
Oracle8 i

Distributed Database Systems

Release 2 (8.1.6)

December 1999

A76960-01

Oracle8i Distributed Database Systems, Release 2 (8.1.6)

A76960-01

Copyright © 1996, 1999, Oracle Corporation. All rights reserved.

Primary Author: Jason Durbin, Lance Ashdown

Contributing Authors: William Creekbaum, Steve Bobrowski, Katherine Hughes, Pavna Jain, Peter
Vasterd

Contributors: John Bellemore, Anupam Bhide, Roger Bodamer, Jacco Draaijer, Diana Foch-Laurentz,
Nina Lewis, Raghu Mani, Basab Maulik, Denise Oertel, Paul Raveling, Kendall Scott, Gordon Smith,
Katia Tarkhanov, Randy Urbano, Sandy Venning, Eric Voss, and others

Graphic Designer: Valarie Moore

The Programs are not intended for use in any nuclear, aviation, mass transit, medical, or other
inherently dangerous applications. It shall be the licensee’s responsibility to take all appropriate
fail-safe, backup, redundancy and other measures to ensure the safe use of such applications if the
Programs are used for such purposes, and Oracle disclaims liability for any damages caused by such
use of the Programs.

The Programs (which include both the software and documentation) contain proprietary information of
Oracle Corporation; they are provided under a license agreement containing restrictions on use and
disclosure and are also protected by copyright, patent, and other intellectual and industrial property
laws. Reverse engineering, disassembly, or decompilation of the Programs is prohibited.

The information contained in this document is subject to change without notice. If you find any problems
in the documentation, please report them to us in writing. Oracle Corporation does not warrant that this
document is error free. Except as may be expressly permitted in your license agreement for these
Programs, no part of these Programs may be reproduced or transmitted in any form or by any means,
electronic or mechanical, for any purpose, without the express written permission of Oracle Corporation.

If the Programs are delivered to the U.S. Government or anyone licensing or using the Programs on
behalf of the U.S. Government, the following notice is applicable:

Restricted Rights Notice Programs delivered subject to the DOD FAR Supplement are "commercial
computer software" and use, duplication, and disclosure of the Programs including documentation, shall
be subject to the licensing restrictions set forth in the applicable Oracle license agreement. Otherwise,
Programs delivered subject to the Federal Acquisition Regulations are "restricted computer software"
and use, duplication, and disclosure of the Programs shall be subject to the restrictions in FAR 52.227-19,
Commercial Computer Software - Restricted Rights (June, 1987). Oracle Corporation, 500 Oracle
Parkway, Redwood City, CA 94065.

Oracle is a registered trademark, and Net8, SQL*Plus, Oracle Call Interface, Oracle Transparent Gateway,
Oracle7, Oracle7 Server, Oracle8, Oracle8i, PL/SQL, Pro*C, Pro*C/C++, and Enterprise Manager are
trademarks or registered trademarks of Oracle Corporation. All other company or product names
mentioned are used for identification purposes only and may be trademarks of their respective owners.

Contents

Send Us Your Comments ... xi

Preface .. xiii

What’s New in Oracle8i? .. xiii
Release 8.1.6.. xiii
Release 8.1.5.. xiv

Structure ... xv
Changes to This Book.. xvi

Audience.. xvi
Knowledge Assumed of the Reader.. xvii
How to Use This Guide ... xvii
Conventions Used in This Guide ... xviii
Your Comments Are Welcome... xviii

Part I Distributed Database Systems Concepts and Administration

1 Distributed Database Concepts

Distributed Database Architecture ... 1-2
Homogenous Distributed Database Systems ... 1-2
Heterogeneous Distributed Database Systems .. 1-5
Client/Server Database Architecture .. 1-7

Database Links .. 1-9
What Are Database Links? .. 1-10
Why Use Database Links? ... 1-13
i

Global Database Names in Database Links .. 1-13
Names for Database Links... 1-15
Types of Database Links .. 1-16
Users of Database Links... 1-17
Creation of Database Links: Examples .. 1-20
Schema Objects and Database Links.. 1-21
Database Link Restrictions .. 1-23

Distributed Database Administration .. 1-23
Site Autonomy... 1-24
Distributed Database Security .. 1-25
Auditing Database Links ... 1-31
Administration Tools ... 1-31

Transaction Processing in a Distributed System .. 1-33
Remote SQL Statements... 1-33
Distributed SQL Statements .. 1-34
Shared SQL for Remote and Distributed Statements .. 1-34
Remote Transactions .. 1-35
Distributed Transactions.. 1-35
Two-Phase Commit Mechanism... 1-35
Database Link Name Resolution .. 1-36
Schema Object Name Resolution.. 1-38
Global Name Resolution in Views, Synonyms, and Procedures ... 1-41

Distributed Database Application Development... 1-44
Transparency in a Distributed Database System ... 1-44
Remote Procedure Calls (RPCs) ... 1-46
Distributed Query Optimization .. 1-47

National Language Support .. 1-47
Client/Server Environment .. 1-48
Homogeneous Distributed Environment.. 1-48
Heterogeneous Distributed Environment... 1-49

2 Managing a Distributed Database

Managing Global Names in a Distributed System .. 2-2
Understanding How Global Database Names Are Formed... 2-2
Determining Whether Global Naming Is Enforced ... 2-3
ii

Viewing a Global Database Name ... 2-4
Changing the Domain in a Global Database Name... 2-4
Changing a Global Database Name: Scenario.. 2-5

Creating Database Links ... 2-8
Obtaining Privileges Necessary for Creating Database Links ... 2-8
Specifying Link Types.. 2-9
Specifying Link Users .. 2-11
Using Connection Qualifiers to Specify Service Names Within Link Names 2-13

Creating Shared Database Links ... 2-14
Determining Whether to Use Shared Database Links... 2-14
Creating Shared Database Links .. 2-15
Configuring Shared Database Links.. 2-16

Managing Database Links .. 2-18
Closing Database Links ... 2-18
Dropping Database Links.. 2-19
Limiting the Number of Active Database Link Connections... 2-20

Viewing Information About Database Links.. 2-21
Determining Which Links Are in the Database ... 2-21
Determining Which Link Connections Are Open ... 2-24

Creating Location Transparency .. 2-26
Using Views to Create Location Transparency.. 2-26
Using Synonyms to Create Location Transparency .. 2-28
Using Procedures to Create Location Transparency... 2-30

Managing Statement Transparency... 2-32
Understanding Transparency Restrictions ... 2-33

Managing a Distributed Database: Scenarios ... 2-34
Creating a Public Fixed User Database Link .. 2-34
Creating a Public Fixed User Shared Database Link... 2-35
Creating a Public Connected User Database Link... 2-36
Creating a Public Connected User Shared Database Link.. 2-36
Creating a Public Current User Database Link .. 2-37
iii

3 Developing Applications for a Distributed Database System

Managing the Distribution of an Application’s Data .. 3-2
Controlling Connections Established by Database Links .. 3-2
Maintaining Referential Integrity in a Distributed System... 3-3
Tuning Distributed Queries.. 3-3

Using Collocated Inline Views.. 3-4
Using Cost-Based Optimization ... 3-5
Using Hints .. 3-8
Analyzing the Execution Plan... 3-10

Handling Errors in Remote Procedures .. 3-12

Part II Distributed Transactions Concepts and Administration

4 Distributed Transactions Concepts

What Are Distributed Transactions? ... 4-2
Supported Types of Distributed Transactions.. 4-3
Session Trees for Distributed Transactions... 4-4
Two-Phase Commit Mechanism... 4-4

Session Trees for Distributed Transactions ... 4-5
Clients... 4-6
Database Servers ... 4-6
Local Coordinators ... 4-6
Global Coordinator... 4-7
Commit Point Site... 4-7

Two-Phase Commit Mechanism ... 4-11
Prepare Phase .. 4-11
Commit Phase ... 4-14
Forget Phase... 4-16

In-Doubt Transactions.. 4-16
Automatic Resolution of In-Doubt Transactions ... 4-17
Manual Resolution of In-Doubt Transactions .. 4-19
Relevance of System Change Numbers for In-Doubt Transactions 4-19

Distributed Transaction Processing: Case Study .. 4-20
Stage 1: Client Application Issues DML Statements.. 4-20
iv

Stage 2: Oracle Determines Commit Point Site .. 4-22
Stage 3: Global Coordinator Sends Prepare Response.. 4-22
Stage 4: Commit Point Site Commits... 4-23
Stage 5: Commit Point Site Informs Global Coordinator of Commit 4-24
Stage 6: Global and Local Coordinators Tell All Nodes to Commit 4-24
Stage 7: Global Coordinator and Commit Point Site Complete the Commit 4-25

5 Managing Distributed Transactions

Setting Distributed Transaction Initialization Parameters... 5-2
Limiting the Number of Distributed Transactions .. 5-2
Specifying the Lock Timeout Interval ... 5-4
Specifying the Interval for Holding Open Connections ... 5-5
Specifying the Commit Point Strength of a Node.. 5-5

Viewing Information About Distributed Transactions... 5-6
Determining the ID Number and Status of Prepared Transactions...................................... 5-6
Tracing the Session Tree of In-Doubt Transactions... 5-9

Deciding How to Handle In-Doubt Transactions .. 5-10
Discovering Problems with a Two-Phase Commit.. 5-11
Determining Whether to Perform a Manual Override ... 5-12
Analyzing the Transaction Data... 5-12

Manually Overriding In-Doubt Transactions ... 5-13
Manually Committing an In-Doubt Transaction ... 5-14
Manually Rolling Back an In-Doubt Transaction .. 5-15

Purging Pending Rows from the Data Dictionary ... 5-15
Executing the PURGE_LOST_DB_ENTRY Procedure.. 5-16
Determining When to Use DBMS_TRANSACTION .. 5-16

Manually Committing an In-Doubt Transaction: Example .. 5-17
Step 1: Record User Feedback... 5-19
Step 2: Query DBA_2PC_PENDING ... 5-19
Step 3: Query DBA_2PC_NEIGHBORS on Local Node ... 5-21
Step 4: Querying Data Dictionary Views on All Nodes.. 5-22
Step 5: Commit the In-Doubt Transaction .. 5-25
Step 6: Check for Mixed Outcome Using DBA_2PC_PENDING .. 5-25

Simulating Distributed Transaction Failure.. 5-26
Forcing a Distributed Transaction to Fail ... 5-26
v

Disabling and Enabling RECO.. 5-27
Managing Read Consistency .. 5-28

Part III Heterogeneous Services Concepts and Administration

6 Oracle Heterogeneous Services Concepts

What is Heterogeneous Services? .. 6-2
Database Links to a Non-Oracle System ... 6-2
Heterogeneous Services Agents ... 6-3

Types of Heterogeneous Services .. 6-3
Transaction Service... 6-3
SQL Service.. 6-4

Heterogeneous Services Process Architecture... 6-4
Transparent Gateways ... 6-5
Generic Connectivity.. 6-6

Architecture of the Heterogeneous Services Data Dictionary ... 6-6
Classes and Instances ... 6-7
Data Dictionary Views ... 6-8

7 Managing Oracle Heterogeneous Services Using Transparent Gateways

Setting Up Access to Non-Oracle Systems... 7-2
Step 1: Install the Heterogeneous Services Data Dictionary .. 7-2
 Step 2: Set Up the Environment to Access Heterogeneous Services Agents 7-2
Step 3: Create the Database Link to the Non-Oracle System.. 7-4
Step 4: Test the Connection ... 7-4

Registering Agents.. 7-5
Enabling Agent Self-Registration ... 7-5
Disabling Agent Self-Registration .. 7-9

Using the Heterogeneous Services Data Dictionary Views.. 7-9
Understanding the Types of Views.. 7-9
Understanding the Sources of Data Dictionary Information ... 7-11
Using the General Views ... 7-11
Using the Transaction Service Views... 7-12
Using the SQL Service Views.. 7-13
vi

Using the Heterogeneous Services Dynamic Performance Views .. 7-15
Determining Which Agents Are Running on a Host .. 7-15
Determining the Open HS Sessions ... 7-16
Determining the HS Parameters... 7-16

Using the DBMS_HS Package.. 7-17
Specifying Initialization Parameters .. 7-17
Unspecifying Initialization Parameters... 7-18

8 Managing Heterogeneous Services Using Generic Connectivity

What Is Generic Connectivity? .. 8-2
Types of Agents .. 8-2
Generic Connectivity Architecture .. 8-3
SQL Execution... 8-5
Datatype Mapping.. 8-5
Generic Connectivity Restrictions.. 8-5

Supported Oracle SQL Statements.. 8-5
Functions Supported by Generic Connectivity .. 8-6

Configuring Generic Connectivity Agents .. 8-6
Creating the Initialization File .. 8-7
Editing the Initialization File .. 8-7
Setting Initialization Parameters for an ODBC-based Data Source 8-9
Setting Initialization Parameters for an OLE DB-based Data Source 8-11

ODBC Connectivity Requirements... 8-12
OLE DB (SQL) Connectivity Requirements .. 8-14

Data Provider Requirements .. 8-14
OLE DB (FS) Connectivity Requirements ... 8-15

Bookmarks ... 8-15
OLE DB Interfaces .. 8-16
Data Source Properties... 8-17

9 Developing Applications with Heterogeneous Services

Developing Applications with Heterogeneous Services: Overview .. 9-2
Developing Using Pass-Through SQL ... 9-2

Using the DBMS_HS_PASSTHROUGH package.. 9-2
Considering the Implications of Using Pass-Through SQL ... 9-3
vii

Executing Pass-Through SQL Statements ... 9-3
Optimizing Data Transfers Using Bulk Fetch ... 9-9

Using OCI, an Oracle Precompiler, or Another Tool for Array Fetches............................. 9-10
Controlling the Array Fetch Between Oracle Database Server and Agent 9-11
Controlling the Array Fetch Between Agent and Non-Oracle Server 9-11
Controlling the Reblocking of Array Fetches ... 9-11

Researching the Locking Behavior of Non-Oracle Systems... 9-12

A Heterogeneous Services Initialization Parameters

HS_COMMIT_POINT_STRENGTH .. A-2
HS_DB_DOMAIN .. A-2
HS_DB_INTERNAL_NAME .. A-3
HS_DB_NAME .. A-3
HS_DESCRIBE_CACHE_HWM .. A-3
HS_FDS_CONNECT_INFO ... A-4
HS_FDS_SHAREABLE_NAME ... A-5
HS_FDS_TRACE_LEVEL .. A-5
HS_FDS_TRACE_FILE_NAME ... A-5
HS_LANGUAGE... A-6
HS_NLS_DATE_FORMAT ... A-7
HS_NLS_DATE_LANGUAGE ... A-7
HS_NLS_NCHAR ... A-8
HS_OPEN_CURSORS ... A-8
HS_ROWID_CACHE_SIZE .. A-9
HS_RPC_FETCH_REBLOCKING ... A-9
HS_RPC_FETCH_SIZE ... A-10

B Data Dictionary Views Available Through Heterogeneous Services

C Data Dictionary Translation for Generic Connectivity

Data Dictionary Translation Support... C-2
Accessing the Non-Oracle Data Dictionary ... C-2
Supported Views and Tables ... C-3

Data Dictionary Mapping .. C-4
viii

Default Column Values ... C-5
Generic Connectivity Data Dictionary Descriptions... C-6
ALL_CATALOG .. C-6
ALL_COL_COMMENTS... C-6
ALL_CONS_COLUMNS... C-6
ALL_CONSTRAINTS.. C-7
ALL_IND_COLUMNS... C-7
ALL_INDEXES .. C-8
ALL_OBJECTS ... C-10
ALL_TAB_COLUMNS.. C-11
ALL_TAB_COMMENTS .. C-12
ALL_TABLES .. C-12
ALL_USERS .. C-14
ALL_VIEWS.. C-14
DICTIONARY .. C-14
USER_CATALOG .. C-15
USER_COL_COMMENTS... C-15
USER_CONS_COLUMNS ... C-15
USER_CONSTRAINTS.. C-15
USER_IND_COLUMNS... C-16
USER_INDEXES .. C-17
USER_OBJECTS .. C-19
USER_TAB_COLUMNS... C-19
USER_TAB_COMMENTS ... C-20
USER_TABLES ... C-21
USER_USERS ... C-22
USER_VIEWS ... C-23

D Datatype Mapping

Mapping ODBC Datatypes to Oracle Datatypes.. D-2
Mapping OLE DB Datatypes to Oracle Datatypes... D-3

Index
ix

x

Send Us Your Comments

Oracle8 i Distributed Database Systems, Release 2 (8.1.6)

A76960-01

Oracle Corporation welcomes your comments and suggestions on the quality and usefulness of this

publication. Your input is an important part of the information used for revision.

■ Did you find any errors?

■ Is the information clearly presented?

■ Do you need more information? If so, where?

■ Are the examples correct? Do you need more examples?

■ What features did you like most about this manual?

If you find any errors or have any other suggestions for improvement, please indicate the chapter,

section, and page number (if available). You can send comments to us in the following ways:

■ E-mail - infodev@us.oracle.com

■ FAX - (650) 506-7228 Attn: Oracle Server Documentation

■ Postal service:

Oracle Corporation

Server Documentation Manager

500 Oracle Parkway

Redwood Shores, CA 94065

USA

If you would like a reply, please give your name, address, and telephone number below.

If you have problems with the software, please contact your local Oracle Support Services.
xi

xii

Preface

This manual describes implementation issues for an Oracle8i distributed database

system. It also introduces the tools and utilities available to assist you in

implementing and maintaining your distributed system.

Oracle8i Distributed Database Systems contains information that describes the features

and functionality of the Oracle8i and the Oracle8i Enterprise Edition products.

Oracle8i and Oracle8i Enterprise Edition have the same basic features, but several

advanced features are available only with the Enterprise Edition, and some of these

are optional.

What’s New in Oracle8 i?
This section describes new features in Oracle8i.

Release 8.1.6
The following distributed database features are new in release 8.1.6:

■ Oracle now enables generic connectivity to heterogeneous systems through

ODBC and OLE DB standards. See:

– Chapter 8, "Managing Heterogeneous Services Using Generic Connectivity"

– Appendix C, "Data Dictionary Translation for Generic Connectivity"

– Appendix D, "Datatype Mapping"

See Also: Getting to Know Oracle8i for information about the

differences between Oracle8i and the Oracle8i Enterprise Edition.
xiii

For transparent gateways, Oracle supports and certifies the configuration from

the Oracle application tools to the target system. For generic connectivity,

Oracle supports the HS ODBC agent—for any issues with non-Oracle

components you should contact appropriate vendors.

■ Oracle8i supports functionality that allows a global user to be centrally

managed by an enterprise directory (see "Centralized User and Privilege

Management" on page 1-27). Consequently, the administrator of each database

is not required to create a new schema for each new global user in the

distributed system. The central LDAP-based directory contains information

about:

– Which databases in a distributed system an enterprise user can access

– Which role on each database an enterprise user can use

– Which schema on each database an enterprise user can connect to

■ You can execute DML and DDL statements in parallel, and INSERT direct load

statements serially (see "DML and DDL Transactions" on page 4-3).

■ The Kerberos authentication tool works with connected user database links (see

"Distributed Database Security" on page 1-25).

■ As part of the Oracle Advanced Security option, SSL (single sign-on) allows

users to connect to multiple databases without repeatedly typing in passwords

(see "Distributed Database Security" on page 1-25)

■ The following Heterogeneous Services initialization parameters are new for

release 8.1.6:

– HS_FDS_CONNECT_INFO

– HS_FDS_SHAREABLE_NAME

– HS_FDS_TRACE

– HS_FDS_TRACE_FILE_NAME

Release 8.1.5
The following distributed database features are new in release 8.1.5:

■ The distributed SQL optimization capabilities of the Oracle server are extended

to account for non-Oracle systems. This extension means that Oracle determines

the best method for executing the SQL statement. For example, Oracle may

determine that the greatest distributed performance can be achieved by

performing a join at the remote non-Oracle site. In this case, only the rows that
xiv

satisfy the SELECT statement are returned to the originating Oracle site, greatly

reducing the amount of data transmitted through the network. Additionally,

collocated in-line views can improve the performance of a distributed query by

accessing multiple tables of a non-Oracle system at once, thereby reducing the

number of round trips.

■ The following heterogeneous services views are new (see "Using the

Heterogeneous Services Dynamic Performance Views" on page 7-15):

– V$HS_AGENT

– V$HS_SESSION

Structure
This book contains the following parts and chapters:

Part / Chapter Contents

PART 1 Distributed Database Systems Concepts and
Administration

Chapter 1, "Distributed Database Concepts" Describes the basic concepts and terminology of Oracle’s
distributed database architecture. It is recommended
reading for anyone planning to implement or maintain a
distributed database system.

Chapter 2, "Managing a Distributed Database" Discusses issues of concern to the database
administrator (DBA) implementing or maintaining
distributed databases.

Chapter 3, "Developing Applications for a
Distributed Database System"

Describes the special considerations that are necessary if
you are designing an application to run in a distributed
system.

PART 2 Distributed Transactions Concepts and Administration

Chapter 4, "Distributed Transactions Concepts" Describes how Oracle maintains the integrity of
distributed transactions using the two-phase commit
mechanism.

Chapter 5, "Managing Distributed Transactions" Explains how to administer distributed transactions.

PART 3 Heterogeneous Services Concepts and Administration

Chapter 6, "Oracle Heterogeneous Services
Concepts"

Provides an overview of Oracle Heterogeneous Services.
xv

Changes to This Book
The following aspects of this manual are new in 8.1.6:

■ Chapter 8, "Managing Heterogeneous Services Using Generic Connectivity",

Appendix C, "Data Dictionary Translation for Generic Connectivity", and

Appendix D, "Datatype Mapping" describe generic connectivity.

■ The distributed transactions documentation now constitutes its own Part of the

book.

■ Heterogeneous packages are now documented in Oracle8i Supplied PL/SQL
Packages Reference rather than in the appendices of this manual.

Audience
This guide is for DBAs who administer or plan to implement a distributed database

system involving either Oracle to Oracle database links or Oracle to non-Oracle

database links.

Chapter 7, "Managing Oracle Heterogeneous
Services Using Transparent Gateways"

Explains how to implement and maintain
Heterogeneous Services using an Oracle Transparent
Gateway.

Chapter 8, "Managing Heterogeneous Services
Using Generic Connectivity"

Provides the information you need to connect to
non-Oracle data stores through ODBC or OLE DB.

Chapter 9, "Developing Applications with
Heterogeneous Services"

Provides the information you will need to develop
applications that use Oracle Heterogeneous Services.

Appendix A, "Heterogeneous Services Initialization
Parameters"

Lists all Heterogeneous Services-specific initialization
parameters and their values.

Appendix B, "Data Dictionary Views Available
Through Heterogeneous Services"

Lists the data dictionary views that are available
through heterogeneous services mapping.

Appendix C, "Data Dictionary Translation for
Generic Connectivity"

Lists translations for non-Oracle data dictionary
information. Generic connectivity agents translate
queries to the Oracle8i data dictionary table into queries
that retrieve data from a non-Oracle data dictionary.

Appendix D, "Datatype Mapping" Lists datatypes mapped from ODBC and OLE DB
compliant data sources to supported Oracle datatypes.

Part / Chapter Contents
xvi

Knowledge Assumed of the Reader
Readers of this guide are assumed to be familiar with:

■ Relational database concepts and basic database administration as described in

Oracle8i Concepts and the Oracle8i Administrator’s Guide.

■ The operating system environment under which they are running Oracle.

How to Use This Guide
This manual contains these basic types of information:

To acquaint yourself with the basic features of distributed databases in

homogeneous and heterogeneous systems, read Chapter 1, "Distributed Database

Concepts" and then Chapter 6, "Oracle Heterogeneous Services Concepts".

Refer to the administrative chapters to learn how to perform specific tasks related to

management of distributed systems. Refer to the application development chapters

if your interest is in designing application that work with distributed systems.

Information Type Chapter

Conceptual Chapter 1, "Distributed Database Concepts"

Chapter 4, "Distributed Transactions Concepts"

Chapter 6, "Oracle Heterogeneous Services Concepts"

Administrative Chapter 2, "Managing a Distributed Database"

Chapter 7, "Managing Oracle Heterogeneous Services Using
Transparent Gateways"

Chapter 8, "Managing Heterogeneous Services Using Generic
Connectivity"

Application
Development

Chapter 3, "Developing Applications for a Distributed Database
System"

Chapter 9, "Developing Applications with Heterogeneous Services"

Reference Appendix A, "Heterogeneous Services Initialization Parameters"

Appendix B, "Data Dictionary Views Available Through
Heterogeneous Services"

Appendix C, "Data Dictionary Translation for Generic Connectivity"

Appendix D, "Datatype Mapping"
xvii

Finally, refer to the reference chapters for information about heterogeneous services

initialization parameters and generic connectivity mapping.

Conventions Used in This Guide
The following conventions are used in code fragments in this guide:

Your Comments Are Welcome
We value and appreciate your comments as an Oracle user and reader of our

references. As we write, revise, and evaluate, your opinions are the most important

input we receive. At the front of this reference is a reader’s comment form that we

encourage you to use to tell us both what you like and what you dislike about this

Format Indicates

UPPERCASE TEXT Text that must be entered exactly as shown. For example:

SQLPLUSusername / password
INTO TABLENAME ‘table‘

lowercase italicized text Emphasized term or glossary term. It also identifies a
variable for which you should substitute an appropriate
value. Parentheses should be entered as shown. For
example:

VARCHAR (length)

Vertical bars | Alternate choices. For example:

ASC | DESC

Braces { } The enclosed items are required, that is, you must choose
one of the alternatives. For example:

{ column_name | array_def }

Square brackets [] The enclosed items are optional. For example:

DECIMAL (digits [, precision])

<operator> A SQL operator. For example:

WHEREx < operator > x

Ellipses ... A repeated item. For example:

WHEREcolumn_1 < operator > x
 AND column_2 < operator > y
 [AND ...]
xviii

(or other) Oracle manuals. If the form is missing, or you would like to contact us,

please use the following address or fax number:

Server Technologies Documentation Manager

Oracle Corporation

500 Oracle Parkway

Redwood City, CA 94065

FAX: 650-506-7228

You can also e-mail your comments to the Information Development department at

the following e-mail address: infodev@us.oracle.com
xix

xx

Part I

Distributed Database Systems Concepts

and Administration

Distributed Database Con
1

Distributed Database Concepts

This chapter describes the basic concepts and terminology of Oracle’s distributed

database architecture. The chapter includes:

■ Distributed Database Architecture

■ Database Links

■ Distributed Database Administration

■ Transaction Processing in a Distributed System

■ Distributed Database Application Development

■ National Language Support

See Also: Getting to Know Oracle8i for information about features

new to the current Oracle8i release.
cepts 1-1

Distributed Database Architecture
Distributed Database Architecture
A distributed database system allows applications to access data from local and remote

databases. In a homogenous distributed system, each database is an Oracle database. In

a heterogeneous distributed system, at least one of the databases is a non-Oracle

database. Distributed databases use a client/server architecture to process

information requests.

This section contains the following topics:

■ Homogenous Distributed Database Systems

■ Heterogeneous Distributed Database Systems

■ Client/Server Database Architecture

Homogenous Distributed Database Systems
A homogenous distributed database system is a network of two or more Oracle

databases that reside on one or more machines. Figure 1–1 illustrates a distributed

system that connects three databases: HQ, MFG, and SALES. An application can

simultaneously access or modify the data in several databases in a single

distributed environment. For example, a single query from a Manufacturing client

on local database MFG can retrieve joined data from the PRODUCTS table on the

local database and the DEPT table on the remote HQ database.

For a client application, the location and platform of the databases are transparent.

You can also create synonyms for remote objects in the distributed system so that

users can access them with the same syntax as local objects. For example, if you are

connected to database MFG yet want to access data on database HQ, creating a

synonym on MFG for the remote DEPT table allows you to issue this query:

SELECT * FROM dept;

In this way, a distributed system gives the appearance of native data access. Users

on MFG do not have to know that the data they access resides on remote databases.
1-2 Oracle8i Distributed Database Systems

Distributed Database Architecture
Figure 1–1 Homogeneous Distributed Database

An Oracle distributed database system can incorporate Oracle databases of different

versions. All supported releases of Oracle can participate in a distributed database

system. Nevertheless, the applications that work with the distributed database must

understand the functionality that is available at each node in the system—for

example, a distributed database application cannot expect an Oracle7 database to

understand the object SQL extensions that are only available with Oracle8i.

Distributed Databases Vs. Distributed Processing
The terms distributed database and distributed processing are closely related, yet have

distinct meanings.

Oracle Oracle

Oracle

Distributed Database Headquarters

MFG.ACME.COM HQ.ACME.COM

SALES.ACME.COM

Manufacturing

.

.

.

.

.

.
Sales

. . .
Distributed Database Concepts 1-3

Distributed Database Architecture
Oracle distributed database systems employ a distributed processing architecture.

For example, an Oracle database server acts as a client when it requests data that

another Oracle database server manages.

Distributed Databases Vs. Replicated Databases
The terms distributed database system and database replication are related, yet distinct.

In a pure (that is, non-replicated) distributed database, the system manages a single

copy of all data and supporting database objects. Typically, distributed database

applications use distributed transactions to access both local and remote data and

modify the global database in real-time.

The term replication refers to the operation of copying and maintaining database

objects in multiple databases belonging to a distributed system. While replication

relies on distributed database technology, database replication offers applications

benefits that are not possible within a pure distributed database environment.

Most commonly, replication is used to improve local database performance and

protect the availability of applications because alternate data access options exist.

For example, an application may normally access a local database rather than a

remote server to minimize network traffic and achieve maximum performance.

Furthermore, the application can continue to function if the local server experiences

a failure, but other servers with replicated data remain accessible.

Distributed database A set of databases in a distributed system that can
appear to applications as a single data source.

Distributed processing The operations that occurs when an application
distributes its tasks among different computers in a
network. For example, a database application
typically distributes front-end presentation tasks to
client computers and allows a back-end database
server to manage shared access to a database.
Consequently, a distributed database application
processing system is more commonly referred to as
a client/server database application system.

Note: This book discusses only pure distributed databases.

See Also: Oracle8i Replication for more information about Oracle’s

replication features.
1-4 Oracle8i Distributed Database Systems

Distributed Database Architecture
Heterogeneous Distributed Database Systems
In a heterogeneous distributed database system, at least one of the databases is a

non-Oracle system. To the application, the heterogeneous distributed database

system appears as a single, local, Oracle database; the local Oracle database server

hides the distribution and heterogeneity of the data.

The Oracle database server accesses the non-Oracle system using Oracle8i
Heterogeneous Services in conjunction with an agent. If you access the non-Oracle

data store using an Oracle Transparent Gateway, then the agent is a system-specific

application. For example, if you include a Sybase database in an Oracle distributed

system, then you need to obtain a Sybase-specific transparent gateway so that the

Oracle databases in the system can communicate with it.

Alternatively, you can use generic connectivity to access non-Oracle data stores so

long as the non-Oracle system supports the ODBC or OLE DB protocols. If you use

the generic agent included with the Oracle database server, then you do not need to

purchase a separate transparent gateway.

Heterogeneous Services
Heterogeneous Services (HS) is an integrated component within the Oracle8i server

and the enabling technology for the current suite of Oracle Transparent Gateway

products. HS provides the common architecture and administration mechanisms for

Oracle gateway products and other heterogeneous access facilities. Also, it provides

upwardly compatible functionality for users of most of the earlier Oracle

Transparent Gateway releases.

Transparent Gateway Agents
For each non-Oracle system that you access, Heterogeneous Services can use a

transparent gateway agent to interface with the specified non-Oracle system. The

agent is specific to the non-Oracle system, so each type of system requires a

different agent.

The transparent gateway agent facilitates communication between Oracle and

non-Oracle databases and uses the Heterogeneous Services component in the

See Also: Part III of this manual for more information about

Heterogeneous Services.

See Also: Chapter 6, "Oracle Heterogeneous Services Concepts"

for an overview of heterogeneous services.
Distributed Database Concepts 1-5

Distributed Database Architecture
Oracle database server. The agent executes SQL and transactional requests at the

non-Oracle system on behalf of the Oracle database server.

Generic Connectivity
Generic connectivity allows you to connect to non-Oracle8i data stores by using

either a Heterogeneous Services ODBC agent or a Heterogeneous Services OLE DB

agent—both are included with your Oracle8i product as a standard feature. Any

data source compatible with the ODBC or OLE DB standards can be accessed using

a generic connectivity agent.

The advantage to generic connectivity is that it does not require you to purchase

and configure a separate system-specific agent. You simply need an ODBC or OLE

DB driver that can interface with the agent.

Heterogeneous Services Features
The features of the Heterogeneous Services include the following:

See Also: Oracle Transparent Gateway Installation and User's Guide
version 8.1 for detailed information on installation and

configuration.

See Also: Chapter 8, "Managing Heterogeneous Services Using

Generic Connectivity" for detailed information on installation and

configuration of generic connectivity.

Feature Purpose

Distributed transactions Allows a transaction to span both Oracle and non-Oracle
systems, while still guaranteeing transaction consistency.

SQL translations Integrates data from non-Oracle systems into the Oracle
environment as if the data were stored in one local database.
SQL statements are transparently transformed into SQL
statement understood by the non-Oracle system.

Data dictionary
translations

Makes a non-Oracle system appear as an Oracle database
server. SQL statements containing references to Oracle's data
dictionary tables are transformed into SQL statements
containing references to a non-Oracle system's data dictionary
tables.

Pass-Through SQL Gives application programmers direct access to a non-Oracle
system from an Oracle application using the non-Oracle
system's SQL dialect.

Stored procedure access Allows access to stored procedures in SQL-based non-Oracle
systems as if they were PL/SQL remote procedures.
1-6 Oracle8i Distributed Database Systems

Distributed Database Architecture
Client/Server Database Architecture
A database server is the Oracle software managing a database, and a client is an

application that requests information from a server. Each computer in a network is a

node that can host one or more databases. Each node in a distributed database

system can act as a client, a server, or both, depending on the situation.

In Figure 1–2, the host for the HQ database is acting as a database server when a

statement is issued against its local data (for example, the second statement in each

transaction issues a statement against the local DEPT table), but is acting as a client

when it issues a statement against remote data (for example, the first statement in

each transaction is issued against the remote table EMP in the SALES database).

NLS support Supports multi-byte character sets, and translates character sets
between a non-Oracle system and the Oracle8i server.

Multi-Threaded agents Takes advantage of your operating system’s threading
capabilities by reducing the number of required processes.

Agent self-registration Automates the updating of Heterogeneous Services
configuration data on remote hosts, ensuring correct operation
over heterogeneous database links.

Generic connectivity Allows Oracle8i to connect to a non-Oracle data store using the
ODBC or OLE DB protocol.

Note: Not all listed features are necessarily supported by your

Heterogeneous Services agent or Oracle Transparent Gateway. See

your system-specific documentation for supported features.

Feature Purpose
Distributed Database Concepts 1-7

Distributed Database Architecture
Figure 1–2 An Oracle Distributed Database System

Network

Application

Server Server

DEPT Table EMP Table

TRANSACTION

INSERT INTO EMP@SALES..;

DELETE FROM DEPT..;

SELECT...
 FROM EMP@SALES...;

COMMIT;

.

.

.

HQ
Database

Sales
Database

CONNECT TO...
IDENTIFIED BY ...

Database Link

Net8Net8
1-8 Oracle8i Distributed Database Systems

Database Links
Direct and Indirect Connections
A client can connect directly or indirectly to a database server. A direct connection

occurs when a client connects to a server and accesses information from a database

contained on that server. For example, if you connect to the HQ database and access

the DEPT table on this database as in Figure 1–2, you can issue the following:

SELECT * FROM dept;

This query is direct because you are not accessing an object on a remote database.

In contrast, an indirect connection occurs when a client connects to a server and

then accesses information contained in a database on a different server. For

example, if you connect to the HQ database but access the EMP table on the remote

SALES database as in Figure 1–2, you can issue the following:

SELECT * FROM emp@sales;

This query is indirect because the object you are accessing is not on the database to

which you are directly connected.

Database Links
The central concept in distributed database systems is a database link. A database

links is a connection between two physical database servers that allows a client to

access them as one logical database.

This section contains the following topics:

■ What Are Database Links?

■ Why Use Database Links?

■ Global Database Names in Database Links

■ Names for Database Links

■ Types of Database Links

■ Users of Database Links

■ Creation of Database Links: Examples

■ Schema Objects and Database Links

■ Database Link Restrictions
Distributed Database Concepts 1-9

Database Links
What Are Database Links?
A database link is a pointer that defines a one-way communication path from an

Oracle database server to another database server. The link pointer is actually

defined as an entry in a data dictionary table. To access the link, you must be

connected to the local database that contains the data dictionary entry.

A database link connection is one-way in the sense that a client connected to local

database A can use a link stored in database A to access information in remote

database B, but users connected to database B cannot use the same link to access

data in database A. If local users on database B want to access data on database A,

then they must define a link that is stored in the data dictionary of database B.

A database link connection allows local users to access data on a remote database.

For this connection to occur, each database in the distributed system must have a

unique global database name in the network domain. The global database name

uniquely identifies a database server in a distributed system.

Figure 1–3 shows an example of user SCOTT accessing the EMP table on the remote

database with the global name HQ.ACME.COM:
1-10 Oracle8i Distributed Database Systems

Database Links
Figure 1–3 Database Link

Database links are either private or public. If they are private, then only the user who

created the link has access; if they are public, then all database users have access.

One principal difference among database links is the way that connections to a

remote database occur. Users accessing a remote database through a:

■ Connected user link connect as themselves, which means that they must have an

account on the remote database with the same username as their account on the

local database.

■ Fixed user link connect using the username and password referenced in the link.

For example, if JANE uses a fixed user link that connects to the HR database

with the username and password SCOTT/TIGER, then she connects as SCOTT.

JANE has all the privileges in HR granted to SCOTT directly, and all the default

roles that SCOTT has been granted in the HR database.

■ Current user link connect as a global user. A local user can connect as a global

user in the context of a stored procedure—without storing the global user’s

password in a link definition. For example, JANE can access a procedure that

Local
database

User Scott

Remote
database

Select *
FROM emp

Database
link
(unidirectional)

EMP table

PUBLIC SYNONYM
emp -> emp@HQ.ACME.COM
Distributed Database Concepts 1-11

Database Links
SCOTT wrote, accessing SCOTT’s account and SCOTT’s schema on the HR

database. Current user links are an aspect of the Oracle Advanced Security

option (formerly called Advanced Networking Option).

Create database links using the CREATE DATABASE LINK statement. After a link

is created, you can use it to specify schema objects in SQL statements.

What Are Shared Database Links?
A shared database link is a link between a local server process and the remote

database. The link is shared because multiple client processes can use the same link

simultaneously.

When a local database is connected to a remote database through a database link,

either database can run in dedicated or multi-threaded server (MTS) mode. The

following table illustrates the possibilities:

A shared database link can exist in any of these four configurations. Shared links

differ from standard database links in the following ways:

■ Different users accessing the same schema object through a database link can

share a network connection.

■ When a user needs to establish a connection to a remote server from a particular

server process, the process can reuse connections already established to the

remote server. The reuse of the connection can occur if the connection was

established on the same server process with the same database link—possibly

in a different session. In a non-shared database link, a connection is not shared

across multiple sessions.

■ When you use a shared database link in an MTS configuration, a network

connection is established directly out of the shared server process in the local

server. For a non-shared database link on a local multi-threaded server, this

connection would have been established through the local dispatcher, requiring

context switches for the local dispatcher, and requiring data to go through the

dispatcher.

Local Database Mode Remote Database Mode

Dedicated Dedicated

Dedicated Multi-threaded

Multi-threaded Dedicated

Multi-threaded Multi-threaded
1-12 Oracle8i Distributed Database Systems

Database Links
Why Use Database Links?
The great advantage of database links is that they allow users to access another

user’s objects in a remote database so that they are bounded by the privilege set of

the object’s owner. In other words, a local user can access a link to a remote

database without having to be a user on the remote database.

For example, assume that employees submit expense reports to Accounts Payable

(A/P), and further suppose that a user using an A/P application needs to retrieve

information about employees from the HR database. The A/P users should be able

to connect to the HR database and execute a stored procedure in the remote HR

database that retrieves the desired information. The A/P users should not need to

be HR database users to do their jobs; they should only be able to access HR

information in a controlled way as limited by the procedure.

Database links allow you to grant limited access on remote databases to local users.

By using current user links, you can create centrally managed global users whose

password information is hidden from both administrators and non-administrators.

For example, A/P users can access the HR database as SCOTT, but unlike fixed user

links, SCOTT’s credentials are not stored where database users can see them.

By using fixed user links, you can create non-global users whose password

information is stored in unencrypted form in the LINK$ data dictionary table. Fixed

user links are easy to create and require low overhead because there are no SSL or

directory requirements, but a security risk results from the storage of password

information in the data dictionary.

Global Database Names in Database Links
To understand how a database link works, you must first understand what a global

database name is. Each database in a distributed database is uniquely identified by

its global database name. Oracle forms a database’s global database name by

prefixing the database’s network domain, specified by the DB_DOMAIN

initialization parameter at database creation, with the individual database name,

specified by the DB_NAME initialization parameter.

See Also: Net8 Administrator’s Guide for information about the

multi-threaded server option.

See Also: "Users of Database Links" on page 1-17 for an

explanation of database link users, and "Viewing Information

About Database Links" for an explanation of how to hide

passwords from non-administrators.
Distributed Database Concepts 1-13

Database Links
For example, Figure 1–4 illustrates a representative hierarchical arrangement of

databases throughout a network.

Figure 1–4 Network Directories and Global Database Names

The name of a database is formed by starting at the leaf of the tree and following a

path to the root. For example, the MFTG database is in DIVISION3 of the ACME_

TOOLS branch of the COM domain. The global database name for MFTG is created

by concatenating the nodes in the tree as follows:

MFTG.DIVISION3.ACME_TOOLS.COM

While several databases can share an individual name, each database must have a

unique global database name. For example, the network domains

US.AMERICAS.ACME_AUTO.COM and UK.EUROPE.ACME_AUTO.COM each

Other Non–Commercial
Companies Organizations

COM ORGEDU

HUMAN_RESOURCES.EMP

DIVISION1 DIVISION2 DIVISION3

ACME_TOOLS

ASIA AMERICAS EUROPE

ACME_AUTO

JAPAN US MEXICO UK GERMANY

HUMAN_RESOURCES.EMP

Educational
Institutions

SalesSalesSalesSalesHQSales

MFTGSalesFinanceHQ
1-14 Oracle8i Distributed Database Systems

Database Links
contain a SALES database. The global database naming system distinguishes the

SALES database in the AMERICAS division from the SALES database in the

EUROPE division as follows:

SALES.US.AMERICAS.ACME_AUTO.COM
SALES.UK.EUROPE.ACME_AUTO.COM

Names for Database Links
Typically, a database link has the same name as the global database name of the

remote database that it references. For example, if the global database name of a

database is SALES.US.ORACLE.COM, then the database link is also called

SALES.US.ORACLE.COM.

When you set the initialization parameter GLOBAL_NAMES to TRUE, Oracle

ensures that the name of the database link is the same as the global database name

of the remote database. For example, if the global database name for HQ is

HQ.ACME.COM, and GLOBAL_NAMES is TRUE, then the link name must be

called HQ.ACME.COM. Note that Oracle checks the domain part of the global

database name as stored in the data dictionary, not the DB_DOMAIN setting in the

initialization parameter file (see "Changing the Domain in a Global Database Name"

on page 2-4).

If you set the initialization parameter GLOBAL_NAMES to FALSE, then you are not

required to use global naming. You can then name the database link whatever you

want. For example, you can name a database link to HQ.ACME.COM as FOO.

After you have enabled global naming, database links are essentially transparent to

users of a distributed database because the name of a database link is the same as

the global name of the database to which the link points. For example, the following

statement creates a database link in the local database to remote database SALES:

CREATE PUBLIC DATABASE LINK sales.division3.acme.com USING ’sales1’;

See Also: "Managing Global Names in a Distributed System" on

page 2-2 to learn how to specify and change global database names.

Note: Oracle Corporation recommends that you use global

naming because many useful features, including Oracle Advanced

Replication, require global naming.
Distributed Database Concepts 1-15

Database Links
Types of Database Links
Oracle allows you to create private, public, and global database links. These basic link

types differ according to which users are allowed access to the remote database:

Determining the type of database links to employ in a distributed database depends

on the specific requirements of the applications using the system. Consider these

advantages and disadvantages:

See Also: Oracle8i Reference for more information about specifying

the initialization parameter GLOBAL_NAMES.

Type Owner Description

Private User who created the link.
Access ownership data
through DBA_DB_LINKS
or ALL_DB_LINKS.

Creates link in a specific schema of the local
database. Only the owner of a private database
link or PL/SQL subprograms in the schema
can use this link to access database objects in
the corresponding remote database.

Public User called PUBLIC. Access
ownership data through
DBA_DB_LINKS or ALL_
DB_LINKS.

Creates a database-wide link. All users and
PL/SQL subprograms in the database can use
the link to access database objects in the
corresponding remote database.

Global User called PUBLIC. Access
ownership data through
DBA_DB_LINKS or ALL_
DB_LINKS.

Creates a network-wide link. When an Oracle
network uses Oracle Names, the names servers
in the system automatically create and manage
global database links for every Oracle database
in the network. Users and PL/SQL
subprograms in any database can use a global
link to access objects in the corresponding
remote database.

Private Database Link This link is more secure than a public or global link,
because only the owner of the private link, or
subprograms within the same schema, can use the link to
access the remote database.

Public Database Link When many users require an access path to a remote
Oracle database, you can create a single public database
link for all users in a database.

Global Database Link When an Oracle network uses Oracle Names, an
administrator can conveniently manage global database
links for all databases in the system. Database link
management is centralized and simple.
1-16 Oracle8i Distributed Database Systems

Database Links
Users of Database Links
When creating the link, you determine which user should connect to the remote

database to access the data. The following table explains the differences among the

categories of users involved in database links:

Connected User Database Links
Connected user links have no connect string associated with them. The advantage

of a connected user link is that a user referencing the link connects to the remote

database as the same user. Furthermore, because no connect string is associated

with the link, no password is stored in clear text in the data dictionary.

See Also: T"Specifying Link Types" on page 2-9 to learn how to

create different types of database links, and "Viewing Information

About Database Links" on page 2-21 to learn how to access

information about links.

User Type Meaning
Sample Link
Creation Syntax

Connected user A local user accessing a database link in which no fixed username
and password have been specified. If SYSTEM accesses a public link
in a query, then the connected user is SYSTEM, and Oracle connects
to the SYSTEM schema in the remote database.

Note: A connected user does not have to be the user who created the
link, but is any user who is accessing the link.

CREATE PUBLIC
DATABASE LINK hq
USING ’hq’;

Current user A global user in a CURRENT_USER database link. The global user
must be authenticated by an X.509 certificate and a private key and
be a user on both databases involved in the link. Current user links
are an aspect of the Oracle Advanced Security option.

See Also: Oracle Advanced Security Administrator’s Guide for more
information about global security.

CREATE PUBLIC
DATABASE LINK hq
CONNECT TO
CURRENT_USER
using ’hq’;

Fixed user A user whose username/password is part of the link definition. If a
link includes a fixed user, then the fixed user’s username and
password are used to connect to the remote database.

CREATE PUBLIC
DATABASE LINK hq
CONNECT TO jane
IDENTIFIED BY doe
USING ’hq’;

See Also: "Specifying Link Users" on page 2-11 to learn how to

specify users where creating links.
Distributed Database Concepts 1-17

Database Links
Connected user links have some disadvantages. Because these links require users to

have accounts and privileges on the remote databases to which they are attempting

to connect, they require more privilege administration for administrators. Also,

giving users more privileges than they need violates the fundamental security

concept of least privilege: users should only be given the privileges they need to

perform their jobs.

The ability to use connected user database link depends on several factors, chief

among them whether the user is authenticated by Oracle using a password, or

externally authenticated by the operating system or a network authentication

service. If the user is externally authenticated, then the ability to use a connected

user link also depends on whether the remote database accepts remote

authentication of users, which is set by the REMOTE_OS_AUTHENT initialization

parameter.

The REMOTE_OS_AUTHENT parameter operates as follows:

Fixed User Database Links
A benefit of a named link is that it connects a user in a primary database to a remote

database with the security context of the user in the connect string. For example,

local user JOE can create a public database link in JOE’s schema that specifies the

fixed user SCOTT with password TIGER. If JANE uses the fixed user link in a query,

then JANE is the user on the local database, but she connects to the remote database

as SCOTT/TIGER.

Fixed user links have a username and password associated with the connect string.

The username and password are stored in unencrypted form in the data dictionary

in the LINK$ table. This fact creates a possible security weakness of fixed user

database links: a user with the SELECT ANY TABLE privilege has access to the data

dictionary so long as the O7_DICTIONARY_ACCESSIBILITY initialization

parameter is set to TRUE, and thus the authentication associated with a fixed user is

compromised.

If REMOTE_OS_AUTHENT is... Then...

TRUE for the remote database An externally-authenticated user can connect to the
remote database using a connected user database link.

FALSE for the remote database An externally-authenticated user cannot connect to the
remote database using a connected user database link
unless a secure protocol or a network authentication
service supported by the Oracle Advanced Security
option is used.
1-18 Oracle8i Distributed Database Systems

Database Links
For an example of this security problem, assume that JANE does not have privileges

to use a private link that connects to the HR database as SCOTT/TIGER, but has

SELECT ANY TABLE privilege on a database in which the O7_DICTIONARY_

ACCESSIBILITY initialization parameter is set to TRUE. She can select from LINK$

and read that the connect string to HR is SCOTT/TIGER. If JANE has an account on

the host on which HR resides, then she can connect to the host and then connect to

HR as SCOTT using the password TIGER. She will have all SCOTT’s privileges if

she connects locally and any audit records will be recorded as if she were SCOTT.

Current User Database Links
Current user database links make use of a global user. A global user must be

authenticated by an X.509 certificate and a private key and be a user on both

databases involved in the link.

