specify a read buffer of any size

depending on your system.

In the conventional path method, the bind array is limited by the size of the read

buffer. Therefore, the advantage of a larger read buffer is that more data can be read

before a commit is required.

For example:

sqlldr scott/tiger control=ulcas1.ctl readsize=1000000

This example enables SQL*Loader to perform reads from the external datafile in

chunks of 1000000 bytes before a commit is required.

Note: The default value for both the READSIZE and BINDSIZE parameters is 65536

bytes. If you have specified a BINDSIZE that is smaller than the size you specified

for READSIZE, the BINDSIZE value will be automatically increased to the specified

value of READSIZE.

If the READSIZE value specified is smaller than the BINDSIZE value, the

READSIZE value will be increased.

This parameter is not related in any way to the READBUFFERS keyword used with

direct path loads.

See BINDSIZE (maximum size) on page 6-4.

ROWS (rows per commit)
Conventional path loads only: ROWS specifies the number of rows in the bind

array. The default is 64. (The bind array is discussed on Determining the Size of the

Bind Array on page 5-75.)

Direct path loads only: ROWS identifies the number of rows you want to read from

the data file before a data save. The default is to read all rows and save data once at

the end of the load. For more information, see Data Saves on page 8-12.

Because the direct load is optimized for performance, it uses buffers that are the

same size and format as the system’s I/O blocks. Only full buffers are written to the

database, so the value of ROWS is approximate.
SQL*Loader Command-Line Reference 6-7



Command-Line Keywords
SILENT (feedback mode)
When SQL*Loader begins, a header message like the following appears on the

screen and is placed in the log file:

SQL*Loader:   Production on Wed Feb 24 15:07:23...
Copyright (c) Oracle Corporation...

As SQL*Loader executes, you also see feedback messages on the screen, for

example:

Commit point reached - logical record count 20

SQL*Loader may also display data error messages like the following:

Record 4: Rejected - Error on table EMP
ORA-00001: unique constraint <name> violated

You can suppress these messages by specifying SILENT with an argument.

For example, you can suppress the header and feedback messages that normally

appear on the screen with the following command-line argument:

SILENT=(HEADER, FEEDBACK)

Use the appropriate keywords to suppress one or more of the following:

HEADER Suppresses the SQL*Loader header messages that normally
appear on the screen. Header messages still appear in the log
file.

FEEDBACK Suppresses the "commit point reached" feedback messages that
normally appear on the screen.

ERRORS Suppresses the data error messages in the log file that occur
when a record generates an Oracle error that causes it to be
written to the bad file. A count of rejected records still appears.

DISCARDS Suppresses the messages in the log file for each record written to
the discard file.

PARTITIONS This Oracle8i option for a direct load of a partitioned table
disables writing the per-partition statistics to the log file.

ALL Implements all of the suppression keywords: HEADER,
FEEDBACK, ERRORS, DISCARDS, and PARTITIONS.
6-8 Oracle8i Utilities



Index Maintenance Options
SKIP (records to skip)
SKIP specifies the number of logical records from the beginning of the file that

should not be loaded. By default, no records are skipped.

This parameter continues loads that have been interrupted for some reason. It is

used for all conventional loads, for single-table direct loads, and for multiple-table

direct loads when the same number of records were loaded into each table. It is not

used for multiple-table direct loads when a different number of records were loaded

into each table. See Continuing Multiple-Table Conventional Loads on page 5-35 for

more information.

USERID (username/password)
 USERID is used to provide your Oracle username/password. If it is omitted, you

are prompted for it. If only a slash is used, USERID defaults to your operating

system login. A Net8 database link can be used for a conventional path load into a

remote database. For more information about Net8, see the  Net8 Administrator’s
Guide.   For more information about database links, see  Oracle8i Distributed
Database Systems.

Index Maintenance Options
There are two Oracle8i index maintenance options available (default is NO):

■ SKIP_INDEX_MAINTENANCE={YES | NO}

■ SKIP_UNUSABLE_INDEXES={YES | NO}

SKIP_INDEX_MAINTENANCE
SKIP_INDEX_MAINTENANCE={YES | NO} stops index maintenance for direct

path loads but does not apply to conventional path loads. It causes the index

partitions that would have had index keys added to them instead to be marked

Index Unusable because the index segment is inconsistent with respect to the data it

indexes. Index segments that are not affected by the load retain the Index Unusable

state they had prior to the load.

The SKIP_INDEX_MAINTENANCE option:

■ Applies to both local and global indexes

■ Can be used (with the PARALLEL option) to do parallel loads on an object that

has indexes
SQL*Loader Command-Line Reference 6-9



Exit Codes for Inspection and Display
■ Can be used (with the PARTITION keyword on the INTO TABLE clause) to do

a single partition load to a table that has global indexes

■ Puts a list (in the SQL*Loader log file) of the indexes and index partitions that

the load set into Index Unusable state

SKIP_UNUSABLE_INDEXES
The SKIP_UNUSABLE_INDEXES option applies to both conventional and direct

path loads.

The SKIP_UNUSABLE_INDEXES=YES option allows SQL*Loader to load a table

with indexes that are in Index Unusable (IU) state prior to the beginning of the load.

Indexes that are not in IU state at load time will be maintained by SQL*Loader.

Indexes that are in IU state at load time will not be maintained but will remain in IU

state at load completion.

However, indexes that are UNIQUE and marked IU are not allowed to skip index

maintenance. This rule is enforced by DML operations, and enforced by the direct

path load to be consistent with DML.

Load behavior with SKIP_UNUSABLE_INDEXES=NO differs slightly between

conventional path loads and direct path loads:

■ On a conventional path load, records that are to be inserted will instead be

rejected if their insertions would require updating an index.

■ On a direct path load, the load terminates upon encountering a record that

would require index maintenance be done on an index that is in unusable state.

Exit Codes for Inspection and Display
Oracle SQL*Loader provides the results of a SQL*Loader run immediately upon

completion. Depending on the platform, as well as recording the results in the log

file, the SQL*Loader may report the outcome also in a process exit code. This Oracle

SQL*Loader functionality allows for checking the outcome of a SQL*Loader

invocation from the command line or script. The following load results return the

indicated exit codes:

Result Exit Code

All rows loaded successfully EX_SUCC

All/some rows rejected EX_WARN

All/some rows discarded EX_WARN
6-10 Oracle8i Utilities



Exit Codes for Inspection and Display
For UNIX, the exit codes are as follows:

EX_SUCC0
EX_FAIL1
EX_WARN2
EX_FTL3

If SQL*Loader returns any exit code other than zero, you should consult your

system log files and SQL*Loader log files for more detailed diagnostic information.

You can check the exit code from the shell to determine the outcome of a load. For

example, you could place the SQL*Loader command in a script and check the exit

code within the script:

#!/bin/sh
sqlldr scott/tiger control=ulcase1.ctl log=ulcase1.log
retcode= ècho $?̀
case "$retcode" in
0) echo "SQL*Loader execution successful" ;;
1) echo "SQL*Loader execution exited with EX_FAIL, see logfile" ;;
2) echo "SQL*Loader execution exited with EX_WARN, see logfile" ;;
3) echo "SQL*Loader execution encountered a fatal error" ;;
*) echo "unknown return code";;
esac

Discontinued load EX_WARN

Command line/syntax errors EX_FAIL

Oracle errors fatal to SQL*Loader EX_FAIL

Operating system errors (such as file open/close and
malloc)

EX_FTL

Result Exit Code
SQL*Loader Command-Line Reference 6-11



Exit Codes for Inspection and Display
6-12 Oracle8i Utilities



SQL*Loader: Log File Refe
7

SQL*Loader: Log File Reference

When SQL*Loader begins execution, it creates a log file. The log file contains a

detailed summary of the load.

Most of the log file entries will be records of successful SQL*Loader execution.

However, errors can also cause log file entries. For example, errors found during

parsing of the control file will appear in the log file.

This chapter describes the following log file entries:

■ Header Information

■ Global Information

■ Table Information

■ Datafile Information

■ Table Load Information

■ Summary Statistics
rence 7-1



Header Information
Header Information
The Header Section contains the following entries:

■ Date of the run

■ Software version number

For example:

SQL*Loader: Version 8.0.2.0.0 - Production on Mon Nov 26...
Copyright (c) Oracle Corporation...

Global Information
The Global Information Section contains the following entries:

■ Names of all input/output files

■ Echo of command-line arguments

■ Continuation character specification

If the data is in the control file, then the data file is shown as "*".

For example:

Control File:     LOAD.CTL
Data File:        LOAD.DAT
  Bad File:       LOAD.BAD
  Discard File:   LOAD.DSC

 (Allow all discards)

Number to load: ALL
Number to skip: 0
Errors allowed: 50
Bind array:     64 rows, maximum of 65536 bytes
Continuation:   1:1 = ’*’, in current physical record
Path used:      Conventional
7-2 Oracle8i Utilities



Datafile Information
Table Information
The Table Information Section provides the following entries for each table loaded:

■ Table name

■ Load conditions, if any. That is, whether all records were loaded or only those

meeting WHEN-clause criteria.

■ INSERT, APPEND, or REPLACE specification

■ The following column information:

– If found in datafile, the position, length, datatype, and delimiter.

– If specified, RECNUM, SEQUENCE, or CONSTANT

– If specified, DEFAULTIF or NULLIF

For example:

Table EMP, loaded from every logical record.
Insert option in effect for this table: REPLACE

   Column Name                Position   Len  Term Encl Datatype
--------------------------------------   ---  ---- ---- ---------
   EMPNO                           1:4     4            CHARACTER
   ENAME                          6:15    10            CHARACTER
   JOB                           17:25     9            CHARACTER
   MGR                           27:30     4            CHARACTER
   SAL                           32:39     8            CHARACTER
   COMM                          41:48     8            CHARACTER
   DEPTNO                        50:51     2            CHARACTER

Column EMPNO is NULL if EMPNO = BLANKS
Column MGR is NULL if MGR = BLANKS
Column SAL is NULL if SAL = BLANKS
Column COMM is NULL if COMM = BLANKS
Column DEPTNO is NULL if DEPTNO = BLANKS

Datafile Information
The Datafile Information Section appears only for datafiles with data errors, and

provides the following entries:

■ SQL*Loader and Oracle data record errors

■ Records discarded
SQL*Loader: Log File Reference 7-3



Table Load Information
For example:

Record 2: Rejected - Error on table EMP.
ORA-00001:  unique constraint < name> violated
Record 8: Rejected - Error on table EMP, column DEPTNO.
ORA-01722:  invalid number
Record 3: Rejected - Error on table PROJ, column PROJNO.
ORA-01722:  invalid number

Table Load Information
The Table Load Information Section provides the following entries for each table

that was loaded:

■ Number of rows loaded

■ Number of rows that qualified for loading but were rejected due to data errors

■ Number of rows that were discarded because they met no WHEN-clause tests

■ Number of rows whose relevant fields were all null

For example:

The following indexes on table EMP were processed:
Index EMPIX was left in Direct Load State due to
ORA-01452: cannot CREATE UNIQUE INDEX; duplicate keys found

Table EMP:
7 Rows successfully loaded.
2 Rows not loaded due to data errors.|
0 Rows not loaded because all WHEN clauses were failed.
0 Rows not loaded because all fields were null.

Summary Statistics
The Summary Statistics Section displays the following data:

■ Amount of space used:

– For bind array (what was actually used, based on what was specified by

BINDSIZE)

– For other overhead (always required, independent of BINDSIZE)
7-4 Oracle8i Utilities



Summary Statistics
■ Cumulative load statistics. That is, for all data files, the number of records that

were:

– Skipped

– Read

– Rejected

– Discarded

■ Beginning/ending time of run

■ Total elapsed time

■ Total CPU time (includes all file I/O but may not include background Oracle

CPU time)

For example:

Space allocated for bind array:              65336 bytes (64 rows)
Space allocated for memory less bind array:  6470 bytes

Total logical records skipped:          0
Total logical records read:             7
Total logical records rejected:         0
Total logical records discarded:        0

Run began on Mon Nov 26 10:46:53 1990
Run ended on Mon Nov 26 10:47:17 1990

Elapsed time was:     00:00:15.62
CPU time was:         00:00:07.76

Oracle Statistics That Are Logged
The statistics that are reported to the log file vary, depending on the load type.

■ For conventional loads and direct loads of a nonpartitioned table, statistics

reporting is unchanged from Oracle7.

■ For direct loads of a partitioned table, a per-partition statistics section will be

printed after the (Oracle7) table-level statistics section.

■ For a single partition load, the partition name will be included in the table-level

statistics section.
SQL*Loader: Log File Reference 7-5



Summary Statistics
Statistics for Loading a Single Partition
The following statistics are logged when a single partition is loaded:

■ The table column description includes the partition name.

■ Error messages include the partition name.

■ Statistics listings include the partition name.

Statistics for Loading a Table
The following statistics are logged when a table is loaded:

■ Direct path load of a partitioned table reports per-partition statistics.

■ Conventional path load cannot report per-partition statistics.

■ For loading a nonpartitioned table, stats are unchanged from Oracle7.

For conventional loads and direct loads of a nonpartitioned table, statistics

reporting is unchanged from Oracle7.

If media recovery is not enabled, the load is not logged. That is, media recovery

disabled overrides the request for a logged operation.
7-6 Oracle8i Utilities



SQL*Loader: Conventional and Direct Path L
8

SQL*Loader: Conventional and Direct Path

Loads

This chapter describes SQL*Loader’s conventional and direct path load methods.

The following topics are covered:

■ Data Loading Methods

■ Using Direct Path Load

■ Maximizing Performance of Direct Path Loads

■ Avoiding Index Maintenance

■ Direct Loads, Integrity Constraints, and Triggers

■ Parallel Data Loading Models

■ General Performance Improvement Hints

For an example of loading with using the direct path load method, see Case 6:

Loading Using the Direct Path Load Method on page 4-25. The other cases use the

conventional path load method.
oads 8-1



Data Loading Methods
Data Loading Methods
SQL*Loader provides two methods for loading data:

■ Conventional Path Load

■ Direct Path Load

A conventional path load executes SQL INSERT statements to populate tables in an

Oracle database. A direct path load eliminates much of the Oracle database

overhead by formatting Oracle data blocks and writing the data blocks directly to

the database files. A direct load, therefore, does not compete with other users for

database resources, so it can usually load data at near disk speed. Certain

considerations inherent to this method of access to database files, such as

restrictions, security, and backup implications, are discussed in this chapter.

Conventional Path Load
Conventional path load (the default) uses the SQL INSERT statement and a bind

array buffer to load data into database tables. This method is used by all Oracle

tools and applications.

When SQL*Loader performs a conventional path load, it competes equally with all

other processes for buffer resources. This can slow the load significantly. Extra

overhead is added as SQL commands are generated, passed to Oracle, and

executed.

Oracle looks for partially filled blocks and attempts to fill them on each insert.

Although appropriate during normal use, this can slow bulk loads dramatically.

Conventional Path Load of a Single Partition
By definition, a conventional path load uses SQL INSERT statements. During a

conventional path load of a single partition, SQL*Loader uses the

partition-extended syntax of the INSERT statement, which has the following form:

INSERT INTO TABLE T partition (P) VALUES ...

The SQL layer of the Oracle kernel determines if the row being inserted maps to the

specified partition. If the row does not map to the partition, the row is rejected, and

the loader log file records an appropriate error message.
8-2 Oracle8i Utilities



Data Loading Methods
When to Use a Conventional Path Load
If load speed is most important to you, you should use direct path load because it is

faster than conventional path load. However, certain restrictions on direct path

loads may require you to use a conventional path load. You should use a

conventional path load in the following situations:

■ When accessing an indexed table concurrently with the load, or when applying

inserts or updates to a nonindexed table concurrently with the load

To use a direct path load (with the exception of parallel loads), SQL*Loader

must have exclusive write access to the table and exclusive read/write access to

any indexes.

■ When loading data with SQL*Net across heterogeneous platforms

You cannot load data using a direct path load over Net8 unless both systems

belong to the same family of computers, and both are using the same character

set. Even then, load performance can be significantly impaired by network

overhead.

■ When loading data into a clustered table

A direct path load does not support loading of clustered tables.

■ When loading a relatively small number of rows into a large indexed table

During a direct path load, the existing index is copied when it is merged with

the new index keys. If the existing index is very large and the number of new

keys is very small, then the index copy time can offset the time saved by a direct

path load.

■ When loading a relatively small number of rows into a large table with

referential and column-check integrity constraints

Because these constraints cannot be applied to rows loaded on the direct path,

they are disabled for the duration of the load. Then they are applied to the

whole table when the load completes. The costs could outweigh the savings for

a very large table and a small number of new rows.

■ When you want to apply SQL functions to data fields

SQL functions are not available during a direct path load.

Direct Path Load
Instead of filling a bind array buffer and passing it to Oracle with a SQL INSERT

command, a direct path load parses the input data according to the description
SQL*Loader: Conventional and Direct Path Loads 8-3



Data Loading Methods
given in the loader control file, converts the data for each input field to its

corresponding Oracle column datatype, and builds a column array structure (an

array of <length, data> pairs).

SQL*Loader then uses the column array structure to format Oracle data blocks and

build index keys. The newly formatted database blocks are then written directly to

the database (multiple blocks per I/O request using asynchronous writes if the host

platform supports asynchronous I/O).

Internally, multiple buffers are used for the formatted blocks. While one buffer is

being filled, one or more buffers are being written if asynchronous I/O is available

on the host platform. Overlapping computation with I/O increases load

performance.

