
SQL*Plus

User’s Guide and Reference

Release 8.1.7

September 2000

Part No. A82950-01

SQL*Plus User’s Guide and Reference, Release 8.1.7

Part No. A82950-01

Copyright © 1996, 2000, Oracle Corporation. All rights reserved.

Primary Author: Simon Watt

Contributors: Alison Goggin, Alison Holloway, Christopher Jones, Anita Lam, Luan Nim

The Programs (which include both the software and documentation) contain proprietary information of
Oracle Corporation; they are provided under a license agreement containing restrictions on use and
disclosure and are also protected by copyright, patent, and other intellectual and industrial property
laws. Reverse engineering, disassembly, or decompilation of the Programs is prohibited.

The information contained in this document is subject to change without notice. If you find any problems
in the documentation, please report them to us in writing. Oracle Corporation does not warrant that this
document is error free. Except as may be expressly permitted in your license agreement for these
Programs, no part of these Programs may be reproduced or transmitted in any form or by any means,
electronic or mechanical, for any purpose, without the express written permission of Oracle Corporation.

If the Programs are delivered to the U.S. Government or anyone licensing or using the programs on
behalf of the U.S. Government, the following notice is applicable:

Restricted Rights Notice Programs delivered subject to the DOD FAR Supplement are "commercial
computer software" and use, duplication, and disclosure of the Programs, including documentation,
shall be subject to the licensing restrictions set forth in the applicable Oracle license agreement.
Otherwise, Programs delivered subject to the Federal Acquisition Regulations are "restricted computer
software" and use, duplication, and disclosure of the Programs shall be subject to the restrictions in FAR
52.227-19, Commercial Computer Software - Restricted Rights (June, 1987). Oracle Corporation, 500
Oracle Parkway, Redwood City, CA 94065.

The Programs are not intended for use in any nuclear, aviation, mass transit, medical, or other inherently
dangerous applications. It shall be the licensee's responsibility to take all appropriate fail-safe, backup,
redundancy, and other measures to ensure the safe use of such applications if the Programs are used for
such purposes, and Oracle Corporation disclaims liability for any damages caused by such use of the
Programs.

Oracle is a registered trademark, and JDeveloper, Oracle Designer, Oracle Developer, Oracle Discoverer,
Oracle7, Oracle8, Oracle8i, Oracle Media Objects, Oracle Mobile Agents, Oracle Application Server,
PL/SQL, Oracle Programmer, SQL*Forms, Net8 and SQL*Plus are trademarks or registered trademarks
of Oracle Corporation. Other names may be trademarks of their respective owners.

iii

Contents

Send Us Your Comments ... xi

Preface... xiii

Part I Understanding SQL*Plus

1 Introduction

Overview of SQL*Plus... 1-2
Basic Concepts... 1-2
Who Can Use SQL*Plus... 1-2

Using this Guide ... 1-3
Conventions for Command Syntax.. 1-3
Sample Tables.. 1-4

What You Need to Run SQL*Plus ... 1-6
Hardware and Software .. 1-6
Information Specific to Your Operating System .. 1-6
Username and Password... 1-6
Access to Sample Tables .. 1-7

2 Learning SQL*Plus Basics

Getting Started .. 2-2
Using the Keyboard.. 2-2
Starting SQL*Plus ... 2-3
Leaving SQL*Plus... 2-4

iv

Entering and Executing Commands .. 2-5
Running SQL Commands.. 2-6
Running PL/SQL Blocks ... 2-10
Running SQL*Plus Commands .. 2-11
Variables that Affect Running Commands ... 2-13
Saving Changes to the Database Automatically .. 2-13
Stopping a Command while it is Running.. 2-15
Collecting Timing Statistics on Commands You Run ... 2-15
Running Host Operating System Commands.. 2-16

Getting Help .. 2-16
Listing a Table Definition .. 2-16
Listing PL/SQL Definitions .. 2-17
Controlling the Display.. 2-17
Interpreting Error Messages.. 2-18

3 Manipulating Commands

Editing Commands ... 3-2
Listing the Buffer Contents ... 3-3
Editing the Current Line.. 3-3
Adding a New Line .. 3-5
Appending Text to a Line.. 3-6
Deleting Lines.. 3-7
Editing Commands with a System Editor... 3-7

Saving Commands for Later Use ... 3-8
Storing Commands in Command Files ... 3-8
Placing Comments in Command Files .. 3-11
Retrieving Command Files.. 3-15
Running Command Files... 3-16
Nesting Command Files .. 3-17
Modifying Command Files ... 3-18
Exiting from a Command File with a Return Code... 3-18
Setting Up Your SQL*Plus Environment .. 3-19
Storing and Restoring SQL*Plus System Variables ... 3-20

Writing Interactive Commands .. 3-21
Defining User Variables... 3-21

v

Using Substitution Variables .. 3-22
Passing Parameters through the START Command ... 3-27
Communicating with the User ... 3-28

Using Bind Variables ... 3-31
Creating Bind Variables... 3-32
Referencing Bind Variables ... 3-32
Displaying Bind Variables... 3-32

Using REFCURSOR Bind Variables ... 3-33
Tracing Statements.. 3-36

Controlling the Report ... 3-36
Execution Plan... 3-37
Statistics.. 3-38
Tracing Parallel and Distributed Queries ... 3-40

4 Formatting Query Results

Formatting Columns .. 4-2
Changing Column Headings .. 4-2
Formatting NUMBER Columns ... 4-4
Formatting Datatypes .. 4-6
Copying Column Display Attributes... 4-8
Listing and Resetting Column Display Attributes .. 4-8
Suppressing and Restoring Column Display Attributes .. 4-9
Printing a Line of Characters after Wrapped Column Values... 4-9

Clarifying Your Report with Spacing and Summary Lines.. 4-11
Suppressing Duplicate Values in Break Columns ... 4-12
Inserting Space when a Break Column’s Value Changes ... 4-13
Inserting Space after Every Row .. 4-13
Using Multiple Spacing Techniques .. 4-14
Listing and Removing Break Definitions.. 4-15
Computing Summary Lines when a Break Column’s Value Changes............................... 4-15
Computing Summary Lines at the End of the Report... 4-19
Computing Multiple Summary Values and Lines... 4-20
Listing and Removing COMPUTE Definitions.. 4-22

Defining Page and Report Titles and Dimensions .. 4-22
Setting the Top and Bottom Titles and Headers and Footers .. 4-22

vi

Displaying the Page Number and other System-Maintained Values in Titles.................. 4-27
Listing, Suppressing, and Restoring Page Title Definitions ... 4-28
Displaying Column Values in Titles .. 4-29
Displaying the Current Date in Titles.. 4-30
Setting Page Dimensions ... 4-31

Storing and Printing Query Results .. 4-33
Sending Results to a File .. 4-34
Sending Results to a Printer .. 4-35

Creating Web Reports .. 4-38
Creating Web Reports Interactively... 4-38
Creating Embedded Web Reports.. 4-42
Suppressing the Display of SQL*Plus Commands in Web Reports.................................... 4-46
HTML Entities ... 4-47

5 Database Administration

Overview .. 5-2
Introduction to Database Startup and Shutdown .. 5-2

Database Startup ... 5-2
Database Shutdown.. 5-3

Redo Log Files ... 5-4
ARCHIVELOG Mode... 5-4

Database Recovery.. 5-5

6 Accessing SQL Databases

Connecting to the Default Database ... 6-2
Connecting to a Remote Database ... 6-3

Connecting to a Remote Database from within SQL*Plus ... 6-3
Connecting to a Remote Database as You Start SQL*Plus ... 6-4

Copying Data from One Database to Another .. 6-4
Understanding COPY Command Syntax ... 6-5
Controlling Treatment of the Destination Table .. 6-6
Interpreting the Messages that COPY Displays ... 6-8
Specifying Another User’s Table .. 6-8

Copying Data between Tables on One Database ... 6-9

vii

Part II Reference

7 Starting SQL*Plus and Getting Help

Starting SQL*Plus Using the SQLPLUS Command .. 7-2
Options... 7-2
Logon.. 7-9
Start... 7-10
Setting Up the Site Profile ... 7-10
Setting Up the User Profile.. 7-10
Receiving a Return Code ... 7-10

Getting Help .. 7-12

8 Command Reference

SQL*Plus Command Summary ... 8-2
@ ("at" sign) .. 8-5
@@ (double "at" sign) ... 8-7
/ (slash) .. 8-9
ACCEPT .. 8-10
APPEND ... 8-12
ARCHIVE LOG ... 8-13
ATTRIBUTE ... 8-17
BREAK .. 8-19
BTITLE .. 8-24
CHANGE .. 8-25
CLEAR... 8-28
COLUMN ... 8-30
COMPUTE ... 8-41
CONNECT ... 8-47
COPY ... 8-49
DEFINE ... 8-52
DEL .. 8-54
DESCRIBE.. 8-56
DISCONNECT .. 8-63
EDIT .. 8-64

viii

EXECUTE .. 8-66
EXIT ... 8-67
GET .. 8-69
HELP .. 8-70
HOST... 8-71
INPUT ... 8-73
LIST ... 8-75
PASSWORD... 8-77
PAUSE ... 8-78
PRINT.. 8-79
PROMPT ... 8-80
RECOVER .. 8-82
REMARK .. 8-88
REPFOOTER .. 8-89
REPHEADER ... 8-91
RUN ... 8-95
SAVE .. 8-96
SET ... 8-98
SHOW ... 8-123
SHUTDOWN ... 8-128
SPOOL .. 8-130
START ... 8-131
STARTUP.. 8-133
STORE... 8-137
TIMING .. 8-138
TTITLE .. 8-140
UNDEFINE... 8-144
VARIABLE.. 8-145
WHENEVER OSERROR ... 8-151
WHENEVER SQLERROR ... 8-153

ix

A COPY Command Messages and Codes

B Release 8.1.7 Enhancements

C SQL*Plus Limits

D SQL Command List

E Security

F Obsolete SQL*Plus Commands

Glossary

Index

x

xi

Send Us Your Comments

SQL*Plus User’s Guide and Reference, Release 8.1.7

Part No. A82950-01

Oracle Corporation welcomes your comments and suggestions on the quality and usefulness of this
document. Your input is an important part of the information used for revision.

■ Did you find any errors?
■ Is the information clearly presented?
■ Do you need more information? If so, where?
■ Are the examples correct? Do you need more examples?
■ What features did you like most?

If you find any errors or have any other suggestions for improvement, please indicate the document
title and part number, and the chapter, section, and page number (if available). You can send com-
ments to us in the following ways:

■ Electronic mail: sqlplus@us.oracle.com
■ FAX: +61 3 9690 0043 Attention: SQL*Plus Documentation Manager
■ Postal service:

SQL*Plus Documentation Manager,
Australian Product Development Center,
Oracle Corporation Australia Pty Ltd,
324 St. Kilda Road,
Melbourne, VIC 3004,
Australia

If you would like a reply, please give your name, address, telephone number, and (optionally) elec-
tronic mail address.

 If you have problems with the software, please contact your local Oracle Support Services.

xii

xiii

Preface

The SQL*Plus (pronounced "sequel plus") User’s Guide and Reference introduces the
SQL*Plus program and its uses. It also provides a detailed description of each
SQL*Plus command.

xiv

Intended Audience
This Guide addresses business and technical professionals who have a basic
understanding of the SQL database language. If you do not have any familiarity
with this database tool, you should refer to the Oracle8i SQL Reference. If you plan to
use the PL/SQL database language in conjunction with SQL*Plus, refer to the
PL/SQL User’s Guide and Reference for information on using PL/SQL.

Structure
This manual is divided into two parts containing a total of eight chapters, six
appendices and a glossary of SQL*Plus related terms. Part 1, "Understanding
SQL*Plus" contains the first six chapters and Part 2, "Reference" contains the
remaining two chapters.

PART I, Understanding SQL*Plus

Chapter 1 "Introduction" is an overview of SQL*Plus, with instructions
on using this Guide, and information on what you need to
run SQL*Plus.

Chapter 2 "Learning SQL*Plus Basics" explains how to start SQL*Plus
and enter and execute commands. You learn by following
step-by-step examples using sample tables.

Chapter 3 "Manipulating Commands" uses further examples to help
you learn to edit commands, save them for later use, and
write interactive commands.

Chapter 4 "Formatting Query Results" uses examples to explain how
you can format columns, clarify your reports with spacing
and summary lines, define page dimensions and titles, store
and print query results, and output query results to the web.

Chapter 5 "Database Administration" is intended for use by DBAs. It
covers basic database administration features in SQL*Plus.

Chapter 6 "Accessing Databases" tells you how to connect to default
and remote databases, and how to copy data between
databases and between tables on the same database.

xv

PART II, Reference

Chapter 7 "Starting SQL*Plus and Getting Help" explains how to access
SQL*Plus from the operating system prompt, and how to
access online help.

Chapter 8 "Command Reference" provides a summary of SQL*Plus
commands and detailed descriptions of each SQL*Plus
command in alphabetical order.

Appendix A "COPY Command Messages and Codes" lists copy
command error messages, their causes, and appropriate
actions for error recovery.

Appendix B "Release 8.1.7 Enhancements" describes enhancements to
SQL*Plus in release 8.1.7.

Appendix C "SQL*Plus Limits" lists the maximum values for elements of
SQL*Plus.

Appendix D "SQL Command List" lists the major SQL commands and
clauses.

Appendix E "Security" explains how to restrict access to certain SQL*Plus
and SQL commands.

Appendix F "Obsolete SQL*Plus Commands" provides information on
Obsolete SQL*Plus commands.

Glossary "Glossary" defines technical terms associated with Oracle
and SQL*Plus.

xvi

Related Documents
Related documentation includes the following publications:

■ SQL*Plus Accessibility Guide for Windows

■ SQL*Plus Quick Reference

■ PL/SQL User’s Guide and Reference

■ Oracle8i SQL Reference

■ Oracle8i Concepts

■ Oracle8i Administrator’s Guide

■ Oracle8i Backup and Recovery Guide

■ Oracle8i Application Developer’s Guide - Fundamentals

■ Oracle8i Distributed Database Systems

■ Oracle8i Replication

■ Oracle8i Utilities

■ Oracle8i Error Messages

■ Oracle8i Migration

■ Oracle8i Reference

■ Oracle8i Designing and Tuning for Performance

■ Oracle8i Parallel Server Concepts

■ Net8 Administrator’s Guide

■ Oracle Call Interface Programmer’s Guide

■ Pro*COBOL Precompiler Programmer’s Guide

■ Pro*C/C++ Precompiler Programmer’s Guide

■ Oracle installation and user’s manual(s) provided for your operating system

Part I
Understanding SQL*Plus

This section provides an introduction to SQL*Plus. It provides an overview of how
to run SQL*Plus and demonstrates this with various examples.

The following chapters are covered in this section:

■ Introduction

■ Learning SQL*Plus Basics

■ Manipulating Commands

■ Formatting Query Results

■ Database Administration

■ Accessing SQL Databases

Introduction 1-1

1
Introduction

This chapter introduces you to SQL*Plus, covering the following topics:

■ Overview of SQL*Plus

■ Using this Guide

■ What You Need to Run SQL*Plus

Overview of SQL*Plus

1-2 SQL*Plus User’s Guide and Reference

Overview of SQL*Plus
You can use the SQL*Plus program in conjunction with the SQL database language
and its procedural language extension, PL/SQL. The SQL database language allows
you to store and retrieve data in Oracle. PL/SQL allows you to link several SQL
commands through procedural logic.

SQL*Plus enables you to execute SQL commands and PL/SQL blocks, and to
perform many additional tasks as well. Through SQL*Plus, you can

■ enter, edit, store, retrieve, and run SQL commands and PL/SQL blocks

■ format, perform calculations on, store, print and create web output of query
results

■ list column definitions for any table

■ access and copy data between SQL databases

■ send messages to and accept responses from an end user

■ perform database administration

Basic Concepts
The following definitions explain concepts central to SQL*Plus:

Who Can Use SQL*Plus
The SQL*Plus, SQL, and PL/SQL command languages are powerful enough to
serve the needs of users with some database experience, yet straightforward enough
for new users who are just learning to work with Oracle.

command An instruction you give SQL*Plus or Oracle.

block A group of SQL and PL/SQL commands related to one
another through procedural logic.

table The basic unit of storage in Oracle.

query A SQL command (specifically, a SQL SELECT command) that
retrieves information from one or more tables.

query results The data retrieved by a query.

report Query results formatted by you through SQL*Plus
commands.

Using this Guide

Introduction 1-3

The design of the SQL*Plus command language makes it easy to use. For example,
to give a column labelled ENAME in the database the clearer heading “Employee”,
you might enter the following command:

COLUMN ENAME HEADING EMPLOYEE

Similarly, to list the column definitions for a table called EMP, you might enter this
command:

DESCRIBE EMP

Using this Guide
This Guide gives you information about SQL*Plus that applies to all operating
systems. Some aspects of SQL*Plus, however, differ on each operating system. Such
operating system specific details are covered in the Oracle installation and user’s
manual(s) provided for your system. Use these operating system specific manuals
in conjunction with the SQL*Plus User’s Guide and Reference.

Throughout this Guide, examples showing how to enter commands use a common
command syntax and a common set of sample tables. Both are described below. You
will find the conventions for command syntax particularly useful when referring to
commands in Chapter 7 and Chapter 8 of this Guide.

Conventions for Command Syntax
The following two tables describe the notation and conventions for command
syntax used in this Guide.

Table 1–1 Commands, Terms, and Clauses

Feature Example Explanation

uppercase BTITLE Enter text exactly as spelled; it need not be in
uppercase.

lowercase italics column A clause value; substitute an appropriate value.

words with
specific meanings

c A single character.

char A CHAR value—a literal in single quotes—or an
expression with a CHAR value.

d or e A date or an expression with a DATE value.

Using this Guide

1-4 SQL*Plus User’s Guide and Reference

Other words are explained where used if their meaning is not explained by context.

Enter other punctuation marks where shown in the command syntax.

Sample Tables
Many of the concepts and operations in this Guide are illustrated by a set of sample
tables. These tables contain personnel records for a fictitious company. As you
complete the exercises in this Guide, imagine that you are the personnel director for
this company.

The exercises make use of the information in two sample tables:

expr An unspecified expression.

m or n A number or an expression with a NUMBER value.

text A CHAR constant with or without single quotes.

variable A user variable (unless the text specifies another
variable type).

Table 1–2 Punctuation

Feature Example Explanation

vertical bar | Separates alternative syntax elements that may be
optional or mandatory.

brackets [ON|OFF] One or more optional items. If two items appear
separated by |, enter one of the items separated by |. Do
not enter the brackets or |.

braces {ON|OFF} A choice of mandatory items; enter one of the items
separated by |. Do not enter the braces or |.

underlining {ON|OFF} A default value; if you enter nothing, SQL*Plus uses the
underlined value.

ellipsis n... Preceding item(s) may be repeated any number of times.

EMP Contains information about the employees of the sample
company.

Table 1–1 Commands, Terms, and Clauses

Feature Example Explanation

Using this Guide

Introduction 1-5

Figure 1–1 and Figure 1–2 show the information in these tables.