The user invoking the CURRENT_USER link does not have to be a global user. For

example, if JANE is authenticated by password to the Accounts Payable database,

she can access a stored procedure to retrieve data from the HR database. The

procedure uses a current user database link, which connects her to HR as global

user SCOTT. SCOTT is a global user and thereby authenticated through a certificate

and private key over SSL, but JANE is not.

Note that current user database links have these consequences:

■ If the current user database link is not accessed from within a stored object, then

the current user is the same as the connected user accessing the link. For

example, if SCOTT issues a SELECT statement through a current user link, then

the current user is SCOTT.

■ When executing a stored object such as a procedure, view, or trigger that

accesses a database link, the current user is the user that owns the stored object,

and not the user that calls the object. For example, if JANE calls procedure

SCOTT.P (created by SCOTT), and a current user link appears within the called

procedure, then SCOTT is the current user of the link.

■ If the stored object is an invoker-rights function, procedure, or package, then

the invoker's authorization ID is used to connect as a remote user. For example,

if user JANE calls procedure SCOTT.P (an invoker-rights procedure created by

Note: The default value for O7_DICTIONARY_ACCESSIBILITY is

TRUE.
Distributed Database Concepts 1-19

Database Links
SCOTT), and the link appears inside procedure SCOTT.P, then JANE is the

current user.

■ You cannot connect to a database as an enterprise user and then use a current

user link in a stored procedure that exists in a shared, global schema. For

example, you are user JANE and access a stored procedure in the shared

schema GUEST on database DB1. You cannot use a current user link in this

schema to log on to a remote database.

Creation of Database Links: Examples
Create database links using the CREATE DATABASE LINK statement. The table

gives examples of SQL statements that create database links in a local database to

the remote SALES.US.AMERICAS.ACME_AUTO.COM database:

See Also: "Distributed Database Security" on page 1-25 for more

information about security issues relating to database links.

SQL Statement Connects To Database Connects As Link Type

CREATE DATABASE LINK
sales.us.americas.acme_
auto.com USING ’sales_us’;

SALES using net service
name SALES_US

Connected user Private
connected
user

CREATE DATABASE LINK foo
CONNECT TO CURRENT_USER USING
'am_sls';

SALES using service
name AM_SLS

Current global user Private
current user

CREATE DATABASE LINK
sales.us.americas.acme_
auto.com CONNECT TO scott
IDENTIFIED BY tiger USING
’sales_us’;

SALES using net service
name SALES_US

SCOTT using password
TIGER

Private fixed
user

CREATE PUBLIC DATABASE LINK
sales CONNECT TO scott
IDENTIFIED BY tiger USING
'rev';

SALES using net service
name REV

SCOTT using password
TIGER

Public fixed
user

CREATE SHARED PUBLIC DATABASE
LINK sales.us.americas.acme_
auto.com CONNECT TO scott
IDENTIFIED BY tiger
AUTHENTICATED BY anupam
IDENTIFIED BY bhide USING
'sales';

SALES using net service
name SALES

SCOTT using password
TIGER, authenticated as
ANUPAM using
password BHIDE

Shared
public fixed
user
1-20 Oracle8i Distributed Database Systems

Database Links
Schema Objects and Database Links
After you have created a database link, you can execute SQL statements that access

objects on the remote database. For example, to access remote object EMP using

database link FOO, you can issue:

SELECT * FROM emp@foo;

Constructing properly formed object names using database links is an essential

aspect of data manipulation in distributed systems.

Naming of Schema Objects Using Database Links
Oracle uses the global database name to name the schema objects globally using the

following scheme:

schema. schema_object @global_database_name

where:

For example, using a database link to database SALES.DIVISION3.ACME.COM, a

user or application can reference remote data as follows:

SELECT * FROM scott.emp@sales.division3.acme.com; # emp table in scott’s schema
SELECT loc FROM scott.dept@sales.division3.acme.com;

See Also: "Creating Database Links" on page 2-8 to learn how to

create links. For CREATE DATABASE LINK syntax, see the Oracle8i
SQL Reference.

schema is a collection of logical structures of data, or schema
objects. A schema is owned by a database user and
has the same name as that user. Each user owns a
single schema.

schema_object is a logical data structure like a table, index, view,
synonym, procedure, package, or a database link.

global_database_name is the name that uniquely identifies a remote
database. This name must be the same as the
concatenation of the remote database’s initialization
parameters DB_NAME and DB_DOMAIN, unless
the parameter GLOBAL_NAMES is set to FALSE, in
which case any name is acceptable.
Distributed Database Concepts 1-21

Database Links
If GLOBAL_NAMES is set to FALSE, then you can use any name for the link to

SALES.DIVISION3.ACME.COM. For example, you can call the link FOO. Then, you

can access database as follows:

SELECT name FROM scott.emp@foo; # link name different from global name

Synonyms for Schema Objects
Oracle allows you to create synonyms so that you can hide the database link name

from the user. A synonym allows access to a table on a remote database using the

same syntax that you would use to access a table on a local database. For example,

assume you issue the following query against a table in a remote database:

SELECT * FROM emp@hq.acme.com;

You can create the synonym EMP for EMP@HQ.ACME.COM so that you can issue

the following query instead to access the same data:

SELECT * FROM emp;

Schema Object Name Resolution
To resolve application references to schema objects (a process called name resolution),

Oracle forms object names hierarchically. For example, Oracle guarantees that each

schema within a database has a unique name, and that within a schema each object

has a unique name. As a result, a schema object’s name is always unique within the

database. Furthermore, Oracle resolves application references to an object’s local

name.

In a distributed database, a schema object such as a table is accessible to all

applications in the system. Oracle extends the hierarchical naming model with

global database names to effectively create global object names and resolve references

to the schema objects in a distributed database system. For example, a query can

reference a remote table by specifying its fully qualified name, including the

database in which it resides.

For example, assume that you connect to the local database as user SYSTEM:

CONNECT system/manager@sales1

You then issue the following statements using database link HQ.ACME.COM to

access objects in the SCOTT and JANE schemas on remote database HQ:

See Also: "Using Synonyms to Create Location Transparency" on

page 2-28 to learn how to create synonyms for objects specified

using database links.
1-22 Oracle8i Distributed Database Systems

Distributed Database Administration
SELECT * FROM scott.emp@hq.acme.com;
INSERT INTO jane.accounts@hq.acme.com (acc_no, acc_name, balance)
 VALUES (5001, 'BOWER', 2000);
UPDATE jane.accounts@hq.acme.com
 SET balance = balance + 500;
DELETE FROM jane.accounts@hq.acme.com
 WHERE acc_name = 'BOWER';

Database Link Restrictions
You cannot perform the following operations using database links:

■ Grant privileges on remote objects.

■ Execute DESCRIBE operations on some remote objects. The following remote

objects, however, do support DESCRIBE operations:

– Tables

– Views

– Procedures

– Functions

■ ANALYZE remote objects.

■ Define or enforce referential integrity.

■ Grant roles to users in a remote database.

■ Obtain non-default roles on a remote database. For example, if JANE connects

to the local database and executes a stored procedure that uses a fixed user link

connecting as SCOTT, JANE receives SCOTT’s default roles on the remote

database. Jane cannot issue SET ROLE to obtain a non-default role.

■ Execute hash query joins that use MTS connections.

■ Use a current user link without authentication through SSL or NT native

authentication.

Distributed Database Administration
The following sections explain some of the topics relating to database management

in an Oracle distributed database system:

■ Site Autonomy
Distributed Database Concepts 1-23

Distributed Database Administration
■ Distributed Database Security

■ Auditing Database Links

■ Administration Tools

Site Autonomy
Site autonomy means that each server participating in a distributed database is

administered independently from all other databases. Although several databases

can work together, each database is a separate repository of data that is managed

individually. Some of the benefits of site autonomy in an Oracle distributed

database include:

■ Nodes of the system can mirror the logical organization of companies or groups

that need to maintain independence.

■ Local administrators control corresponding local data. Therefore, each database

administrator’s domain of responsibility is smaller and more manageable.

■ Independent failures are less likely to disrupt other nodes of the distributed

database. No single database failure need halt all distributed operations or be a

performance bottleneck.

■ Administrators can recover from isolated system failures independently from

other nodes in the system.

■ A data dictionary exists for each local database—a global catalog is not

necessary to access local data.

■ Nodes can upgrade software independently.

Although Oracle allows you to manage each database in a distributed database

system independently, you should not ignore the global requirements of the system.

For example, you may need to:

■ Create additional user accounts in each database to support the links that you

create to facilitate server-to-server connections.

■ Set additional initialization parameters such as DISTRIBUTED_LOCK_

TIMEOUT, DISTRIBUTED_TRANSACTIONS, COMMIT_POINT_STRENGTH,

and so forth.

See Also: TChapter 2, "Managing a Distributed Database" to learn

how to administer homogenous systems, and Chapter 7,

"Managing Oracle Heterogeneous Services Using Transparent

Gateways" to learn how to administer heterogeneous systems.
1-24 Oracle8i Distributed Database Systems

Distributed Database Administration
Distributed Database Security
Oracle supports all of the security features that are available with a non-distributed

database environment for distributed database systems, including:

■ Password authentication for users and roles

■ Some types of external authentication for users and roles including:

– Kerberos version 5 for connected user links

– DCE for connected user links

■ Login packet encryption for client-to-server and server-to-server connections

The following sections explain some additional topics to consider when configuring

an Oracle distributed database system:

■ Authentication Through Database Links

■ Authentication Without Passwords

■ Supporting User Accounts and Roles

■ Centralized User and Privilege Management

■ Data Encryption

Authentication Through Database Links
Database links are either private or public, authenticated or non-authenticated. You

create public links by specifying the PUBLIC keyword in the link creation

statement. For example, you can issue:

CREATE PUBLIC DATABASE LINK foo USING ’sales’;

You create authenticated links by specifying the CONNECT TO clause,

AUTHENTICATED BY clause, or both clauses together in the database link creation

statement. For example, you can issue:

CREATE DATABASE LINK sales CONNECT TO scott IDENTIFIED BY tiger USING ’sales’;
CREATE SHARED PUBLIC DATABASE LINK sales CONNECT TO mick IDENTIFIED BY jagger
 AUTHENTICATED BY david IDENTIFIED BY bowie USING ’sales’;

This table describes how users access the remote database through the link:

See Also: Oracle Advanced Security Administrator’s Guide for more

information about external authentication.
Distributed Database Concepts 1-25

Distributed Database Administration
Authentication Without Passwords
When using a connected user or current user database link, you can use an external

authentication source such as Kerberos to obtain end-to-end security. In end-to-end

authentication, credentials are passed from server to server and can be

authenticated by a database server belonging to the same domain. For example, if

JANE is authenticated externally on a local database, and wants to use a connected

user link to connect as herself to a remote database, the local server passes the

security ticket to the remote database.

Supporting User Accounts and Roles
In a distributed database system, you must carefully plan the user accounts and

roles that are necessary to support applications using the system. Note that:

■ The user accounts necessary to establish server-to-server connections must be

available in all databases of the distributed database system.

Link Type Authenticated? Security Access

Private No When connecting to the remote database, Oracle uses
security information (userid/password) taken from the
local session. Hence, the link is a connected user database
link. Passwords must be synchronized between the two
databases.

Private Yes The userid/password is taken from the link definition
rather than from the local session context. Hence, the link
is a fixed user database link.

This configuration allows passwords to be different on the
two databases, but the local database link password must
match the remote database password. The password is
stored in clear text on the local system catalog, adding a
security risk.

Public No Works the same as a private non-authenticated link,
except that all users can reference this pointer to the
remote database.

Public Yes All users on the local database can access the remote
database and all use the same userid/password to make
the connection. Also, the password is stored in clear text
in the local catalog, so you can see the password if you
have sufficient privileges in the local database.
1-26 Oracle8i Distributed Database Systems

Distributed Database Administration
■ The roles necessary to make available application privileges to distributed

database application users must be present in all databases of the distributed

database system.

As you create the database links for the nodes in a distributed database system,

determine which user accounts and roles each site needs to support server-to-server

connections that use the links.

In a distributed environment, users typically require access to many network

services. When you must configure separate authentications for each user to access

each network service, security administration can become unwieldy, especially for

large systems.

Centralized User and Privilege Management
Oracle provides different ways for you to manage the users and privileges involved

in a distributed system. For example, you have these options:

■ Enterprise user management. You can create global users that are authenticated

through SSL, then manage these users and their privileges in a directory

through an independent enterprise directory service.

■ Network authentication service. This common technique simplifies security

management for distributed environments. You can use the Net8 Oracle

Advanced Security option to enhance Net8 and the security of an Oracle

distributed database system. Windows NT native authentication is an example

of a non-Oracle authentication solution.

Schema-Dependent Global Users One option for centralizing user and privilege

management is to create the following:

■ A global user in a centralized directory.

■ A user in every database that the global user must connect to.

For example, you can create a global user called FRED with the following SQL

statement:

See Also: "Creating Database Links" on page 2-8 for more

information about the user accounts that must be available to

support different types of database links in the system.

See Also: Net8 Administrator’s Guide and Oracle Advanced Security
Administrator’s Guide for more information about global user

security.
Distributed Database Concepts 1-27

Distributed Database Administration
CREATE USER fred IDENTIFIED GLOBALLY AS ’CN=fred adams,O=Oracle,C=England’;

This solution allows a single global user to be authenticated by a centralized

directory.

The schema-dependent global user solution has the consequence that you must

create a user called FRED on every database that this user must access. Because

most users need permission to access an application schema but do not need their

own schemas, the creation of a separate account in each database for every global

user creates significant overhead. Because of this problem, Oracle also supports

schema-independent users, which are global users that an access a single, generic

schema in every database.

Schema-Independent Global Users Oracle8i supports functionality that allows a global

user to be centrally managed by an enterprise directory service. Users who are

managed in the directory are called enterprise users. This directory contains

information about:

■ Which databases in a distributed system an enterprise user can access

■ Which role on each database an enterprise user can use

■ Which schema on each database an enterprise user can connect to

The administrator of each database is not required to create a global user account

for each enterprise user on each database to which the enterprise user needs to

connect. Instead, multiple enterprise users can connect to the same database

schema, called a shared schema.

For example, suppose JANE, BILL, and SCOTT all use a human resources

application. The HR application objects are all contained in the GUEST schema on

the HR database. In this case, you can create a local global user account to be used

as a shared schema. This global username, that is, shared schema name, is GUEST.

JANE, BILL, and SCOTT are all created as enterprise users in the directory service.

They are also mapped to the GUEST schema in the directory, and can be assigned

different authorizations in the HR application.

Figure 1–5 illustrates an example of global user security using the enterprise

directory service:

Note: You cannot access a current user database link in a shared

schema.
1-28 Oracle8i Distributed Database Systems

Distributed Database Administration
Figure 1–5 Global User Security

Assume that the enterprise directory service contains the following information on

enterprise users for DB1 and DB2:

Also, assume that the local administrators for DB1 and DB2 have issued statements

as follows:

Database Role Schema Enterprise Users

DB1 clerk1 guest bill

scott

DB2 clerk2 guest jane

scott

Database CREATE Statements

DB1 CREATE USER guest IDENTIFIED GLOBALLY AS ’’;
CREATE ROLE clerk1 GRANT select ON emp;
CREATE PUBLIC DATABASE LINK db2_link CONNECT AS CURRENT_USER USING
’db2’;

DB2 CREATE USER guest IDENTIFIED GLOBALLY;
CREATE ROLE clerk2 GRANT select ON dept;

DB1

SCOTT

LDAP

DB2

SSL
SSL

SSL

SSL
Distributed Database Concepts 1-29

Distributed Database Administration
Assume that enterprise user SCOTT requests a connection to local database DB1 in

order to execute a distributed transaction involving DB2. The following steps occur

(not necessarily in this exact order):

1. Enterprise user SCOTT and database DB1 mutually authenticate one another

using SSL.

2. SCOTT issues the following statement:

SELECT e.ename, d.loc
FROM emp e, dept@db2_link d
WHERE e.deptno=d.deptno

3. Databases DB1 and DB2 mutually authenticate one another using SSL.

4. DB1 queries the enterprise directory service to determine whether enterprise

user SCOTT has access to DB1, and discovers SCOTT can access local schema

GUEST using role CLERK1.

5. Database DB2 queries the enterprise directory service to determine whether

enterprise user SCOTT has access to DB2, and discovers SCOTT can access local

schema GUEST using role CLERK2.

6. Enterprise user SCOTT logs into DB2 to schema GUEST with role CLERK2 and

issues a SELECT to obtain the required information and transfer it to DB1.

7. DB1 receives the requested data from DB2 and returns it to the client SCOTT.

Data Encryption
The Oracle Advanced Security option also enables Net8 and related products to use

network data encryption and checksumming so that data cannot be read or altered.

It protects data from unauthorized viewing by using the RSA Data Security RC4 or

the Data Encryption Standard (DES) encryption algorithm.

To ensure that data has not been modified, deleted, or replayed during

transmission, the security services of the Oracle Advanced Security option can

generate a cryptographically secure message digest and include it with each packet

sent across the network.

See Also: Net8 Administrator’s Guide and Oracle Advanced Security
Administrator’s Guide for more information about enterprise user

security.
1-30 Oracle8i Distributed Database Systems

Distributed Database Administration
Auditing Database Links
You must always perform auditing operations locally. That is, if a user acts in a local

database and accesses a remote database through a database link, the local actions

are audited in the local database, and the remote actions are audited in the remote

database—provided that appropriate audit options are set in the respective

databases.

The remote database cannot determine whether a successful connect request and

subsequent SQL commands come from another server or from a locally connected

client. For example, assume the following:

■ Fixed user link HR.ACME.COM connects local user JANE to the remote HR

database as remote user SCOTT

■ SCOTT is audited on the remote database

Actions performed during the remote database session are audited as if SCOTT

were connected locally to HR and performing the same actions there. You must set

audit options in the remote database to capture the actions of the username—in this

case, SCOTT on the HR database—embedded in the link if the desired effect is to

audit what JANE is doing in the remote database.

You cannot set local auditing options on remote objects. Therefore, you cannot audit

use of a database link, although access to remote objects can be audited on the

remote database.

Administration Tools
The database administrator has several choices for tools to use when managing an

Oracle distributed database system:

■ Enterprise Manager

■ Third-Party Administration Tools

■ SNMP Support

See Also: Net8 Administrator’s Guide and Oracle Advanced Security
Administrator’s Guide for more information about these and other

features of the Oracle Advanced Security option.

Note: You can audit the global username for global users.
Distributed Database Concepts 1-31

Distributed Database Administration
Enterprise Manager
Enterprise Manager is Oracle’s database administration tool. The graphical

component of Enterprise Manager allows you to perform database administration

tasks with the convenience of a graphical user interface (GUI). The non-graphical

component of Enterprise Manager provides a command line interface.

Enterprise Manager provides administrative functionality for distributed databases

through an easy-to-use interface. You can use Enterprise Manager to:

■ Administer multiple databases. You can use Enterprise Manager to administer a

single database or to simultaneously administer multiple databases.

■ Centralize database administration tasks. You can administer both local and

remote databases running on any Oracle platform in any location worldwide. In

addition, these Oracle platforms can be connected by any network protocols

supported by Net8.

■ Dynamically execute SQL, PL/SQL, and Enterprise Manager commands. You

can use Enterprise Manager to enter, edit, and execute statements. Enterprise

Manager also maintains a history of statements executed.

Thus, you can re-execute statements without retyping them, a particularly

useful feature if you need to execute lengthy statements repeatedly in a

distributed database system.

■ Manage security features such as global users, global roles, and the enterprise

directory service.

Third-Party Administration Tools
Currently more than 60 companies produce more than 150 products that help

manage Oracle databases and networks, providing a truly open environment.

SNMP Support
Besides its network administration capabilities, Oracle Simple Network Management
Protocol (SNMP) support allows an Oracle database server to be located and queried

by any SNMP-based network management system. SNMP is the accepted standard

underlying many popular network management systems such as:

■ HP’s OpenView

■ Digital’s POLYCENTER Manager on NetView

■ IBM’s NetView/6000

■ Novell’s NetWare Management System
1-32 Oracle8i Distributed Database Systems

Transaction Processing in a Distributed System
■ SunSoft’s SunNet Manager

Transaction Processing in a Distributed System
A transaction is a logical unit of work constituted by one or more SQL statements

executed by a single user. A transaction begins with the user’s first executable SQL

statement and ends when it is committed or rolled back by that user.

A remote transaction contains only statements that access a single remote node. A

distributed transaction contains statements that access more than one node.

The following sections define important concepts in transaction processing and

explain how transactions access data in a distributed database:

■ Remote SQL Statements

■ Distributed SQL Statements

■ Shared SQL for Remote and Distributed Statements

■ Remote Transactions

■ Distributed Transactions

■ Two-Phase Commit Mechanism

■ Database Link Name Resolution

■ Schema Object Name Resolution

Remote SQL Statements
A remote query statement is a query that selects information from one or more

remote tables, all of which reside at the same remote node. For example, the

following query accesses data from the DEPT table in the SCOTT schema of the

remote SALES database:

SELECT * FROM scott.dept@sales.us.americas.acme_auto.com;

A remote update statement is an update that modifies data in one or more tables, all

of which are located at the same remote node. For example, the following query

updates the DEPT table in the SCOTT schema of the remote SALES database:

UPDATE scott.dept@mktng.us.americas.acme_auto.com

See Also: Oracle SNMP Support Reference Guide for more

information about SNMP.
Distributed Database Concepts 1-33

Transaction Processing in a Distributed System
 SET loc = ’NEW YORK’
 WHERE deptno = 10;

Distributed SQL Statements
A distributed query statement retrieves information from two or more nodes. For

example, the following query accesses data from the local database as well as the

remote SALES database:

SELECT ename, dname
 FROM scott.emp e, scott.dept@sales.us.americas.acme_auto.com d
 WHERE e.deptno = d.deptno;

A distributed update statement modifies data on two or more nodes. A distributed

update is possible using a PL/SQL subprogram unit such as a procedure or trigger

that includes two or more remote updates that access data on different nodes. For

example, the following PL/SQL program unit updates tables on the local database

and the remote SALES database:

BEGIN
 UPDATE scott.dept@sales.us.americas.acme_auto.com
 SET loc = 'NEW YORK'
 WHERE deptno = 10;
 UPDATE scott.emp
 SET deptno = 11
 WHERE deptno = 10;
END;
COMMIT;

Oracle sends statements in the program to the remote nodes, and their execution

succeeds or fails as a unit.

Shared SQL for Remote and Distributed Statements
The mechanics of a remote or distributed statement using shared SQL are

essentially the same as those of a local statement. The SQL text must match, and the

referenced objects must match. If available, shared SQL areas can be used for the

local and remote handling of any statement or decomposed query.

Note: A remote update can include a subquery that retrieves data

from one or more remote nodes, but because the update happens at

only a single remote node, the statement is classified as a remote

update.
1-34 Oracle8i Distributed Database Systems

Transaction Processing in a Distributed System
Remote Transactions
A remote transaction contains one or more remote statements, all of which reference a

single remote node. For example, the following transaction contains two statements,

each of which accessing the remote SALES database:

UPDATE scott.dept@sales.us.americas.acme_auto.com
 SET loc = 'NEW YORK'
 WHERE deptno = 10;
UPDATE scott.emp@sales.us.americas.acme_auto.com
 SET deptno = 11
 WHERE deptno = 10;
COMMIT;

Distributed Transactions
A distributed transaction is a transaction that includes one or more statements that,

individually or as a group, update data on two or more distinct nodes of a

distributed database. For example, this transaction updates the local database and

the remote SALES database:

UPDATE scott.dept@sales.us.americas.acme_auto.com
 SET loc = 'NEW YORK'
 WHERE deptno = 10;
UPDATE scott.emp
 SET deptno = 11
 WHERE deptno = 10;
COMMIT;

Two-Phase Commit Mechanism
An database must guarantee that all statements in a transaction, distributed or

non-distributed, either commit or roll back as a unit. The effects of an ongoing

transaction should be invisible to all other transactions at all nodes; this

transparency should be true for transactions that include any type of operation,

including queries, updates, or remote procedure calls.

See Also: Oracle8i Concepts for more information about shared

SQL.

Note: If all statements of a transaction reference only a single

remote node, the transaction is remote, not distributed.
Distributed Database Concepts 1-35

Transaction Processing in a Distributed System
The general mechanisms of transaction control in a non-distributed database are

discussed in the Oracle8i Concepts. In a distributed database, Oracle must coordinate

transaction control with the same characteristics over a network and maintain data

consistency, even if a network or system failure occurs.

Oracle’s two-phase commit mechanism guarantees that all database servers

participating in a distributed transaction either all commit or all roll back the

statements in the transaction. A two-phase commit mechanism also protects

implicit DML operations performed by integrity constraints, remote procedure

calls, and triggers.

Database Link Name Resolution
A global object name is an object specified using a database link. The essential

components of a global object name are:

■ Object name

■ Database name

■ Domain

The following table shows the components of an explicitly specified global database

object name:

Whenever a SQL statement includes a reference to a global object name, Oracle

searches for a database link with a name that matches the database name specified

in the global object name. For example, if you issue the following statement:

SELECT * FROM scott.emp@orders.us.acme.com;

Oracle searches for a database link called ORDERS.US.ACME.COM. Oracle

performs this operation to determine the path to the specified remote database.

Oracle always searches for matching database links in the following order:

See Also: Chapter 4, "Distributed Transactions Concepts" for

more information about Oracle’s two-phase commit mechanism.

Statement Object Database Domain

SELECT * FROM
joan.dept@sales.acme.com

dept sales acme.com

SELECT * FROM
emp@mktg.us.acme.com

emp mktg us.acme.com
1-36 Oracle8i Distributed Database Systems

Transaction Processing in a Distributed System
1. Private database links in the schema of the user who issued the SQL statement.

2. Public database links in the local database.

3. Global database links (only if an Oracle Names Server is available).

Name Resolution When the Global Database Name Is Complete
Assume that you issue the following SQL statement, which specifies a complete

global database name:

SELECT * FROM emp@prod1.us.oracle.com

In this case, both the database name (PROD1) and domain components

(US.ORACLE.COM) are specified, so Oracle searches for private, public, and global

database links. Oracle searches only for links that match the specified global

database name.

Name Resolution When the Global Database Name Is Partial
If any part of the domain is specified, Oracle assumes that a complete global

database name is specified. If a SQL statement specifies a partial global database

name (that is, only the database component is specified), Oracle appends the value

in the DB_DOMAIN parameter to the value in the DB_NAME parameter to

construct a complete name. For example, assume you issue the following

statements:

CONNECT scott/tiger@locdb
SELECT * FROM scott.emp@orders;

If the network domain for LOCDB is US.ACME.COM, then Oracle appends this

domain to ORDERS to construct the complete global database name of

ORDERS.US.ACME.COM. Oracle searches for database links that match only the

constructed global name. If a matching link is not found, Oracle returns an error

and the SQL statement cannot execute.

Name Resolution When No Global Database Name Is Specified
If a global object name references an object in the local database and a database link

name is not specified using the @ symbol, then Oracle automatically detects that the

object is local and does not search for or use database links to resolve the object

reference. For example, assume that you issue the following statements:

CONNECT scott/tiger@locdb
SELECT * from scott.emp;
Distributed Database Concepts 1-37

Transaction Processing in a Distributed System
Because the second statement does not specify a global database name using a

database link connect string, Oracle does not search for database links.

Terminating the Search for Name Resolution
Oracle does not necessarily stop searching for matching database links when it finds

the first match. Oracle must search for matching private, public, and network

database links until it determines a complete path to the remote database (both a

remote account and service name).

The first match determines the remote schema as illustrated in the following table:

After Oracle determines a complete path, it creates a remote session—assuming that

an identical connection is not already open on behalf of the same local session. If a

session already exists, Oracle reuses it.

Schema Object Name Resolution
After the local Oracle database connects to the specified remote database on behalf

of the local user that issued the SQL statement, object resolution continues as if the

remote user had issued the associated SQL statement. The first match determines

the remote schema according to the following rules:

If you... Then Oracle... As in the example...

Do not specify the
CONNECT clause

Uses a connected user
database link

CREATE DATABASE LINK k1 USING
’prod’

Do specify the
CONNECT TO ...
IDENTIFIED BY
clause

Uses a fixed user
database link

CREATE DATABASE LINK k2
CONNECT TO scott IDENTIFIED BY
tiger USING ’prod’

Specify the
CONNECT TO
CURRENT_USER
clause

Uses a current user
database link

CREATE DATABASE LINK k3
CONNECT TO CURRENT_USER USING
’prod’

Do not specify the
USING clause

Searches until it finds a
link specifying a
database string. If
matching database
links are found and a
string is never
identified, Oracle
returns an error.

CREATE DATABASE LINK k4
CONNECT TO CURRENT_USER
1-38 Oracle8i Distributed Database Systems

Transaction Processing in a Distributed System
If Oracle cannot find the object, then it checks public objects of the remote database.

If it cannot resolve the object, then the established remote session remains but the

SQL statement cannot execute and returns an error.

Examples of Global Object Name Resolution
The following are examples of global object name resolution in a distributed

database system. For all the following examples, assume that:

■ The remote database is named SALES.DIVISION3.ACME.COM.

■ The local database is named HQ.DIVISION3.ACME.COM.

■ An Oracle Names Server (and therefore, global database links) is not available.

Example: Resolving a Complete Object Name This example illustrates how Oracle

resolves a complete global object name and determines the appropriate path to the

remote database using both a private and public database link. For this example,

assume that a remote table EMP is contained in the schema TSMITH.

Consider the following statements issued by SCOTT at the local database:

CONNECT scott/tiger@hq

CREATE PUBLIC DATABASE LINK sales.division3.acme.com
CONNECT TO guest IDENTIFIED BY network
 USING 'dbstring';

Later, JWARD connects and issues the following statements:

CONNECT jward/bronco@hq

CREATE DATABASE LINK sales.division3.acme.com
 CONNECT TO tsmith IDENTIFIED BY radio;

UPDATE tsmith.emp@sales.division3.acme.com
 SET deptno = 40
 WHERE deptno = 10;

If you use... Then object resolution proceeds in the...

A fixed user database link Schema specified in the link creation statement.

A connected user database link Connected user’s remote schema.

A current user database link Current user’s schema.
Distributed Database Concepts 1-39

Transaction Processing in a Distributed System
Oracle processes the final statement as follows:

1. Oracle determines that a complete global object name is referenced in JWARD’s

update statement. Therefore, the system begins searching in the local database

for a database link with a matching name.

2. Oracle finds a matching private database link in the schema JWARD.

Nevertheless, the private database link

JWARD.SALES.DIVISION3.ACME.COM does not indicate a complete path to

the remote SALES database, only a remote account. Therefore, Oracle now

searches for a matching public database link.

3. Oracle finds the public database link in SCOTT’s schema. From this public

database link, Oracle takes the service name DBSTRING.

4. Combined with the remote account taken from the matching private fixed user

database link, Oracle determines a complete path and proceeds to establish a

connection to the remote SALES database as user TSMITH/RADIO.

5. The remote database can now resolve the object reference to the EMP table.

Oracle searches in the TSMITH schema and finds the referenced EMP table.

6. The remote database completes the execution of the statement and returns the

results to the local database.

Example: Resolving a Partial Object Name This example illustrates how Oracle resolves

a partial global object name and determines the appropriate path to the remote

database using both a private and public database link.

For this example, assume that:

■ A table EMP on the remote database SALES is contained in the schema

TSMITH, but not in schema SCOTT.

■ A public synonym named EMP resides at local database HQ and points to

TSMITH.EMP at the remote database SALES.

■ The public database link in "Example: Resolving a Complete Object Name" on

page 1-39 is already created on local database HQ:

CREATE PUBLIC DATABASE LINK sales.division3.acme.com
 CONNECT TO guest IDENTIFIED BY network
 USING 'dbstring';

Consider the following statements issued at local database HQ:

CONNECT scott/tiger@hq
1-40 Oracle8i Distributed Database Systems

Transaction Processing in a Distributed System
CREATE DATABASE LINK sales.division3.acme.com;

DELETE FROM emp@sales
 WHERE empno = 4299;

Oracle processes the final DELETE statement as follows:

1. Oracle notices that a partial global object name is referenced in SCOTT's

DELETE statement. It expands it to a complete global object name using the

domain of the local database as follows:

DELETE FROM emp@sales.division3.acme.com
 WHERE empno = 4299;

2. Oracle searches the local database for a database link with a matching name.

3. Oracle finds a matching private connected user link in the schema SCOTT, but

the private database link indicates no path at all. Oracle uses the connected

username/password as the remote account portion of the path and then

searches for and finds a matching public database link:

CREATE PUBLIC DATABASE LINK sales.division3.acme.com
 CONNECT TO guest IDENTIFIED BY network
 USING 'dbstring';

4. Oracle takes the database net service name DBSTRING from the public

database link. At this point, Oracle has determined a complete path.

5. Oracle connects to the remote database as SCOTT/TIGER and searches for and

does not find an object named EMP in the schema SCOTT.

6. The remote database searches for a public synonym named EMP and finds it.

7. The remote database executes the statement and returns the results to the local

database.

Global Name Resolution in Views, Synonyms, and Procedures
A view, synonym, or PL/SQL program unit (for example, a procedure, function, or

trigger) can reference a remote schema object by its global object name. If the global

object name is complete, then Oracle stores the definition of the object without

expanding the global object name. If the name is partial, however, Oracle expands

the name using the domain of the local database name.
Distributed Database Concepts 1-41

Transaction Processing in a Distributed System
The following table explains when Oracle completes the expansion of a partial

global object name for views, synonyms, and program units:

What Happens When Global Names Change
Global name changes can affect views, synonyms, and procedures that reference

remote data using partial global object names. If the global name of the referenced

database changes, views and procedures may try to reference a nonexistent or

incorrect database. On the other hand, synonyms do not expand database link

names at runtime, so they do not change.

For example, consider two databases named SALES.UK.ACME.COM and

HR.UK.ACME.COM. Also, assume that the SALES database contains the following

view and synonym:

CREATE VIEW employee_names AS
 SELECT ename FROM scott.emp@hr;

CREATE SYNONYM employee FOR scott.emp@hr;

Oracle expands the EMPLOYEE synonym definition and stores it as:

scott.emp@hr.uk.acme.com

Scenario 1: Both Databases Change Names First, consider the situation where both the

Sales and Human Resources departments are relocated to the United States.

Consequently, the corresponding global database names are both changed as

follows:

If you... Then Oracle...

Create a view Does not expand partial global names—the data dictionary
stores the exact text of the defining query. Instead, Oracle
expands a partial global object name each time a statement that
uses the view is parsed.

Create a synonym Expands partial global names. The definition of the synonym
stored in the data dictionary includes the expanded global
object name.

Compile a program unit Expands partial global names.

Old Global Name New Global Name

SALES.UK.ACME.COM SALES.US.ORACLE.COM
1-42 Oracle8i Distributed Database Systems

Transaction Processing in a Distributed System
The following table describes query expansion before and after the change in global

names:

Scenario 2: One Database Changes Names Now consider that only the Sales department

is moved to the United States; Human Resources remains in the UK. Consequently,

the corresponding global database names are both changed as follows:

The following table describes query expansion before and after the change in global

names:

In this case, the defining query of the EMPLOYEE_NAMES view expands to a

non-existent global database name. On the other hand, the EMPLOYEE synonym

continues to reference the correct database, HR.UK.ACME.COM.

HR.UK.ACME.COM HR.US.ACME.COM

Query on SALES Expansion Before Change Expansion After Change

SELECT * FROM
employee_names

SELECT * FROM
scott.emp@hr.uk.acme.com

SELECT * FROM
scott.emp@hr.us.acme.com

SELECT * FROM
employee

SELECT * FROM
scott.emp@hr.uk.acme.com

SELECT * FROM
scott.emp@hr.uk.acme.com

Old Global Name New Global Name

SALES.UK.ACME.COM SALES.US.ORACLE.COM

HR.UK.ACME.COM no change

Query on SALES Expansion Before Change Expansion After Change

SELECT * FROM
employee_names

SELECT * FROM
scott.emp@hr.uk.acme.com

SELECT * FROM
scott.emp@hr.us.acme.com

SELECT * FROM
employee

SELECT * FROM
scott.emp@hr.uk.acme.com

SELECT * FROM
scott.emp@hr.uk.acme.com

Old Global Name New Global Name
Distributed Database Concepts 1-43

Distributed Database Application Development
Distributed Database Application Development
Application development in a distributed system raises issues that are not

applicable in a non-distributed system. This section contains the following topics

relevant for distributed application development:

■ Transparency in a Distributed Database System

■ Remote Procedure Calls (RPCs)

■ Distributed Query Optimization

Transparency in a Distributed Database System
With minimal effort, you can develop applications that make an Oracle distributed

database system transparent to users that work with the system. The goal of

transparency is to make a distributed database system appear as though it is a

single Oracle database. Consequently, the system does not burden developers and

users of the system with complexities that would otherwise make distributed

database application development challenging and detract from user productivity.

The following sections explain more about transparency in a distributed database

system.

Location Transparency
An Oracle distributed database system has features that allow application

developers and administrators to hide the physical location of database objects from

applications and users. Location transparency exists when a user can universally refer

to a database object such as a table, regardless of the node to which an application

connects. Location transparency has several benefits, including:

■ Access to remote data is simple, because database users do not need to know

the physical location of database objects.

■ Administrators can move database objects with no impact on end-users or

existing database applications.

Most typically, administrators and developers use synonyms to establish location

transparency for the tables and supporting objects in an application schema. For

example, the following statements create synonyms in a database for tables in

another, remote database.

See Also: Chapter 3, "Developing Applications for a Distributed

Database System" to learn how to develop applications for

distributed systems.
1-44 Oracle8i Distributed Database Systems

Distributed Database Application Development
CREATE PUBLIC SYNONYM emp
 FOR scott.emp@sales.us.americas.acme_auto.com
CREATE PUBLIC SYNONYM dept
 FOR scott.dept@sales.us.americas.acme_auto.com

Now, rather than access the remote tables with a query such as:

SELECT ename, dname
 FROM scott.emp@sales.us.americas.acme_auto.com e,
 scott.dept@sales.us.americas.acme_auto.com d
 WHERE e.deptno = d.deptno;

An application can issue a much simpler query that does not have to account for the

location of the remote tables.

SELECT ename, dname
 FROM emp e, dept d
 WHERE e.deptno = d.deptno;

In addition to synonyms, developers can also use views and stored procedures to

establish location transparency for applications that work in a distributed database

system.

SQL and COMMIT Transparency
Oracle’s distributed database architecture also provides query, update, and

transaction transparency. For example, standard SQL commands such as SELECT,

INSERT, UPDATE, and DELETE work just as they do in a non-distributed database

environment. Additionally, applications control transactions using the standard

SQL commands COMMIT, SAVEPOINT, and ROLLBACK—there is no requirement

for complex programming or other special operations to provide distributed

transaction control.

■ The statements in a single transaction can reference any number of local or

remote tables.

■ Oracle guarantees that all nodes involved in a distributed transaction take the

same action: they either all commit or all roll back the transaction.

■ If a network or system failure occurs during the commit of a distributed

transaction, the transaction is automatically and transparently resolved

globally; that is, when the network or system is restored, the nodes either all

commit or all roll back the transaction.
Distributed Database Concepts 1-45

Distributed Database Application Development
Internal Operations Each committed transaction has an associated system change
number (SCN) to uniquely identify the changes made by the statements within that

transaction. In a distributed database, the SCNs of communicating nodes are

coordinated when:

■ A connection is established using the path described by one or more database

links.

■ A distributed SQL statement is executed.

■ A distributed transaction is committed.

Among other benefits, the coordination of SCNs among the nodes of a distributed

database system allows global distributed read-consistency at both the statement

and transaction level. If necessary, global distributed time-based recovery can also

be completed.

Replication Transparency
Oracle also provide many features to transparently replicate data among the nodes

of the system. For more information about Oracle’s replication features, see Oracle8i
Replication.

Remote Procedure Calls (RPCs)
Developers can code PL/SQL packages and procedures to support applications that

work with a distributed database. Applications can make local procedure calls to

perform work at the local database and remote procedure calls (RPCs) to perform

work at a remote database.

When a program calls a remote procedure, the local server passes all procedure

parameters to the remote server in the call. For example, the following PL/SQL

program unit calls the packaged procedure DEL_EMP located at the remote SALES

database and passes it the parameter 1257:

BEGIN
 emp_mgmt.del_emp@sales.us.americas.acme_auto.com(1257);
END;

In order for the RPC to succeed, the called procedure must exist at the remote site.

When developing packages and procedures for distributed database systems,

developers must code with an understanding of what program units should do at

remote locations, and how to return the results to a calling application.
1-46 Oracle8i Distributed Database Systems

National Language Support
Distributed Query Optimization
Distributed query optimization is a default Oracle8i feature that reduces the amount of

data transfer required between sites when a transaction retrieves data from remote

tables referenced in a distributed SQL statement.

Distributed query optimization uses Oracle’s cost-based optimization to find or

generate SQL expressions that extract only the necessary data from remote tables,

process that data at a remote site or sometimes at the local site, and send the results

to the local site for final processing. This operation reduces the amount of required

data transfer when compared to the time it takes to transfer all the table data to the

local site for processing.

Using various cost-based optimizer hints such as DRIVING_SITE, NO_MERGE,

and INDEX, you can control where Oracle processes the data and how it accesses

the data.

National Language Support
Oracle supports environments in which clients, Oracle database servers, and

non-Oracle servers use different character sets. In Oracle8i, NCHAR support is

provided for heterogeneous environments. You can set a variety of NLS and HS

parameters to control data conversion between different character sets.

Character settings are defined by the following NLS and HS parameters:

See Also: "Using Cost-Based Optimization" on page 3-5 for more

information about cost-based optimization.

Parameters Environment Defined For

NLS_LANG Client-Server Client

NLS_LANGUAGE

NLS_CHARACTERSET

NLS_TERRITORY

Client-Server

Non-Heterogeneous Distributed

Heterogeneous Distributed

Oracle database server

HS_LANGUAGE Heterogeneous Distributed Non-Oracle server

Transparent gateway

NLS_NCHAR

HS_NLS_NCHAR

Heterogeneous Distributed Oracle database server

Transparent gateway
Distributed Database Concepts 1-47

National Language Support
Client/Server Environment
In a client/server environment, set the client character set to be the same as or a

subset of the Oracle database server character set, as illustrated in Figure 1–6:

Figure 1–6 NLS Settings in a Client-Server Environment

Homogeneous Distributed Environment
In a non-heterogeneous environment, the client and server character sets should be

either the same as or subsets of the main server character set, as illustrated in

Figure 1–7:

Oracle

NLS_LANG =
NLS settings of
Oracle server or
subset of it
1-48 Oracle8i Distributed Database Systems

National Language Support
Figure 1–7 NLS Settings in a Homogeneous Environment

Heterogeneous Distributed Environment
In a heterogeneous environment, the NLS settings of the client, the transparent

gateway, and the non-Oracle data source should be either the same or a subset of

the Oracle database server NLS character set as illustrated in Figure 1–8.

Transparent gateways have full NLS support.

Oracle Oracle

NLS_LANG = NLS settings
of Oracle server(s) or
subset(s) of it

NLS setting similar or
subset of the other
Oracle server
Distributed Database Concepts 1-49

National Language Support
Figure 1–8 NLS Settings in a Heterogeneous Environment

In a heterogeneous environment, only transparent gateways built with HS

technology support complete NCHAR capabilities. Whether a specific transparent

gateway supports NCHAR depends on the non-Oracle data source it is targeting.

For further information on how a particular transparent gateway handles NCHAR

support, consult the particular transparent gateway documentation.

See Also: Oracle8i Reference for more information about National

Language Support features.

Oracle

Non-Oracle

Gateway
Agent

NLS settings to be the
same or the subset
of Oracle server
NLS setting

NLS_LANG =
NLS settings of
Oracle server or
subset of it
1-50 Oracle8i Distributed Database Systems

Managing a Distributed Data
2

Managing a Distributed Database

This chapter describes how to manage and maintain a distributed database system.

Topics include:

■ Managing Global Names in a Distributed System

■ Creating Database Links

■ Creating Shared Database Links

■ Managing Database Links

■ Viewing Information About Database Links

■ Creating Location Transparency

■ Managing Statement Transparency

■ Managing a Distributed Database: Scenarios
base 2-1

Managing Global Names in a Distributed System
Managing Global Names in a Distributed System
In a distributed database system, each database should have a unique global database
name. Global database names uniquely identify a database in the system. A primary

administration task in a distributed system is managing the creation and alteration

of global database names.

This section contains the following topics:

■ Understanding How Global Database Names Are Formed

■ Determining Whether Global Naming Is Enforced

■ Viewing a Global Database Name

■ Changing the Domain in a Global Database Name

■ Changing a Global Database Name: Scenario

Understanding How Global Database Names Are Formed
A global database name is formed from two components: a database name and a

domain. The database name and the domain name are determined by the following

initialization parameters at database creation:

These are examples of valid global database names:

Component Parameter Requirements Example

Database name DB_NAME Must be eight characters or less. SALES

Domain
containing the
database

DB_DOMAIN Must follow standard Internet
conventions. Levels in domain
names must be separated by dots
and the order of domain names is
from leaf to root, left to right.

US.ACME.COM

DB_NAME DB_DOMAIN Global Database Name

SALES AU.ORACLE.COM SALES.AU.ORACLE.COM

SALES US.ORACLE.COM SALES.US.ORACLE.COM

MKTG US.ORACLE.COM MKTG.US.ORACLE.COM

PAYROLL NONPROFIT.ORG PAYROLL.NONPROFIT.ORG
2-2 Oracle8i Distributed Database Systems

Managing Global Names in a Distributed System
The DB_DOMAIN initialization parameter is only important at database creation

time when it is used, together with the DB_NAME parameter, to form the

database’s global name. At this point, the database’s global name is stored in the

data dictionary. You must change the global name using an ALTER DATABASE

statement, not by altering the DB_DOMAIN parameter in the initialization

parameter file. It is good practice, however, to change the DB_DOMAIN parameter

to reflect the change in the domain name before the next database startup.

Determining Whether Global Naming Is Enforced
The name that you give to a link on the local database depends on whether the

remote database that you want to access enforces global naming. If the remote

database enforces global naming, then you must use the remote database’s global

database name as the name of the link. For example, if you are connected to the

local HQ server and want to create a link to the remote MNFG database, and MNFG

enforces global naming, then you must use MNFG’s global database name as the

link name.

You can also use service names as part of the database link name. For example, if

you use the service names SN1 and SN2 to connect to database HQ.ACME.COM,

and HQ enforces global naming, then you can create the following link names to

HQ:

HQ.ACME.COM@SN1
HQ.ACME.COM@SN2

To determine whether global naming on a database is enforced on a database, either

examine the database’s initialization parameter file or query V$PARAMETER. For

example, to see whether global naming is enforced on MNFG, you could start a

session on MNFG and then create and execute the following globalnames.sql
script (sample output included):

COL name FORMAT a12
COL value FORMAT a6
SELECT name, value FROM v$parameter
WHERE name = ’global_names’
/

See Also: "Using Connection Qualifiers to Specify Service Names

Within Link Names" on page 2-13 for more information about using

services names in link names.
Managing a Distributed Database 2-3

Managing Global Names in a Distributed System
SQL> @globalnames

NAME VALUE
------------ ------
global_names FALSE

Viewing a Global Database Name
Use the data dictionary view GLOBAL_NAME to view the database’s global name.

For example, issue the following:

SELECT * FROM global_name;

GLOBAL_NAME

SALES.AU.ORACLE.COM

Changing the Domain in a Global Database Name
Use the ALTER DATABASE statement to change the domain in a database’s global

name. Note that after the database is created, changing the initialization parameter

DB_DOMAIN has no effect on the global database name or on the resolution of

database link names.

The following example shows the syntax for the renaming statement, where database
is a database name and domain is the network domain:

ALTER DATABASE RENAME GLOBAL_NAME database.domain;

To change the domain in a global database name:

1. Determine the current global database name. For example, issue:

SELECT * FROM global_name;

GLOBAL_NAME
--
SALES.AU.ORACLE.COM

2. Rename the global database name using an ALTER DATABASE statement. For

example, enter:

ALTER DATABASE RENAME GLOBAL_NAME sales.us.oracle.com;

3. Query the GLOBAL_NAME table to check the new name. For example, enter:
2-4 Oracle8i Distributed Database Systems

Managing Global Names in a Distributed System
SELECT * FROM global_name;

GLOBAL_NAME
--
SALES.US.ORACLE.COM

Changing a Global Database Name: Scenario
In this scenario, you change the domain part of the global database name of the

local database. You also create database links using partially-specified global names

to test how Oracle resolves the names. You discover that Oracle resolves the partial

names using the domain part of the current global database name of the local

database, not the value for the initialization parameter DB_DOMAIN.

1. You connect to SALES.US.ACME.COM and query the GLOBAL_NAME data

dictionary view to determine the database’s current global name:

CONNECT sys/sys_pwd@sales.us.acme.com
SELECT * FROM global_name;

GLOBAL_NAME
--
SALES.US.ACME.COM

2. You query V$PARAMETER to determine the current setting for the DB_

DOMAIN initialization parameter:

SELECT name, value FROM v$parameter WHERE name = ’db_domain’;

NAME VALUE
--------- -----------
db_domain US.ACME.COM

3. You then create a database link to a database called HQ, using only a

partially-specified global name:

CREATE DATABASE LINK hq USING ’sales’;

Oracle expands the global database name for this link by appending the domain

part of the global database name of the local database to the name of the

database specified in the link.

4. You query USER_DB_LINKS to determine which domain name Oracle uses to

resolve the partially specified global database name:

SELECT db_link FROM user_db_links;
Managing a Distributed Database 2-5

Managing Global Names in a Distributed System
DB_LINK

HQ.US.ACME.COM

This result indicates that the domain part of the global database name of the

local database is US.ACME.COM. Oracle uses this domain in resolving partial

database link names when the database link is created.