Figure 8–1 shows how conventional and direct path loads perform database writes.
8-4 Oracle8i Utilities



Data Loading Methods
Figure 8–1 Database Writes on Direct Path and Conventional Path

RecordWrite Database
Block

SQL*Loader

Database

Oracle Server

Direct
Path

SQL*Loader

Conventional
Path

User Processes

Generate SQL
Commands

Generate SQL
Commands

SQL Command Processing

Space Management

Get new extents
Adjust high water mark

Find partial blocks
Fill partial blocks

Buffer Cache Management
- Manage queues
- Resolve contention Buffer cache

Read Database
Blocks

Write Database
Blocks
SQL*Loader: Conventional and Direct Path Loads 8-5



Data Loading Methods
Direct Path Load of a Partitioned or Subpartitioned Table
When loading a partitioned or subpartitioned table, SQL*Loader partitions the rows

and maintains indexes (which can also be partitioned). Note that a direct path load

of a partitioned or subpartitioned table can be quite resource-intensive for tables

with many partitions or subpartitions.

Direct Path Load of a Single Partition or Subpartition
When loading a single partition of a partitioned or subpartitioned table,

SQL*Loader partitions the rows and rejects any rows that do not map to the

partition or subpartition specified in the SQL*Loader control file. Local index

partitions that correspond to the data partition or subpartition being loaded are

maintained by SQL*Loader. Global indexes are not maintained on single partition

or subpartition direct path loads. During a direct path load of a single partition,

SQL*Loader uses the partition-extended syntax of the LOAD statement, which has

the following form:

LOAD INTO TABLE T partition (P) VALUES ...

or

LOAD INTO TABLE T subpartition (P) VALUES ...

While loading a partition of a partitioned or subpartitioned table, DML operations

on, and direct path loads of, other partitions in the table are allowed.

Although a direct path load minimizes database processing, several calls to the

Oracle database server are required at the beginning and end of the load to initialize

and finish the load, respectively. Also, certain DML locks are required during load

initialization, and are released when the load completes. The following operations

occur during the load: index keys are built and put into a sort, and space

management routines are used to get new extents when needed and to adjust the

upper boundary (high-water mark) for a data save point. See Data Saves on

page 8-12 for information on adjusting the upper boundary.

Advantages of a Direct Path Load
A direct path load is faster than the conventional path for the following reasons:

■ Partial blocks are not used, so no reads are needed to find them and fewer

writes are performed.

■ SQL*Loader need not execute any SQL INSERT commands; therefore, the

processing load on the Oracle database is reduced.
8-6 Oracle8i Utilities



Data Loading Methods
■ SQL*Loader does not use the bind-array buffer. Formatted database blocks are

written directly.

■ A direct path load calls on Oracle to lock tables and indexes at the start of the

load and releases them when the load is finished. A conventional path load calls

Oracle once for each array of rows to process a SQL INSERT statement.

■ A direct path load uses multiblock asynchronous I/O for writes to the database

files.

■ During a direct path load, processes perform their own write I/O, instead of

using Oracle’s buffer cache. This minimizes contention with other Oracle users.

■ The sorted indexes option available during direct path loads allows you to

presort data using high-performance sort routines that are native to your

system or installation.

■ When a table to be loaded is empty, the presorting option eliminates the sort

and merge phases of index-building. The index is filled in as data arrives.

■ Protection against instance failure does not require redo log file entries during

direct path loads. Therefore, no time is required to log the load when:

– Oracle is operating in NOARCHIVELOG mode

– The UNRECOVERABLE option of the load is set to Y

– The object being loaded has the NOLOG attribute set

See Instance Recovery and Direct Path Loads on page 8-14.

When to Use a Direct Path Load
If none of the previous restrictions apply, you should use a direct path load when:

■ You have a large amount of data to load quickly. A direct path load can quickly

load and index large amounts of data. It can also load data into either an empty

or nonempty table.

■ You want to load data in PARALLEL for maximum performance. See Parallel

Data Loading Models on page 8-25.

■ You want to load data in a character set that cannot be supported in your

current session, or when the conventional conversion to the database character

set would cause errors.
SQL*Loader: Conventional and Direct Path Loads 8-7



Data Loading Methods
Restrictions on Using Direct Path Loads
In addition to the general load conditions described in Conventional Path Load

Versus Direct Path Load on page 3-14, the following conditions must be satisfied to

use the direct path load method:

■ Tables are not clustered.

■ Tables to be loaded do not have any active transactions pending.

To check for this condition, use the Enterprise Manager command MONITOR

TABLE to find the object ID for the tables you want to load. Then use the

command MONITOR LOCK to see if there are any locks on the tables.

■ You cannot have SQL strings in the control file.

The following features are not available with direct path load.

■ Loading object columns

■ Loading LOBs

■ Loading VARRAYs

■ Loading nested tables

■ Specifying OIDs for object tables with system-generated OIDs

■ Specifying SIDs

■ Loading REF columns

■ Loading BFILE columns

■ Physical records (set by the command-line option READSIZE) larger than 64k

Restrictions on a Direct Path Load of a Single Partition
In addition to the previously listed restrictions, loading a single partition has the

following restrictions:

■ The table that the partition is a member of cannot have any global indexes

defined on it.

■ Enabled referential and check constraints on the table that the partition is a

member of are not allowed.

■ Enabled triggers are not allowed.
8-8 Oracle8i Utilities



Data Loading Methods
Integrity Constraints
All integrity constraints are enforced during direct path loads, although not

necessarily at the same time. NOT NULL constraints are enforced during the load.

Records that fail these constraints are rejected.

UNIQUE constraints are enforced both during and after the load. A record that

violates a UNIQUE constraint is not rejected (the record is not available in memory

when the constraint violation is detected).

Integrity constraints that depend on other rows or tables, such as referential

constraints, are disabled before the direct path load and must be reenabled

afterwards. If REENABLE is specified, SQL*Loader can reenable them

automatically at the end of the load. When the constraints are reenabled, the entire

table is checked. Any rows that fail this check are reported in the specified error log.

See Direct Loads, Integrity Constraints, and Triggers on page 8-20.

Field Defaults on the Direct Path
DEFAULT column specifications defined in the database are not available when

loading on the direct path. Fields for which default values are desired must be

specified with the DEFAULTIF clause, described in DEFAULTIF Clause on

page 5-80. If a DEFAULTIF clause is not specified and the field is NULL, then a

NULL value is inserted into the database.

Loading into Synonyms
You can load data into a synonym for a table during a direct path load, but the

synonym must point directly to a table. It cannot be a synonym for a view or a

synonym for another synonym.

Exact Version Requirement
You can perform a SQL*Loader direct load only for databases of the same version.

For example, you cannot perform a SQL*Loader release 7.1.2 direct path load to

load data into an Oracle release 7.1.3 database.
SQL*Loader: Conventional and Direct Path Loads 8-9



Using Direct Path Load
Using Direct Path Load
This section explains how to use SQL*Loader’s direct path load.

Setting Up for Direct Path Loads
To prepare the database for direct path loads, you must run the setup script,

CATLDR.SQL, to create the necessary views. You need only run this script once for

each database you plan to do direct loads to. This script can be run during database

installation if you know then that you will be doing direct loads.

Specifying a Direct Path Load
To start SQL*Loader in direct load mode, set the parameter DIRECT to TRUE on the

command line or in the parameter file, if used, in the format:

DIRECT=TRUE

See Case 6: Loading Using the Direct Path Load Method on page 4-25 for an

example.

Building Indexes
During a direct path load, performance is improved by using temporary storage.

After each block is formatted, the new index keys are put to a sort (temporary)

segment. The old index and the new keys are merged at load finish time to create

the new index. The old index, sort (temporary) segment, and new index segment all

require storage until the merge is complete. Then the old index and temporary

segment are removed.

During a conventional path load, every time a row is inserted the index is updated.

This method does not require temporary storage space, but it does add processing

time.

The SINGLEROW Option
Performance on systems with limited memory can also be improved by using the

SINGLEROW option. For more information, see SINGLEROW Option on page 5-44.

Note: If, during a direct load, you have specified that the data is to be presorted

and the existing index is empty, a temporary segment is not required, and no

merge occurs—the keys are put directly into the index. See Maximizing

Performance of Direct Path Loads on page 8-16 for more information.
8-10 Oracle8i Utilities



Using Direct Path Load
When multiple indexes are built, the temporary segments corresponding to each

index exist simultaneously, in addition to the old indexes. The new keys are then

merged with the old indexes, one index at a time. As each new index is created, the

old index and the corresponding temporary segment are removed.

Index Storage Requirements
The formula for calculating the amount of space needed for storing the index itself

can be found in the description of how to manage database files in the Oracle8i
Administrator’s Guide. Remember that two indexes exist until the load is complete:

the old index and the new index.

Temporary Segment Storage Requirements
The amount of temporary segment space needed for storing the new index keys (in

bytes) can be estimated using the following formula:

1.3 * key_storage

where:

key_storage  = ( number_of_rows ) *
     ( 10 + sum_of_column_sizes  + number_of_columns  )

The columns included in this formula are the columns in the index. There is one

length byte per column, and 10 bytes per row are used for a ROWID and additional

overhead.

The constant 1.3 reflects the average amount of extra space needed for sorting. This

value is appropriate for most randomly ordered data. If the data arrives in exactly

opposite order, twice the key-storage space is required for sorting, and the value of

this constant would be 2.0. That is the worst case.

If the data is fully sorted, only enough space to store the index entries is required,

and the value of this constant reduces to 1.0. See Presorting Data for Faster Indexing

on page 8-16 for more information.

Indexes Left in Index Unusable State
SQL*Loader will leave indexes in Index Unusable state when the data segment being

loaded becomes more up-to-date than the index segments that index it.

Any SQL statement that tries to use an index that is in Index Unusable state returns

an error. The following conditions cause the direct path option to leave an index or

a partition of a partitioned index in Index Unusable state:
SQL*Loader: Conventional and Direct Path Loads 8-11



Using Direct Path Load
■ SQL*Loader runs out of space for the index, and cannot update the index.

■ The data is not in the order specified by the SORTED INDEXES clause.

■ There is an instance failure, or the Oracle shadow process fails while building

the index.

■ There are duplicate keys in a unique index.

■ Data save points are being used, and the load fails or is terminated by a

keyboard interrupt after a data save point occurred.

To determine if an index is in Index Unusable state, you can execute a simple query:

SELECT INDEX_NAME, STATUS
   FROM USER_INDEXES
   WHERE TABLE_NAME = ’ tablename ’;

To determine if an index partition is in unusable state,

SELECT INDEX_NAME,
       PARTITION_NAME,
       STATUS FROM USER_IND_PARTITIONS
       WHERE STATUS != ’ VALID’;

If you are not the owner of the table, then search ALL_INDEXES or DBA_INDEXES

instead of USER_INDEXES. For partitioned indexes, search ALL_IND_

PARTITIONS and DBA_IND_PARTITIONS instead of USER_IND_PARTITIONS.

Data Saves
You can use data saves to protect against loss of data due to instance failure. All data

loaded up to the last data save is protected against instance failure. To continue the

load after an instance failure, determine how many rows from the input file were

processed before the failure, then use the SKIP option to skip those processed rows.

If there were any indexes on the table, drop them before continuing the load, then

re-create them after the load. See Recovery on page 8-13 for more information on

media and instance recovery.

Note: Indexes are not protected by a data save, because SQL*Loader does not build

indexes until after data loading completes. (The only time indexes are built during

the load is when presorted data is loaded into an empty table, but these indexes are

also unprotected.)
8-12 Oracle8i Utilities



Using Direct Path Load
Using the ROWS Parameter
The parameter ROWS determines when data saves occur during a direct path load.

The value you specify for ROWS is the number of rows you want SQL*Loader to

read from the input file before saving inserts in the database.

The number of rows you specify for a data save is an approximate number. Direct

loads always act on full data buffers that match the format of Oracle database

blocks. So, the actual number of data rows saved is rounded up to a multiple of the

number of rows in a database block.

SQL*Loader always reads the number of rows needed to fill a database block.

Discarded and rejected records are then removed, and the remaining records are

inserted into the database. The actual number of rows inserted before a save is the

value you specify, rounded up to the number of rows in a database block, minus the

number of discarded and rejected records.

A data save is an expensive operation. The value for ROWS should be set high

enough so that a data save occurs once every 15 minutes or longer. The intent is to

provide an upper boundary (high-water mark) on the amount of work that is lost

when an instance failure occurs during a long-running direct path load. Setting the

value of ROWS to a small number adversely affects performance.

Data Save Versus Commit
In a conventional load, ROWS is the number of rows to read before a commit. A

direct load data save is similar to a conventional load commit, but it is not identical.

The similarities are as follows:

■ Data save will make the rows visible to other users.

■ Rows cannot be rolled back after a data save.

The major difference is that the indexes will be unusable (in Index Unusable state)

until the load completes.

Recovery
SQL*Loader provides full support for data recovery when using the direct path

option. There are two main types of recovery:

Media Recovery Recovery from the loss of a database file. You must be operating
in ARCHIVELOG mode to recover after you lose a database file.
SQL*Loader: Conventional and Direct Path Loads 8-13



Using Direct Path Load
See the Oracle8i Administrator’s Guide for more information about recovery.

Instance Recovery and Direct Path Loads
Because SQL*Loader writes directly to the database files, all rows inserted up to the

last data save will automatically be present in the database files if the instance is

restarted. Changes do not need to be recorded in the redo log file to make instance

recovery possible.

If an instance failure occurs, the indexes being built may be left in Index Unusable

state. Indexes that are Unusable must be rebuilt before using the table or partition.

See Indexes Left in Index Unusable State on page 8-11 for more information on how

to determine if an index has been left in Index Unusable state.

Media Recovery and Direct Path Loads
If redo log file archiving is enabled (you are operating in ARCHIVELOG mode),

SQL*Loader logs loaded data when using the direct path, making media recovery

possible. If redo log archiving is not enabled (you are operating in

NOARCHIVELOG mode), then media recovery is not possible.

To recover a database file that was lost while it was being loaded, use the same

method that you use to recover data loaded with the conventional path:

1. Restore the most recent backup of the affected database file.

2. Recover the tablespace using the RECOVER command. (See the Oracle8i
Operating System Backup and Recovery Guide for more information on the

RECOVER command.)

Loading LONG Data Fields
Data that is longer than SQL*Loader’s maximum buffer size can be loaded on the

direct path with either the PIECED option or by specifying the number of

READBUFFERS. This section describes those two options.

Instance Recovery Recover from a system failure in which in-memory data was
changed but lost due to the failure before it was written to disk.
Oracle can always recover from instance failures, even when
redo logs are not archived.
8-14 Oracle8i Utilities



Using Direct Path Load
Loading Data As PIECED
The pieced option can be used to load data in sections, provided the data is in the

last column of the logical record. The syntax for this specification is provided in

High-Level Syntax Diagrams on page 5-4.

Declaring a column as PIECED informs the direct path loader that the field may be

processed in pieces, one buffer at a time.

The following restrictions apply when declaring a column as PIECED:

■ This option is only valid on the direct path.

■ Only one field per table may be PIECED.

■ The PIECED field must be the last field in the logical record.

■ The PIECED field may not be used in any WHEN, NULLIF, or DEFAULTIF

clauses.

■ The PIECED field’s region in the logical record must not overlap with any other

field’s region.

■ The PIECED corresponding database column may not be part of the index.

■ It may not be possible to load a rejected record from the bad file if it contains a

PIECED field.

For example, a PIECED field could span 3 records. SQL*Loader loads the piece

from the first record and then reuses the buffer for the second buffer. After

loading the second piece, the buffer is reused for the third record. If an error is

then discovered, only the third record is placed in the bad file because the first

two records no longer exist in the buffer. As a result, the record in the bad file

would not be valid.

Using the READBUFFERS Keyword
For data that is not divided into separate sections, or not in the last column,

READBUFFERS can be specified. With READBUFFERS, a buffer transfer area can be

allocated that is large enough to hold the entire logical record at one time.

READBUFFERS specifies the number of buffers to use during a direct path load. (A

LONG datatype can span multiple buffers.) The default value is four buffers. If the

number of read buffers is too small, the following error results:

ORA-02374 ... No more slots for read buffer queue
SQL*Loader: Conventional and Direct Path Loads 8-15



Maximizing Performance of Direct Path Loads
Note: Do not specify a value for READBUFFERS unless it becomes necessary, as

indicated by ORA-2374. Values of READBUFFERS that are larger than

necessary do not enhance performance. Instead, higher values unnecessarily

increase system overhead.

Maximizing Performance of Direct Path Loads
You can control the time and temporary storage used during direct path loads.

To minimize time:

■ Preallocate storage space.

■ Presort the data.

■ Perform infrequent data saves.

■ Disable archiving of redo log files.

To minimize space:

■ When sorting data before the load, sort data on the index that requires the most

temporary storage space.

■ Avoid index maintenance during the load.

Preallocating Storage for Faster Loading
SQL*Loader automatically adds extents to the table if necessary, but this process

takes time. For faster loads into a new table, allocate the required extents when the

table is created.

To calculate the space required by a table, see the information about managing

database files in the Oracle8i Administrator’s Guide. Then use the INITIAL or

MINEXTENTS clause in the SQL CREATE TABLE statement to allocate the required

space.

Another approach is to size extents large enough so that extent allocation is

infrequent.

Presorting Data for Faster Indexing
You can improve the performance of direct path loads by presorting your data on

indexed columns. Presorting minimizes temporary storage requirements during the

load. Presorting also allows you to take advantage of high-performance sorting

routines that are optimized for your operating system or application.
8-16 Oracle8i Utilities



Maximizing Performance of Direct Path Loads
If the data is presorted and the existing index is not empty, then presorting

minimizes the amount of temporary segment space needed for the new keys. The

sort routine appends each new key to the key list.

Instead of requiring extra space for sorting, only space for the keys is needed. To

calculate the amount of storage needed, use a sort factor of 1.0 instead of 1.3. For

more information on estimating storage requirements, see Temporary Segment

Storage Requirements on page 8-11.