Figure 1–1 DEPT Table

DEPTNO DNAME LOC
--------- ------------- -----------
 10 ACCOUNTING NEW YORK
 20 RESEARCH DALLAS
 30 SALES CHICAGO
 40 OPERATIONS BOSTON

Figure 1–2 EMP Table

EMPNO ENAME JOB MGR HIREDATE SAL COMM DEPTNO
----- ----- -------- ---- ----------- ------ ------ ------
 7369 SMITH CLERK 7902 17-DEC-80 800 20
 7499 ALLEN SALESMAN 7698 20-FEB-81 1600 300 30
 7521 WARD SALESMAN 7698 22-FEB-81 1250 500 30
 7566 JONES MANAGER 7839 02-APR-81 2975 20
 7654 MARTIN SALESMAN 7698 28-SEP-81 1250 1400 30
 7698 BLAKE MANAGER 7839 01-MAY-81 2850 30
 7782 CLARK MANAGER 7839 09-JUN-81 2450 30
 7788 SCOTT ANALYST 7566 09-DEC-82 3000 20
 7839 KING PRESIDENT 17-NOV-81 5000 10
 7844 TURNER SALESMAN 7698 08-SEP-81 1500 0 30
 7876 ADAMS CLERK 7788 12-JAN-83 1100 20
 7900 JAMES CLERK 7698 03-DEC-81 950 30
 7902 FORD ANALYST 7566 03-DEC-81 3000 20
 7934 MILLER CLERK 7782 23-JAN-82 1300 10

DEPT Contains information about the departments in the company.

Note: Dates in the sample tables use four digit years. As the
default date format in SQL*Plus is DD-MM-YY, dates displayed
show only a two digit year. Use the SQL TO_CHAR function in
your SELECT statements to control the way dates are displayed.

What You Need to Run SQL*Plus

1-6 SQL*Plus User’s Guide and Reference

What You Need to Run SQL*Plus
To run SQL*Plus, you need hardware, software, operating system specific
information, a username and password, and access to one or more tables.

Hardware and Software
Oracle and SQL*Plus can run on many different kinds of computers. Your
computer’s operating system manages the computer’s resources and mediates
between the computer hardware and programs such as SQL*Plus. Different
computers use different operating systems. For information about your computer’s
operating system, see the documentation provided with the computer.

Before you can begin using SQL*Plus, both Oracle and SQL*Plus must be installed
on your computer. Note that in order to take full advantage of the enhancements in
SQL*Plus Release 8.1.7, you must have Oracle8i Release 8.1.7. For a list of SQL*Plus
Release 8.1.7 enhancements, see Appendix B.

If you have multiple users on your computer, your organization should have a
Database Administrator (called a DBA) who supervises the use of Oracle.

The DBA is responsible for installing Oracle and SQL*Plus on your system. If you
are acting as DBA, see the instructions for installing Oracle and SQL*Plus in the
Oracle installation and user’s manual(s) provided for your operating system.

Information Specific to Your Operating System
A few aspects of Oracle and SQL*Plus differ from one type of host computer and
operating system to another. These topics are discussed in the Oracle installation
and user’s manual(s), published in a separate version for each host computer and
operating system that SQL*Plus supports.

Keep a copy of your Oracle installation and user’s manual(s) available for reference
as you work through this Guide. When necessary, this Guide will refer you to your
installation and user’s manual(s).

Username and Password
When you start SQL*Plus, you will need a username that identifies you as an
authorized Oracle user and a password that proves you are the legitimate owner of
your username. See the PASSWORD command in Chapter 8 for details on how to
change your password. The demonstration username, SCOTT, and password,
TIGER, may be set up on your system during the installation procedure. In this

What You Need to Run SQL*Plus

Introduction 1-7

case, you can use the Oracle username SCOTT and password TIGER with the EMP
and DEPT tables (Figure 1–1 and Figure 1–2).

Multi-User Systems
If several people share your computer’s operating system, your DBA can set up
your SQL*Plus username and password. You will also need a system username and
password to gain admittance to the operating system. These may or may not be the
same ones you use with SQL*Plus.

Single-User Systems
If only one person at a time uses your computer, you may be expected to perform
the DBAs functions for yourself. In that case, you can use the Oracle username
SCOTT and password TIGER with the appropriate DBA privileges. If you want to
define your own username and password, see the Oracle8i SQL Reference.

Access to Sample Tables
Each table in the database is "owned" by a particular user. You may wish to have
your own copies of the sample tables to use as you try the examples in this Guide.
To get your own copies of the tables, see your DBA or run the Oracle-supplied
command file named DEMOBLD (you run this file from your operating system, not
from SQL*Plus).

When you have no more use for the sample tables, remove them by running
another Oracle-supplied command file named DEMODROP. For instructions on
how to run DEMOBLD and DEMODROP, see the Oracle installation and user’s
manual(s) provided for your operating system.

What You Need to Run SQL*Plus

1-8 SQL*Plus User’s Guide and Reference

Learning SQL*Plus Basics 2-1

2
Learning SQL*Plus Basics

This chapter helps you learn the basics of using SQL*Plus, including the following
topics:

■ Getting Started

■ Entering and Executing Commands

■ Getting Help

Read this chapter while sitting at your computer and try out the examples shown.
Before beginning, make sure you have access to the sample tables described in
Chapter 1.

Getting Started

2-2 SQL*Plus User’s Guide and Reference

Getting Started
To begin using SQL*Plus, you must first become familiar with the functions of
several keys on your keyboard and understand how to start and leave SQL*Plus.

Using the Keyboard
Several keys on your keyboard have special meaning in SQL*Plus. Table 2–1,
"SQL*Plus Special Keys and their Functions" lists these keys.

See your Oracle installation and user’s manual(s) for your operating system to learn
which physical key performs each function on the keyboard commonly used with
your host computer.

Fill in each blank in Table 2–1 with the name of the corresponding keyboard key.
Then locate each key on your keyboard.

Note: A SQL*Plus key may perform different functions when
pressed in other products or the operating system.

Table 2–1 SQL*Plus Special Keys and their Functions

SQL*Plus Key Name Keyboard Key Name Function

[Return] ___________ End of a line of input.

[Backspace] ___________ Move cursor left one character to
correct an error.

[Pause] ___________ Suspend program operation and
display of output.

[Resume] ___________ Resume program operation and
output [Pause].

[Cancel] ___________ Halt program operation; return to
the SQL*Plus command prompt.

[Interrupt] ___________ Exit SQL*Plus and return to the
host operating system.

Getting Started

Learning SQL*Plus Basics 2-3

Starting SQL*Plus
Now that you have identified important keys on your keyboard, you are ready to
start SQL*Plus.

Example 2–1 Starting SQL*Plus

This example shows you how to start SQL*Plus. Follow the steps shown.

1. Make sure that Oracle has been installed on your computer.

2. Turn on your computer (if it is off) and log on to the host operating system (if
required). If you are already using your computer, you need not log off or reset
it. Simply exit from the program you are using (if any).

You should see one or more characters at the left side of the screen. This is the
operating system’s command prompt, which signals that the operating system
is ready to accept a command. In this Guide the operating system’s prompt will
be represented by a dollar sign ($). Your computer’s operating system prompt
may be different.

3. Enter the command SQLPLUS and press [Return]. This is an operating system
command that starts SQL*Plus.

$ SQLPLUS

SQL*Plus displays its version number, the current date, and copyright
information, and prompts you for your username (the text displayed on your
system may differ slightly):

SQL*Plus: Release 8.1.7.0.0 - 0 - Production on Thu Aug 3 16:29:01 2000
(c) Copyright 2000 Oracle Corporation. All rights reserved.
Enter user-name:

4. Enter your username and press [Return]. SQL*Plus displays the prompt "Enter
password:".

5. Enter your password and press [Return] again. For your protection, your
password does not appear on the screen.

Note: Some operating systems expect you to enter commands in
lowercase letters. If your system expects lowercase, enter the
SQLPLUS command in lowercase.

Getting Started

2-4 SQL*Plus User’s Guide and Reference

The process of entering your username and password is called logging in.
SQL*Plus displays the version of Oracle to which you connected and the
versions of available tools such as PL/SQL.

Next, SQL*Plus displays the SQL*Plus command prompt:

SQL>

The command prompt indicates that SQL*Plus is ready to accept your
commands.

If SQL*Plus does not start, you should see a message to help you correct the
problem.

Shortcuts to Starting SQL*Plus
When you start SQL*Plus, you can enter your username and password, separated
by a slash (/), following the command SQLPLUS. For example, if your username is
SCOTT and your password is TIGER, you can enter

$ SQLPLUS SCOTT/TIGER

and press [Return]. You can also arrange to log in to SQL*Plus automatically when
you log on to your host operating system. See the Oracle installation and user’s
manual(s) provided for your operating system for details.

Leaving SQL*Plus
When you are done working with SQL*Plus and wish to return to the operating
system, enter the EXIT command at the SQL*Plus command prompt.

Example 2–2 Exiting SQL*Plus

To leave SQL*Plus, enter the EXIT command at the SQL*Plus command prompt:

SQL> EXIT

SQL*Plus displays the version of Oracle from which you disconnected and the
versions of tools available through SQL*Plus. After a moment you will see the
operating system prompt.

Before continuing with this chapter, follow steps 3, 4, and 5 of Example 2–1 to start
SQL*Plus again. Alternatively, log in using the shortcut shown under "Shortcuts to
Starting SQL*Plus"above.

Entering and Executing Commands

Learning SQL*Plus Basics 2-5

Entering and Executing Commands

Entering Commands
Your computer ’s cursor, or pointer (typically an underline, a rectangular block, or a
slash), appears after the command prompt. The cursor indicates the place where the
next character you type will appear on your screen.

To tell SQL*Plus what to do, simply type the command you wish to use. Usually,
you separate the words in a command from each other by a space or tab. You can
use additional spaces or tabs between words, if you wish, to make your commands
more readable.

Case sensitivity is operating system specific. For the sake of clarity, all table names,
column names, and commands in this Guide appear in capital letters.

You can enter three kinds of commands at the command prompt:

■ SQL commands, for working with information in the database

■ PL/SQL blocks, also for working with information in the database

■ SQL*Plus commands, for formatting query results, setting options, and editing
and storing SQL commands and PL/SQL blocks

The manner in which you continue a command on additional lines, end a
command, or execute a command differs depending on the type of command you
wish to enter and run. Examples of how to run and execute these types of
commands are found on the following pages.

Getting Help
To get online help for SQL*Plus commands, type HELP at the command prompt
followed by the name of the command. For example:

SQL>HELP ACCEPT

Note: You will see examples of spacing and indentation
throughout this Guide. When you enter the commands in the
exercises, you do not have to space them as shown, but you may
find them clearer to read if you do.

Entering and Executing Commands

2-6 SQL*Plus User’s Guide and Reference

If you get a response indicating that help is not available, consult your database
administrator. For more details about the help system, see the HELP command in
the "Command Reference" in Chapter 8.

Executing Commands
After you enter the command and direct SQL*Plus to execute it, SQL*Plus processes
the command and re-displays the command prompt, indicating that you can enter
another command.

Running SQL Commands
The SQL command language enables you to manipulate data in the database. See
your Oracle8i SQL Reference for information on individual SQL commands.

Example 2–3 Entering a SQL Command

In this example, you will enter and execute a SQL command to display the
employee number, name, job, and salary of each employee in the sample table EMP.

1. At the command prompt, enter the first line of the command:

SQL> SELECT EMPNO, ENAME, JOB, SAL

If you make a mistake, use [Backspace] to erase it and re-enter. When you are
done, press [Return] to move to the next line.

2. SQL*Plus will display a "2", the prompt for the second line. Enter the second
line of the command:

2 FROM EMP WHERE SAL < 1500;

The semicolon (;) means that this is the end of the command. Press [Return].
SQL*Plus processes the command and displays the results on the screen:

EMPNO ENAME JOB SAL
----- ---------- ------------ ------
7369 SMITH CLERK 800
7521 WARD SALESMAN 1250
7654 MARTIN SALESMAN 1250
7876 ADAMS CLERK 1100
7900 JAMES CLERK 800
7934 MILLER CLERK 1300

9 rows selected.
SQL>

Entering and Executing Commands

Learning SQL*Plus Basics 2-7

After displaying the results and the number of rows retrieved, SQL*Plus
displays the command prompt again. If you made a mistake and therefore did
not get the results shown above, simply re-enter the command.

The headings may be repeated in your output, depending on the setting of a
system variable called PAGESIZE. Whether you see the message concerning the
number of records retrieved depends on the setting of a system variable called
FEEDBACK. You will learn more about system variables later in this chapter in
the section "Variables that Affect Running Commands". To save space, the
number of records selected will not be shown in the rest of the examples in this
Guide.

Understanding SQL Command Syntax
Just as spoken language has syntax rules that govern the way we assemble words
into sentences, SQL*Plus has syntax rules that govern how you assemble words into
commands. You must follow these rules if you want SQL*Plus to accept and execute
your commands.

Dividing a SQL Command into Separate Lines You can divide your SQL command into
separate lines at any points you wish, as long as individual words are not split
between lines. Thus, you can enter the query you entered in Example 2-3 on one
line:

SQL> SELECT EMPNO, ENAME, JOB, SAL FROM EMP WHERE SAL < 2500;

You can also enter the query on several lines:

SQL> SELECT
 2 EMPNO, ENAME, JOB, SAL
 3 FROM EMP
 4 WHERE SAL < 1500;

In this Guide, you will find most SQL commands divided into clauses, one clause
on each line. In Example 2–3, for instance, the SELECT and FROM clauses were
placed on separate lines. Many people find this clearly visible structure helpful, but
you may choose whatever line division makes commands most readable to you.

Ending a SQL Command You can end a SQL command in one of three ways:

■ with a semicolon (;)

■ with a slash (/) on a line by itself

Entering and Executing Commands

2-8 SQL*Plus User’s Guide and Reference

■ with a blank line

A semicolon (;) tells SQL*Plus that you want to run the command. Type the
semicolon at the end of the last line of the command, as shown in Example 2–3, and
press [Return]. SQL*Plus will process the command and store it in the SQL buffer
(see the section "The SQL Buffer" below for details). If you mistakenly press
[Return] before typing the semicolon, SQL*Plus will prompt you with a line number
for the next line of your command. Type the semicolon and press [Return] again to
run the command.

A slash (/) on a line by itself also tells SQL*Plus that you wish to run the command.
Press [Return] at the end of the last line of the command. SQL*Plus prompts you
with another line number. Type a slash and press [Return] again. SQL*Plus will
execute the command and store it in the buffer (see the section "The SQL Buffer"
below for details).

A blank line in a SQL statement tells SQL*Plus that you have finished entering the
command, but do not want to run it yet. Press [Return] at the end of the last line of
the command. SQL*Plus prompts you with another line number.

Press [Return] again; SQL*Plus now prompts you with the SQL*Plus command
prompt. SQL*Plus does not execute the command, but stores it in the SQL buffer
(see the section "The SQL Buffer" below for details). If you subsequently enter
another SQL command, SQL*Plus overwrites the previous command in the buffer.

Creating Stored Procedures Stored procedures are PL/SQL functions, packages, or
procedures. To create stored procedures, you use SQL CREATE commands. The
following SQL CREATE commands are used to create stored procedures:

■ CREATE FUNCTION

■ CREATE LIBRARY

Note: You cannot enter a comment on the same line after a
semicolon. For more information about placing comments, see
"Placing Comments in Command Files" in Chapter 3.

Note: You can change the way blank lines appear and behave in
SQL statements using the SET SQLBLANKLINES command. For
more information about changing blank line behavior, see the SET
command in Chapter 8.

Entering and Executing Commands

Learning SQL*Plus Basics 2-9

■ CREATE PACKAGE

■ CREATE PACKAGE BODY

■ CREATE PROCEDURE

■ CREATE TRIGGER

■ CREATE TYPE

Entering any of these commands places you in PL/SQL mode, where you can enter
your PL/SQL subprogram. For more information, see the section "Running PL/SQL
Blocks" in this chapter). When you are done typing your PL/SQL subprogram,
enter a period (.) on a line by itself to terminate PL/SQL mode. To run the SQL
command and create the stored procedure, you must enter RUN or slash (/). A
semicolon (;) will not execute these CREATE commands.

When you use CREATE to create a stored procedure, a message appears if there are
compilation errors. To view these errors, you use SHOW ERRORS. For example:

SQL> SHOW ERRORS PROCEDURE ASSIGNVL

For more information about the SHOW command, see the "Command Reference" in
Chapter 8.

To execute a PL/SQL statement that references a stored procedure, you can use the
EXECUTE command. EXECUTE runs the PL/SQL statement that you enter
immediately after the command. For example:

SQL> EXECUTE :ID := EMP_MANAGEMENT.GET_ID(’BLAKE’)

For more information about the EXECUTE command, see the "Command
Reference" in Chapter 8.

The SQL Buffer
The area where SQL*Plus stores your most recently entered SQL command or
PL/SQL block is called the SQL buffer. The command or block remains there until
you enter another. Thus, if you want to edit or re-run the current SQL command or
PL/SQL block, you may do so without re-entering it. For more information about
editing or re-running a command or block stored in the buffer see the section
"Running Command Files" in Chapter 3.

SQL*Plus does not store the semicolon or the slash you type to execute a command
in the SQL buffer.

Entering and Executing Commands

2-10 SQL*Plus User’s Guide and Reference

Executing the Current SQL Command or PL/SQL Block from the Command
Prompt
You can run (or re-run) the current SQL command or PL/SQL block by entering the
RUN command or the slash (/) command at the command prompt. The RUN
command lists the SQL command or PL/SQL block in the buffer before executing
the command or block; the slash (/) command simply runs the SQL command or
PL/SQL block.

Running PL/SQL Blocks
You can also use PL/SQL subprograms (called blocks) to manipulate data in the
database. See your PL/SQL User’s Guide and Reference for information on individual
PL/SQL statements.

To enter a PL/SQL subprogram in SQL*Plus, you need to be in PL/SQL mode. You
are placed in PL/SQL mode when

■ You type DECLARE or BEGIN at the SQL*Plus command prompt. After you
enter PL/SQL mode in this way, type the remainder of your PL/SQL
subprogram.

■ You type a SQL command (such as CREATE FUNCTION) that creates a stored
procedure. After you enter PL/SQL mode in this way, type the stored
procedure you want to create.

SQL*Plus treats PL/SQL subprograms in the same manner as SQL commands,
except that a semicolon (;) or a blank line does not terminate and execute a block.
Terminate PL/SQL subprograms by entering a period (.) by itself on a new line.

SQL*Plus stores the subprograms you enter at the SQL*Plus command prompt in
the SQL buffer. Execute the current subprogram by issuing a RUN or slash (/)
command. Likewise, to execute a SQL CREATE command that creates a stored
procedure, you must also enter RUN or slash (/). A semicolon (;) will not execute
these SQL commands as it does other SQL commands.

SQL*Plus sends the complete PL/SQL subprogram to Oracle for processing (as it
does SQL commands).

Note: SQL*Plus commands are not stored in the SQL buffer.

Entering and Executing Commands

Learning SQL*Plus Basics 2-11

You might enter and execute a PL/SQL subprogram as follows:

SQL> DECLARE
 2 x NUMBER := 100;
 3 BEGIN
 4 FOR i IN 1..10 LOOP
 5 IF MOD (i, 2) = 0 THEN --i is even
 6 INSERT INTO temp VALUES (i, x, ’i is even’);
 7 ELSE
 8 INSERT INTO temp VALUES (i, x, ’i is odd’);
 9 END IF;
 10 x := x + 100;
 11 END LOOP;
 12 END;
 13 .
SQL> /

When you run a subprogram, the SQL commands within the subprogram may
behave somewhat differently than they would outside the subprogram. See your
PL/SQL User’s Guide and Reference for detailed information on the PL/SQL language.