5. Because you have received word that the SALES database will move to Japan,

you rename the SALES database to SALES.JP.ACME.COM:

ALTER DATABASE RENAME GLOBAL_NAME TO sales.jp.acme.com;
SELECT * FROM global_name;

GLOBAL_NAME
--
SALES.JP.ACME.COM

6. You query V$PARAMETER again and discover that the value of DB_DOMAIN

is not changed, despite the fact that you renamed the domain part of the global

database name:

SELECT name, value FROM v$parameter
 WHERE name = ’db_domain’;

NAME VALUE
--------- -----------
db_domain US.ACME.COM

This result indicates that the value of the DB_DOMAIN parameter is

independent of the ALTER DATABASE RENAME GLOBAL_NAME statement.

The ALTER DATABASE statement determines the domain of the global

database name, not the DB_DOMAIN initialization parameter (although it is

good practice to alter DB_DOMAIN to reflect the new domain name).

7. You create another database link to database SUPPLY, and then query USER_

DB_LINKS to see how Oracle resolves the domain part of SUPPLY’s global

database name:

CREATE DATABASE LINK supply USING ’supply’;
SELECT db_link FROM user_db_links;

DB_LINK

HQ.US.ACME.COM
SUPPLY.JP.ACME.COM
2-6 Oracle8i Distributed Database Systems

Managing Global Names in a Distributed System
This result indicates that Oracle resolves the partially specified link name by

using the domain JP.ACME.COM. This domain is used when the link is created

because it is the domain part of the global database name of the local database.

Oracle does not use the DB_DOMAIN parameter setting when resolving the

partial link name.

8. You then receive word that your previous information was faulty: SALES will

be in the ASIA.JP.ACME.COM domain, not the JP.ACME.COM domain.

Consequently, you rename the global database name as follows:

ALTER DATABASE RENAME GLOBAL_NAME TO sales.asia.jp.acme.com;
SELECT * FROM global_name;

GLOBAL_NAME
--
SALES.ASIA.JP.ACME.COM

9. You query V$PARAMETER to again check the setting for the parameter DB_

DOMAIN:

SELECT name, value FROM v$parameter
 WHERE name = ’db_domain’;

NAME VALUE
---------- -----------
db_domain US.ACME.COM

The result indicates that the domain setting in the parameter file is exactly the

same as it was before you issued either of the ALTER DATABASE RENAME

statements.

10. Finally, you create a link to the WAREHOUSE database and again query USER_

DB_LINKS to determine how Oracle resolves the partially-specified global

name:

CREATE DATABASE LINK warehouse USING ’warehouse’;
SELECT db_link FROM user_db_links;

DB_LINK

HQ.US.ACME.COM
SUPPLY.JP.ACME.COM
WAREHOUSE.ASIA.JP.ACME.COM
Managing a Distributed Database 2-7

Creating Database Links
Again, you see that Oracle uses the domain part of the global database name of

the local database to expand the partial link name during link creation.

Creating Database Links
To support application access to the data and schema objects throughout a

distributed database system, you must create all necessary database links. This

section contains the following topics:

■ Obtaining Privileges Necessary for Creating Database Links

■ Specifying Link Types

■ Specifying Link Users

■ Using Connection Qualifiers to Specify Service Names Within Link Names

Obtaining Privileges Necessary for Creating Database Links
A database link is a pointer in the local database that allows you to access objects on

a remote database. To create a private database link, you must have been granted

the proper privileges. The following table illustrates which privileges are required

on which database for which type of link:

To see which privileges you currently have available, query ROLE_SYS_PRIVS. For

example, you could create and execute the following privs.sql script (sample

output included):

SELECT DISTINCT privilege AS "Database Link Privileges"
FROM role_sys_privs
WHERE privilege IN (’CREATE SESSION’,’CREATE DATABASE LINK’,
 ’CREATE PUBLIC DATABASE LINK’)
/

See Also: Oracle8i Reference for more information about specifying

the DB_NAME and DB_DOMAIN initialization parameters.

Privilege Database Required For

CREATE DATABASE LINK Local Creation of a private database link.

CREATE PUBLIC DATABASE LINK Local Creation of a public database link.

CREATE SESSION Remote Creation of any type of database link.
2-8 Oracle8i Distributed Database Systems

Creating Database Links
SQL> @privs

Database Link Privileges
--
CREATE DATABASE LINK
CREATE PUBLIC DATABASE LINK
CREATE SESSION

Specifying Link Types
When you create a database link, you must decide who will have access to it. The

following sections describe how to create the three basic types of links:

■ Creating Private Database Links

■ Creating Public Database Links

■ Creating Global Database Links

Creating Private Database Links
To create a private database link, specify the following (where link_name is the

global database name or an arbitrary link name):

CREATE DATABASE LINK link_name ...;

Following are examples of private database links:

This SQL Statement... Creates...

CREATE DATABASE LINK
supply.us.acme.com;

A private link using the global database name to the
remote SUPPLY database.

The link uses the userid/password of the connected
user. So if SCOTT (identified by TIGER) uses the
link in a query, the link establishes a connection to
the remote database as SCOTT/TIGER.

CREATE DATABASE LINK link_2
CONNECT TO jane IDENTIFIED
BY doe USING ’us_supply’;

A private fixed user link called LINK_2 to the
database with service name US_SUPPLY. The link
connects to the remote database with the
userid/password of JANE/DOE regardless of the
connected user.
Managing a Distributed Database 2-9

Creating Database Links
Creating Public Database Links
To create a public database link, use the keyword PUBLIC (where link_name is the

global database name or an arbitrary link name):

CREATE PUBLIC DATABASE LINK link_name ...;

Following are examples of public database links:

CREATE DATABASE LINK link_1
CONNECT TO CURRENT_USER
USING 'us_supply';

A private link called LINK_1 to the database with
service name US_SUPPLY. The link uses the
userid/password of the current user to log onto the
remote database.

Note: The current user may not be the same as the
connected user, and must be a global user on both
databases involved in the link (see "Users of
Database Links" on page 1-17). Current user links
are part of the Oracle Advanced Security option.

See Also: Oracle8i SQL Reference for CREATE DATABASE LINK

syntax.

This SQL Statement... Creates...

CREATE PUBLIC DATABASE LINK
supply.us.acme.com;

A public link to the remote SUPPLY database.
The link uses the userid/password of the
connected user. So if SCOTT (identified by
TIGER) uses the link in a query, the link
establishes a connection to the remote database
as SCOTT/TIGER.

CREATE PUBLIC DATABASE LINK
pu_link CONNECT TO
CURRENT_USER USING 'supply';

A public link called PU_LINK to the database
with service name SUPPLY. The link uses the
userid/password of the current user to log
onto the remote database.

Note: The current user may not be the same as
the connected user, and must be a global user
on both databases involved in the link (see
"Users of Database Links" on page 1-17).

CREATE PUBLIC DATABASE LINK
sales.us.acme.com
CONNECT TO jane IDENTIFIED BY
doe;

A public fixed user link to the remote SALES
database. The link connects to the remote
database with the userid/password of
JANE/DOE.

This SQL Statement... Creates...
2-10 Oracle8i Distributed Database Systems

Creating Database Links
Creating Global Database Links
You must define global database links in the Oracle Names Server. See the Net8
Administrator’s Guide to learn how to create global database links.

Specifying Link Users
A database link defines a communication path from one database to another. When

an application uses a database link to access a remote database, Oracle establishes a

database session in the remote database on behalf of the local application request.

When you create a private or public database link, you can determine which

schema on the remote database the link will establish connections to by creating

fixed user, current user, and connected user database links.

Creating Fixed User Database Links
To create a fixed user database link, you embed the credentials (in this case, a

username and password) required to access the remote database in the definition of

the link:

CREATE DATABASE LINK ... CONNECT TO username IDENTIFIED BY password ...;

Following are examples of fixed user database links:

When an application uses a fixed user database link, the local server always

establishes a connection to a fixed remote schema in the remote database. The local

server also sends the fixed user’s credentials across the network when an

application uses the link to access the remote database.

See Also: Oracle8i SQL Reference for CREATE PUBLIC

DATABASE LINK syntax.

This SQL Statement... Creates...

CREATE PUBLIC DATABASE LINK
supply.us.acme.com CONNECT
TO scott AS tiger;

A public link using the global database name to the
remote SUPPLY database. The link connects to the
remote database with the userid/password
SCOTT/TIGER.

CREATE DATABASE LINK foo
CONNECT TO jane IDENTIFIED
BY doe USING ’finance’;

A private fixed user link called FOO to the database
with service name FINANCE. The link connects to
the remote database with the userid/password
JANE/DOE.
Managing a Distributed Database 2-11

Creating Database Links
Creating Connected User and Current User Database Links
Connected user and current user database links do not include credentials in the

definition of the link. The credentials used to connect to the remote database can

change depending on the user that references the database link and the operation

performed by the application.

For an extended conceptual discussion of the distinction between connected users

and current users, see "Users of Database Links" on page 1-17.

Creating a Connected User Database Link To create a connected user database link, omit

the CONNECT TO clause. The following syntax creates a connected user database

link, where dblink is the name of the link and net_service_name is an optional connect

string:

CREATE [SHARED] [PUBLIC] DATABASE LINK dblink ... [USING ’net_service_name’];

For example, to create a connected user database link, use the following syntax:

CREATE DATABASE LINK sales.division3.acme.com USING ’sales’;

Creating a Current User Database Link To create a current user database link, use the

CONNECT TO CURRENT_USER clause in the link creation statement. Current user

links are only available through the Oracle Advanced Security option.

The following syntax creates a current user database link, where dblink is the name

of the link and net_service_name is an optional connect string:

CREATE [SHARED] [PUBLIC] DATABASE LINK dblink CONNECT TO CURRENT_USER
[USING ’net_service_name’];

For example, to create a connected user database link to the SALES database, you

might use the following syntax:

CREATE DATABASE LINK sales CONNECT TO CURRENT_USER USING ’sales’;

Note: For many distributed applications, you do not want a user

to have privileges in a remote database. One simple way to achieve

this result is to create a procedure that contains a fixed user or

current user database link within it. In this way, the user accessing

the procedure temporarily assumes someone else’s privileges.

Note: To use a current user database link, the current user must be

a global user on both databases involved in the link.
2-12 Oracle8i Distributed Database Systems

Creating Database Links
Using Connection Qualifiers to Specify Service Names Within Link Names
In some situations, you may want to have several database links of the same type

(for example, public) that point to the same remote database, yet establish

connections to the remote database using different communication pathways. Some

cases in which this strategy is useful are:

■ A remote database is configured using the Oracle Parallel Server, so you define

several public database links at your local node so that connections can be

established to specific instances of the remote database.

■ Some clients connect to the Oracle server using TCP/IP while others use

DECNET.

To facilitate such functionality, Oracle allows you to create a database link with an

optional service name in the database link name. When creating a database link, a

service name is specified as the trailing portion of the database link name, separated

by an @ sign, as in @sales . This string is called a connection qualifier.

For example, assume that remote database HQ.ACME.COM is managed by the

Oracle Parallel Server. The HQ database has two instances named HQ_1 and HQ_2.

The local database can contain the following public database links to define

pathways to the remote instances of the HQ database:

CREATE PUBLIC DATABASE LINK hq.acme.com@hq_1
 USING 'string_to_hq_1';
CREATE PUBLIC DATABASE LINK hq.acme.com@hq_2
 USING 'string_to_hq_2';
CREATE PUBLIC DATABASE LINK hq.acme.com
 USING 'string_to_hq';

Notice in the first two examples that a service name is simply a part of the database

link name. The text of the service name does not necessarily indicate how a

connection is to be established; this information is specified in the service name of

the USING clause. Also notice that in the third example, a service name is not

specified as part of the link name. In this case, just as when a service name is

specified as part of the link name, the instance is determined by the USING string.

To use a service name to specify a particular instance, include the service name at

the end of the global object name:

SELECT * FROM scott.emp@hq.acme.com@hq_1

See Also: Oracle8i SQL Reference for more syntax information

about creating database links.
Managing a Distributed Database 2-13

Creating Shared Database Links
Note that in this example, there are two @ symbols.

Creating Shared Database Links
Every application that references a remote server using a standard database link

establishes a connection between the local database and the remote database. Many

users running applications simultaneously can cause a high number of connections

between the local and remote databases.

Shared database links enable you to limit the number of network connections required

between the local server and the remote server.

This section contains the following topics:

■ Determining Whether to Use Shared Database Links

■ Creating Shared Database Links

■ Configuring Shared Database Links

Determining Whether to Use Shared Database Links
Look carefully at your application and multi-threaded server configuration to

determine whether to use shared links. A simple guideline is to use shared database

links when the number of users accessing a database link is expected to be much

larger than the number of server processes in the local database.

The following table illustrates three possible configurations involving database

links:

See Also: "What Are Shared Database Links?" on page 1-12 for a

conceptual overview of shared database links.

Link Type Server Mode Consequences

Non-Shared Dedicated/MTS If your application uses a standard public database
link, and 100 users simultaneously require a
connection, then 100 direct network connections to
the remote database are required.

Shared MTS If 10 shared server processes exist in the local
MTS-mode database, then 100 users that use the
same database link require 10 or fewer network
connections to the remote server. Each local shared
server process may only need one connection to the
remote server.
2-14 Oracle8i Distributed Database Systems

Creating Shared Database Links
Shared database links are not useful in all situations. Assume that only one user

accesses the remote server. If this user defines a shared database link and 10 shared

server processes exist in the local database, then this user can require up to 10

network connections to the remote server. Because the user can use each shared

server process, each process can establish a connection to the remote server.

Clearly, a non-shared database link is preferable in this situation because it requires

only one network connection. Shared database links lead to more network

connections in single-user scenarios, so use shared links only when many users

need to use the same link. Typically, shared links are used for public database links,

but can also be used for private database links when many clients access the same

local schema (and therefore the same private database link).

Creating Shared Database Links
To create a shared database link, use the keyword SHARED in the CREATE

DATABASE LINK statement:

CREATE SHARED DATABASE LINK dblink_name
[CONNECT TO username IDENTIFIED BY password]|[CONNECT TO CURRENT_USER]
AUTHENTICATED BY schema_name IDENTIFIED BY password
[USING ’service_name’];

The following example creates a fixed user, shared link to database SALES,

connecting as SCOTT and authenticated as JANE:

CREATE SHARED DATABASE LINK link2sales
CONNECT TO scott IDENTIFIED BY tiger
AUTHENTICATED BY keith IDENTIFIED BY richards
USING ’sales’;

Whenever you use the keyword SHARED, the clause AUTHENTICATED BY is

required. The schema specified in the AUTHENTICATED BY clause is only used for

security reasons and can be considered a dummy schema. It is not affected when

using shared database links, nor does it affect the users of the shared database link.

Shared Dedicated If 10 clients connect to a local dedicated server, and
each client has 10 sessions on the same connection
(thus establishing 100 sessions overall), and each
session references the same remote database, then
only 10 connections are needed. With a non-shared
database link, 100 connections are needed.

Link Type Server Mode Consequences
Managing a Distributed Database 2-15

Creating Shared Database Links
The AUTHENTICATED BY clause is required to prevent unauthorized clients from

masquerading as a database link user and gaining access to privileges information.

Configuring Shared Database Links
You can configure shared database links in the following ways:

■ Creating Shared Links to Dedicated Servers

■ Creating Shared Links to Multi-Threaded Servers

Creating Shared Links to Dedicated Servers
In the configuration illustrated in Figure 2–1, a shared server process in the local

server owns a dedicated remote server process. The advantage is that a direct

network transport exists between the local shared server and the remote dedicated

server. A disadvantage is that extra back-end server processes are needed.

See Also: Oracle8i SQL Reference for information about the

CREATE DATABASE LINK statement.

Note: The remote server can either be a multi-threaded server or

dedicated server. There is a dedicated connection between the local

and remote servers. When the remote server is a multi-threaded

server, you can force a dedicated server connection by using the

(SERVER=DEDICATED) clause in the definition of the service

name.
2-16 Oracle8i Distributed Database Systems

Creating Shared Database Links
Figure 2–1 A Shared Database Link to Dedicated Server Processes

.

Creating Shared Links to Multi-Threaded Servers
The configuration illustrated in Figure 2–2 uses shared server processes on the

remote server. This configuration eliminates the need for more dedicated servers,

but requires the connection to go through the dispatcher on the remote server. Note

that both the local and the remote server must be configured as multi-threaded

servers.

Oracle
Server Code

System Global Area

Oracle
Server Code

Dedicated
Server

Process
Oracle

Server Code

System Global Area

Database Server

Client Workstation

Shared
Server
Processes

Dispatcher Processes

User
Process
Managing a Distributed Database 2-17

Managing Database Links
Figure 2–2 Shared Database Link to Multi-Threaded Server

Managing Database Links
This section contains the following topics:

■ Closing Database Links

■ Dropping Database Links

■ Limiting the Number of Active Database Link Connections

Closing Database Links
If you access a database link in a session, then the link remains open until you close

the session. A link is open in the sense that a process is active on each of the remote

databases accessed through the link. This situation has the following consequences:

■ If 20 users open sessions and access the same public link in a local database,

then 20 database link connections are open.

■ If 20 users open sessions and each user accesses a private link, then 20 database

link connections are open.

See Also: Net8 Administrator’s Guide for information about the

multi-threaded server option.

System Global Area

User
Process

Database Server

Client Workstation

Shared
Server
Processes

Dispatcher Processes

System Global Area

User
Process

Shared
Server
Processes

Dispatcher Processes

Oracle
Server Code

Oracle
Server Code
2-18 Oracle8i Distributed Database Systems

Managing Database Links
■ If one user starts a session and accesses 20 different links, then 20 database link

connections are open.

After you close a session, the links that were active in the session are automatically

closed. You may have occasion to close the link manually. For example, close links

when:

■ The network connection established by a link is used infrequently in an

application.

■ The user session must be terminated.

If you want to close a link, issue the following statement, where linkname refers to

the name of the link:

ALTER SESSION CLOSE DATABASE LINK linkname;

Note that this statement only closes the links that are active in your current session.

Dropping Database Links
You can drop a database link just as you can drop a table or view. If the link is

private, then it must be in your schema. If the link is public, then you must have the

DROP PUBLIC DATABASE LINK system privilege.

The command syntax is as follows, where dblink is the name of the link:

DROP [PUBLIC] DATABASE LINK dblink;

To drop a private database link:

1. Connect to the local database using SQL*Plus. For example, enter:

CONNECT scott/tiger@local_db

2. Query USER_DB_LINKS to view the links that you own. For example, enter:

SELECT db_link FROM user_db_links;

DB_LINK

SALES.US.ORACLE.COM
MKTG.US.ORACLE.COM
2 rows selected.

3. Drop the desired link using the DROP DATABASE LINK statement. For

example, enter:
Managing a Distributed Database 2-19

Managing Database Links
DROP DATABASE LINK sales.us.oracle.com;

To drop a public database link:

1. Connect to the local database as a user with the DROP PUBLIC DATABASE

LINK privilege. For example, enter:

CONNECT sys/change_on_install@local_db AS SYSDBA

2. Query DBA_DB_LINKS to view the public links. For example, enter:

SELECT db_link FROM user_db_links
 WHERE owner = ’PUBLIC’;

DB_LINK

DBL1.US.ORACLE.COM
SALES.US.ORACLE.COM
INST2.US.ORACLE.COM
RMAN2.US.ORACLE.COM
4 rows selected.

3. Drop the desired link using the DROP PUBLIC DATABASE LINK statement.

For example, enter:

DROP PUBLIC DATABASE LINK sales.us.oracle.com;

Limiting the Number of Active Database Link Connections
You can limit the number of connections from a user process to remote databases

using the static initialization parameter OPEN_LINKS. This parameter controls the

number of remote connections that a single user session can use concurrently in

distributed transactions.

Note the following considerations for setting this parameter:

■ The value should be greater than or equal to the number of databases referred

to in a single SQL statement that references multiple databases.

■ Increase the value if several distributed databases are accessed over time. Thus,

if you regularly access three database, set OPEN_LINKS to 3 or greater.

■ The default value for OPEN_LINKS is 4. If OPEN_LINKS is set to 0, then no

distributed transactions are allowed.

See Also: Oracle8i SQL Reference for more information about

OPEN_LINKS.
2-20 Oracle8i Distributed Database Systems

Viewing Information About Database Links
Viewing Information About Database Links
The data dictionary of each database stores the definitions of all the database links

in the database. You can use data dictionary tables and views to gain information

about the links. This section contains the following topics:

■ Determining Which Links Are in the Database

■ Determining Which Link Connections Are Open

Determining Which Links Are in the Database
The following views show the database links that have been defined at the local

database and stored in the data dictionary:

These data dictionary views contain the same basic information about database

links, with some exceptions:

Any user can query USER_DB_LINKS to determine which database links are

available to that user. If you have the DBA privilege, then you can access

information about all links in the database. For example, you can create and run the

following script access link information (sample output is below):

View Purpose

DBA_DB_LINKS Lists all database links in the database.

ALL_DB_LINKS Lists all database links accessible to the connected user.

USER_DB_LINKS Lists all database links owned by the connected user.

Column Which Views? Description

OWNER All except USER_* The user who created the database link. If the link is
public, then the user is listed as PUBLIC.

DB_LINK All The name of the database link.

USERNAME All If the link definition includes a fixed user, then this
column displays the username of the fixed user. If
there is no fixed user, the column is NULL.

PASSWORD Only USER_* The password for logging into the remote database.

HOST All The net service name used to connect to the remote
database.

CREATED All Creation time of the database link.
Managing a Distributed Database 2-21

Viewing Information About Database Links
COL owner FORMAT a10
COL username FORMAT a8 HEADING "USER"
COL db_link FORMAT a30
COL host FORMAT a7 HEADING "SERVICE"
SELECT * FROM dba_db_links
/

SQL>@link_script

OWNER DB_LINK USER SERVICE CREATED
---------- ------------------------------ -------- ------- ----------
SYS TARGET.US.ACME.COM SYS inst1 23-JUN-99
PUBLIC DBL1.UK.ACME.COM BLAKE ora51 23-JUN-99
PUBLIC RMAN2.US.ACME.COM inst2 23-JUN-99
PUBLIC DEPT.US.ACME.COM inst2 23-JUN-99
JANE DBL.UK.ACME.COM BLAKE ora51 23-JUN-99
SCOTT EMP.US.ACME.COM SCOTT inst2 23-JUN-99
6 rows selected.

Viewing Password Information
Only USER_DB_LINKS contains a column for password information. Nevertheless,

if you have the DBA role, then you can view passwords for all links in the database

by querying the LINK$ table. If you do not have the DBA role but have the SELECT

ANY TABLE privilege, and the initialization parameter O7_DICTIONARY_

ACCESSIBILITY is set to TRUE (default), then you can also access this information.

You can create and run the following script in SQL*Plus to obtain password

information (sample output included):

col userid format a10
col password format a10
SELECT userid,password
 FROM sys.link$
 WHERE password IS NOT NULL
/

SQL>@linkpwd

Note: Oracle corporation recommends that you set the

initialization parameter O7_DICTIONARY_ACCESSIBILITY to

FALSE so that only DBA-privileged connections can see password

information in the LINK$ table.
2-22 Oracle8i Distributed Database Systems

Viewing Information About Database Links
USERID PASSWORD
---------- ----------
SYS ORACLE
BLAKE TYGER
SCOTT TIGER
3 rows selected.

Viewing Authentication Passwords If you have the DBA role, then you can view

AUTHENTICATED BY ... IDENTIFIED BY ... usernames and passwords for all links

in the database by querying the LINK$ table. If you do not have the DBA role but

have the SELECT ANY TABLE privilege, and the initialization parameter O7_

DICTIONARY_ACCESSIBILITY is set to TRUE (default), then you can also access

this information.

You can create and run the following script in SQL*Plus to obtain password

information (sample output included):

col authusr format a10
col authpwd format a10
SELECT authusr as userid, authpwd as password
 FROM sys.link$
 WHERE password IS NOT NULL
/

SQL> @authpwd

USERID PASSWORD
---------- ----------
ELLIE MAY
1 row selected.

Note: Oracle corporation recommends that you set the

initialization parameter O7_DICTIONARY_ACCESSIBILITY to

FALSE so that only DBA-privileged connections can see password

information in the LINK$ table.

See Also: Oracle8i Concepts or Oracle8i SQL Reference for

information on viewing the data dictionary.
Managing a Distributed Database 2-23

Viewing Information About Database Links
You can also view the link and password information together in a join by creating

and executing the following script (sample output included):

COL owner FORMAT a8
COL db_link FORMAT a15
COL username FORMAT a8 HEADING "CON_USER"
COL password FORMAT a8 HEADING "CON_PWD"
COL authusr FORMAT a8 HEADING "AUTH_USER"
COL authpwd format a8 HEADING "AUTH_PWD"
COL host FORMAT a7 HEADING "SERVICE"
COL created FORMAT a10

SELECT DISTINCT d.owner,d.db_link,d.username,l.password,
 l.authusr,l.authpwd,d.host,d.created
FROM dba_db_links d, sys.link$ l
WHERE password IS NOT NULL
AND d.username = l.userid
/

SQL> @user_and_pwd

OWNER DB_LINK CON_USER CON_PWD AUTH_USE AUTH_PWD SERVICE CREATED
-------- --------------- -------- -------- -------- -------- ------- ----------
JANE DBL.ACME.COM BLAKE TYGER ELLIE MAY ora51 23-JUN-99
PUBLIC DBL1.ACME.COM SCOTT TIGER ora51 23-JUN-99
SYS TARGET.ACME.COM SYS ORACLE inst1 23-JUN-99

Determining Which Link Connections Are Open
You may find it useful to determine which database link connections are currently

open in your session. Note that if you connect as SYSDBA, you cannot query a view

to determine all the links open for all sessions: you can only access the link

information in the session within which you are working.

The following views show the database link connections that are currently open in

your current session:

View Purpose

V$DBLINK Lists all open database links in your session, that is, all database
links with the IN_TRANSACTION column set to YES.

GV$DBLINK Lists all open database links in your session along with their
corresponding instances. This view is useful in an Oracle
Parallel Server configuration.
2-24 Oracle8i Distributed Database Systems

Viewing Information About Database Links
These data dictionary views contain the same basic information about database

links, with one exception:

For example, you can create and execute the script below to determine which links

are open (sample output included):

COL db_link FORMAT a25
COL owner_id FORMAT 99999 HEADING "OWNID"
COL logged_on FORMAT a5 HEADING "LOGON"
COL heterogeneous FORMAT a5 HEADING "HETER"
COL protocol FORMAT a8
COL open_cursors FORMAT 999 HEADING "OPN_CUR"
COL in_transaction FORMAT a3 HEADING "TXN"
COL update_sent FORMAT a6 HEADING "UPDATE"
COL commit_point_strength FORMAT 99999 HEADING "C_P_S"

SELECT * FROM v$dblink
/

SQL> @dblink

Column
Which
Views? Description

DB_LINK All The name of the database link.

OWNER_ID All The owner of the database link.

LOGGED_ON All Whether the database link is currently logged on.

HETEROGENEOUS All Whether the database link is homogeneous (NO)
or heterogeneous (YES).

PROTOCOL All The communication protocol for the database link.

OPEN_CURSORS All Whether cursors are open for the database link.

IN_TRANSACTION All Whether the database link is accessed in a
transaction that has not yet been committed or
rolled back.

UPDATE_SENT All Whether there was an update on the database link.

COMMIT_POINT_
STRENGTH

All The commit point strength of the transactions
using the database link.

INST_ID GV$DBLINK
only

The instance from which the view information
was obtained.
Managing a Distributed Database 2-25

Creating Location Transparency
DB_LINK OWNID LOGON HETER PROTOCOL OPN_CUR TXN UPDATE C_P_S
------------------------- ------ ----- ----- -------- ------- --- ------ ------
INST2.ACME.COM 0 YES YES UNKN 0 YES YES 255

Creating Location Transparency
After you have configured the necessary database links, you can use various tools

to hide the distributed nature of the database system from users. In other words,

users can access remote objects as if they were local objects. The following sections

explain how to hide distributed functionality form users:

■ Using Views to Create Location Transparency

■ Using Synonyms to Create Location Transparency

■ Using Procedures to Create Location Transparency

Using Views to Create Location Transparency
Local views can provide location transparency for local and remote tables in a

distributed database system.

For example, assume that table EMP is stored in a local database and table DEPT is

stored in a remote database. To make these tables transparent to users of the system,

you can create a view in the local database that joins local and remote data:

CREATE VIEW company
AS
SELECT a.empno, a.ename, b.dname
FROM emp a, dept@hq.acme.com b
WHERE a.deptno = b.deptno;
2-26 Oracle8i Distributed Database Systems

Creating Location Transparency
Figure 2–3 Views and Location Transparency

JWARD.DEPT

DEPTNO DNAME

MARKETING
SALES

20
30

Database Server

HQ

Sales

Database

Database

SCOTT.EMP Table

EMPNO ENAME JOB

SMITH
ALLEN
WARD
JONES

7329
7499
7521
7566

CLERK
SALESMAN
SALESMAN
MANAGER

MGR

7902
7698
7698
7839

HIREDATE

17–DEC–88
20–FEB–89
22–JUN–92
02–APR–93

SAL

 800.00
1600.00
1250.00
2975.00

COMM

300.00
300.00
500.00

DEPTNO

20
30
30
20

COMPANY View

EMPNO ENAME DNAME

SMITH
ALLEN
WARD
JONES

7329
7499
7521
7566

MARKETING
SALES
SALES
MARKETING
Managing a Distributed Database 2-27

Creating Location Transparency
When users access this view, they do not need to know where the data is physically

stored, or if data from more than one table is being accessed. Thus, it is easier for

them to get required information. For example, the following query provides data

from both the local and remote database table:

SELECT * FROM company;

Managing Privileges in Views
Assume a local view references a remote table or view. The owner of the local view

can grant only those object privileges on her view that have been granted by the

remote user. (The remote user is implied by the type of database link). This is

similar to privilege management for views that reference local data.

Using Synonyms to Create Location Transparency
Synonyms are useful in both distributed and non-distributed environments because

they hide the identity of the underlying object, including its location in a distributed

database system. If you must rename or move the underlying object, you only need

to redefine the synonym; applications based on the synonym continue to function

normally. Synonyms also simplify SQL statements for users in a distributed

database system.

Creating Synonyms
You can create synonyms for the following:

■ Tables

■ Types

■ Views

■ Snapshots

■ Sequences

■ Procedures

■ Functions

■ Packages

All synonyms are schema objects that are stored in the data dictionary of the

database in which they are created. To simplify remote table access through

database links, a synonym can allow single-word access to remote data, hiding the

specific object name and the location from users of the synonym.
2-28 Oracle8i Distributed Database Systems

Creating Location Transparency
The syntax to create a synonym is:

CREATE [PUBLIC] synonym_name
FOR [schema.]object_name[@database_link_name]

where:

A synonym must be a uniquely named object for its schema. If a schema contains a

schema object and a public synonym exists with the same name, then Oracle always

finds the schema object when the user that owns the schema references that name.

Example: Creating a Public Synonym Assume that in every database in a distributed

database system, a public synonym is defined for the SCOTT.EMP table stored in

the HQ database:

CREATE PUBLIC SYNONYM emp FOR scott.emp@hq.acme.com;

You can design an employee management application without regard to where the

application is used because the location of the table SCOTT.EMP@HQ.ACME.COM

is hidden by the public synonyms. SQL statements in the application access the

table by referencing the public synonym EMP.

Furthermore, if you move the EMP table from the HQ database to the HR database,

then you only need to change the public synonyms on the nodes of the system. The

employee management application continues to function properly on all nodes.

PUBLIC is a keyword specifying that this synonym is available to all
users. Omitting this parameter makes a synonym private,
and usable only by the creator. Public synonyms can be
created only by a user with CREATE PUBLIC SYNONYM
system privilege.

synonym_name specifies the alternate object name to be referenced by users
and applications.

schema specifies the schema of the object specified in object_name.
Omitting this parameter uses the creator’s schema as the
schema of the object.

object_name specifies either a table, view, sequence, snapshot, type,
procedure, function or package as appropriate.

database_link_name specifies the database link identifying the remote database
and schema in which the object specified in object_name is
located.
Managing a Distributed Database 2-29

Creating Location Transparency
Managing Privileges and Synonyms
A synonym is a reference to an actual object. A user who has access to a synonym

for a particular schema object must also have privileges on the underlying schema

object itself. For example, if the user attempts to access a synonym but does not

have privileges on the table it identifies, an error occurs indicating that the table or

view does not exist.

Assume SCOTT creates local synonym EMP as an alias for remote object

SCOTT.EMP@SALES.ACME.COM. SCOTT cannot grant object privileges on the

synonym to another local user. SCOTT cannot grant local privileges for the

synonym because this operation amounts to granting privileges for the remote EMP

table on the SALES database, which is not allowed. This behavior is different from

privilege management for synonyms that are aliases for local tables or views.

Therefore, you cannot manage local privileges when synonyms are used for location

transparency. Security for the base object is controlled entirely at the remote node.

For example, user ADMIN cannot grant object privileges for the EMP_SYN

synonym.

Unlike a database link referenced in a view or procedure definition, a database link

referenced in a synonym is resolved by first looking for a private link owned by the

schema in effect at the time the reference to the synonym is parsed. Therefore, to

ensure the desired object resolution, it is especially important to specify the

underlying object’s schema in the definition of a synonym.

Using Procedures to Create Location Transparency
PL/SQL program units called procedures can provide location transparency. You

have these options:

■ Using Local Procedures to Reference Remote Data

■ Using Local Procedures to Call Remote Procedures

■ Using Local Synonyms to Reference Remote Procedures

Using Local Procedures to Reference Remote Data
Procedures or functions (either stand-alone or in packages) can contain SQL

statements that reference remote data. For example, consider the procedure created

by the following statement:

CREATE PROCEDURE fire_emp (enum NUMBER) AS
BEGIN
 DELETE FROM emp@hq.acme.com
2-30 Oracle8i Distributed Database Systems

Creating Location Transparency
 WHERE empno = enum;
END;

When a user or application calls the FIRE_EMP procedure, it is not apparent that a

remote table is being modified.

A second layer of location transparency is possible when the statements in a

procedure indirectly reference remote data using local procedures, views, or

synonyms. For example, the following statement defines a local synonym:

CREATE SYNONYM emp FOR emp@hq.acme.com;

Given this synonym, you can create the FIRE_EMP procedure using the following

statement:

CREATE PROCEDURE fire_emp (enum NUMBER) AS
BEGIN
 DELETE FROM emp WHERE empno = enum;
END;

If you rename or move the table EMP@HQ, then you only need to modify the local

synonym that references the table. None of the procedures and applications that call

the procedure require modification.

Using Local Procedures to Call Remote Procedures
You can use a local procedure to call a remote procedure. The remote procedure can

then execute the required DML. For example, assume that SCOTT connects to

LOCAL_DB and creates the following procedure:

CONNECT scott/tiger@local_db

CREATE PROCEDURE fire_emp (enum NUMBER)
AS
BEGIN
 EXECUTE term_emp@hq.acme.com;
END;

Now, assume that SCOTT connects to the remote database and creates the remote

procedure:

CONNECT scott/tiger@hq.acme.com

CREATE PROCEDURE term_emp (enum NUMBER)
AS
BEGIN
Managing a Distributed Database 2-31

Managing Statement Transparency
 DELETE FROM emp WHERE empno = enum;
END;

When a user or application connected to LOCAL_DB calls the FIRE_EMP

procedure, this procedure in turn calls the remote TERM_EMP procedure on

HQ.ACME.COM.

Using Local Synonyms to Reference Remote Procedures
For example, SCOTT connects to the local SALES.ACME.COM database and creates

the following procedure:

CREATE PROCEDURE fire_emp (enum NUMBER) AS
BEGIN
DELETE FROM emp@hq.acme.com
WHERE empno = enum;
END;

PEGGY then connects to the SUPPLY.ACME.COM database and creates the

following synonym for the procedure that SCOTT created on the remote SALES

database:

SQL> CONNECT peggy/hill@supply
SQL> CREATE PUBLIC SYNONYM emp FOR scott.fire_emp@sales.acme.com;

A local user on SUPPLY can use this synonym to execute the procedure on SALES.

Managing Procedures and Privileges
Assume a local procedure includes a statement that references a remote table or

view. The owner of the local procedure can grant the EXECUTE privilege to any

user, thereby giving that user the ability to execute the procedure and, indirectly,

access remote data.

In general, procedures aid in security. Privileges for objects referenced within a

procedure do not need to be explicitly granted to the calling users.

Managing Statement Transparency
Oracle allows the following standard DML statements to reference remote tables:

■ SELECT (queries)

■ INSERT

■ UPDATE
2-32 Oracle8i Distributed Database Systems

Managing Statement Transparency
■ DELETE

■ SELECT ... FOR UPDATE (not always supported in Heterogeneous Systems)

■ LOCK TABLE

Queries including joins, aggregates, subqueries, and SELECT ... FOR UPDATE can

reference any number of local and remote tables and views. For example, the

following query joins information from two remote tables:

SELECT e.empno, e.ename, d.dname
 FROM scott.emp@sales.division3.acme.com e, jward.dept@hq.acme.com d
 WHERE e.deptno = d.deptno;

UPDATE, INSERT, DELETE, and LOCK TABLE statements can reference both local

and remote tables. No programming is necessary to update remote data. For

example, the following statement inserts new rows into the remote table EMP in the

SCOTT.SALES schema by selecting rows from the EMP table in the JWARD schema

in the local database:

INSERT INTO scott.emp@sales.division3.acme.com
 SELECT * FROM jward.emp;

Understanding Transparency Restrictions
Several restrictions apply to statement transparency:

■ Within a single SQL statement, all referenced LONG and LONG RAW columns,

sequences, updated tables, and locked tables must be located at the same node.

■ Oracle does not allow remote DDL statements (for example, CREATE, ALTER,

and DROP) in homogeneous systems except through remote execution of

members of the DBMS_SQL package, as in this example:

 DBMS_SQL.PARSE@link_name(crs, ’drop table emp’, v7);

Note that in Heterogeneous Systems, a pass-through facility allows you to

execute DDL.

■ The LIST CHAINED ROWS clause of an ANALYZE statement cannot reference

remote tables.

■ In a distributed database system, Oracle always evaluates

environmentally-dependent SQL functions such as SYSDATE, USER, UID, and

USERENV with respect to the local server, no matter where the statement (or

portion of a statement) executes.
Managing a Distributed Database 2-33

Managing a Distributed Database: Scenarios
■ A number of performance restrictions relate to access of remote objects:

– Remote views do not have statistical data.

– Queries on partitioned tables may not be optimized.

– No more than 20 indexes are considered for a remote table.

– No more than 20 columns are used for a composite index.

■ There is a restriction in Oracle’s implementation of distributed read consistency

that can cause one node to be in the past with respect to another node. In

accordance with read consistency, a query may end up retrieving consistent, but

out-of-date data. See "Managing Read Consistency" on page 5-28 to learn how

to manage this problem.

Managing a Distributed Database: Scenarios
This section gives examples of various types of statements involving management

of database links:

■ Creating a Public Fixed User Database Link

■ Creating a Public Fixed User Shared Database Link

■ Creating a Public Connected User Database Link

■ Creating a Public Connected User Shared Database Link

■ Creating a Public Current User Database Link

Creating a Public Fixed User Database Link
The following example connects to the local database as JANE and creates a public

fixed user database link to database SALES for SCOTT. The database is accessed

through its net service name SLDB:

CONNECT jane/doe@local

CREATE PUBLIC DATABASE LINK sales.division3.acme.com

Note: Oracle supports the USERENV function for queries only.

See Also: Oracle8i Supplied PL/SQL Packages Reference for more

information about the DBMS_SQL package.
2-34 Oracle8i Distributed Database Systems

Managing a Distributed Database: Scenarios
 CONNECT TO SCOTT IDENTIFIED BY TIGER
 USING ’sldb’;

Consequences
Any user connected to the local database can use the

SALES.DIVISION3.ACME.COM database link to connect to the remote database.

Each user connects to the remote schema SCOTT in the remote database.

To access the table EMP table in SCOTT’s remote schema, a user can issue the

following SQL query:

SELECT * FROM emp@sales.division3.acme.com;

Note that each application or user session creates a separate connection to the

common account on the server. The connection to the remote database remains

open for the duration of the application or user session.

Creating a Public Fixed User Shared Database Link
The following examples connects to the local database as DANA and creates a

public link to the SALES database (using its net service name SLDB). The link

allows a connection to the remote database as SCOTT and authenticates this user as

SCOTT:

CONNECT dana/sculley@local

CREATE SHARED PUBLIC DATABASE LINK sales.division3.acme.com
 CONNECT TO scott IDENTIFIED BY tiger
 AUTHENTICATED BY scott IDENTIFIED BY tiger
 USING ‘sldb’;

Consequences
Any user connected to the local MTS-mode server can use this database link to

connect to the remote SALES database through a shared server process. The user

can then query tables in the SCOTT schema.

In the above example, each local shared server can establish one connection to the

remote server. Whenever a local shared server process needs to access the remote

server through the SALES.DIVISION3.ACME.COM database link, the local shared

server process reuses established network connections.
Managing a Distributed Database 2-35

Managing a Distributed Database: Scenarios
Creating a Public Connected User Database Link
The following example connects to the local database as LARRY and creates a

public link to the database with the net service name SLDB:

CONNECT larry/oracle@local

CREATE PUBLIC DATABASE LINK redwood
 USING ’sldb’;

Consequences
Any user connected to the local database can use the REDWOOD database link. The

connected user in the local database who uses the database link determines the

remote schema.

If SCOTT is the connected user and uses the database link, then the database link

connects to the remote schema SCOTT. If FOX is the connected user and uses the

database link, then the database link connects to remote schema FOX.

The following statement fails for local user FOX in the local database when the

remote schema FOX cannot resolve the EMP schema object. That is, if the FOX

schema in the SALES.DIVISION3.ACME.COM does not have EMP as a table, view,

or (public) synonym, an error will be returned.

CONNECT fox/mulder@local

SELECT * FROM emp@redwood;

Creating a Public Connected User Shared Database Link
The following example connects to the local database as NEIL and creates a shared,

public link to the SALES database (using its net service name SLDB). The user is

authenticated by the userid/password of CRAZY/HORSE. The following statement

creates a public, connected user, shared database link:

CONNECT neil/young@local

CREATE SHARED PUBLIC DATABASE LINK sales.division3.acme.com
 AUTHENTICATED BY crazy IDENTIFIED BY horse
 USING ‘sldb’;

Consequences
Each user connected to the local server can use this shared database link to connect

to the remote database and query the tables in the corresponding remote schema.
2-36 Oracle8i Distributed Database Systems

Managing a Distributed Database: Scenarios
Each local, shared server process establishes one connection to the remote server.

Whenever a local server process needs to access the remote server through the

SALES.DIVISION3.ACME.COM database link, the local process reuses established

network connections, even if the connected user is a different user.

If this database link is used frequently, eventually every shared server in the local

database will have a remote connection. At this point, no more physical connections

are needed to the remote server, even if new users use this shared database link.

Creating a Public Current User Database Link
The following example connects to the local database as the connected user and

creates a public link to the SALES database (using its net service name SLDB). The

following statement creates a public current user database link:

CONNECT bart/simpson@local

CREATE PUBLIC DATABASE LINK sales.division3.acme.com
 CONNECT TO CURRENT_USER
 USING ‘sldb’;

Consequences
Assume SCOTT creates local procedure FIRE_EMP that deletes a row from the

remote EMP table, and grants execute privilege to FORD.

CONNECT scott/tiger@local_db

CREATE PROCEDURE fire_emp (enum NUMBER)
AS
BEGIN
 DELETE FROM emp@sales.division3.acme.com
 WHERE empno=enum;
END;

GRANT EXECUTE ON FIRE_EMP TO FORD;

Now, assume that FORD connects to the local database and runs SCOTT’s

procedure:

CONNECT ford/fairlane@local_db

Note: To use this link, the current user must be a global user.
Managing a Distributed Database 2-37

Managing a Distributed Database: Scenarios
EXECUTE PROCEDURE scott.fire_emp (enum 10345);

When FORD executes the procedure SCOTT.FIRE_EMP, the procedure runs under

SCOTT’s privileges. Because a current user database link is used, the connection is

established to SCOTT’s remote schema—not FORD’s remote schema. Note that

SCOTT must be a global user while FORD does not have to be a global user.

You can accomplish the same result by using a fixed user database link to SCOTT’s

remote schema. With fixed user database links, however, security can be

compromised because SCOTT’s username and password are available in readable

format in the database.

Note: If a connected user database link were used instead, the

connection would be to FORD’s remote schema. For more

information about invoker’s-rights and privileges, see the PL/SQL
User’s Guide and Reference.
2-38 Oracle8i Distributed Database Systems

Developing Applications for a Distributed Database S
3

Developing Applications for a Distributed

Database System

This chapter describes considerations important when developing an application to

run in a distributed database system. Oracle8i Concepts describes how Oracle

eliminates much of the need to design applications specifically to work in a

distributed environment.

The topics covered include:

■ Managing the Distribution of an Application’s Data

■ Controlling Connections Established by Database Links

■ Maintaining Referential Integrity in a Distributed System

■ Tuning Distributed Queries

■ Handling Errors in Remote Procedures

See Also: Oracle8i Administrator’s Guide for a complete discussion

of implementing Oracle8i applications, and Oracle8i Application
Developer’s Guide - Fundamentals for more information about

application development in an Oracle environment.
ystem 3-1

Managing the Distribution of an Application’s Data
Managing the Distribution of an Application’s Data
In a distributed database environment, coordinate with the database administrator

to determine the best location for the data. Some issues to consider are:

■ Number of transactions posted from each location

■ Amount of data (portion of table) used by each node

■ Performance characteristics and reliability of the network

■ Speed of various nodes, capacities of disks

■ Importance of a node or link when it is unavailable

■ Need for referential integrity among tables

Controlling Connections Established by Database Links
When a global object name is referenced in a SQL statement or remote procedure

call, database links establish a connection to a session in the remote database on

behalf of the local user. The remote connection and session are only created if the

connection has not already been established previously for the local user session.

The connections and sessions established to remote databases persist for the

duration of the local user’s session, unless the application or user explicitly

terminates them. Note that when you issue a SELECT statement across a database

link, a transaction lock is placed on the rollback segments. To re-release the

segment, you must issue a COMMIT or ROLLBACK statement.

Terminating remote connections established using database links is useful for

disconnecting high cost connections that are no longer required by the application.

You can terminate a remote connection and session using the ALTER SESSION

command with the CLOSE DATABASE LINK parameter. For example, assume you

issue the following transactions:

SELECT * FROM emp@sales;
COMMIT;

The following statement terminates the session in the remote database pointed to by

the SALES database link:

ALTER SESSION CLOSE DATABASE LINK sales;

To close a database link connection in your user session, you must have the ALTER

SESSION system privilege.
3-2 Oracle8i Distributed Database Systems

Tuning Distributed Queries
Maintaining Referential Integrity in a Distributed System
If a part of a distributed statement fails, for example, due to an integrity constraint

violation, Oracle returns error number ORA-02055 . Subsequent statements or

procedure calls return error number ORA-02067 until a rollback or rollback to

savepoint is issued.

Design your application to check for any returned error messages that indicate that

a portion of the distributed update has failed. If you detect a failure, you should roll

back the entire transaction before allowing the application to proceed.

Oracle does not permit declarative referential integrity constraints to be defined

across nodes of a distributed system. In other words, a declarative referential

integrity constraint on one table cannot specify a foreign key that references a

primary or unique key of a remote table. Nevertheless, you can maintain

parent/child table relationships across nodes using triggers.

If you decide to define referential integrity across the nodes of a distributed

database using triggers, be aware that network failures can limit the accessibility of

not only the parent table, but also the child table. For example, assume that the

child table is in the SALES database and the parent table is in the HQ database. If

the network connection between the two databases fails, some DML statements

against the child table (those that insert rows into the child table or update a foreign

key value in the child table) cannot proceed because the referential integrity triggers

must have access to the parent table in the HQ database.

Tuning Distributed Queries
The local Oracle database server breaks the distributed query into a corresponding

number of remote queries, which it then sends to the remote nodes for execution.

The remote nodes execute the queries and send the results back to the local node.

Note: Before closing a database link, first close all cursors that use

the link and then end your current transaction if it uses the link.

See Also: Oracle8i SQL Reference for more information about the

ALTER SESSION statement.

See Also: Oracle8i Concepts for more information about using

triggers to enforce referential integrity.
Developing Applications for a Distributed Database System 3-3

Tuning Distributed Queries
The local node then performs any necessary post-processing and returns the results

to the user or application.

You have several options for designing your application to optimize query

processing. This section contains the following topics:

■ Using Collocated Inline Views

■ Using Cost-Based Optimization

■ Using Hints

■ Analyzing the Execution Plan

Using Collocated Inline Views
The most effective way of optimizing distributed queries is to access the remote

databases as little as possible and to retrieve only the required data.

For example, assume you reference five remote tables from two different remote

databases in a distributed query and have a complex filter (for example, WHERE
r1.salary + r2.salary > 50000). You can improve the performance of the

query by rewriting the query to access the remote databases once and to apply the

filter at the remote site. This rewrite causes less data to be transferred to the query

execution site.

Rewriting your query to access the remote database once is achieved by using

collocated inline views. The following terms need to be defined:

Oracle Corporation recommends that you form your distributed query using

collocated inline views to increase the performance of your distributed query.

Oracle’s cost-based optimization can transparently rewrite many of your

collocated Two or more tables located in the same database.

inline view A SELECT statement that is substituted for a table in
a parent SELECT statement. The embedded SELECT
statement (in bold) is an example of an inline view:

SELECT e.empno, e.ename, d.deptno, d.dname
FROM (SELECT empno, ename from
emp@orc1.world) e, dept d;

collocated inline view An inline view that selects data from multiple tables
from a single database only. It reduces the amount of
times that the remote database is accessed,
improving the performance of a distributed query.
3-4 Oracle8i Distributed Database Systems

Tuning Distributed Queries
distributed queries to take advantage of the performance gains offered by

collocated inline views.

Using Cost-Based Optimization
In addition to rewriting your queries with collocated inline views, the cost-based

optimization method optimizes distributed queries according to the gathered

statistics of the referenced tables and the computations performed by the optimizer.