If presorting is specified and the existing index is empty, then maximum efficiency

is achieved. The sort routines are completely bypassed, with the merge phase of

index creation. The new keys are simply inserted into the index. Instead of having a

temporary segment and new index existing simultaneously with the empty, old

index, only the new index exists. So, temporary storage is not required, and time is

saved.

SORTED INDEXES Clause
The SORTED INDEXES clause identifies the indexes on which the data is presorted.

This clause is allowed only for direct path loads. See High-Level Syntax Diagrams

on page 5-4 for the syntax, and see Case 6: Loading Using the Direct Path Load

Method on page 4-25 for an example.

Generally, you specify only one index in the SORTED INDEXES clause because data

that is sorted for one index is not usually in the right order for another index. When

the data is in the same order for multiple indexes, however, all indexes can be

specified at once.

All indexes listed in the SORTED INDEXES clause must be created before you start

the direct path load.

Unsorted Data
If you specify an index in the SORTED INDEXES clause, and the data is not sorted

for that index, then the index is left in Index Unusable state at the end of the load.

The data is present, but any attempt to use the index results in an error. Any index

that is left in Index Unusable state must be rebuilt after the load.

Multiple-Column Indexes
If you specify a multiple-column index in the SORTED INDEXES clause, the data

should be sorted so that it is ordered first on the first column in the index, next on

the second column in the index, and so on.
SQL*Loader: Conventional and Direct Path Loads 8-17



Maximizing Performance of Direct Path Loads
For example, if the first column of the index is city, and the second column is last

name; then the data should be ordered by name within each city, as in the following

list:

Albuquerque      Adams
Albuquerque      Hartstein
Albuquerque      Klein
...         ...
Boston           Andrews
Boston           Bobrowski
Boston           Heigham
...              ...

Choosing the Best Sort Order
For the best overall performance of direct path loads, you should presort the data

based on the index that requires the most temporary segment space. For example, if

the primary key is one numeric column, and the secondary key consists of three text

columns, then you can minimize both sort time and storage requirements by

presorting on the secondary key.

To determine the index that requires the most storage space, use the following

procedure:

1. For each index, add up the widths of all columns in that index.

2. For a single-table load, pick the index with the largest overall width.

3. For each table in a multiple table load, identify the index with the largest

overall width for each table. If the same number of rows are to be loaded into

each table, then again pick the index with the largest overall width. Usually, the

same number of rows are loaded into each table.

4. If a different number of rows are to be loaded into the indexed tables in a

multiple table load, then multiply the width of each index identified in step 3

by the number of rows that are to be loaded into that index. Multiply the

number of rows to be loaded into each index by the width of that index and

pick the index with the largest result.

Infrequent Data Saves
Frequent data saves resulting from a small ROWS value adversely affect the

performance of a direct path load. Because direct path loads can be many times

faster than conventional loads, the value of ROWS should be considerably higher

for a direct load than it would be for a conventional load.
8-18 Oracle8i Utilities



Maximizing Performance of Direct Path Loads
During a data save, loading stops until all of SQL*Loader’s buffers are successfully

written. You should select the largest value for ROWS that is consistent with safety.

It is a good idea to determine the average time to load a row by loading a few

thousand rows. Then you can use that value to select a good value for ROWS.

For example, if you can load 20,000 rows per minute, and you do not want to repeat

more than 10 minutes of work after an interruption, then set ROWS to be 200,000

(20,000 rows/minute * 10 minutes).

Minimizing Use of the Redo Log
One way to speed a direct load dramatically is to minimize use of the redo log.

There are three ways to do this. You can disable archiving, you can specify that the

load is UNRECOVERABLE, or you can set the NOLOG attribute of the objects

being loaded. This section discusses all methods.

Disabling Archiving
If media recovery is disabled, direct path loads do not generate full image redo.

Specifying UNRECOVERABLE
To save time and space in the redo log file, use the UNRECOVERABLE keyword

when you load data. An UNRECOVERABLE load does not record loaded data in

the redo log file; instead, it generates invalidation redo.

The UNRECOVERABLE keyword applies to all objects loaded during the load

session (both data and index segments). Therefore, media recovery is disabled for

the loaded table, although database changes by other users may continue to be

logged.

Note: Because the data load is not logged, you may want to make a backup of

the data after loading.

If media recovery becomes necessary on data that was loaded with the

UNRECOVERABLE keyword, the data blocks that were loaded are marked as

logically corrupted.

To recover the data, drop and re-create the data. It is a good idea to do backups

immediately after the load to preserve the otherwise unrecoverable data.

By default, a direct path load is RECOVERABLE. See SQL*Loader’s Data Definition

Language (DDL) Syntax Diagrams on page 5-3 for information on RECOVERABLE

and UNRECOVERABLE.
SQL*Loader: Conventional and Direct Path Loads 8-19



Avoiding Index Maintenance
Setting the NOLOG Attribute
If a data or index segment has the NOLOG attribute set, then full image redo

logging is disabled for that segment (invalidation redo is generated.) Use of the

NOLOG attribute allows a finer degree of control over the objects that are not

logged.

Avoiding Index Maintenance
For both the conventional path and the direct path, SQL*Loader maintains all

existing indexes for a table.

Index maintenance can be avoided by using one of the following methods:

■ Drop the indexes prior to the beginning of the load.

■ Mark selected indexes or index partitions as Index Unusable prior to the

beginning of the load and use the SKIP_UNUSABLE_INDEXES parameter.

■ Use the SKIP_INDEX_MAINTENANCE parameter (direct path only, use with

caution.)

 Avoiding index maintenance minimizes the amount of space required during a

direct path load, for the following reasons:

■ You can build indexes one at a time, reducing the amount of sort (temporary)

segment space that would otherwise be needed for each index.

■ Only one index segment exists when an index is built, instead of the three

segments that temporarily exist when the new keys are merged into the old

index to make the new index.

Avoiding index maintenance is quite reasonable when the number of rows to be

loaded is large compared to the size of the table. But if relatively few rows are

added to a large table, then the time required to resort the indexes may be excessive.

In such cases, it is usually better to use the conventional path load method, or to use

the SINGLEROW option of SQL*Loader. For more information, see SINGLEROW

Option on page 5-44.

Direct Loads, Integrity Constraints, and Triggers
With the conventional path load method, arrays of rows are inserted with standard

SQL INSERT statements—integrity constraints and insert triggers are automatically

applied. But when loading data with the direct path, some integrity constraints and
8-20 Oracle8i Utilities



Direct Loads, Integrity Constraints, and Triggers
all database triggers are disabled. This section discusses the implications of using

direct path loads with respect to these features.

Integrity Constraints
During a direct path load, some integrity constraints are automatically disabled.

Others are not. For a description of the constraints, see the information on

maintaining data integrity in the Oracle8i Application Developer’s Guide -
Fundamentals.

Enabled Constraints
The constraints that remain in force are:

■ Not null

■ Unique

■ Primary keys (unique-constraints on not-null columns)

Not Null constraints are checked at column array build time. Any row that violates

this constraint is rejected. Unique constraints are verified when indexes are rebuilt at

the end of the load. The index will be left in Index Unusable state if a violation is

detected. See Indexes Left in Index Unusable State on page 8-11.

Disabled Constraints
The following constraints are disabled:

■ Check constraints

■ Referential constraints (foreign keys)

Reenable Constraints
When the load completes, the integrity constraints will be reenabled automatically

if the REENABLE clause is specified. The syntax for this clause is as follows:

The optional keyword DISABLE_CONSTRAINTS is provided for readability. If the

EXCEPTIONS clause is included, the table must already exist, and you must be able

to insert into it. This table contains the ROWIDs of all rows that violated one of the

REENABLE
DISABLE_CONSTRAINTS EXCEPTIONS tablename
SQL*Loader: Conventional and Direct Path Loads 8-21



Direct Loads, Integrity Constraints, and Triggers
integrity constraints. It also contains the name of the constraint that was violated.

See Oracle8i SQL Reference for instructions on how to create an exceptions table.

If the REENABLE clause is not used, then the constraints must be reenabled

manually. All rows in the table are verified then. If Oracle finds any errors in the

new data, error messages are produced. The names of violated constraints and the

ROWIDs of the bad data are placed in an exceptions table, if one is specified. See

ENABLE in Oracle8i SQL Reference.

The SQL*Loader log file describes the constraints that were disabled, the ones that

were reenabled, and what error, if any, prevented reenabling of each constraint. It

also contains the name of the exceptions table specified for each loaded table.

Note: As long as bad data remains in the table, the integrity constraint cannot

be successfully reenabled.

Suggestion: Because referential integrity must be reverified for the entire table,

performance may be improved by using the conventional path, instead of the

direct path, when a small number of rows are to be loaded into a very large

table.

Database Insert Triggers
Table insert triggers are also disabled when a direct path load begins. After the rows

are loaded and indexes rebuilt, any triggers that were disabled are automatically

reenabled. The log file lists all triggers that were disabled for the load. There should

not be any errors reenabling triggers.

Unlike integrity constraints, insert triggers are not reapplied to the whole table

when they are enabled. As a result, insert triggers do not fire for any rows loaded on

the direct path. When using the direct path, the application must ensure that any

behavior associated with insert triggers is carried out for the new rows.

Replacing Insert Triggers with Integrity Constraints
Applications commonly use insert triggers to implement integrity constraints. Most

of these application insert triggers are simple enough that they can be replaced with

Oracle’s automatic integrity constraints.

When Automatic Constraints Cannot Be Used
Sometimes an insert trigger cannot be replaced with Oracle’s automatic integrity

constraints. For example, if an integrity check is implemented with a table lookup in

an insert trigger, then automatic check constraints cannot be used, because the
8-22 Oracle8i Utilities



Direct Loads, Integrity Constraints, and Triggers
automatic constraints can only reference constants and columns in the current row.

This section describes two methods for duplicating the effects of such a trigger.

Preparation
Before either method can be used, the table must be prepared. Use the following

general guidelines to prepare the table:

1. Before the load, add a 1-character column to the table that marks rows as "old

data" or "new data."

2. Let the value of null for this column signify "old data," because null columns do

not take up space.

3. When loading, flag all loaded rows as "new data" with SQL*Loader’s

CONSTANT clause.

After following this procedure, all newly loaded rows are identified, making it

possible to operate on the new data without affecting the old rows.

Using an Update Trigger
Generally, you can use a database update trigger to duplicate the effects of an insert

trigger. This method is the simplest. It can be used whenever the insert trigger does

not raise any exceptions.

1. Create an update trigger that duplicates the effects of the insert trigger.

Copy the trigger. Change all occurrences of "new.column_name" to "old.column_

name".

2. Replace the current update trigger, if it exists, with the new one.

3. Update the table, changing the "new data" flag to null, thereby firing the update

trigger.

4. Restore the original update trigger, if there was one.

Note: Depending on the behavior of the trigger, it may be necessary to have

exclusive update access to the table during this operation, so that other users do not

inadvertently apply the trigger to rows they modify.

Duplicating the Effects of Exception Conditions
If the insert trigger can raise an exception, then more work is required to duplicate

its effects. Raising an exception would prevent the row from being inserted into the
SQL*Loader: Conventional and Direct Path Loads 8-23



Direct Loads, Integrity Constraints, and Triggers
table. To duplicate that effect with an update trigger, it is necessary to mark the

loaded row for deletion.

The "new data" column cannot be used as a delete flag, because an update trigger

cannot modify the columns that caused it to fire. So another column must be added

to the table. This column marks the row for deletion. A null value means the row is

valid. Whenever the insert trigger would raise an exception, the update trigger can

mark the row as invalid by setting a flag in the additional column.

Summary: When an insert trigger can raise an exception condition, its effects can be

duplicated by an update trigger, provided:

■ Two columns (which are usually null) are added to the table

■ The table can be updated exclusively (if necessary)

Using a Stored Procedure
The following procedure always works, but it is more complex to implement. It can

be used when the insert trigger raises exceptions. It does not require a second

additional column; and, because it does not replace the update trigger, and it can be

used without exclusive access to the table.

1. Do the following to create a stored procedure that duplicates the effects of the

insert trigger. (For implementation details, see PL/SQL User’s Guide and Reference
for more information about cursor management.)

■ Declare a cursor for the table, selecting all new rows.

■ Open the cursor and fetch rows, one at a time, in a processing loop.

■ Perform the operations contained in the insert trigger.

■ If the operations succeed, change the "new data" flag to null.

■ If the operations fail, change the "new data" flag to "bad data."

2. Execute the stored procedure using an administration tool such as SQL*Plus.

3. After running the procedure, check the table for any rows marked "bad data".

4. Update or remove the bad rows.

5. Reenable the insert trigger.

Permanently Disabled Triggers and Constraints
SQL*Loader needs to acquire several locks on the table to be loaded to disable

triggers and constraints. If a competing process is enabling triggers or constraints at
8-24 Oracle8i Utilities



Parallel Data Loading Models
the same time that SQL*Loader is trying to disable them for that table, then

SQL*Loader may not be able to acquire exclusive access to the table.

SQL*Loader attempts to handle this situation as gracefully as possible. It attempts

to reenable disabled triggers and constraints before exiting. However, the same

table-locking problem that made it impossible for SQL*Loader to continue may also

have made it impossible for SQL*Loader to finish enabling triggers and constraints.

In such cases, triggers and constraints will remain permanently disabled until they

are manually enabled.

Although such a situation is unlikely, it is possible. The best way to prevent it is to

make sure that no applications are running that could enable triggers or constraints

for the table, while the direct load is in progress.

If a direct load is aborted due to failure to acquire the proper locks, carefully check

the log. It will show every trigger and constraint that was disabled, and each

attempt to reenable them. Any triggers or constraints that were not reenabled by

SQL*Loader should be manually enabled with the ENABLE clause described in

Oracle8i SQL Reference.

Alternative: Concurrent Conventional Path Loads
If triggers or integrity constraints pose a problem, but you want faster loading, you

should consider using concurrent conventional path loads. That is, use multiple

load sessions executing concurrently on a multiple-CPU system. Split the input

datafiles into separate files on logical record boundaries, and then load each such

input datafile with a conventional path load session. The resulting load has the

following attributes:

■ It is faster than a single conventional load on a multiple-CPU system, but

probably not as fast as a direct load.

■ Triggers fire, integrity constraints are applied to the loaded rows, and indexes

are maintained using the standard DML execution logic.

Parallel Data Loading Models
This section discusses three basic models of concurrency that can be used to

minimize the elapsed time required for data loading:

■ Concurrent conventional path loads

■ Intersegment concurrency with direct path load method

■ Intrasegment concurrency with direct path load method
SQL*Loader: Conventional and Direct Path Loads 8-25



Parallel Data Loading Models
Note: Parallel loading is available only with the Enterprise Edition. For more

information about the differences between Oracle8i and the Oracle8i Enterprise

Edition, see Getting to Know Oracle8i.

Concurrent Conventional Path Loads
Using multiple conventional path load sessions executing concurrently is discussed

in Alternative: Concurrent Conventional Path Loads on page 8-25. This technique

can be used to load the same or different objects concurrently with no restrictions.

Intersegment Concurrency with Direct Path
Intersegment concurrency can be used for concurrent loading of different objects.

This technique can be applied for concurrent direct path loading of different tables,

or to concurrent direct path loading of different partitions of the same table.

When direct path loading a single partition, the following items should be

considered:

■ Local indexes can be maintained by the load.

■ Global indexes cannot be maintained by the load.

■ Referential integrity and check constraints must be disabled.

■ Triggers must be disabled.

■ The input data should be partitioned (otherwise many records will be rejected,

which adversely affects performance).

Intrasegment Concurrency with Direct Path
SQL*Loader permits multiple, concurrent sessions to perform a direct path load

into the same table, or into the same partition of a partitioned table. Multiple

SQL*Loader sessions improve the performance of a direct path load given the

available resources on your system.

This method of data loading is enabled by setting both the DIRECT and the

PARALLEL options to TRUE, and is often referred to as a parallel direct path load.

It is important to realize that parallelism is user managed. Setting the PARALLEL

option to TRUE only allows multiple concurrent direct path load sessions.
8-26 Oracle8i Utilities



Parallel Data Loading Models
Restrictions on Parallel Direct Path Loads
The following restrictions are enforced on parallel direct path loads:

■ Neither local or global indexes can be maintained by the load.

■ Referential integrity and check constraints must be disabled.

■ Triggers must be disabled.

■ Rows can only be appended. REPLACE, TRUNCATE, and INSERT cannot be

used (this is due to the individual loads not being coordinated.) If you must

truncate a table before a parallel load, you must do it manually.

If a parallel direct path load is being applied to a single partition, you should

partition the data first (otherwise, the overhead of record rejection due to a partition

mismatch slows down the load).

Initiating Multiple SQL*Loader Sessions
Each SQL*Loader session takes a different datafile as input. In all sessions executing

a direct load on the same table, you must set PARALLEL to TRUE. The syntax is:

PARALLEL can be specified on the command line or in a parameter file. It can also

be specified in the control file with the OPTIONS clause.

For example, to invoke three SQL*Loader direct path load sessions on the same

table, you would execute the following commands at the operating system prompt:

SQLLOAD USERID=SCOTT/TIGER CONTROL=LOAD1.CTL DIRECT=TRUE PARALLEL=TRUE
SQLLOAD USERID=SCOTT/TIGER CONTROL=LOAD2.CTL DIRECT=TRUE PARALLEL=TRUE
SQLLOAD USERID=SCOTT/TIGER CONTROL=LOAD3.CTL DIRECT=TRUE PARALLEL=TRUE

The previous commands must be executed in separate sessions, or if permitted on

your operating system, as separate background jobs. Note the use of multiple

control files. This allows you to be flexible in specifying the files to use for the direct

path load.