Running SQL*Plus Commands
You can use SQL*Plus commands to manipulate SQL commands and PL/SQL
blocks and to format and print query results. SQL*Plus treats SQL*Plus commands
differently than SQL commands or PL/SQL blocks. For information on individual
SQL*Plus commands, refer to the Command Reference in Chapter 8.

To speed up command entry, you can abbreviate many SQL*Plus commands to one
or a few letters. Abbreviations for some SQL*Plus commands are described along
with the commands in Chapter 3, Chapter 4, and Chapter 6. For abbreviations of all
SQL*Plus commands, refer to the Command Reference in Chapter 8.

Example 2–4 Entering a SQL*Plus Command

This example shows how you might enter a SQL*Plus command to change the
format used to display the column SAL of the sample table EMP.

1. On the command line, enter this SQL*Plus command:

SQL> COLUMN SAL FORMAT $99,999 HEADING SALARY

If you make a mistake, use [Backspace] to erase it and re-enter. When you have
entered the line, press [Return]. SQL*Plus notes the new format and displays
the SQL*Plus command prompt again, ready for a new command.

Entering and Executing Commands

2-12 SQL*Plus User’s Guide and Reference

2. Enter the RUN command to re-run the most recent query (from Example 2-3).
SQL*Plus reprocesses the query and displays the results:

SQL> RUN
 1 SELECT EMPNO, ENAME, JOB, SAL
 2* FROM EMP WHERE SAL < 2400
EMPNO ENAME JOB SALARY
----- ------------- ------------ ------
7369 SMITH CLERK $800
7499 ALLEN SALESMAN $1,600
7521 WARD SALESMAN $1,250
7654 MARTIN SALESMAN $1,250
7844 TURNER SALESMAN $1,500
7876 ADAMS CLERK $1,100
7900 JAMES CLERK $800
7934 MILLER CLERK $1,300

The COLUMN command formatted the column SAL with a dollar sign ($) and a
comma (,) and gave it a new heading. The RUN command then re-ran the query of
Example 2-3, which was stored in the buffer. SQL*Plus does not store SQL*Plus
commands in the SQL buffer.

Understanding SQL*Plus Command Syntax
SQL*Plus commands have a different syntax from SQL commands or PL/SQL
blocks.

Continuing a Long SQL*Plus Command on Additional Lines You can continue a long
SQL*Plus command by typing a hyphen at the end of the line and pressing
[Return]. If you wish, you can type a space before typing the hyphen. SQL*Plus
displays a right angle-bracket (>) as a prompt for each additional line.

For example:

SQL> COLUMN SAL FORMAT $99,999 -
> HEADING SALARY

Since SQL*Plus identifies the hyphen as a continuation character, entering a hyphen
within a SQL statement will be ignored by SQL*Plus. SQL*Plus will not identify the
statement as a SQL statement until after the input processing has joined the lines
together and removed the hyphen. For example, entering the following will return
an error:

SQL> select 200 -
> 100 from dual;

Entering and Executing Commands

Learning SQL*Plus Basics 2-13

select 200 100 from dual
 *
ERROR at line 1:
ORA-00923: FROM keyword not found where expected

To ensure that the statement is interpreted correctly, reposition the hyphen from the
end of the first line to the beginning of the second line.

Ending a SQL*Plus Command You do not need to end a SQL*Plus command with a
semicolon. When you finish entering the command, you can just press [Return]. If
you wish, however, you can enter a semicolon at the end of a SQL*Plus command.

Variables that Affect Running Commands
The SQL*Plus command SET controls many variables—called system variables—the
settings of which affect the way SQL*Plus runs your commands. System variables
control a variety of conditions within SQL*Plus, including default column widths
for your output, whether SQL*Plus displays the number of records selected by a
command, and your page size. System variables are also called SET command
variables.

The examples in this Guide are based on running SQL*Plus with the system
variables at their default settings. Depending on the settings of your system
variables, your output may appear slightly different than the output shown in the
examples. (Your settings might differ from the default settings if you have a
SQL*Plus LOGIN file on your computer.)

For more information on system variables and their default settings, see the SET
command in Chapter 8. For details on the SQL*Plus LOGIN file, refer to the section
"Setting Up Your SQL*Plus Environment" under "Saving Commands for Later Use"
in Chapter 3 and to the SQLPLUS command in Chapter 7.

To list the current setting of a SET command variable, enter SHOW followed by the
variable name at the command prompt. See the SHOW command in Chapter 8 for
information on other items you can list with SHOW.

Saving Changes to the Database Automatically
Through the SQL DML commands UPDATE, INSERT, and DELETE—which can be
used independently or within a PL/SQL block—specify changes you wish to make
to the information stored in the database. These changes are not made permanent
until you enter a SQL COMMIT command or a SQL DCL or DDL command (such
as CREATE TABLE), or use the autocommit feature. The SQL*Plus autocommit

Entering and Executing Commands

2-14 SQL*Plus User’s Guide and Reference

feature causes pending changes to be committed after a specified number of
successful SQL DML transactions. (A SQL DML transaction is either an UPDATE,
INSERT, or DELETE command, or a PL/SQL block.)

You control the autocommit feature with the SQL*Plus SET command’s
AUTOCOMMIT variable. It has these four forms:

Example 2–5 Turning Autocommit On

To turn the autocommit feature on, enter

SQL> SET AUTOCOMMIT ON

Alternatively, you can enter the following to turn the autocommit feature on:

SQL> SET AUTOCOMMIT IMMEDIATE

Until you change the setting of AUTOCOMMIT, SQL*Plus automatically commits
changes from each SQL DML command that specifies changes to the database. After
each autocommit, SQL*Plus displays the following message:

commit complete

When the autocommit feature is turned on, you cannot roll back changes to the
database.

To commit changes to the database after a number of SQL DML commands, for
example, ten, enter

SQL> SET AUTOCOMMIT 10

SQL*Plus counts SQL DML commands as they are executed and commits the
changes after the tenth SQL DML command.

SET AUTOCOMMIT ON Turns autocommit on.

SET AUTOCOMMIT OFF Turns autocommit off (the default).

SET AUTOCOMMIT n Commits changes after n SQL DML commands.

SET AUTOCOMMIT IMMEDIATE Turns autocommit on.

Note: For this feature, a PL/SQL block is regarded as one
transaction, regardless of the actual number of SQL commands
contained within it.

Entering and Executing Commands

Learning SQL*Plus Basics 2-15

To turn the autocommit feature off again, enter the following command:

SQL> SET AUTOCOMMIT OFF

To confirm that AUTOCOMMIT is now set to OFF, enter the following SHOW
command:

SQL> SHOW AUTOCOMMIT
autocommit OFF

For more information, see the AUTOCOMMIT variable of the SET command in
Chapter 8.

Stopping a Command while it is Running
Suppose you have displayed the first page of a 50 page report and decide you do
not need to see the rest of it. Press [Cancel]. (Refer to Table 2–1 at the beginning of
this chapter to see how [Cancel] is labelled on your keyboard.) SQL*Plus stops the
display and returns to the command prompt.

Collecting Timing Statistics on Commands You Run
Use the SQL*Plus command TIMING to collect and display data on the amount of
computer resources used to run one or more commands or blocks. TIMING collects
data for an elapsed period of time, saving the data on commands run during the
period in a timer.

See TIMING in Chapter 8 and the Oracle installation and user’s manuals provided
for your operating system for more information.

To delete all timers, enter CLEAR TIMING at the command prompt.

Note: Pressing [Cancel] will not stop the printing of a file that you
have sent to a printer with the OUT clause of the SQL*Plus SPOOL
command. (You will learn about printing query results in
Chapter 4.) You can stop the printing of a file through your
operating system. For more information, see your operating
system’s installation and user(s) manual.

Getting Help

2-16 SQL*Plus User’s Guide and Reference

Running Host Operating System Commands
You can execute a host operating system command from the SQL*Plus command
prompt. This is useful when you want to perform a task such as listing existing host
operating system files.

To run a host operating system command, enter the SQL*Plus command HOST
followed by the host operating system command. For example, this SQL*Plus
command runs a host command, DIRECTORY *.SQL:

SQL> HOST DIRECTORY *.SQL

When the host command finishes running, the SQL*Plus command prompt appears
again.

Getting Help
While you use SQL*Plus, you may find that you need to list column definitions for
a table, or start and stop the display that scrolls by. You may also need to interpret
error messages you receive when you enter a command incorrectly or when there is
a problem with Oracle or SQL*Plus. The following sections describe how to get help
for those situations.

Listing a Table Definition
To see the definitions of each column in a given table, use the SQL*Plus DESCRIBE
command.

Example 2–6 Using the DESCRIBE Command

To list the column definitions of the three columns in the sample table DEPT, enter

SQL> DESCRIBE DEPT

Note: Operating system commands entered from a SQL*Plus
session using the HOST command do not effect the current
SQL*Plus session.

You can suppress access to the HOST command. For more
information about suppressing the HOST command see
Appendix E, "Security".

Getting Help

Learning SQL*Plus Basics 2-17

The following output results:

Name Null? Type
------------------------------- ------- -------------
DEPTNO NUMBER(2)
DNAME VARCHAR2(14)
LOC VARCHAR2(13)

Listing PL/SQL Definitions
To see the definition of a function or procedure, use the SQL*Plus DESCRIBE
command.

Example 2–7 Using the DESCRIBE Command

To list the definition of a function called AFUNC, enter

SQL> DESCRIBE afunc

The following output results:

FUNCTION afunc RETURNS NUMBER
Argument Name Type In/Out Default?
--------------- -------- -------- ---------
F1 CHAR IN
F2 NUMBER IN

Controlling the Display
Suppose that you wish to stop and examine the contents of the screen while
displaying a long report or the definition of a table with many columns. Press
[Pause]. (Refer to Table 2–1 to see how [Pause] is labelled on your keyboard.) The
display will pause while you examine it. To continue, press [Resume].

If you wish, you can use the PAUSE variable of the SQL*Plus SET command to have
SQL*Plus pause after displaying each screen of a query or report. For more
information, refer to the SET command in Chapter 8.

Note: DESCRIBE accesses information in the Oracle data
dictionary. You can also use SQL SELECT commands to access this
and other information in the database. See your Oracle8i SQL
Reference for details.

Getting Help

2-18 SQL*Plus User’s Guide and Reference

Interpreting Error Messages
If SQL*Plus detects an error in a command, it will try to help you out by displaying
an error message.

Example 2–8 Interpreting an Error Message

For example, if you misspell the name of a table while entering a command, an
error message will tell you that the table or view does not exist:

SQL> DESCRIBE DPT
ERROR:
ORA-04043: object DPT does not exist

You will often be able to figure out how to correct the problem from the message
alone. If you need further explanation, take one of the following steps to determine
the cause of the problem and how to correct it:

■ If the error is a numbered error for the SQL*Plus COPY command, look up the
message in Appendix A of this Guide.

■ If the error is a numbered error beginning with the letters "ORA", look up the
message in the Oracle8i Error Messages manual or in the Oracle installation and
user’s manual(s) provided for your operating system to determine the cause of
the problem and how to correct it.

■ If the error is unnumbered, look up correct syntax for the command that
generated the error in Chapter 8 of this Guide for a SQL*Plus command, in the
Oracle8i SQL Reference for a SQL command, or in the PL/SQL User’s Guide and
Reference for a PL/SQL block. Otherwise, contact your DBA.

Manipulating Commands 3-1

3
Manipulating Commands

This chapter helps you learn to manipulate SQL*Plus commands, SQL commands,
and PL/SQL blocks. It covers the following topics:

■ Editing Commands

■ Saving Commands for Later Use

■ Writing Interactive Commands

■ Using Bind Variables

■ Using REFCURSOR Bind Variables

■ Tracing Statements

Read this chapter while sitting at your computer and try out the examples shown.
Before beginning, make sure you have access to the sample tables described in
Chapter 1.

Editing Commands

3-2 SQL*Plus User’s Guide and Reference

Editing Commands
Because SQL*Plus does not store SQL*Plus commands in the buffer, you edit a
SQL*Plus command entered directly to the command prompt by using [Backspace]
or by re-entering the command.

You can use a number of SQL*Plus commands to edit the SQL command or
PL/SQL block currently stored in the buffer. Alternatively, you can use a host
operating system editor to edit the buffer contents.

Table 3–1 lists the SQL*Plus commands that allow you to examine or change the
command in the buffer without re-entering the command.

Table 3–1 SQL*Plus Editing Commands

Command Abbreviation Purpose

APPEND text A text adds text at the end of a line

CHANGE /old/new C /old/new changes old to new in a line

CHANGE /text C /text deletes text from a line

CLEAR BUFFER CL BUFF deletes all lines

DEL (none) deletes the current line

DEL n (none) deletes line n

DEL * (none) deletes the current line

DEL n * (none) deletes line n through the current line

DEL LAST (none) deletes the last line

DEL m n (none) deletes a range of lines (m to n)

DEL * n (none) deletes the current line through line n

INPUT I adds one or more lines

INPUT text I text adds a line consisting of text

LIST L lists all lines in the SQL buffer

LIST n L n or n lists line n

LIST * L * lists the current line

Editing Commands

Manipulating Commands 3-3

You will find these commands useful if you mistype a command or wish to modify
a command you have entered.

Listing the Buffer Contents
Any editing command other than LIST and DEL affects only a single line in the
buffer. This line is called the current line. It is marked with an asterisk when you list
the current command or block.

Example 3–1 Listing the Buffer Contents

Suppose you want to list the current command. Use the LIST command as shown
below. (If you have EXITed SQL*Plus or entered another SQL command or PL/SQL
block since following the steps in Example 2–3, perform the steps in that example
again before continuing.)

SQL> LIST
 1 SELECT EMPNO, ENAME, JOB, SAL
 2* FROM EMP WHERE SAL < 2500

Notice that the semicolon you entered at the end of the SELECT command is not
listed. This semicolon is necessary to mark the end of the command when you enter
it, but SQL*Plus does not store it in the SQL buffer. This makes editing more
convenient, since it means you can append a new line to the end of the buffer
without removing a semicolon.

Editing the Current Line
The SQL*Plus CHANGE command allows you to edit the current line. Various
actions determine which line is the current line:

■ LIST a given line to make it the current line.

LIST n * L n * lists line n through the current line

LIST LAST L LAST lists the last line

LIST m n L m n lists a range of lines (m to n)

LIST * n L * n lists the current line through line n

Table 3–1 SQL*Plus Editing Commands

Command Abbreviation Purpose

Editing Commands

3-4 SQL*Plus User’s Guide and Reference

■ When you LIST or RUN the command in the buffer, the last line of the
command becomes the current line. (Note, that using the slash (/) command to
run the command in the buffer does not affect the current line.)

■ If you get an error message, the line containing the error automatically becomes
the current line.

Example 3–2 Making an Error in Command Entry

Suppose you try to select the DEPTNO column but mistakenly enter it as DPTNO.
Enter the following command, purposely misspelling DEPTNO in the first line:

SQL> SELECT DPTNO, ENAME, SAL
 2 FROM EMP
 3 WHERE DEPTNO = 10;

You see this message on your screen:

SELECT DPTNO, ENAME, SAL
 *
ERROR at line 1:
ORA-00904: invalid column name

Examine the error message; it indicates an invalid column name in line 1 of the
query. The asterisk shows the point of error—the mistyped column DPTNO.

Instead of re-entering the entire command, you can correct the mistake by editing
the command in the buffer. The line containing the error is now the current line. Use
the CHANGE command to correct the mistake. This command has three parts,
separated by slashes or any other non-alphanumeric character:

■ the word CHANGE or the letter C

■ the sequence of characters you want to change

■ the replacement sequence of characters

The CHANGE command finds the first occurrence in the current line of the
character sequence to be changed and changes it to the new sequence. If you wish
to re-enter an entire line, you do not need to use the CHANGE command: re-enter
the line by typing the line number followed by a space and the new text and
pressing [Return].

Example 3–3 Correcting the Error

To change DPTNO to DEPTNO, change the line with the CHANGE command:

Editing Commands

Manipulating Commands 3-5

SQL> CHANGE /DPTNO/DEPTNO

The corrected line appears on your screen:

1* SELECT DEPTNO, ENAME, SAL

Now that you have corrected the error, you can use the RUN command to run the
command again:

SQL> RUN

SQL*Plus lists the command, and then runs it:

 1 select deptno, ename, sal
 2 from emp
 3* where deptno = 10

 DEPTNO ENAME SAL
---------- ---------- ----------
 10 CLARK 2450
 10 KING 5000
 10 MILLER 1300

Note that the column SAL retains the format you gave it in Example 2–4. (If you
have left SQL*Plus and started again since performing Example 2–4 the column has
reverted to its original format.)

For information about the significance of case in a CHANGE command and on
using wildcard characters to specify blocks of text in a CHANGE command, refer to
the CHANGE command in Chapter 8.

Adding a New Line
To insert a new line after the current line, use the INPUT command.

To insert a line before line 1, enter a zero ("0") and follow the zero with text.
SQL*Plus inserts the line at the beginning of the buffer and that line becomes line 1.

SQL> 0 SELECT EMPNO

Example 3–4 Adding a Line

Suppose you want to add a fourth line to the SQL command you modified in
Example 3–3. Since line 3 is already the current line, enter INPUT (which may be
abbreviated to I) and press [Return]. SQL*Plus prompts you for the new line:

Editing Commands

3-6 SQL*Plus User’s Guide and Reference

SQL> INPUT
 4

Enter the new line. Then press [Return]. SQL*Plus prompts you again for a new
line:

4 ORDER BY SAL
5

Press [Return] again to indicate that you will not enter any more lines, and then use
RUN to verify and re-run the query.

SQL*Plus lists the modified command, and then runs it:

 1 select deptno, ename, sal
 2 from emp
 3 where deptno = 10
 4* order by sal

 DEPTNO ENAME SAL
---------- ---------- ----------
 10 MILLER 1300
 10 CLARK 2450
 10 KING 5000

Appending Text to a Line
To add text to the end of a line in the buffer, use the APPEND command.

1. Use the LIST command (or just the line number) to list the line you want to
change.

2. Enter APPEND followed by the text you want to add. If the text you want to
add begins with a blank, separate the word APPEND from the first character of
the text by two blanks: one to separate APPEND from the text, and one to go
into the buffer with the text.

Example 3–5 Appending Text to a Line

To append a space and the clause DESC to line 4 of the current query, first list line 4:

SQL> LIST 4
 4* ORDER BY SAL

Next, enter the following command (be sure to type two spaces between APPEND
and DESC):

Editing Commands

Manipulating Commands 3-7

SQL> APPEND DESC
 4* ORDER BY SAL DESC

Use RUN to verify and re-run the query.

SQL*Plus lists the modified command, and then runs it:

 1 select deptno, ename, sal
 2 from emp
 3 where deptno = 10
 4* order by sal desc

 DEPTNO ENAME SAL
---------- ---------- ----------
 10 KING 5000
 10 CLARK 2450
 10 MILLER 1300

Deleting Lines
To delete lines in the buffer, use the DEL command.