For example, cost-based optimization analyzes the following query. The example

assumes that table statistics are available. Note that it analyzes the query inside a

CREATE TABLE statement:

CREATE TABLE AS (
 SELECT l.a, l.b, r1.c, r1.d, r1.e, r2.b, r2.c
 FROM local l, remote1 r1, remote2 r2
 WHERE l.c = r.c
 AND r1.c = r2.c
 AND r.e > 300
);

and rewrites it as:

CREATE TABLE AS (
 SELECT l.a, l.b, v.c, v.d, v.e
 FROM (
 SELECT r1.c, r1.d, r1.e, r2.b, r2.c
 FROM remote1 r1, remote2 r2
 WHERE r1.c = r2.c
 AND r1.e > 300
) v, local l
 WHERE l.c = r1.c
);

The alias v is assigned to the inline view, which can then be referenced as a table in

the above SELECT statement. Creating a collocated inline view reduces the amount

of queries performed at a remote site, thereby reducing costly network traffic.

How Does Cost-Based Optimization Work?
The optimizer’s main task is to rewrite a distributed query to use collocated inline

views. This optimization is performed in three steps:

1. All mergeable views are merged.

2. Optimizer performs collocated query block test.
Developing Applications for a Distributed Database System 3-5

Tuning Distributed Queries
3. Optimizer rewrites query using collocated inline views.

After the query is rewritten, it is executed and the data set is returned to the user.

Cost-Based Optimization Restrictions While cost-based optimization is performed

transparently to the user, it is unable to improve the performance of several

distributed query scenarios. Specifically, if your distributed query contains any of

the following, cost-based optimization is not effective:

■ Aggregates

■ Subqueries

■ Complex SQL

If your distributed query contains one of the above, see "Using Hints" on page 3-8 to

learn how you can modify your query and use hints to improve the performance of

your distributed query.

Setting Up Cost-Based Optimization
After you have set up your system to use cost-based optimization to improve the

performance of distributed queries, the operation is transparent to the user. In other

words, the optimization occurs automatically when the query is issued.

You need to complete the following tasks to set up your system to take advantage of

Oracle's optimizer:

■ Setting Up the Environment

■ Analyzing Tables

Setting Up the Environment To enable cost-based optimization, set the OPTIMIZER_

MODE initialization parameter to CHOOSE or COST. You can persistently set this

parameter by:

■ Modifying the OPTIMZER_MODE parameter in the initialization parameter

file.

■ Setting it on a session-level by issuing an ALTER SESSION statement.

Issue one of the following statements to set the OPTIMIZER_MODE parameter at

the session level:

ALTER SESSION OPTIMIZER_MODE = CHOOSE;
ALTER SESSION OPTIMIZER_MODE = COST;
3-6 Oracle8i Distributed Database Systems

Tuning Distributed Queries
Analyzing Tables In order for cost-based optimization to select the most efficient path

for a distributed query, you must provide accurate statistics for the tables involved.

One way to generate statistics for a table is to execute an ANALYZE statement.

Note that when you execute this statement, Oracle locks the tables being analyzed.

For example, if you reference the EMP and DEPT tables in your distributed query,

execute the following to generate the necessary statistics:

ANALYZE TABLE emp COMPUTE STATISTICS;
ANALYZE TABLE dept COMPUTE STATISTICS;

The statistics are stored in the following locations:

See Also: Oracle8i Designing and Tuning for Performance manual for

information on setting the OPTIMZER_MODE parameter in the

parameter file and for configuring your system to use a cost-based

optimization method.

Statistic Type Tables

Tables DBA/ALL/USER_TABLES

Columns DBA/ALL/USER_TAB_COL_STATISTICS

DBA/ALL/USER_TAB_COLUMNS

Histograms DBA/ALL/USER_TAB_HISTOGRAMS

DBA/ALL/USER_PART_HISTOGRAMS

DBA/ALL/USER_SUBPART_HISTOGRAMS

User-defined statistics DBA/ALL/USER_USTATS

Note: You must connect locally with respect to the tables to

execute the ANALYZE statement. You cannot execute the

following:

ANALYZE TABLE remote@remote.com COMPUTE STATISTICS;

You must first connect to the remote site and then execute the above

ANALYZE statement.
Developing Applications for a Distributed Database System 3-7

Tuning Distributed Queries
You can also collect statistics using the DBMS_ STATS package. The following

procedures enable the gathering of certain classes of optimizer statistics, with

possible performance improvements over the ANALYZE command:

■ GATHER_INDEX_STATS

■ GATHER_TABLE_STATS

■ GATHER_SCHEMA_STATS

■ GATHER_DATABASE_STATS

For example, assume that distributed transactions routinely access the

SCOTT.DEPT table. To ensure that the cost-based optimizer is still picking the best

plan, execute the following:

BEGIN
 DBMS_STATS.GATHER_TABLE_STATS (’scott’, ’dept’);
END;

Using Hints
If a statement is not sufficiently optimized, then you can use hints to extend the

capability of cost-based optimization. Specifically, if you write your own query to

utilize collocated inline views, instruct the cost-based optimizer not to rewrite your

distributed query.

Additionally, if you have special knowledge about the database environment (that

is, statistics, load, network and CPU limitations, distributed queries, etc.), you can

specify a hint to guide cost-based optimization. For example, if you have written

your own optimized query using collocated inline views that are based on your

knowledge of the database environment, specify the NO_MERGE hint to prevent

the optimizer from rewriting your query.

This technique is especially helpful if your distributed query contains an aggregate,

subquery, or complex SQL. Because this type of distributed query cannot be

See Also: Oracle8i SQL Reference for additional information on

using the ANALYZE statement, and Oracle8i Designing and Tuning
for Performance to learn how to generate statistics for more than one

object at a time and to learn how to automate the process of

keeping statistics current.

See Also: Oracle8i Supplied PL/SQL Packages Reference for

additional information on using the DBMS_STATS package.
3-8 Oracle8i Distributed Database Systems

Tuning Distributed Queries
rewritten by the optimizer, specifying NO_MERGE causes the optimizer to skip the

steps described in the "Using Hints" section on page 3-8.

The DRIVING_SITE hint allows you to define a remote site to act as the query

execution site. This hint is especially helpful when the remote site contains the

majority of the data. In this way, the query executes on the remote site, which then

returns the data to the local site.

Using the NO_MERGE Hint
The NO_MERGE hint prevents Oracle from merging an inline view into a

potentially non-collocated SQL statement (see "Using Hints" on page 3-8). This hint

is embedded in the SELECT statement and can appear either at the beginning of the

SELECT statement with the inline view as an argument or in the query block that

defines the inline view.

/* with argument */

SELECT /*+NO_MERGE(v)*/ t1.x, v.avg_y
 FROM t1, (SELECT x, AVG(y) AS avg_y FROM t2 GROUP BY x) v,
 WHERE t1.x = v.x AND t1.y = 1;

/* in query block */

SELECT t1.x, v.avg_y
 FROM t1, (SELECT /*+NO_MERGE*/ x, AVG(y) AS avg_y FROM t2 GROUP BY x) v,
 WHERE t1.x = v.x AND t1.y = 1;

Typically, you use this hint when you have developed an optimized query based on

your knowledge of your database environment.

Using the DRIVING_SITE Hint
The DRIVING_SITE hint allows you to specify the site where the query execution is

performed. It is best to let the cost-based optimization determine where the

execution should be performed, but if you want to override the optimizer, you can

specify the execution site manually.

Following is an example of a SELECT statement with a DRIVING_SITE hint:

SELECT /*+DRIVING_SITE(dept)*/ * FROM emp, dept@remote.com
 WHERE emp.deptno = dept.deptno;

See Also: Oracle8i Designing and Tuning for Performance for more

information about the NO_MERGE hint.
Developing Applications for a Distributed Database System 3-9

Tuning Distributed Queries
Analyzing the Execution Plan
An important aspect to tuning distributed queries is analyzing the execution plan.

The feedback that you receive from your analysis is an important element to testing

and verifying your database. Verification is increasingly important when you want

to compare the execution plan for a distributed query optimized by cost-based

optimization versus the plan for a query manually optimized using hints, collocated

inline views, etc.

Preparing the Database to Store the Plan
Before you can view the execution plan for the distributed query, prepare the

database to store the execution plan. You can perform this preparation by executing

a script. Execute the following script to prepare your database to store an execution

plan:

SQL> @utlxplan.sql

After you execute the utlxplan.sql file, a PLAN_TABLE is created in the current

schema to temporarily store the execution plan.

Generating the Execution Plan
After you have prepared the database to store the execution plan, you are ready to

view the plan for a specified query. Instead of directly executing a SQL statement,

append the statement to the EXPLAIN PLAN FOR clause. For example, you can

execute the following:

EXPLAIN PLAN FOR
 SELECT d.dname
 FROM dept d
 WHERE d.deptno
 IN (SELECT deptno

See Also: Oracle8i Designing and Tuning for Performance for more

information about the DRIVING_SITE hint.

See Also: Oracle8i Designing and Tuning for Performance for

detailed information about execution plans, the EXPLAIN PLAN

command, and how to interpret the results.

Note: The location of the utlxplan.sql file depends on your

operating system.
3-10 Oracle8i Distributed Database Systems

Tuning Distributed Queries
 FROM emp@orc2.world
 GROUP BY deptno
 HAVING COUNT (deptno) >3
)
/

Viewing the Execution Plan
After you have executed the above SQL statement, the execution plan is stored

temporarily in the PLAN_TABLE that you created earlier. To view the results of the

execution plan, execute the following script:

@utlxpls.sql

Executing the utlxpls.sql script displays the execution plan for the SELECT

statement that you specified. The results are formatted as follows:

Plan Table
--
| Operation | Name | Rows | Bytes| Cost | Pstart| Pstop |
--
SELECT STATEMENT						
NESTED LOOPS						
VIEW						
REMOTE						
TABLE ACCESS BY INDEX RO	DEPT					
INDEX UNIQUE SCAN	PK_DEPT					
--

If you are manually optimizing distributed queries by writing your own collocated

inline views or using hints, it is best to generate an execution plan before and after

your manual optimization. With both execution plans, you can compare the

effectiveness of your manual optimization and make changes as necessary to

improve the performance of the distributed query.

To view the SQL statement that will be executed at the remote site, execute the

following select statement:

SELECT other
FROM plan_table
 WHERE operation = 'REMOTE';

Note: The location of the utlxpls.sql file depends on your

operating system.
Developing Applications for a Distributed Database System 3-11

Handling Errors in Remote Procedures
Following is sample output:

SELECT DISTINCT "A1"."DEPTNO" FROM "EMP" "A1"
 GROUP BY "A1"."DEPTNO" HAVING COUNT("A1"."DEPTNO")>3

Handling Errors in Remote Procedures
When Oracle executes a procedure locally or at a remote location, four types of

exceptions can occur:

■ PL/SQL user-defined exceptions, which must be declared using the keyword

EXCEPTION.

■ PL/SQL predefined exceptions such as the NO_DATA_FOUND keyword.

■ SQL errors such as ORA-00900 and ORA-02015 .

■ Application exceptions generated using the RAISE_APPLICATION_ERROR()

procedure.

When using local procedures, you can trap these messages by writing an exception

handler such as the following:

BEGIN
 ...
EXCEPTION
 WHEN ZERO_DIVIDE THEN
 /* ... handle the exception */
END;

Notice that the WHEN clause requires an exception name. If the exception does not

have a name, for example, exceptions generated with RAISE_APPLICATION_

ERROR, you can assign one using PRAGMA_EXCEPTION_INIT. For example:

DECLARE
 null_salary EXCEPTION;
 PRAGMA EXCEPTION_INIT(null_salary, -20101);
BEGIN
 ...
 RAISE_APPLICATION_ERROR(-20101, ’salary is missing’);
...

Note: If you are having difficulty viewing the entire contents of

the OTHER column, you may need to execute the following:

SET LONG 9999999
3-12 Oracle8i Distributed Database Systems

Handling Errors in Remote Procedures
EXCEPTION
 WHEN null_salary THEN
 ...
END;

When calling a remote procedure, exceptions can be handled by an exception

handler in the local procedure. The remote procedure must return an error number

to the local, calling procedure, which then handles the exception as shown in the

previous example. Note that PL/SQL user-defined exceptions always return

ORA-06510 to the local procedure.

Therefore, it is not possible to distinguish between two different user-defined

exceptions based on the error number. All other remote exceptions can be handled

in the same manner as local exceptions.
Developing Applications for a Distributed Database System 3-13

Handling Errors in Remote Procedures
3-14 Oracle8i Distributed Database Systems

Part II

 Distributed Transactions Concepts and

Administration

Distributed Transactions Con
4

Distributed Transactions Concepts

This chapter describes what distributed transactions are and how Oracle8i
maintains their integrity. Topics include:

■ What Are Distributed Transactions?

■ Session Trees for Distributed Transactions

■ Two-Phase Commit Mechanism

■ In-Doubt Transactions

■ Distributed Transaction Processing: Case Study
cepts 4-1

What Are Distributed Transactions?
What Are Distributed Transactions?
A distributed transaction includes one or more statements that, individually or as a

group, update data on two or more distinct nodes of a distributed database. For

example, assume the database configuration depicted in Figure 4–1:

Figure 4–1 Distributed System

The following distributed transaction executed by SCOTT updates the local SALES

database, the remote HQ database, and the remote MAINT database:

UPDATE scott.dept@hq.us.acme.com
 SET loc = 'REDWOOD SHORES'
 WHERE deptno = 10;
UPDATE scott.emp
 SET deptno = 11
 WHERE deptno = 10;
UPDATE scott.bldg@maint.us.acme.com
 SET room = 1225
 WHERE room = 1163;
COMMIT;

SALES

HQ

MAINT

Net8
database link

Net8
database link

SCOTT

dept table

bldg table

emp table
4-2 Oracle8i Distributed Database Systems

What Are Distributed Transactions?
The section contains the following topics:

■ Supported Types of Distributed Transactions

■ Session Trees for Distributed Transactions

■ Two-Phase Commit Mechanism

Supported Types of Distributed Transactions
This section describes permissible operations in distributed transactions:

■ DML and DDL Transactions

■ Transaction Control Statements

DML and DDL Transactions
The following list describes DML and DDL operations supported in a distributed

transaction:

■ CREATE TABLE AS SELECT

■ DELETE

■ INSERT (default and direct load)

■ LOCK TABLE

■ SELECT

■ SELECT FOR UPDATE

You can execute DML and DDL statements in parallel, and INSERT direct load

statements serially, but note the following restrictions:

■ All remote operations must be SELECT statements.

■ These statements must not be clauses in another distributed transaction.

■ If the table referenced in the table_expression_clause of an INSERT, UPDATE, or

DELETE statement is remote, then execution is serial rather than parallel.

■ You cannot perform remote operations after issuing parallel DML/DDL or

direct load INSERT.

Note: If all statements of a transaction reference only a single

remote node, then the transaction is remote, not distributed.
Distributed Transactions Concepts 4-3

What Are Distributed Transactions?
■ If the transaction begins using XA or OCI, it executes serially.

■ No loopback operations can be performed on the transaction originating the

parallel operation. For example, you cannot reference a remote object that is

actually a synonym for a local object.

■ If you perform a distributed operation other than a SELECT in the transaction,

no DML is parallelized.

Transaction Control Statements
The following list describes supported transaction control statements:

■ COMMIT

■ ROLLBACK

■ SAVEPOINT

Session Trees for Distributed Transactions
Oracle8i defines a session tree of all nodes participating in a distributed transaction.

A session tree is a hierarchical model of the transaction that describes the

relationships among the nodes that are involved. Each node plays a role in the

transaction. For example, the node that originates the transaction is the global
coordinator, and the node in charge of initiating a commit or rollback is called the

commit point site.

Two-Phase Commit Mechanism
Unlike a transaction on a local database, a distributed transaction involves altering

data on multiple databases. Consequently, distributed transaction processing is

more complicated, because Oracle must coordinate the committing or rolling back

of the changes in a transaction as a self-contained unit. In other words, the entire

transaction commits, or the entire transactions rolls back.

See Also: Oracle8i SQL Reference for more information about these

SQL statements.

See Also: "Session Trees for Distributed Transactions" on page 4-5

for an explanation of session trees, and "Distributed Transaction

Processing: Case Study" on page 4-20 for an example of a session

tree.
4-4 Oracle8i Distributed Database Systems

Session Trees for Distributed Transactions
Oracle ensures the integrity of data in a distributed transaction using the two-phase
commit mechanism. In the prepare phase, the initiating node in the transaction asks the

other participating nodes to promise to commit or roll back the transaction. During

the commit phase, the initiating node asks all participating nodes to commit the

transaction; if this outcome is not possible, then all nodes are asked to roll back.

Session Trees for Distributed Transactions
As the statements in a distributed transaction are issued, Oracle8i defines a session
tree of all nodes participating in the transaction. A session tree is a hierarchical

model that describes the relationships among sessions and their roles. Figure 4–2

illustrates a session tree:

Figure 4–2 Example of a Session Tree

All nodes participating in the session tree of a distributed transaction assume one or

more of the following roles:

WAREHOUSE.ACME.COM FINANCE.ACME.COM

INSERT INTO orders...;
UPDATE inventory @ warehouse...;
UPDATE accts_rec @ finance...;
.
COMMIT;

SALES.ACME.COM

Global Coordinator

Commit Point Site

Database Server

Client
Distributed Transactions Concepts 4-5

Session Trees for Distributed Transactions
The role a node plays in a distributed transaction is determined by:

■ Whether the transaction is local or remote

■ The commit point strength of the node ("Commit Point Site" on page 4-7)

■ Whether all requested data is available at a node, or whether other nodes need

to be referenced to complete the transaction

■ Whether the node is read-only

Clients
A node acts as a client when it references information from another node’s

database. The referenced node is a database server. In Figure 4–2, the node SALES is a

client of the nodes that host the WAREHOUSE and FINANCE databases.

Database Servers
A database server is a node that hosts a database from which a client requests data.

In Figure 4–2, an application at the SALES node initiates a distributed transaction

that accesses data from the WAREHOUSE and FINANCE nodes. Therefore,

SALES.ACME.COM has the role of client node, and WAREHOUSE and FINANCE

are both database servers. In this example, SALES is a database server and a client

because the application also requests a change to the SALES database.

Local Coordinators
A node that must reference data on other nodes to complete its part in the

distributed transaction is called a local coordinator. In Figure 4–2, SALES is a local

coordinator because it coordinates the nodes it directly references: WAREHOUSE

client A node that references information in a database
belonging to a different node.

database server A node that receives a request for information from
another node.

global coordinator The node that originates the distributed transaction.

local coordinator A node that is forced to reference data on other nodes
to complete its part of the transaction.

commit point site The node that commits or rolls back the transaction as
instructed by the global coordinator.
4-6 Oracle8i Distributed Database Systems

Session Trees for Distributed Transactions
and FINANCE. SALES also happens to be the global coordinator because it

coordinates all the nodes involved in the transaction.

A local coordinator is responsible for coordinating the transaction among the nodes

it communicates directly with by:

■ Receiving and relaying transaction status information to and from those nodes.

■ Passing queries to those nodes.

■ Receiving queries from those nodes and passing them on to other nodes.

■ Returning the results of queries to the nodes that initiated them.

Global Coordinator
The node where the distributed transaction originates is called the global coordinator.
The database application issuing the distributed transaction is directly connected to

the node acting as the global coordinator. For example, in Figure 4–2, the

transaction issued at the node SALES references information from the database

servers WAREHOUSE and FINANCE. Therefore, SALES.ACME.COM is the global

coordinator of this distributed transaction.

The global coordinator becomes the parent or root of the session tree. The global

coordinator performs the following operations during a distributed transaction:

■ Sends all of the distributed transaction’s SQL statements, remote procedure

calls, etc. to the directly referenced nodes, thus forming the session tree.

■ Instructs all directly referenced nodes other than the commit point site to

prepare the transaction.

■ Instructs the commit point site to initiate the global commit of the transaction if

all nodes prepare successfully.

■ Instructs all nodes to initiate a global rollback of the transaction if there is an

abort response.

Commit Point Site
The job of the commit point site is to initiate a commit or roll back operation as

instructed by the global coordinator. The system administrator always designates

one node to be the commit point site in the session tree by assigning all nodes a

commit point strength. The node selected as commit point site should be the node

that stores the most critical data.
Distributed Transactions Concepts 4-7

Session Trees for Distributed Transactions
Figure 4–3 illustrates an example of distributed system, with SALES serving as the

commit point site:

Figure 4–3 Commit Point Site

The commit point site is distinct from all other nodes involved in a distributed

transaction in these ways:

■ The commit point site never enters the prepared state. Consequently, if the

commit point site stores the most critical data, this data never remains in-doubt,

even if a failure occurs. In failure situations, failed nodes remain in a prepared

state, holding necessary locks on data until in-doubt transactions are resolved.

■ The commit point site commits before the other nodes involved in the

transaction. In effect, the outcome of a distributed transaction at the commit

point site determines whether the transaction at all nodes is committed or rolled

back: the other nodes follow the lead of the commit point site. The global

coordinator ensures that all nodes complete the transaction in the same manner

as the commit point site.

How a Distributed Transaction Commits
A distributed transaction is considered committed after all non-commit point sites

are prepared, and the transaction has been actually committed at the commit point

site. The online redo log at the commit point site is updated as soon as the

distributed transaction is committed at this node.

SALES

WAREHOUSE

COMMIT_POINT_STRENGTH = 100

COMMIT_POINT_STRENGTH = 75

FINANCE

COMMIT POINT STRENGTH= 50
4-8 Oracle8i Distributed Database Systems

Session Trees for Distributed Transactions
Because the commit point log contains a record of the commit, the transaction is

considered committed even though some participating nodes may still be only in

the prepared state and the transaction not yet actually committed at these nodes. In

the same way, a distributed transaction is considered not committed if the commit

has not been logged at the commit point site.

Commit Point Strength
Every database server must be assigned a commit point strength. If a database server

is referenced in a distributed transaction, the value of its commit point strength

determines which role it plays in the two-phase commit. Specifically, the commit

point strength determines whether a given node is the commit point site in the

distributed transaction and thus commits before all of the other nodes. This value is

specified using the initialization parameter COMMIT_POINT_STRENGTH.

How Oracle Determines the Commit Point Site The commit point site, which is

determined at the beginning of the prepare phase, is selected only from the nodes

participating in the transaction. The following sequence of events occurs:

1. Of the nodes directly referenced by the global coordinator, Oracle selects the

node with the highest commit point strength as the commit point site.

2. The initially-selected node determines if any of the nodes from which it has to

obtain information for this transaction has a higher commit point strength.

3. Either the node with the highest commit point strength directly referenced in

the transaction or one of its servers with a higher commit point strength

becomes the commit point site.

4. After the final commit point site has been determined, the global coordinator

sends prepare responses to all nodes participating in the transaction.

Figure 4–4 shows in a sample session tree the commit point strengths of each node

(in parentheses) and shows the node chosen as the commit point site:

See Also: Oracle8i Reference for more information about

COMMIT_POINT_STRENGTH.
Distributed Transactions Concepts 4-9

Session Trees for Distributed Transactions
Figure 4–4 Commit Point Strengths and Determination of the Commit Point Site

The following conditions apply when determining the commit point site:

■ A read-only node cannot be the commit point site.

■ If multiple nodes directly referenced by the global coordinator have the same

commit point strength, then Oracle designates one of these as the commit point

site.

■ If a distributed transaction ends with a rollback, then the prepare and commit

phases are not needed. Consequently, Oracle never determines a commit point

site. Instead, the global coordinator sends a ROLLBACK statement to all nodes

and ends the processing of the distributed transaction.

As Figure 4–4 illustrates, the commit point site and the global coordinator can be

different nodes of the session tree. The commit point strength of each node is

communicated to the coordinators when the initial connections are made. The

coordinators retain the commit point strengths of each node they are in direct

communication with so that commit point sites can be efficiently selected during

Global Coordinator

Commit Point Site

Database Server

Client

SALES.ACME.COM
(45)

HQ.ACME.COM
(165)

HR.ACME.COM
(45)

FINANCE.ACME.COM
(45)

WAREHOUSE.ACME.COM
(140)
4-10 Oracle8i Distributed Database Systems

Two-Phase Commit Mechanism
two-phase commits. Therefore, it is not necessary for the commit point strength to

be exchanged between a coordinator and a node each time a commit occurs.

Two-Phase Commit Mechanism
All participating nodes in a distributed transaction should perform the same action:

they should either all commit or all perform a rollback of the transaction. Oracle8i
automatically controls and monitors the commit or rollback of a distributed

transaction and maintains the integrity of the global database (the collection of

databases participating in the transaction) using the two-phase commit mechanism.
This mechanism is completely transparent, requiring no programming on the part

of the user or application developer.

The commit mechanism has the following distinct phases, which Oracle performs

automatically whenever a user commits a distributed transaction:

This section contains the following topics:

■ Prepare Phase

■ Commit Phase

■ Forget Phase

Prepare Phase
The first phase in committing a distributed transaction is the prepare phase. In this

phase, Oracle does not actually commit or roll back the transaction. Instead, all

See Also: "Specifying the Commit Point Strength of a Node" on

page 5-5 to learn how to set the commit point strength of a node,

and Oracle8i Reference for more information about the initialization

parameter COMMIT_POINT_STRENGTH.

prepare phase The initiating node, called the global coordinator, asks
participating nodes other than the commit point site to
promise to commit or roll back the transaction, even if
there is a failure. If any node cannot prepare, the
transaction is rolled back.

commit phase If all participants respond to the coordinator that they
are prepared, then the coordinator asks the commit
point site to commit. After it commits, the coordinator
asks all other nodes to commit the transaction.

forget phase The global coordinator forgets about the transaction.
Distributed Transactions Concepts 4-11

Two-Phase Commit Mechanism
nodes referenced in a distributed transaction (except the commit point site,

described in the "Commit Point Site" on page 4-7) are told to prepare to commit. By

preparing, a node:

■ Records information in the online redo logs so that it can subsequently either

commit or roll back the transaction, regardless of intervening failures.

■ Places a distributed lock on modified tables, which prevents reads.

When a node responds to the global coordinator that it is prepared to commit, the

prepared node promises to either commit or roll back the transaction later—but does

not make a unilateral decision on whether to commit or roll back the transaction.

The promise means that if an instance failure occurs at this point, the node can use

the redo records in the online log to recover the database back to the prepare phase.

Types of Responses in the Prepare Phase
When a node is told to prepare, it can respond in the following ways:

Prepared Response When a node has successfully prepared, it issues a prepared
message. The message indicates that the node has records of the changes in the

online log, so it is prepared either to commit or perform a rollback. The message

also guarantees that locks held for the transaction can survive a failure.

Read-Only Response When a node is asked to prepare, and the SQL statements

affecting the database do not change the node’s data, the node responds with a

read-only message. The message indicates that the node will not participate in the

commit phase.

Note: Queries that start after a node has prepared cannot access

the associated locked data until all phases complete. The time is

insignificant unless a failure occurs (see "Deciding How to Handle

In-Doubt Transactions" on page 5-10).

prepared Data on the node has been modified by a statement in
the distributed transaction, and the node has
successfully prepared.

read-only No data on the node has been, or can be, modified
(only queried), so no preparation is necessary.

abort The node cannot successfully prepare.
4-12 Oracle8i Distributed Database Systems

Two-Phase Commit Mechanism
There are three cases in which all or part of a distributed transaction is read-only:

Note that if a distributed transaction is set to read-only, then it does not use rollback

segments. If many users connect to the database and their transactions are not set to

READ ONLY, then they allocate rollback space even if they are only performing

queries.

Abort Response When a node cannot successfully prepare, it performs the following

actions:

1. Releases resources currently held by the transaction and rolls back the local

portion of the transaction.

2. Responds to the node that referenced it in the distributed transaction with an

abort message.

Case Conditions Consequence

Partially read-only Any of the following occurs:

■ Only queries are issued at
one or more nodes.

■ No data is changed.

■ Changes rolled back due
to triggers firing or
constraint violations.

The read-only nodes recognize
their status when asked to
prepare. They give their local
coordinators a read-only
response. Thus, the commit phase
completes faster because Oracle
eliminates read-only nodes from
subsequent processing.

Completely read-only
with prepare phase

All of following occur:

■ No data changes.

■ Transaction is not started
with SET TRANSACTION
READ ONLY statement.

All nodes recognize that they are
read-only during prepare phase,
so no commit phase is required.
The global coordinator, not
knowing whether all nodes are
read-only, must still perform the
prepare phase.

Completely read-only
without two-phase
commit

All of following occur:

■ No data changes.

■ Transaction is started with
SET TRANSACTION
READ ONLY statement.

Only queries are allowed in the
transaction, so global coordinator
does not have to perform
two-phase commit. Changes by
other transactions do not degrade
global transaction-level read
consistency because of global
SCN coordination among nodes.
The transaction does not use
rollback segments.
Distributed Transactions Concepts 4-13

Two-Phase Commit Mechanism
These actions then propagate to the other nodes involved in the distributed

transaction so that they can roll back the transaction and guarantee the integrity of

the data in the global database. This response enforces the primary rule of a

distributed transaction: all nodes involved in the transaction either all commit or all roll
back the transaction at the same logical time.

Steps in the Prepare Phase
To complete the prepare phase, each node excluding the commit point site performs

the following steps:

1. The node requests that its descendants, that is, the nodes subsequently

referenced, prepare to commit.

2. The node checks to see whether the transaction changes data on itself or its

descendants. If there is no change to the data, then the node skips the remaining

steps and returns a read-only response (see "Read-Only Response" on page 4-12).

3. The node allocates the resources it needs to commit the transaction if data is

changed.

4. The node saves redo records corresponding to changes made by the transaction

to its online redo log.

5. The node guarantees that locks held for the transaction are able to survive a

failure.

6. The node responds to the initiating node with a prepared response (see "Prepared

Response" on page 4-12) or, if its attempt or the attempt of one of its

descendents to prepare was unsuccessful, with an abort response (see "Abort

Response" on page 4-13).

These actions guarantee that the node can subsequently commit or roll back the

transaction on the node. The prepared nodes then wait until a COMMIT or

ROLLBACK request is received from the global coordinator.

After the nodes are prepared, the distributed transaction is said to be in-doubt (see

"In-Doubt Transactions" on page 4-16). It retains in-doubt status until all changes

are either committed or rolled back.

Commit Phase
The second phase in committing a distributed transaction is the commit phase.

Before this phase occurs, all nodes other than the commit point site referenced in the

distributed transaction have guaranteed that they are prepared, that is, they have

the necessary resources to commit the transaction.
4-14 Oracle8i Distributed Database Systems

Two-Phase Commit Mechanism
Steps in the Commit Phase
The commit phase consists of the following steps:

1. The global coordinator instructs the commit point site to commit.

2. The commit point site commits.

3. The commit point site informs the global coordinator that it has committed.

4. The global and local coordinators send a message to all nodes instructing them

to commit the transaction.

5. At each node, Oracle8i commits the local portion of the distributed transaction

and releases locks.

6. At each node, Oracle8i records an additional redo entry in the local redo log,

indicating that the transaction has committed.

7. The participating nodes notify the global coordinator that they have committed.

When the commit phase is complete, the data on all nodes of the distributed system

is consistent with one another.

Guaranteeing Global Database Consistency
Each committed transaction has an associated system change number (SCN) to

uniquely identify the changes made by the SQL statements within that transaction.

The SCN functions as an internal Oracle timestamp that uniquely identifies a

committed version of the database.

In a distributed system, the SCNs of communicating nodes are coordinated when

all of the following actions occur:

■ A connection occurs using the path described by one or more database links.

■ A distributed SQL statement executes.

■ A distributed transaction commits.

Among other benefits, the coordination of SCNs among the nodes of a distributed

system ensures global read-consistency at both the statement and transaction level.

If necessary, global time-based recovery can also be completed.

During the prepare phase, Oracle8i determines the highest SCN at all nodes

involved in the transaction. The transaction then commits with the high SCN at the

See Also: "Managing Read Consistency" on page 5-28 for

information about managing time lag issues in read consistency.
Distributed Transactions Concepts 4-15

In-Doubt Transactions
commit point site. The commit SCN is then sent to all prepared nodes with the

commit decision.

Forget Phase
After the participating nodes notify the commit point site that they have committed,

the commit point site can forget about the transaction. The following steps occur:

1. After receiving notice from the global coordinator that all nodes have

committed, the commit point site erases status information about this

transaction.

2. The commit point site informs the global coordinator that it has erased the

status information.

3. The global coordinator erases its own information about the transaction.

In-Doubt Transactions
The two-phase commit mechanism ensures that all nodes either commit or perform

a rollback together. What happens if any of the three phases fails because of a

system or network error? The transaction becomes in-doubt.

Distributed transactions can become in-doubt in the following ways:

■ A server machine running Oracle software crashes.

■ A network connection between two or more Oracle databases involved in

distributed processing is disconnected.

■ An unhandled software error occurs.

The RECO process automatically resolves in-doubt transactions when the machine,

network, or software problem is resolved. Until RECO can resolve the transaction,

the data is locked for both reads and writes. Oracle blocks reads because it cannot

determine which version of the data to display for a query.

This section contains the following topics:

■ Automatic Resolution of In-Doubt Transactions

■ Manual Resolution of In-Doubt Transactions

■ Relevance of System Change Numbers for In-Doubt Transactions
4-16 Oracle8i Distributed Database Systems

In-Doubt Transactions
Automatic Resolution of In-Doubt Transactions
In the majority of cases, Oracle resolves the in-doubt transaction automatically.

Assume that there are two nodes, LOCAL and REMOTE, in the following scenarios.

The local node is the commit point site. User SCOTT connects to LOCAL and

executes and commits a distributed transaction that updates LOCAL and REMOTE.

Failure During the Prepare Phase
Figure 4–5 illustrates the sequence of events when there is a failure during the

prepare phase of a distributed transaction:

Figure 4–5 Failure During Prepare Phase

The following steps occur:

1. Scott connects to LOCAL and executes a distributed transaction.

2. The global coordinator, which in this example is also the commit point site,

requests all databases other than the commit point site to promise to commit or

roll back when told to do so.

3. The REMOTE database crashes before issuing the prepare response back to

LOCAL.

Local

SCOTT

Remote

COMMIT_POINT_SITE = 200 COMMIT_POINT_SITE = 100

1

3 Crashes before giving
prepare response

Issues distributed
transaction

2 Asks REMOTE to prepare

4 All databases perform
rollback
Distributed Transactions Concepts 4-17

In-Doubt Transactions
4. The transaction is ultimately rolled back on each database by the RECO process

when the remote site is restored.

Failure During the Commit Phase
Figure 4–5 illustrates the sequence of events when there is a failure during the

commit phase of a distributed transaction:

Figure 4–6 Failure During Prepare Phase

The following steps occur:

1. Scott connects to LOCAL and executes a distributed transaction.

2. The global coordinator, which in this case is also the commit point site, requests

all databases other than the commit point site to promise to commit or roll back

when told to do so.

3. The commit point site receives a prepare message from REMOTE saying that it

will commit.

4. The commit point site commits the transaction locally, then sends a commit

message to REMOTE asking it to commit.

5. The REMOTE database receives the commit message, but cannot respond

because of a network failure.

Local

SCOTT

Remote

COMMIT_POINT_STRENGTH = 200 COMMIT_POINT_STRENGTH = 100

1

5 Receives commit message,
but cannot respond

Issues distributed
transaction

2 Asks REMOTE to prepare

3 Receives prepare message from REMOTE

4 Asks REMOTE to commit

6 All databases commit after
network restored
4-18 Oracle8i Distributed Database Systems

In-Doubt Transactions
6. The transaction is ultimately committed on the remote database by the RECO

process after the network is restored.

Manual Resolution of In-Doubt Transactions
You should only need to resolve an in-doubt transaction in the following cases:

■ The in-doubt transaction has locks on critical data or rollback segments.

■ The cause of the machine, network, or software failure cannot be repaired

quickly.

Resolution of in-doubt transactions can be complicated. The procedure requires that

you do the following:

■ Identify the transaction identification number for the in-doubt transaction.

■ Query the DBA_2PC_PENDING and DBA_2PC_NEIGHBORS views to

determine whether the databases involved in the transaction have committed.

■ If necessary, force a commit using the COMMIT FORCE statement or a rollback

using the ROLLBACK FORCE statement.

Relevance of System Change Numbers for In-Doubt Transactions
A system change number (SCN) is an internal timestamp for a committed version of

the database. The Oracle database server uses the SCN clock value to guarantee

transaction consistency. For example, when a user commits a transaction, Oracle

records an SCN for this commit in the online redo log.

Oracle uses SCNs to coordinate distributed transactions among different databases.

For example, Oracle uses SCNs in the following way:

1. An application establishes a connection using a database link.

2. The distributed transaction commits with the highest global SCN among all the

databases involved.

3. The commit global SCN is sent to all databases involved in the transaction.

See Also: "Deciding How to Handle In-Doubt Transactions" on

page 5-10 for a description of failure situations and how Oracle8i
resolves intervening failures during two-phase commit.

See Also: "Deciding How to Handle In-Doubt Transactions" on

page 5-10 and "Manually Overriding In-Doubt Transactions" on

page 5-13 to learn how to resolve in-doubt transactions.
Distributed Transactions Concepts 4-19

Distributed Transaction Processing: Case Study
SCNs are important for distributed transactions because they function as a

synchronized commit timestamp of a transaction—even if the transaction fails. If a

transaction becomes in-doubt, an administrator can use this SCN to coordinate

changes made to the global database. The global SCN for the transaction commit

can also be used to identify the transaction later, for example, in distributed

recovery.

Distributed Transaction Processing: Case Study
In this scenario, a company has separate Oracle8i database servers,

SALES.ACME.COM and WAREHOUSE.ACME.COM. As users insert sales records

into the SALES database, associated records are being updated at the WAREHOUSE

database.

This case study of distributed processing illustrates:

■ The definition of a session tree

■ How a commit point site is determined

■ When prepare messages are sent

■ When a transaction actually commits

■ What information is stored locally about the transaction

Stage 1: Client Application Issues DML Statements
At the Sales department, a salesperson uses SQL*Plus to enter a sales order and

then commit it. The application issues a number of SQL statements to enter the

order into the SALES database and update the inventory in the WAREHOUSE

database:

CONNECT scott/tiger@sales.acme.com ...;
INSERT INTO orders ...;
UPDATE inventory@warehouse.acme.com ...;
INSERT INTO orders ...;
UPDATE inventory@warehouse.acme.com ...;
COMMIT;

These SQL statements are part of a single distributed transaction, guaranteeing that

all issued SQL statements succeed or fail as a unit. Treating the statements as a unit

prevents the possibility of an order being placed and then inventory not being

updated to reflect the order. In effect, the transaction guarantees the consistency of

data in the global database.
4-20 Oracle8i Distributed Database Systems

Distributed Transaction Processing: Case Study
As each of the SQL statements in the transaction executes, the session tree is

defined, as shown in Figure 4–7.

Figure 4–7 Defining the Session Tree

Note the following aspects of the transaction:

■ An order entry application running with the SALES database initiates the

transaction. Therefore, SALES.ACME.COM is the global coordinator for the

distributed transaction.

■ The order entry application inserts a new sales record into the SALES database

and updates the inventory at the warehouse. Therefore, the nodes

SALES.ACME.COM and WAREHOUSE.ACME.COM are both database servers.

■ Because SALES.ACME.COM updates the inventory, it is a client of

WAREHOUSE.ACME.COM.

This stage completes the definition of the session tree for this distributed

transaction. Each node in the tree has acquired the necessary data locks to execute

the SQL statements that reference local data. These locks remain even after the SQL

statements have been executed until the two-phase commit is completed.

Global Coordinator

Commit Point Site

Database Server

ClientWAREHOUSE.ACME.COM

SALES.ACME.COM

SQL

INSERT INTO orders...;
UPDATE inventory @ warehouse...;
INSERT INTO orders...;
UPDATE inventory @ warehouse...;
COMMIT;
Distributed Transactions Concepts 4-21

Distributed Transaction Processing: Case Study
Stage 2: Oracle Determines Commit Point Site
Oracle determines the commit point site immediately following the COMMIT

statement. SALES.ACME.COM, the global coordinator, is determined to be the

commit point site, as shown in Figure 4–8.

Figure 4–8 Determining the Commit Point Site

Stage 3: Global Coordinator Sends Prepare Response
The prepare stage involves the following steps:

1. After Oracle determines the commit point site, the global coordinator sends the

prepare message to all directly referenced nodes of the session tree, excluding
the commit point site. In this example, WAREHOUSE.ACME.COM is the only

node asked to prepare.

2. WAREHOUSE.ACME.COM tries to prepare. If a node can guarantee that it can

commit the locally dependent part of the transaction and can record the commit

information in its local redo log, then the node can successfully prepare. In this

example, only WAREHOUSE.ACME.COM receives a prepare message because

SALES.ACME.COM is the commit point site.

3. WAREHOUSE.ACME.COM responds to SALES.ACME.COM with a prepared

message.

See Also: "Commit Point Strength" on page 4-9 for more

information about how the commit point site is determined.

Global Coordinator

Commit Point Site

Database Server

ClientWAREHOUSE.ACME.COM

SALES.ACME.COM

Commit
4-22 Oracle8i Distributed Database Systems

Distributed Transaction Processing: Case Study
As each node prepares, it sends a message back to the node that asked it to prepare.

Depending on the responses, one of the following can happen:

■ If any of the nodes asked to prepare respond with an abort message to the

global coordinator, then the global coordinator tells all nodes to roll back the

transaction, and the operation is completed.

■ If all nodes asked to prepare respond with a prepared or a read-only message to

the global coordinator, that is, they have successfully prepared, then the global

coordinator asks the commit point site to commit the transaction.

Figure 4–9 Sending and Acknowledging the Prepare Message

Stage 4: Commit Point Site Commits
The committing of the transaction by the commit point site involves the following

steps:

1. SALES.ACME.COM, receiving acknowledgment that

WAREHOUSE.ACME.COM is prepared, instructs the commit point site to

commit the transaction.

2. The commit point site now commits the transaction locally and records this fact

in its local redo log.

Global Coordinator

Commit Point Site

Database Server

ClientWAREHOUSE.ACME.COM

SALES.ACME.COM

Sales to Warehouse
”Please prepare”
Warehouse to Sales
”Prepared”

1.

2.
Distributed Transactions Concepts 4-23

Distributed Transaction Processing: Case Study
Even if WAREHOUSE.ACME.COM has not yet committed, the outcome of this

transaction is pre-determined. In other words, the transaction will be committed at

all nodes even if a given node’s ability to commit is delayed.

Stage 5: Commit Point Site Informs Global Coordinator of Commit
This stage involves the following steps:

1. The commit point site tells the global coordinator that the transaction has

committed. Because the commit point site and global coordinator are the same

node in this example, no operation is required. The commit point site knows

that the transaction is committed because it recorded this fact in its online log.

2. The global coordinator confirms that the transaction has been committed on all

other nodes involved in the distributed transaction.

Stage 6: Global and Local Coordinators Tell All Nodes to Commit
The committing of the transaction by all the nodes in the transaction involves the

following steps:

1. After the global coordinator has been informed of the commit at the commit

point site, it tells all other directly referenced nodes to commit.

2. In turn, any local coordinators instruct their servers to commit, and so on.

3. Each node, including the global coordinator, commits the transaction and

records appropriate redo log entries locally. As each node commits, the resource

locks that were being held locally for that transaction are released.

In Figure 4–10, SALES.ACME.COM, which is both the commit point site and the

global coordinator, has already committed the transaction locally. SALES now

instructs WAREHOUSE.ACME.COM to commit the transaction.
4-24 Oracle8i Distributed Database Systems

Distributed Transaction Processing: Case Study
Figure 4–10 Instructing Nodes to Commit

Stage 7: Global Coordinator and Commit Point Site Complete the Commit
The completion of the commit of the transaction occurs in the following steps:

1. After all referenced nodes and the global coordinator have committed the

transaction, the global coordinator informs the commit point site of this fact.

2. The commit point site, which has been waiting for this message, erases the

status information about this distributed transaction.

3. The commit point site informs the global coordinator that it is finished. In other

words, the commit point site forgets about committing the distributed

transaction. This action is permissible because all nodes involved in the

two-phase commit have committed the transaction successfully, so they will

never have to determine its status in the future.

4. The global coordinator finalizes the transaction by forgetting about the

transaction itself.

After the completion of the COMMIT phase, the distributed transaction is itself

complete. The steps described above are accomplished automatically and in a

fraction of a second.

Global Coordinator

Commit Point Site

Database Server

ClientWAREHOUSE.ACME.COM

SALES.ACME.COM

Sales to Warehouse:
”Commit”
Distributed Transactions Concepts 4-25

Distributed Transaction Processing: Case Study
4-26 Oracle8i Distributed Database Systems

Managing Distributed Transa
5

Managing Distributed Transactions

This chapter describes how to manage and troubleshoot distributed transactions.

Topics include:

■ Setting Distributed Transaction Initialization Parameters

■ Viewing Information About Distributed Transactions

■ Deciding How to Handle In-Doubt Transactions

■ Manually Overriding In-Doubt Transactions

■ Purging Pending Rows from the Data Dictionary

■ Manually Committing an In-Doubt Transaction: Example

■ Simulating Distributed Transaction Failure

■ Managing Read Consistency
ctions 5-1

Setting Distributed Transaction Initialization Parameters
Setting Distributed Transaction Initialization Parameters
You can set initialization parameters that control the behavior of distributed

transaction processing. The following tables describes initialization parameters

relevant for distributed transaction processing:

This section includes the following topics:

■ Limiting the Number of Distributed Transactions

■ Specifying the Lock Timeout Interval

■ Specifying the Interval for Holding Open Connections

■ Specifying the Commit Point Strength of a Node

Limiting the Number of Distributed Transactions
The initialization parameter DISTRIBUTED_TRANSACTIONS limits the number of

distributed transactions in which a given instance can concurrently participate, both

as a client and a server. The default value for this parameter is operating

system-dependent.

If Oracle reaches this limit and a subsequent user issues a SQL statement

referencing a remote database, then the system rolls back the statement and returns

the following error message:

ORA-2042: too many global transactions

For example, assume that you set the parameter as follows for a given instance:

DISTRIBUTED_TRANSACTIONS = 10

Parameter Description

DISTRIBUTED_TRANSACTIONS Specifies the maximum number of distributed
transactions in which this database can
concurrently participate.

DISTRIBUTED_LOCK_TIMEOUT Specifies the number of seconds that a distributed
transaction waits for locked resources.

DISTRIBUTED_RECOVERY_
CONNECTION_HOLD_TIME

Specifies the number of seconds that Oracle holds
open a remote connection after a distributed
transaction fails.

COMMIT_POINT_STRENGTH Specifies the value used to determine the commit
point site in a distributed transaction.
5-2 Oracle8i Distributed Database Systems

Setting Distributed Transaction Initialization Parameters
In this case, a maximum of 10 sessions can concurrently process a distributed

transaction. If an additional session attempts to issue a DML statement requiring

distributed access, then Oracle returns an error message to the session and rolls

back the statement.

Increasing the Transaction Limit
Consider increasing the value of the DISTRIBUTED_TRANSACTIONS when an

instance regularly participates in numerous distributed transactions and the

ORA-2042 is frequently returned. Increasing the limit allows more users to

concurrently issue distributed transactions.

Decreasing the Transaction Limit
If your site is experiencing an abnormally high number of network failures, you can

temporarily decrease the value of DISTRIBUTED_TRANSACTIONS. This operation

limits the number of in-doubt transactions in which your site takes part, and

thereby limits the amount of locked data at your site, and the number of in-doubt

transactions you might have to resolve

Disabling Distributed Transaction Processing
If DISTRIBUTED_TRANSACTIONS is set to zero, no distributed SQL statements

can be issued in any session. Also, the RECO background process is not started at

startup of the local instance. In-doubt distributed transactions that may be present

cannot be automatically resolved by Oracle8i. Therefore, only set this initialization

parameter to zero to prevent distributed transactions when a new instance is started

and when it is certain that no in-doubt distributed transactions remained after the

last instance shut down.

Note: Oracle recommends setting the value for DISTRIBUTED_

TRANSACTIONS equal to the total number of distributed database

sites in your environment.

See Also: Oracle8i Reference for more information about the

DISTRIBUTED_TRANSACTIONS initialization parameter.
Managing Distributed Transactions 5-3

Setting Distributed Transaction Initialization Parameters
Specifying the Lock Timeout Interval
When you issue a SQL statement, Oracle8i attempts to lock the resources needed to

successfully execute the statement. If the requested data is currently held by

statements of other uncommitted transactions, however, and remains locked for a

long time, a timeout occurs.

Consider the following scenarios involving data access failure:

■ Transaction Timeouts

■ Locks From In-Doubt Transactions

Transaction Timeouts
A DML statement that requires locks on a remote database can be blocked if

another transaction own locks on the requested data. If these locks continue to block

the requesting SQL statement, then the following sequence of events occurs:

1. A timeout occurs.

2. Oracle rolls back the statement.

3. Oracle returns this error message to the user:

ORA-02049: time-out: distributed transaction waiting for lock

Because the transaction did not modify data, no actions are necessary as a result of

the timeout. Applications should proceed as if a deadlock has been encountered.

The user who executed the statement can try to re-execute the statement later. If the

lock persists, then the user should contact an administrator to report the problem.

Setting the Timeout Interval Use the initialization parameter DISTRIBUTED_LOCK_

TIMEOUT to control the timeout interval, which is set in seconds (see "Specifying

the Lock Timeout Interval" on page 5-4). For example, to set the timeout interval for

an instance to 30 seconds, include the following line in the associated parameter file:

DISTRIBUTED_LOCK_TIMEOUT = 30

The default value for this parameter is 60 seconds. Normally, Oracle waits

indefinitely for a lock to be released. With the above timeout interval, the timeout

errors discussed in the previous section occur if a transaction cannot proceed after

30 seconds of waiting for unavailable resources.

See Also: Oracle8i Reference for more information about the

DISTRIBUTED_LOCK_TIMEOUT initialization parameter.
5-4 Oracle8i Distributed Database Systems

Setting Distributed Transaction Initialization Parameters
Locks From In-Doubt Transactions
A query or DML statement that requires locks on a local database can be blocked

indefinitely due to the locked resources of an in-doubt distributed transaction. In

this case, Oracle issues the following error message:

ORA-01591: lock held by in-doubt distributed transaction identifier

In this case, Oracle rolls back the SQL statement immediately. The user who

executed the statement can try to re-execute the statement later. If the lock persists,

the user should contact an administrator to report the problem, including the ID of

the in-doubt distributed transaction.