Note: Indexes are not maintained during a parallel load. Any indexes must be

created or re-created manually after the load completes. You can use the parallel

PARALLEL =
TRUE

FALSE
SQL*Loader: Conventional and Direct Path Loads 8-27



Parallel Data Loading Models
index creation or parallel index rebuild feature to speed the building of large

indexes after a parallel load.

When you perform a parallel load, SQL*Loader creates temporary segments for

each concurrent session and then merges the segments upon completion. The

segment created from the merge is then added to the existing segment in the

database above the segment’s high-water mark. The last extent used of each

segment for each loader session is trimmed of any free space before being combined

with the other extents of the SQL*Loader session.

Options Keywords for Parallel Direct Path Loads
When using parallel direct path loads, options are available for specifying attributes

of the temporary segment to be allocated by the loader.

Specifying Temporary Segments
It is recommended that each concurrent direct path load session use files located on

different disks to allow for the maximum I/O throughput. Using the FILE keyword

of the OPTIONS clause, you can specify the filename of any valid datafile in the

tablespace of the object (table or partition) being loaded.

For example:

LOAD DATA
INFILE ’load1.dat’
INSERT INTO TABLE emp
OPTIONS(FILE=’/dat/data1.dat’)
(empno POSITION(01:04) INTEGER EXTERNAL NULLIF empno=BLANKS
...

You could also specify the FILE parameter on the command line of each concurrent

SQL*Loader session, but then it would apply globally to all objects being loaded

with that session.

Using the FILE Keyword The FILE keyword in Oracle has the following restrictions for

direct path parallel loads:

1. For nonpartitioned tables: The specified file must be in the tablespace of the

table being loaded.

2. For partitioned tables, single-partition load: The specified file must be in the

tablespace of the partition being loaded.
8-28 Oracle8i Utilities



Parallel Data Loading Models
3. For partitioned tables, full-table load: The specified file must be in the

tablespace of all partitions being loaded; that is, all partitions must be in the

same tablespace.

Using the STORAGE Keyword The STORAGE keyword can be used to specify the

storage attributes of the temporary segments allocated for a parallel direct path

load. If the STORAGE keyword is not used, the storage attributes of the segment

containing the object (table, partition) being loaded are used.

OPTIONS(STORAGE=(MINEXTENTS n1 MAXEXTENTS n2 INITIAL n3[K|M]
NEXT n4[K|M] PCTINCREASE n5)

For example, the following STORAGE clause could be used:

OPTIONS (STORAGE=(INITIAL 100M NEXT 100M PCTINCREASE 0))

The STORAGE keyword can only be used in the control file, and not on the

command line. Use of the STORAGE keyword to specify anything other than

PCTINCREASE of 0, and INITIAL or NEXT values is strongly discouraged (and

may be silently ignored in the future).

Enabling Constraints After a Parallel Direct Path Load
Constraints and triggers must be enabled manually after all data loading is

complete.

Because each SQL*Loader session can attempt to reenable constraints on a table

after a direct path load, there is a danger that one session may attempt to reenable a

constraint before another session is finished loading data. In this case, the first

session to complete the load will be unable to enable the constraint because the

remaining sessions possess share locks on the table.

Because there is a danger that some constraints might not be reenabled after a direct

path load, you should check the status of the constraint after completing the load to

ensure that it was enabled properly.

PRIMARY KEY and UNIQUE KEY constraints
PRIMARY KEY and UNIQUE KEY constraints create indexes on a table when they

are enabled, and subsequently can take a significantly long time to enable after a

direct path loading session if the table is very large. You should consider enabling

these constraints manually after a load (and not specifying the automatic enable

feature). This allows you to manually create the required indexes in parallel to save

time before enabling the constraint.
SQL*Loader: Conventional and Direct Path Loads 8-29



General Performance Improvement Hints
See Oracle8i Tuning for more information about creating indexes in parallel.

General Performance Improvement Hints
This section provides a few guidelines that can help to improve the performance of

a load. If you must use a certain feature to load your data, by all means do so. But if

you have control over the format of the data to be loaded, you can use the following

hints to improve load performance:

1. Make logical record processing efficient:

■ Use one-to-one mapping of physical records to logical records (avoid

continueif, concatenate)

■ Make it easy for the software to figure out physical record boundaries. Use

the file processing option string "FIX nnn" or "VAR." If you use the default

(stream mode) on most platforms (for example, UNIX and NT) the loader

must scan each physical record for the record terminator (newline

character).

2. Make field setting efficient. Field setting is the process of mapping fields in the

datafile to their corresponding columns in the table being loaded. The mapping

function is controlled by the description of the fields in the control file. Field

setting (along with data conversion) is the biggest consumer of CPU cycles for

most loads.

■ Avoid delimited fields; use positional fields. If you use delimited fields, the

loader must scan the input data to find the delimiters. If you use positional

fields, field setting becomes simple pointer arithmetic (very fast).

■ Do not trim whitespace if you do not need to (use PRESERVE BLANKS).

3. Make conversions efficient. SQL*Loader performs character set conversion and

datatype conversion for you. Of course, the quickest conversion is no

conversion.

■ Avoid character set conversions if you can. The loader supports four

character sets: a) client character set (NLS_LANG of the client sqlldr

process); b) datafile character set (usually the same as the client character

set); c) server character set; and d) server national character set.

Performance is optimized if all character sets are the same. For direct path

loads, it is best if the datafile character set and the server character set are

the same. If the character sets are the same, character set conversion buffers

are not allocated.
8-30 Oracle8i Utilities



General Performance Improvement Hints
■ Use single-byte character sets if you can.

4. Use direct path loads.

5. Use the SORTED INDEXES clause.

6. Avoid unnecessary NULLIF and DEFAULTIF clauses. Each clause must be

evaluated on each column that has a clause associated with it for every row

loaded.

7. Use parallel direct path loads and parallel index create when you can.
SQL*Loader: Conventional and Direct Path Loads 8-31



General Performance Improvement Hints
8-32 Oracle8i Utilities



Part III

Offline Database Verification Utility





DBVERIFY: Offline Database Verification 
9

DBVERIFY: Offline Database Verification

Utility

This chapter describes how to use DBVERIFY, the offline database verification

utility. The following topics about DBVERIFY are included:

■ Restrictions

■ Syntax

■ Sample DBVERIFY Output

DBVERIFY is an external command-line utility that performs a physical data

structure integrity check on an offline database. It can be used against backup files

and online files (or pieces of files). You use DBVERIFY primarily when you need to

ensure that a backup database (or datafile) is valid before it is restored or as a

diagnostic aid when you have encountered data corruption problems.

Because DBVERIFY can be run against an offline database, integrity checks are

significantly faster.

Additional Information: The name and location of DBVERIFY is dependent on

your operating system (for example, dbv  on Sun/Sequent systems). See your

operating system-specific Oracle documentation for the location of DBVERIFY for

your system.

Restrictions
DBVERIFY checks are limited to cache-managed blocks (that is, data blocks).

Because DBVERIFY is only for use with datafiles, it will not work against control

files or redo logs.
Utility 9-1



Syntax
Syntax

Parameters

FILE The name of the database file to verify.

START The starting block address to verify. Specify block addresses in
Oracle blocks (as opposed to operating system blocks). If you do
not specify START, DBVERIFY defaults to the first block in the
file.

END The ending block address to verify. If you do not specify END,
DBVERIFY defaults to the last block in the file.

BLOCKSIZE BLOCKSIZE is required only if the file to be verified has a
non-2kb block size. If you do not specify BLOCKSIZE for
non-2kb files, you will see the error DBV-00103.

LOGFILE Specifies the file to which logging information should be
written. The default sends output to the terminal display.

FEEDBACK Specifying the keyword FEEDBACK causes DBVERIFY to send
a progress display to the terminal in the form of a single dot "."
for n number of pages verified during the DBVERIFY run. If
n = 0, there will be no progress display.

HELP Provides onscreen help.

PARFILE Specifies the name of the parameter file to use. You can store
various values for DBVERIFY parameters in flat files. This
allows you to customize parameter files to handle different types
of datafiles and to perform specific types of integrity checks on
datafiles.

dbv

FILE = filename

START

END
= block_address

BLOCKSIZE = integer

LOGFILE = filename

FEEDBACK

HELP
=

Y

N

PARFILE = filename
9-2 Oracle8i Utilities



Sample DBVERIFY Output
Sample DBVERIFY Output
The following example shows how to get online help:

% dbv help=y

DBVERIFY: Release 7.3.1.0.0 - Wed Aug  2 09:14:36 1995

Copyright (c) Oracle Corporation 1979, 1994.  All rights reserved.
DBVERIFY: Offline Database Verification Utility 9-3



Sample DBVERIFY Output
Keyword   Description        (Default)
----------------------------------------------
FILE      File to Verify     (NONE)
START     Start Block        (First Block of File)
END       End Block          (Last Block of File)
BLOCKSIZE Logical Block Size (2048)
LOGFILE   Output Log         (NONE)

The following example is sample output of verification for the file t_db1.f.  The

feedback parameter has been given the value 100 to display one dot onscreen for

every 100 pages processed:

% dbv file=t_db1.f feedback=100

DBVERIFY: Release 7.3.1.0.0 - Wed Aug  2 09:15:04 1995

Copyright (c) Oracle Corporation 1979, 1994.  All rights reserved.

DBVERIFY - Verification starting : FILE = t_db1.f

................................................................................

DBVERIFY - Verification complete

Total Pages Examined         : 9216
Total Pages Processed (Data) : 2044
Total Pages Failing   (Data) : 0
Total Pages Processed (Index): 733
Total Pages Failing   (Index): 0
Total Pages Empty            : 5686
Total Pages Marked Corrupt   : 0

Total Pages Influx           : 0

Notes:

■ Pages = Blocks

■ Total Pages Examined = number of blocks in the file

■ Total Pages Processed = blocks that were verified (formatted blocks)
9-4 Oracle8i Utilities



Part IV

 Appendixes





SQL*Loader Reserved Wo
A

SQL*Loader Reserved Words

This appendix lists the words reserved for use by the Oracle utilities. It also explains

how to avoid problems that can arise from using reserved words as names for tables

and columns, which usually should not be named using reserved words.
rds A-1



Reserved Word List and Information
Reserved Word List and Information
Some languages and utilities have reserved words. The reserved words have special

meanings to that language or utility. Generally you should avoid naming your

tables and columns using words that are reserved by any of the languages or

utilities you are likely to use. Refer to the various language and reference manuals

and to this appendix for lists of reserved words.

Consult the Oracle8i SQL Reference for a list of words that are reserved by SQL.

Tables and columns that have SQL reserved words as their names must have those

names specified in double quotation marks.

Because the following words have special meanings for SQL*Loader, Oracle

Corporation recommends that you do not use them as names for tables or columns.

If you do use them, the names should be enclosed in double quotation marks.

AND APPEND BADDN

BADFILE BEGINDATA BFILE

BLANKS BLOCKSIZE BY

BYTEINT CHAR CHARACTERSET

COLUMN CONCATENATE CONSTANT

CONTINUE_LOAD CONTINUEIF COUNT

DATA DATE DECIMAL

DEFAULTIF DELETE DISABLED_CONSTRAINTS

DISCARDDN DISCARDFILE DISCARDMAX

DISCARDS DOUBLE ENCLOSED

EOF EXCEPTIONS EXTERNAL

FIELDS FILLER FIXED

FLOAT FORMAT GENERATED

GRAPHIC INDDN INDEXES

INFILE INSERT INTEGER

INTO LAST LOAD

LOBFILE LOG LONG

MAX MLSLABEL NESTED
A-2 Oracle8i Utilities



Reserved Word List and Information
NEXT NO NULLCOLS

NULLIF OBJECT OID

OPTIONALLY OPTIONS PART

PARTITION PIECED POSITION

PRESERVE RAW READBUFFERS

READSIZE RECLEN RECNUM

RECORD RECOVERABLE REENABLE

REF REPLACE RESUME

SDF SEQUENCE SID

SINGLEROW SKIP SMALLINT

SORTDEVT SORTED SORTNUM

SQL/DS STORAGE STREAM

SUBPARTITION SYSDATE TABLE

TERMINATED THIS TRAILING

TRUNCATE UNLOAD UNRECOVERABLE

USING VARCHAR VARCHARC

VARGRAPHIC VARIABLE VARRAW

VARRAWC VARRAY WHEN

WHITESPACE WORKDDN YES

ZONED
SQL*Loader Reserved Words A-3



Reserved Word List and Information
A-4 Oracle8i Utilities



DB2/DXT User No
B

DB2/DXT User Notes

This appendix describes differences between SQL*Loader DDL syntax and DB2

Load Utility/DXT control file syntax. The topics discussed include:

■ Using the DB2 RESUME Option

■ Inclusions for Compatibility

■ Restrictions

■ SQL*Loader Syntax with DB2-Compatible Statements
tes B-1



Using the DB2 RESUME Option
Using the DB2 RESUME Option
If the tables you are loading already contain data, you have three choices (shown in

Table B–1) for the disposition of that data.

The DB2 syntax for the RESUME clause is as follows:

RESUME  { YES | NO [ REPLACE ] }

Instead of the DB2 syntax for RESUME,  you may prefer to use the equivalent

SQL*Loader options. See Loading Data into Empty and Nonempty Tables on

page 5-32 for more details about the SQL*Loader options summarized in Table B–1.

In SQL*Loader you can use one RESUME clause to apply to all loaded tables by

placing the RESUME clause before any INTO TABLE clauses. Alternatively, you can

specify your RESUME options on a table-by-table basis by putting a RESUME

clause after the INTO TABLE specification. The RESUME option following a table

name will override one placed earlier in the file. The earlier RESUME applies to all

tables that do not have their own RESUME clause.

Inclusions for Compatibility
The IBM DB2 Load Utility contains certain elements that SQL*Loader does not use.

In DB2, sorted indexes are created using external files, and specifications for these

external files may be included in the load statement. For compatibility with the DB2

loader, SQL*Loader parses these options, but ignores them if they have no meaning

for Oracle. The syntactical elements described in the following section are allowed,

but ignored, by SQL*Loader.

Table B–1 DB2 Functions and Equivalent SQL*Loader Options

DB2 SQL*Loader Options Result

RESUME NO or no
RESUME clause

INSERT Data is loaded only if table is
empty. Otherwise an error is
returned.

RESUME YES APPEND New data is appended to existing
data in the table, if any.

RESUME NO
REPLACE

REPLACE New data replaces existing table
data, if any.
B-2 Oracle8i Utilities



Restrictions
LOG Statement
This statement is included for compatibility with DB2. It is parsed but ignored by

SQL*Loader. (This LOG option has nothing to do with the log file that SQL*Loader

writes.) DB2 uses the log file for error recovery, and it may or may not be written.

SQL*Loader relies on Oracle’s automatic logging, which may or may not be enabled

as a warm start option.

[ LOG { YES | NO } ]

WORKDDN Statement
This statement is included for compatibility with DB2. It is parsed but ignored by

SQL*Loader. In DB2, this statement specifies a temporary file for sorting.

[ WORKDDNfilename ]

SORTDEVT and SORTNUM Statements
SORTDEVT and SORTNUM are included for compatibility with DB2. These

statements are parsed but ignored by SQL*Loader. In DB2, these statements specify

the number and type of temporary data sets for sorting.

[ SORTDEVT device_type ]
[ SORTNUM n ]

DISCARD Specification
Multiple file handling requires that the DISCARD clauses (DISCARDDN and

DISCARDS) be in a different place in the control file—next to the datafile

specification. However, when you are loading a single DB2 compatible file, these

clauses can be in their old position—between the RESUME and RECLEN clauses.

Note that while the DB2 Load Utility DISCARDS option zero (0) means no

maximum number of discards, for SQL*Loader, option zero means to stop on the

first discard.

Restrictions
Some aspects of the DB2 loader are not duplicated by SQL*Loader. For example,

SQL*Loader does not load data from SQL/DS files nor from DB2 UNLOAD files.

SQL*Loader gives an error upon encountering the DB2 Load Utility commands

described in the following sections.
DB2/DXT User Notes B-3



SQL*Loader Syntax with DB2-Compatible Statements
FORMAT Statement
The DB2 FORMAT statement must not be present in a control file to be processed by

SQL*Loader. The DB2 loader will load DB2 UNLOAD format, SQL/DS format, and

DB2 Load Utility format files. SQL*Loader does not support these formats. If this

option is present in the command file, SQL*Loader will stop with an error. (IBM

does not document the format of these files, so SQL*Loader cannot read them.)

FORMAT { UNLOAD | SQL/DS }

PART Statement
The PART statement is included for compatibility with DB2. There is no Oracle

concept that corresponds to a DB2 partitioned table.

In SQL*Loader, the entire table is read. A warning indicates that partitioned tables

are not supported, and that the entire table has been loaded.

[ PART n ]

SQL/DS Option
The option SQL/DS=tablename must not be used in the WHEN clause. SQL*Loader does

not support the SQL/DS internal format. If the SQL/DS option appears in this statement,

SQL*Loader will terminate with an error.

DBCS Graphic Strings
Because Oracle does not support the double-byte character set (DBCS), graphic

strings of the form G’**’ are not permitted.