1. Use the LIST command (or just the line numbers) to list the lines you want to
delete.

2. Enter DEL with an optional clause.

Suppose you want to delete the current line to the last line inclusive. Use the DEL
command as shown below.

SQL> DEL * LAST

DEL makes the following line of the buffer (if any) the current line.

For more information, see the DEL command in Chapter 8.

Editing Commands with a System Editor
Your computer ’s host operating system may have one or more text editors that you
can use to create and edit host system files. Text editors perform the same general
functions as the SQL*Plus editing commands, but you may find them more familiar.

You can run your host operating system’s default text editor without leaving
SQL*Plus by entering the EDIT command:

SQL> EDIT

Saving Commands for Later Use

3-8 SQL*Plus User’s Guide and Reference

EDIT loads the contents of the buffer into your system’s default text editor. You can
then edit the text with the text editor’s commands. When you tell the text editor to
save edited text and then exit, the text is loaded back into the buffer.

To load the buffer contents into a text editor other than the default, use the
SQL*Plus DEFINE command to define a variable, _EDITOR, to hold the name of the
editor. For example, to define the editor to be used by EDIT as EDT, enter the
following command:

SQL> DEFINE _EDITOR = EDT

You can also define the editor to be used by EDIT in your user or site profile. See
"Setting Up Your SQL*Plus Environment" later in this chapter and the DEFINE and
EDIT commands in Chapter 8 for more information.

Saving Commands for Later Use
Through SQL*Plus, you can store one or more commands in a file called a command
file. After you create a command file, you can retrieve, edit, and run it. Use
command files to save commands for use over time, especially complex commands
or PL/SQL blocks.

Storing Commands in Command Files
You can store one or more SQL commands, PL/SQL blocks, and SQL*Plus
commands in command files. You create a command file within SQL*Plus in one of
three ways:

■ enter a command and save the contents of the buffer

■ use INPUT to enter commands and then save the buffer contents

■ use EDIT to create the file from scratch using a host system text editor

Because SQL*Plus commands are not stored in the buffer, you must use one of the
latter two methods to save SQL*Plus commands.

Creating a Command File by Saving the Buffer Contents
To save the current SQL command or PL/SQL block for later use, enter the SAVE
command. Follow the command with a file name:

SQL> SAVE file_name

Saving Commands for Later Use

Manipulating Commands 3-9

SQL*Plus adds the extension SQL to the filename to identify it as a SQL query file.
If you wish to save the command or block under a name with a different file
extension, type a period at the end of the filename, followed by the extension you
wish to use.

Note that within SQL*Plus, you separate the extension from the filename with a
period. Your operating system may use a different character or a space to separate
the filename and the extension.

Example 3–6 Saving the Current Command

First, LIST the buffer contents to see your current command:

SQL> LIST
 1 SELECT DEPTNO, ENAME, SAL
 2 FROM EMP
 3 WHERE DEPTNO = 10
 4* ORDER BY SAL DESC

If the query shown is not in your buffer, re-enter the query now. Next, enter the
SAVE command followed by the filename DEPTINFO:

SQL> SAVE DEPTINFO
Created file DEPTINFO

You can verify that the command file DEPTINFO exists by entering the SQL*Plus
HOST command followed by your host operating system’s file listing command:

SQL> HOST your_host’s_file_listing_command

You can use the same method to save a PL/SQL block currently stored in the buffer.

Creating a Command File by Using INPUT and SAVE
If you use INPUT to enter your commands, you can enter SQL*Plus commands (as
well as one or more SQL commands or PL/SQL blocks) into the buffer. You must
enter the SQL*Plus commands first, and the SQL command(s) or PL/SQL block(s)
last—just as you would if you were entering the commands directly to the
command prompt.

Note: .sql is the file extension used by default for files saved from
SQL*Plus, You can use the SQL*Plus command, SET SUFFIX
extension, to set the file extension you want to use.

Saving Commands for Later Use

3-10 SQL*Plus User’s Guide and Reference

You can also store a set of SQL*Plus commands you plan to use with many different
queries by themselves in a command file.

Example 3–7 Saving Commands Using INPUT and SAVE

Suppose you have composed a query to display a list of salespeople and their
commissions. You plan to run it once a month to keep track of how well each
employee is doing. To compose and save the query using INPUT, you must first
clear the buffer:

SQL> CLEAR BUFFER

Next, use INPUT to enter the command (be sure not to type a semicolon at the end
of the command):

SQL> INPUT
 1 COLUMN ENAME HEADING SALESMAN
 2 COLUMN SAL HEADING SALARY FORMAT $99,999
 3 COLUMN COMM HEADING COMMISSION FORMAT $99,990
 4 SELECT EMPNO, ENAME, SAL, COMM
 5 FROM EMP
 6 WHERE JOB = ’SALESMAN’
 7

The zero at the end of the format model for the column COMM tells SQL*Plus to
display a zero instead of a blank when the value of COMM is zero for a given row.
Format models and the COLUMN command are described in more detail in
Chapter 4 and in the Oracle 8i SQL Reference Manual.

Now use the SAVE command to store your query in a file called SALES with the
extension SQL:

SQL> SAVE SALES
Created file SALES

Note that you do not type a semicolon at the end of the query; if you did include a
semicolon, SQL*Plus would attempt to run the buffer contents. The SQL*Plus
commands in the buffer would produce an error because SQL*Plus expects to find
only SQL commands in the buffer. You will learn how to run a command file later in
this chapter.

To input more than one SQL command, leave out the semicolons on all the SQL
commands. Then, use APPEND to add a semicolon to all but the last command.
(SAVE appends a slash to the end of the file automatically; this slash tells SQL*Plus
to run the last command when you run the command file.)

Saving Commands for Later Use

Manipulating Commands 3-11

To input more than one PL/SQL block, enter the blocks one after another without
including a period or a slash on a line between blocks. Then, for each block except
the last, list the last line of the block to make it current and use INPUT in the
following form to insert a slash on a line by itself:

INPUT /

Creating Command Files with a System Editor
You can also create a command file with a host operating system text editor by
entering EDIT followed by the name of the file, for example:

SQL> EDIT SALES

Like the SAVE command, EDIT adds the filename extension SQL to the name unless
you type a period and a different extension at the end of the filename. When you
save the command file with the text editor, it is saved back into the same file.

You must include a semicolon at the end of each SQL command and a period on a
line by itself after each PL/SQL block in the file. (You can include multiple SQL
commands and PL/SQL blocks.)

When you create a command file using EDIT, you can also include SQL*Plus
commands at the end of the file. You cannot do this when you create a command
file using the SAVE command because SAVE appends a slash to the end of the file.
This slash would cause SQL*Plus to run the command file twice, once upon
reaching the semicolon at the end of the last SQL command (or the slash after the
last PL/SQL block) and once upon reaching the slash at the end of the file.

Placing Comments in Command Files
You can enter comments in a command file in three ways:

■ using the SQL*Plus REMARK command for single line comments.

■ using the SQL comment delimiters /* ... */ for single of multi line comments.

■ using ANSI/ISO (American National Standards Institute/International
Standards Organization) comments -- for single line comments.

For further information about using comments in command files, see Notes on
Placing Comments later in this chapter.

Saving Commands for Later Use

3-12 SQL*Plus User’s Guide and Reference

Using the REMARK Command
Use the REMARK command on a line by itself in the command file, followed by
comments on the same line. To continue the comments on additional lines, enter
additional REMARK commands. Do not place a REMARK command between
different lines of a single SQL command.

REMARK Commissions report
REMARK to be run monthly.
COLUMN ENAME HEADING SALESMAN
COLUMN SAL HEADING SALARY FORMAT $99,999
COLUMN COMM HEADING COMMISSION FORMAT $99,990
REMARK Includes only salesmen.

SELECT EMPNO, ENAME, SAL, COMM
FROM EMP
WHERE JOB = ’SALESMAN’

Using /*...*/
Enter the SQL comment delimiters, /*...*/, on separate lines in your command file,
on the same line as a SQL command, or on a line in a PL/SQL block.

The comments can span multiple lines, but cannot be nested within one another:

/* Commissions report
to be run monthly. */
COLUMN ENAME HEADING SALESMAN
COLUMN SAL HEADING SALARY FORMAT $99,999
COLUMN COMM HEADING COMMISSION FORMAT $99,990
SELECT EMPNO, ENAME, SAL, COMM
FROM EMP
WHERE JOB = ’SALESMAN’ /* Includes only salesmen. */

If you enter a SQL comment directly at the command prompt, SQL*Plus does not
store the comment in the buffer.

Using - -
You can use ANSI/ISO "--" style comments within SQL statements, PL/SQL blocks,
or SQL*Plus commands. Since there is no ending delimiter, the comment cannot
span multiple lines. For PL/SQL and SQL, enter the comment after a command on a
line, or on a line by itself:

-- Commissions report to be run monthly
DECLARE --block for reporting monthly sales

Saving Commands for Later Use

Manipulating Commands 3-13

For SQL*Plus commands, you can only include "--" style comments if they are on a
line by themselves. For example, these comments are legal:

--set maximum width for LONG to 777
SET LONG 777
-- set the heading for ENAME to be SALESMAN
COLUMN ENAME HEADING SALESMAN

These comments are illegal:

SET LONG 777 -- set maximum width for LONG to 777
SET -- set maximum width for LONG to 777 LONG 777

If you enter the following SQL*Plus command, SQL*Plus interprets it as a comment
and does not execute the command:

-- SET LONG 777

Notes on Placing Comments
SQL*Plus generally does not parse or execute input it identifies as a comment.

SQL*Plus does not have a SQL or PL/SQL command parser. It scans the first few
keywords of each new statement to determine the command type, SQL, PL/SQL or
SQL*Plus. Comments in some locations can prevent SQL*Plus from correctly
identifying the command type, giving unexpected results. The following usage
notes may help you to use SQL*Plus comments more effectively:

1. Do not put comments within the first few keywords of a statement. For
example:

SQL> create or replace
 2 /* hello */
 3 procedure hello
 4 as
 5 begin
 6 null;
Warning: Procedure created with compilation errors.

The location of the comment prevents SQL*Plus from recognizing the command
as a PL/SQL command. SQL*Plus submits the block to the server when it sees
the slash ’/’ at the beginning of the comment, which it interprets as the ’/’
statement terminator. You can avoid this error by moving the comment. For
example:

SQL> create or replace procedure
 2 /* hello */

Saving Commands for Later Use

3-14 SQL*Plus User’s Guide and Reference

 3 hello
 4 as
 ...

2. Do not put comments after statement terminators (fullstop, semicolon or slash).
For example,

SQL> SELECT ’Y’ FROM DUAL; -- Testing
 2 ;
SELECT ’Y’ FROM DUAL; -- Testing
 *
ERROR at line 1:
ORA-00911: invalid character

SQL*Plus expects no text after statement terminators on the same line and is
unable to recognize the comment.

3. Do not put statement termination characters on the same line after comments in
a SQL statement or a PL/SQL block. For example:

SQL> select *
 2 -- comment;
-- comment
 *
ERROR at line 2:
ORA-00923: FROM keyword not found where expected

The semicolon is interpreted as a statement terminator and SQL*Plus submits
the partially formed SQL command to the server for processing, resulting in an
error.

4. Do not use ampersand characters ’&’ in comments in a SQL statement or
PL/SQL block. For example:

SQL> select * from /* this & that */ dept;
Enter value for that:
old 1: select * from /* this & that */ dept
new 1: select * from /* this */ dept
 DEPTNO DNAME LOC
---------- -------------- -------------
 10 ACCOUNTING NEW YORK
 20 RESEARCH DALLAS
 30 SALES CHICAGO
 40 OPERATIONS BOSTON

Saving Commands for Later Use

Manipulating Commands 3-15

SQL*Plus interprets text after the ampersand character "&" as a substitution
variable and prompts for the value of the variable. You can SET DEFINE OFF to
prevent scanning for the substitution character.

For more information on substitution and termination characters, see DEFINE,
SQLTERMINATOR and SQLBLANKLINES in the SET command in Chapter 8.

Retrieving Command Files
If you want to place the contents of a command file in the buffer, you must retrieve
the command from the file in which it is stored. You can retrieve a command file
using the SQL*Plus command GET.

Just as you can save a query from the buffer to a file with the SAVE command, you
can retrieve a query from a file to the buffer with the GET command:

SQL> GET file_name

When appropriate to the operating system, SQL*Plus adds a period and the
extension SQL to the filename unless you type a period at the end of the filename
followed by a different extension.

Example 3–8 Retrieving a Command File

Suppose you need to retrieve the SALES file in a later session. You can retrieve the
file by entering the GET command. To retrieve the file SALES, enter

SQL> GET SALES
1 COLUMN ENAME HEADING SALESMAN
2 COLUMN SAL HEADING SALARY FORMAT $99,999
3 COLUMN COMM HEADING COMMISSION FORMAT $99,990
4 SELECT EMPNO, ENAME, SAL, COMM
5 FROM EMP
6* WHERE JOB = ’SALESMAN’
7

SQL*Plus retrieves the contents of the file SALES with the extension SQL into the
SQL buffer and lists it on the screen. Then you can edit the command further. If the
file did not contain SQL*Plus commands, you could also execute it with the RUN
command.

Saving Commands for Later Use

3-16 SQL*Plus User’s Guide and Reference

Running Command Files
The START command retrieves a command file and runs the command(s) it
contains. Use START to run a command file containing SQL commands, PL/SQL
blocks, and/or SQL*Plus commands. Follow the START command with the name of
the file:

START file_name

If the file has the extension SQL, you need not add the period and the extension
SQL to the filename.

Example 3–9 Running a Command File

To retrieve and run the command stored in SALES.SQL, enter

SQL> START SALES

SQL*Plus runs the commands in the file SALES and displays the results of the
commands on your screen, formatting the query results according to the SQL*Plus
commands in the file:

EMPNO SALESMAN SALARY COMMISSION
----- --------- -------- -----------
7499 ALLEN $1,600 $300
7521 WARD $1,250 $500
7654 MARTIN $1,250 $1,400
7844 TURNER $1,500 $0

To see the commands as SQL*Plus "enters" them, you can set the ECHO variable of
the SET command to ON. The ECHO variable controls the listing of the commands
in command files run with the START, @ and @@ commands. Setting the ECHO
variable to OFF suppresses the listing.

You can also use the @ ("at" sign) command to run a command file:

SQL> @SALES

The @ command lists and runs the commands in the specified command file in the
same manner as START. SET ECHO affects the @ command as it affects the START
command.

START, @ and @@ leave the last SQL command or PL/SQL block in the command
file in the buffer.

Saving Commands for Later Use

Manipulating Commands 3-17

Running a Command File as You Start SQL*Plus
To run a command file as you start SQL*Plus, use one of the following four options:

■ Follow the SQLPLUS command with your username, a slash, your password, a
space, @, and the name of the file:

SQLPLUS SCOTT/TIGER @SALES

SQL*Plus starts and runs the command file.

■ Follow the SQLPLUS command and your username with a space, @, and the
name of the file:

SQLPLUS SCOTT @SALES

SQL*Plus prompts you for your password, starts, and runs the command file.

■ Include your username as the first line of the file. Follow the SQLPLUS
command with @ and the filename. SQL*Plus prompts for your password,
starts, and runs the file.

■ Include your username, a slash (/), and your password as the first line of the
file. Follow the SQLPLUS command with @ and the filename. SQL*Plus starts
and runs the file.

Nesting Command Files
To run a series of command files in sequence, first create a command file containing
several START commands, each followed by the name of a command file in the
sequence. Then run the command file containing the START commands. For
example, you could include the following START commands in a command file
named SALESRPT:

START Q1SALES
START Q2SALES
START Q3SALES
START Q4SALES
START YRENDSLS

Note: The @@ command may be useful in this example. See the
@@ (double "at" sign) command in Chapter 8 for more information.

Saving Commands for Later Use

3-18 SQL*Plus User’s Guide and Reference

Modifying Command Files
You can modify an existing command file in two ways:

■ using the EDIT command

■ using GET, the SQL*Plus editing commands, and SAVE

To edit an existing command file with the EDIT command, follow the word EDIT
with the name of the file. For example, to edit an existing file named PROFIT that
has the extension SQL, enter the following command:

SQL> EDIT PROFIT

Remember that EDIT assumes the file extension SQL if you do not specify one.

To edit an existing file using GET, the SQL*Plus editing commands, and SAVE, first
retrieve the file with GET, then edit the file with the SQL*Plus editing commands,
and finally save the file with the SAVE command.

Note that if you want to replace the contents of an existing command file with the
command or block in the buffer, you must use the SAVE command and follow the
filename with the word REPLACE.

For example:

SQL> GET MYREPORT
1* SELECT * FROM EMP
SQL> C/*/ENAME, JOB
1* SELECT ENAME, JOB FROM EMP
SQL> SAVE MYREPORT REPLACE
Wrote file MYREPORT

If you want to append the contents of the buffer to the end of an existing command
file, use the SAVE command and follow the filename with the word APPEND:

SQL> SAVE file_name APPEND

Exiting from a Command File with a Return Code
If your command file generates a SQL error while running from a batch file on the
host operating system, you may want to abort the command file and exit with a
return code. Use the SQL*Plus command WHENEVER SQLERROR to do this; see
the WHENEVER SQLERROR command in Chapter 8 for more information.

Similarly, the WHENEVER OSERROR command may be used to exit if an operating
system error occurs. See the WHENEVER OSERROR command in Chapter 8 for
more information.

Saving Commands for Later Use

Manipulating Commands 3-19

Setting Up Your SQL*Plus Environment
You may wish to set up your SQL*Plus environment in a particular way (such as
showing the current time as part of the SQL*Plus command prompt) and then reuse
those settings with each session. You can do this through a host operating system
file called LOGIN with the file extension SQL (also called your User Profile). The
exact name of this file is system dependent; see the Oracle installation and user’s
manual(s) provided for your operating system for the precise name.

You can add any SQL commands, PL/SQL blocks, or SQL*Plus commands to this
file; when you start SQL*Plus, it automatically searches for your LOGIN file (first in
your local directory and then on a system-dependent path) and runs the commands
it finds there. (You may also have a Site Profile, for example, GLOGIN.SQL. See
page 7-10 for more information on the relationship of Site and User Profiles.)

Modifying Your LOGIN File
You can modify your LOGIN file just as you would any other command file. You
may wish to add some of the following commands to the LOGIN file:

See the SET command in Chapter 8 for more information on these and other SET
command variables you may wish to set in your SQL*Plus LOGIN file.

SET COMPATIBILITY Followed by V7 or V8, sets compatibility to the version of
Oracle you specify. Setting COMPATIBILITY to V7 allows you
to run command files created with Oracle7.

SET NUMFORMAT Followed by a number format (such as $99,999), sets the
default format for displaying numbers in query results.

SET PAGESIZE Followed by a number, sets the number of lines per page.

SET PAUSE Followed by ON, causes SQL*Plus to pause at the beginning
of each page of output (SQL*Plus continues scrolling after you
enter [Return]). Followed by text, sets the text to be displayed
each time SQL*Plus pauses (you must also set PAUSE to ON).

SET SHIFTINOUT Followed by VISIBLE, will display shift characters as a visible
character. Setting SHIFTINOUT to INVISIBLE, will not
display any shift characters. Note, this command can only be
used with shift sensitive character sets.

SET TIME Followed by ON, displays the current time before each
command prompt.