The chances of the above situations occurring are rare considering the low

probability of failures during the critical portions of the two-phase commit. Even if

such a failure occurs, and assuming quick recovery from a network or system

failure, problems are automatically resolved without manual intervention. Thus,

problems usually resolve before they can be detected by users or database

administrators.

Specifying the Interval for Holding Open Connections
If a distributed transaction fails, then the connection from the local site to the

remote site may not close immediately. Instead, it remains open in case

communication can be restored quickly, without having to re-establish the

connection. Use the following initialization parameter to specify the length of time

to hold open a remote connection after a distributed transaction fails:

DISTRIBUTED_RECOVERY_CONNECTION_HOLD_TIME

The default value for this parameter is 200 seconds. If you set larger values, then

you minimize reconnection time but also consume local resources for a longer time

period. The range of values is between 0 and 1800. You can set this parameter to a

value greater than 1800, however, which simply means that the connection never

closes.

Specifying the Commit Point Strength of a Node
The database with the highest commit point strength determines which node

commits first in a distributed transaction. When specifying a commit point strength

for each node, ensure that the most critical server will be non-blocking if a failure

occurs during a prepare or commit phase. The following initialization parameter

determines a node’s commit point strength:
Managing Distributed Transactions 5-5

Viewing Information About Distributed Transactions
COMMIT_POINT_STRENGTH

The default value is operating system-dependent. The range of values is any integer

from 0 to 255. For example, to set the commit point strength of a database to 200,

include the following line in that database’s initialization parameter file:

COMMIT_POINT_STRENGTH = 200

The commit point strength only determines the commit point site in a distributed

transaction.

Suggestions for Setting the Commit Point Strength
When setting the commit point strength for a database, note the following

considerations:

■ Because the commit point site stores information about the status of the

transaction, the commit point site should not be a node that is frequently

unreliable or unavailable in case other nodes need information about the

transaction’s status.

■ Set the commit point strength for a database relative to the amount of critical

shared data in the database. For example, a database on a mainframe computer

usually shares more data among users than a database on a PC. Therefore, set

the commit point strength of the mainframe to a higher value than the PC.

Viewing Information About Distributed Transactions
The data dictionary of each database stores information about all open distributed

transactions. You can use data dictionary tables and views to gain information

about the transactions. This section contains the following topics:

■ Determining the ID Number and Status of Prepared Transactions

■ Tracing the Session Tree of In-Doubt Transactions

Determining the ID Number and Status of Prepared Transactions
The following view show the database links that have been defined at the local

database and stored in the data dictionary:

See Also: "Commit Point Site" on page 4-7 for a conceptual

overview of commit points.
5-6 Oracle8i Distributed Database Systems

Viewing Information About Distributed Transactions
Use this view to determine the global commit number for a particular transaction

ID. You can use this global commit number when manually resolving an in-doubt

transaction.

The following table shows the most relevant columns (for a description of all the

columns in the view, see Oracle8i Reference):

View Purpose

DBA_2PC_PENDING Lists all in-doubt distributed transactions. The view is empty
until populated by an in-doubt transaction. After the
transaction is resolved, the view is purged.

Table 5–1 DBA_2PC_PENDING

Column Description

LOCAL_TRAN_ID Local transaction identifier in the format integer.integer.integer.

Note: When the LOCAL_TRAN_ID and the GLOBAL_TRAN_
ID for a connection are the same, the node is the global
coordinator of the transaction.

GLOBAL_TRAN_ID Global database identifier in the format global_db_name.db_hex_
id.local_tran_id, where db_hex_id is an eight-character
hexadecimal value used to uniquely identify the database. This
common transaction ID is the same on every node for a
distributed transaction.

Note: When the LOCAL_TRAN_ID and the GLOBAL_TRAN_
ID for a connection are the same, the node is the global
coordinator of the transaction.

STATE See Table 5–2, "STATE Column of DBA_2PC_PENDING".

MIXED YES means that part of the transaction was committed on one
node and rolled back on another node.

HOST Name of the host machine.

COMMIT# Global commit number for committed transactions.

Table 5–2 STATE Column of DBA_2PC_PENDING

collecting This category normally applies only to the global coordinator or
local coordinators. The node is currently collecting information
from other database servers before it can decide whether it can
prepare.
Managing Distributed Transactions 5-7

Viewing Information About Distributed Transactions
Execute the following script to query pertinent information in DBA_2PC_

PENDING (sample output included):

COL local_tran_id FORMAT a13
COL global_tran_id FORMAT a30
COL state FORMAT a8
COL mixed FORMAT a3
COL host FORMAT a10
COL commit# FORMAT a10

SELECT local_tran_id, global_tran_id, state, mixed, host, commit#
FROM dba_2pc_pending
/

SQL> @pending_txn_script

LOCAL_TRAN_ID GLOBAL_TRAN_ID STATE MIX HOST COMMIT#
------------- ------------------------------ -------- --- ---------- ----------
1.15.870 HQ.ACME.COM.ef192da4.1.15.870 commit no dlsun183 115499

This output indicates that local transaction 1.15.870 has been committed on this

node, but it may be pending on one or more other nodes. Because LOCAL_TRAN_

ID and the local part of GLOBAL_TRAN_ID are the same, the node is the global

coordinator of the transaction.

prepared The node has prepared and may or may not have acknowledged
this to its local coordinator with a prepared message. However, no
commit request has been received. The node remains prepared,
holding any local resource locks necessary for the transaction to
commit.

committed The node (any type) has committed the transaction, but other
nodes involved in the transaction may not have done the same.
That is, the transaction is still pending at one or more nodes.

forced commit A pending transaction can be forced to commit at the discretion of
a database administrator. This entry occurs if a transaction is
manually committed at a local node by a database administrator.

forced abort (rollback) A pending transaction can be forced to roll back at the discretion
of a database administrator. This entry occurs if this transaction is
manually rolled back at a local node by a database administrator.

Table 5–2 STATE Column of DBA_2PC_PENDING
5-8 Oracle8i Distributed Database Systems

Viewing Information About Distributed Transactions
Tracing the Session Tree of In-Doubt Transactions
The following view shows which in-doubt transactions are incoming from a remote

client and which are outgoing to a remote server:

When a transaction is in-doubt, you may need to determine which nodes performed

which roles in the session tree. Use to this view to determine:

■ All the incoming and outgoing connections for a given transaction.

■ Whether the node is the commit point site in a given transaction.

■ Whether the node is a global coordinator in a given transaction (because its

local transaction ID and global transaction ID are the same).

The following table shows the most relevant columns (for an account of all the

columns in the view, see Oracle8i Reference):

View Purpose

DBA_2PC_NEIGHBORS Lists all incoming (from remote client) and outgoing (to remote
server) in-doubt distributed transactions. It also indicates
whether the local node is the commit point site in the
transaction.

The view is empty until populated by an in-doubt transaction.
After the transaction is resolved, the view is purged.

Table 5–3 DBA_2PC_NEIGHBORS

Column Description

LOCAL_TRAN_ID Local transaction identifier with the format integer.integer.integer.

Note: When LOCAL_TRAN_ID and GLOBAL_TRAN_ID.DBA_
2PC_PENDING for a connection are the same, the node is the
global coordinator of the transaction.

IN_OUT IN for incoming transactions; OUT for outgoing transactions.

DATABASE For incoming transactions, the name of the client database that
requested information from this local node; for outgoing
transactions, the name of the database link used to access
information on a remote server.

DBUSER_OWNER For incoming transactions, the local account used to connect by
the remote database link; for outgoing transactions, the owner
of the database link.
Managing Distributed Transactions 5-9

Deciding How to Handle In-Doubt Transactions
Execute the following script to query pertinent information in DBA_2PC_

PENDING (sample output included):

COL local_tran_id FORMAT a13
COL in_out FORMAT a6
COL database FORMAT a25
COL dbuser_owner FORMAT a15
COL interface FORMAT a3

SELECT local_tran_id, in_out, database, dbuser_owner, interface
FROM dba_2pc_neighbors
/

SQL> CONNECT sys/sys_pwd@hq.acme.com
SQL> @neighbors_script

LOCAL_TRAN_ID IN_OUT DATABASE DBUSER_OWNER INT
------------- ------ ------------------------- --------------- ---
1.15.870 out SALES.ACME.COM SYS C

This output indicates that the local node sent an outgoing request to remote server

SALES to commit transaction 1.15.870. If SALES committed the transaction but no

other node did, then you know that SALES is the commit point site—because the

commit point site always commits first.

Deciding How to Handle In-Doubt Transactions
A transaction is in-doubt when there is a failure during any aspect of the two-phase

commit. Distributed transactions become in-doubt in the following ways:

INTERFACE C is a commit message; N is either a message indicating a
prepared state or a request for a read-only commit.

When IN_OUT is OUT, C means that the child at the remote
end of the connection is the commit point site and knows
whether to commit or abort. N means that the local node is
informing the remote node that it is prepared.

When IN_OUT is IN, C means that the local node or a database
at the remote end of an outgoing connection is the commit point
site. N means that the remote node is informing the local node
that it is prepared.

Table 5–3 DBA_2PC_NEIGHBORS

Column Description
5-10 Oracle8i Distributed Database Systems

Deciding How to Handle In-Doubt Transactions
■ A server machine running Oracle software crashes.

■ A network connection between two or more Oracle databases involved in

distributed processing is disconnected.

■ An unhandled software error occurs.

You can manually force the commit or rollback of a local, in-doubt distributed

transaction. Because this operation can generate consistency problems, perform it

only when specific conditions exist.

This section contains the following topics:

■ Discovering Problems with a Two-Phase Commit

■ Determining Whether to Perform a Manual Override

■ Analyzing the Transaction Data

Discovering Problems with a Two-Phase Commit
The user application that commits a distributed transaction is informed of a

problem by one of the following error messages:

ORA-02050: transaction ID rolled back,
 some remote dbs may be in-doubt
ORA-02051: transaction ID committed,
 some remote dbs may be in-doubt
ORA-02054: transaction ID in-doubt

A robust application should save information about a transaction if it receives any

of the above errors. This information can be used later if manual distributed

transaction recovery is desired.

No action is required by the administrator of any node that has one or more

in-doubt distributed transactions due to a network or system failure. The automatic

recovery features of Oracle8i transparently complete any in-doubt transaction so

that the same outcome occurs on all nodes of a session tree (that is, all commit or all

roll back) after the network or system failure is resolved.

In extended outages, however, you can force the commit or rollback of a transaction

to release any locked data. Applications must account for such possibilities.

See Also: "In-Doubt Transactions" on page 4-16 for a conceptual

overview of in-doubt transactions.
Managing Distributed Transactions 5-11

Deciding How to Handle In-Doubt Transactions
Determining Whether to Perform a Manual Override
Override a specific in-doubt transaction manually only when one of the following

situations exists:

■ The in-doubt transaction locks data that is required by other transactions. This

situation occurs when the ORA-01591 error message interferes with user

transactions.

■ An in-doubt transaction prevents the extents of a rollback segment from being

used by other transactions. The first portion of an in-doubt distributed

transaction’s local transaction ID corresponds to the ID of the rollback segment,

as listed by the data dictionary views DBA_2PC_PENDING and DBA_

ROLLBACK_SEGS.

■ The failure preventing the two-phase commit phases to complete cannot be

corrected in an acceptable time period. Examples of such cases include a

telecommunication network that has been damaged or a damaged database that

requires a long recovery time.

Normally, you should make a decision to locally force an in-doubt distributed

transaction in consultation with administrators at other locations. A wrong decision

can lead to database inconsistencies that can be difficult to trace and that you must

manually correct.

If the conditions above do not apply, always allow the automatic recovery features of

Oracle8i to complete the transaction. If any of the above criteria are met, however,

consider a local override of the in-doubt transaction.

Analyzing the Transaction Data
If you decide to force the transaction to complete, analyze available information

with the following goals in mind.

Find a Node That Committed or Rolled Back
Use the DBA_2PC_PENDING view to find a node that has either committed or

rolled back the transaction. If you can find a node that has already resolved the

transaction, then you can follow the action taken at that node.

Look For Transaction Comments
See if any information is given in the TRAN_COMMENT column of DBA_2PC_

PENDING for the distributed transaction. Comments are included in the

COMMENT parameter of the COMMIT command.
5-12 Oracle8i Distributed Database Systems

Manually Overriding In-Doubt Transactions
For example, an in-doubt distributed transaction’s comment can indicate the origin

of the transaction and what type of transaction it is:

COMMIT COMMENT ’Finance/Accts_pay/Trans_type 10B’;

Look For Transaction Advice
See if any information is given in the ADVICE column of DBA_2PC_PENDING for

the distributed transaction. An application can prescribe advice about whether to

force the commit or force the rollback of separate parts of a distributed transaction

with the ADVISE parameter of the SQL command ALTER SESSION.

The advice sent during the prepare phase to each node is the advice in effect at the

time the most recent DML statement executed at that database in the current

transaction.

For example, consider a distributed transaction that moves an employee record

from the EMP table at one node to the EMP table at another node. The transaction

can protect the record—even when administrators independently force the in-doubt

transaction at each node—by including the following sequence of SQL statements:

ALTER SESSION ADVISE COMMIT;
INSERT INTO emp@hq ... ; /*advice to commit at HQ */
ALTER SESSION ADVISE ROLLBACK;
DELETE FROM emp@sales ... ; /*advice to roll back at SALES*/

ALTER SESSION ADVISE NOTHING;

If you manually force the in-doubt transaction, the worst that can happen is that

each node has a copy of the employee record; the record cannot disappear.

Manually Overriding In-Doubt Transactions
Use the COMMIT or ROLLBACK statement with the FORCE option and a text

string that indicates either the local or global transaction ID of the in-doubt

transaction to commit.

Note: In all examples, the transaction is committed or rolled back

on the local node, and the local pending transaction table records a

value of forced commit or forced abort for the STATE column of

this transaction’s row.
Managing Distributed Transactions 5-13

Manually Overriding In-Doubt Transactions
This section contains the following topics:

■ Manually Committing an In-Doubt Transaction

■ Manually Rolling Back an In-Doubt Transaction

Manually Committing an In-Doubt Transaction
Before attempting to commit the transaction, ensure that you have the proper

privileges. Note the following requirements:

Committing Using Only the Transaction ID
The following SQL statement is the command to commit an in-doubt transaction:

COMMIT FORCE ’transaction_id ’;

The variable transaction_id is the identifier of the transaction as specified in either

the LOCAL_TRAN_ID or GLOBAL_TRAN_ID columns of the DBA_2PC_

PENDING data dictionary view.

For example, assume that you query DBA_2PC_PENDING and determine the local

transaction ID for a distributed transaction:

LOCAL_TRAN_ID 1.45.13

You then issue the following SQL statement to force the commit of this in-doubt

transaction:

COMMIT FORCE ’1.45.13’;

Committing Using an SCN
Optionally, you can specify the SCN for the transaction when forcing a transaction

to commit. This feature allows you to commit an in-doubt transaction with the SCN

assigned when it was committed at other nodes.

Consequently, you maintain the synchronized commit time of the distributed

transaction even if there is a failure. Specify an SCN only when you can determine

the SCN of the same transaction already committed at another node.

If the transaction was committed by... Then you must have this privilege...

You FORCE TRANSACTION

Another user FORCE ANY TRANSACTION
5-14 Oracle8i Distributed Database Systems

Purging Pending Rows from the Data Dictionary
For example, assume you want to manually commit a transaction with the

following global transaction ID:

SALES.ACME.COM.55d1c563.1.93.29

First, query the DBA_2PC_PENDING view of a remote database also involved with

the transaction in question. Note the SCN used for the commit of the transaction at

that node. Specify the SCN when committing the transaction at the local node. For

example, if the SCN is 829381993, issue:

COMMIT FORCE ’SALES.ACME.COM.55d1c563.1.93.29’, 829381993;

Manually Rolling Back an In-Doubt Transaction
Before attempting to roll back the in-doubt distributed transaction, ensure that you

have the proper privileges. Note the following requirements:

The following SQL statement is the command to roll back an in-doubt transaction:

ROLLBACK FORCE ’transaction_id’;

The variable transaction_id is the identifier of the transaction as specified in either

the LOCAL_TRAN_ID or GLOBAL_TRAN_ID columns of the DBA_2PC_

PENDING data dictionary view.

For example, to roll back the in-doubt transaction with the local transaction ID of

2.9.4, use the following statement:

ROLLBACK FORCE ’2.9.4’;

Purging Pending Rows from the Data Dictionary
Before RECO recovers an in-doubt transaction, the transaction appears in DBA_

2PC_PENDING.STATE as COLLECTING, COMMITTED, or PREPARED. If you

If the transaction was committed by... Then you must have this privilege...

You FORCE TRANSACTION

Another user FORCE ANY TRANSACTION

Note: You cannot roll back an in-doubt transaction to a savepoint.
Managing Distributed Transactions 5-15

Purging Pending Rows from the Data Dictionary
force an in-doubt transaction using COMMIT FORCE or ROLLBACK FORCE, then

the states FORCED COMMIT or FORCED ROLLBACK may appear.

Automatic recovery normally deletes entries in these states. The only exception is

when recovery discovers a forced transaction that is in a state inconsistent with

other sites in the transaction; in this case, the entry can be left in the table and the

MIXED column in DBA_2PC_PENDING has a value of YES.

If automatic recovery is not possible because a remote database has been

permanently lost, then recovery cannot identify the re-created database because it

receives a new database ID when it is re-created. In this case, you must use the

PURGE_LOST_DB_ENTRY procedure in the DBMS_TRANSACTION package to

clean up the entries. The entries do not hold up database resources, so there is no

urgency in cleaning them up.

Executing the PURGE_LOST_DB_ENTRY Procedure
To manually remove an entry from the data dictionary, use the following syntax

(where trans_id is the identifier for the transaction):

DBMS_TRANSACTION.PURGE_LOST_DB_ENTRY(’trans_id ’);

For example, to purge pending distributed transaction 1.44.99, enter the following

command in SQL*Plus:

EXECUTE DBMS_TRANSACTION.PURGE_LOST_DB_ENTRY(’1.44.99’);

Execute this procedure only if significant reconfiguration has occurred so that

automatic recovery cannot resolve the transaction. Examples include:

■ Total loss of the remote database

■ Reconfiguration in software resulting in loss of two-phase commit capability

■ Loss of information from an external transaction coordinator such as a

TPMonitor

Determining When to Use DBMS_TRANSACTION
The following tables indicates what the various states indicate about the distributed

transaction what the administrator’s action should be:

See Also: Oracle8i Supplied PL/SQL Packages Reference for more

information about the DBMS_TRANSACTION package.
5-16 Oracle8i Distributed Database Systems

Manually Committing an In-Doubt Transaction: Example
Manually Committing an In-Doubt Transaction: Example
The following example, illustrated in Figure 5–1, shows a failure during the commit

of a distributed transaction. It explains how to go about gaining information before

manually forcing the commit or rollback of the local portion of an in-doubt

distributed transaction.

STATE
Column

State of Global
Transaction

State of Local
Transaction Normal Action Alternative Action

Collecting Rolled back Rolled back None PURGE_LOST_DB_
ENTRY (only if
autorecovery cannot
resolve transaction)

Committed Committed Committed None PURGE_LOST_DB_
ENTRY (only if
autorecovery cannot
resolve transaction)

Prepared Unknown Prepared None Force commit or
rollback

Forced
commit

Unknown Committed None PURGE_LOST_DB_
ENTRY (only if
autorecovery cannot
resolve transaction)

Forced
rollback

Unknown Rolled back None PURGE_LOST_DB_
ENTRY (only if
autorecovery cannot
resolve transaction)

Forced
commit

Mixed Committed Manually remove
inconsistencies
then use PURGE_
MIXED

Forced
rollback

Mixed Rolled back Manually remove
inconsistencies
then use PURGE_
MIXED

See Also: Oracle8i Supplied PL/SQL Packages Reference for more

information about the DBMS_TRANSACTION package.
Managing Distributed Transactions 5-17

Manually Committing an In-Doubt Transaction: Example
Figure 5–1 Example of an In-Doubt Distributed Transaction

In this failure case, the prepare phase completes. During the commit phase,

however, the commit point site’s commit confirmation never reaches the global

coordinator, even though the commit point site committed the transaction.

You are the WAREHOUSE database administrator. The inventory data locked

because of the in-doubt transaction is critical to other transactions. The data cannot

be accessed, however, because the locks must be held until the in-doubt transaction

either commits or rolls back. Furthermore, you understand that the communication

link between sales and headquarters cannot be resolved immediately.

Therefore, you decide to manually force the local portion of the in-doubt transaction

using the following steps:

1. Record user feedback.

2. Query the local DBA_2PC_PENDING view to obtain the global transaction ID

and get other information about the in-doubt transaction.

3. Query the local DBA_2PC_NEIGHBORS view to begin tracing the session tree

so that you can find a node that resolved the in-doubt transaction.

4. Check the mixed outcome flag after normal communication is re-established.

The following sections explain each step in detail for this example:

■ Step 1: Record User Feedback

■ Step 2: Query DBA_2PC_PENDING

■ Step 3: Query DBA_2PC_NEIGHBORS on Local Node

Global Coordinator

Commit Point Site

Database Server

Client

Communication break

commitprepared

prepared

WAREHOUSE.ACME.COM HQ.ACME.COM

SALES.ACME.COM
5-18 Oracle8i Distributed Database Systems

Manually Committing an In-Doubt Transaction: Example
■ Step 4: Querying Data Dictionary Views on All Nodes

■ Step 5: Commit the In-Doubt Transaction

■ Step 6: Check for Mixed Outcome Using DBA_2PC_PENDING

Step 1: Record User Feedback
The users of the local database system that conflict with the locks of the in-doubt

transaction receive the following error message:

ORA-01591: lock held by in-doubt distributed transaction 1.21.17

In this case, 1.21.17 is the local transaction ID of the in-doubt distributed

transaction. You should request and record this ID number from users that report

problems to identify which in-doubt transactions should be forced.

Step 2: Query DBA_2PC_PENDING
After connecting with SQL*Plus to WAREHOUSE, query the local DBA_2PC_

PENDING data dictionary view to gain information about the in-doubt transaction:

CONNECT sys/sys_pwd@warehouse.acme.com
SELECT * FROM sys.dba_2pc_pending WHERE local_tran_id = ’1.21.17’;

Oracle returns the following information:

Column Name Value
---------------------- --------------------------------------
LOCAL_TRAN_ID 1.21.17
GLOBAL_TRAN_ID SALES.ACME.COM.55d1c563.1.93.29
STATE prepared
MIXED no
ADVICE
TRAN_COMMENT Sales/New Order/Trans_type 10B
FAIL_TIME 31-MAY-91
FORCE_TIME
RETRY_TIME 31-MAY-91
OS_USER SWILLIAMS
OS_TERMINAL TWA139:
HOST system1
DB_USER SWILLIAMS
COMMIT#
Managing Distributed Transactions 5-19

Manually Committing an In-Doubt Transaction: Example
Determining the Global Transaction ID
The global transaction ID is the common transaction ID that is the same on every

node for a distributed transaction. It is of the form:

global_database_name . hhhhhhhh . local_transaction_id

where:

Note that the last portion of the global transaction ID and the local transaction ID

match at the global coordinator. In the example, you can tell that WAREHOUSE is

not the global coordinator because these numbers do not match:

LOCAL_TRAN_ID 1.21.17
GLOBAL_TRAN_ID ... 1.93.29

Determining the State of the Transaction
The transaction on this node is in a prepared state:

STATE prepared

Therefore, WAREHOUSE waits for its coordinator to send either a commit or a

rollback request.

Looking For Comments or Advice
The transaction’s comment or advice can include information about this transaction.

If so, use this comment to your advantage. In this example, the origin and

transaction type is in the transaction’s comment:

TRAN_COMMENT Sales/New Order/Trans_type 10B

This information can reveal something that helps you decide whether to commit or

rollback the local portion of the transaction. If useful comments do not accompany

an in-doubt transaction, you must complete some extra administrative work to trace

the session tree and find a node that has resolved the transaction.

global_database_name is the database name of the global coordinator.

hhhhhhh is the internal database identifier of the global
coordinator (in hexadecimal).

local_transaction_id is the corresponding local transaction ID assigned
on the global coordinator.
5-20 Oracle8i Distributed Database Systems

Manually Committing an In-Doubt Transaction: Example
Step 3: Query DBA_2PC_NEIGHBORS on Local Node
The purpose of this step is to climb the session tree so that you find coordinators,

eventually reaching the global coordinator. Along the way, you may find a

coordinator that has resolved the transaction. If not, you can eventually work your

way to the commit point site, which will always have resolved the in-doubt

transaction. To trace the session tree, query the DBA_2PC_NEIGHBORS view on

each node.

In this case, you query this view on the WAREHOUSE database:

CONNECT sys/sys_pwd@warehouse.acme.com
SELECT * FROM dba_2pc_neighbors
 WHERE local_tran_id = ’1.21.17’
 ORDER BY sess#, in_out;

Column Name Value
---------------------- --------------------------------------
LOCAL_TRAN_ID 1.21.17
IN_OUT in
DATABASE SALES.ACME.COM
DBUSER_OWNER SWILLIAMS
INTERFACE N
DBID 000003F4
SESS# 1
BRANCH 0100

Obtaining Database Role and Database Link Information
The DBA_2PC_NEIGHBORS view provides information about connections

associated with an in-doubt transaction. Information for each connection is

different, based on whether the connection is inbound (IN_OUT = in) or outbound
(IN_OUT = out):

IN_OUT Meaning DATABASE DBUSER_OWNER

in Your node is a server of
another node.

Lists the name of the
client database that
connected to your node.

Lists the local account for
the database link
connection that
corresponds to the
in-doubt transaction.

out Your node is a client of
other servers.

Lists the name of the
database link that
connects to the remote
node.

Lists the owner of the
database link for the
in-doubt transaction.
Managing Distributed Transactions 5-21

Manually Committing an In-Doubt Transaction: Example
In this example, the IN_OUT column reveals that the WAREHOUSE database is a

server for the SALES client, as specified in the DATABASE column:

IN_OUT in
DATABASE SALES.ACME.COM

The connection to WAREHOUSE was established through a database link from the

SWILLIAMS account, as shown by the DBUSER_OWNER column:

DBUSER_OWNER SWILLIAMS

Determining the Commit Point Site
Additionally, the INTERFACE column tells whether the local node or a subordinate

node is the commit point site:

INTERFACE N

Neither WAREHOUSE nor any of its descendants is the commit point site, as shown

by the INTERFACE column.

Step 4: Querying Data Dictionary Views on All Nodes
At this point, you can contact the administrator at the located nodes and ask each

person to repeat Steps 2 and 3 using the global transaction ID.

For example, the following results are returned when Steps 2 and 3 are performed

at SALES and HQ.

Checking the Status of Pending Transactions at SALES
At this stage, the SALES administrator queries the DBA_2PC_PENDING data

dictionary view:

SQL> CONNECT sys/sys_pwd@sales.acme.com
SQL> SELECT * FROM sys.dba_2pc_pending
 > WHERE global_tran_id = ’SALES.ACME.COM.55d1c563.1.93.29’;

Column Name Value
---------------------- --------------------------------------
LOCAL_TRAN_ID 1.93.29

Note: If you can directly connect to these nodes with another

network, you can repeat Steps 2 and 3 yourself.
5-22 Oracle8i Distributed Database Systems

Manually Committing an In-Doubt Transaction: Example
GLOBAL_TRAN_ID SALES.ACME.COM.55d1c563.1.93.29
STATE prepared
MIXED no
ADVICE
TRAN_COMMENT Sales/New Order/Trans_type 10B
FAIL_TIME 31-MAY-91
FORCE_TIME
RETRY_TIME 31-MAY-91
OS_USER SWILLIAMS
OS_TERMINAL TWA139:
HOST system1
DB_USER SWILLIAMS
COMMIT#

Determining the Coordinators and Commit Point Site at SALES
Next, the SALES administrator queries DBA_2PC_NEIGHBORS to determine the

global and local coordinators as well as the commit point site:

SELECT * FROM dba_2pc_neighbors
 WHERE global_tran_id = ’SALES.ACME.COM.55d1c563.1.93.29’
 ORDER BY sess#, in_out;

This query returns three rows:

■ The connection to WAREHOUSE

■ The connection to HQ

■ The connection established by the user

Reformatted information corresponding to the rows for the WAREHOUSE

connection appears below:

Column Name Value
---------------------- --------------------------------------
LOCAL_TRAN_ID 1.93.29
IN_OUT OUT
DATABASE WAREHOUSE.ACME.COM
DBUSER_OWNER SWILLIAMS
INTERFACE N
DBID 55d1c563
SESS# 1
BRANCH 1

Reformatted information corresponding to the rows for the HQ connection appears

below:
Managing Distributed Transactions 5-23

Manually Committing an In-Doubt Transaction: Example
Column Name Value
---------------------- --------------------------------------
LOCAL_TRAN_ID 1.93.29
IN_OUT OUT
DATABASE HQ.ACME.COM
DBUSER_OWNER ALLEN
INTERFACE C
DBID 00000390
SESS# 1
BRANCH 1

The information from the previous query reveals the following:

■ SALES is the global coordinator because the local transaction ID and global

transaction ID match.

■ Two outbound connections are established from this node, but no inbound

connections. SALES is not the server of another node.

■ HQ or one of its servers is the commit point site.

Checking the Status of Pending Transactions at HQ:
At this stage, the HQ administrator queries the DBA_2PC_PENDING data

dictionary view:

SELECT * FROM dba_2pc_pending
 WHERE global_tran_id = ’SALES.ACME.COM.55d1c563.1.93.29’;

Column Name Value
---------------------- --------------------------------------
LOCAL_TRAN_ID 1.45.13
GLOBAL_TRAN_ID SALES.ACME.COM.55d1c563.1.93.29
STATE COMMIT
MIXED NO
ACTION
TRAN_COMMENT Sales/New Order/Trans_type 10B
FAIL_TIME 31-MAY-91
FORCE_TIME
RETRY_TIME 31-MAY-91
OS_USER SWILLIAMS
OS_TERMINAL TWA139:
HOST SYSTEM1
DB_USER SWILLIAMS
COMMIT# 129314
5-24 Oracle8i Distributed Database Systems

Manually Committing an In-Doubt Transaction: Example
At this point, you have found a node that resolved the transaction. As the view

reveals, it has been committed and assigned a commit ID number:

STATE COMMIT
COMMIT# 129314

Therefore, you can force the in-doubt transaction to commit at your local database.

It is a good idea to contact any other administrators you know that could also

benefit from your investigation.

Step 5: Commit the In-Doubt Transaction
You contact the administrator of the SALES database, who manually commits the

in-doubt transaction using the global ID:

SQL> CONNECT sys/sys_pwd@sales.acme.com
SQL> COMMIT FORCE ’SALES.ACME.COM.55d1c563.1.93.29’;

As administrator of the WAREHOUSE database, you manually commit the in-doubt

transaction using the global ID:

SQL> CONNECT sys/sys_pwd@warehouse.acme.com
SQL> COMMIT FORCE ’SALES.ACME.COM.55d1c563.1.93.29’;

Step 6: Check for Mixed Outcome Using DBA_2PC_PENDING
After you manually force a transaction to commit or roll back, the corresponding

row in the pending transaction table remains. The state of the transaction is changed

depending on how you forced the transaction.

Every Oracle8i database has a pending transaction table. This is a special table that

stores information about distributed transactions as they proceed through the

two-phase commit phases. You can query a database’s pending transaction table

through the DBA_2PC_PENDING data dictionary view (see Table 5–1, "DBA_2PC_

PENDING").

Also of particular interest in the pending transaction table is the mixed outcome flag

as indicated in DBA_2PC_PENDING.MIXED. You can make the wrong choice if a

pending transaction is forced to commit or roll back. For example, the local

administrator rolls back the transaction, but the other nodes commit it. Incorrect

decisions are detected automatically, and the damage flag for the corresponding

pending transaction’s record is set (MIXED=yes).

The RECO (Recoverer) background process uses the information in the pending

transaction table to finalize the status of in-doubt transactions. You can also use the
Managing Distributed Transactions 5-25

Simulating Distributed Transaction Failure
information in the pending transaction table to manually override the automatic

recovery procedures for pending distributed transactions.

All transactions automatically resolved by RECO are automatically removed from

the pending transaction table. Additionally, all information about in-doubt

transactions correctly resolved by an administrator (as checked when RECO

reestablishes communication) are automatically removed from the pending

transaction table. However, all rows resolved by an administrator that result in a

mixed outcome across nodes remain in the pending transaction table of all involved

nodes until they are manually deleted.

Simulating Distributed Transaction Failure
You can force the failure of a distributed transaction for the following reasons:

■ To observe RECO automatically resolving the local portion of the transaction.

■ To practice manually resolving in-doubt distributed transactions and observing

the results.

The following sections describes the features available and the steps necessary to

perform such operations.

Forcing a Distributed Transaction to Fail
You can include comments in the COMMENT parameter of the COMMIT

statement. To intentionally induce a failure during the two-phase commit phases of

a distributed transaction, include the following comment in the COMMENT

parameter:

COMMIT COMMENT ’ORA-2PC-CRASH-TEST-n’;
5-26 Oracle8i Distributed Database Systems

Simulating Distributed Transaction Failure
where n is one of the following integers:

For example, the following statement returns the following messages if the local

commit point strength is greater than the remote commit point strength and both

nodes are updated:

COMMIT COMMENT ’ORA-2PC-CRASH-TEST-7’;

ORA-02054: transaction 1.93.29 in-doubt
ORA-02059: ORA-CRASH-TEST-7 in commit comment

At this point, the in-doubt distributed transaction appears in the DBA_2PC_

PENDING view. If enabled, RECO automatically resolves the transaction.

Disabling and Enabling RECO
The RECO background process of an Oracle8i instance automatically resolves

failures involving distributed transactions. At exponentially growing time intervals,

the RECO background process of a node attempts to recover the local portion of an

in-doubt distributed transaction.

RECO can use an existing connection or establish a new connection to other nodes

involved in the failed transaction. When a connection is established, RECO

automatically resolves all in-doubt transactions. Rows corresponding to any

resolved in-doubt transactions are automatically removed from each database’s

pending transaction table.

n Effect

1 Crash commit point site after collect

2 Crash non-commit point site after collect

3 Crash before prepare (non-commit point site)

4 Crash after prepare (non-commit point site)

5 Crash commit point site before commit

6 Crash commit point site after commit

7 Crash non-commit point site before commit

8 Crash non-commit point site after commit

9 Crash commit point site before forget

10 Crash non-commit point site before forget
Managing Distributed Transactions 5-27

Managing Read Consistency
You can enable and disable RECO using the ALTER SYSTEM statement with the

ENABLE/DISABLE DISTRIBUTED RECOVERY options. For example, you can

temporarily disable RECO to force the failure of a two-phase commit and manually

resolve the in-doubt transaction.

The following statement disables RECO:

ALTER SYSTEM DISABLE DISTRIBUTED RECOVERY;

Alternatively, the following statement enables RECO so that in-doubt transactions

are automatically resolved:

ALTER SYSTEM ENABLE DISTRIBUTED RECOVERY;

Managing Read Consistency
An important restriction exists in Oracle’s implementation of distributed read

consistency. The problem arises because each system has its own SCN, which you

can view as the database’s internal timestamp. The Oracle database server uses the

SCN to decide which version of data is returned from a query.

The SCNs in a distributed transaction are synchronized at the end of each remote

SQL statement and at the start and end of each transaction. Between two nodes that

have heavy traffic and especially distributed updates, the synchronization is

frequent. Nevertheless, no practical way exists to keep SCNs in a distributed system

absolutely synchronized: a window always exists in which one node may have an

SCN that is somewhat in the past with respect to the SCN of another node.

Because of the SCN gap, you can execute a query that uses a slightly old snapshot,

so that the most recent changes to the remote database are not seen. In accordance

with read consistency, a query can therefore retrieve consistent, but out-of-date

data. Note that all data retrieved by the query will be from the old SCN, so that if a

Note: Single-process instances (for example, a PC running

MS-DOS) have no separate background processes, and therefore no

RECO process. Therefore, when a single-process instance that

participates in a distributed system is started, you must manually

enable distributed recovery using the statement above.

See Also: Your Oracle operating system-specific documentation

for more information about distributed transaction recovery for

single-process instances.
5-28 Oracle8i Distributed Database Systems

Managing Read Consistency
locally executed update transaction updates two tables at a remote node, then data

selected from both tables in the next remote access contain data prior to the update.

One consequence of the SCN gap is that two consecutive SELECT statements can

retrieve different data even though no DML has been executed between the two

statements. For example, you can issue an update statement and then commit the

update on the remote database. When you issue a SELECT statement on a view

based on this remote table, the view does not show the update to the row. The next

time that you issue the SELECT statement, the update is present.

You can use the following techniques to ensure that the SCNs of the two machines

are synchronized just before a query:

■ Because SCNs are synchronized at the end of a remote query, precede each

remote query with a dummy remote query to the same site, for example,

SELECT * FROM dual@remote.

■ Because SCNs are synchronized at the start of every remote transaction, commit

or roll back the current transaction before issuing the remote query.
Managing Distributed Transactions 5-29

Managing Read Consistency
5-30 Oracle8i Distributed Database Systems

Part III

 Heterogeneous Services Concepts and

Administration

Oracle Heterogeneous Services Con
6

Oracle Heterogeneous Services Concepts

This chapter describes the basic concepts of the Oracle Heterogeneous Services.

Topics include:

■ What is Heterogeneous Services?

■ Types of Heterogeneous Services

■ Heterogeneous Services Process Architecture

■ Architecture of the Heterogeneous Services Data Dictionary

See Also: Getting to Know Oracle8i for information about features

new to the current release.
cepts 6-1

What is Heterogeneous Services?
What is Heterogeneous Services?
Heterogeneous Services (HS) is an integrated component within the Oracle8i
database server, and provides the generic technology for accessing non-Oracle

systems from the Oracle database server. Heterogeneous Services enables you to

use:

■ Oracle SQL statements to transparently access data stored in non-Oracle

systems as if the data resided within an Oracle database server.

■ Oracle procedure calls to transparently access non-Oracle systems, services, or

application programming interfaces (APIs) from your Oracle distributed

environment.

To access a non-Oracle system, you need to use a complementary Heterogeneous

Services agent. You can connect to a non-Oracle system through an Oracle
Transparent Gateway, which is an agent that is tailored specifically for the system that

you are accessing. If you connect to the non-Oracle system using generic

connectivity through the ODBC or OLE DB interfaces, however, then the agent is an

executable that it automatically installed with the Oracle database server.

Database Links to a Non-Oracle System
Heterogeneous Services makes a non-Oracle system appear as a remote Oracle

database server. To access or manipulate tables or to execute procedures in the

non-Oracle system, create a database link that specifies the connect descriptor for

the non-Oracle database. Use the following syntax to create a link to a non-Oracle

system (variables in italics):

CREATE DATABASE LINK link_name
 CONNECT TO user IDENTIFIED BY password
 USING ’ non_oracle_system ’;

If a non-Oracle system is referenced, then HS translates the SQL statement or

PL/SQL remote procedure call into the appropriate statement at the non-Oracle

system.

You can access tables and procedures at the non-Oracle system by qualifying the

tables and procedures with the database link. This operation is identical to

Note: The phrase non-Oracle system denotes both non-Oracle data

stores (or databases) that are accessed using SQL, and systems that

are accessed procedurally.
6-2 Oracle8i Distributed Database Systems

Types of Heterogeneous Services
accessing tables and procedures at a remote Oracle database server. Consider the

following example that accesses a non-Oracle system through a database link:

SELECT * FROM EMP@non_oracle_system;

Heterogeneous Services translates the Oracle SQL statement into the SQL dialect of

the target system and then executes the translated SQL statement at the non-Oracle

system.

Heterogeneous Services Agents
While Heterogeneous Services provides the generic technology in the Oracle8i
server, a Heterogeneous Services agent is required to access a particular non-Oracle

system such as Informix or Sybase. Oracle Corporation provides Heterogeneous

Services agents in the form of Oracle Transparent Gateways version 8 and higher.

Oracle Transparent Gateways is one family of products that uses the Heterogeneous

Services. Generic connectivity is another family of agents based on Heterogeneous

Services. The phrase Heterogeneous Services agents denotes all products that are

based on Heterogeneous Services, including Oracle Transparent Gateways and the

generic connectivity agents.

Types of Heterogeneous Services
Heterogeneous Services provides the following services:

■ Transaction Service

■ SQL Service

Transaction Service
The transaction service allows non-Oracle systems to be integrated into Oracle

transactions and sessions. Users transparently set up an authenticated session in the

non-Oracle system when it is accessed for the first time over a database link within

an Oracle user session. At the end of the Oracle user session, the session is

transparently closed at the non-Oracle system.

See Also: Chapter 7, "Managing Oracle Heterogeneous Services

Using Transparent Gateways" to learn to configure Oracle

Transparent Gateway agents, and Chapter 8, "Managing

Heterogeneous Services Using Generic Connectivity" to learn to

configure generic connectivity agents.
Oracle Heterogeneous Services Concepts 6-3

Heterogeneous Services Process Architecture
Additionally, one or more non-Oracle systems can participate in an Oracle

distributed transaction. When an application commits a transaction, Oracle’s

two-phase commit protocol accesses the non-Oracle system to transparently

coordinate the distributed transaction. If the non-Oracle system supports some but

not all aspects of the two-phase commit protocol, then the Oracle database server

typically supports distributed transactions with the non-Oracle system (with

possible restrictions).

The SQL service uses the transaction service. Oracle’s object transaction service uses

agents that implement only the transaction service.

SQL Service
The SQL service transparently accesses the non-Oracle system using SQL. If an

application’s SQL request requires data from a non-Oracle system, HS performs the

following steps:

1. Translates the Oracle SQL request into an equivalent SQL request understood

by the non-Oracle system.

2. Accesses the non-Oracle data.

3. Makes the data available to the Oracle database server for post-processing.

The SQL service provides capabilities to:

■ Transform Oracle’s SQL into a SQL dialect understood by the non-Oracle

system

■ Transform SQL requests on Oracle’s data dictionary tables to requests on the

non-Oracle system’s data dictionary

■ Map non-Oracle system datatypes onto Oracle’s datatypes

Heterogeneous Services Process Architecture
The basic architecture for HS involves a client accessing an Oracle database server,

which in turn sends a request to an agent residing on a non-Oracle server. This

section contains the following topics:

■ Transparent Gateways

■ Generic Connectivity

See Also: "Using the Transaction Service Views" on page 7-12 for

more information on heterogeneous distributed transactions.
6-4 Oracle8i Distributed Database Systems

Heterogeneous Services Process Architecture
Transparent Gateways
A transparent gateway, also called an agent, is required to access a specific

non-Oracle system from an Oracle8i server. The Oracle database server

communicates with the agent, which in turn communicates with the non-Oracle

system. Unless you are using the generic connectivity feature of Oracle, you need to

purchase and configure a system-specific agent to connect to the non-Oracle data

store. For example, a dBASE data store requires a dBASE agent, and a Sybase data

store requires a Sybase agent.

With transparent gateways, you can easily access data anywhere in a distributed

system without knowing the location of the data or how it is stored. The term

transparent indicates that the network, location, operating system, data storage

format, and access methods are hidden from the user application.

As illustrated in Figure 6–1, agents can reside on the same machine as the

non-Oracle system, but are not required to. The agent can also reside on the same

machine as the Oracle8i server, or even on a third machine. The agent must be:

■ Accessible by the Oracle8i server through Net8.

■ Able to access the non-Oracle system using a non-Oracle system-specific

communication mechanism.

When a user session accesses a non-Oracle system through a database link on the

Oracle8i server, a Net8 Listener starts an agent process. This agent process remains

running until the user session is disconnected or until the database link is explicitly

closed.
Oracle Heterogeneous Services Concepts 6-5

Architecture of the Heterogeneous Services Data Dictionary
Figure 6–1 Accessing Heterogeneous Non-Oracle Systems

Generic Connectivity
If you connect to a non-Oracle data store using generic connectivity, the process

architecture is essentially the same as in the non-generic case. The difference is that

Oracle provides generic ODBC and OLE DB agents with the server—no transparent

gateway is required. As long as the non-Oracle system supports these protocols,

you can use them without purchasing a system-specific agent. To make the generic

agents work, however, you must also configure a driver that can interface with the

agent.

Architecture of the Heterogeneous Services Data Dictionary
Each non-Oracle system accessed from an Oracle8i server is considered a

non-Oracle system instance and class. You can access multiple non-Oracle systems

from the same Oracle8i server, as illustrated in Figure 6–2.

The Oracle8i server must know the non-Oracle system capabilities (SQL

translations, data dictionary translations) for each non-Oracle system that it

accesses. This information is stored in the Oracle8i data dictionary.

See Also: Chapter 8, "Managing Heterogeneous Services Using

Generic Connectivity" for information about installation and

configuration of generic connectivity.

Client
Application

O
ra

cl
e8

 S
er

ve
r

N
o

n
-O

ra
cl

e
S

ys
te

m
 "

X
"

A
ge

nt
6-6 Oracle8i Distributed Database Systems

Architecture of the Heterogeneous Services Data Dictionary
Figure 6–2 Accessing Multiple Non-Oracle Instances

Classes and Instances
If this information were stored separately for each non-Oracle system you access,

the amount of stored data dictionary information could become large and

sometimes redundant. For example, when you access three non-Oracle system

instances of the same type, the same capabilities, SQL translations, and data

dictionary translations are stored.

To avoid unnecessary redundancy, Oracle organizes this data by classes and instances
in the data dictionary. A class defines a type of non-Oracle system. An instance

Client
Application

Instance

InstanceO
ra

cl
e8

 S
er

ve
r

N
o

n
-O

ra
cl

e
 S

ys
te

m
 "

Y
"

A
ge

nt

N
o

n
-O

ra
cl

e
S

ys
te

m
 "

X
"

A
ge

nt
Oracle Heterogeneous Services Concepts 6-7

Architecture of the Heterogeneous Services Data Dictionary
defines specializations of a class for a specific non-Oracle system. Note that instance

information takes precedence over class information, and class information takes

precedence over server-supplied defaults.

If you access multiple non-Oracle systems of the same class, then you may want to

set certain information, such as initialization parameters, at the instance level.

Heterogeneous Services stores both class and instance information. Multiple

instances can share the same class information, but each non-Oracle system instance

has its own instance information.

Consider a case where the Oracle8i server accesses three instances of type Megabase

release 5 and two instances of Megabase release 6. Suppose Megabase release 5 and

Megabase release 6 have different capabilities. The data dictionary contains two

class definitions, one for release 5 and one for release 6, and five instance

definitions.

Data Dictionary Views
The Heterogeneous Services data dictionary views contain information about:

■ Names of instances and classes uploaded into the Oracle8i data dictionary

■ Capabilities, including SQL translations, defined for each class or instance

■ Data Dictionary translations defined for each class or instance

■ Initialization parameters defined for each class or instance

■ Distributed external procedures accessible from the Oracle8i server

You can access information from the Oracle data dictionary used fixed views. The

views can be divided into four main types:

■ General views

■ Views used for the transaction service

■ Views used for the SQL service

See Also: "Using the Heterogeneous Services Data Dictionary

Views" on page 7-9 to learn how to use these views, and

Appendix B, "Data Dictionary Views Available Through

Heterogeneous Services" for reference information on the views.
6-8 Oracle8i Distributed Database Systems

Managing Oracle Heterogeneous Services Using Transparent Gate
7

Managing Oracle Heterogeneous Services

Using Transparent Gateways

This chapter teaches you how to maintain a heterogeneous distributed environment

when using a transparent gateway. Topics include:

■ Setting Up Access to Non-Oracle Systems

■ Registering Agents

■ Using the Heterogeneous Services Data Dictionary Views

■ Using the Heterogeneous Services Dynamic Performance Views

■ Using the DBMS_HS Package
ways 7-1

Setting Up Access to Non-Oracle Systems
Setting Up Access to Non-Oracle Systems
This section explains the generic steps to configure access to a non-Oracle system.

Please see the Installation and User's Guide for your agent for more installation

information. The instructions for configuring your agent may slightly differ from

the following.

The steps for setting up access to a non-Oracle system are:

■ Step 1: Install the Heterogeneous Services Data Dictionary

■ Step 2: Set Up the Environment to Access Heterogeneous Services Agents

■ Step 3: Create the Database Link to the Non-Oracle System

■ Step 4: Test the Connection

Step 1: Install the Heterogeneous Services Data Dictionary
To install the data dictionary tables and views for Heterogeneous Services, you

must run a script that creates all the Heterogeneous Services data dictionary tables,

views, and packages. On most systems the script is called caths.sql and resides

in $ORACLE_HOME/rdbms/admin .

 Step 2: Set Up the Environment to Access Heterogeneous Services Agents
To initiate a connection to the non-Oracle system, the Oracle8i server starts an agent

process through the Net8 listener. For the Oracle8i server to be able to connect to the

agent, you must:

1. Set up a Net8 service name for the agent that can be used by the Oracle8i server.

The Net8 service name descriptor includes protocol-specific information needed

to access the Net8 listener. The service name descriptor must include the

(HS=OK) clause to make sure the connection uses Oracle8i Heterogeneous

Services.

2. Set up the listener to listen for incoming request from the Oracle8i server and

spawn HS agents. Modify the listener.ora file so that the listener can start

Heterogeneous Services agents, and then restart the listener.

Note: The data dictionary tables, views, and packages may

already be installed on your Oracle8i server. Check for the existence

of Heterogeneous Services data dictionary views, for example,

SYS.HS_FDS_CLASS.
7-2 Oracle8i Distributed Database Systems

Setting Up Access to Non-Oracle Systems
A Sample Entry for a Net8 Service Name
The following is a sample entry for the service name in the tnsnames.ora file:

MegaBase6_sales= (DESCRIPTION=
 (ADDRESS=(PROTOCOL=tcp)
 (HOST=dlsun206)
 (PORT=1521))

 (CONNECT_DATA = (SID=SalesDB))

 (HS = OK))

The description of this service name is defined in tnsnames.ora , the Oracle

Names server, or in third-party name servers using the Oracle naming adapter. See

the Installation and User’s Guide for your agent for more information about how to

define the Net8 service name.