SQL*Loader Syntax with DB2-Compatible Statements
In the following listing, DB2-compatible statements are in bold type:

OPTIONS ( options )
{ LOAD | CONTINUE_LOAD } [DATA]
[ CHARACTERSETcharacter_set_name  ]
[ { INFILE | INDDN } { filename  | * } ]
[ ” OS-dependent file processing options string ” ]
[ { BADFILE | BADDN } filename  ]
[ { DISCARDFILE | DISCARDDN } filename  ]
[ { DISCARDS | DISCARDMAX } n ] ]
[ { INFILE | INDDN } ] ...
B-4 Oracle8i Utilities



SQL*Loader Syntax with DB2-Compatible Statements
[ APPEND | REPLACE | INSERT |
RESUME [(] { YES | NO [REPLACE] } [)]  ]
[ LOG { YES | NO } ]
[ WORKDDN filename  ]
[ SORTDEVT device_type  ]
[ SORTNUM n ]
[ { CONCATENATE [(] n [)] |
CONTINUEIF { [ THIS | NEXT ]
[(] ( start  [ { : | - } end ] ) | LAST }
operator  { ’ char_str ’ | X’ hex_str ’ } [)] } ]
[ PRESERVE BLANKS ]
INTO TABLE tablename
[ CHARACTERSETcharacter_set_name  ]
[ SORTED [ INDEXES ] ( index_name  [ , index_name ... ] ) ]
[ PART n ]
[ APPEND | REPLACE | INSERT |
RESUME [(] { YES | NO [REPLACE] } [)] ]
[ REENABLE [DISABLED_CONSTRAINTS] [EXCEPTIONS table_name ] ]
[ WHEN field_condition  [ AND field_condition  ... ] ]
[ FIELDS  [ delimiter_spec  ] ]
[ TRAILING [ NULLCOLS ] ]
[ SKIP n ]
(. column_name
{ [ RECNU
| SYSDATE | CONSTANT value
| SEQUENCE ( { n | MAX | COUNT } [ , increment  ] )
| [[ POSITION ( { start  [ {:|-} end ] | * [+ n] } ) ]
[ datatype_spec  ]
[ NULLIF field_condition  ]
[ DEFAULTIF field_condition  ]
[ ” sql string ” ] ] ]  }
[ , column_name  ] ...)
[ INTO TABLE ] ... [ BEGINDATA ]
[ BEGINDATA]
DB2/DXT User Notes B-5



SQL*Loader Syntax with DB2-Compatible Statements
B-6 Oracle8i Utilities



Index

A
access privileges, 2-10

Export, 1-4

Advanced Queuing

exporting advanced queue tables, 1-59

importing advanced queue tables, 2-58

aliases

directory

exporting, 1-58

importing, 2-57

ANALYZE

Import parameter, 2-18

analyzer statistics, 2-61

APPEND keyword

SQL*Loader, 5-44

APPEND to table

example, 4-11

SQL*Loader, 5-33

arrays

committing after insert

Import, 2-19

ASCII

character set

Import, 2-53

fixed-format files

exporting, 1-3

atomic nulls, 5-94

attributes

null, 5-93

B
backslash escape character, 5-20

backups

restoring dropped snapshots

Import, 2-49

BAD

SQL*Loader command-line parameter, 6-3

bad files

rejected records in SQL*Loader, 3-11

specifying bad records, 6-3

specifying for SQL*Loader, 5-25

BADDN keyword

SQL*Loader, 5-25

BADFILE keyword

SQL*Loader, 5-25

base backup

Export, 1-45

base tables

incremental export and, 1-49

BEGINDATA

control file keyword, 5-21

BFILE datatype, 5-106

BFILEs

columns

exporting, 1-58

importing, 2-57

loading, 5-98

bind arrays

determining size of for SQL*Loader, 5-75, 5-76

minimizing SQL*Loader memory

requirements, 5-79

minimum requirements, 5-75

size with multiple SQL*Loader INTO TABLE

statements, 5-80

specifying, 6-4

specifying number of rows, 6-7
                                                                  Index-1



SQL*Loader performance implications, 5-75

BINDSIZE

SQL*Loader command-line parameter, 5-76, 6-4

blanks

loading fields consisting of blanks, 5-82

preserving, 5-87

SQL*Loader BLANKS keyword for field

comparison, 5-15, 5-46

trailing, 5-73

trimming, 5-82

whitespace, 5-82

BLANKS keyword

SQL*Loader, 5-46

for field comparison, 5-15

BLOBs

loading, 5-98

BUFFER

Export parameter, 1-16

direct path export, 1-44

Import parameter, 2-18

buffers

calculating for export, 1-16

space required by

LONG DATA in SQL*Loader, 5-64

VARCHAR data in SQL*Loader, 5-63

specifying with SQL*Loader BINDSIZE

parameter, 5-76

BYTEINT datatype, 5-59, 5-60

C
cached sequence numbers

Export, 1-57

case studies

preparing tables for SQL*Loader, 4-4

SQL*Loader, 4-1

SQL*Loader associated files, 4-3

SQL*Loader filenames, 4-3

CATALOG.SQL

preparing database for Export, 1-9

preparing database for Import, 2-6

CATEXP7.SQL

preparing database for Export, 1-63

CATEXP.SQL

preparing database for Export, 1-9

preparing database for Import, 2-6

CATLDR.SQL

setup script

SQL*Loader, 8-10

CHAR columns

Version 6 export files, 2-62

CHAR datatype

delimited form and SQL*Loader, 5-70

reference

SQL*Loader, 5-64

character datatypes

conflicting fields, 5-73

character fields

datatypes

SQL*Loader, 5-64

delimiters and SQL*Loader, 5-64, 5-70

determining length for SQL*Loader, 5-73

character sets

conversion

during Export/Import, 1-54, 2-52

direct path export, 1-44, 1-54

eight-bit to seven-bit conversions

Export/Import, 1-54, 2-53

multibyte

and SQL*Loader, 5-30

Export/Import, 1-56, 2-54

NCHAR data

Export, 1-56

single-byte

Export/Import, 1-54, 2-53

SQL*Loader conversion between, 5-30

Version 6 conversions

Import/Export, 2-54

character strings

as part of a field comparison, 5-15

SQL*Loader, 5-46

CHARACTERSET keyword

SQL*Loader, 5-31

check constraints

Import, 2-45

CLOBs

example, 4-39

loading, 5-98

clusters

Export, 1-50
Index-2



collections, 3-15

columns

exporting LONG datatypes, 1-57

loading REF columns, 5-97

naming

SQL*Loader, 5-47

null columns at the end of a record, 5-81

objects

loading, 5-90

loading nested column objects, 5-92

stream record format, 5-90

variable record format, 5-91

reordering before Import, 2-13

setting to a constant value with

SQL*Loader, 5-54

setting to a unique sequence number using

SQL*Loader, 5-56

setting to datafile record number with

SQL*Loader, 5-55

setting to null, 5-81

setting to null value with SQL*Loader, 5-55

setting to the current date using

SQL*Loader, 5-55

setting value to zero, 5-80

specifying

SQL*Loader, 5-47

specifying as PIECED

SQL*Loader, 8-15

command line

parameters

description, 6-2

Export, 1-13

specifying defaults, 5-18

comments

in Export parameter file, 1-13

in Import parameter file, 2-10

in SQL*Loader control file, 4-12

COMMIT

Import parameter, 2-19

complete exports, 1-45, 1-47

restrictions, 1-45

specifying, 1-21

completion messages

Export, 1-41

COMPRESS

Export parameter, 1-17, 2-51

COMPUTE option

STATISTICS Export parameter, 1-24

CONCATENATE keyword

SQL*Loader, 5-36

concurrent conventional path loads, 8-25

connect string

Net8, 1-53

CONSISTENT

Export parameter, 1-17

nested table and, 1-17

partitioned table and, 1-17

consolidating extents

Export parameter COMPRESS, 1-17

CONSTANT keyword

SQL*Loader, 5-47, 5-54, 8-23

CONSTRAINTS

Export parameter, 1-19, 2-19

constraints

automatic

SQL*Loader, 8-22

check

Import, 2-45

direct path load, 8-20

disabling during a direct load, 8-21

disabling referential constraints, 2-14

enabling

after a direct load, 8-21

after a parallel direct path load, 8-29

enforced on a direct load, 8-21

failed

Import, 2-45

load method, 8-9

not null

Import, 2-45

preventing Import errors due to uniqueness

constraints, 2-19

referential integrity

Import, 2-45

uniqueness

Import, 2-45

CONTINUE_LOAD keyword

SQL*Loader, 5-35

CONTINUEIF keyword

example, 4-15
                                                                     Index-3



SQL*Loader, 5-36

continuing interrupted loads

SQL*Loader, 5-34

CONTROL

SQL*Loader command-line parameter, 6-4

control files

data definition language syntax, 5-3

field delimiters, 5-16

guidelines for creating, 3-3

specifying data, 5-21

specifying SQL*Loader discard file, 5-27

conventional path Export

compared to direct path Export, 1-42

conventional path loads

basics, 8-2

compared to direct path loads, 8-7

concurrent, 8-26

SQL*Loader bind array, 5-75

using, 8-3

CREATE SESSION privilege, 2-10

Export, 1-3

CREATE USER command

Import, 2-13

CTIME column

SYS.INCEXP table, 1-52

cumulative exports, 1-45, 1-47

recording, 1-24

restrictions, 1-45

specifying, 1-21

SYS.INCFIL table, 1-52

SYS.INCVID table, 1-53

D
DATA

SQL*Loader command-line parameter, 6-4

data

delimiter marks in data and SQL*Loader, 5-72

distinguishing different input formats for

SQL*Loader, 5-51

exporting, 1-24

formatted data and SQL*Loader, 4-28

generating unique values with

SQL*Loader, 5-56

including in control files, 5-21

loading data contained in the SQL*Loader

control file, 5-54

loading in sections

SQL*Loader, 8-15

loading into more than one table

SQL*Loader, 5-51

loading LONG

SQL*Loader, 5-64

maximum length of delimited data for

SQL*Loader, 5-73

moving between operating systems using

SQL*Loader, 5-74

saving in a direct path load, 8-12

saving rows

SQL*Loader, 8-18

SQL*Loader methods of loading into

tables, 5-32

unsorted

SQL*Loader, 8-17

values optimized for SQL*Loader

performance, 5-54

data conversion

SQL*Loader, 3-8

data definition language, 5-3

BEGINDATA keyword, 5-21

BLANKS keyword, 5-46

CHARACTERSET keyword

SQL*Loader, 5-31

column_name, 5-16

CONCATENATE keyword, 5-36

CONSTANT keyword, 5-47, 5-54

CONTINUEIF keyword, 5-36

date mask, 5-16

DEFAULTIF keyword, 5-80

delimiter_spec, 5-16

DISABLED_CONSTRAINTS keyword

SQL*Loader, 8-21

DISCARDDN keyword, 5-28

DISCARDMAX keyword

SQL*Loader, 5-30

EXCEPTIONS keyword

SQL*Loader, 8-21

expanded syntax diagrams, 5-15

EXTERNAL keyword, 5-67

field_condition, 5-15
Index-4



FILE keyword

SQL*Loader, 8-28

FLOAT keyword, 5-67

INFILE keyword, 5-22

length, 5-16

loading data in sections

SQL*Loader, 8-15

NULLIF keyword, 5-81

parallel keyword

SQL*Loader, 8-27

pos_spec, 5-15

POSITION keyword, 5-48

precision, 5-16

RECNUM keyword, 5-47

REENABLE keyword

SQL*Loader, 8-21

SEQUENCE keyword, 5-56

syntax diagrams

high-level, 5-4

SYSDATE keyword, 5-55

TERMINATED keyword, 5-70

UNRECOVERABLE keyword

SQL*Loader, 8-19

WHITESPACE keyword, 5-70

data field

specifying the SQL*Loader datatype, 5-48

data path loads

direct and conventional, 8-2

data recovery

direct path load

SQL*Loader, 8-13

database administrator (DBA)

privileges for export, 1-3

database objects

export privileges, 1-4

exporting LONG columns, 1-57

transferring across a network

Import, 2-47

databases

data structure changes

incremental export and, 1-49

full export, 1-21

full import, 2-22

incremental export, 1-45

preparing for Export, 1-9

privileges for exporting, 1-3

reducing fragmentation via full

export/import, 2-44

reusing existing data files

Import, 2-20

datafiles

preventing overwrite during import, 2-20

reusing during import, 2-20

specifying, 6-4

specifying buffering for SQL*Loader, 5-24

specifying for SQL*Loader, 5-22

specifying format for SQL*Loader, 5-24

datatypes

BFILE

Export, 1-58

BYTEINT, 5-60

CHAR, 5-64

conflicting character datatype fields, 5-73

converting SQL*Loader, 3-8, 5-69

DATE, 5-65

DECIMAL, 5-61

default in SQL*Loader, 5-48

determining character field lengths for

SQL*Loader, 5-73

determining DATE length, 5-74

DOUBLE, 5-60

FLOAT, 5-59

GRAPHIC, 5-66

GRAPHIC EXTERNAL, 5-66

INTEGER, 5-59

LONG

Export, 1-57

Import, 2-59

native

conflicting length specifications in

SQL*Loader, 5-68

SQL*Loader, 5-59

nonscalar, 5-93

NUMBER

SQL*Loader, 5-70

numeric EXTERNAL, 5-67

RAW, 5-67

SMALLINT, 5-59

specifying the SQL*Loader datatype of a data

field, 5-48
                                                                     Index-5



VARCHAR, 5-62

VARCHAR2

SQL*Loader, 5-70

VARGRAPHIC, 5-61

ZONED, 5-60

DATE datatype

delimited form and SQL*Loader, 5-70

determining length, 5-74

mask

SQL*Loader, 5-74

SQL*Loader, 5-65

date mask, 5-16

DB2 load utility, B-1

placement of statements

DISCARDDDN, B-3

DISCARDS, B-3

restricted capabilities of SQL*Loader, B-3

RESUME keyword, 5-32

SQL*Loader compatibility

ignored statements, B-2

DBA role

EXP_FULL_DATABASE role, 1-9

DBCS (DB2 double-byte character set)

not supported by Oracle, B-4

DBVERIFY utility, 9-1

output, 9-3

restrictions, 9-1

syntax, 9-2

DDL. See data definition language

DECIMAL datatype, 5-61

(packed), 5-59

EXTERNAL format

SQL*Loader, 5-67

length and precision, 5-16

DEFAULT column values

Oracle Version 6 export files, 2-62

DEFAULTIF keyword

SQL*Loader, 5-44, 5-80

DELETE ANY TABLE privilege

SQL*Loader, 5-33

DELETE CASCADE

SQL*Loader, 5-33

DELETE privilege

SQL*Loader, 5-33

delimited data

maximum length for SQL*Loader, 5-73

delimited fields

field length, 5-73

delimited files

exporting, 1-3

delimited LOBs, 5-103

delimiter_spec, 5-16

delimiters

control files, 5-16

initial and trailing example, 4-28

loading trailing blanks, 5-73

marks in data and SQL*Loader, 5-72

optional SQL*Loader enclosure, 5-83

specifying for SQL*Loader, 5-42, 5-70

SQL*Loader enclosure, 5-83

SQL*Loader field specifications, 5-83

termination, 5-83

DESTROY

Import parameter, 2-20

DIRECT

Export parameter, 1-19, 1-44

SQL*Loader command-line parameter, 6-5

direct path export, 1-42

BUFFER parameter, 1-44

character set and, 1-54

invoking, 1-44

RECORDLENGTH parameter, 1-44

direct path load, 8-11

advantages, 8-6

choosing sort order

SQL*Loader, 8-18

compared to conventional path load, 8-7

concurrent, 8-26

conditions for use, 8-8

data saves, 8-12, 8-18

DIRECT command-line parameter

SQL*Loader, 6-5, 8-10

DISABLED_CONSTRAINTS keyword, 8-21

disabling media protection

SQL*Loader, 8-19

dropping indexes, 8-20

dropping indexes to continue an interrupted

load, 5-34

effect of PRIMARY KEY constraints, 8-29

effect of UNIQUE KEY constraints, 8-29
Index-6



example, 4-25

EXCEPTIONS keyword, 8-21

field defaults, 8-9

improper sorting

SQL*Loader, 8-17

indexes, 8-10

instance recovery, 8-13

intersegment concurrency, 8-26

intrasegment concurrency, 8-26

loading into synonyms, 8-9

LONG data, 8-14

media recovery, 8-14

partitioned load

SQL*Loader, 8-25

performance, 8-10, 8-16

preallocating storage, 8-16

presorting data, 8-16

recovery, 8-13

REENABLE keyword, 8-21

referential integrity constraints, 8-21

ROWS command-line parameter, 8-13

setting up, 8-10

specifying, 8-10

specifying number of rows to be read, 6-7

SQL*Loader data loading method, 3-14

table insert triggers, 8-22

temporary segment storage requirements, 8-11

triggers, 8-20

using, 8-7, 8-10

version requirements, 8-9

directory aliases

exporting, 1-58

importing, 2-57

DISABLED_CONSTRAINTS keyword

SQL*Loader, 8-21

discard files

basics, 3-13

DISCARDDN keyword

placement in control file for DB2, B-3

DISCARDS control file clause

placement in control file for DB2, B-3

example, 4-15

SQL*Loader, 5-27

SQL*Loader DISCARDDN keyword, 5-28

SQL*Loader DISCARDMAX keyword, 5-29,

5-30

SQL*Loader DISCARDS keyword, 5-29

discarded records

causes, 5-29

limiting, 5-29

SQL*Loader, 3-11

discarded SQL*Loader records

discard file, 5-27

DISCARDFILE

SQL*Loader command-line parameter, 6-5

DISCARDMAX keyword

SQL*Loader command-line, 6-5

SQL*Loader discarded records, 5-30

discontinued loads

continuing with SQL*Loader, 5-34

DOUBLE datatype, 5-59, 5-60

dropped snapshots

Import, 2-49

dropping

indexes

to continue a direct path load, 5-34

dump files

maximum size, 1-20

E
EBCDIC character set

Import, 2-53

eight-bit character set support, 1-54, 2-53

enclosed fields

ENCLOSED BY control file clause, 5-16

specified with enclosure delimiters and

SQL*Loader, 5-70

whitespace, 5-86

enclosure delimiters

SQL*Loader, 5-83

ERRORS

SQL*Loader command-line parameter, 6-5

errors

caused by tab characters in SQL*Loader

data, 5-49

Export, 1-40

export log file, 1-22

fatal

Export, 1-41
                                                                     Index-7