Saving Commands for Later Use

3-20 SQL*Plus User’s Guide and Reference

Storing and Restoring SQL*Plus System Variables
You can store the current SQL*Plus system ("SET") variables in a host operating
system file (a command file) with the STORE command. If you alter any variables,
this command file can be run to restore the original values. This is useful if you run
a report that alters system variables and you want to reset their values after the
report has finished.

To store the current setting of all system variables, enter

SQL> STORE SET file_name

By default, SQL*Plus adds the extension "SQL" to the file name. If you want to use a
different file extension, type a period at the end of the file name, followed by the
extension. Alternatively, you can use the SET SUFFIX command to change the
default file extension.

Restoring the System Variables
To restore the stored system variables, enter

SQL> START file_name

If the file has the default extension (as specified by the SET SUFFIXcommand), you
do not need to add the period and extension to the file name.

You can also use the @ ("at" sign) or the @@ (double "at" sign) commands to run the
command file.

Example 3–10 Storing and Restoring SQL*Plus System Variables

To store the current values of the SQL*Plus system variables in a new command file
"plusenv.sql":

SQL> STORE SET plusenv
Created file plusenv

Now the value of any system variable can be changed:

SQL> SHOW PAGESIZE
pagesize 24
SQL> SET PAGESIZE 60
SQL> SHOW PAGESIZE
pagesize 60

Writing Interactive Commands

Manipulating Commands 3-21

The original values of the system variables can then be restored from the command
file:

SQL> START plusenv
SQL> SHOW PAGESIZE
pagesize 24

Writing Interactive Commands
The following features of SQL*Plus make it possible for you to set up command
files that allow end-user input:

■ defining user variables

■ substituting values in commands

■ using the START command to provide values

■ prompting for values

Defining User Variables
You can define variables, called user variables, for repeated use in a single command
file by using the SQL*Plus DEFINE command. Note that you can also define user
variables to use in titles and to save you keystrokes (by defining a long string as the
value for a variable with a short name).

Example 3–11 Defining a User Variable

To define a user variable EMPLOYEE and give it the value "SMITH", enter the
following command:

SQL> DEFINE EMPLOYEE = SMITH

To confirm the definition of the variable, enter DEFINE followed by the variable
name:

SQL> DEFINE EMPLOYEE

SQL*Plus lists the definition:

DEFINE EMPLOYEE = "SMITH" (CHAR)

To list all user variable definitions, enter DEFINE by itself at the command prompt.
Note that any user variable you define explicitly through DEFINE takes only CHAR
values (that is, the value you assign to the variable is always treated as a CHAR

Writing Interactive Commands

3-22 SQL*Plus User’s Guide and Reference

datatype). You can define a user variable of datatype NUMBER implicitly through
the ACCEPT command. You will learn more about the ACCEPT command later in
this chapter.

To delete a user variable, use the SQL*Plus command UNDEFINE followed by the
variable name.

Using Substitution Variables
Suppose you want to write a query like the one in SALES (see Example 3–7) to list
the employees with various jobs, not just those whose job is SALESMAN. You could
do that by editing a different CHAR value into the WHERE clause each time you
run the command, but there is an easier way.

By using a substitution variable in place of the value SALESMAN in the WHERE
clause, you can get the same results you would get if you had written the values
into the command itself.

A substitution variable is a user variable name preceded by one or two ampersands
(&). When SQL*Plus encounters a substitution variable in a command, SQL*Plus
executes the command as though it contained the value of the substitution variable,
rather than the variable itself.

For example, if the variable SORTCOL has the value JOB and the variable
MYTABLE has the value EMP, SQL*Plus executes the commands

SQL> BREAK ON &SORTCOL
SQL> SELECT &SORTCOL, SAL
 2 FROM &MYTABLE
 3 ORDER BY &SORTCOL;

as if they were

SQL> BREAK ON JOB
SQL> SELECT JOB, SAL
 2 FROM EMP
 3 ORDER BY JOB;

(Here the BREAK command suppresses duplicate values of the column named in
SORTCOL. For more information about the BREAK command, see the section
"Clarifying Your Report with Spacing and Summary Lines" in Chapter 4.)

Where and How to Use Substitution Variables
You can use substitution variables anywhere in SQL and SQL*Plus commands,
except as the first word entered at the command prompt. When SQL*Plus

Writing Interactive Commands

Manipulating Commands 3-23

encounters an undefined substitution variable in a command, SQL*Plus prompts
you for the value.

You can enter any string at the prompt, even one containing blanks and
punctuation. If the SQL command containing the reference should have quote
marks around the variable and you do not include them there, the user must
include the quotes when prompted.

SQL*Plus reads your response from the keyboard, even if you have redirected
terminal input or output to a file. If a terminal is not available (if, for example, you
run the command file in batch mode), SQL*Plus uses the redirected file.

After you enter a value at the prompt, SQL*Plus lists the line containing the
substitution variable twice: once before substituting the value you enter and once
after substitution. You can suppress this listing by setting the SET command
variable VERIFY to OFF.

Example 3–12 Using Substitution Variables

Create a command file named STATS, to be used to calculate a subgroup statistic
(the maximum value) on a numeric column:

SQL> CLEAR BUFFER
SQL> INPUT
 1 SELECT &GROUP_COL,
 2 MAX(&NUMBER_COL) MAXIMUM
 3 FROM &TABLE
 4 GROUP BY &GROUP_COL
 5
SQL> SAVE STATS
Created file STATS

Now run the command file STATS and respond to the prompts for values as shown:

SQL> @STATS
Enter value for group_col: JOB
old 1: SELECT &GROUP_COL,
new 1: SELECT JOB,
Enter value for number_col: SAL
old 2: MAX(&NUMBER_COL) MAXIMUM
new 2: MAX(SAL) MAXIMUM
Enter value for table: EMP
old 3: FROM &TABLE
new 3: FROM EMP
Enter value for group_col: JOB
old 4: GROUP BY &GROUP_COL

Writing Interactive Commands

3-24 SQL*Plus User’s Guide and Reference

new 4: GROUP BY JOB

SQL*Plus displays the following output:

JOB MAXIMUM
---------- ----------
ANALYST 3000
CLERK 1300
MANAGER 2975
PRESIDENT 5000
SALESMAN 1600

If you wish to append characters immediately after a substitution variable, use a
period to separate the variable from the character. For example:

SQL> SELECT * FROM EMP WHERE EMPNO=’&X.01’;
Enter value for X: 123

is interpreted as

SQL> SELECT * FROM EMP WHERE EMPNO=’12301’;

Avoiding Unnecessary Prompts for Values
Suppose you wanted to expand the file STATS to include the minimum, sum, and
average of the "number" column. You may have noticed that SQL*Plus prompted
you twice for the value of GROUP_COL and once for the value of NUMBER_COL
in Example 3–12, and that each GROUP_COL or NUMBER_COL had a single
ampersand in front of it. If you were to add three more functions—using a single
ampersand before each—to the command file, SQL*Plus would prompt you a total
of four times for the value of the number column.

You can avoid being re-prompted for the group and number columns by adding a
second ampersand in front of each GROUP_COL and NUMBER_COL in STATS.
SQL*Plus automatically DEFINEs any substitution variable preceded by two
ampersands, but does not DEFINE those preceded by only one ampersand. When
you have DEFINEd a variable, SQL*Plus substitutes the value of variable for each
substitution variable referencing variable (in the form &variable or &&variable).
SQL*Plus will not prompt you for the value of variable in this session until you
UNDEFINE variable.

Example 3–13 Using Double Ampersands

To expand the command file STATS using double ampersands and then run the file,
first suppress the display of each line before and after substitution:

Writing Interactive Commands

Manipulating Commands 3-25

SQL> SET VERIFY OFF

Now retrieve and edit STATS by entering the following commands:

SQL> GET STATS
 1 SELECT &GROUP_COL,
 2 MAX(&NUMBER_COL) MAXIMUM
 3 FROM &TABLE
 4 GROUP BY &GROUP_COL
SQL> 2
 2* MAX(&NUMBER_COL) MAXIMUM

SQL> APPEND ,
 2* MAX(&NUMBER_COL) MAXIMUM,
SQL> C /&/&&
 2* MAX(&&NUMBER_COL) MAXIMUM,
SQL> I
 3i MIN(&&NUMBER_COL) MINIMUM,
 4i SUM(&&NUMBER_COL) TOTAL,
 5i AVG(&&NUMBER_COL) AVERAGE
 6i
SQL> 1
 1* SELECT &GROUP_COL,
SQL> C /&/&&
 1* SELECT &&GROUP_COL,
SQL> 7
 7* GROUP BY &GROUP_COL
SQL> C /&/&&
 7* GROUP BY &&GROUP_COL
SQL> SAVE STATS2
created file STATS2

Finally, run the command file STATS2 and respond to the prompts for values as
follows:

SQL> START STATS2
Enter value for group_col: JOB
Enter value for number_col: SAL
Enter value for table: EMP

SQL*Plus displays the following output:

JOB MAXIMUM MINIMUM TOTAL AVERAGE
---------- ---------- ---------- ---------- ---------
ANALYST 3000 3000 6000 3000
CLERK 1300 800 4150 1037.5

Writing Interactive Commands

3-26 SQL*Plus User’s Guide and Reference

MANAGER 2975 2450 8275 2758.33333
PRESIDENT 5000 5000 5000 5000
SALESMAN 1600 1250 5600 1400

Note that you were prompted for the values of NUMBER_COL and GROUP_COL
only once. If you were to run STATS2 again during the current session, you would
be prompted for TABLE (because its name has a single ampersand and the variable
is therefore not DEFINEd) but not for GROUP_COL or NUMBER_COL (because
their names have double ampersands and the variables are therefore DEFINEd).

Before continuing, set the system variable VERIFY back to ON:

SQL> SET VERIFY ON

Restrictions
You cannot use substitution variables in the buffer editing commands, APPEND,
CHANGE, DEL, and INPUT, nor in other commands where substitution would be
meaningless, such as in SQL*Plus comments (REMARK, /* ... */ or --). The buffer
editing commands, APPEND, CHANGE, and INPUT, treat text beginning with "&"
or "&&" literally, as any other text string.

System Variables
The following system variables, specified with the SQL*Plus SET command, affect
substitution variables:

For more information about system variables, see the SET command in the
"Command Reference" in Chapter 8.

SET DEFINE Defines the substitution character (by default the ampersand
"&") and turns substitution on and off.

SET ESCAPE Defines an escape character you can use before the
substitution character. The escape character instructs
SQL*Plus to treat the substitution character as an ordinary
character rather than as a request for variable substitution.
The default escape character is a backslash (\).

SET VERIFY ON Lists each line of the command file before and after
substitution.

SET CONCAT Defines the character that separates the name of a substitution
variable or parameter from characters that immediately
follow the variable or parameter—by default the period (.).

Writing Interactive Commands

Manipulating Commands 3-27

Passing Parameters through the START Command
You can bypass the prompts for values associated with substitution variables by
passing values to parameters in a command file through the START command.

You do this by placing an ampersand (&) followed by a numeral in the command
file in place of a substitution variable. Each time you run this command file, START
replaces each &1 in the file with the first value (called an argument) after START
filename, then replaces each &2 with the second value, and so forth.

For example, you could include the following commands in a command file called
MYFILE:

SELECT * FROM EMP
WHERE JOB=’&1’
AND SAL=&2

In the following START command, SQL*Plus would substitute CLERK for &1 and
7900 for &2 in the command file MYFILE:

SQL> START MYFILE CLERK 7900

When you use arguments with the START command, SQL*Plus DEFINEs each
parameter in the command file with the value of the appropriate argument.

Example 3–14 Passing Parameters through START

To create a new command file based on SALES that takes a parameter specifying the
job to be displayed, enter

SQL> GET SALES
 1 COLUMN ENAME HEADING SALESMAN
 2 COLUMN SAL HEADING SALARY FORMAT $99,999
 3 COLUMN COMM HEADING COMMISSION FORMAT $99,990
 4 SELECT EMPNO, ENAME, SAL, COMM
 5 FROM EMP
 6* WHERE JOB = ’SALESMAN’
SQL> CHANGE /SALESMAN/&1
 6* WHERE JOB = ’&1’
SQL> 1
 1* COLUMN ENAME HEADING SALESMAN
SQL> CHANGE /SALESMAN/&1
 1* COLUMN ENAME HEADING &1
SQL> SAVE ONEJOB
Created file ONEJOB

Writing Interactive Commands

3-28 SQL*Plus User’s Guide and Reference

Now run the command with the parameter CLERK:

SQL> START ONEJOB CLERK

SQL*Plus lists the line of the SQL command that contains the parameter, before and
after replacing the parameter with its value, and then displays the output:

old 3: WHERE JOB = ’&1’
new 3: WHERE JOB = ’CLERK’
EMPNO CLERK SALARY COMMISSION
----- ------ -------- -----------
7369 SMITH $800
7876 ADAMS $1,100
7900 JAMES $950
7934 MILLER $1,300

You can use any number of parameters in a command file. Within a command file,
you can refer to each parameter any number of times, and can include the
parameters in any order.

Before continuing, return the column ENAME to its original heading by entering
the following command:

SQL> COLUMN ENAME CLEAR

Communicating with the User
Three SQL*Plus commands—PROMPT, ACCEPT, and PAUSE—help you
communicate with the end user. These commands enable you to send messages to
the screen and receive input from the user, including a simple [Return]. You can also
use PROMPT and ACCEPT to customize the prompts for values SQL*Plus
automatically generates for substitution variables.

Prompting for and Accepting User Variable
Through PROMPT and ACCEPT, you can send messages to the end user and accept
values as end-user input. PROMPT simply displays a message you specify
on-screen; use it to give directions or information to the user. ACCEPT prompts the
user for a value and stores it in the user variable you specify. Use PROMPT in

Note: You cannot use parameters when you run a command with
RUN or slash (/). You must store the command in a command file
and run it with START or @.

Writing Interactive Commands

Manipulating Commands 3-29

conjunction with ACCEPT when your prompt for the value spans more than one
line.

Example 3–15 Prompting for and Accepting Input

To direct the user to supply a report title and to store the input in the variable
MYTITLE for use in a subsequent query, first clear the buffer:

SQL> CLEAR BUFFER

Next, set up a command file as shown below:

SQL> INPUT
 1 PROMPT Enter a title up to 30 characters long.
 2 ACCEPT MYTITLE PROMPT ’Title: ’
 3 TTITLE LEFT MYTITLE SKIP 2
 4 SELECT * FROM DEPT
 5
SQL> SAVE PROMPT1
Created file PROMPT1

The TTITLE command sets the top title for your report. For more information about
the TTitile command, see Defining Page and Report Titles and Dimensions in
Chapter 4.

Finally, run the command file, responding to the prompt for the title as shown:

SQL> START PROMPT1
Enter a title up to 30 characters long.
Title: Department Report as of 1/1/99

SQL*Plus displays the following output:

Department Report as of 1/1/99
 DEPTNO DNAME LOC
---------- -------------- -------------
 10 ACCOUNTING NEW YORK
 20 RESEARCH DALLAS
 30 SALES CHICAGO
 40 OPERATIONS BOSTON

Before continuing, turn the TTITLE command you entered in the command file off
as shown below:

SQL> TTITLE OFF

Writing Interactive Commands

3-30 SQL*Plus User’s Guide and Reference

Customizing Prompts for Substitution Variable
If you want to customize the prompt for a substitution variable value, use PROMPT
and ACCEPT in conjunction with the substitution variable, as shown in the
following example.

Example 3–16 Using PROMPT and ACCEPT in Conjunction with Substitution
Variables

As you have seen in Example 3–15, SQL*Plus automatically generates a prompt for
a value when you use a substitution variable. You can replace this prompt by
including PROMPT and ACCEPT in the command file with the query that
references the substitution variable. To create such a file, enter the commands
shown:

SQL> CLEAR BUFFER
buffer cleared
SQL> INPUT
 1 PROMPT Enter a valid employee number
 2 PROMPT For example: 7369, 7499, 7521
 3 ACCEPT ENUMBER NUMBER PROMPT ’Emp. no.: ’
 4 SELECT ENAME, MGR, JOB, SAL
 5 FROM EMP
 6 WHERE EMPNO = &ENUMBER
 7
SQL> SAVE PROMPT2
Created file PROMPT2

Next, run the command file. SQL*Plus prompts for the value of ENUMBER using
the text you specified with PROMPT and ACCEPT:

SQL> START PROMPT2
Enter a valid employee number
For example: 7369, 7499, 7521
Emp. No.:

Try entering characters instead of numbers to the prompt for "Emp. No.":

Emp. No.: ONE
“ONE” is not a valid number
Emp. No.:

Since you specified NUMBER after the variable name in the ACCEPT command,
SQL*Plus will not accept a non-numeric value. Now enter a number:

Emp. No.: 7521

Using Bind Variables

Manipulating Commands 3-31

old 3: WHERE EMPNO = &ENUMBER
new 3: WHERE EMPNO = 7521

SQL*Plus displays the following output:

ENAME MGR JOB SALARY
------ ----- --------- ------
WARD 7698 SALESMAN $1,250

Sending a Message and Accepting [Return] as Input
If you want to display a message on the user’s screen and then have the user enter
[Return] after reading the message, use the SQL*Plus command PAUSE. For
example, you might include the following lines in a command file:

PROMPT Before continuing, make sure you have your account card.
PAUSE Press RETURN to continue.

Clearing the Screen
If you want to clear the screen before displaying a report (or at any other time),
include the SQL*Plus CLEAR command with its SCREEN clause at the appropriate
point in your command file, using the following format:

CLEAR SCREEN

Before continuing to the next section, reset all columns to their original formats and
headings by entering the following command:

SQL> CLEAR COLUMNS

Using Bind Variables
Suppose that you want to be able to display the variables you use in your PL/SQL
subprograms in SQL*Plus or use the same variables in multiple subprograms. If you
declare a variable in a PL/SQL subprogram, you cannot display that variable in
SQL*Plus. Use a bind variable in PL/SQL to access the variable from SQL*Plus.

Bind variables are variables you create in SQL*Plus and then reference in PL/SQL.
If you create a bind variable in SQL*Plus, you can use the variable as you would a
declared variable in your PL/SQL subprogram and then access the variable from
SQL*Plus. You can use bind variables for such things as storing return codes or
debugging your PL/SQL subprograms.

Using Bind Variables

3-32 SQL*Plus User’s Guide and Reference

Because bind variables are recognized by SQL*Plus, you can display their values in
SQL*Plus or reference them in other PL/SQL subprograms that you run in
SQL*Plus.

Creating Bind Variables
You create bind variables in SQL*Plus with the VARIABLE command. For example

VARIABLE ret_val NUMBER

This command creates a bind variable named ret_val with a datatype of NUMBER.
For more information, see the VARIABLE command in Chapter 8. (To list all of the
bind variables created in a session, type VARIABLE without any arguments.)

Referencing Bind Variables
You reference bind variables in PL/SQL by typing a colon (:) followed immediately
by the name of the variable. For example

:ret_val := 1;

To change this bind variable in SQL*Plus, you must enter a PL/SQL block. For
example

SQL> begin
 2 :ret_val:=4;
 3 end;
 4 /

PL/SQL procedure successfully completed.

This command assigns a value to the bind variable named ret_val.

Displaying Bind Variables
To display the value of a bind variable in SQL*Plus, you use the SQL*Plus PRINT
command. For example

SQL> print ret_val

 RET_VAL

 4

Using REFCURSOR Bind Variables

Manipulating Commands 3-33

This command displays a bind variable named ret_val. For more information about
displaying bind variables, see the PRINT command in the "Command Reference" in
Chapter 8.