A Sample Listener Entry
The following is a sample entry for the listener in listener.ora :

LISTENER =
 (ADDRESS_LIST =
 (ADDRESS= (PROTOCOL=tcp)
 (HOST = dlsun206)
 (PORT = 1521)
)
)
...
SID_LIST_LISTENER =
 (SID_LIST =
 (SID_DESC = (SID_NAME=SalesDB)
 (ORACLE_HOME=/home/oracle/megabase/8.1.3)
 (PROGRAM=tg4mb80)
)
)

The value associated with PROGRAM keyword defines the name of the agent

executable. The agent executable must reside in the $ORACLE_HOME/bin directory.

Typically, you use SID_NAME to define the initialization parameter file for the

agent.
Managing Oracle Heterogeneous Services Using Transparent Gateways 7-3

Setting Up Access to Non-Oracle Systems
Step 3: Create the Database Link to the Non-Oracle System
To create a database link to the non-Oracle system, use the CREATE DATABASE

LINK statement. The service name that is used in the USING clause of the CREATE

DATABASE LINK command is the Net8 service name.

For example, to create a database link to the SALES database on a MegaBase release

6 server, you might issue:

CREATE DATABASE LINK sales
USING ‘MegaBase6_sales’;

Step 4: Test the Connection
To test the connection to the non-Oracle system, use the database link in a SQL or

PL/SQL statement. If the non-Oracle system is a SQL-based database, you can

execute a SELECT statement from an existing table or view using the database link.

For example, issue:

SELECT * FROM product@sales
WHERE product_name like '%pencil%';

When you try to access the non-Oracle system for the first time, the HS agent

uploads information into the Heterogeneous Services data dictionary. The uploaded

information includes:

See Also: Chapter 2, "Managing a Distributed Database" for

more information on creating database links.

Type of Data Explanation

Capabilities of the
non-Oracle system

For example, the agent specifies whether it can perform a join, or
a GROUP BY.

SQL translation
information

The agent specifies how to translate Oracle functions and
operators into functions and operators of the non-Oracle system.

Data dictionary
translations

To make the data dictionary information of the non-Oracle
system available just as if it were an Oracle data dictionary, the
agent specifies how to translate Oracle data dictionary tables into
tables and views of the non-Oracle system.
7-4 Oracle8i Distributed Database Systems

Registering Agents
Registering Agents
Registration is an operation through which Oracle stores information about an agent

in the data dictionary. Agents do not have to be registered. If an agent is not

registered, Oracle stores information about the agent in memory instead of in the

data dictionary: when a session involving an agent terminates, this information

ceases to be available.

Self-registration is an operation in which a database administrator sets an

initialization parameter that lets the agent automatically upload information into

the data dictionary. In release 8.0 of the Oracle database server, an agent could

determine whether to self-register. In release 8.1, self-registration occurs only when

the HS_AUTOREGISTER initialization parameter is set to TRUE (default).

This section contains the following topics:

■ Enabling Agent Self-Registration

■ Disabling Agent Self-Registration

Enabling Agent Self-Registration
To ensure correct operation over heterogeneous database links, agent

self-registration automates updates to HS configuration data that describe agents on

remote hosts. Agent self-registration is the default behavior. If you do not want to

use the agent self-registration feature, then set the initialization parameter HS_

AUTOREGISTER to FALSE.

Both the server and the agent rely on three types of information to configure and

control operation of the HS connection. These three sets of information are

collectively called HS configuration data:

Note: Most agents upload information into the Oracle8i data

dictionary automatically the first time they are accessed. Some

agent vendors may provide scripts, however, that you must run on

the Oracle8i server.

See Also: "Using the Heterogeneous Services Data Dictionary

Views" on page 7-9.
Managing Oracle Heterogeneous Services Using Transparent Gateways 7-5

Registering Agents
Using Agent Self-Registration to Avoid Configuration Mismatches
HS configuration data is stored in the Oracle database server’s data dictionary.

Because the agent is possibly remote, and may therefore be administered separately,

several circumstances can lead to configuration mismatches between servers and

agents:

■ An agent can be newly installed on a separate machine so that the server has no

HS data dictionary content to represent the agent’s HS configuration data.

■ A server can be newly installed and lack the necessary HS configuration data

for existing agents and non-Oracle data stores.

■ A non-Oracle instance can be upgraded from an older version to a newer

version, requiring modification of the HS configuration data.

■ An HS agent at a remote site can be upgraded to a new version or patched,

requiring modification of the HS configuration data.

■ A DBA at the non-Oracle site can change the agent setup, possibly for tuning or

testing purposes, in a manner which affects HS configuration data.

Agent self-registration permits successful operation of Heterogeneous Services in

all these scenarios. Specifically, agent self-registration enhances interoperability

between any Oracle database server and any HS agent, provided that each is at least

as recent as Version 8.0.3. The basic mechanism for this functionality is the ability to

upload HS configuration data from agents to servers.

Self-registration provides automatic updating of HS configuration data residing in

the Oracle database server data dictionary. This update ensures that the agent

self-registration uploads need to be done only once, on the initial use of a

previously unregistered agent. Instance information is uploaded on each

connection, not stored in the server data dictionary.

HS Configuration Data Description

HS initialization
parameters

Provide control over various connection-specific details of
operation.

Capability definitions Identify details like SQL language features supported by the
non-Oracle datasource.

Data dictionary
translations

Map references to Oracle data dictionary tables and views into
equivalents specific to the non-Oracle data source.

See Also: "Specifying HS_AUTOREGISTER" on page 7-8.
7-6 Oracle8i Distributed Database Systems

Registering Agents
Understanding Agent Self-Registration
The HS agent self-registration feature can:

■ Identify the agent and the non-Oracle data store to the Oracle database server.

■ Permit agents to define Heterogeneous Services initialization parameters for

use both by the agent and connected Oracle8i servers.

■ Upload capability definitions and data dictionary translations, if available, from

an HS agent during connection initialization.

The information required to accomplish the above is accessed in the server data

dictionary by using these agent-supplied names:

■ FDS_CLASS

■ FDS_CLASS_VERSION

FDS_CLASS and FDS_CLASS_VERSION FDS_CLASS and FDS_CLASS_VERSION are

defined by Oracle or by third-party vendors for each individual HS agent and

version. Oracle Heterogeneous Services concatenates these names to form FDS_

CLASS_NAME, which is used as a primary key to access class information in the

server data dictionary.

FDS_CLASS should specify the type of non-Oracle data store to be accessed and

FDS_CLASS_VERSION should specify a version number for both the non-Oracle

data store and the agent that connects to the it. Note that when any component of

an agent changes, FDS_CLASS_VERSION must also change to uniquely identify the

new release.

Note: When both the server and the agent are release 8.1 or

higher, the upload of class information occurs only when the class

is undefined in the server data dictionary. Similarly, instance

information is uploaded only if the instance is undefined in the

server data dictionary.

See Also: "Using the Heterogeneous Services Data Dictionary

Views" on page 7-9 to learn how to use the HS data dictionary

views.
Managing Oracle Heterogeneous Services Using Transparent Gateways 7-7

Registering Agents
FDS_INST_NAME Instance-specific information can be stored in the server data

dictionary. The instance name, FDS_INST_NAME, is configured by the DBA who

administers the agent; how the DBA performs this configuration depends on the

specific agent in use.

The Oracle database server uses FDS_INST_NAME to look up instance-specific

configuration information in its data dictionary. Oracle uses the value as a primary

key for columns of the same name in these views:

■ FDS_INST_INIT

■ FDS_INST_CAPS

■ FDS_INST_DD

Server data dictionary accesses that use FDS_INST_NAME also use FDS_CLASS_

NAME to uniquely identify configuration information rows. For example, if you

port a database from class MegaBase8.0.4 to class MegaBase8.1.3, both databases

can simultaneously operate with instance name SCOTT and use separate sets of

configuration information.

Unlike class information, instance information is not automatically self-registered in

the server data dictionary.

■ If the server data dictionary contains instance information, it represents

DBA-defined setup details which fully define the instance configuration. No

instance information is uploaded from the agent to the server.

■ If the server data dictionary contains no instance information, any instance

information made available by a connected agent is uploaded to the server for

use in that connection. The uploaded instance data is not stored in the server

data dictionary.

Specifying HS_AUTOREGISTER
The Oracle database server initialization parameter HS_AUTOREGISTER enables

or disables automatic self-registration of HS agents. Note that this parameter is

specified in the Oracle initialization parameter file, not the agent initialization file.

For example, you can set the parameter as follows:

HS_AUTOREGISTER = TRUE

Note: This information is uploaded when you initialize each

connection.
7-8 Oracle8i Distributed Database Systems

Using the Heterogeneous Services Data Dictionary Views
When set to TRUE, the agent uploads information describing a previously

unknown agent class or a new agent version into the server’s data dictionary.

Oracle recommends that you use the default value for this parameter (TRUE),

which ensures that the server’s data dictionary content always correctly represents

definitions of class capabilities and data dictionary translations as used in HS

connections.

Disabling Agent Self-Registration
To disable agent self-registration, set the HS_AUTOREGISTER initialization

parameter as follows:

HS_AUTOREGISTER = FALSE

Disabling agent self-registration entails that agent information is not stored in the

data dictionary. Consequently, the HS data dictionary views are not useful sources

of information. Nevertheless, Oracle still requires information about the class and

instance of each agent. If agent self-registration is disabled, Oracle stores this

information in local memory.

Using the Heterogeneous Services Data Dictionary Views
You can use the HS data dictionary views to access information about

Heterogeneous Services. This section addresses the following topics:

■ Understanding the Types of Views

■ Understanding the Sources of Data Dictionary Information

■ Using the General Views

■ Using the Transaction Service Views

■ Using the SQL Service Views

Understanding the Types of Views
The HS data dictionary views, which all begin with the prefix HS_, can be divided

into four main types:

■ General views

■ Views used for the transaction service

See Also: Oracle8i Reference for a description of this parameter.
Managing Oracle Heterogeneous Services Using Transparent Gateways 7-9

Using the Heterogeneous Services Data Dictionary Views
■ Views used for the SQL service

Most of the data dictionary views are defined for both classes and instances.

Consequently, for most types of data there is a *_CLASS and an *_INST view.

Like all Oracle data dictionary tables, these views are read-only. Do not use SQL to

change the content of any of the underlying tables. To make changes to any of the

underlying tables, use the procedures available in the DBMS_HS package.

Table 7–1 Data Dictionary Views for Heterogeneous Services

View Type Identifies

HS_BASE_CAPS SQL service All capabilities supported by
Heterogeneous Services

HS_BASE_DD SQL service All data dictionary translation table
names supported by Heterogeneous
Services

HS_CLASS_CAPS Transaction service,
SQL service

Capabilities for each class

HS_CLASS_DD SQL service Data dictionary translations for each
class

HS_CLASS_INIT General Initialization parameters for each class

HS_FDS_CLASS General Classes accessible from this Oracle8i
server

HS_FDS_INST General Instances accessible from this

Oracle8i server

HS_INST_CAPS Transaction service,
SQL service

Capabilities for each instance

HS_INST_DD SQL service Data dictionary translations for each
instance

HS_INST_INIT General Initialization parameters for each
instance

See Also:

■ "Architecture of the Heterogeneous Services Data Dictionary" on
page 6-6 for more information about classes and instances

■ Oracle8i Reference for information about the HS views

■ "Using the DBMS_HS Package" on page 7-17 for more information
about the DBMS_HS package
7-10 Oracle8i Distributed Database Systems

Using the Heterogeneous Services Data Dictionary Views
Understanding the Sources of Data Dictionary Information
The values used for data dictionary content in any particular connection on a

Heterogeneous Services database link can come from any of the following sources,

in order of precedence:

■ Instance information uploaded by the connected HS agent at the start of the

session. This information overrides corresponding content in the Oracle data

dictionary, but is never stored into the Oracle data dictionary.

■ Instance information stored in the Oracle data dictionary. This data overrides

any corresponding content for the connected class.

■ Class information stored in the Oracle data dictionary.

If the Oracle database server runs with the HS_AUTOREGISTER server

initialization parameter set to FALSE, then no information is stored automatically in

the Oracle data dictionary. The equivalent data is uploaded by the HS agent on a

connection-specific basis each time a connection is made, with any instance-specific

information taking precedence over class information.

You can determine the values of HS initialization parameters by querying the

VALUE column of the V$HS_PARAMETER view. Note that the VALUE column of

V$HS_PARAMETER truncates the actual initialization parameter value from a

maximum of 255 characters to a maximum of 64 characters, and it truncates the

parameter name from a maximum of 64 characters to a maximum of 30 characters.

Using the General Views
The views that are common for all services are as follows:

Note: It is not possible to determine positively what capabilities

and what data dictionary translations are in use for a given session

due to the possibility that an agent can upload instance

information.

View Contains

HS_FDS_CLASS

HS_FDS_INST

Names of the instances and classes that are uploaded into the
Oracle8i data dictionary

HS_CLASS_INIT

HS_INST_INIT

Information about the HS initialization parameters
Managing Oracle Heterogeneous Services Using Transparent Gateways 7-11

Using the Heterogeneous Services Data Dictionary Views
For example, you can access both MegaBase release 5 and release 6 from an Oracle8i
server. After accessing the agents for the first time, the information uploaded into

the Oracle8i server could look like:

SQL> SELECT * FROM hs_fds_class;

FDS_CLASS_NAME FDS_CLASS_COMMENTS FDS_CLASS_ID
--------------------- ------------------------------ ------------
MegaBase5 Uses ODBC HS driver, R1.0 1
MegaBase6 Uses ODBC HS driver, R1.0 21

Two classes are uploaded: one class to access MegaBase release 5 servers and one

class to access MegaBase release 6 servers. The data dictionary in the Oracle8i server

now contains capability information, SQL translations, and data dictionary

translations for both MegaBase5 and MegaBase6.

In addition to this information, the Oracle8i server data dictionary also contains

instance information in the HS_FDS_INST view for each non-Oracle system

instance that is accessed.

Using the Transaction Service Views
When a non-Oracle system is involved in a distributed transaction, the transaction

capabilities of the non-Oracle system and the agent control whether it can

participate in distributed transactions. Transaction capabilities are stored in the HS_

CLASS_CAPS and HS_INST_CAPS capability tables.

The ability of the non-Oracle system and agent to support two-phase commit

protocols is specified by the 2PC type capability, which can specify one of the

following five types.

Read-only (RO) The non-Oracle system can only be queried with SQL SELECT statements.
Procedure calls are not allowed because procedure calls are assumed to
write data.

Single-Site (SS) The non-Oracle system can handle remote transactions but not distributed
transactions. That is, it can not participate in the two-phase commit
protocol.

Commit
Confirm (CC)

The non-Oracle system can participate in distributed transactions. It can
participate in Oracle’s two-phase commit protocol but only as the Commit
Point Site. That is, it can not prepare data, but it can remember the outcome
of a particular transaction if asked by the global coordinator.
7-12 Oracle8i Distributed Database Systems

Using the Heterogeneous Services Data Dictionary Views
The transaction model supported by the driver and non-Oracle system can be

queried from Heterogeneous Services’ data dictionary views HS_CLASS_CAPS and

HS_INST_CAPS.

One of the capabilities is of the 2PC type:

SELECT cap_description, translation
FROM hs_class_caps
WHERE cap_description LIKE '2PC%'
AND fds_class_name=‘MegaBase6’;

CAP_DESCRIPTION TRANSLATION
-- -----------
2PC type (RO-SS-CC-PREP/2P-2PCC) CC

When the non-Oracle system and agent support distributed transactions, the

non-Oracle system is treated like any other Oracle8i server. When a failure occurs

during the two-phase commit protocol, the transaction is recovered automatically. If

the failure persists, the in-doubt transaction may need to be manually overridden

by the database administrator.

Using the SQL Service Views
Data dictionary views that are specific for the SQL service contain information

about:

■ SQL capabilities and SQL translations of the non-Oracle data source

■ Data Dictionary translations to map Oracle data dictionary views to the data

dictionary of the non-Oracle system.

Two-Phase
Commit

The non-Oracle system can participate in distributed transactions. It can
participate in Oracle’s two-phase commit protocol, as a regular two-phase
commit node, but not as a Commit Point Site. That is, it can prepare data,
but it can not remember the outcome of a particular transaction if asked to
by the global coordinator.

Two-Phase
Commit
Confirm

The non-Oracle system can participate in distributed transactions. It can
participate in Oracle’s two-phase commit protocol as a regular two-phase
commit node or as the Commit Point Site. That is, it can prepare data and it
can remember the outcome of a particular transaction if asked by the
global coordinator.

See Also: Chapter 4, "Distributed Transactions Concepts" for

more information about distributed transactions.
Managing Oracle Heterogeneous Services Using Transparent Gateways 7-13

Using the Heterogeneous Services Data Dictionary Views
Using Views for Capabilities and Translations
The HS_*_CAPS data dictionary tables contain information about the SQL

capabilities of the non-Oracle data source and required SQL translations. These

views specify whether the non-Oracle data store or the Oracle database server

implements certain SQL language features. If a capability is turned off, then

Oracle8i does not send any SQL statements to the non-Oracle data source that

require this particular capability, but it still performs post-processing.

Using Views for Data Dictionary Translations
In order to make the non-Oracle system appear similar to an Oracle8i server, HS

connections map a limited set of Oracle data dictionary views onto the non-Oracle

system’s data dictionary. This mapping permits applications to issue queries as if

these views belonged to an Oracle data dictionary. Data dictionary translations

make this access possible. These translations are stored in HS views whose names

are suffixed with _DD.

For example, the following SELECT statement transforms into a MegaBase query

that retrieves information about EMP tables from the MegaBase data dictionary

table:

SELECT * FROM USER_TABLES@salesdb
WHERE UPPER(TABLE_NAME)=’EMP’;

Data dictionary tables can be mimicked instead of translated. If a data dictionary

translation is not possible because the non-Oracle data source does not have the

required information in its data dictionary, HS causes it to appear as if the data

dictionary table is available, but the table contains no information.

To retrieve information for which Oracle8i data dictionary views or tables are

translated or mimicked for the non-Oracle system, you can issue the following

query on the HS_CLASS_DD or HS_INST_DD views view:

SELECT DD_TABLE_NAME, TRANSLATION_TYPE
FROM HS_CLASS_DD
WHERE FDS_CLASS_NAME=‘MegaBase6’;

DD_TABLE_NAME T
----------------------------- -

Note: This section describes only a portion of the SQL

Service-related capabilities. Because you should never need to alter

these settings for administrative purposes, these capabilities are not

discussed here.
7-14 Oracle8i Distributed Database Systems

Using the Heterogeneous Services Dynamic Performance Views
ALL_ARGUMENTS M
ALL_CATALOG T
ALL_CLUSTERS T
ALL_CLUSTER_HASH_EXPRESSIONS M
ALL_COLL_TYPES M
ALL_COL_COMMENTS T
ALL_COL_PRIVS M
ALL_COL_PRIVS_MADE M
ALL_COL_PRIVS_RECD M
...

The translation type ‘T’ specifies that a translation exists. When the translation type

is ‘M’, the data dictionary table is mimicked.

Using the Heterogeneous Services Dynamic Performance Views
The Oracle database server stores information about agents, sessions, and

parameter. You can use the V$ dynamic performance views to access this

information. This section contains the following topics:

■ Determining Which Agents Are Running on a Host

■ Determining the Open HS Sessions

Determining Which Agents Are Running on a Host
The following view shows generation information about agents:

Use this view to determine general information about the agents running on a

specified host. The following table shows the most relevant columns (for a

description of all the columns in the view, see Oracle8i Reference):

See Also: Appendix B, "Data Dictionary Views Available Through

Heterogeneous Services" for a list of data dictionary views that are

supported through heterogeneous services mapping.

View Purpose

V$HS_AGENT Identifies the set of HS agents currently running on a given
host, using one row per agent process.
Managing Oracle Heterogeneous Services Using Transparent Gateways 7-15

Using the Heterogeneous Services Dynamic Performance Views
Determining the Open HS Sessions
The following view shows which HS sessions are open for the Oracle database

server:

The following table shows the most relevant columns (for an account of all the

columns in the view, see Oracle8i Reference):

Determining the HS Parameters
The following view shows which HS parameters are set in the Oracle database

server:

Table 7–2 V$HS_AGENT

Column Description

AGENT_ID Net8 session identifier used for connections to agent
(listener.ora SID)

MACHINE Operating system machine name

PROGRAM Program name of agent

AGENT_TYPE Type of agent

FDS_CLASS_ID The ID of the foreign data store class

FDS_INST_ID The instance name of the foreign data store

View Purpose

V$HS_SESSION Lists the sessions for each agent, specifying the database link
used.

Table 7–3 V$HS_SESSION

Column Description

HS_SESSION_ID Unique HS session identifier

AGENT_ID Net8 session identifier used for connections to agent
(listener.ora SID)

DB_LINK Server database link name used to access the agent NULL means
that no database link is used (eg, when using external procedures)

DB_LINK_OWNER Owner of the database link in DB_LINK
7-16 Oracle8i Distributed Database Systems

Using the DBMS_HS Package
The following table shows the most relevant columns (for an account of all the

columns in the view, see Oracle8i Reference):

Using the DBMS_HS Package
The DBMS_HS package contains functions and procedures that allow you to specify

and unspecify Heterogeneous Services initialization parameters, capabilities,

instance names, class names, etc. These parameters are configured in the gateway

initialization file—not the Oracle initialization parameter file. The only exceptions is

HS_AUTOREGISTER, which is set in the Oracle initialization parameter file.

Specifying Initialization Parameters
Set initialization parameters either in the Oracle8i server or in the Heterogeneous

Services agent. To set initialization parameters in the Oracle8i server, use the

DBMS_HS package. Please see the agent’s Installation and User’s Guide for more

information. If the same initialization parameter is set both in the agent and the

Oracle8i server, then the value of initialization parameter in the Oracle8i server

takes precedence.

View Purpose

V$HS_PARAMETER Lists HS parameters and values registered in the Oracle
database server.

Table 7–4 V$HS_SESSION

Column Description

HS_SESSION_ID Unique HS session identifier

PARAMETER The name of the HS parameter

VALUE The value of the HS parameter

See Also: Oracle8i Supplied PL/SQL Packages Reference for a

reference listing off all DBMS_HS package interface information for

HS administration.
Managing Oracle Heterogeneous Services Using Transparent Gateways 7-17

Using the DBMS_HS Package
The following types of initialization parameters exist:

You can set both generic and non-Oracle data store class-specific HS initialization

parameters in the Oracle database server using the CREATE_INST_INIT procedure

in the DBMS_HS package.

For example, set the HS_DB_DOMAIN initialization parameter as follows

DBMS_HS.CREATE_INST_INIT
 (FDS_INST_NAME => ‘SalesDB’,
 FDS_CLASS_NAME => ‘MegaBase6’,
 INIT_VALUE_NAME => ‘HS_DB_DOMAIN’,
 INIT_VALUE => ‘US.SALES.COM’);

Unspecifying Initialization Parameters
To unspecify an HS initialization parameter in the Oracle8i server, use the DROP_

INST_INIT procedure. For example, to delete the HS_DB_DOMAIN entry, enter:

DBMS_HS.DROP_INST_INIT
 (FDS_INST_NAME => ‘SalesDB’,
 FDS_CLASS_NAME => ‘MegaBase6’,
 INIT_VALUE_NAME => ‘HS_DB_DOMAIN’);

Type Description

Generic Defined by Heterogeneous Services. See Appendix A,
"Heterogeneous Services Initialization Parameters" for more
information on generic initialization parameters.

Non-Oracle
class-specific

Defined by the agent vendor. Some non-Oracle data store
class-specific parameters may be mandatory. For example, a
parameter may include connection information required to
connect to a non-Oracle system. These parameters are
documented in the Installation and User's Guide for your agent.

See Also: Appendix A, "Heterogeneous Services Initialization

Parameters" for more information about initialization parameters.

See Also: Oracle8i Supplied PL/SQL Packages Reference for a full

description of the DBMS_HS package.
7-18 Oracle8i Distributed Database Systems

Managing Heterogeneous Services Using Generic Conne
8

Managing Heterogeneous Services Using

Generic Connectivity

The following topics describe the configuration and usage of generic connectivity

agents:

■ What Is Generic Connectivity?

■ Supported Oracle SQL Statements

■ Configuring Generic Connectivity Agents

■ ODBC Connectivity Requirements

■ OLE DB (SQL) Connectivity Requirements

■ OLE DB (FS) Connectivity Requirements
ctivity 8-1

What Is Generic Connectivity?
What Is Generic Connectivity?
Generic connectivity is intended for low-end data integration solutions requiring

the ad hoc query capability to connect from Oracle8i to non-Oracle database

systems. Generic connectivity is enabled by Oracle Heterogeneous Services,

allowing you to connect to non-Oracle systems with improved performance and

throughput.

Generic connectivity is implemented as either a Heterogeneous Services ODBC

agent or a Heterogeneous Services OLE DB agent. An ODBC agent and OLE DB

agent are included as part of your Oracle8i system. Be sure to use the agents

shipped with your particular Oracle system and installed in the same $ORACLE_
HOME.

Any data source compatible with the ODBC or OLE DB standards described in this

chapter can be accessed using a generic connectivity agent.

This section contains the following topics:

■ Types of Agents

■ Generic Connectivity Architecture

■ SQL Execution

■ Datatype Mapping

■ Generic Connectivity Restrictions

Types of Agents
Generic connectivity is implemented as one of the following types of HS agents:

■ ODBC agent for accessing ODBC data providers

■ OLE DB agent for accessing OLE DB data providers that support SQL

processing—sometimes referred to as OLE DB (SQL)

■ OLE DB agent for accessing OLE DB data providers without SQL processing

support—sometimes referred to as OLE DB (FS)

Each user session receives its own dedicated agent process spawned by the first use

in that user session of the database link to the non-Oracle system. The agent process

ends when the user session ends.
8-2 Oracle8i Distributed Database Systems

What Is Generic Connectivity?
Generic Connectivity Architecture
To access the non-Oracle data store using generic connectivity, the agents work with

an ODBC or OLE DB driver. Oracle8i provides support for the ODBC or OLE DB

driver interface. The driver that you use must be on the same platform as the agent.

The non-Oracle data stores can reside on the same machine as Oracle8i or a

different machine.

Oracle and Non-Oracle Systems on Separate Machines
Figure 8–1 shows an example of one configuration in which an Oracle and

non-Oracle database are on separate machines, communicating through an HS

ODBC agent:

Figure 8–1 Non-Oracle System on Separate Computer

In this configuration, a client connects to Oracle8i through Net8. The HS part of the

Oracle database server then connects through Net8 to the Heterogeneous Services

ODBC agent. This agent communicates with the following non-Oracle components:

■ An ODBC driver manager

Non-Oracle
system

Network

Machine 2

Client

NET8

Machine 1

Non-Oracle
component

Oracle8i

ODBC driver
manager

ODBC driver

Non-Oracle
system
client

HS

HS
ODBC
agent

Net8
Managing Heterogeneous Services Using Generic Connectivity 8-3

What Is Generic Connectivity?
■ An ODBC driver

■ A non-Oracle client application

This client connects to the non-Oracle data store through a network.

Oracle and Non-Oracle Systems on Same Machine
Figure 8–2 shows an example of a different configuration in which an Oracle and

non-Oracle database are on the same machine, again communicating through an HS

ODBC agent:

Figure 8–2 Accessing Heterogeneous Non-Oracle Systems

In this configuration, a client connects to Oracle8i through Net8. The HS part of the

Oracle database server then connects through Net8 to the Heterogeneous Services

ODBC agent. This agent communicates with the following non-Oracle components:

■ An ODBC driver manager

■ An ODBC driver

Client

NET8

Machine 1

Oracle8i

Non-Oracle
system

HS

ODBC driver
manager

ODBC driver

HS
ODBC
agent

Net8
8-4 Oracle8i Distributed Database Systems

Supported Oracle SQL Statements
The driver then allows access to the non-Oracle data store.

SQL Execution
SQL statements sent using a generic connectivity agent are executed differently

depending on the type of agent you are using: ODBC, OLE DB (SQL), or OLE DB

(FS). For example, if a SQL statement involving tables is sent using an ODBC agent

for a file-based storage system, the file may be manipulated as if it were a table in a

relational database. The naming conventions used at the non-Oracle system may

also depend on whether you are using an ODBC or OLE DB agent.

Datatype Mapping
Oracle8i maps the datatypes used in ODBC and OLE DB compliant data sources to

supported Oracle datatypes. When the results of a query are returned, Oracle8i
converts the ODBC or OLE DB datatypes to Oracle datatypes. For example, the

ODBC datatype SQL_TIMESTAMP and the OLE DB datatype DBTYPE_

DBTIMESTAMP are converted to Oracle’s DATE datatype.

Generic Connectivity Restrictions
Following are some restrictions for generic connectivity:

■ A table including a BLOB column must have a separate column that serves as a

primary key.

■ BLOB/CLOB data cannot be read through passthrough queries.

■ Updates or deletes that include functions within a WHERE clause are not

allowed.

■ Stored procedures are not supported.

■ Generic connectivity agents cannot participate in distributed transactions--they

support single-site transactions only.

Supported Oracle SQL Statements
Generic connectivity supports the following statements, but only if your ODBC or

OLE DB driver and non-Oracle system can execute them and the statements contain

supported Oracle SQL functions:

See Also: Appendix D, "Datatype Mapping" for information on

how the datatypes are mapped for each data source.
Managing Heterogeneous Services Using Generic Connectivity 8-5

Configuring Generic Connectivity Agents
■ DELETE

■ INSERT

■ SELECT

■ UPDATE

Only a limited set of functions are assumed to be supported by the non-Oracle

system. Most Oracle functions have no equivalent function in this limited set.

Consequently, many Oracle functions are not supported by generic connectivity,

although post-processing is performed by Oracle8i, possibly impacting

performance.

If an Oracle SQL function is not supported by generic connectivity, then this

function is not supported in DELETE, INSERT, or UPDATE statements. In SELECT

statements, these functions are evaluated by Oracle8i and post-processed after they

are returned from the non-Oracle system.

If an unsupported function is used in a DELETE, INSERT, or UPDATE statement, it

generates this Oracle error:

ORA-02070: database db_link_name does not support function in this context

Functions Supported by Generic Connectivity
Generic connectivity assumes that this minimum set of SQL functions is supported:

■ AVG(exp)

■ LIKE(exp)

■ COUNT(*)

■ MAX(exp)

■ MIN(exp)

■ NOT

Configuring Generic Connectivity Agents
To implement generic connectivity to a non-Oracle data source, you need to set the

agent parameters. This section contains the following topics:

■ Creating the Initialization File

■ Editing the Initialization File
8-6 Oracle8i Distributed Database Systems

Configuring Generic Connectivity Agents
■ Setting Initialization Parameters for an ODBC-based Data Source

■ Setting Initialization Parameters for an OLE DB-based Data Source

Creating the Initialization File
You must create and customize an initialization file for your generic connectivity

agent. Oracle supplies sample initialization files named init agent .ora , where

agent might be odbc , olesql , or olefs , to indicate which agent the sample file

can be used for, as in the following:

initodbc.ora
initolesql.ora
initolefs.ora

The sample files are stored in the /admin directory for that particular agent, in the

$ORACLE_HOME/rdbms/hs path.

To create an initialization file for an ODBC or OLE DB agent, copy the applicable

sample initialization file and rename the file to init HS_SID.ora , where HS_SID is

the system identifier you want to use for the instance of the non-Oracle system the

agent connects to.

The HS_SID is also used to identify how to connect to the agent when you configure

the listener by modifying your listener.ora file. The HS_SID you add to the

listener.ora file must match the HS_SID in an init HS_SID.ora file, because

the agent spawned by the listener searches for a matching init HS_SID.ora file.

That is how each agent process gets its initialization information. When you copy

and rename your init HS_SID.ora file, ensure it remains in the /admin directory

for that particular agent in the $ORACLE_HOME/rdbms/hs path.

Editing the Initialization File
Customize the init HS_SID.ora file by setting the parameter values used for

generic connectivity agents to values appropriate for your system, agent, and

drivers. You must edit your init HS_SID.ora file to change the HS_FDS_

CONNECT_INFO initialization parameter. HS_FDS_CONNECT_INFO specifies the

information required for connecting to the non-Oracle system.

See Also: "Step 2: Set Up the Environment to Access

Heterogeneous Services Agents" for more information on

configuring the listener.
Managing Heterogeneous Services Using Generic Connectivity 8-7

Configuring Generic Connectivity Agents
To set the parameter values, use the syntax:

[SET][PRIVATE] parameter =value

where:

For example, to enable tracing for an agent, set the HS_FDS_TRACE_LEVEL

parameter as follows:

HS_FDS_TRACE_LEVEL=ON

Typically, most parameters are only needed as initialization parameters, so you do

not need to use SET or PRIVATE. Use SET for parameter values that your drivers or

non-Oracle system need as environment variables.

PRIVATE is only supported for these Heterogeneous Services parameters:

See Also: Appendix A, "Heterogeneous Services Initialization

Parameters" for more information on parameters.

[SET][PRIVATE] are optional keywords. If you do not specify either SET or

PRIVATE, the parameter and value are simply used as an

initialization parameter for the agent.

SET specifies that in addition to being used as an initialization

parameter, the parameter value is set as an environment

variable for the agent process.

PRIVATE specifies that the parameter value is private and not

transferred to the Oracle database server and does not appear

in V$ tables or in an graphical user interfaces.

SET PRIVATE specifies that the parameter value is set as an

environment variable for the agent process and is also private

(not transferred to the Oracle database server, not appearing

in V$ tables or graphical user interfaces).

parameter is the Heterogeneous Services initialization parameter that

you are specifying. See Appendix A, "Heterogeneous Services

Initialization Parameters" for a description of all HS

parameters and their possible values. The parameter is

case-sensitive.

value is the value you want to specify for the HS parameter. The

value is case-sensitive.
8-8 Oracle8i Distributed Database Systems

Configuring Generic Connectivity Agents
■ HS_FDS_CONNECT_INFO

■ HS_FDS_SHAREABLE_NAME

■ HS_FDS_TRACE_LEVEL

■ HS_FDS_TRACE_FILE_NAME

You should only use PRIVATE for these parameters if the parameter value includes

sensitive information such as a username or password.

Setting Initialization Parameters for an ODBC-based Data Source
The settings for the initialization parameters vary depending on the type of

operating system.

Setting Agent Parameters on Windows NT
Specify a File DSN or a System DSN which has previously been defined using the

ODBC Driver Manager.

When connecting using a File DSN, specify the value using the following syntax:

HS_FDS_CONNECT_INFO=FILEDSN=file_dsn

When connecting using a System DSN, specify the value using:

HS_FDS_CONNECT_INFO=system_dsn

If you are connecting to the data source through the driver for that data source,

precede the DSN by the name of the driver, followed by a semi-colon (;).

Setting Parameters on NT: Example Assume a System DSN has been defined in the

Windows ODBC Data Source Administrator. In order to connect to this SQL Server

database through the gateway, the following line is required in init HS_SID.ora :

HS_FDS_CONNECT_INFO=sqlserver7

where sqlserver7 is the name of the System DSN defined in the Windows ODBC

Data Source Administrator.

The following procedure enables you to define a System DSN in the Windows

ODBC Data Source Administrator:

1. From the Start menu, choose Settings > Control Panel and select the ODBC
icon.

2. Select the System DSN tab to display the system data sources.
Managing Heterogeneous Services Using Generic Connectivity 8-9

Configuring Generic Connectivity Agents
3. Click Add.

4. From the list of installed ODBC drivers, select the name of the driver that the

data source will use. For example, select SQL Server.

5. Click Finish.

6. Enter a name for the DSN and an optional description. Enter other information

depending on your ODBC driver. For example, for SQL Server enter the SQL

Server machine.

7. Continue clicking Next and answering the prompts until you reach the end

(that is, you click Finish).

8. Click OK until you exit the ODBC Data Source Administrator.

Setting Agent Parameters on UNIX platforms
Specify a DSN and the path of the ODBC shareable library, as follows:

HS_FDS_CONNECT_INFO=dsn_value
HS_FDS_SHAREABLE_NAME=full_odbc_library_path_of_odbc_driver

HS_FDS_CONNECT_INFO is required for all platforms for an ODBC agent. HS_

FDS_SHAREABLE_NAME is required on UNIX platforms for an ODBC agent.

Other initialization parameters have defaults or are optional. You can use the

default values and omit the optional parameters, or you can specify the parameters

with values tailored for your installation.

Setting Parameters on UNIX: Example Assume that the odbc.ini file to connect to

Informix using the Intersolve ODBC driver is located in /opt/odbc and includes

the following information:

[ODBC Data Sources]
Informix=INTERSOLV 3.11 Informix Driver

Note: The name entered for the DSN must match the name used

for the gateway in init HS_SID.ora .

Note: Before deciding to accept the default values or change them,

see Appendix A, "Heterogeneous Services Initialization

Parameters" for detailed information on all the initialization

parameters.
8-10 Oracle8i Distributed Database Systems

Configuring Generic Connectivity Agents
[Informix]
Driver=/opt/odbc/lib/ivinf13.so
Description=Informix7
Database=personnel@osf_inf72
HostName=osf
LogonID=uid
Password=pwd

In order to connect to this Informix database through the gateway, the following

lines are required in init HS_SID.ora :

HS_FDS_CONNECT_INFO=informix
HS_FDS_SHAREABLE_NAME=/opt/odbc/lib/libodbc.so
set INFORMIXDIR=/users/inf72
set INFORMIXSERVER=osf_inf72
set ODBCINI=/opt/odbc/odbc.ini

Note that the set statements are optional as long as they are specified in the working

account. Each database will have its own set statements.

The HS_FDS_CONNECT_INFO parameter value must match the ODBC data

source name in the odbc.ini file.

Setting Initialization Parameters for an OLE DB-based Data Source
You can only set these parameters on the Windows NT platform.

Specify a data link (UDL) that has previously been defined:

<SET|PRIVATE|SET PRIVATE> HS_FDS_CONNECT_INFO="UDLFILE= data_link "

Or, specify the connection details directly:

<SET|PRIVATE|SET PRIVATE> HS_FDS_CONNECT_INFO="provider ; db[,CATALOG=catalog]"

where:

provider is the name of the provider as it appears in the registry. This

value is case sensitive.

db is the name of the database.

catalog is the name of the catalog
Managing Heterogeneous Services Using Generic Connectivity 8-11

ODBC Connectivity Requirements
HS_FDS_CONNECT_INFO is required for an OLE DB agent. Other initialization

parameters have defaults or are optional. You can use the default values and omit

the optional parameters, or you can specify the parameters with values tailored for

your installation. Before deciding to accept the default values or change them, see

Appendix A, "Heterogeneous Services Initialization Parameters" for detailed

information on all the initialization parameters.

ODBC Connectivity Requirements
To use an ODBC agent, you must have an ODBC driver installed on the same

machine as Oracle8i. On Windows NT, you must have an ODBC driver manager

also located on the same machine. The ODBC driver manager and driver must meet

these requirements:

■ On Windows NT machines, a thread-safe, 32-bit ODBC driver Version 2.x or 3.x

is required. You can use the native driver manager supplied with your

Windows NT system.

■ On UNIX machines, ODBC driver Version 2.5 is required. A driver manager is

not required.

The ODBC driver and driver manager on Windows NT must conform to ODBC API

conformance Level 1 or higher. If the ODBC driver or driver manager does not

support multiple active ODBC cursors, then it restricts the complexity of SQL

statements that you can execute using generic connectivity.

The ODBC driver you use must support all of the core SQL ODBC datatypes and

expose the following ODBC APIs:

Note: If the parameter value includes an equal sign (=), then it

must be surrounded by quotation marks.

Table 8–1 ODBC Functions (Page 1 of 3)

ODBC Function Comment

SQLAllocConnect

SQLAllocEnv

SQLAllocStmt

SQLBindCol

SQLBindParameter
8-12 Oracle8i Distributed Database Systems

ODBC Connectivity Requirements
SQLColumns

SQLConnect

SQLDescribeCol

SQLDisconnect

SQLDriverConnect

SQLError

SQLExecDirect

SQLExecute

SQLExtendedFetch Recommended if used by your non-Oracle system.

SQLFetch

SQLForeignKeys Recommended if used by your non-Oracle system.

SQLFreeConnect

SQLFreeEnv

SQLFreeStmt

SQLGetConnectOption

SQLGetData

SQLGetFunctions

SQLGetInfo

SQLGetTypeInfo

SQLNumParams Recommended if used by your non-Oracle system.

SQLNumResultCols

SQLParamData

SQLPrepare

SQLPrimaryKeys Recommended if used by your non-Oracle system.

SQLProcedureColumns Recommended if used by your non-Oracle system.

SQLProcedures Recommended if used by your non-Oracle system.

SQLPutData

Table 8–1 ODBC Functions (Page 2 of 3)

ODBC Function Comment
Managing Heterogeneous Services Using Generic Connectivity 8-13

OLE DB (SQL) Connectivity Requirements
OLE DB (SQL) Connectivity Requirements
These requirements apply to OLE DB data providers that have an SQL processing

capability and expose the OLD DB interfaces. The data providers in this case are the

non-Oracle system you want to connect to using generic connectivity and OLE DB

(SQL).

Generic connectivity passes username and password to the provider when calling

IDBInitialize::Initialize() .

Data Provider Requirements
OLE DB (SQL) connectivity requires that the data provider expose the following OLE

DB interfaces:

SQLRowCount

SQLSetConnectOption

SQLSetStmtOption

SQLStatistics

SQLTables

SQLTransact Recommended if used by your non-Oracle system.

Table 8–2 OLE DB (SQL) Interfaces (Page 1 of 2)

Interface Methods

IAccessor CreateAccessor, ReleaseAccessor

IColumnsInfo GetColumnsInfo (Command and
Rowset objects)

ICommand Execute

ICommandPrepare Prepare

ICommandProperties SetProperties

ICommandText SetCommandText

ICommandWithParameters GetParameterInfo

IDBCreateCommand CreateCommand

Table 8–1 ODBC Functions (Page 3 of 3)

ODBC Function Comment
8-14 Oracle8i Distributed Database Systems

OLE DB (FS) Connectivity Requirements
OLE DB (FS) Connectivity Requirements
These requirements apply to OLE DB data providers that do not have SQL

processing capabilities. The data providers in this case are the non-Oracle systems

you want to connect to using a generic connectivity agent and OLE DB (FS). OLE

DB (FS) connectivity uses OLE DB Index interfaces, if the provider exposes them.

Required usernames and passwords are passed to the provider when the

application calls IDBInitialize::Initialize() .

Because OLE DB (FS) connectivity is generic, it can connect to a number of different

data providers that expose OLE DB interfaces. Every such data provider must meet

the certain requirements.

Bookmarks
The data provider must expose bookmarks. This enables tables to be updated.

Without bookmarks being exposed, the tables are read-only.

IDBCreateSession CreateSession

IDBInitialize Initialize

IDBSchemaRowset GetRowset (tables, columns, indexes;
optionally also procedures, procedure
parameters)

IErrorInfo1 GetDescription, GetSource

IErrorRecords GetErrorInfo

ILockBytes (OLE)2 Flush, ReadAt, SetSize, Stat, WriteAt

IRowset GetData, GetNextRows, ReleaseRows,
RestartPosition

IStream (OLE)b Read, Seek, SetSize, Stat, Write

ISupportErrorInfo InterfaceSupportsErrorInfo

ITransactionLocal (optional) StartTransaction, Commit, Abort

1 You can use IErrorLookup with the GetErrorDescription method as well.
2 Required only if BLOBs are used in the OLE DB provider.

Table 8–2 OLE DB (SQL) Interfaces (Page 2 of 2)

Interface Methods
Managing Heterogeneous Services Using Generic Connectivity 8-15

OLE DB (FS) Connectivity Requirements
OLE DB Interfaces
The data provider must provide the following OLE DB interfaces:

Table 8–3 OLE DB (FS) Interfaces

Interface Methods

IAccessor CreateAccessor, ReleaseAccessor

IColumnsInfo GetColumnsInfo (Command and Rowset
objects)

IOpenRowset OpenRowset

IDBCreateSession CreateSession

IRowsetChange DeleteRows, SetData, InsertRow

IRowsetLocate GetRowsByBookmark

IRowsetUpdate Update (optional)

IDBInitialize Initialize, Uninitialize

IDBSchemaRowset GetRowset (tables, columns, indexes;
optionally also procedures, procedure
parameters)

ILockBytes (OLE)1

1 Required only if BLOBs are used in the OLE DB provider.

Flush, ReadAt, SetSize, Stat, WriteAt

IRowsetIndex2

2 Required only if indexes are used in the OLE DB provider.

SetRange

IErrorInfo3

3 You can use IErrorLookup with the GetErrorDescription method as well.

GetDescription, GetSource

IErrorRecords GetErrorInfo

IRowset GetData, GetNextRows, ReleaseRows,
RestartPosition

IStream (OLE)a Read, Seek, SetSize, Stat, Write

ITransactionLocal
(optional)

StartTransaction, Commit, Abort

ISupportErrorInfo InterfaceSupportsErrorInfo

ITableDefinition CreateTable, DropTable

IDBProperties SetProperties
8-16 Oracle8i Distributed Database Systems

OLE DB (FS) Connectivity Requirements
Data Source Properties
The OLE DB data source must support these initialization properties:

■ DBPROP_INIT_DATASOURCE

■ DBPROP_AUTH_USERID

required if the userid has been supplied in the security file

■ DBPROP_AUTH_PASSWORD

 required if the userid and password have been supplied in the security file

The OLE DB data source must also support these rowset properties:

■ DBPROP_IRowsetChange = TRUE

■ DBPROP_UPDATABILITY = CHANGE+DELETE+INSERT

■ DBPROP_OWNUPDATEDELETE = TRUE

■ DBPROP_OWNINSERT = TRUE

■ DBPROP_OTHERUPDATEDELETE = TRUE

■ DBPROP_CANSCROLLBACKWARDS = TRUE

■ DBPROP_IRowsetLocate = TRUE

■ DBPROP_OTHERINSERT = FALSE
Managing Heterogeneous Services Using Generic Connectivity 8-17

OLE DB (FS) Connectivity Requirements
8-18 Oracle8i Distributed Database Systems

Developing Applications with Heterogeneous Se
9

Developing Applications with

Heterogeneous Services

This chapter provides information for application developers who want to use

Heterogeneous Services.

Topics covered include:

■ Developing Applications with Heterogeneous Services: Overview

■ Developing Using Pass-Through SQL

■ Optimizing Data Transfers Using Bulk Fetch

■ Researching the Locking Behavior of Non-Oracle Systems
rvices 9-1

Developing Applications with Heterogeneous Services: Overview
Developing Applications with Heterogeneous Services: Overview
When writing applications, you do not need to worry when a non-Oracle database

is part of the distributed system. Heterogeneous Services makes the non-Oracle

system appear as if it were another Oracle8i server.

Nevertheless, you may occasionally need to access a non-Oracle system using the

non-Oracle system’s SQL dialect. To make access possible, Heterogeneous Services

provides a pass-through SQL feature that allows you to directly execute a native SQL

statement at the non-Oracle system.

Additionally, Heterogeneous Services supports bulk fetches to optimize the data

transfers for large data sets between a non-Oracle system, agent and Oracle

database server. This chapter also discusses how to tune such data transfers.

Developing Using Pass-Through SQL
The pass-through SQL feature allows you to send a statement directly to a

non-Oracle system without being interpreted by the Oracle8i server. This feature

can be useful if the non-Oracle system allows for operations in statements for which

there is no equivalent in Oracle.

This section contains the following topics:

■ Using the DBMS_HS_PASSTHROUGH package

■ Considering the Implications of Using Pass-Through SQL

■ Executing Pass-Through SQL Statements

Using the DBMS_HS_PASSTHROUGH package
You can execute these statements directly at the non-Oracle system using the

PL/SQL package DBMS_HS_PASSTHROUGH. Any statement executed with the

pass-through package is executed in the same transaction as standard SQL

statements.

The DBMS_HS_PASSTHROUGH package conceptually resides at the non-Oracle

system. You must invoke procedures and functions in the package by using the

appropriate database link to the non-Oracle system.

See Also: Oracle8i Supplied PL/SQL Packages Reference for more

information about this package.
9-2 Oracle8i Distributed Database Systems

Developing Using Pass-Through SQL
Considering the Implications of Using Pass-Through SQL
When you execute a pass-through SQL statement that implicitly commits or rolls

back a transaction in the non-Oracle system, the transaction is affected. For

example, some systems implicitly commit the transaction containing a DDL

statement. Because the Oracle database server is bypassed, the Oracle database

server is unaware of the commit in the non-Oracle system. Consequently, the data at

the non-Oracle system can be committed while the transaction in the Oracle

database server is not.

If the transaction in the Oracle database server is rolled back, data inconsistencies

between the Oracle database server and the non-Oracle server can occur. This

situation results in global data inconsistency.

Note that if the application executes a regular COMMIT statement, the Oracle

database server can coordinate the distributed transaction with the non-Oracle

system. The statement executed with the pass-through facility is part of the

distributed transaction.

Executing Pass-Through SQL Statements
The table below shows the functions and procedures provided by the DBMS_HS_

PASSTHROUGH package that allow you to execute pass-through SQL statements.