Import, 2-47

generated by DB2 load utility, B-3

handling

Export, 1-40

Import, 2-45

Import resource errors, 2-46

LONG data, 2-46

object creation, 2-46

Import parameter IGNORE, 2-22

row errors during import, 2-45

warning

Export, 1-40

escape character

Export, 1-26

Import, 2-27

quoted strings, 5-20

ESTIMATE option

STATISTICS Export parameter, 1-24

EXCEPTIONS keyword

SQL*Loader, 8-21

EXP_FULL_DATABASE role, 1-21, 2-10

assigning, 1-9

Export, 1-3

EXPDAT.DMP

Export output file, 1-19

EXPID column

SYS.INCEXP table, 1-52

Export

base backup, 1-45

BUFFER parameter, 1-16

CATALOG.SQL

preparing database for Export, 1-9

CATEXP7.SQL

preparing the database for Version 7

export, 1-63

CATEXP.SQL

preparing database for Export, 1-9

command line, 1-9

complete, 1-21, 1-45, 1-47

privileges, 1-45

restrictions, 1-45

COMPRESS parameter, 1-17

CONSISTENT parameter, 1-17

CONSTRAINTS parameter, 1-19

creating necessary privileges, 1-9

creating Version 7 export files, 1-61

cumulative, 1-21, 1-45, 1-47

privileges required, 1-45

restrictions, 1-45

data structures, 1-49

database optimizer statistics, 1-24, 2-25

DIRECT parameter, 1-19

direct path, 1-42

displaying help message, 1-21

eight-bit versus seven-bit character sets, 1-54

establishing export views, 1-9

examples, 1-28

full database mode, 1-28

partition-level, 1-34

table mode, 1-32

user mode, 1-31

exporting an entire database, 1-21

exporting indexes, 1-22

exporting sequence numbers, 1-57

exporting synonyms, 1-59

exporting to another operating system, 2-26

RECORDLENGTH parameter, 1-24

FEEDBACK parameter, 1-19

FILE parameter, 1-19

full database mode

example, 1-28

FULL parameter, 1-21

GRANTS parameter, 1-21

HELP parameter, 1-21

incremental, 1-21, 1-45

command syntax, 1-21

example, 1-50

privileges, 1-45

restrictions, 1-45

system tables, 1-51

INCTYPE parameter, 1-21

INDEXES parameter, 1-22

interactive method, 1-10, 1-37

invoking, 1-9

kinds of data exported, 1-49

last valid export

SYS.INCVID table, 1-53

log files

specifying, 1-22

LOG parameter, 1-22
Index-8



logging error messages, 1-22

LONG columns, 1-57

message log file, 1-40

modes, 1-4

multibyte character sets, 1-56

network issues, 1-53

NLS support, 1-54

objects exported, 1-5

online help, 1-11

OWNER parameter, 1-22

parameter conflicts, 1-28

parameter file, 1-9, 1-12, 1-22

maximum size, 1-13

parameters, 1-13

PARFILE parameter, 1-9, 1-12, 1-22

preparing database, 1-9

previous versions, 1-60

RECORD parameter, 1-23

RECORDLENGTH parameter, 1-24

redirecting output to a log file, 1-40

remote operation, 1-53

restrictions, 1-4

rollback segments, 1-50

ROWS parameter, 1-24

sequence numbers, 1-57

STATISTICS parameter, 1-24

storage requirements, 1-9

SYS.INCEXP table, 1-52

SYS.INCFIL table, 1-52

SYS.INCVID table, 1-53

table mode

example, 1-32

table name restrictions, 1-26

TABLES parameter, 1-25

tracking exported objects, 1-52

transferring export files across a network, 1-53

TRIGGERS parameter, 1-27

user access privileges, 1-3

user mode

examples, 1-31

specifying, 1-22

USER_SEGMENTS view, 1-9

USERID parameter, 1-27

using, 1-9

warning messages, 1-40

export file

displaying contents, 1-3

importing the entire file, 2-22

listing contents before importing, 2-26

reading, 1-3

specifying, 1-19

extent allocation

FILE command-line parameter, 6-6

extents

consolidating into one extent

Export, 1-17

importing consolidated, 2-51

EXTERNAL datatypes

DECIMAL

SQL*Loader, 5-67

FLOAT

SQL*Loader, 5-67

GRAPHIC

SQL*Loader, 5-66

INTEGER, 5-67

numeric

determining length, 5-73

SQL*Loader, 5-67

ZONED

SQL*Loader, 5-67

external files

exporting, 1-58

EXTERNAL keyword

SQL*Loader, 5-67

external LOBs (BFILEs), 5-106

loading, 5-98

F
fatal errors

Export, 1-41

Import, 2-46, 2-47

FEEDBACK

Export parameter, 1-19

Import parameter, 2-20

field conditions

specifying for SQL*Loader, 5-44

field delimiters

new behavior in 8.1.5, 3-18

field length
                                                                     Index-9



SQL*Loader specifications, 5-83

field location

SQL*Loader, 5-48

fields

character data length and SQL*Loader, 5-73

comparing, 5-15

comparing to literals with SQL*Loader, 5-46

delimited

determining length, 5-73

SQL*Loader, 5-70

enclosed and SQL*Loader, 5-70

length, 5-16

loading all blanks, 5-82

numeric and precision versus length, 5-16

precision, 5-16

predetermined size

length, 5-73

SQL*Loader, 5-83

relative positioning and SQL*Loader, 5-84

specification of position, 5-15

specified with a termination delimiter and

SQL*Loader, 5-70

specified with enclosure delimiters and

SQL*Loader, 5-70

specifying default delimiters for

SQL*Loader, 5-42

specifying for SQL*Loader, 5-47

SQL*Loader delimited

specifications, 5-83

terminated and SQL*Loader, 5-70

FIELDS clause

SQL*Loader, 5-42

terminated by whitespace, 5-85

FILE, 6-6

Export parameter, 1-19

Import parameter, 2-20

keyword

SQL*Loader, 8-28

SQL*Loader command-line parameter, 6-6

FILE columns

Import, 2-57

FILE keyword, 8-28

FILE parameter

in SQL*Loader command file, 6-6

SQL*Loader command line, 6-6

filenames

quotation marks, 5-19

specifying multiple SQL*Loader, 5-23

SQL*Loader, 5-18

SQL*Loader bad file, 5-25

files

SQL*Loader bad file, 3-11

SQL*Loader discard file, 3-13

SQL*Loader file processing options string, 5-24

FILESIZE, 1-20

FILLER field

example, 4-39

new behavior in 8.1.5, 3-19

using as argument to init_spec, 5-47

fine-grained access support, 2-49

fixed record length

example, 4-34

fixed-format records, 3-4

FLOAT datatype, 5-59

EXTERNAL format

SQL*Loader, 5-67

FLOAT EXTERNAL data values

SQL*Loader, 5-67

foreign function libraries

exporting, 1-57

importing, 2-58

FORMAT statement in DB2

not allowed by SQL*Loader, B-4

formats

and SQL*Loader input records, 5-52

formatting errors

SQL*Loader, 5-25

fragmentation

reducing database fragmentation via full

export/import, 2-44

FROMUSER

Import parameter, 2-21

FTP

Export files, 1-53

FULL

Export parameter, 1-21

full database mode

Import, 2-22
Index-10



G
GRANTS

Export parameter, 1-21

Import parameter, 2-22

grants

exporting, 1-21

importing, 2-12, 2-22

GRAPHIC datatype, 5-59

EXTERNAL format

SQL*Loader, 5-66

SQL*Loader, 5-66

GRAPHIC EXTERNAL datatype, 5-59

H
HELP parameter

Export, 1-11, 1-21

Import, 2-8, 2-22

hexadecimal strings

as part of a field comparison, 5-15

SQL*Loader, 5-46

I
IGNORE

Import parameter, 2-22, 2-55

existing objects, 2-46

IMP_FULL_DATABASE role, 2-6, 2-10, 2-22

Import, 2-29

Import, 2-1

ANALYZE parameter, 2-18

backup files, 2-49

BUFFER parameter, 2-18

CATEXP.SQL

preparing the database, 2-6

character set conversion, 1-54, 2-53

character sets, 2-53

COMMIT parameter, 2-19

committing after array insert, 2-19

compatibility, 2-4

complete export file, 2-41

consolidated extents, 2-51

controlling size of rollback segments, 2-19

conversion of Version 6 CHAR columns to

VARCHAR2, 2-62

creating an index-creation SQL script, 2-25

cumulative, 2-41

data files

reusing, 2-20

database

reusing existing data files, 2-20

DESTROY parameter, 2-20

disabling referential constraints, 2-14

displaying online help, 2-22

dropping a tablespace, 2-51

error handling, 2-45

errors importing database objects, 2-46

example session, 2-33

export COMPRESS parameter, 2-51

export file

importing the entire file, 2-22

listing contents before import, 2-26

failed integrity constraints, 2-45

fatal errors, 2-46, 2-47

FEEDBACK parameter, 2-20

FILE parameter, 2-20

FROMUSER parameter, 2-21

grants

specifying for import, 2-22

GRANTS parameter, 2-22

HELP parameter, 2-8, 2-22

IGNORE parameter, 2-22, 2-46

importing grants, 2-12, 2-22

importing objects into other schemas, 2-12

importing rows, 2-26

importing tables, 2-27

incremental, 2-41

specifying, 2-24

INCTYPE parameter, 2-23

INDEXES parameter, 2-24

INDEXFILE parameter, 2-24

INSERT errors, 2-46

interactive method, 2-39

invalid data, 2-45

invoking, 2-6

length of Oracle Version 6 export file DEFAULT

columns, 2-62

log files

LOG parameter, 2-25

LONG columns, 2-59
                                                                     Index-11



manually ordering tables, 2-14

modes, 2-4

NLS considerations, 2-52

NLS_LANG environment variable, 2-53

object creation errors, 2-22

objects imported, 1-5

OPTIMAL storage parameter, 2-50

Oracle Version 6 integrity constraints, 2-62

parameter file, 2-9, 2-25

parameters, 2-15

partition-level, 2-5

preparing the database, 2-6

read-only tablespaces, 2-51

recompiling stored procedures, 2-58

RECORDLENGTH parameter, 2-26

records

specifying length, 2-26

reducing database fragmentation, 2-44

refresh error, 2-48

reorganizing tablespace during, 2-52

resource errors, 2-46

rows

specifying for import, 2-26

ROWS parameter, 2-26

schema objects, 2-11, 2-12

sequences, 2-46

SHOW parameter, 1-3, 2-26

single-byte character sets, 2-53

snapshot master table, 2-48

snapshots, 2-48

restoring dropped, 2-49

specifying by user, 2-21

specifying index creation commands, 2-24

specifying the export file, 2-20

storage parameters

overriding, 2-51

stored functions, 2-58

stored packages, 2-58

stored procedures, 2-58

system objects, 2-12

table objects

import order, 2-3

table-level, 2-5

tables created before import, 2-13

TABLES parameter, 2-27

TOUSER parameter, 2-29

transferring files across networks, 2-47

unique indexes, 2-23

uniqueness constraints

preventing import errors, 2-19

user definitions, 2-13

USERID parameter, 2-30

using Oracle Version 6 files, 2-62

incremental export, 1-45

backing up data, 1-50

command syntax, 1-21

data selected, 1-49

recording, 1-24

restrictions, 1-45

session example, 1-50

specifying, 1-21

SYS.INCFIL table, 1-52

SYS.INCVID table, 1-53

incremental import

parameter, 2-23

specifying, 2-24

INCTYPE

Export parameter, 1-21

Import parameter, 2-23

index options

SORTED INDEXES with SQL*Loader, 5-44

SQL*Loader SINGLEROW keyword, 5-44

Index Unusable state, 5-34

indexes left in Index Unusable state, 8-11

INDEXES

Export parameter, 1-22

Import parameter, 2-24

indexes

creating manually, 2-25

direct path load

left in direct load state, 8-11

dropping

before continuing a direct path load, 5-34

SQL*Loader, 8-20

exporting, 1-22

importing, 2-24

index-creation commands

Import, 2-24

left direct load state

SQL*Loader, 8-17
Index-12



maintenance options, 6-9, 8-20

multiple-column

SQL*Loader, 8-17

presorting data, 4-25

SQL*Loader, 8-16

skipping maintenance, 6-9, 8-20

skipping unusable, 2-26, 6-10, 8-20

SQL*Loader, 5-43

state after discontinued load, 5-34

unique, 2-23

INDEXFILE

Import parameter, 2-24

INFILE keyword

SQL*Loader, 5-22

insert errors

Import, 2-46

specifying, 6-5

INSERT into table

SQL*Loader, 5-32

INTEGER datatype, 5-59

EXTERNAL format, 5-67

integrity constraints

disabled during direct path load, 8-21

enabled during direct path load, 8-21

failed on Import, 2-45

load method, 8-9

Oracle Version 6 export files, 2-62

reenabled after direct path load, 8-21

interactive method

Export, 1-37

internal LOBs

loading, 5-98

interrupted loads

continuing with SQL*Loader, 5-34

INTO TABLE statement

effect on bind array size, 5-80

multiple statements with SQL*Loader, 5-51

SQL*Loader, 5-39

column names, 5-47

discards, 5-29

invalid data

Import, 2-46

invalid objects

warning messages

during export, 1-40

invoking Export, 1-9

direct path, 1-44

ITIME column

SYS.INCEXP table, 1-52

K
key values

generating with SQL*Loader, 5-56

keywords, A-2

L
language support

Export, 1-54

Import, 2-52

leading whitespace

definition, 5-82

trimming and SQL*Loader, 5-85

length

specifying record length for export, 1-24, 2-26

length indicator

determining size, 5-77

length of a numeric field, 5-16

length subfield

VARCHAR DATA

SQL*Loader, 5-62

length-value pair specified LOBs, 5-104

libraries

foreign function

exporting, 1-57

importing, 2-58

LOAD

SQL*Loader command-line parameter, 6-6

loading

combined physical records, 4-15

datafiles containing tabs

SQL*Loader, 5-49

delimited, free-format files, 4-11

fixed-length data, 4-8

LOBs, 5-98

negative numbers, 4-15

subpartitioned tables, 8-6

tables, 8-6

variable-length data, 4-5
                                                                     Index-13



LOB data, 1-9

compression, 1-17

Export, 1-57

in delimited fields, 5-99

in length-value pair fields, 5-100

in predetermined size fields, 5-99

LOBFILEs, 5-98, 5-101

example, 4-39

SQL*Loader DDL support, 3-19

LOBs

loading, 5-98

loading external, 5-98

loading internal LOBs, 5-98

LOG

Export parameter, 1-22, 1-40

Import parameter, 2-25

SQL*Loader command-line parameter, 6-6

log files

after a discontinued load, 5-34

example, 4-26, 4-31

Export, 1-22, 1-40

Import, 2-25

specifying for SQL*Loader, 6-6

SQL*Loader, 3-13

SQL*Loader datafile information, 7-3

SQL*Loader global information, 7-2

SQL*Loader header Information, 7-2

SQL*Loader summary statistics, 7-4

SQL*Loader table information, 7-3

SQL*Loader table load information, 7-4

logical records

consolidating multiple physical records using

SQL*Loader, 5-36

LONG data

C language datatype LONG FLOAT, 5-60

exporting, 1-57

importing, 2-59

loading

SQL*Loader, 5-64

loading with direct path load, 8-14

LONG VARRAW datatype, 5-63

M
master table

snapshots

Import, 2-48

materialized views, 2-48

media protection

disabling for direct path loads

SQL*Loader, 8-19

media recovery

direct path load, 8-14

SQL*Loader, 8-14

memory

controlling SQL*Loader use, 5-24

messages

Export, 1-40

Import, 2-44

migrating data across partitions, 2-32

missing data columns

SQL*Loader, 5-43

modes

full database

Export, 1-21, 1-28

objects exported by each, 1-5

table

Export, 1-25, 1-32

user

Export, 1-22, 1-31

multibyte character sets

blanks with SQL*Loader, 5-46

Export and Import issues, 1-56, 2-54

SQL*Loader, 5-30

multiple CPUs

SQL*Loader, 8-25

multiple table load

generating unique sequence numbers using

SQL*Loader, 5-57

SQL*Loader control file specification, 5-51

multiple-column indexes

SQL*Loader, 8-17

multiple-table load

discontinued, 5-35

N
NAME column

SYS.INCEXP table, 1-52

National Language Support (NLS)
Index-14



Export, 1-54

Import, 2-52

SQL*Loader, 5-30

native datatypes

and SQL*Loader, 5-59

conflicting length specifications

SQL*Loader, 5-68

NCHAR data

Export, 1-56

NCLOBs

loading, 5-98

negative numbers

loading, 4-15

nested column objects

loading, 5-92

nested tables

exporting, 1-59

consistency and, 1-17

importing, 2-56

Net8, 1-53

networks

Export, 1-53

Import and, 2-47

transporting Export files across a network, 1-53

new features in 8.1.5

SQL*Loader behavior and restrictions, 3-17

SQL*Loader support for LOBFILEs and

SDFs, 3-19

NLS. See National Language Support (NLS)