Example 3–17 Creating, Referencing, and Displaying Bind Variables

To declare a local bind variable named id with a datatype of NUMBER, enter

SQL> VARIABLE id NUMBER

Next, put a value of "1" into the bind variable you have just created:

SQL> BEGIN
 2 :id := 1;
 3 END;
 4 /

If you want to display a list of values for the bind variable named id, enter

SQL> print id

 ID

 1

Using REFCURSOR Bind Variables
SQL*Plus REFCURSOR bind variables allow SQL*Plus to fetch and format the
results of a SELECT statement contained in a PL/SQL block.

REFCURSOR bind variables can also be used to reference PL/SQL cursor variables
in stored procedures. This allows you to store SELECT statements in the database
and reference them from SQL*Plus.

A REFCURSOR bind variable can also be returned from a stored function.

Example 3–18 Creating, Referencing, and Displaying REFCURSOR Bind Variables

To create, reference and display a REFCURSOR bind variable, first declare a local
bind variable of the REFCURSOR datatype

SQL> VARIABLE dept_sel REFCURSOR

Note: You must have Oracle7, Release 7.3 or above to assign the
return value of a stored function to a REFCURSOR variable.

Using REFCURSOR Bind Variables

3-34 SQL*Plus User’s Guide and Reference

Next, enter a PL/SQL block that uses the bind variable in an OPEN ... FOR SELECT
statement. This statement opens a cursor variable and executes a query. See the
PL/SQL User’s Guide and Reference for information on the OPEN command and
cursor variables.

In this example we are binding the SQL*Plus dept_sel bind variable to the cursor
variable.

SQL> BEGIN
 2 OPEN :dept_sel FOR SELECT * FROM DEPT;
 3 END;
 4 /
PL/SQL procedure successfully completed.

The results from the SELECT statement can now be displayed in SQL*Plus with the
PRINT command.

SQL> PRINT dept_sel
DEPTNO DNAME LOC
------ ----------- ---------
10 ACCOUNTING NEW YORK
20 RESEARCH DALLAS
30 SALES CHICAGO
40 OPERATIONS BOSTON

The PRINT statement also closes the cursor. To reprint the results, the PL/SQL
block must be executed again before using PRINT.

Example 3–19 Using REFCURSOR Variables in Stored Procedures

A REFCURSOR bind variable is passed as a parameter to a procedure. The
parameter has a REF CURSOR type. First, define the type.

SQL> CREATE OR REPLACE PACKAGE cv_types AS
 2 TYPE DeptCurTyp is REF CURSOR RETURN dept%ROWTYPE;
 3 END cv_types;
 4 /
Package created.

Next, create the stored procedure containing an OPEN ... FOR SELECT statement.

SQL> CREATE OR REPLACE PROCEDURE dept_rpt
 2 (dept_cv IN OUT cv_types.DeptCurTyp) AS
 3 BEGIN
 4 OPEN dept_cv FOR SELECT * FROM DEPT;

Using REFCURSOR Bind Variables

Manipulating Commands 3-35

 5 END;
 6 /
Procedure created.

Execute the procedure with a SQL*Plus bind variable as the parameter.

SQL> VARIABLE odcv REFCURSOR
SQL> EXECUTE dept_rpt(:odcv)
PL/SQL procedure successfully completed.

Now print the bind variable.

SQL> PRINT odcv
DEPTNO DNAME LOC
------ ----------- ---------
10 ACCOUNTING NEW YORK
20 RESEARCH DALLAS
30 SALES CHICAGO
40 OPERATIONS BOSTON

The procedure can be executed multiple times using the same or a different
REFCURSOR bind variable.

SQL> VARIABLE pcv REFCURSOR
SQL> EXECUTE dept_rpt(:pcv)
PL/SQL procedure successfully completed.
SQL> PRINT pcv
DEPTNO DNAME LOC
------ ----------- ---------
10 ACCOUNTING NEW YORK
20 RESEARCH DALLAS
30 SALES CHICAGO
40 OPERATIONS BOSTON

Example 3–20 Using REFCURSOR Variables in Stored Functions

Create a stored function containing an OPEN ... FOR SELECT statement:

SQL> CREATE OR REPLACE FUNCTION dept_fn RETURN -
> cv_types.DeptCurTyp IS
 2 resultset cv_types.DeptCurTyp;
 3 BEGIN
 4 OPEN resultset FOR SELECT * FROM DEPT;
 5 RETURN(resultset);
 6 END;
 7 /

Tracing Statements

3-36 SQL*Plus User’s Guide and Reference

Function created.

Execute the function.

SQL> VARIABLE rc REFCURSOR
SQL> EXECUTE :rc := dept_fn
PL/SQL procedure successfully completed.

Now print the bind variable.

SQL> PRINT rc
DEPTNO DNAME LOC
------ ----------- ---------
10 ACCOUNTING NEW YORK
20 RESEARCH DALLAS
30 SALES CHICAGO
40 OPERATIONS BOSTON

The function can be executed multiple times using the same or a different
REFCURSOR bind variable.

SQL> EXECUTE :rc := dept_fn
PL/SQL procedure successfully completed.
SQL> PRINT rc
DEPTNO DNAME LOC
------ ----------- ---------
10 ACCOUNTING NEW YORK
20 RESEARCH DALLAS
30 SALES CHICAGO
40 OPERATIONS BOSTON

Tracing Statements
You can automatically get a report on the execution path used by the SQL optimizer
and the statement execution statistics. The report is generated after successful SQL
DML (that is, SELECT, DELETE, UPDATE and INSERT) statements. It is useful for
monitoring and tuning the performance of these statements.

Controlling the Report
You can control the report by setting the AUTOTRACE system variable.

SET AUTOTRACE OFF No AUTOTRACE report is generated. This is the
default.

Tracing Statements

Manipulating Commands 3-37

To use this feature, you must have the PLUSTRACE role granted to you and a
PLAN_TABLE table created in your schema. For information on how to grant the
PLUSTRACE role and how to create the PLAN_TABLE table, see the Oracle8i SQL
Reference manual. For more information about the PLUSTRACE role and the PLAN_
TABLE, see the Oracle8i SQL Reference manual and the AUTOTRACE variable of the
SET command in Chapter 8.

Execution Plan
The Execution Plan shows the SQL optimizer’s query execution path. Both tables
are accessed by a full table scan, sorted, and then merged.

Each line of the Execution Plan has a sequential line number. SQL*Plus also displays
the line number of the parent operation.

The Execution Plan consists of four columns displayed in the following order:

The format of the columns may be altered with the COLUMN command. For
example, to stop the PARENT_ID_PLUS_EXP column being displayed, enter

SQL> COLUMN PARENT_ID_PLUS_EXP NOPRINT

SET AUTOTRACE ON EXPLAIN The AUTOTRACE report shows only the optimizer
execution path.

SET AUTOTRACE ON
STATISTICS

The AUTOTRACE report shows only the SQL
statement execution statistics.

SET AUTOTRACE ON The AUTOTRACE report includes both the optimizer
execution path and the SQL statement execution
statistics.

SET AUTOTRACE TRACEONLY Like SET AUTOTRACE ON, but suppresses the
printing of the user’s query output, if any.

Column Name Description

ID_PLUS_EXP Shows the line number of each execution step.

PARENT_ID_PLUS_EXP Shows the relationship between each step and its
parent. This column is useful for large reports.

PLAN_PLUS_EXP Shows each step of the report.

OBJECT_NODE_PLUS_EXP Shows the database links or parallel query servers
used.

Tracing Statements

3-38 SQL*Plus User’s Guide and Reference

The default formats can be found in the site profile (for example, glogin.sql).

The Execution Plan output is generated using the EXPLAIN PLAN command. For
information about interpreting the output of EXPLAIN PLAN, see the Oracle8i
Designing and Tuning for Performance.

Statistics
The statistics are recorded by the server when your statement executes and indicate
the system resources required to execute your statement.

The client referred to in the statistics is SQL*Plus. Net8 refers to the generic process
communication between SQL*Plus and the server, regardless of whether Net8 is
installed.

You cannot change the default format of the statistics report.

For more information about the statistics and how to interpret them, see the Oracle8i
Designing and Tuning for Performance.

Example 3–21 Tracing Statements for Performance Statistics and
Query Execution Path

If the SQL buffer contains the following statement:

SQL> SELECT D.DNAME, E.ENAME, E.SAL, E.JOB
 2 FROM EMP E, DEPT D
 3 WHERE E.DEPTNO = D.DEPTNO

The statement can be automatically traced when it is run:

SQL> SET AUTOTRACE ON
SQL> /

DNAME ENAME SAL JOB
-------------- ---------- ---------- ---------
ACCOUNTING CLARK 2450 MANAGER
ACCOUNTING KING 5000 PRESIDENT
ACCOUNTING MILLER 1300 CLERK
RESEARCH SMITH 800 CLERK
RESEARCH ADAMS 1100 CLERK
RESEARCH FORD 3000 ANALYST
RESEARCH SCOTT 3000 ANALYST
RESEARCH JONES 2975 MANAGER
SALES ALLEN 1600 SALESMAN

Tracing Statements

Manipulating Commands 3-39

SALES BLAKE 2850 MANAGER
SALES MARTIN 1250 SALESMAN
SALES JAMES 950 CLERK
SALES TURNER 1500 SALESMAN
SALES WARD 1250 SALESMAN

14 rows selected.

Execution Plan

0 SELECT STATEMENT Optimizer=CHOOSE
1 0 MERGE JOIN
2 1 SORT (JOIN)
3 2 TABLE ACCESS (FULL) OF ’DEPT’
4 1 SORT (JOIN)
5 4 TABLE ACCESS (FULL) OF ’EMP’

Statistics
--
148 recursive calls
4 db block gets
24 consistent gets
6 physical reads
43 redo size
591 bytes sent via Net8 to client
256 bytes received via Net8 from client
3 Net8 roundtrips to/from client
2 sort (memory)
0 sort (disk)
14 rows processed

Example 3–22 Tracing Statements Without Displaying Query Data

To trace the same statement without displaying the query data:

SQL> SET AUTOTRACE TRACEONLY
SQL> /

Execution Plan

Note: Your output may vary depending on the version of the
server to which you are connected and the configuration of the
server.

Tracing Statements

3-40 SQL*Plus User’s Guide and Reference

0 SELECT STATEMENT Optimizer=CHOOSE
1 0 MERGE JOIN
2 1 SORT (JOIN)
3 2 TABLE ACCESS (FULL) OF ’DEPT’
4 1 SORT (JOIN)
5 4 TABLE ACCESS (FULL) OF ’EMP’

Statistics

0 recursive calls
4 db block gets
2 consistent gets
0 physical reads
0 redo size
599 bytes sent via Net8 to client
256 bytes received via Net8 from client
3 Net8 roundtrips to/from client
2 sort (memory)
0 sort (disk)
14 rows processed

This option is useful when you are tuning a large query, but do not want to see the
query report.

Example 3–23 Tracing Statements Using a Database Link

To trace a statement using a database link:

SQL> SET AUTOTRACE TRACEONLY EXPLAIN
SQL> SELECT * FROM EMP@MY_LINK;

Execution Plan

0 SELECT STATEMENT (REMOTE) Optimizer=CHOOSE
1 0 TABLE ACCESS (FULL) OF ’EMP’ MY_LINK.DB_DOMAIN

The Execution Plan shows the table being accessed on line 1 is via the database link
MY_LINK.DB_DOMAIN.

Tracing Parallel and Distributed Queries
When you trace a statement in a parallel or distributed query, the Execution Plan
shows the cost based optimizer estimates of the number of rows (the cardinality). In
general, the cost, cardinality and bytes at each node represent cumulative results.

Tracing Statements

Manipulating Commands 3-41

For example, the cost of a join node accounts for not only the cost of completing the
join operations, but also the entire costs of accessing the relations in that join.

Lines marked with an asterisk (*) denote a parallel or remote operation. Each
operation is explained in the second part of the report. See the Oracle8i Designing
and Tuning for Performance for more information on parallel and distributed
operations.

The second section of this report consists of three columns displayed in the
following order

The format of the columns may be altered with the COLUMN command. The
default formats can be found in the site profile (for example, glogin.sql).

Example 3–24 Tracing Statements With Parallel Query Option

To trace a parallel query running the parallel query option:

SQL> CREATE TABLE D2_T1 (UNIQUE1 NUMBER) PARALLEL -
> (DEGREE 6);

Table created.

SQL> CREATE TABLE D2_T2 (UNIQUE1 NUMBER) PARALLEL -
> (degree 6);

Table created.

SQL> CREATE UNIQUE INDEX D2_I_UNIQUE1 ON D2_T1(UNIQUE1);

Index created.

Column Name Description

ID_PLUS_EXP Shows the line number of each execution step.

OTHER_TAG_PLUS_EXP Describes the function of the SQL statement in the
OTHER_PLUS_EXP column.

OTHER_PLUS_EXP Shows the text of the query for the parallel server or
remote database.

Note: You must have Oracle7, Release 7.3 or greater to view the
second section of this report.

Tracing Statements

3-42 SQL*Plus User’s Guide and Reference

SQL> SET LONG 500 LONGCHUNKSIZE 500
SQL> set autotrace on EXPLAIN
SQL> select /*+ index(b,d2_i_unique1) use_nl(b) ordered -
> */ count (a.unique1)
 2 from d2_t2 a, d2_t1 b
 3 where a.unique1 = b.unique1;

SQL*Plus displays the following output:

Execution Plan

0 SELECT STATEMENT Optimizer=CHOOSE (Cost=1
 Card=263 Bytes=5786)
1 0 SORT (AGGREGATE)
2 1 NESTED LOOPS* (Cost=1 Card=263 Bytes=5785)
 :Q8200
3 2 TABLE ACCESS* (FULL) OF ’D2_T2’ :Q8200
4 2 INDEX* (UNIQUE SCAN) OF ’D2_I_UNIQUE1’
 (UNIQUE) :Q8200
2 PARALLEL_TO_SERIAL SELECT /*+ ORDERED NO_EXPAND
 USE_NL(A2) INDEX(A2) PIV_SSF */
 COUNT(A1.C0) FROM (SELECT/*+
 ROWID(A3) */ A3."UNIQUE1" FROM
 "D2_T2" A3 WHERE ROWID BETWEEN :1
 AND :2) A1, "D2_T1" A2 WHERE
 A1.C0=A2."UNIQUE1"
3 PARALLEL_COMBINED_WITH_PARENT
4 PARALLEL_COMBINED_WITH_PARENT

Line 0 of the Execution Plan shows the cost based optimizer estimates the number
of rows at 263, taking 5786 bytes. The total cost of the statement is 1.

Lines 2, 3 and 4 are marked with asterisks, denoting parallel operations. For
example, the NESTED LOOPS step on line 2 is a PARALLEL_TO_SERIAL
operation. PARALLEL_TO_SERIAL operations execute a SQL statement to produce
output serially. Line 2 also shows that the parallel query server had the identifier
Q8200.

Formatting Query Results 4-1

4
Formatting Query Results

This chapter explains how to format your query results to produce a finished report.
This chapter covers the following topics:

■ Formatting Columns

■ Clarifying Your Report with Spacing and Summary Lines

■ Defining Page and Report Titles and Dimensions

■ Storing and Printing Query Results

■ Creating Web Reports

Read this chapter while sitting at your computer and try out the examples shown.
Before beginning, make sure you have access to the sample tables described in
Chapter 1.

Formatting Columns

4-2 SQL*Plus User’s Guide and Reference

Formatting Columns
Through the SQL*Plus COLUMN command, you can change the column headings
and reformat the column data in your query results.

Changing Column Headings
When displaying column headings, you can either use the default heading or you
can change it using the COLUMN command. The sections below describe how the
default headings are derived and how you can alter them with the COLUMN
command.

Default Headings
SQL*Plus uses column or expression names as default column headings when
displaying query results. Column names are often short and cryptic, however, and
expressions can be hard to understand.

Changing Default Headings
You can define a more useful column heading with the HEADING clause of the
COLUMN command, in the format shown below:

COLUMN column_name HEADING column_heading

See the COLUMN command in Chapter 8 for more details.

Example 4–1 Changing a Column Heading

To produce a report from EMP with new headings specified for DEPTNO, ENAME,
and SAL, enter the following commands:

SQL> COLUMN DEPTNO HEADING Department
SQL> COLUMN ENAME HEADING Employee
SQL> COLUMN SAL HEADING Salary
SQL> COLUMN COMM HEADING Commission
SQL> SELECT DEPTNO, ENAME, SAL, COMM
 2 FROM EMP
 3 WHERE JOB = ’SALESMAN’;

SQL*Plus displays the following output:

Department Employee Salary Commission
---------- ---------- ---------- ----------
 30 ALLEN 1600 300
 30 WARD 1250 500

Formatting Columns

Formatting Query Results 4-3

 30 MARTIN 1250 1400
 30 TURNER 1500 0

To change a column heading to two or more words, enclose the new heading in
single or double quotation marks when you enter the COLUMN command. To
display a column heading on more than one line, use a vertical bar (|) where you
want to begin a new line. (You can use a character other than a vertical bar by
changing the setting of the HEADSEP variable of the SET command. See the SET
command in Chapter 8 for more information.)

Example 4–2 Splitting a Column Heading

To give the column ENAME the heading EMPLOYEE NAME and to split the new
heading onto two lines, enter

SQL> COLUMN ENAME HEADING ’Employee|Name’

Now rerun the query with the slash (/) command:

SQL> /

SQL*Plus displays the following output:

 Employee
Department Name Salary Commission
---------- ---------- ---------- ----------
 30 ALLEN 1600 300
 30 WARD 1250 500
 30 MARTIN 1250 1400
 30 TURNER 1500 0

To change the character used to underline each column heading, set the
UNDERLINE variable of the SET command to the desired character.

Example 4–3 Setting the Underline Character

To change the character used to underline headings to an equal sign and rerun the
query, enter the following commands:

SQL> SET UNDERLINE =

Note: The new headings will remain in effect until you enter
different headings, reset each column’s format, or exit from
SQL*Plus.

Formatting Columns

4-4 SQL*Plus User’s Guide and Reference

SQL> /

SQL*Plus displays the following results:

 Employee
Department Name Salary Commission
========== ========== ========== ==========
 30 ALLEN 1600 300
 30 WARD 1250 500
 30 MARTIN 1250 1400
 30 TURNER 1500 0

Now change the underline character back to a dash:

SQL> SET UNDERLINE ’-’

Formatting NUMBER Columns
When displaying NUMBER columns, you can either accept the SQL*Plus default
display width or you can change it using the COLUMN command. The sections
below describe the default display and how you can alter the default with the
COLUMN command.

Default Display
A NUMBER column’s width equals the width of the heading or the width of the
FORMAT plus one space for the sign, whichever is greater. If you do not explicitly
use FORMAT, then the column’s width will always be at least the value of SET
NUMWIDTH.

SQL*Plus normally displays numbers with as many digits as are required for
accuracy, up to a standard display width determined by the value of the
NUMWIDTH variable of the SET command (normally 10). If a number is larger
than the value of SET NUMWIDTH, SQL*Plus rounds the number up or down to
the maximum number of characters allowed.