This section contains these topics:

Procedure/Function Description

OPEN_CURSOR Opens a cursor

CLOSE_CURSOR Closes a cursor

PARSE Parses the statement

BIND_VARIABLE Binds IN variables

BIND_OUT_VARIABLE Binds OUT variables

BIND_INOUT_VARIABLE Binds IN OUT variables

EXECUTE_NON_QUERY Executes non-query

EXECUTE_IMMEDIATE Executes non-query without bind variables

FETCH_ROW Fetches rows from query

GET_VALUE Retrieves column value from SELECT statement or
retrieves OUT bind parameters
Developing Applications with Heterogeneous Services 9-3

Developing Using Pass-Through SQL
■ Executing Non-Queries

■ Executing Queries

Executing Non-Queries
Non-queries include the following statements and types of statements:

■ INSERT

■ UPDATE

■ DELETE

■ DDL

To execute non-query statements, use the EXECUTE_IMMEDIATE function. For

example, to execute a DDL statement at a non-Oracle system that you can access

using the database link SalesDB, execute:

DECLARE
 num_rows INTEGER;

BEGIN
 num_rows := DBMS_HS_PASSTHROUGH.EXECUTE_IMMEDIATE@SalesDB
 ('CREATE TABLE DEPT (n SMALLINT, loc CHARACTER(10))');
END;

The variable num_rows is assigned the number of rows affected by the execution.

For DDL statements, zero is returned. Note that you cannot execute a query with

EXECUTE_IMMEDIATE and you cannot use bind variables.

Using Bind Variables: Overview Bind variables allow you to use the same SQL

statement multiple times with different values, reducing the number of times a SQL

statement needs to be parsed. For example, when you need to insert four rows in a

particular table, you can parse the SQL statement once and bind and execute the

SQL statement for each row. One SQL statement can have zero or more bind

variables.

To execute pass-through SQL statements with bind variables, you must:

1. Open a cursor.

2. Parse the SQL statement at the non-Oracle system.

3. Bind the variables.

4. Execute the SQL statement at the non-Oracle system.
9-4 Oracle8i Distributed Database Systems

Developing Using Pass-Through SQL
5. Close the cursor.

Figure 9–1 shows the flow diagram for executing non-queries with bind variables.

Figure 9–1 Flow Diagram for Non-Query Pass-Through SQL

Using IN Bind Variables The syntax of the non-Oracle system determines how a

statement specifies a bind variable. For example, in Oracle you define bind variables

with a preceding colon, as in:

UPDATE EMP

Execute
non query

Open
Cursor

Parse

Bind
Variable

(optional)

Close
Cursor

Get
Value

(optional)
Developing Applications with Heterogeneous Services 9-5

Developing Using Pass-Through SQL
SET SAL=SAL*1.1
WHERE ENAME=:ename

In this statement :ename is the bind variable. In other non-Oracle systems you may

need to specify bind variables with a question mark, as in:

UPDATE EMP
SET SAL=SAL*1.1
WHERE ENAME= ?

In the bind variable step, you must positionally associate host program variables (in

this case, PL/SQL) with each of these bind variables.

For example, to execute the above statement, you can use the following PL/SQL

program:

DECLARE
 c INTEGER;
 nr INTEGER;
BEGIN
 c := DBMS_HS_PASSTHROUGH.OPEN_CURSOR@SalesDB;
 DBMS_HS_PASSTHROUGH.PARSE@SalesDB(c,
 'UPDATE EMP SET SAL=SAL*1.1 WHERE ENAME=?');
 DBMS_HS_PASSTHROUGH.BIND_VARIABLE(c,1,’JONES’);
 nr:=DBMS_HS_PASSTHROUGH.EXECUTE_NON_QUERY@SalesDB(c);
 DBMS_OUTPUT.PUT_LINE(nr||’ rows updated’);
 DBMS_HS_PASSTHROUGH.CLOSE_CURSOR@salesDB(c);
END;

Using OUT Bind Variables In some cases, the non-Oracle system can also support OUT

bind variables. With OUT bind variables, the value of the bind variable is not

known until after the execution of the SQL statement.

Although OUT bind variables are populated after the SQL statement is executed,

the non-Oracle system must know that the particular bind variable is an OUT bind

variable before the SQL statement is executed. You must use the BIND_OUT_

VARIABLE procedure to specify that the bind variable is an OUT bind variable.

After the SQL statement is executed, you can retrieve the value of the OUT bind

variable using the GET_VALUE procedure.

Using IN OUT Bind Variables A bind variable can be both an IN and an OUT variable.

This means that the value of the bind variable must be known before the SQL

statement is executed but can be changed after the SQL statement is executed.
9-6 Oracle8i Distributed Database Systems

Developing Using Pass-Through SQL
For IN OUT bind variables, you must use the BIND_INOUT_VARIABLE procedure

to provide a value before the SQL statement is executed. After the SQL statement is

executed, you must use the GET_VALUE procedure to retrieve the new value of the

bind variable.

Executing Queries
The difference between queries and non-queries is that queries retrieve a result set

from a SELECT statement. The result set is retrieved by iterating over a cursor.

Figure 9–2 illustrates the steps in a pass-through SQL query. After the system parses

the SELECT statement, each row of the result set can be fetched with the FETCH_

ROW procedure. After the row is fetched, use the GET_VALUE procedure to

retrieve the select list items into program variables. After all rows are fetched you

can close the cursor.
Developing Applications with Heterogeneous Services 9-7

Developing Using Pass-Through SQL
Figure 9–2 Pass-through SQL for Queries

You do not have to fetch all the rows. You can close the cursor at any time after

opening the cursor, for example, after fetching a few rows.

Note: Although you are fetching one row at a time, HS optimizes

the round trips between the Oracle8i server and the non-Oracle

system by buffering multiple rows and fetching from the

non-Oracle data system in one round trip.

Fetch_row

Open
Cursor

Parse

Bind
Variable

(optional)

Close
Cursor

Get
Value

For each
row

For each
column
9-8 Oracle8i Distributed Database Systems

Optimizing Data Transfers Using Bulk Fetch
The next example executes a query:

DECLARE
 val VARCHAR2(100);
 c INTEGER;
 nr INTEGER;
BEGIN
 c := DBMS_HS_PASSTHROUGH.OPEN_CURSOR@SalesDB;
 DBMS_HS_PASSTHROUGH.PARSE@SalesDB(c,
 'select ename
 from emp
 where deptno=10’);
 LOOP
 nr := DBMS_HS_PASSTHROUGH.FETCH_ROW@SalesDB(c);
 EXIT WHEN nr = 0;
 DBMS_HS_PASSTHROUGH.GET_VALUE@SalesDB(c, 1, val);
 DBMS_OUTPUT.PUT_LINE(val);
 END LOOP;
 DBMS_HS_PASSTHROUGH.CLOSE_CURSOR@SalesDB(c);
END;

After parsing the SELECT statement, the rows are fetched and printed in a loop

until the function FETCH_ROW returns the value 0.

Optimizing Data Transfers Using Bulk Fetch
When an application fetches data from a non-Oracle system using Heterogeneous

Services, data is transferred:

■ From the non-Oracle system to the agent process

■ From the agent process to the Oracle database server

■ From the Oracle database server to the application

Oracle allows you to optimize all three data transfers, as illustrated in Figure 9–3.
Developing Applications with Heterogeneous Services 9-9

Optimizing Data Transfers Using Bulk Fetch
Figure 9–3 Optimizing data transfers

This section contains the following topics:

■ Using OCI, an Oracle Precompiler, or Another Tool for Array Fetches

■ Controlling the Array Fetch Between Oracle Database Server and Agent

■ Controlling the Array Fetch Between Agent and Non-Oracle Server

■ Controlling the Reblocking of Array Fetches

Using OCI, an Oracle Precompiler, or Another Tool for Array Fetches
You can optimize data transfers between your application and the Oracle8i server

by using array fetches. See your application development tool documentation for

information about array fetching and how to specify the amount of data to be sent

per network round trip.

Client

O
ra

cl
e

S
er

ve
r

A
ge

nt

N
o

n
-O

ra
cl

e
S

ys
te

m

HS_RPC_FETCH_SIZE

HS_FDS_FETCH_ROWS

Array fetch
with OCI/Pro*
or other tool
9-10 Oracle8i Distributed Database Systems

Optimizing Data Transfers Using Bulk Fetch
Controlling the Array Fetch Between Oracle Database Server and Agent
When Oracle retrieves data from a non-Oracle system, the HS initialization

parameter HS_RPC_FETCH_SIZE defines the number of bytes sent per fetch

between the agent and the Oracle8i server. The agent fetches data from the

non-Oracle system until one of the following occurs:

■ It has accumulated the specified number of bytes to send back to the Oracle

database server.

■ The last row of the result set is fetched from the non-Oracle system.

Controlling the Array Fetch Between Agent and Non-Oracle Server
The initialization parameter HS_FDS_FETCH_ROWS determines the number of

rows to be retrieved from a non-Oracle system. Note that the array fetch must be

supported by the agent. See your agent-specific documentation to ensure that your

agent supports array fetching.

Controlling the Reblocking of Array Fetches
By default, an agent fetches data from the non-Oracle system until it has enough

data retrieved to send back to the server. That is, it keeps going until the number of

bytes fetched from the non-Oracle system is equal to or higher than the value of

HS_RPC_FETCH_SIZE. In other words, the agent reblocks the data between the

agent and the Oracle database server in sizes defined by the value of HS_RPC_

FETCH_SIZE.

When the non-Oracle system supports array fetches, you can immediately send the

data fetched from the non-Oracle system by the array fetch to the Oracle database

server without waiting until the exact value of HS_RPC_FETCH_SIZE is reached.

That is, you can stream the data from the non-Oracle system to the Oracle database

server and disable reblocking by setting the value of initialization parameter HS_

RPC_FETCH_REBLOCKING to OFF.

For example, assume that you set HS_RPC_FETCH_SIZE to 64K and HS_FDS_

FETCH_ROWS to 100 rows. Assume that each row is approximately 600 bytes in

size, so that the 100 rows are approximately 60K. When HS_RPC_FETCH_

REBLOCKING is set to ON, the agent starts fetching 100 rows from the non-Oracle

system.

Because there is only 60K bytes of data in the agent, the agent does not send the

data back to the Oracle database server. Instead, the agent fetches the next 100 rows
Developing Applications with Heterogeneous Services 9-11

Researching the Locking Behavior of Non-Oracle Systems
from the non-Oracle system. Because there is now 120K of data in the agent, the first

64K can be sent back to the Oracle database server.

Now there is 56K of data left in the agent. The agent fetches another 100 rows from

the non-Oracle system before sending the next 64K of data to the Oracle database

server. By setting the initialization parameter HS_RPC_FETCH_REBLOCKING to

OFF, the first 100 rows are immediately sent back to the Oracle8i server.

Researching the Locking Behavior of Non-Oracle Systems
When designing applications with Heterogeneous Services, be aware that the

Oracle database server and non-Oracle data sources can have different locking

behaviors. For example, some non-Oracle data sources differ from the Oracle

database server in how they set read/write locks on records in affected tables.

Oracle cannot change any aspect of the locking behavior of a non-Oracle data

source. In order to avoid adverse effects on other users of the non-Oracle data

source, all applications that access a non-Oracle data source must always adhere to

the programming standards of that data source.

See Also: Your non-Oracle system’s documentation for

information about locking behavior.
9-12 Oracle8i Distributed Database Systems

Heterogeneous Services Initialization Parame
A

Heterogeneous Services Initialization

Parameters

Oracle database server initialization parameters are distinct from HS parameters.

Set HS parameters by editing the Oracle Transparent Gateway initialization file, or

by using the DBMS_HS package to set them in the data dictionary. String values for

HS parameters must be lowercase. This appendix contains information on:

■ HS_COMMIT_POINT_STRENGTH

■ HS_DB_DOMAIN

■ HS_DB_INTERNAL_NAME

■ HS_DB_NAME

■ HS_DESCRIBE_CACHE_HWM

■ HS_FDS_CONNECT_INFO

■ HS_FDS_SHAREABLE_NAME

■ HS_FDS_TRACE_LEVEL

■ HS_FDS_TRACE_FILE_NAME

■ HS_LANGUAGE

■ HS_NLS_DATE_FORMAT

■ HS_NLS_DATE_LANGUAGE

■ HS_NLS_NCHAR

■ HS_OPEN_CURSORS

■ HS_ROWID_CACHE_SIZE

■ HS_RPC_FETCH_REBLOCKING

■ HS_RPC_FETCH_SIZE
ters A-1

HS_COMMIT_POINT_STRENGTH
HS_COMMIT_POINT_STRENGTH

HS_COMMIT_POINT_STRENGTH has the same function as the Oracle8i
parameter COMMIT_POINT_STRENGTH.

Set HS_COMMIT_POINT_STRENGTH to a value relative to the importance of the

site that will be the commit point site in a distributed transaction. The Oracle

database server or non-Oracle system with the highest commit point strength

becomes the commit point site. To ensure that a non-Oracle system never becomes

the commit point site, set the value of HS_COMMIT_POINT_STRENGTH to zero.

HS_COMMIT_POINT_STRENGTH is important only if the non-Oracle system can

participate in the two-phase protocol as a regular two-phase commit partner and as

the commit point site. This is only the case if the transaction model is two-phase

commit confirm (2PCC).

HS_DB_DOMAIN

Specifies a unique network sub-address for a non-Oracle system. HS_DB_DOMAIN

is similar to DB_DOMAIN, described in the Oracle8i Administrator’s Guide and the

Oracle8i Reference. HS_DB_DOMAIN is required if you use the Oracle Names Server.

HS_DB_NAME and HS_DB_DOMAIN define the global name of the non-Oracle

system.

Default value: 0

Range of values: 0 to 255

See Also: Chapter 7, "Managing Oracle Heterogeneous Services

Using Transparent Gateways" for more information about

heterogeneous distributed transactions, and Chapter 4, "Distributed

Transactions Concepts" for more information about distributed

transactions and commit point sites.

Default value: WORLD

Range of values: 1 to 119 characters

Note: HS_DB_NAME and HS_DB_DOMAIN must combine to

form a unique address.
A-2 Oracle8i Distributed Database Systems

HS_DESCRIBE_CACHE_HWM
HS_DB_INTERNAL_NAME

Specifies a unique hexadecimal number identifying the instance to which the

Heterogeneous Services agent is connected. This parameter’s value is used as part

of a transaction ID when global name services are activated. Specifying a

non-unique number can cause problems when two-phase commit recovery actions

are necessary for a transaction.

HS_DB_NAME

Specifies a unique alphanumeric name for the datastore given to the non-Oracle

system. This name identifies the non-Oracle system within the cooperative server

environment. HS_DB_NAME and HS_DB_DOMAIN define the global name of the

non-Oracle system.

HS_DESCRIBE_CACHE_HWM

Specifies the maximum number of entries in the describe cache used by

Heterogeneous Services. This limit is known as the describe cache high water mark.

The cache contains descriptions of the mapped tables that Heterogeneous Services

reuses so that it does not have to re-access the non-Oracle datastore.

Increase the high water mark to improve performance, especially when you are

accessing many mapped tables. Note that increasing the high water mark improves

performance at the cost of memory usage.

Default value: 01010101

Range of values: 1 to 16 hexadecimal characters

Default value: HO

Range of values: 1 to 8 lowercase characters

Default value: 100

Range of values: 1 to 4000
Heterogeneous Services Initialization Parameters A-3

HS_FDS_CONNECT_INFO
HS_FDS_CONNECT_INFO

Specifies the information needed to bind to the data provider, that is, the non-Oracle

system. For generic connectivity, you can bind to an ODBC-based data source or to

an OLE DB-based data source. The information that you provide depends on the

platform and whether the data source is ODBC or OLE DB-based.

This parameter is required if you are using generic connectivity.

ODBC-based Data Source on Windows: You can use either a File DSN or a System DSN

as follows:

■ When connecting using a File DSN the parameter format is:

HS_FDS_CONNECT_INFO=FILEDSN=file_dsn

■ When connecting using a System DSN the parameter format is:

HS_FDS_CONNECT_INFO=system_dsn

If you are connecting to the data source through the driver for that data source, then

precede the DSN by the name of the driver, followed by a semi-colon (;).

ODBC-based Data Source on UNIX: Use a DSN with the following format:

HS_FDS_CONNECT_INFO=dsn

OLE DB-based Data Source (Windows NT Only): Use a data link (UDL) with the

following formats:

■ HS_FDS_CONNECT_INFO="UDLFILE=data_link"

■ HS_FDS_CONNECT_INFO="provider;db[,CATALOG=catalog]"

which allows you to specify the connection details directly, and where:

– provider is the case-sensitive name of the provider as it appears in the

registry.

– db is the name of the database.

– catalog is the name of the catalog.

Default value: none

Range of values: not applicable
A-4 Oracle8i Distributed Database Systems

HS_FDS_TRACE_FILE_NAME
HS_FDS_SHAREABLE_NAME

Specifies the full path name to the ODBC library. This parameter is required when

you are using generic connectivity to access data from an ODBC provider on a

UNIX machine.

HS_FDS_TRACE_LEVEL

Specifies whether error tracing is turned on or off for generic connectivity. Turn on

the tracing to see which error messages occurred when you encounter problems.

The results are written to a generic connectivity log file, in the /log directory under

the $ORACLE_HOME directory.

HS_FDS_TRACE_FILE_NAME

Specifies the name of the trace file to which generic connectivity error messages are

written, if TRACE is enabled. The trace file is located in the LOG directory under the

$ORACLE_HOME directory.

Note: If the parameter value includes an equal sign (=), then it

must be enclosed in quotation marks.

Default value: none

Range of values: not applicable

Default value: OFF

Range of values: ON or OFF

Default value: none

Range of values: not applicable
Heterogeneous Services Initialization Parameters A-5

HS_LANGUAGE
HS_LANGUAGE

Provides Heterogeneous Services with character set, language, and territory

information of the non-Oracle data source. The value must use the following

format:

language [_ territory . character_set]

Character sets
Ideally, the character sets of the Oracle8i database server and the non-Oracle data

source are the same. If they are not the same, Heterogeneous Services attempts to

translate the character set of the non-Oracle data source to the Oracle8i character

set, and vice versa. This translation can degrade performance. In some cases, HS

cannot translate a character from one character set to another.

Language
The language part of the HS_LANGUAGE initialization parameter determines:

■ Day and month names of dates

■ AD, BC, PM, and AM symbols for date and time

■ Default sorting mechanism

Note that HS_LANGUAGE does not determine the language for error messages for

the generic Heterogeneous Services messages (ORA-25000 through ORA-28000).

These are controlled by the session settings in the Oracle database server.

Default value: System-Specific

Range of values: Any valid language name (up to 255 characters)

Note: The national language support initialization parameters

affect error messages, the data for the SQL Service, and parameters

in distributed external procedures.

Note: The specified character set must be a superset of the

operating system character set on the platform where the agent is

installed.
A-6 Oracle8i Distributed Database Systems

HS_NLS_DATE_LANGUAGE
Territory
The territory clause specifies the conventions for day and week numbering, default

date format, decimal character and group separator, and ISO and local currency

symbols. Note that:

■ You can override the date format using the initialization parameter HS_NLS_

DATE_FORMAT.

■ The level of National Language Support between the Oracle8i server and the

non-Oracle data source depends on how the driver is implemented. See the

Installation and Users’ Guide for your platform for more information about the

level of National Language Support.

HS_NLS_DATE_FORMAT

Defines the date format for dates used by the target system. This parameter has the

same function as the NLS_DATE_FORMAT parameter for an Oracle database

server. The value of can be any valid date mask listed in the Oracle8i Reference, but

must match the date format of the target system. For example, if the target system

stores the date "February 14, 1995" as "1995/02/14", set the parameter to

’yyyy/mm/dd’. Note that characters must be lowercase.

HS_NLS_DATE_LANGUAGE

Note: Use the HS_NLS_DATE_LANGUAGE initialization

parameter to set the day and month names, and the AD, BC, PM,

and AM symbols for dates and time independently from the

language.

Default value: Value determined by HS_LANGUAGE parameter

Range of values: Any valid date format mask (up to 255 characters)

Default value: Value determined by HS_LANGUAGE parameter

Range of values: Any valid NLS_LANGUAGE value (up to 255 characters)
Heterogeneous Services Initialization Parameters A-7

HS_NLS_NCHAR
Specifies the language used in character date values coming from the non-Oracle

system. Date formats can be language independent. For example, if the format is

'dd/mm/yyyy', all three components of the character date are numbers. In the

format 'dd-mon-yyyy', however, the month component is the name abbreviated to

three characters. This abbreviation is very much language dependent. For example,

the abbreviation for the month April is "apr", which in French is "avr" (Avril).

Heterogeneous Services assumes that character date values fetched from the

non-Oracle system are in this format. Also, Heterogeneous Services sends character

date bind values in this format to the non-Oracle system.

HS_NLS_NCHAR

Informs Heterogeneous Services of the value of the national character set of the

non-Oracle data source. This value is the non-Oracle equivalent to the NATIONAL

CHARACTER SET parameter setting in Oracle’s CREATE DATABASE statement.

The HS_NLS_NCHAR value should be the character set ID of a character set

supported by Oracle's NLSRTL library.

HS_OPEN_CURSORS

Defines the maximum number of cursors that can be open on one connection to a

non-Oracle system instance.

The value never exceeds the number of open cursors in the Oracle database server.

Therefore, setting the same value as the OPEN_CURSORS initialization parameter

in the Oracle database server is recommended.

Default value: Value determined by HS_LANGUAGE parameter

Range of values: Any valid national character set (up to 255 characters)

See Also: "HS_LANGUAGE" on page A-6.

Default value: 50

Range of values: 1 - value of Oracle’s OPEN_CURSORS initialization parameter
A-8 Oracle8i Distributed Database Systems

HS_RPC_FETCH_REBLOCKING
HS_ROWID_CACHE_SIZE

Specifies the size of the Heterogeneous Services cache containing the non-Oracle

system equivalent of ROWIDs. The cache contains non-Oracle system ROWIDs

needed to support the WHERE CURRENT OF clause in a SQL statement or a

SELECT FOR UPDATE statement.

When the cache is full, the first slot in the cache is reused, then the second, and so

on. Only the last HS_ROWID_CACHE_SIZE non-Oracle system ROWIDs are

cached.

HS_RPC_FETCH_REBLOCKING

Controls whether Heterogeneous Services attempts to optimize performance of data

transfer between the Oracle database server and the HS agent connected to the

non-Oracle data store.

The following values are possible:

■ OFF disables reblocking of fetched data so that data is immediately sent from

agent to server.

■ ON enables reblocking, which means that data fetched from the non-Oracle

system is buffered in the agent and is not sent to the Oracle database server

until the amount of fetched data is equal or higher than HS_RPC_FETCH_SIZE.

However, any buffered data is returned immediately when a fetch indicates that

no more data exists or when the non-Oracle system reports an error.

Default value: 3

Range of values: 1 to 32767

Default value: ON

Range of values: OFF, ON

See Also: Chapter 9, "Developing Applications with

Heterogeneous Services" for more information.
Heterogeneous Services Initialization Parameters A-9

HS_RPC_FETCH_SIZE
HS_RPC_FETCH_SIZE

Tunes internal data buffering to optimize the data transfer rate between the server

and the agent process.

Increasing the value can reduce the number of network round trips needed to

transfer a given amount of data, but also tends to increase data bandwidth and to

reduce response time or latency as measured between issuing a query and

completion of all fetches for the query. Nevertheless, increasing the fetch size can

increase latency for the initial fetch results of a query, because the first fetch results

are not transmitted until additional data is available.

Default value: 4000

Range of values: Decimal integer (byte count)

See Also: Chapter 9, "Developing Applications with

Heterogeneous Services" for more information about array fetches.
A-10 Oracle8i Distributed Database Systems

Data Dictionary Views Available Through Heterogeneous Serv
B

Data Dictionary Views Available Through

Heterogeneous Services

This appendix lists the data dictionary views that are supported through

heterogeneous services mapping:

■ ALL_CATALOG

■ ALL_COL_COMMENTS

■ ALL_COL_PRIVS

■ ALL_COL_PRIVS_MADE

■ ALL_COL_PRIVS_RECD

■ ALL_CONSTRAINTS

■ ALL_CONS_COLUMNS

■ ALL_DB_LINKS

■ ALL_DEF_AUDIT_OPTS

■ ALL_DEPENDENCIES

■ ALL_ERRORS

■ ALL_INDEXES

■ ALL_IND_COLUMNS

■ ALL_OBJECTS

■ ALL_SEQUENCES

■ ALL_SNAPSHOTS

■ ALL_SOURCE
ices B-1

■ ALL_SYNONYMS

■ ALL_TABLES

■ ALL_TAB_COLUMNS

■ ALL_TAB_COMMENTS

■ ALL_TAB_PRIVS

■ ALL_TAB_PRIVS_MADE

■ ALL_TAB_PRIVS_RECD

■ ALL_TRIGGERS

■ ALL_USERS

■ ALL_VIEWS

■ AUDIT_ACTIONS

■ COLUMN_PRIVILEGES

■ DBA_CATALOG

■ DBA_COL_COMMENTS

■ DBA_COL_PRIVS

■ DBA_OBJECTS

■ DBA_ROLES

■ DBA_ROLE_PRIVS

■ DBA_SYS_PRIVS

■ DBA_TABLES

■ DBA_TAB_COLUMNS

■ DBA_TAB_COMMENTS

■ DBA_TAB_PRIVS

■ DBA_USERS

■ DICTIONARY

■ DICT_COLUMNS

■ DUAL

■ INDEX_STATS
B-2 Oracle8i Distributed Database Systems

■ PRODUCT_USER_PROFILE

■ RESOURCE_COST

■ ROLE_ROLE_PRIVS

■ ROLE_SYS_PRIVS

■ ROLE_TAB_PRIVS

■ SESSION_PRIVS

■ SESSION_ROLES

■ TABLE_PRIVILEGES

■ USER_AUDIT_OBJECT

■ USER_AUDIT_SESSION

■ USER_AUDIT_STATEMENT

■ USER_AUDIT_TRAIL

■ USER_CATALOG

■ USER_CLUSTERS

■ USER_CLU_COLUMNS

■ USER_COL_COMMENTS

■ USER_COL_PRIVS

■ USER_COL_PRIVS_MADE

■ USER_COL_PRIVS_RECD

■ USER_CONSTRAINTS

■ USER_CONS_COLUMNS

■ USER_DB_LINKS

■ USER_DEPENDENCIES

■ USER_ERRORS

■ USER_EXTENTS

■ USER_FREE_SPACE

■ USER_INDEXES

■ USER_IND_COLUMNS
Data Dictionary Views Available Through Heterogeneous Services B-3

■ USER_OBJECTS

■ USER_OBJ_AUDIT_OPTS

■ USER_RESOURCE_LIMITS

■ USER_ROLE_PRIVS

■ USER_SEGMENTS

■ USER_SEQUENCES

■ USER_SNAPSHOT_LOGS

■ USER_SOURCE

■ USER_SYNONYMS

■ USER_SYS_PRIVS

■ USER_TABLES

■ USER_TABLESPACES

■ USER_TAB_COLUMNS

■ USER_TAB_COMMENTS

■ USER_TAB_PRIVS

■ USER_TAB_PRIVS_MADE

■ USER_TAB_PRIVS_RECD

■ USER_TRIGGERS

■ USER_TS_QUOTAS

■ USER_USERS

■ USER_VIEWS
B-4 Oracle8i Distributed Database Systems

Data Dictionary Translation for Generic Connect
C

Data Dictionary Translation for Generic

Connectivity

Generic connectivity agents translate a query that refers to an Oracle8i data

dictionary table into a query that retrieves the data from a non-Oracle data

dictionary. You perform queries on data dictionary tables over the database link in

the same way you query data dictionary tables in Oracle8i. The generic connectivity

data dictionary is similar to the Oracle8i data dictionary in appearance and use.

Non-Oracle data dictionary information is supplied to the user in Oracle8i data

dictionary format.

To better understand the data dictionary support provided by generic connectivity,

read these sections:

■ Data Dictionary Translation Support

■ Data Dictionary Mapping

■ Generic Connectivity Data Dictionary Descriptions
ivity C-1

Data Dictionary Translation Support
Data Dictionary Translation Support
Data dictionary information is stored in the non-Oracle system as system tables and

accessed through ODBC or OLE DB application programming interfaces (APIs).

This section contains the following topics:

■ Accessing the Non-Oracle Data Dictionary

■ Supported Views and Tables

Accessing the Non-Oracle Data Dictionary
Accessing a non-Oracle data dictionary table or view is identical to accessing a data

dictionary in an Oracle database. You issue a SELECT statement specifying a

database link. The Oracle8i data dictionary view and column names are used to

access the non-Oracle data dictionary. Synonyms of supported views are also

acceptable.

For example, the following statement queries the data dictionary table ALL_USERS

to retrieve all users in the non-Oracle system:

SQL> SELECT * FROM all_users@sid1;

When you issue a data dictionary access query, the ODBC or OLE DB agent:

1. Maps the requested table, view, or synonym to one or more ODBC or OLE DB

APIs (see "Data Dictionary Mapping"). The agent translates all data dictionary

column names to their corresponding non-Oracle column names within the

query.

2. Sends the sequence of APIs to the non-Oracle system.

3. Possibly converts the retrieved non-Oracle data to give it the appearance of the

Oracle8i data dictionary table.

4. Passes the data dictionary information from the non-Oracle system table to the

Oracle8i.

Note: The values returned when querying the generic

connectivity data dictionary may not be the same as the ones

returned by the Oracle Enterprise Manager DESCRIBE command.
C-2 Oracle8i Distributed Database Systems

Data Dictionary Translation Support
Supported Views and Tables
Generic connectivity supports only these views and tables:

■ ALL_CATALOG

■ ALL_COL_COMMENTS

■ ALL_CONS_COLUMNS

■ ALL_CONSTRAINTS

■ ALL_IND_COLUMNS

■ ALL_INDEXES

■ ALL_OBJECTS

■ ALL_TAB_COLUMNS

■ ALL_TAB_COMMENTS

■ ALL_TABLES

■ ALL_USERS

■ ALL_VIEWS

■ DICTIONARY

■ USER_CATALOG

■ USER_COL_COMMENTS

■ USER_CONS_COLUMNS

■ USER_CONSTRAINTS

■ USER_IND_COLUMNS

■ USER_INDEXES

■ USER_OBJECTS

■ USER_TAB_COLUMNS

■ USER_TAB_COMMENTS

■ USER_TABLES

■ USER_USERS

■ USER_VIEWS
Data Dictionary Translation for Generic Connectivity C-3

Data Dictionary Mapping
If you use an unsupported view, then you receive the Oracle8i message for no rows

selected.

If you want to query data dictionary views using SELECT ... FROM DBA_*, first

connect as Oracle user SYSTEM or SYS. Otherwise, you receive the following error

message:

ORA-28506: Parse error in data dictionary translation for %s stored in %s

Using generic connectivity, queries of the supported data dictionary tables and

views beginning with the characters "ALL_" may return rows from the non-Oracle

system when you do not have access privileges for those non-Oracle objects. When

querying an Oracle database with the Oracle data dictionary, rows are returned only

for those objects you are permitted to access.

Data Dictionary Mapping
The tables in this section list Oracle data dictionary view names and the equivalent

ODBC or OLE DB APIs used.

Table 9–1 Generic Connectivity Data Dictionary Mapping

View ODBC API OLE DB API

ALL_CATALOG SQLTables DBSCHEMA_CATALOGS

ALL_COL_COMMENTS SQLColumns DBSCHEMA_COLUMNS

ALL_CONS_COLUMNS SQLPrimaryKeys, SQLForeignKeys DBSCHEMA_PRIMARY_KEYS,
DBSCHEMA_FOREIGN_KEYS

ALL_CONSTRAINTS SQLPrimaryKeys, SQLForeignKeys DBSCHEMA_PRIMARY_KEYS,
DBSCHEMA_FOREIGN_KEYS

ALL_IND_COLUMNS SQLStatistics DBSCHEMA_STATISTICS

ALL_INDEXES SQLStatistics DBSCHEMA_STATISTICS

ALL_OBJECTS SQLTables, SQLProcedures, SQLStatistics DBSCHEMA_TABLES,
DBSCHEMA_PROCEDURES,
DBSCHEMA_STATISTICS

ALL_TAB_COLUMNS SQLColumns DBSCHEMA_COLUMNS

ALL_TAB_COMMENTS SQLTables DBSCHEMA_TABLES

ALL_TABLES SQLStatistics DBSCHEMA_STATISTICS

ALL_USERS SQLTables DBSCHEMA_TABLES
C-4 Oracle8i Distributed Database Systems

Data Dictionary Mapping
Default Column Values
The generic connectivity data dictionary differs from a typical Oracle database

server data dictionary. The Oracle database server columns that are missing in a

non-Oracle data dictionary table are filled with the following, depending on the

column type:

■ Zeros

■ Spaces

■ NULL values

■ Default values

ALL_VIEWS SQLTables DBSCHEMA_TABLES

DICTIONARY SQLTables DBSCHEMA_TABLES

USER_CATALOG SQLTables DBSCHEMA_TABLES

USER_COL_COMMENTS SQLColumns DBSCHEMA_COLUMNS

USER_CONS_COLUMNS SQLPrimaryKeys, SQLForeignKeys DBSCHEMA_PRIMARY_KEYS,
DBSCHEMA_FOREIGN_KEYS

USER_CONSTRAINTS SQLPrimaryKeys, SQLForeignKeys DBSCHEMA_PRIMARY_KEYS,
DBSCHEMA_FOREIGN_KEYS

USER_IND_COLUMNS SQLStatistics DBSCHEMA_STATISTICS

USER_INDEXES SQLStatistics DBSCHEMA_STATISTICS

USER_OBJECTS SQLTables, SQLProcedures, SQLStatistics DBSCHEMA_TABLES,
DBSCHEMA_PROCEDURES,
DBSCHEMA_STATISTICS

USER_TAB_COLUMNS SQLColumns DBSCHEMA_COLUMNS

USER_TAB_COMMENTS SQLTables DBSCHEMA_TABLES

USER_TABLES SQLStatistics DBSCHEMA_STATISTICS

USER_USERS SQLTables DBSCHEMA_TABLES

USER_VIEWS SQLTables DBSCHEMA_TABLES

Table 9–1 Generic Connectivity Data Dictionary Mapping

View ODBC API OLE DB API
Data Dictionary Translation for Generic Connectivity C-5

Generic Connectivity Data Dictionary Descriptions
Generic Connectivity Data Dictionary Descriptions
The generic connectivity data dictionary tables and views provide this information:

■ Name, data type, and width of each column

■ The contents of columns with fixed values

In the descriptions that follow, the values in the Null? column may differ from the

Oracle8i data dictionary tables and views. Any default value is shown to the right

of an item.

ALL_CATALOG

ALL_COL_COMMENTS

ALL_CONS_COLUMNS

Name Null? Type Value

OWNER NOT NULL VARCHAR2(30)

TABLE_NAME NOT NULL VARCHAR2(30)

TABLE_TYPE VARCHAR2(11) "TABLE" or
"VIEW" or
"SYNONYM"

Name Null? Type Value

OWNER NOT NULL VARCHAR2(30)

TABLE_NAME NOT NULL VARCHAR2(30)

COLUMN_NAME NOT NULL VARCHAR2(30)

COMMENTS VARCHAR2(4000) NULL

Name Null? Type Value

OWNER NOT NULL VARCHAR2(30)

CONSTRAINT_NAME NOT NULL VARCHAR2(30)

TABLE_NAME NOT NULL VARCHAR2(30)
C-6 Oracle8i Distributed Database Systems

ALL_IND_COLUMNS
ALL_CONSTRAINTS

ALL_IND_COLUMNS

COLUMN_NAME VARCHAR2(4000)

POSITION NUMBER

Name Null? Type Value

OWNER NOT NULL VARCHAR2(30)

CONSTRAINT_NAME NOT NULL VARCHAR2(30)

CONSTRAINT_TYPE VARCHAR2(1) "R" or "P"

TABLE_NAME NOT NULL VARCHAR2(30)

SEARCH_CONDITION LONG NULL

R_OWNER VARCHAR2(30)

R_CONSTRAINT_NAME VARCHAR2(30)

DELETE_RULE VARCHAR2(9) "CASCADE" or
"NO ACTION"
or "SET NULL"

STATUS VARCHAR2(8) NULL

DEFERRABLE VARCHAR2(14) NULL

DEFERRED VARCHAR2(9) NULL

VALIDATED VARCHAR2(13) NULL

GENERATED VARCHAR2(14) NULL

BAD VARCHAR2(3) NULL

RELY VARCHAR2(4) NULL

LAST_CHANGE DATE NULL

Name Null? Type Value

INDEX_OWNER NOT NULL VARCHAR2(30)

Name Null? Type Value
Data Dictionary Translation for Generic Connectivity C-7

ALL_INDEXES
ALL_INDEXES

INDEX_NAME NOT NULL VARCHAR2(30)

TABLE_OWNER NOT NULL VARCHAR2(30)

TABLE_NAME NOT NULL VARCHAR2(30)

COLUMN_NAME VARCHAR2(4000)

COLUMN_POSITION NOT NULL NUMBER

COLUMN_LENGTH NOT NULL NUMBER

DESCEND VARCHAR2(4) "DESC" or
"ASC"

Name Null? Type Value

OWNER NOT NULL VARCHAR2(30)

INDEX_NAME NOT NULL VARCHAR2(30)

INDEX_TYPE VARCHAR2(27) NULL

TABLE_OWNER NOT NULL VARCHAR2(30)

TABLE_NAME NOT NULL VARCHAR2(30)

TABLE_TYPE CHAR(5) "TABLE"

UNIQUENESS VARCHAR2(9) "UNIQUE" or
"NONUNIQUE"

COMPRESSION VARCHAR2(8) NULL

PREFIX_LENGTH NUMBER 0

TABLESPACE_NAME VARCHAR2(30) NULL

INI_TRANS NUMBER 0

MAX_TRANS NUMBER 0

INITIAL_EXTENT NUMBER 0

NEXT_EXTENT NUMBER 0

MIN_EXTENTS NUMBER 0

MAX_EXTENTS NUMBER 0

Name Null? Type Value
C-8 Oracle8i Distributed Database Systems

ALL_INDEXES
PCT_INCREASE NUMBER 0

PCT_THRESHOLD NUMBER 0

INCLUDE_COLUMNS NUMBER 0

FREELISTS NUMBER 0

FREELIST_GROUPS NUMBER 0

PCT_FREE NUMBER 0

LOGGING VARCHAR2(3) NULL

BLEVEL NUMBER 0

LEAF_BLOCKS NUMBER 0

DISTINCT_KEYS NUMBER

AVG_LEAF_BLOCKS_PER_KEY NUMBER 0

AVG_DATA_BLOCKS_PER_KEY NUMBER 0

CLUSTERING_FACTOR NUMBER 0

STATUS VARCHAR2(8) NULL

NUM_ROWS NUMBER 0

SAMPLE_SIZE NUMBER 0

LAST_ANALYZED DATE NULL

DEGREE VARCHAR2(40) NULL

INSTANCES VARCHAR2(40) NULL

PARTITIONED VARCHAR2(3) NULL

TEMPORARY VARCHAR2(1) NULL

GENERATED VARCHAR2(1) NULL

SECONDARY VARCHAR2(1) NULL

BUFFER_POOL VARCHAR2(7) NULL

USER_STATS VARCHAR2(3) NULL

DURATION VARCHAR2(15) NULL

PCT_DIRECT_ACCESS NUMBER 0

ITYP_OWNER VARCHAR2(30) NULL

Name Null? Type Value
Data Dictionary Translation for Generic Connectivity C-9

ALL_OBJECTS
ALL_OBJECTS

ITYP_NAME VARCHAR2(30) NULL

PARAMETERS VARCHAR2(1000) NULL

GLOBAL_STATS VARCHAR2(3) NULL

DOMIDX_STATUS VARCHAR2(12) NULL

DOMIDX_OPSTATUS VARCHAR2(6) NULL

FUNCIDX_STATUS VARCHAR2(8) NULL

Name Null? Type Value

OWNER NOT NULL VARCHAR2(30)

OBJECT_NAME NOT NULL VARCHAR2(30)

SUBOBJECT_NAME VARCHAR2(30) NULL

OBJECT_ID NOT NULL NUMBER 0

DATA_OBJECT_ID NUMBER 0

OBJECT_TYPE VARCHAR2(18) "TABLE" or
"VIEW" or
"SYNONYM" or
"INDEX" or
"PROCEDURE"

CREATED NOT NULL DATE NULL

LAST_DDL_TIME NOT NULL DATE NULL

TIMESTAMP VARCHAR2(19) NULL

STATUS VARCHAR2(7) NULL

TEMPORARY VARCHAR2(1) NULL

GENERATED VARCHAR2(1) NULL

SECONDARY VARCHAR2(1) NULL

Name Null? Type Value
C-10 Oracle8i Distributed Database Systems

ALL_TAB_COLUMNS
ALL_TAB_COLUMNS

Name Null? Type Value

OWNER NOT NULL VARCHAR2(30)

TABLE_NAME NOT NULL VARCHAR2(30)

COLUMN_NAME NOT NULL VARCHAR2(30)

DATA_TYPE VARCHAR2(106)

DATA_TYPE_MOD VARCHAR2(3) NULL

DATA_TYPE_OWNER VARCHAR2(30) NULL

DATA_LENGTH NOT NULL NUMBER

DATA_PRECISION NUMBER

DATA_SCALE NUMBER

NULLABLE VARCHAR2(1) "Y" or "N"

COLUMN_ID NOT NULL NUMBER

DEFAULT_LENGTH NUMBER 0

DATA_DEFAULT LONG NULL

NUM_DISTINCT NUMBER 0

LOW_VALUE RAW(32) NULL

HIGH_VALUE RAW(32) NULL

DENSITY NUMBER 0

NUM_NULLS NUMBER 0

NUM_BUCKETS NUMBER 0

LAST_ANALYZED DATE NULL

SAMPLE_SIZE NUMBER 0

CHARACTER_SET_NAME VARCHAR2(44) NULL

CHAR_COL_DEC_LENGTH NUMBER 0

GLOBAL_STATS VARCHAR2(3) NULL

USER_STATS VARCHAR2(3) NULL

AVG_COL_LEN NUMBER 0
Data Dictionary Translation for Generic Connectivity C-11

ALL_TAB_COMMENTS
ALL_TAB_COMMENTS

ALL_TABLES

Name Null? Type Value

OWNER NOT NULL VARCHAR2(30)

TABLE_NAME NOT NULL VARCHAR2(30)

TABLE_TYPE VARCHAR2(11) "TABLE" or
"VIEW"

COMMENTS VARCHAR2(4000) NULL

Name Null? Type Value

OWNER NOT NULL VARCHAR2(30)

TABLE_NAME NOT NULL VARCHAR2(30)

TABLESPACE_NAME VARCHAR2(30) NULL

CLUSTER_NAME VARCHAR2(30) NULL

IOT_NAME VARCHAR2(30) NULL

PCT_FREE NUMBER 0

PCT_USED NUMBER 0

INI_TRANS NUMBER 0

MAX_TRANS NUMBER 0

INITIAL_EXTENT NUMBER 0

NEXT_EXTENT NUMBER 0

MIN_EXTENTS NUMBER 0

MAX_EXTENTS NUMBER 0

PCT_INCREASE NUMBER 0

FREELISTS NUMBER 0

FREELIST_GROUPS NUMBER 0

LOGGING VARCHAR2(3) NULL

BACKED_UP VARCHAR2(1) NULL
C-12 Oracle8i Distributed Database Systems

ALL_TABLES
NUM_ROWS NUMBER

BLOCKS NUMBER

EMPTY_BLOCKS NUMBER 0

AVG_SPACE NUMBER 0

CHAIN_CNT NUMBER 0

AVG_ROW_LEN NUMBER 0

AVG_SPACE_FREELIST_BLOCKS NUMBER 0

NUM_FREELIST_BLOCKS NUMBER 0

DEGREE VARCHAR2(10) NULL

INSTANCES VARCHAR2(10) NULL

CACHE VARCHAR2(5) NULL

TABLE_LOCK VARCHAR2(8) NULL

SAMPLE_SIZE NUMBER 0

LAST_ANALYZED DATE NULL

PARTITIONED VARCHAR2(3) NULL

IOT_TYPE VARCHAR2(12) NULL

TEMPORARY VARHCAR2(1) NULL

SECONDARY VARCHAR2(1) NULL

NESTED VARCHAR2(3) NULL

BUFFER_POOL VARCHAR2(7) NULL

ROW_MOVEMENT VARCHAR2(8) NULL

GLOBAL_STATS VARCHAR2(3) NULL

USER_STATS VARCHAR2(3) NULL

DURATION VARHCAR2(15) NULL

SKIP_CORRUPT VARCHAR2(8) NULL

MONITORING VARCHAR2(3) NULL

Name Null? Type Value
Data Dictionary Translation for Generic Connectivity C-13

ALL_USERS
ALL_USERS

ALL_VIEWS

DICTIONARY

Name Null? Type Value

USERNAME NOT NULL VARCHAR2(30)

USER_ID NOT NULL NUMBER 0

CREATED NOT NULL DATE NULL

Name Null? Type Value

OWNER NOT NULL VARCHAR2(30)

VIEW_NAME NOT NULL VARCHAR2(30)

TEXT_LENGTH NUMBER 0

TEXT NOT NULL LONG NULL

TYPE_TEXT_LENGTH NUMBER 0

TYPE_TEXT VARCHAR2(4000) NULL

OID_TEXT_LENGTH NUMBER 0

OID_TEXT VARCHAR2(4000) NULL

VIEW_TYPE_OWNER VARCHAR2(30) NULL

VIEW_TYPE VARCHAR2(30) NULL

Name Null? Type Value

TABLE_NAME VARCHAR2(30)

COMMENTS VARCHAR2(4000) NULL
C-14 Oracle8i Distributed Database Systems

USER_CONSTRAINTS
USER_CATALOG

USER_COL_COMMENTS

USER_CONS_COLUMNS

USER_CONSTRAINTS

Name Null? Type Value

TABLE_NAME NOT NULL VARCHAR2(30)

TABLE_TYPE VARCHAR2(11) "TABLE" or
"VIEW" or
"SYNONYM"

Name Null? Type Value

TABLE_NAME NOT NULL VARCHAR2(30)

COLUMN_NAME NOT NULL VARCHAR2(30)

COMMENTS VARCHAR2(4000) NULL

Name Null? Type Value

OWNER NOT NULL VARCHAR2(30)

CONSTRAINT_NAME NOT NULL VARCHAR2(30)

TABLE_NAME NOT NULL VARCHAR2(30)

COLUMN_NAME VARCHAR2(4000)

POSITION NUMBER

Name Null? Type Value

OWNER NOT NULL VARCHAR2(30)

CONSTRAINT_NAME NOT NULL VARCHAR2(30)

CONSTRAINT_TYPE VARCHAR2(1) "R" or "P"

TABLE_NAME NOT NULL VARCHAR2(30)
Data Dictionary Translation for Generic Connectivity C-15

USER_IND_COLUMNS
USER_IND_COLUMNS

SEARCH_CONDITION LONG NULL

R_OWNER VARCHAR2(30)

R_CONSTRAINT_NAME VARCHAR2(30)

DELETE_RULE VARCHAR2(9) "CASCADE" or
"NOACTION"
or "SET NULL"

STATUS VARCHAR2(8) NULL

DEFERRABLE VARCHAR2(14) NULL

DEFERRED VARCHAR2(9) NULL

VALIDATED VARCHAR2(13) NULL

GENERATED VARCHAR2(14) NULL

BAD VARCHAR2(3) NULL

RELY VARCHAR2(4) NULL

LAST_CHANGE DATE NULL

Name Null? Type Value

INDEX_NAME VARCHAR2(30)

TABLE_NAME VARCHAR2(30)

COLUMN_NAME VARCHAR2(4000)

COLUMN_POSITION NUMBER

COLUMN_LENGTH NUMBER

DESCEND VARCHAR2(4) "DESC" or
"ASC"

Name Null? Type Value
C-16 Oracle8i Distributed Database Systems

USER_INDEXES
USER_INDEXES

Name Null? Type Value

INDEX_NAME NOT NULL VARCHAR2(30)

INDEX_TYPE VARCHAR2(27) NULL

TABLE_OWNER NOT NULL VARCHAR2(30)

TABLE_NAME NOT NULL VARCHAR2(30)

TABLE_TYPE VARCHAR2(11) "TABLE"

UNIQUENESS VARCHAR2(9) "UNIQUE" or
"NONUNIQUE"

COMPRESSION VARCHAR2(8) NULL

PREFIX_LENGTH NUMBER 0

TABLESPACE_NAME VARCHAR2(30) NULL

INI_TRANS NUMBER 0

MAX_TRANS NUMBER 0

INITIAL_EXTENT NUMBER 0

NEXT_EXTENT NUMBER 0

MIN_EXTENTS NUMBER 0

MAX_EXTENTS NUMBER 0

PCT_INCREASE NUMBER 0

PCT_THRESHOLD NUMBER 0

INCLUDE_COLUMNS NUMBER 0

FREELISTS NUMBER 0

FREELIST_GROUPS NUMBER 0

PCT_FREE NUMBER 0

LOGGING VARCHAR2(3) NULL

BLEVEL NUMBER 0

LEAF_BLOCKS NUMBER 0

DISTINCT_KEYS NUMBER
Data Dictionary Translation for Generic Connectivity C-17

USER_INDEXES
AVG_LEAF_BLOCKS_PER_KEY NUMBER 0

AVG_DATA_BLOCKS_PER_KEY NUMBER 0

CLUSTERING_FACTOR NUMBER 0

STATUS VARCHAR2(8) NULL

NUM_ROWS NUMBER 0

SAMPLE_SIZE NUMBER 0

LAST_ANALYZED DATE NULL

DEGREE VARCHAR2(40) NULL

INSTANCES VARCHAR2(40) NULL

PARTITIONED VARCHAR2(3) NULL

TEMPORARY VARCHAR2(1) NULL

GENERATED VARCHAR2(1) NULL

SECONDARY VARCHAR2(1) NULL

BUFFER_POOL VARCHAR2(7) NULL

USER_STATS VARCHAR2(3) NULL

DURATION VARHCAR2(15) NULL

PCT_DIRECT_ACCESS NUMBER 0

ITYP_OWNER VARCHAR2(30) NULL

ITYP_NAME VARCHAR2(30) NULL

PARAMETERS VARCHAR2(1000) NULL

GLOBAL_STATS VARCHAR2(3) NULL

DOMIDX_STATUS VARCHAR2(12) NULL

DOMIDX_OPSTATUS VARCHAR2(6) NULL

FUNCIDX_STATUS VARCHAR2(8) NULL

Name Null? Type Value
C-18 Oracle8i Distributed Database Systems

USER_TAB_COLUMNS
USER_OBJECTS

USER_TAB_COLUMNS

Name Null? Type Value

OBJECT_NAME VARCHAR2(128)