NLS_LANG environment variable, 2-53

Export, 1-54

Import, 2-53

SQL*Loader, 5-30

NOLOG attribute, 8-20

NONE option

STATISTICS Export parameter, 1-24

nonfatal errors

warning messages, 1-40

nonscalar datatypes, 5-93

normalizing data during a load

SQL*Loader, 4-19

NOT NULL constraint

Import, 2-45

load method, 8-9

null columns

at end of record, 5-81

null data

missing columns at end of record during

load, 5-43

unspecified columns and SQL*Loader, 5-47

NULL values

objects, 5-93

NULLIF clause

SQL*Loader, 5-44, 5-81, 5-82

NULLIF...BLANKS clause

example, 4-25

SQL*Loader, 5-46

nulls

atomic, 5-94

attribute, 5-93

NUMBER datatype

SQL*Loader, 5-70

numeric EXTERNAL datatypes

delimited form and SQL*Loader, 5-70

determining length, 5-73

SQL*Loader, 5-67

numeric fields

precision versus length, 5-16

O
object identifiers, 2-54, 5-95

Export, 1-58

object names

SQL*Loader, 5-18

object support, 3-22

object tables

Import, 2-56

loading, 5-95

object type definitions

exporting, 1-58

importing, 2-56

object type identifiers, 2-28

objects, 3-15

considerations for importing, 2-54

creation errors, 2-46

ignoring existing objects during import, 2-22

import creation errors, 2-22

loading column objects, 5-90

loading nested column objects, 5-92
                                                                     Index-15



NULL values, 5-93

privileges, 2-11

restoring sets

Import, 2-41

stream record format, 5-90

variable record format, 5-91

offline bitmapped tablespaces, 1-58

OID. See object identifiers

online help

Export, 1-11

Import, 2-8

operating systems

moving data to different systems using

SQL*Loader, 5-74

OPTIMAL storage parameter, 2-50

optimizer statistics, 2-61

optimizing

direct path loads, 8-16

SQL*Loader input file processing, 5-24

OPTIONALLY ENCLOSED BY, 5-16

SQL*Loader, 5-83

OPTIONS keyword, 5-18

for parallel loads, 5-41

Oracle Advanced Queuing. See Advanced Queuing

Oracle Version 6

exporting database objects, 2-62

Oracle7

creating export files with, 1-63

output file

specifying for Export, 1-19

OWNER

Export parameter, 1-22

OWNER# column

SYS.INCEXP table, 1-52

P
packed decimal data, 5-16

padding of literal strings

SQL*Loader, 5-46

PARALLEL

SQL*Loader command-line parameter, 6-6

PARALLEL keyword

SQL*Loader, 8-27

parallel loads, 8-25

allocating extents, 6-6

PARALLEL command-line parameter, 6-6

restrictions on direct path, 8-27

parameter file

comments, 1-13, 2-27

Export, 1-12, 1-22

Import, 2-9, 2-25

maximum size

Export, 1-13

parameters

ANALYZE, 2-18

BUFFER

Export, 1-16

COMMIT

Import, 2-19

COMPRESS, 1-17

conflicts between export parameters, 1-28

CONSTRAINTS

Export, 1-19

DESTROY

Import, 2-20

DIRECT

Export, 1-19

Export, 1-13

FEEDBACK

Export, 1-19

Import, 2-20

FILE

Export, 1-19

Import, 2-20

FROMUSER

Import, 2-21

FULL

Export, 1-21

GRANTS

Export, 1-21

Import, 2-22

HELP

Export, 1-21

Import, 2-22

IGNORE

Import, 2-22

INCTYPE

Export, 1-21

Import, 2-23
Index-16



INDEXES

Export, 1-22

Import, 2-24

INDEXFILE

Import, 2-24

LOG, 1-40

Export, 1-22

Import, 2-25

OWNER

Export, 1-22

PARFILE

Export, 1-9, 1-22

RECORD

Export, 1-23

RECORDLENGTH

Export, 1-24

Import, 2-26

ROWS

Export, 1-24

Import, 2-26

SHOW

Import, 2-26

SKIP_INDEX_MAINTENANCE, 6-9, 8-20

SKIP_UNUSABLE_INDEXES, 6-10, 8-20

Import, 2-26

STATISTICS

Export, 1-24

TABLES

Export, 1-25

Import, 2-27

TABLESPACES, 2-28

TOID_NOVALIDATE, 2-28

TOUSER

Import, 2-29

USERID

Export, 1-27

Import, 2-30

PARFILE

Export command-line option, 1-9, 1-12, 1-22

Import command-line option, 2-9, 2-25

SQL*Loader command-line parameter, 6-6

PART statement in DB2

not allowed by SQL*Loader, B-4

partitioned loads

concurrent conventional path loads, 8-25

SQL*Loader, 8-25

partitioned tables

example, 4-34

export consistency and, 1-17

exporting, 1-8

importing, 2-5, 2-33

in DB2

no Oracle equivalent, B-4

loading, 8-6

partition-level Export, 1-8

examples, 1-34

partition-level Import, 2-5, 2-31

guidelines, 2-31

specifying, 1-25

passwords

hiding, 2-7

performance

direct path Export, 1-42, 1-44

Import, 2-19

optimizing reading of SQL*Loader data

files, 5-24

partitioned load

SQL*Loader, 8-25

performance improvement

conventional path for small loads, 8-22

performance issues

direct path loads, 8-16

PIECED keyword

SQL*Loader, 8-15

POSITION keyword

specification of field position, 5-15

tabs, 5-49

with multiple SQL*Loader INTO TABLE

clauses, 5-48, 5-50, 5-53

precision of a numeric field versus length, 5-16

predetermined size fields

SQL*Loader, 5-83

predetermined size LOBs, 5-102

prerequisites

SQL*Loader, 3-14

PRESERVE BLANKS keyword

SQL*Loader, 5-87

presorting data for a direct path load

example, 4-25

PRIMARY KEY
                                                                     Index-17



constraints

effect on direct path load, 8-29

primary key OIDs

example, 4-44, 5-95

primary key REF columns, 5-97

primary keys

Import, 2-45

privileges, 2-10

complete export, 1-45

creating for Export, 1-9

cumulative export, 1-45

Export and, 1-3

incremental export, 1-45

required for SQL*Loader, 3-14

Q
quotation marks

escaping, 5-20

filenames, 5-19

SQL string, 5-19

table names and, 1-26, 2-27

use with database object names, 5-18

R
RAW datatype, 5-59, 5-64

SQL*Loader, 5-67

READBUFFERS keyword

SQL*Loader, 5-24, 8-15

read-consistent export, 1-17

read-only tablespaces

Import, 2-51

READSIZE

SQL*Loader command-line parameter, 6-7

real REF columns, 5-97

RECALCULATE_STATISTICS parameter, 2-25

RECNUM keyword

SQL*Loader, 5-47

use with SQL*Loader keyword SKIP, 5-55

recompiling

stored functions, procedures, and

packages, 2-58

RECORD parameter, 1-23

RECORDLENGTH

Export parameter, 1-24

direct path export, 1-44

Import parameter, 2-26

records

consolidating into a single logical record

SQL*Loader, 5-36

discarded by SQL*Loader, 3-11, 5-27

DISCARDFILE command-line parameter, 6-5

DISCARDMAX command-line parameter, 6-5

distinguishing different formats for

SQL*Loader, 5-52

extracting multiple logical records using

SQL*Loader, 5-51

fixed format, 3-4

missing data columns during load, 5-43

null columns at end, 5-81

rejected by SQL*Loader, 3-11, 3-13, 5-25

restrictions in SQL*Loader, 3-17

setting column to record number with

SQL*Loader, 5-55

skipping during load, 6-9

specifying how to load, 6-6

specifying length for export, 1-24, 2-26

specifying length for import, 2-26

stream format, 3-17

stream record format, 3-6

variable format, 3-5, 3-17

recovery

direct path load

SQL*Loader, 8-13

replacing rows, 5-32

redo logs

direct path load, 8-14

instance and media recovery

SQL*Loader, 8-14

saving space

direct path load, 8-19

REENABLE keyword

SQL*Loader, 8-21

REF columns, 5-97

primary key, 5-97

real, 5-97

REF data

exporting, 1-16

importing, 2-57
Index-18



REF fields

example, 4-44

referential integrity constraints

disabling for import, 2-14

Import, 2-45

SQL*Loader, 8-20

refresh error

snapshots

Import, 2-48

reject files

specifying for SQL*Loader, 5-25

rejected records

SQL*Loader, 3-11, 5-25

relative field positioning

where a field starts and SQL*Loader, 5-84

with multiple SQL*Loader INTO TABLE

clauses, 5-51

remote operation

Export/Import, 1-53

REPLACE table

example, 4-15

replacing a table using SQL*Loader, 5-33

reserved words, A-2

SQL*Loader, A-2

resource errors

Import, 2-46

RESOURCE role, 2-11

restrictions

DB2 load utility, B-3

Export, 1-4

importing grants, 2-12

importing into another user’s schema, 2-12

importing into own schema, 2-11

table names in Export parameter file, 1-26

table names in Import parameter file, 2-27

RESUME

DB2 keyword, 5-32

roles

EXP_FULL_DATABASE, 1-4, 1-9

IMP_FULL_DATABASE, 2-6, 2-22, 2-29

RESOURCE, 2-11

rollback segments

CONSISTENT Export parameter, 1-17

controlling size during import, 2-19

during SQL*Loader loads, 5-26

Export, 1-50

row errors

Import, 2-45

ROWID

Import, 2-48

ROWS

command-line parameter

SQL*Loader, 8-13

Export parameter, 1-24

Import parameter, 2-26

performance issues

SQL*Loader, 8-18

SQL*Loader command-line parameter, 6-7

rows

choosing which to load using SQL*Loader, 5-41

exporting, 1-24

specifying for import, 2-26

specifying number to insert before save

SQL*Loader, 8-13

updates to existing rows with SQL*Loader, 5-33

S
schemas

export privileges, 1-4

specifying for Export, 1-25

scientific notation for FLOAT EXTERNAL, 5-67

script files

running before Export, 1-9, 1-63

SDFs. See secondary data files

secondary data files (SDFs)

SQL*Loader DDL support, 3-20

segments

temporary

FILE keyword in SQL*Loader, 8-28

SEQUENCE keyword

SQL*Loader, 5-56

sequence numbers

cached, 1-57

exporting, 1-57

for multiple tables and SQL*Loader, 5-57

generated by SEQUENCE clause, 4-11

generated by SQL*Loader SEQUENCE

clause, 5-56

generated, not read and SQL*Loader, 5-47
                                                                     Index-19



setting column to a unique number with

SQL*Loader, 5-56

sequences, 2-46

exporting, 1-57

short records with missing data

SQL*Loader, 5-43

SHORTINT

C Language datatype, 5-59

SHOW

Import parameter, 1-3, 2-26

SILENT

SQL*Loader command-line parameter, 6-8

single-byte character sets

Import, 2-53

SINGLEROW index keyword, 5-44, 8-20

single-table load

discontinued, 5-34

SKIP

effect on SQL*Loader RECNUM

specification, 5-55

SQL*Loader, 5-35

SQL*Loader command-line parameter, 6-9

SQL*Loader control file keyword, 5-76

SKIP_INDEX_MAINTENANCE parameter, 6-9,

8-20

SKIP_UNUSABLE_INDEXES parameter, 2-26,

6-10, 8-20

SMALLINT datatype, 5-59

snapshot log

Import, 2-48

snapshots, 2-48

importing, 2-48

master table

Import, 2-48

restoring dropped

Import, 2-49

SORTED INDEXES clause

direct path loads, 5-44

example, 4-25

SQL*Loader, 8-17

sorting

multiple-column indexes

SQL*Loader, 8-17

optimum sort order

SQL*Loader, 8-18

presorting in direct path load, 8-16

SORTED INDEXES clause

SQL*Loader, 8-17

special characters, A-2

SQL

keywords, A-2

reserved words, A-2

special characters, A-2

SQL operators

applying to fields, 5-88

SQL strings

applying SQL operators to fields, 5-88

example, 4-28

new behavior in 8.1.5, 3-18

quotation marks, 5-19

SQL*Loader

appending rows to tables, 5-33

bad file, 3-11

BADDN keyword, 5-25

BADFILE keyword, 5-25

basics, 3-2

bind arrays and performance, 5-75

BINDSIZE command-line parameter, 5-76, 6-4

case studies, 4-1

associated files, 4-3

direct path load, 4-25

extracting data from a formatted report, 4-28

loading combined physical records, 4-15

loading data into multiple tables, 4-19

loading delimited, free-format files, 4-11

loading fixed-length data, 4-8

loading variable-length data, 4-5

choosing which rows to load, 5-41

command-line parameters, 6-2

CONCATENATE keyword, 5-36

concepts, 3-1

CONTINUE_LOAD keyword, 5-35

CONTINUEIF keyword, 5-36

CONTROL command-line parameter, 6-4

controlling memory use, 5-24

conventional path loads, 8-2

DATA command-line parameter, 6-4

data conversion, 3-8

data definition language

expanded syntax diagrams, 5-15
Index-20



high-level syntax diagrams, 5-4

data definition language syntax, 5-3

datatype specifications, 3-8

DB2 load utility, B-1

DIRECT command-line parameter, 6-5, 8-10

direct path method, 3-14

discard file, 3-13

discarded records, 3-11

DISCARDFILE command-line parameter, 6-5

DISCARDFILE keyword, 5-28

DISCARDMAX command-line parameter, 6-5

DISCARDMAX keyword, 5-29

DISCARDS keyword, 5-29

errors caused by tabs, 5-49

ERRORS command-line parameter, 6-5

example sessions, 4-1

exclusive access, 8-25

FILE command-line parameter, 6-6

filenames, 5-18

index options, 5-43

inserting rows into tables, 5-32

INTO TABLE statement, 5-39

LOAD command-line parameter, 6-6

load methods, 8-2

loading data contained in the control file, 5-54

loading LONG data, 5-64

LOG command-line parameter, 6-6

log file datafile information, 7-3

log file entries, 7-1

log file header information, 7-2

log file summary statistics, 7-4

log file table information, 7-3

log file table load information, 7-4

log files, 3-13

methods of loading data, 3-14, 5-32

multiple INTO TABLE statements, 5-51

National Language Support, 5-30

object names, 5-18

PARALLEL command-line parameter, 6-6

parallel data loading, 8-25, 8-26, 8-30

PARFILE command-line parameter, 6-6

preparing tables for case studies, 4-4

READBUFFERS keyword, 5-24

READSIZE command-line parameter, 6-7

rejected records, 3-11

replacing rows in tables, 5-33

required privileges, 3-14

reserved words, A-2

ROWS command-line parameter, 6-7

SILENT command-line parameter, 6-8

SINGLEROW index keyword, 5-44

SKIP command-line parameter, 6-9

SKIP keyword, 5-35

SORTED INDEXES during direct path

loads, 5-44

specifying columns, 5-47

specifying datafiles, 5-22

specifying field conditions, 5-44

specifying fields, 5-47

specifying more than one data file, 5-23

suppressing messages, 6-8

updating rows, 5-33

SQL*Loader log file

global information, 7-2

SQL*Loader restrictions on records, 3-17

SQL*Net. See Net8

SQL/DS option (DB2 file format)

not supported by SQL*Loader, B-4

STATISTICS

Export parameter, 1-24

statistics, 2-61

specifying for Export, 1-24, 2-25

STORAGE keyword, 8-29

storage parameters, 2-50

estimating export requirements, 1-9

exporting tables, 1-17

OPTIMAL parameter, 2-50

overriding

Import, 2-51

preallocating

direct path load, 8-16

temporary for a direct path load, 8-11

stored functions

importing, 2-58

stored packages

importing, 2-58

stored procedures

direct path load, 8-24

importing, 2-58

stream record format, 5-90
                                                                     Index-21



stream record format records, 3-6

string comparisons, 5-15

SQL*Loader, 5-46

subpartitioned

tables

loading, 8-6

synonyms

direct path load, 8-9

Export, 1-50

exporting, 1-59

syntax

Export command, 1-9

Import command, 2-6

syntax diagrams

SQL*Loader, 5-4

SYSDATE datatype

example, 4-28

SYSDATE keyword

SQL*Loader, 5-55

SYSDBA, 1-37

SYS.INCEXP table

Export, 1-52

SYS.INCFIL table

Export, 1-52

SYS.INCVID table

Export, 1-53

system objects

importing, 2-12

system tables

incremental export, 1-51

T
table-level Export, 1-8

table-level Import, 2-5, 2-31

table-mode Export

specifying, 1-25

table-mode Import

examples, 2-33

tables, 2-60

Advanced Queuing

exporting, 1-59

importing, 2-58

appending rows with SQL*Loader, 5-33

continuing a multiple-table load, 5-35

continuing a single-table load, 5-34

defining before Import, 2-13

definitions

creating before Import, 2-13

exclusive access during direct path loads

SQL*Loader, 8-25

exporting

specifying, 1-25

importing, 2-27

insert triggers

direct path load in SQL*Loader, 8-22

inserting rows using SQL*Loader, 5-32

loading data into more than one table using

SQL*Loader, 5-51

loading data into tables, 5-32

loading object tables, 5-95

maintaining consistency, 1-17

manually ordering for Import, 2-14

master table

Import, 2-48

name restrictions

Export, 1-26

Import, 2-27

nested

exporting, 1-59

importing, 2-56

object import order, 2-3

partitioned, 1-8, 2-5

partitioned in DB2

no Oracle equivalent, B-4

replacing rows using SQL*Loader, 5-33

size

USER_SEGMENTS view, 1-9

specifying table-mode Export, 1-25

SQL*Loader method for individual tables, 5-40

system

incremental export, 1-51

truncating

SQL*Loader, 5-33

updating existing rows using SQL*Loader, 5-33

TABLES parameter

Export, 1-25

Import, 2-27

tablespaces

dropping during import, 2-51
Index-22



Export, 1-50

metadata

transporting, 2-30

read-only

Import, 2-51

reorganizing

Import, 2-52

TABLESPACES parameter, 2-28

tabs

loading data files containing tabs, 5-49

trimming, 5-82

whitespace, 5-82

temporary segments, 8-28

FILE keyword

SQL*Loader, 8-28

not exported during backup, 1-50

temporary storage in a direct path load, 8-11

TERMINATED BY, 5-16

SQL*Loader, 5-70

WHITESPACE

SQL*Loader, 5-70

with OPTIONALLY ENCLOSED BY, 5-83

terminated fields

specified with a delimiter, 5-83

specified with delimiters and SQL*Loader, 5-70

TOID_NOVALIDATE parameter, 2-28

TOUSER

Import parameter, 2-29

trailing blanks

loading with delimiters, 5-73

TRAILING NULLCOLS

example, 4-28

SQL*Loader keyword, 5-43

trailing whitespace

trimming, 5-86

TRANSPORT_TABLESPACE parameter, 2-30

transportable tablespaces, 2-60

TRIGGERS

export parameter, 1-27

triggers, 8-22

database insert, 8-22

permanently disabled, 8-24

update

SQL*Loader, 8-23

trimming

summary, 5-87

trailing whitespace

SQL*Loader, 5-86

VARCHAR fields, 5-83

TTS_OWNERS parameter, 2-30

TYPE# column

SYS.INCEXP table, 1-52

U
unique indexes

Import, 2-23

UNIQUE KEY

constraints

effect on direct path load, 8-29

unique values

generating with SQL*Loader, 5-56

uniqueness constraints

Import, 2-45

preventing errors during import, 2-19

UNLOAD (DB2 file format)

not supported by SQL*Loader, B-4

UNRECOVERABLE keyword

SQL*Loader, 8-19

unsorted data

direct path load

SQL*Loader, 8-17

updating rows in a table

SQL*Loader, 5-33

USER_SEGMENTS view

Export and, 1-9

USERID

Export parameter, 1-27

Import parameter, 2-30

user-mode Export

specifying, 1-22

users

definitions

importing, 2-13

V
VARCHAR datatype, 5-59

SQL*Loader, 5-62

VARCHAR2 datatype, 2-62
                                                                     Index-23