You can choose a different format for any NUMBER column by using a format
model in a COLUMN command. A format model is a representation of the way you
want the numbers in the column to appear, using 9’s to represent digits.

Note: You must enclose the dash in quotation marks; otherwise,
SQL*Plus interprets the dash as a hyphen indicating that you wish
to continue the command on another line.

Formatting Columns

Formatting Query Results 4-5

Changing the Default Display
The COLUMN command identifies the column you want to format and the model
you want to use, as shown below:

COLUMN column_name FORMAT model

Use format models to add commas, dollar signs, angle brackets (around negative
values), and/or leading zeros to numbers in a given column. You can also round the
values to a given number of decimal places, display minus signs to the right of
negative values (instead of to the left), and display values in exponential notation.

To use more than one format model for a single column, combine the desired
models in one COLUMN command (see Example 4–4). For a complete list of format
models and further details, see the COLUMN command in Chapter 8.

Example 4–4 Formatting a NUMBER Column

To display SAL with a dollar sign, a comma, and the numeral zero instead of a
blank for any zero values, enter the following command:

SQL> COLUMN SAL FORMAT $99,990

Now rerun the current query:

SQL> /

SQL*Plus displays the following output:

 Employee
Department Name Salary Commission
---------- ---------- --------- ----------
 30 ALLEN $1,600 300
 30 WARD $1,250 500
 30 MARTIN $1,250 1400
 30 TURNER $1,500 0

Use a zero in your format model, as shown above, when you use other formats such
as a dollar sign and wish to display a zero in place of a blank for zero values.

Note: The format model will stay in effect until you enter a new
one, reset the column’s format with

COLUMN colname CLEAR

or exit from SQL*Plus.

Formatting Columns

4-6 SQL*Plus User’s Guide and Reference

Formatting Datatypes
When displaying datatypes, you can either accept the SQL*Plus default display
width or you can change it using the COLUMN command. Datatypes, in this
manual, include the following variables:

■ CHAR

■ NCHAR

■ VARCHAR2 (VARCHAR)

■ NVARCHAR2 (NCHAR VARYING)

■ DATE

■ LONG

■ CLOB

■ NCLOB

Default Display
The default width of datatype columns is the width of the column in the database.

The default width and format of unformatted DATE columns in SQL*Plus is
derived from the NLS parameters in effect. Otherwise, the default format width is
A9. For more information on formatting DATE columns, see the FORMAT clause of
the COLUMN command in Chapter 8.

Changing the Default Display
You can change the displayed width of a datatype or DATE, by using the COLUMN
command with a format model consisting of the letter A (for alphanumeric)
followed by a number representing the width of the column in characters.

Within the COLUMN command, identify the column you want to format and the
model you want to use:

COLUMN column_name FORMAT model

Note: The NCHAR, NVARCHAR2 (NCHAR VARYING), CLOB
and NCLOB datatypes require Oracle8 or higher.

Note: The default justification for datatypes is left justification.

Formatting Columns

Formatting Query Results 4-7

If you specify a width shorter than the column heading, SQL*Plus truncates the
heading. If you specify a width for a LONG, CLOB, or NCLOB column, SQL*Plus
uses the LONGCHUNKSIZE or the specified width, whichever is smaller, as the
column width. See the COLUMN command in Chapter 8 for more details.

Example 4–5 Formatting a Character Column

To set the width of the column ENAME to four characters and rerun the current
query, enter

SQL> COLUMN ENAME FORMAT A4
SQL> /

SQL*Plus displays the results:

 Empl
Department Name Salary Commission
---------- ---- ---------- ----------
 30 ALLE $1,600 300
 N

 30 WARD $1,250 500
 30 MART $1,250 1400
 IN

 30 TURN $1,500 0
 ER

If the WRAP variable of the SET command is set to ON (its default value), the
employee names wrap to the next line after the fourth character, as shown in
Example 4–5. If WRAP is set to OFF, the names are truncated (cut off) after the
fourth character.

The system variable WRAP controls all columns; you can override the setting of
WRAP for a given column through the WRAPPED, WORD_WRAPPED, and
TRUNCATED clauses of the COLUMN command. See the COLUMN command in

Note: The format model will stay in effect until you enter a new
one, reset the column’s format with

COLUMN colname CLEAR

or exit from SQL*Plus.

Formatting Columns

4-8 SQL*Plus User’s Guide and Reference

Chapter 8 for more information on these clauses. You will use the WORD_
WRAPPED clause of COLUMN later in this chapter.

Now return the column to its previous format:

SQL> COLUMN ENAME FORMAT A10

Copying Column Display Attributes
When you want to give more than one column the same display attributes, you can
reduce the length of the commands you must enter by using the LIKE clause of the
COLUMN command. The LIKE clause tells SQL*Plus to copy the display attributes
of a previously defined column to the new column, except for changes made by
other clauses in the same command.

Example 4–6 Copying a Column’s Display Attributes

To give the column COMM the same display attributes you gave to SAL, but to
specify a different heading, enter the following command:

SQL> COLUMN COMM LIKE SAL HEADING Bonus

Rerun the query:

SQL> /

SQL*Plus displays the following output:

 Employee
Department Name Salary Bonus
---------- ---------- ---------- ----------
 30 ALLEN $1,600 $300
 30 WARD $1,250 $500
 30 MARTIN $1,250 $1,400
 30 TURNER $1,500 $0

Listing and Resetting Column Display Attributes
To list the current display attributes for a given column, use the COLUMN
command followed by the column name only, as shown below:

Note: The column heading is truncated regardless of the setting of
WRAP or any COLUMN command clauses.

Formatting Columns

Formatting Query Results 4-9

COLUMN column_name

To list the current display attributes for all columns, enter the COLUMN command
with no column names or clauses after it:

COLUMN

To reset the display attributes for a column to their default values, use the CLEAR
clause of the COLUMN command as shown below:

COLUMN column_name CLEAR

To reset the attributes for all columns, use the COLUMNS clause of the CLEAR
command.

Example 4–7 Resetting Column Display Attributes to their Defaults

To reset all columns’ display attributes to their default values, enter the following
command:

SQL> CLEAR COLUMNS
columns cleared

Suppressing and Restoring Column Display Attributes
You can suppress and restore the display attributes you have given a specific
column. To suppress a column’s display attributes, enter a COLUMN command in
the following form:

COLUMN column_name OFF

The OFF clause tells SQL*Plus to use the default display attributes for the column,
but does not remove the attributes you have defined through the COLUMN
command. To restore the attributes you defined through COLUMN, use the ON
clause:

COLUMN column_name ON

Printing a Line of Characters after Wrapped Column Values
As you have seen, by default SQL*Plus wraps column values to additional lines
when the value does not fit within the column width. If you want to insert a record
separator (a line of characters or a blank line) after each wrapped line of output (or
after every row), use the RECSEP and RECSEPCHAR variables of the SET
command.

Formatting Columns

4-10 SQL*Plus User’s Guide and Reference

RECSEP determines when the line of characters is printed; you set RECSEP to
EACH to print after every line, to WRAPPED to print after wrapped lines, and to
OFF to suppress printing. The default setting of RECSEP is WRAPPED.

RECSEPCHAR sets the character printed in each line. You can set RECSEPCHAR to
any character.

You may wish to wrap whole words to additional lines when a column value wraps
to additional lines. To do so, use the WORD_WRAPPED clause of the COLUMN
command as shown below:

COLUMN column_name WORD_WRAPPED

Example 4–8 Printing a Line of Characters after Wrapped Column Values

To print a line of dashes after each wrapped column value, enter the following
commands:

SQL> SET RECSEP WRAPPED
SQL> SET RECSEPCHAR ’-’

Now restrict the width of the column LOC and tell SQL*Plus to wrap whole words
to additional lines when necessary:

SQL> COLUMN LOC FORMAT A7 WORD_WRAPPED

Finally, enter and run the following query:

SQL> SELECT * FROM DEPT;

SQL*Plus displays the results:

 DEPTNO DNAME LOC
---------- --------------- ----------
 10 ACCOUNTING NEW
 YORK

 20 RESEARCH DALLAS
 30 SALES CHICAGO
 40 OPERATIONS BOSTON

If you set RECSEP to EACH, SQL*Plus prints a line of characters after every row
(after every department, for the above example).

Before continuing, set RECSEP to OFF to suppress the printing of record separators:

SQL> SET RECSEP OFF

Clarifying Your Report with Spacing and Summary Lines

Formatting Query Results 4-11

Clarifying Your Report with Spacing and Summary Lines
When you use an ORDER BY clause in your SQL SELECT command, rows with the
same value in the ordered column (or expression) are displayed together in your
output. You can make this output more useful to the user by using the SQL*Plus
BREAK and COMPUTE commands to create subsets of records and add space
and/or summary lines after each subset.

COMPUTE command functions are always executed in the sequence AVG, COUNT,
MINIMUM, MAXIMUM, NUMBER, SUM, STD, VARIANCE, regardless of their
order in the COMPUTE command.

The column you specify in a BREAK command is called a break column. By including
the break column in your ORDER BY clause, you create meaningful subsets of
records in your output. You can then add formatting to the subsets within the same
BREAK command, and add a summary line (containing totals, averages, and so on)
by specifying the break column in a COMPUTE command.

For example, the following query, without BREAK or COMPUTE commands,

SQL> SELECT DEPTNO, ENAME, SAL
 2 FROM EMP
 3 WHERE SAL < 2500
 4 ORDER BY DEPTNO;

produces the following unformatted results:

 DEPTNO ENAME SAL
-------- ---------- ---------
 10 CLARK 2450
 10 MILLER 1300
 20 SMITH 800
 20 ADAMS 1100
 30 ALLEN 1600
 30 JAMES 950
 30 TURNER 1500
 30 WARD 1250
 30 MARTIN 1250

9 rows selected.

To make this report more useful, you would use BREAK to establish DEPTNO as
the break column. Through BREAK you could suppress duplicate values in
DEPTNO and place blank lines or begin a new page between departments. You
could use BREAK in conjunction with COMPUTE to calculate and print summary

Clarifying Your Report with Spacing and Summary Lines

4-12 SQL*Plus User’s Guide and Reference

lines containing the total (and/or average, maximum, minimum, standard
deviation, variance, or count of rows of) salary for each department and for all
departments.

Suppressing Duplicate Values in Break Columns
The BREAK command suppresses duplicate values by default in the column or
expression you name. Thus, to suppress the duplicate values in a column specified
in an ORDER BY clause, use the BREAK command in its simplest form:

BREAK ON break_column

Example 4–9 Suppressing Duplicate Values in a Break Column

To suppress the display of duplicate department numbers in the query results
shown above, enter the following commands:

SQL> BREAK ON DEPTNO
SQL> SELECT DEPTNO, ENAME, SAL
 2 FROM EMP
 3 WHERE SAL < 2500
 4 ORDER BY DEPTNO;

SQL*Plus displays the following output:

 DEPTNO ENAME SAL
---------- ----------- ---------
 10 CLARK 2450
 MILLER 1300
 20 SMITH 800
 ADAMS 1100
 30 ALLEN 1600
 JAMES 950
 TURNER 1500
 WARD 1250
 MARTIN 1250

9 rows selected.

Note: Whenever you specify a column or expression in a BREAK
command, use an ORDER BY clause specifying the same column or
expression. If you do not do this, breaks occur every time the
column value changes.

Clarifying Your Report with Spacing and Summary Lines

Formatting Query Results 4-13

Inserting Space when a Break Column’s Value Changes
You can insert blank lines or begin a new page each time the value changes in the
break column. To insert n blank lines, use the BREAK command in the following
form:

BREAK ON break_column SKIP n

To skip a page, use the command in this form:

BREAK ON break_column SKIP PAGE

Example 4–10 Inserting Space when a Break Column’s Value Changes

To place one blank line between departments, enter the following command:

SQL> BREAK ON DEPTNO SKIP 1

Now rerun the query:

SQL> /

SQL*Plus displays the results:

 DEPTNO ENAME SAL
---------- ----------- ---------
 10 CLARK 2450
 MILLER 1300

 20 SMITH 800
 ADAMS 1100

 30 ALLEN 1600
 JAMES 950
 TURNER 1500
 WARD 1250
 MARTIN 1250

9 rows selected.

Inserting Space after Every Row
You may wish to insert blank lines or a blank page after every row. To skip n lines
after every row, use BREAK in the following form:

BREAK ON ROW SKIP n

Clarifying Your Report with Spacing and Summary Lines

4-14 SQL*Plus User’s Guide and Reference

To skip a page after every row, use

BREAK ON ROW SKIP PAGE

Using Multiple Spacing Techniques
Suppose you have more than one column in your ORDER BY clause and wish to
insert space when each column’s value changes. Each BREAK command you enter
replaces the previous one. Thus, if you want to use different spacing techniques in
one report or insert space after the value changes in more than one ordered column,
you must specify multiple columns and actions in a single BREAK command.

Example 4–11 Combining Spacing Techniques

First, add another column to the current query:

SQL> L
 1 SELECT DEPTNO, ENAME, SAL
 2 FROM EMP
 3 WHERE SAL < 2500
 4* ORDER BY DEPTNO
SQL> 1 SELECT DEPTNO, JOB, ENAME, SAL
SQL> 4 ORDER BY DEPTNO, JOB

Now, to skip a page when the value of DEPTNO changes and one line when the
value of JOB changes, enter the following command:

SQL> BREAK ON DEPTNO SKIP PAGE ON JOB SKIP 1

To show that SKIP PAGE has taken effect, create a TTITLE with a page number,
enter

SQL> TTITLE COL 35 FORMAT 9 ’Page:’ SQL.PNO

Run the new query to see the results:

SQL> /
 Page: 1
 DEPTNO JOB ENAME SAL
---------- --------- ---------- ----------
 10 CLERK MILLER 300

Note: SKIP PAGE does not cause a physical page break unless you
have also specified NEWPAGE 0.

Clarifying Your Report with Spacing and Summary Lines

Formatting Query Results 4-15

 MANAGER CLARK 2450

 Page: 2
 DEPTNO JOB ENAME SAL
---------- --------- ---------- ----------
 20 CLERK SMITH 800
 ADAMS 1100

 Page: 3
 DEPTNO JOB ENAME SAL
---------- --------- ---------- ----------
 30 CLERK JAMES 950

 SALESMAN ALLEN 1600
 TURNER 1500
 WARD 1250
 MARTIN 1250

9 rows selected.

Listing and Removing Break Definitions
Before continuing, turn off the top title display without changing its definition,
using:

SQL> TTITLE OFF

You can list your current break definition by entering the BREAK command with no
clauses:

BREAK

You can remove the current break definition by entering the CLEAR command with
the BREAKS clause:

CLEAR BREAKS

You may wish to place the command CLEAR BREAKS at the beginning of every
command file to ensure that previously entered BREAK commands will not affect
queries you run in a given file.

Computing Summary Lines when a Break Column’s Value Changes
If you organize the rows of a report into subsets with the BREAK command, you
can perform various computations on the rows in each subset. You do this with the

Clarifying Your Report with Spacing and Summary Lines

4-16 SQL*Plus User’s Guide and Reference

functions of the SQL*Plus COMPUTE command. Use the BREAK and COMPUTE
commands together in the following forms:

BREAK ON break_column
COMPUTE function LABEL label_name OF column column column
... ON break_column

You can include multiple break columns and actions, such as skipping lines in the
BREAK command, as long as the column you name after ON in the COMPUTE
command also appears after ON in the BREAK command. To include multiple
break columns and actions in BREAK when using it in conjunction with
COMPUTE, use these commands in the following forms:

BREAK ON break_column_1 SKIP PAGE ON break_column_2 SKIP 1
COMPUTE function LABEL label_name OF column column column
... ON break_column_2

The COMPUTE command has no effect without a corresponding BREAK command.

You can COMPUTE on NUMBER columns and, in certain cases, on all types of
columns. For more information about the COMPUTE command, see the "Command
Reference" in Chapter 8

The following table lists compute functions and their effects

The function you specify in the COMPUTE command applies to all columns you
enter after OF and before ON. The computed values print on a separate line when
the value of the ordered column changes.

Table 4–1 Compute Functions

Function Effect

SUM Computes the sum of the values in the column.

MINIMUM Computes the minimum value in the column.

MAXIMUM Computes the maximum value in the column.

AVG Computes the average of the values in the column.

STD Computes the standard deviation of the values in the column.

VARIANCE Computes the variance of the values in the column.

COUNT Computes the number of non-null values in the column.

NUMBER Computes the number of rows in the column.

Clarifying Your Report with Spacing and Summary Lines

Formatting Query Results 4-17

Labels for ON REPORT and ON ROW computations appear in the first column;
otherwise, they appear in the column specified in the ON clause.

You can change the compute label by using COMPUTE LABEL. If you do not define
a label for the computed value, SQL*Plus prints the unabbreviated function
keyword.

The compute label can be suppressed by using the NOPRINT option of the
COLUMN command on the break column. See the COMPUTE command in
Chapter 8 for more details.

Example 4–12 Computing and Printing Subtotals

To compute the total of SAL by department, first list the current BREAK definition:

SQL> BREAK
break on DEPTNO skip 0 page nodup
 on JOB skip 1 nodup

Now enter the following COMPUTE command and run the current query:

SQL> COMPUTE SUM OF SAL ON DEPTNO
SQL> /

SQL*Plus displays the following output:

 DEPTNO JOB ENAME SAL
---------- --------- ---------- ----------
 10 CLERK MILLER 1300

 MANAGER CLARK 2450
********** ********* ----------
sum 3750

 DEPTNO JOB ENAME SAL
---------- --------- ---------- ----------
 20 CLERK SMITH 800
 ADAMS 1100
********** ********* ----------
sum 1900

 DEPTNO JOB ENAME SAL
---------- --------- ---------- ----------
 30 CLERK JAMES 950

 SALESMAN ALLEN 1600

Clarifying Your Report with Spacing and Summary Lines

4-18 SQL*Plus User’s Guide and Reference

 TURNER 1500
 WARD 1250
 MARTIN 1250
********** ********* ----------
sum 6550
9 rows selected.

To compute the sum of salaries for departments 10 and 20 without printing the
compute label:

SQL> COLUMN DUMMY NOPRINT
SQL> COMPUTE SUM OF SAL ON DUMMY
SQL> BREAK ON DUMMY SKIP 1
SQL> SELECT DEPTNO DUMMY, DEPTNO, ENAME, SAL
 2 FROM EMP
 3 WHERE DEPTNO <= 20
 4 ORDER BY DEPTNO;

SQL*Plus displays the following output:

 DEPTNO ENAME SAL
---------- ---------- ----------
 10 KING 5000
 10 CLARK 2450
 10 MILLER 1300

 8750

 20 JONES 2975
 20 FORD 3000
 20 SMITH 800
 20 SCOTT 3000
 20 ADAMS 1100

 10875
8 rows selected.

To compute the salaries at the end of the report:

SQL> COLUMN DUMMY NOPRINT
SQL> COMPUTE SUM OF SAL ON DUMMY
SQL> BREAK ON DUMMY
SQL> SELECT NULL DUMMY, DEPTNO, ENAME, SAL
 2 FROM EMP
 3 WHERE DEPTNO <= 20
 4 ORDER BY DEPTNO;

Clarifying Your Report with Spacing and Summary Lines

Formatting Query Results 4-19

SQL*Plus displays the following output:

 DEPTNO ENAME SAL
---------- ---------- ----------
 10 KING 5000
 10 CLARK 2450
 10 MILLER 1300
 20 JONES 2975
 20 FORD 3000
 20 SMITH 800
 20 SCOTT 3000
 20 ADAMS 1100

 19625

8 rows selected.