SUBOBJECT_NAME VARCHAR2(30) NULL

OBJECT_ID NUMBER 0

DATA_OBJECT_ID NUMBER 0

OBJECT_TYPE VARCHAR2(18) "TABLE" or
"VIEW" or
"SYNONYM" or
"INDEX" or
"PROCEDURE"

CREATED DATE NULL

LAST_DDL_TIME DATE NULL

TIMESTAMP VARCHAR2(19) NULL

STATUS VARCHAR2(7) NULL

TEMPORARY VARCHAR2(1) NULL

GENERATED VARCHAR2(1) NULL

SECONDARY VARCHAR2(1) NULL

Name Null? Type Value

TABLE_NAME NOT NULL VARCHAR2(30)

COLUMN_NAME NOT NULL VARCHAR2(30)

DATA_TYPE VARCHAR2(106)

DATA_TYPE_MOD VARCHAR2(3) NULL

DATA_TYPE_OWNER VARCHAR2(30) NULL

DATA_LENGTH NOT NULL NUMBER

DATA_PRECISION NUMBER

DATA_SCALE NUMBER
Data Dictionary Translation for Generic Connectivity C-19

USER_TAB_COMMENTS
USER_TAB_COMMENTS

NULLABLE VARCHAR2(1) "Y" or "N"

COLUMN_ID NOT NULL NUMBER

DEFAULT_LENGTH NUMBER NULL

DATA_DEFAULT LONG NULL

NUM_DISTINCT NUMBER NULL

LOW_VALUE RAW(32) NULL

HIGH_VALUE RAW(32) NULL

DENSITY NUMBER 0

NUM_NULLS NUMBER 0

NUM_BUCKETS NUMBER 0

LAST_ANALYZED DATE NULL

SAMPLE_SIZE NUMBER 0

CHARACTER_SET_NAME VARCHAR2(44) NULL

CHAR_COL_DECL_LENGTH NUMBER 0

GLOBAL_STATS VARCHAR2(3) NULL

USER_STATS VARCHAR2(3) NULL

AVG_COL_LEN NUMBER 0

Name Null? Type Value

TABLE_NAME NOT NULL VARCHAR2(30)

TABLE_TYPE VARCHAR2(11) "TABLE" or
"VIEW"

COMMENTS VARCHAR2(4000) NULL

Name Null? Type Value
C-20 Oracle8i Distributed Database Systems

USER_TABLES
USER_TABLES

Name Null? Type Value

TABLE_NAME NOT NULL VARCHAR2(30)

TABLESPACE_NAME VARCHAR2(30) NULL

CLUSTER_NAME VARCHAR2(30) NULL

IOT_NAME VARCHAR2(30) NULL

PCT_FREE NUMBER 0

PCT_USED NUMBER 0

INI_TRANS NUMBER 0

MAX_TRANS NUMBER 0

INITIAL_EXTENT NUMBER 0

NEXT_EXTENT NUMBER 0

MIN_EXTENTS NUMBER 0

MAX_EXTENTS NUMBER 0

PCT_INCREASE NUMBER 0

FREELISTS NUMBER 0

FREELIST_GROUPS NUMBER 0

LOGGING VARCHAR2(3) NULL

BACKED_UP VARCHAR2(1) NULL

NUM_ROWS NUMBER

BLOCKS NUMBER

EMPTY_BLOCKS NUMBER 0

AVG_SPACE NUMBER 0

CHAIN_CNT NUMBER 0

AVG_ROW_LEN NUMBER 0

AVG_SPACE_FREELIST_BLOCKS NUMBER 0

NUM_FREELIST_BLOCKS NUMBER 0

DEGREE VARCHAR2(10) NULL
Data Dictionary Translation for Generic Connectivity C-21

USER_USERS
USER_USERS

INSTANCES VARCHAR2(10) NULL

CACHE VARCHAR2(5) NULL

TABLE_LOCK VARCHAR2(8) NULL

SAMPLE_SIZE NUMBER 0

LAST_ANALYZED DATE NULL

PARTITIONED VARCHAR2(3) NULL

IOT_TYPE VARCHAR2(12) NULL

TEMPORARY VARHCAR2(1) NULL

SECONDARY VARCHAR2(1) NULL

NESTED VARCHAR2(3) NULL

BUFFER_POOL VARCHAR2(7) NULL

ROW_MOVEMENT VARCHAR2(8) NULL

GLOBAL_STATS VARCHAR2(3) NULL

USER_STATS VARCHAR2(3) NULL

DURATION VARCHAR2(15) NULL

SKIP_CORRUPT VARCHAR2(8) NULL

MONITORING VARCHAR2(3) NULL

Name Null? Type Value

USERNAME NOT NULL VARCHAR2(30)

USER_ID NOT NULL NUMBER 0

ACCOUNT_STATUS NOT NULL VARCHAR2(32) "OPEN"

LOCK_DATE DATE NULL

EXPIRY_DATE DATE NULL

DEFAULT_TABLESPACE NOT NULL VARCHAR2(30) NULL

TEMPORARY_TABLESPACE NOT NULL VARCHAR2(30) NULL

Name Null? Type Value
C-22 Oracle8i Distributed Database Systems

USER_VIEWS
USER_VIEWS

CREATED NOT NULL DATE NULL

INITIAL_RSRC_CONSUMER_GROUP VARCHAR2(30) NULL

EXTERNAL_NAME VARCHAR2(4000) NULL

Name Null? Type Value

VIEW_NAME NOT NULL VARCHAR2(30)

TEXT_LENGTH NUMBER 0

TEXT LONG NULL

TYPE_TEXT_LENGTH NUMBER 0

TYPE_TEXT VARCHAR2(4000) NULL

OID_TEXT_LENGTH NUMBER 0

OID_TEXT VARCHAR2(4000) NULL

VIEW_TYPE_OWNER VARCHAR2(30) NULL

VIEW_TYPE VARCHAR2(30) NULL

Name Null? Type Value
Data Dictionary Translation for Generic Connectivity C-23

USER_VIEWS
C-24 Oracle8i Distributed Database Systems

Datatype Mapp
D

Datatype Mapping

Oracle8i maps the datatypes used in ODBC and OLE DB compliant data sources to

supported Oracle datatypes. When the results of a query are returned, Oracle8i
converts the ODBC or OLE DB datatypes to Oracle datatypes. For information on

how the datatypes are mapped for each data source, see the following:

■ Mapping ODBC Datatypes to Oracle Datatypes

■ Mapping OLE DB Datatypes to Oracle Datatypes
ing D-1

Mapping ODBC Datatypes to Oracle Datatypes
Mapping ODBC Datatypes to Oracle Datatypes
This table shows the mapping from ODBC datatypes to Oracle datatypes:

ODBC Oracle

SQL_BIGINT NUMBER(19,0)

SQL_BINARY RAW

SQL_CHAR CHAR

SQL_DATE DATE

SQL_DECIMAL(p,s) NUMBER(p,s)

SQL_DOUBLE FLOAT(49)

SQL_FLOAT FLOAT(49)

SQL_INTEGER NUMBER(10)

SQL_LONGVARBINARY LONG RAW

SQL_LONGVARCHAR LONG

SQL_NUMERIC(p,s) NUMBER(p,s)

SQL_REAL FLOAT(23)

SQL_SMALLINT NUMBER(5)

SQL_TIME DATE

SQL_TIMESTAMP DATE

SQL_TINYINT NUMBER(3)

SQL_VARCHAR VARCHAR
D-2 Oracle8i Distributed Database Systems

Mapping OLE DB Datatypes to Oracle Datatypes
Mapping OLE DB Datatypes to Oracle Datatypes
This table shows the mapping from OLE DB datatypes to Oracle datatypes:

OLE DB Oracle

DBTYPE_UI1 NUMBER(3)

DBTYPE_I1 NUMBER(3)

DBTYPE_UI2 NUMBER(5)

DBTYPE_I2 NUMBER(5)

DBTYPE_BOOL NUMBER(5)

DBTYPE_UI4 NUMBER(10)

DBTYPE_I4 NUMBER(10)

DBTYPE_UI8 NUMBER(19,0)

DBTYPE_I8 NUMBER(19,0)

DBTYPE_NUMERIC(p,s) NUMBER(p,s)

DBTYPE_R4 FLOAT(23)

DBTYPE_R8 FLOAT(49)

DBTYPE_DECIMAL FLOAT(49)

DBTYPE_STR VARCHAR2

DBTYPE_WSTR VARCHAR2

DBTYPE_CY NUMBER(19,0)

DBTYPE_DBDATE DATE

DBTYPE_DBTIME DATE

DBTYPE_DBTIMESTAMP DATE

DBTYPE_BYTES RAW

DTYPE_BYTES (long attribute) LONG RAW

DBTYPE_STRING (long attribute) LONG
Datatype Mapping D-3

Mapping OLE DB Datatypes to Oracle Datatypes
D-4 Oracle8i Distributed Database Systems

Index

A
abort response, 4-13

two-phase commit, 4-13

administration

distributed databases, 2-1

tools, 1-31

agents

generic connectivity, 6-6

Heterogeneous Services, 6-3, 6-5

definition, 1-5

disabling self-registration, 7-9

registering, 7-5, 7-6, 7-7

specifying initialization parameters for, 7-4

aggregate functions, 2-33

ALL_DB_LINKS view, 2-21

ALTER SESSION

system privilege, 3-2

ALTER SESSION statement

ADVISE clause, 5-13

CLOSE DATABASE LINK clause, 3-2

ALTER SYSTEM statement

DISABLE DISTRIBUTED RECOVERY

clause, 5-28

ENABLE DISTRIBUTED RECOVERY

clause, 5-28

ANALYZE TABLE statement, 3-7

analyzing tables

cost-based optimization, 3-7

application development

constraints, 3-3

database links

controlling connections, 3-2

distributed databases, 3-1

analyzing execution plan, 3-10

controlling connections, 3-2

handling errors, 3-3

handling RPC errors, 3-12

managing distribution of data, 3-2

managing referential integrity, 3-3

optimizing distributed queries, 1-47

overview, 1-44

remote procedure calls, 1-46

tuning distributed queries, 3-3

tuning using collocated inline views, 3-4

using cost-based optimization, 3-5

using hints to tune queries, 3-8

distributing data, 3-2

Heterogeneous Services, 9-1, 9-2

controlling array fetches between non-Oracle

server and agent, 9-11

controlling array fetches between Oracle

server and agent, 9-11

controlling reblocking of array fetches, 9-11

DBMS_HS_PASSTHROUGH package, 9-2

pass-through SQL, 9-2

using bulk fetches, 9-9

using OCI for bulk fetches, 9-10

referential integrity, 3-3

remote connections

terminating, 3-2

using Heterogeneous Services, 9-1

applications

errors

RAISE_APPLICATION_ERROR()

procedure, 3-12

array fetches, 9-10

agents, 9-11
Index-1

auditing

database links, 1-31

AUTHENTICATED BY clause

CREATE DATABASE LINK statement, 2-16

authentication

database links, 1-25

B
bind queries

executing using pass-through SQL, 9-7

BIND_INOUT_VARIABLE procedure, 9-3, 9-7

BIND_OUT_VARIABLE procedure, 9-3, 9-6

BIND_VARIABLE procedure, 9-3

buffers

multiple rows, 9-8

bulk fetches

optimizing data transfers using, 9-9

C
calls

remote procedure, 1-46

CATHO.SQL script

installing data dictionary for Heterogeneous

Services, 7-2

centralized user management

distributed systems, 1-27

character sets

Heterogeneous Services, A-6

client/server architectures

distributed databases, 1-7

direct and indirect connections, 1-9

NLS, 1-47

CLOSE DATABASE LINK clause

ALTER SESSION statement, 3-2

CLOSE_CURSOR function, 9-3

closing database links, 2-18

collocated inline views

tuning distributed queries, 3-4

comments

in COMMIT statements, 5-13

commit phase, 4-12, 4-24

two-phase commit, 4-14

commit point site, 4-7

commit point strength, 4-9, 5-5, A-2

determining, 4-10

distributed transactions, 4-7, 4-9

how Oracle determines, 4-9

commit point strength

definition, 4-9

specifying, 5-5

COMMIT statement

COMMENT parameter, 5-13, 5-26

FORCE clause, 5-13, 5-14, 5-15

forcing, 5-12

two-phase commit and, 1-36

COMMIT_POINT_STRENGTH initialization

parameter, 4-9, 5-6

committing transactions

distributed

commit point site, 4-7

configuring generic connectivity, 8-6

configuring transparent gateways, 7-2

connected user database links, 2-12

advantages and disadvantages, 1-17

creating, 2-12

definition, 1-17

example, 1-20

REMOTE_OS_AUTHENT initialization

parameter, 1-18

connection qualifiers

database links and, 2-13

connections

remote

terminating, 3-2

constraints

application development issues, 3-3

ORA-02055

constrain violation, 3-3

cost-based optimization, 3-5

distributed databases, 1-47

hints, 3-8

using for distributed queries, 3-5

CREATE DATABASE LINK statement, 2-9

CREATE_INST_INIT procedure, 7-18

creating connected user links

scenario, 2-36

creating current user links

scenario, 2-37
Index-2

creating database links, 2-8

connected user, 2-12

current user, 2-12

example, 1-20

fixed user, 2-11

private, 2-9

public, 2-10

service names within link names, 2-13

specifying types, 2-9

creating fixed user links

scenario, 2-34, 2-35

current user database links, 2-12

advantages and disadvantages, 1-19

cannot access in shared schema, 1-28

creating, 2-12

definition, 1-17

example, 1-20

schema independence, 1-28

cursors

and closing database links, 3-2

D
data dictionary

contents with generic connectivity, C-3

installing for Heterogeneous Services, 7-2

mapping for generic connectivity, C-4

Oracle server name/SQL Server name, C-4

purging pending rows from, 5-15, 5-16

tables, 6-4

translation support for generic connectivity, C-2

data dictionary views

DBA_DB_LINKS, 2-21, 5-6, 5-9

generic connectivity, C-3

Heterogeneous Services, 7-9, B-1

USER, 5-6, 5-9

data encryption

distributed systems, 1-30

data manipulation language

statements allowed in distributed

transactions, 1-33

database links

advantages, 1-13

auditing, 1-31

authentication, 1-25

without passwords, 1-26

closing, 2-18, 3-2

connected user, 2-12, 2-36

advantages and disadvantages, 1-17

definition, 1-17

connections

controlling, 3-2

determining open, 2-24

creating, 2-8

connected user, 2-12, 2-36

connected user, shared, 2-36

current user, 2-12, 2-37

example, 1-20

fixed user, 2-11, 2-34

fixed user, shared, 2-35

obtaining necessary privileges, 2-8

private, 2-9

public, 2-10

scenarios, 2-34

shared, 2-14, 2-15

specifying types, 2-9

current user, 1-16, 2-12

advantages and disadvantages, 1-19

definition, 1-17

data dictionary views

ALL, 5-6, 5-9

DBA_DB_LINKS, 5-6, 5-9

USER, 2-21, 5-6, 5-9

definition, 1-10

distributed queries, 1-34

distributed transactions, 1-35

dropping, 2-19

enforcing global naming, 2-3

enterprise users and, 1-28

fixed user, 2-34

advantages and disadvantages, 1-18

definition, 1-17

global

definition, 1-16

global names, 1-13

global object names, 1-36

handling errors, 3-3

heterogeneous systems, 6-2, 7-4

limiting number of connections, 2-20

listing, 2-21, 5-6, 5-9
Index-3

managing, 2-18

minimizing network connections, 2-14

name resolution, 1-36

schema objects, 1-38

views, synonyms, and procedures, 1-41

when global database name is complete, 1-37

when global database name is partial, 1-37

when no global database name is

specified, 1-37

names for, 1-15

passwords

viewing, 2-22

private

definition, 1-16

public

definition, 1-16

referential integrity in, 3-3

remote queries, 1-33

remote transactions, 1-33, 1-35

resolution, 1-36

restrictions, 1-23

roles on remote database, 1-23

schema objects, 1-21

name resolution, 1-22

synonyms for, 1-22

service names used within link names, 2-13

shared, 1-12

configuring, 2-16

creating, 2-14

creating links to dedicated servers, 2-16

creating links to multi-threaded (MTS)

servers, 2-17

determining whether to use, 2-14

shared SQL, 1-34

tuning distributed queries, 3-3

tuning queries with hints, 3-8

tuning using collocated inline views, 3-4

types of links, 1-16

types of users, 1-17

users

specifying, 2-11

using cost-based optimization, 3-5

viewing, 2-21

databases

administration, 2-1

distributed

site autonomy of, 1-24

datatypes

mapping, 6-4

ODBC, D-2

ODBC to Oracle, D-2

OLE DB, D-3

OLE DB to Oracle, D-3

date formats

Heterogeneous Services, A-7

DBA_2PC_NEIGHBORS view, 5-9

using to trace session tree, 5-9

DBA_2PC_PENDING view, 5-6, 5-15, 5-25

using to list in-doubt transactions, 5-7

DBA_DB_LINKS view, 2-21, 5-6, 5-9

DBMS_HS package

specifying HS parameters, 7-17

DBMS_HS_PASSTHROUGH package, 9-2

list of functions and procedures, 9-3

DBMS_TRANSACTION package

PURGE_LOST_DB_ENTRY procedure, 5-16

declarative referential integrity constraints, 3-3

describe cache high water mark

definition, A-3

Digital’s POLYCENTER Manager on

NetView, 1-32

disabling recoverer process

distributed transactions, 5-28

distributed applications

distributing data, 3-2

distributed databases

administration

overview, 1-23

application development

analyzing execution plan, 3-10

controlling connections, 3-2

handling errors, 3-3

handling RPC errors, 3-12

managing distribution of data, 3-2

managing referential integrity, 3-3

tuning distributed queries, 3-3

tuning using collocated inline views, 3-4

using cost-based optimization, 3-5

using hints to tune queries, 3-8

client/server architectures, 1-7
Index-4

commit point strength, 4-9

cost-based optimization, 1-47

distributed processing, 1-3

distributed queries, 1-34

distributed updates, 1-34

distributing an application’s data, 3-2

global database names

how they are formed, 2-2

global object names, 1-22, 2-2

global users

schema-dependent, 1-27

schema-independent, 1-28

location transparency, 1-44

creating, 2-26

creating using procedures, 2-30

creating using synonyms, 2-28

creating using views, 2-26

restrictions, 2-33

management tools, 1-31

managing read consistency, 5-28

NLS support, 1-47

nodes of, 1-7

overview, 1-2

referential integrity

application development, 3-3

remote object security, 2-28

remote queries and updates, 1-33

replicated databases and, 1-4

scenarios, 2-34

security, 1-25

site autonomy, 1-24

SQL transparency, 1-45

testing features, 5-26

transaction processing, 1-33

transparency, 1-44

queries, 2-32

updates, 2-32

distributed processing

distributed databases, 1-3

distributed queries, 1-34

analyzing tables, 3-7

application development issues, 3-3

cost-based optimization, 3-5

optimizing, 1-47

distributed systems

data encryption, 1-30

distributed transactions, 1-35

case study, 4-20

commit point site, 4-7

commit point strength, 4-9

committing, 4-9

database server role, 4-6

decreasing limit for, 5-3

defined, 4-2

disabling processing of, 5-3

DML and DDL, 4-3

failure during, 5-4

forcing to fail, 5-26

global coordinator, 4-7

increasing limit for, 5-3

initialization parameters influencing, 5-2

limiting number, 5-2

local coordinator, 4-7

lock timeout interval, 5-4

locked resources, 5-4

locks for in-doubt, 5-5

management, 4-1, 5-1

manually overriding in-doubt, 5-12

recovery in single-process systems, 5-28

session trees, 4-4, 4-5, 4-6

clients, 4-6

commit point site, 4-7, 4-9

database servers, 4-6

global coordinators, 4-7

local coordinators, 4-6

setting advice, 5-13

specifying

commit point strength, 5-5

interval for open connections, 5-5

tracing session tree, 5-9

transaction control statements, 4-4

transaction timeouts, 5-4

two-phase commit, 4-4

discovering problems, 5-11

example, 4-20

viewing information about, 5-6

distributed updates, 1-34

DISTRIBUTED_LOCK_TIMEOUT initialization

parameter

controlling time-outs with, 5-4
Index-5

DISTRIBUTED_RECOVERY_CONNECTION_HOL

D_TIME initialization parameter, 5-5

DISTRIBUTED_TRANSACTIONS initialization

parameter

recoverer process (RECO), 5-3

setting, 5-2

when to alter, 5-3

DML. See data manipulation language

drivers

ODBC, 8-12

OLEFS, 8-15

OLESQL, 8-14

DRIVING_SITE hint, 3-9

dropping database links, 2-19

dynamic performance views

Heterogeneous Services, 7-15

determining open sessions, 7-16

determining which agents are on host, 7-15

E
enabling recoverer process

distributed transactions, 5-28

enterprise users

definition, 1-28

errors

messages

trapping, 3-12

ORA-00900, 3-12

ORA-01591, 5-5

ORA-02015, 3-12

ORA-02049, 5-4

ORA-02050, 5-11

ORA-02051, 5-11

ORA-02054, 5-11

ORA-02055

integrity constrain violation, 3-3

ORA-02067

rollback required, 3-3

ORA-06510

PL/SQL error, 3-13

remote procedures, 3-12

examples

manual transaction override, 5-17

exception handler, 3-12

local, 3-13

EXCEPTION keyword, 3-12

exceptions

assigning names

PRAGMA_EXCEPTION_INIT, 3-12

user-defined

PL/SQL, 3-12

EXECUTE_IMMEDIATE procedure, 9-3

restrictions, 9-4

EXECUTE_NON_QUERY procedure, 9-3

execution plans

analyzing for distributed queries, 3-10

F
FDS_CLASS, 7-7

FDS_CLASS_VERSION, 7-7

FDS_INST_NAME, 7-8

features, new

centralized user and privilege management, xiv

generic connectivity, xiii

Heterogeneous Services initialization

parameters, xiv

parallel DML and DDL, xiv

SQL optimization for heterogeneous

systems, xiv

V$HS_AGENT and V$HS_SESSION, xv

FETCH_ROW procedure, 9-3

executing queries using pass-through SQL, 9-7

fetches

bulk, 9-9

optimizing round-trips, 9-8

fixed user database links

07_DICTIONARY_ACCESSIBILITY initialization

parameter, 1-18

advantages and disadvantages, 1-18

creating, 2-11

definition, 1-17

example, 1-20

FORCE clause

COMMIT statement, 5-13

ROLLBACK statement, 5-13

forcing

COMMIT or ROLLBACK, 5-8, 5-12

forget phase
Index-6

two-phase commit, 4-16

G
generic connectivity

architecture, 8-3

Oracle and non-Oracle on same machine, 8-4

Oracle and non-Oracle on separate

machines, 8-3

configuration, 8-6

creating initialization file, 8-7

data dictionary

translation support, C-2

datatype mapping, 8-5

definition, 1-6, 8-2

DELETE statement, 8-6

editing initialization file, 8-7

error tracing, A-5

Heterogeneous Services, 6-6

INSERT statement, 8-6

non-Oracle data dictionary access, C-2

ODBC connectivity requirements, 8-12

OLE DB (FS) connectivity requirements, 8-15

interfaces, 8-16

OLE DB (SQL) connectivity requirements, 8-14

restrictions, 8-5

setting parameters for ODBC source, 8-9

UNIX, 8-10

Windows NT, 8-9

setting parameters for OLE DB source, 8-11

SQL execution, 8-5

supported functions, 8-6

supported SQL syntax, 8-5

types of agents, 8-2

UPDATE statement, 8-6

GET_VALUE procedure, 9-3, 9-6, 9-7

global coordinators, 4-7

distributed transactions, 4-7

global database consistency

distributed databases and, 4-15

global database links, 1-16

creating, 2-11

global database names

changing the domain, 2-4

database links, 1-13

distributed databases

how they are formed, 2-2

enforcing for database links, 1-15

enforcing global naming, 2-3

impact of changing, 1-42

querying, 2-4

global object names

database links, 1-36

distributed databases, 2-2

global users, 2-37

distributed systems

schema-dependent, 1-27

schema-independent, 1-28

GLOBAL_NAME view

using to determine global database name, 2-4

GLOBAL_NAMES initialization parameter, 1-15

GV$DBLINK view, 2-24

H
heterogeneous distributed systems

accessing, 7-2

definition, 1-5

Heterogeneous Services

agent registration, 7-5

avoiding configuration mismatches, 7-6

disabling, 7-9

enabling, 7-5

agents, 6-3, 6-5

self-registration, 7-7

application development, 9-1, 9-2

controlling array fetches between non-Oracle

server and agent, 9-11

controlling array fetches between Oracle

server and agent, 9-11

controlling reblocking of array fetches, 9-11

DBMS_HS_PASSTHOUGH package, 9-2

locking behavior of non-Oracle systems, 9-12

pass-through SQL, 9-2

using bulk fetches, 9-9

using OCI for bulk fetches, 9-10

creating database links, 7-4

data dictionary, 6-6

classes and instances, 6-7

data dictionary views, 7-9, B-1
Index-7

types, 7-9

understanding sources, 7-11

using general views, 7-11

using SQL service views, 7-13

using transaction service views, 7-12

database links to non-Oracle systems, 6-2

DBMS_HS package

using to specify initialization

parameters, 7-17

using to unspecify initialization

parameters, 7-18

defining maximum number of open

cursors, A-8

dynamic performance views, 7-15

V$HS_AGENT view, 7-15

V$HS_SESSION view, 7-16

features, 1-6

generic connectivity

architecture, 8-3

creating initialization file, 8-7

datatype mapping, 8-5

definition, 8-2

editing initialization file, 8-7

non-Oracle data dictionary access, C-2

ODBC connectivity requirements, 8-12

OLE DB (FS) connectivity requirements, 8-15

OLE DB (FS) interfaces, 8-16

OLE DB (SQL) connectivity

requirements, 8-14

restrictions, 8-5

setting parameters for ODBC source, 8-9

setting parameters for OLE DB source, 8-11

SQL execution, 8-5

supported functions, 8-6

supported SQL syntax, 8-5

supported tables, C-3

types of agents, 8-2

initialization parameters

specifying, 7-17

unspecifying, 7-18

installing data dictionary, 7-2

locking behavior of non-Oracle systems, 9-12

optimizing data transfer, A-9

overview, 1-5, 6-2

process architecture, 6-4, 6-5

setting global name, A-3

setting up access using transparent

gateway, 7-2

setting up environment, 7-2

specifying cache high water mark, A-3

specifying cache size, A-9

specifying commit point strength, A-2

specifying domain, A-2

specifying instance identifier, A-3

SQL service, 6-4

testing connections, 7-4

transaction service, 6-3

tuning internal data buffering, A-10

types, 6-3

hints, 3-8

DRIVING_SITE, 3-9

NO_MERGE, 3-9

using to tune distributed queries, 3-8

HP’s OpenView, 1-32

HS_AUTOREGISTER initialization

parameter, 7-17

using to enable agent self-registration, 7-8

HS_BASE_CAPS view, 7-10

HS_BASE_DD view, 7-10

HS_CLASS_CAPS view, 7-10

HS_CLASS_DD view, 7-10

HS_CLASS_INIT view, 7-10

HS_COMMIT_POINT_STRENGTH initialization

parameter, A-2

HS_DB_DOMAIN initialization parameter, 7-18,

A-2

HS_DB_INTERNAL_NAME initialization

parameter, A-3

HS_DB_NAME initialization parameter, A-3

HS_DESCRIBE_CACHE_HWM initialization

parameter, A-3

HS_FDS_CLASS view, 7-10

HS_FDS_CONNECT_INFO initialization

parameter, A-4

specifying connection information, 8-7

HS_FDS_FETCH_ROWS initialization

parameter, 9-11

HS_FDS_INST view, 7-10

HS_FDS_SHAREABLE_NAME initialization

parameter, A-5
Index-8

HS_FDS_TRACE initialization parameter, A-5

HS_FDS_TRACE_FILE_NAME initialization

parameter, A-5

HS_FDS_TRACE_LEVEL initialization parameter

enabling agent tracing, 8-8

HS_INST_CAPS view, 7-10

HS_INST_DD view, 7-10

HS_INST_INIT view, 7-10

HS_LANGUAGE initialization parameter, A-6

HS_NLS_DATE_FORMAT initialization

parameter, A-7

HS_NLS_DATE_LANGUAGE initialization

parameter, A-7

HS_NLS_NCHAR initialization parameter, A-8

HS_OPEN_CURSORS initialization

parameter, A-8

HS_ROWID_CACHE_SIZE initialization

parameter, A-9

HS_RPC_FETCH_REBLOCKING initialization

parameter, 9-11, A-9

HS_RPC_FETCH_SIZE initialization

parameter, 9-11, A-10

I
IBM’s NetView/6000, 1-32

in-doubt transactions, 4-14

after a system failure, 5-11

automatic resolution, 4-17

failure during commit phase, 4-18

failure during prepare phase, 4-17

deciding how to handle, 5-10

deciding whether to perform manual

override, 5-12

intentionally creating, 5-26

manually committing, 5-14

manually overriding, 4-19, 5-13

scenario, 5-17

manually rolling back, 5-15

overriding manually, 5-12

overview, 4-16

pending transactions table, 5-25

purging rows from data dictionary, 5-15

deciding when necessary, 5-16

recoverer process, 5-27

rollback segments, 5-12

rolling back, 5-13, 5-14, 5-15

SCNs and, 4-19

simulating, 5-26

tracing session tree, 5-9

viewing information about, 5-6

integrity constraints

ORA-02055

constraint violation, 3-3

J
joins

distributed databases

managing statement transparency, 2-33

L
listeners, 7-2

listing database links, 2-21, 5-6, 5-9

local coordinators, 4-7

distributed transactions, 4-6

location transparency

distributed databases

creating using procedures, 2-30

creating using synonyms, 2-28

creating using views, 2-26

using procedures, 2-30, 2-31, 2-32

lock timeout interval

distributed transactions, 5-4

locks

in distributed transactions, 5-4

in non-Oracle systems, 9-12

in-doubt distributed transactions, 5-4, 5-5

LONG columns, 2-33

LONG RAW columns, 2-33

M
manual overrides

in-doubt transactions, 5-13

messages

error

trapping, 3-12

multiple rows
Index-9

buffering, 9-8

N
name resolution

distributed databases, 1-22

impact of global name changes, 1-42

schema objects, 1-38

when global database name is complete, 1-37

when global database name is partial, 1-37

when no global database name is

specified, 1-37

National Language Support (NLS)

client/server architectures, 1-48

distributed databases

clients and servers may diverge, 1-47

heterogeneous systems, 1-49

homogeneous systems, 1-48

Heterogeneous Services, A-6

character set of non-Oracle source, A-8

date format, A-7

languages in character date values, A-7

Net8 listener, 6-5, 7-2

network connections

minimizing, 2-14

networks

distributed databases use of, 1-2

new features

centralized user and privilege management, xiv

generic connectivity, xiii

Heterogeneous Services initialization

parameters, xiv

parallel DML and DDL, xiv

SQL optimization for heterogeneous

systems, xiv

V$HS_AGENT and V$HS_SESSION, xv

NO_DATA_FOUND keyword, 3-12

NO_MERGE hint, 3-9

Novell’s NetWare Management System, 1-32

O
objects

referencing with synonyms, 2-29

OCI

optimizing data transfers using, 9-10

ODBC agents

connectivity requirements, 8-12

functions, 8-12

ODBC connectivity

data dictionary mapping, C-4

mapping OBDC datatypes, D-2

mapping Oracle datatypes, D-2

ODBC driver, 8-12

requirements, 8-12

specifying connection information

UNIX, A-4

Windows NT, A-4

specifying path to library, A-5

OLE DB agents

connectivity requirements, 8-14, 8-15

interfaces, 8-16

OLE DB connectivity

data dictionary mapping, C-4

mapping to Oracle datatypes, D-3

setting connection information, A-4

OLEFS drivers, 8-15

data provider requirements, 8-15

initialization properties, 8-17

rowset properties, 8-17

security, 8-15

OLESQL drivers, 8-14

data provider requirements, 8-14

security, 8-14

OPEN_CURSOR procedure, 9-3

OPEN_LINKS initialization parameter, 2-20

ORA-00900 error, 3-12

ORA-02015 error, 3-12

ORA-02055 error

integrity constraint violation, 3-3

ORA-02067 error

rollback required, 3-3

ORA-06510 error

PL/SQL error, 3-13

Oracle Call Interface. See OCI

Oracle precompiler

optimizing data transfers using, 9-10

Oracle Transparent Gateways

Heterogeneous Services and, 6-3

OUT bind variables, 9-6
Index-10

P
PARSE procedure, 9-3

pass-through SQL, 9-2

avoiding SQL interpretation, 9-2

executing statements, 9-3

non-queries, 9-4

queries, 9-7

with bind variables, 9-4

with IN bind variables, 9-5

with IN OUT bind variables, 9-6

with OUT bind variables, 9-6

implications of using, 9-3

overview, 9-2

restrictions, 9-3

passwords

database links

viewing, 2-22

pending transaction tables, 5-25

PL/SQL

development environment, 9-2

errors

ORA-06510, 3-13

user-defined exceptions, 3-12

PRAGMA_EXCEPTION_INIT procedure

assigning exception names, 3-12

prepare phase, 4-12

recognizing read-only nodes, 4-13

two-phase commit, 4-11, 4-12

prepare/commit phases

abort response, 4-12

effects of failure, 5-4

failures during, 5-11

forcing to fail, 5-26

locked resources, 5-4

pending transaction table, 5-25

prepared response, 4-12

read-only response, 4-12

testing recovery, 5-26

prepared response

two-phase commit, 4-12

private database links, 1-16

privileges

closing a database link, 3-2

creating database links, 2-8

managing with procedures, 2-32

managing with synonyms, 2-30

managing with views, 2-28

procedures

location transparency using, 2-30, 2-31, 2-32

remote calls, 1-46

process architecture for distributed external

procedures, 6-6

public database links

connected user, 2-36

fixed user, 2-34

public fixed user database links, 2-34

PURGE_LOST_DB_ENTRY procedure

DBMS_TRANSACTION package, 5-16

purging pending rows

from data dictionary, 5-15

when necessary, 5-16

Q
queries

distributed, 1-34

application development issues, 3-3

distributed or remote, 1-33

location transparency and, 1-45

pass-through SQL, 9-7

post-processing, 3-4

remote, 3-4

transparency, 2-32

R
read consistency

managing in distributed databases, 5-28

read-only response

two-phase commit, 4-12

reblocking, 9-11

recoverer process (RECO)

disabling, 5-27, 5-28

distributed transaction recovery, 5-27

DISTRIBUTED_TRANSACTIONS initialization

parameter, 5-3

enabling, 5-27, 5-28

pending transaction table, 5-27

recovery
Index-11

testing distributed transactions, 5-26

referential integrity

distributed database systems

application development, 3-3

remote data

querying, 2-33

updating, 2-33

remote procedure calls, 1-46

distributed databases and, 1-46

remote queries, 3-4

distributed databases and, 1-33

execution, 3-4

post-processing, 3-4

remote transactions, 1-35

defined, 1-35

REMOTE_OS_AUTHENT initialization

parameter, 1-18

roles

obtained through database links, 1-23

rollback segments

in-doubt distributed transactions, 5-12

ROLLBACK statement

FORCE clause, 5-13, 5-14, 5-15

forcing, 5-12

rollbacks

ORA-02067 error, 3-3

rows

buffering multiple, 9-8

S
savepoints

in-doubt transactions, 5-13, 5-15

schema objects

distributed database naming conventions

for, 1-22

global names, 1-22

security, 8-15

distributed databases, 1-25

centralized user management, 1-27

OLESQL driver, 8-14

remote objects, 2-28

using synonyms, 2-30

SELECT statement

accessing non-Oracle system, C-2

FOR UPDATE clause, 2-33

SERVER parameter

net service name, 2-16

servers

role in two-phase commit, 4-6

service names

database links and, 2-13

specifying in database links, 7-4

session trees

distributed transactions, 4-4, 4-5

clients, 4-6

commit point site, 4-7, 4-9

database servers, 4-6

global coordinators, 4-7

local coordinators, 4-6

tracing, 5-9

sessions

setting advice for transactions, 5-13

shared database links

configuring, 2-16

creating links, 2-14, 2-15

to dedicated servers, 2-16

to multi-threaded (MTS) servers, 2-17

determining whether to use, 2-14

example, 1-20

SHARED keyword

CREATE DATABASE LINK statement, 2-15

shared SQL

for remote and distributed statements, 1-34

Simple Network Management Protocol (SNMP)

support

database management, 1-32

single-process systems

enabling distributed recovery, 5-28

site autonomy

distributed databases, 1-24

SQL capabilities

data dictionary tables, 7-14

SQL dialect

understood by non-Oracle system, 6-4

SQL errors

ORA-00900, 3-12

ORA-02015, 3-12

SQL service

capabilities, 6-4
Index-12

data dictionary views, 6-8, 7-10

Heterogeneous Services, 6-4

views

Heterogeneous Services, 7-13

SQL statements

distributed databases and, 1-33

mapping to non-Oracle datastores, 9-2

stored procedures

distributed query creation, 3-3

managing privileges, 2-32

remote object security, 2-32

subqueries, 2-33

in remote updates, 1-34

SunSoft’s SunNet Manager, 1-33

synonyms

CREATE statement, 2-29

definition and creation, 2-29

examples, 2-29

location transparency using, 2-28

managing privileges, 2-30

name resolution, 1-41

name resolution in distributed databases, 1-41

remote object security, 2-30

system change numbers (SCN)

coordination in a distributed database

system, 4-15

in-doubt transactions, 5-14

T
transaction control statements

distributed transactions and, 4-4

transaction failures

simulating, 5-26

transaction management

overview, 4-11

transaction processing

distributed systems, 1-33

transaction service

Heterogeneous Services, 6-3

views

Heterogeneous Services, 7-12

transactions

closing database links, 3-2

distributed

two-phase commit and, 1-36

in-doubt, 4-14

after a system failure, 5-11

pending transactions table, 5-25

recoverer process (RECO) and, 5-27

manually overriding in-doubt, 5-12

remote, 1-35

transparency

location

using procedures, 2-30, 2-31, 2-32

query, 2-32

update, 2-32

transparent gateways

accessing Heterogeneous Services agents, 7-2

creating database links, 7-4

Heterogeneous Services, 6-5

installing Heterogeneous Services data

dictionary, 7-2

testing connections, 7-4

triggers

distributed query creation, 3-3

tuning

analyzing tables, 3-7

cost-based optimization, 3-5

two-phase commit

case study, 4-20

commit phase, 4-14, 4-24

steps in, 4-15

described, 1-35

distributed transactions, 4-4, 4-11

tracing session tree, 5-9

viewing information about, 5-6

forget phase, 4-16

in-doubt transactions, 4-16

automatic resolution, 4-17

manual resolution, 4-19

SCNs and, 4-19

phases, 4-11

prepare phase, 4-11, 4-12

abort response, 4-13

prepared response, 4-12

read-only response, 4-12

responses, 4-12

steps, 4-14

problems, 5-11
Index-13

recognizing read-only nodes, 4-13

specifying commit point strength, 5-5

U
unsupported functions

generic connectivity, 8-6

updates

location transparency and, 1-45

transparency, 2-32

USER_DB_LINKS view, 2-21

V
V$DBLINK view, 2-24

V$HS_AGENT view

determining which agents are on host, 7-15

V$HS_PARAMETER view

listing HS parameters, 7-17

V$HS_SESSION view

determining open sessions, 7-16

variables

BIND, 9-4

views

location transparency using, 2-26

managing privileges with, 2-28

name resolution in distributed databases, 1-41

remote object security, 2-28
Index-14

	PDF Directory
	Send Us Your Comments
	Preface
	Part I� Distributed Database Systems Concepts and Administration
	1 Distributed Database Concepts
	Distributed Database Architecture
	Homogenous Distributed Database Systems
	Heterogeneous Distributed Database Systems
	Client/Server Database Architecture

	Database Links
	What Are Database Links?
	Why Use Database Links?
	Global Database Names in Database Links
	Names for Database Links
	Types of Database Links
	Users of Database Links
	Creation of Database Links: Examples
	Schema Objects and Database Links
	Database Link Restrictions

	Distributed Database Administration
	Site Autonomy
	Distributed Database Security
	Auditing Database Links
	Administration Tools

	Transaction Processing in a Distributed System
	Remote SQL Statements
	Distributed SQL Statements
	Shared SQL for Remote and Distributed Statements
	Remote Transactions
	Distributed Transactions
	Two-Phase Commit Mechanism
	Database Link Name Resolution
	Schema Object Name Resolution
	Global Name Resolution in Views, Synonyms, and Procedures

	Distributed Database Application Development
	Transparency in a Distributed Database System
	Remote Procedure Calls (RPCs)
	Distributed Query Optimization

	National Language Support
	Client/Server Environment
	Homogeneous Distributed Environment
	Heterogeneous Distributed Environment

	2 Managing a Distributed Database
	Managing Global Names in a Distributed System
	Understanding How Global Database Names Are Formed
	Determining Whether Global Naming Is Enforced
	Viewing a Global Database Name
	Changing the Domain in a Global Database Name
	Changing a Global Database Name: Scenario

	Creating Database Links
	Obtaining Privileges Necessary for Creating Database Links
	Specifying Link Types
	Specifying Link Users
	Using Connection Qualifiers to Specify Service Names Within Link Names

	Creating Shared Database Links
	Determining Whether to Use Shared Database Links
	Creating Shared Database Links
	Configuring Shared Database Links

	Managing Database Links
	Closing Database Links
	Dropping Database Links
	Limiting the Number of Active Database Link Connections

	Viewing Information About Database Links
	Determining Which Links Are in the Database
	Determining Which Link Connections Are Open

	Creating Location Transparency
	Using Views to Create Location Transparency
	Using Synonyms to Create Location Transparency
	Using Procedures to Create Location Transparency

	Managing Statement Transparency
	Understanding Transparency Restrictions

	Managing a Distributed Database: Scenarios
	Creating a Public Fixed User Database Link
	Creating a Public Fixed User Shared Database Link
	Creating a Public Connected User Database Link
	Creating a Public Connected User Shared Database Link
	Creating a Public Current User Database Link

	3 Developing Applications for a Distributed Database System�
	Managing the Distribution of an Application’s Data
	Controlling Connections Established by Database Links
	Maintaining Referential Integrity in a Distributed System
	Tuning Distributed Queries
	Using Collocated Inline Views
	Using Cost-Based Optimization
	Using Hints
	Analyzing the Execution Plan

	Handling Errors in Remote Procedures

	Part II� Distributed Transactions Concepts and Administration
	4 Distributed Transactions Concepts
	What Are Distributed Transactions?
	Supported Types of Distributed Transactions
	Session Trees for Distributed Transactions
	Two-Phase Commit Mechanism

	Session Trees for Distributed Transactions
	Clients
	Database Servers
	Local Coordinators
	Global Coordinator
	Commit Point Site

	Two-Phase Commit Mechanism
	Prepare Phase
	Commit Phase
	Forget Phase

	In-Doubt Transactions
	Automatic Resolution of In-Doubt Transactions
	Manual Resolution of In-Doubt Transactions
	Relevance of System Change Numbers for In-Doubt Transactions

	Distributed Transaction Processing: Case Study
	Stage 1: Client Application Issues DML Statements
	Stage 2: Oracle Determines Commit Point Site
	Stage 3: Global Coordinator Sends Prepare Response
	Stage 4: Commit Point Site Commits
	Stage 5: Commit Point Site Informs Global Coordinator of Commit
	Stage 6: Global and Local Coordinators Tell All Nodes to Commit
	Stage 7: Global Coordinator and Commit Point Site Complete the Commit

	5 Managing Distributed Transactions
	Setting Distributed Transaction Initialization Parameters
	Limiting the Number of Distributed Transactions
	Specifying the Lock Timeout Interval
	Specifying the Interval for Holding Open Connections
	Specifying the Commit Point Strength of a Node

	Viewing Information About Distributed Transactions
	Determining the ID Number and Status of Prepared Transactions
	Tracing the Session Tree of In-Doubt Transactions

	Deciding How to Handle In-Doubt Transactions
	Discovering Problems with a Two-Phase Commit
	Determining Whether to Perform a Manual Override
	Analyzing the Transaction Data

	Manually Overriding In-Doubt Transactions
	Manually Committing an In-Doubt Transaction
	Manually Rolling Back an In-Doubt Transaction

	Purging Pending Rows from the Data Dictionary
	Executing the PURGE_LOST_DB_ENTRY Procedure
	Determining When to Use DBMS_TRANSACTION

	Manually Committing an In-Doubt Transaction: Example
	Step 1: Record User Feedback
	Step 2: Query DBA_2PC_PENDING
	Step 3: Query DBA_2PC_NEIGHBORS on Local Node
	Step 4: Querying Data Dictionary Views on All Nodes
	Step 5: Commit the In-Doubt Transaction
	Step 6: Check for Mixed Outcome Using DBA_2PC_PENDING

	Simulating Distributed Transaction Failure
	Forcing a Distributed Transaction to Fail
	Disabling and Enabling RECO

	Managing Read Consistency

	Part III� Heterogeneous Services Concepts and Administration
	6 Oracle Heterogeneous Services Concepts
	What is Heterogeneous Services?
	Database Links to a Non-Oracle System
	Heterogeneous Services Agents

	Types of Heterogeneous Services
	Transaction Service
	SQL Service

	Heterogeneous Services Process Architecture
	Transparent Gateways
	Generic Connectivity

	Architecture of the Heterogeneous Services Data Dictionary
	Classes and Instances
	Data Dictionary Views

	7 Managing Oracle Heterogeneous Services Using Transparent Gateways
	Setting Up Access to Non-Oracle Systems
	Step 1: Install the Heterogeneous Services Data Dictionary
	Step 2: Set Up the Environment to Access Heterogeneous Services Agents
	Step 3: Create the Database Link to the Non-Oracle System
	Step 4: Test the Connection

	Registering Agents
	Enabling Agent Self-Registration
	Disabling Agent Self-Registration

	Using the Heterogeneous Services Data Dictionary Views
	Understanding the Types of Views
	Understanding the Sources of Data Dictionary Information
	Using the General Views
	Using the Transaction Service Views
	Using the SQL Service Views

	Using the Heterogeneous Services Dynamic Performance Views
	Determining Which Agents Are Running on a Host
	Determining the Open HS Sessions
	Determining the HS Parameters

	Using the DBMS_HS Package
	Specifying Initialization Parameters
	Unspecifying Initialization Parameters

	8 Managing Heterogeneous Services Using Generic Connectivity
	What Is Generic Connectivity?
	Types of Agents
	Generic Connectivity Architecture
	SQL Execution
	Datatype Mapping
	Generic Connectivity Restrictions

	Supported Oracle SQL Statements
	Functions Supported by Generic Connectivity

	Configuring Generic Connectivity Agents
	Creating the Initialization File
	Editing the Initialization File
	Setting Initialization Parameters for an ODBC-based Data Source
	Setting Initialization Parameters for an OLE DB-based Data Source

	ODBC Connectivity Requirements
	OLE DB (SQL) Connectivity Requirements
	Data Provider Requirements

	OLE DB (FS) Connectivity Requirements
	Bookmarks
	OLE DB Interfaces
	Data Source Properties

	9 Developing Applications with Heterogeneous Services�
	Developing Applications with Heterogeneous Services: Overview
	Developing Using Pass-Through SQL
	Using the DBMS_HS_PASSTHROUGH package
	Considering the Implications of Using Pass-Through SQL
	Executing Pass-Through SQL Statements

	Optimizing Data Transfers Using Bulk Fetch
	Using OCI, an Oracle Precompiler, or Another Tool for Array Fetches
	Controlling the Array Fetch Between Oracle Database Server and Agent
	Controlling the Array Fetch Between Agent and Non-Oracle Server
	Controlling the Reblocking of Array Fetches

	Researching the Locking Behavior of Non-Oracle Systems

	A Heterogeneous Services Initialization Parameters
	HS_COMMIT_POINT_STRENGTH
	HS_DB_DOMAIN
	HS_DB_INTERNAL_NAME
	HS_DB_NAME
	HS_DESCRIBE_CACHE_HWM
	HS_FDS_CONNECT_INFO
	HS_FDS_SHAREABLE_NAME
	HS_FDS_TRACE_LEVEL
	HS_FDS_TRACE_FILE_NAME
	HS_LANGUAGE
	HS_NLS_DATE_FORMAT
	HS_NLS_DATE_LANGUAGE
	HS_NLS_NCHAR
	HS_OPEN_CURSORS
	HS_ROWID_CACHE_SIZE
	HS_RPC_FETCH_REBLOCKING
	HS_RPC_FETCH_SIZE

	B Data Dictionary Views Available Through Heterogeneous Services
	C Data Dictionary Translation for Generic Connectivity
	Data Dictionary Translation Support
	Accessing the Non-Oracle Data Dictionary
	Supported Views and Tables

	Data Dictionary Mapping
	Default Column Values

	Generic Connectivity Data Dictionary Descriptions
	ALL_CATALOG
	ALL_COL_COMMENTS
	ALL_CONS_COLUMNS
	ALL_CONSTRAINTS
	ALL_IND_COLUMNS
	ALL_INDEXES
	ALL_OBJECTS
	ALL_TAB_COLUMNS
	ALL_TAB_COMMENTS
	ALL_TABLES
	ALL_USERS
	ALL_VIEWS
	DICTIONARY
	USER_CATALOG
	USER_COL_COMMENTS
	USER_CONS_COLUMNS
	USER_CONSTRAINTS
	USER_IND_COLUMNS
	USER_INDEXES
	USER_OBJECTS
	USER_TAB_COLUMNS
	USER_TAB_COMMENTS
	USER_TABLES
	USER_USERS
	USER_VIEWS

	D Datatype Mapping
	Mapping ODBC Datatypes to Oracle Datatypes
	Mapping OLE DB Datatypes to Oracle Datatypes

	Index