SQL*Loader, 5-70

VARCHARC datatype

SQL*Loader, 5-68

VARGRAPHIC datatype

SQL*Loader, 5-61

variable record format, 5-91

variable records, 3-5

VARRAW datatype, 5-63

VARRAWC datatype, 5-68

VARRAY Columns

memory issues when loading, 5-111

varrays

example, 4-44

views

creating views necessary for Export, 1-9

Export, 1-50

VOLSIZE

export parameter, 2-31

Import parameter, 1-28

W
warning messages, 1-40

WHEN clause

example, 4-19

SQL*Loader, 5-41, 5-44

SQL*Loader discards resulting from, 5-29

whitespace

included in a field, 5-85

leading, 5-82

terminating a field, 5-85

trailing, 5-82

trimming, 5-82

WHITESPACE keyword, 5-16

SQL*Loader, 5-70

Z
ZONED datatype, 5-60

EXTERNAL format

SQL*Loader, 5-67

length versus precision, 5-16
Index-24


	PDF Directory
	Send Us Your Comments
	Preface
	Part I� Export/Import
	1 Export
	What Is the Export Utility?
	Reading the Contents of an Export File
	Access Privileges

	Export Modes
	Understanding Table-Level and Partition-Level Export

	Using Export
	Before Using Export
	Invoking Export
	Getting Online Help
	Specifying Export Parameters on the Command Line or in the Parameter File

	Export Parameters
	BUFFER
	COMPRESS
	CONSISTENT
	CONSTRAINTS
	DIRECT
	FEEDBACK
	FILE
	FILESIZE
	FULL
	GRANTS
	HELP
	INCTYPE
	INDEXES
	LOG
	OWNER
	PARFILE
	QUERY
	RECORD
	RECORDLENGTH
	ROWS
	STATISTICS
	TABLES
	TABLESPACES
	TRANSPORT_TABLESPACE
	TRIGGERS
	USERID (username/password)
	VOLSIZE
	Parameter Interactions

	Example Export Sessions
	Example Export Session in Full Database Mode
	Example Export Session in User Mode
	Example Export Sessions in Table Mode
	Example Export Session Using Partition-Level Export

	Using the Interactive Method
	Restrictions

	Warning, Error, and Completion Messages
	Log File
	Warning Messages
	Fatal Error Messages
	Completion Messages

	Direct Path Export
	Invoking a Direct Path Export

	Character Set Conversion
	Performance Issues

	Incremental, Cumulative, and Complete Exports
	Base Backups
	Incremental Exports
	Cumulative Exports
	Complete Exports
	A Scenario
	Which Data Is Exported?
	Example Incremental Export Session
	System Tables

	Network Considerations
	Transporting Export Files Across a Network
	Exporting and Importing with Net8

	Character Set and NLS Considerations
	Character Set Conversion
	NCHAR Conversion During Export and Import
	Multibyte Character Sets and Export and Import
	Instance Affinity and Export
	Fine-Grained Access Support

	Considerations in Exporting Database Objects
	Exporting Sequences
	Exporting LONG and LOB Datatypes
	Exporting Foreign Function Libraries
	Exporting Offline Bitmapped Tablespaces
	Exporting Directory Aliases
	Exporting BFILE Columns and Attributes
	Exporting Object Type Definitions
	Exporting Nested Tables
	Exporting Advanced Queue (AQ) Tables
	Exporting Synonyms

	Transportable Tablespaces
	Using Different Versions of Export
	Using a Previous Version of Export
	Using a Higher Version of Export

	Creating Oracle Release 8.0 Export Files from an Oracle8i Database
	Creating Oracle Release 7 Export Files from an Oracle8i Database
	Excluded Objects


	2 Import
	What Is the Import Utility?
	Table Objects: Order of Import
	Compatibility

	Import Modes
	Understanding Table-Level and Partition-Level Import

	Using Import
	Before Using Import
	Invoking Import
	Getting Online Help
	The Parameter File

	Privileges Required to Use Import
	Access Privileges
	Importing Objects into Your Own Schema
	Importing Grants
	Importing Objects into Other Schemas
	Importing System Objects
	User Privileges

	Importing into Existing Tables
	Manually Creating Tables Before Importing Data
	Disabling Referential Constraints
	Manually Ordering the Import

	Import Parameters
	ANALYZE
	BUFFER
	CHARSET
	COMMIT
	CONSTRAINTS
	DATAFILES
	DESTROY
	FEEDBACK
	FILE
	FILESIZE
	FROMUSER
	FULL
	GRANTS
	HELP
	IGNORE
	INCTYPE
	INDEXES
	INDEXFILE
	LOG
	PARFILE
	RECALCULATE_STATISTICS
	RECORDLENGTH
	ROWS
	SHOW
	SKIP_UNUSABLE_INDEXES
	TABLES
	TABLESPACES
	TOID_NOVALIDATE
	TOUSER
	TRANSPORT_TABLESPACE
	TTS_OWNERS
	USERID (username/password)
	VOLSIZE

	Using Table-Level and Partition-Level Export and Import
	Guidelines for Using Partition-Level Import
	Migrating Data Across Partitions and Tables

	Example Import Sessions
	Example Import of Selected Tables for a Specific User
	Example Import of Tables Exported by Another User
	Example Import of Tables from One User to Another
	Example Import Session Using Partition-Level Import

	Using the Interactive Method
	Importing Incremental, Cumulative, and Complete Export Files
	Restoring a Set of Objects
	Importing Object Types and Foreign Function Libraries

	Controlling Index Creation and Maintenance
	Index Creation and Maintenance Controls
	Delaying Index Creation

	Reducing Database Fragmentation
	Warning, Error, and Completion Messages
	Error Handling
	Row Errors
	Errors Importing Database Objects
	Fatal Errors

	Network Considerations
	Transporting Export Files Across a Network
	Exporting and Importing with Net8

	Import and Snapshots
	Master Table
	Snapshot Log
	Snapshots

	Import and Instance Affinity
	Fine-Grained Access Support
	Storage Parameters
	Read-Only Tablespaces

	Dropping a Tablespace
	Reorganizing Tablespaces
	Character Set and NLS Considerations
	Character Set Conversion
	Import and Single-Byte Character Sets
	Import and Multibyte Character Sets

	Considerations When Importing Database Objects
	Importing Object Identifiers
	Importing Existing Object Tables and Tables That Contain Object Types
	Importing Nested Tables
	Importing REF Data
	Importing BFILE Columns and Directory Aliases
	Importing Foreign Function Libraries
	Importing Stored Procedures, Functions, and Packages
	Importing Java Objects
	Importing Advanced Queue (AQ) Tables
	Importing LONG Columns
	Importing Views
	Importing Tables

	Transportable Tablespaces
	Importing Statistics
	Using Export Files from a Previous Oracle Release
	Using Oracle Version 7 Export Files
	Using Oracle Version 6 Export Files
	Using Oracle Version 5 Export Files
	The CHARSET Parameter


	Part II� SQL*Loader
	3 SQL*Loader Concepts
	SQL*Loader Basics
	SQL*Loader Control File
	Input Data and Datafiles
	Logical Records
	Data Fields

	Data Conversion and Datatype Specification
	Discarded and Rejected Records
	The Bad File
	SQL*Loader Discards

	Log File and Logging Information
	Conventional Path Load Versus Direct Path Load
	Loading Objects, Collections, and LOBs
	Supported Object Types
	Supported Collection Types
	Supported LOB Types
	SQL*Loader DDL Behavior and Restrictions
	SQL*Loader DDL Support for LOBFILES and Secondary Data Files (SDFs)

	Partitioned Object Support
	Application Development: Direct Path Load API

	4 SQL*Loader Case Studies
	The Case Studies
	Case Study Files
	Tables Used in the Case Studies
	Contents of Table EMP
	Contents of Table DEPT

	References and Notes
	Running the Case Study SQL Scripts
	Case 1: Loading Variable-Length Data
	Control File
	Invoking SQL*Loader
	Log File

	Case 2: Loading Fixed-Format Fields
	Control File
	Datafile
	Invoking SQL*Loader
	Log File

	Case 3: Loading a Delimited, Free-Format File
	Control File
	Invoking SQL*Loader
	Log File

	Case 4: Loading Combined Physical Records
	Control File
	Data File
	Invoking SQL*Loader
	Log File
	Bad File

	Case 5: Loading Data into Multiple Tables
	Control File
	Data File
	Invoking SQL*Loader
	Log File
	Loaded Tables

	Case�6: Loading Using the Direct Path Load Method
	Control File
	Invoking SQL*Loader
	Log File

	Case 7: Extracting Data from a Formatted Report
	Data File
	Insert Trigger
	Control File
	Invoking SQL*Loader
	Log File
	Dropping the Insert Trigger and the Global-Variable Package

	Case 8: Loading Partitioned Tables
	Control File
	Table Creation
	Input Data File
	Invoking SQL*Loader
	Log File

	Case 9: Loading LOBFILEs (CLOBs)
	Control File
	Input Data Files
	Invoking SQL*Loader
	Log File

	Case 10: Loading REF Fields and VARRAYs
	Control File
	Invoking SQL*Loader
	Log File


	5 SQL*Loader Control File Reference
	SQL*Loader’s Data Definition Language (DDL) Syntax Diagrams
	The SQL*Loader Control File
	SQL*Loader DDL Syntax Diagram Notation
	High-Level Syntax Diagrams

	Expanded DDL Syntax
	Control File Basics
	Comments in the Control File
	Specifying Command-Line Parameters in the Control File
	OPTIONS

	Specifying Filenames and Objects Names
	Filenames That Conflict with SQL and SQL*Loader Reserved Words
	Specifying SQL Strings
	Operating System Considerations

	Identifying Data in the Control File with BEGINDATA
	INFILE: Specifying Datafiles
	Naming the File
	Specifying Multiple Datafiles

	Specifying READBUFFERS
	Specifying Datafile Format and Buffering
	File Processing Example

	BADFILE: Specifying the Bad File
	Rejected Records
	Specifying the Discard File
	Handling Different Character Encoding Schemes
	Multibyte (Asian) Character Sets
	Input Character Conversion

	Loading Data into Empty and Nonempty Tables
	Loading Data into Empty Tables
	INSERT
	Loading Data into Nonempty Tables
	APPEND
	REPLACE
	TRUNCATE

	Continuing an Interrupted Load
	Assembling Logical Records from Physical Records
	Using CONTINUEIF

	Loading Logical Records into Tables
	Specifying Table Names
	Table-Specific Loading Method
	Table-Specific OPTIONS Keyword
	Choosing Which Records to Load
	Specifying Default Data Delimiters
	Handling Short Records with Missing Data

	Index Options
	SORTED INDEXES Option
	SINGLEROW Option

	Specifying Field Conditions
	Comparing Fields to BLANKS
	Comparing Fields to Literals

	Specifying Columns and Fields
	Specifying Filler Fields
	Specifying the Datatype of a Data Field

	Specifying the Position of a Data Field
	Using POSITION with Data Containing Tabs
	Using POSITION with Multiple Table Loads

	Using Multiple INTO TABLE Statements
	Extracting Multiple Logical Records
	Distinguishing Different Input Record Formats
	Loading Data into Multiple Tables
	Summary

	Generating Data
	Loading Data Without Files
	Setting a Column to a Constant Value
	Setting a Column to the Datafile Record Number
	Setting a Column to the Current Date
	Setting a Column to a Unique Sequence Number
	Generating Sequence Numbers for Multiple Tables

	SQL*Loader Datatypes
	Nonportable Datatypes
	Portable Datatypes
	Datatype Conversions
	Specifying Delimiters
	Conflicting Character Datatype Field Lengths

	Loading Data Across Different Platforms
	Determining the Size of the Bind Array
	Minimum Requirements
	Performance Implications
	Specifying Number of Rows Versus Size of Bind Array
	Calculations
	Minimizing Memory Requirements for the Bind Array
	Multiple INTO TABLE Statements
	Generated Data

	Setting a Column to Null or Zero
	DEFAULTIF Clause
	NULLIF Clause
	Null Columns at the End of a Record

	Loading All-Blank Fields
	Trimming Blanks and Tabs
	Datatypes
	Field Length Specifications
	Relative Positioning of Fields
	Leading Whitespace
	Trailing Whitespace
	Enclosed Fields
	Trimming Whitespace: Summary

	Preserving Whitespace
	PRESERVE BLANKS Keyword

	Applying SQL Operators to Fields
	Referencing Fields
	Common Uses
	Combinations of Operators
	Use with Date Mask
	Interpreting Formatted Fields

	Loading Column Objects
	Loading Column Objects in Stream Record Format
	Loading Column Objects in Variable Record Format
	Loading Nested Column Objects
	Specifying NULL Values for Objects

	Loading Object Tables
	Loading REF Columns
	Loading LOBs
	Internal LOBs (BLOB, CLOB, NCLOB)
	External LOB (BFILE)

	Loading Collections (Nested Tables and VARRAYs)
	Memory Issues When Loading VARRAY Columns


	6 SQL*Loader Command-Line Reference
	SQL*Loader Command Line
	Using Command-Line Keywords
	Specifying Keywords in the Control File

	Command-Line Keywords
	BAD (bad file)
	BINDSIZE (maximum size)
	CONTROL (control file)
	DATA (datafile)
	DIRECT (data path)
	DISCARDFILE (file name)
	DISCARDMAX (integer)
	ERRORS (errors to allow)
	FILE (file to load into)
	LOAD (records to load)
	LOG (log file)
	PARALLEL (parallel load)
	PARFILE (parameter file)
	READSIZE (read buffer)
	ROWS (rows per commit)
	SILENT (feedback mode)
	SKIP (records to skip)
	USERID (username/password)

	Index Maintenance Options
	SKIP_INDEX_MAINTENANCE
	SKIP_UNUSABLE_INDEXES

	Exit Codes for Inspection and Display

	7 SQL*Loader: Log File Reference
	Header Information
	Global Information
	Table Information
	Datafile Information
	Table Load Information
	Summary Statistics
	Oracle Statistics That Are Logged


	8 SQL*Loader: Conventional and Direct Path Loads�
	Data Loading Methods
	Conventional Path Load
	Direct Path Load

	Using Direct Path Load
	Setting Up for Direct Path Loads
	Specifying a Direct Path Load
	Building Indexes
	Indexes Left in Index Unusable State
	Data Saves
	Recovery
	Loading LONG Data Fields

	Maximizing Performance of Direct Path Loads
	Preallocating Storage for Faster Loading
	Presorting Data for Faster Indexing
	Infrequent Data Saves
	Minimizing Use of the Redo Log
	Disabling Archiving
	Specifying UNRECOVERABLE
	Setting the NOLOG Attribute

	Avoiding Index Maintenance
	Direct Loads, Integrity Constraints, and Triggers
	Integrity Constraints
	Database Insert Triggers
	Permanently Disabled Triggers and Constraints
	Alternative: Concurrent Conventional Path Loads

	Parallel Data Loading Models
	Concurrent Conventional Path Loads
	Intersegment Concurrency with Direct Path
	Intrasegment Concurrency with Direct Path
	Restrictions on Parallel Direct Path Loads
	Initiating Multiple SQL*Loader Sessions
	Options Keywords for Parallel Direct Path Loads
	Enabling Constraints After a Parallel Direct Path Load
	PRIMARY KEY and UNIQUE KEY constraints

	General Performance Improvement Hints

	Part III� Offline Database Verification Utility
	9 DBVERIFY: Offline Database Verification Utility
	Restrictions
	Syntax
	Parameters

	Sample DBVERIFY Output

	Part IV� Appendixes
	A SQL*Loader Reserved Words
	Reserved Word List and Information

	B DB2/DXT User Notes
	Using the DB2 RESUME Option
	Inclusions for Compatibility
	LOG Statement
	WORKDDN Statement
	SORTDEVT and SORTNUM Statements
	DISCARD Specification

	Restrictions
	FORMAT Statement
	PART Statement
	SQL/DS Option
	DBCS Graphic Strings

	SQL*Loader Syntax with DB2-Compatible Statements

	Index