Computing Summary Lines at the End of the Report
You can calculate and print summary lines based on all values in a column by using
BREAK and COMPUTE in the following forms:

BREAK ON REPORT
COMPUTE function LABEL label_name OF column column column
... ON REPORT

Example 4–13 Computing and Printing a Grand Total

To calculate and print the grand total of salaries for all salesmen and change the
compute label, first enter the following BREAK and COMPUTE commands:

SQL> BREAK ON REPORT
SQL> COMPUTE SUM LABEL TOTAL OF SAL ON REPORT

Next, enter and run a new query:

SQL> SELECT ENAME, SAL
 2 FROM EMP

Note: The format of the column SAL controls the appearance of
the sum of SAL, as well as the individual values of SAL. When you
establish the format of a NUMBER column, you must allow for the
size of sums you will include in your report.

Clarifying Your Report with Spacing and Summary Lines

4-20 SQL*Plus User’s Guide and Reference

 3 WHERE JOB = ’SALESMAN’;

SQL*Plus displays the results:

ENAME SAL
---------- --------
ALLEN 1600
WARD 1250
MARTIN 1250
TURNER 1500
********** --------
TOTAL 5600

To print a grand total (or grand average, grand maximum, and so on) in addition to
subtotals (or sub-averages, and so on), include a break column and an ON REPORT
clause in your BREAK command. Then, enter one COMPUTE command for the
break column and another to compute ON REPORT:

BREAK ON break_column ON REPORT
COMPUTE function LABEL label_name OF column ON break_column
COMPUTE function LABEL label_name OF column ON REPORT

Computing Multiple Summary Values and Lines
You can compute and print the same type of summary value on different columns.
To do so, enter a separate COMPUTE command for each column.

Example 4–14 Computing the Same Type of Summary Value on Different Columns

To print the total of salaries and commissions for all salesmen, first enter the
following COMPUTE command:

SQL> COMPUTE SUM OF SAL COMM ON REPORT

You do not have to enter a BREAK command; the BREAK you entered in
Example 4–13 is still in effect. Now, add COMM to the current query:

SQL> 1 SELECT ENAME, SAL, COMM

Finally, run the revised query to see the results:

SQL> /

ENAME SAL COMM
---------- -------- ----------
ALLEN 1600 300

Clarifying Your Report with Spacing and Summary Lines

Formatting Query Results 4-21

WARD 1250 500
MARTIN 1250 1400
TURNER 1500 0
********** -------- ----------
sum 5600 2200

You can also print multiple summary lines on the same break column. To do so,
include the function for each summary line in the COMPUTE command as follows:

COMPUTE function LABEL label_name function
 LABEL label_name function LABEL label_name ...
 OF column ON break_column

If you include multiple columns after OFF and before ON, COMPUTE calculates
and prints values for each column you specify.

Example 4–15 Computing Multiple Summary Lines on the Same Break Column

To compute the average and sum of salaries for the sales department, first enter the
following BREAK and COMPUTE commands:

SQL> BREAK ON DEPTNO
SQL> COMPUTE AVG SUM OF SAL ON DEPTNO

Now, enter and run the following query:

SQL> SELECT DEPTNO, ENAME, SAL
 2 FROM EMP
 3 WHERE DEPTNO = 30
 4 ORDER BY DEPTNO, SAL;

SQL*Plus displays the results:

 DEPTNO ENAME SAL
---------- ---------- ----------
 30 JAMES 950
 WARD 1250
 MARTIN 1250
 TURNER 1500
 ALLEN 1600
 BLAKE 2850
********** ----------
avg 1566.6667
sum 9400

6 rows selected.

Defining Page and Report Titles and Dimensions

4-22 SQL*Plus User’s Guide and Reference

Listing and Removing COMPUTE Definitions
You can list your current COMPUTE definitions by entering the COMPUTE
command with no clauses:

COMPUTE

Example 4–16 Removing COMPUTE Definitions

To remove all COMPUTE definitions and the accompanying BREAK definition,
enter the following commands:

SQL> CLEAR BREAKS
breaks cleared
SQL> CLEAR COMPUTES
computes cleared

You may wish to place the commands CLEAR BREAKS and CLEAR COMPUTES at
the beginning of every command file to ensure that previously entered BREAK and
COMPUTE commands will not affect queries you run in a given file.

Defining Page and Report Titles and Dimensions
The word page refers to a screenful of information on your display or a page of a
spooled (printed) report. You can place top and bottom titles on each page, set the
number of lines per page, and determine the width of each line.

The word report refers to the complete results of a query. You can also place headers
and footers on each report and format them in the same way as top and bottom
titles on pages.

Setting the Top and Bottom Titles and Headers and Footers
As you have already seen, you can set a title to display at the top of each page of a
report. You can also set a title to display at the bottom of each page. The TTITLE
command defines the top title; the BTITLE command defines the bottom title.

You can also set a header and footer for each report. The REPHEADER command
defines the report header; the REPFOOTER command defines the report footer.

A TTITLE, BTITLE, REPHEADER or REPFOOTER command consists of the
command name followed by one or more clauses specifying a position or format
and a CHAR value you wish to place in that position or give that format. You can
include multiple sets of clauses and CHAR values:

Defining Page and Report Titles and Dimensions

Formatting Query Results 4-23

TTITLE position_clause(s) char_value position_clause(s) char_value ...
BTITLE position_clause(s) char_value position_clause(s) char_value ...
REPHEADER position_clause(s) char_value position_clause(s) char_value ...
REPFOOTER position_clause(s) char_value position_clause(s) char_value ...

For descriptions of all TTITLE, BTITLE, REPHEADER and REPFOOTER clauses, see
the TTITLE and REPHEADER commands in Chapter 8.

Example 4–17 Placing a Top and Bottom Title on a Page

To put titles at the top and bottom of each page of a report, enter

SQL> TTITLE CENTER -
> ’ACME WIDGET SALES DEPARTMENT PERSONNEL REPORT’
SQL> BTITLE CENTER ’COMPANY CONFIDENTIAL’

Now run the current query:

SQL> /

SQL*Plus displays the following output:

 ACME WIDGET SALES DEPARTMENT PERSONNEL REPORT
 DEPTNO ENAME SAL
---------- ---------- ----------
 30 JAMES 950
 30 WARD 1250
 30 MARTIN 1250
 30 TURNER 1500
 30 ALLEN 1600
 30 BLAKE 2850

 COMPANY CONFIDENTIAL

6 rows selected.

Example 4–18 Placing a Header on a Report

To put a report header on a separate page, and to center it, enter

SQL> REPHEADER PAGE CENTER ’ACME WIDGET’

Now run the current query:

SQL> /

Defining Page and Report Titles and Dimensions

4-24 SQL*Plus User’s Guide and Reference

SQL*Plus displays the following output on page one

 ACME WIDGET SALES DEPARTMENT PERSONNEL REPORT
 ACME WIDGET

 COMPANY CONFIDENTIAL

and the following output on page two

 ACME WIDGET SALES DEPARTMENT PERSONNEL REPORT
 DEPTNO ENAME SAL
---------- ---------- ----------
 30 JAMES 950
 30 WARD 1250
 30 MARTIN 1250
 30 TURNER 1500
 30 ALLEN 1600
 30 BLAKE 2850

 COMPANY CONFIDENTIAL

6 rows selected.

To suppress the report header without changing its definition, enter

SQL> REPHEADER OFF

Positioning Title Elements
The report in the preceding exercises might look more attractive if you give the
company name more emphasis and place the type of report and the department
name on either end of a separate line. It may also help to reduce the linesize and
thus center the titles more closely around the data.

You can accomplish these changes by adding some clauses to the TTITLE command
and by resetting the system variable LINESIZE, as the following example shows.

You can format report headers and footers in the same way as BTITLE and TTITLE
using the REPHEADER and REPFOOTER commands.

Defining Page and Report Titles and Dimensions

Formatting Query Results 4-25

Example 4–19 Positioning Title Elements

To redisplay the personnel report with a repositioned top title, enter the following
commands:

SQL> TTITLE CENTER ’A C M E W I D G E T’ SKIP 1 -
> CENTER ================ SKIP 1 LEFT ’PERSONNEL REPORT’ -
> RIGHT ’SALES DEPARTMENT’ SKIP 2
SQL> SET LINESIZE 60
SQL> /

SQL*Plus displays the results:

 A C M E W I D G E T
 ====================
PERSONNEL REPORT SALES DEPARTMENT

 DEPTNO ENAME SAL
---------- ---------- ----------
 30 JAMES 950
 30 WARD 1250
 30 MARTIN 1250
 30 TURNER 1500
 30 ALLEN 1600
 30 BLAKE 2850
 COMPANY CONFIDENTIAL

6 rows selected.

The LEFT, RIGHT, and CENTER clauses place the following values at the
beginning, end, and center of the line. The SKIP clause tells SQL*Plus to move
down one or more lines.

Note that there is no longer any space between the last row of the results and the
bottom title. The last line of the bottom title prints on the last line of the page. The
amount of space between the last row of the report and the bottom title depends on
the overall page size, the number of lines occupied by the top title, and the number
of rows in a given page. In the above example, the top title occupies three more
lines than the top title in the previous example. You will learn to set the number of
lines per page later in this chapter.

To always print n blank lines before the bottom title, use the SKIP n clause at the
beginning of the BTITLE command. For example, to skip one line before the bottom
title in the example above, you could enter the following command:

BTITLE SKIP 1 CENTER ’COMPANY CONFIDENTIAL’

Defining Page and Report Titles and Dimensions

4-26 SQL*Plus User’s Guide and Reference

Indenting a Title Element
You can use the COL clause in TTITLE or BTITLE to indent the title element a
specific number of spaces. For example, COL 1 places the following values in the
first character position, and so is equivalent to LEFT, or an indent of zero. COL 15
places the title element in the 15th character position, indenting it 14 spaces.

Example 4–20 Indenting a Title Element

To print the company name left-aligned with the report name indented five spaces
on the next line, enter

SQL> TTITLE LEFT ’ACME WIDGET’ SKIP 1 -
> COL 6 ’SALES DEPARTMENT PERSONNEL REPORT’ SKIP 2

Now rerun the current query to see the results:

SQL> /
ACME WIDGET
 SALES DEPARTMENT PERSONNEL REPORT

 DEPTNO ENAME SAL
---------- ---------- ----------
 30 JAMES 950
 30 WARD 1250
 30 MARTIN 1250
 30 TURNER 1500
 30 ALLEN 1600
 30 BLAKE 2850

 COMPANY CONFIDENTIAL

6 rows selected.

Entering Long Titles
If you need to enter a title greater than 500 characters in length, you can use the
SQL*Plus command DEFINE to place the text of each line of the title in a separate
user variable:

SQL> DEFINE LINE1 = ’This is the first line...’
SQL> DEFINE LINE2 = ’This is the second line...’
SQL> DEFINE LINE3 = ’This is the third line...’

Then, reference the variables in your TTITLE or BTITLE command as follows:

SQL> TTITLE CENTER LINE1 SKIP 1 CENTER LINE2 SKIP 1 -

Defining Page and Report Titles and Dimensions

Formatting Query Results 4-27

> CENTER LINE3

Displaying the Page Number and other System-Maintained Values in Titles
You can display the current page number and other system-maintained values in
your title by entering a system value name as a title element, for example:

TTITLE LEFT system-maintained_value_name

There are five system-maintained values you can display in titles, the most
commonly used of which is SQL.PNO (the current page number). For a list of
system-maintained values you can display in titles, see the TTITLE command in the
"Command Reference" in Chapter 8.

Example 4–21 Displaying the Current Page Number in a Title

To display the current page number at the top of each page, along with the
company name, enter the following command:

SQL> TTITLE LEFT ’ACME WIDGET’ RIGHT ’PAGE:’ SQL.PNO SKIP 2

Now rerun the current query:

SQL> /

SQL*Plus displays the following results:

ACME WIDGET PAGE: 1

 DEPTNO ENAME SAL
---------- ---------- ----------
 30 JAMES 950
 30 WARD 1250
 30 MARTIN 1250
 30 TURNER 1500
 30 ALLEN 1600
 30 BLAKE 2850

 COMPANY CONFIDENTIAL

6 rows selected.

Note that SQL.PNO has a format ten spaces wide. You can change this format with
the FORMAT clause of TTITLE (or BTITLE).

Defining Page and Report Titles and Dimensions

4-28 SQL*Plus User’s Guide and Reference

Example 4–22 Formatting a System-Maintained Value in a Title

To close up the space between the word PAGE: and the page number, reenter the
TTITLE command as shown:

SQL> TTITLE LEFT ’ACME WIDGET’ RIGHT ’PAGE:’ FORMAT 999 -
> SQL.PNO SKIP 2

Now rerun the query:

SQL> /

SQL*Plus displays the following results:

ACME WIDGET PAGE: 1

 DEPTNO ENAME SAL
---------- ---------- ----------
 30 JAMES 950
 30 WARD 1250
 30 MARTIN 1250
 30 TURNER 1500
 30 ALLEN 1600
 30 BLAKE 2850

 COMPANY CONFIDENTIAL

6 rows selected.

Listing, Suppressing, and Restoring Page Title Definitions
To list a page title definition, enter the appropriate title command with no clauses:

TTITLE
BTITLE

To suppress a title definition, enter:

TTITLE OFF
BTITLE OFF

These commands cause SQL*Plus to cease displaying titles on reports, but do not
clear the current definitions of the titles. You may restore the current definitions by
entering:

TTITLE ON

Defining Page and Report Titles and Dimensions

Formatting Query Results 4-29

BTITLE ON

Displaying Column Values in Titles
You may wish to create a master/detail report that displays a changing master
column value at the top of each page with the detail query results for that value
below. You can reference a column value in a top title by storing the desired value in
a variable and referencing the variable in a TTITLE command. Use the following
form of the COLUMN command to define the variable:

COLUMN column_name NEW_VALUE variable_name

You must include the master column in an ORDER BY clause and in a BREAK
command using the SKIP PAGE clause.

Example 4–23 Creating a Master/Detail Report

Suppose you want to create a report that displays two different managers’
employee numbers, each at the top of a separate page, and the people reporting to
the manager on the same page as the manager’s employee number. First create a
variable, MGRVAR, to hold the value of the current manager’s employee number:

SQL> COLUMN MGR NEW_VALUE MGRVAR NOPRINT

Because you will display the managers’ employee numbers in the title, you do not
want them to print as part of the detail. The NOPRINT clause you entered above
tells SQL*Plus not to print the column MGR.

Next, include a label and the value in your page title, enter the proper BREAK
command, and suppress the bottom title from the last example:

SQL> TTITLE LEFT ’Manager: ’ MGRVAR SKIP 2
SQL> BREAK ON MGR SKIP PAGE
SQL> BTITLE OFF

Finally, enter and run the following query:

SQL> SELECT MGR, ENAME, SAL, DEPTNO
 2 FROM EMP
 3 WHERE MGR IN (7698, 7839)
 4 ORDER BY MGR;

SQL*Plus displays the following output:

Manager: 7698

Defining Page and Report Titles and Dimensions

4-30 SQL*Plus User’s Guide and Reference

ENAME SAL DEPTNO
---------- -------- ----------
ALLEN 1600 30
WARD 1250 30
TURNER 1500 30
MARTIN 1250 30
JAMES 950 30

Manager: 7839

ENAME SAL DEPTNO
---------- -------- ----------
JONES 2975 20
BLAKE 2850 30
CLARK 2450 10

8 rows selected.

If you want to print the value of a column at the bottom of the page, you can use the
COLUMN command in the following form:

COLUMN column_name OLD_VALUE variable_name

SQL*Plus prints the bottom title as part of the process of breaking to a new
page—after finding the new value for the master column. Therefore, if you simply
referenced the NEW_VALUE of the master column, you would get the value for the
next set of details. OLD_VALUE remembers the value of the master column that
was in effect before the page break began.

Displaying the Current Date in Titles
You can, of course, date your reports by simply typing a value in the title. This is
satisfactory for ad hoc reports, but if you want to run the same report repeatedly,
you would probably prefer to have the date automatically appear when the report is
run. You can do this by creating a variable to hold the current date.

To create the variable (in this example named _DATE), you can add the following
commands to your SQL*Plus LOGIN file:

SET TERMOUT OFF
BREAK ON TODAY
COLUMN TODAY NEW_VALUE _DATE
SELECT TO_CHAR(SYSDATE, ’fmMonth DD, YYYY’) TODAY
FROM DUAL;
CLEAR BREAKS

Defining Page and Report Titles and Dimensions

Formatting Query Results 4-31

SET TERMOUT ON

When you start SQL*Plus, these commands place the value of SYSDATE (the
current date) into a variable named _DATE. To display the current date, you can
reference _DATE in a title as you would any other variable.

The date format model you include in the SELECT command in your LOGIN file
determines the format in which SQL*Plus displays the date. See your Oracle8i SQL
Reference for more information on date format models. For more information about
the LOGIN file, see the section "Modifying Your LOGIN File" in Chapter 3.

You can also enter these commands interactively at the command prompt. For more
information, see the COLUMN command in Chapter 8.

Setting Page Dimensions
Typically, a page of a report contains the number of blank line(s) set in the
NEWPAGE variable of the SET command, a top title, column headings, your query
results, and a bottom title. SQL*Plus displays a report that is too long to fit on one
page on several consecutive pages, each with its own titles and column headings.
The amount of data SQL*Plus displays on each page depends on the current page
dimensions.

The default page dimensions used by SQL*Plus are shown below:

■ number of lines before the top title: 1

■ number of lines per page, from the top title to the bottom of the page: 24

■ number of characters per line: 80

You can change these settings to match the size of your computer screen or, for
printing, the size of a sheet of paper.

You can change the page length with the system variable PAGESIZE. For example,
you may wish to do so when you print a report, since printed pages are customarily
66 lines long.

To set the number of lines between the beginning of each page and the top title, use
the NEWPAGE variable of the SET command:

SET NEWPAGE number_of_lines

If you set NEWPAGE to zero, SQL*Plus skips zero lines and displays and prints a
formfeed character to begin a new page. On most types of computer screens, the
formfeed character clears the screen and moves the cursor to the beginning of the

Defining Page and Report Titles and Dimensions

4-32 SQL*Plus User’s Guide and Reference

first line. When you print a report, the formfeed character makes the printer move
to the top of a new sheet of paper, even if the overall page length is less than that of
the paper. If you set NEWPAGE to NONE, SQL*Plus does not print a blank line or
formfeed between report pages.

To set the number of lines on a page, use the PAGESIZE variable of the SET
command:

SET PAGESIZE number_of_lines

You may wish to reduce the linesize to center a title properly over your output, or
you may want to increase linesize for printing on wide paper. You can change the
line width using the LINESIZE variable of the SET command:

SET LINESIZE number_of_characters

Example 4–24 Setting Page Dimensions

To set the page size to 66 lines, clear the screen (or advance the printer to a new
sheet of paper) at the start of each page, and set the linesize to 32, enter the
following commands:

SQL> SET PAGESIZE 66
SQL> SET NEWPAGE 0
SQL> SET LINESIZE 32

Now enter and run the following commands to see the results:

SQL> TTITLE CENTER ’ACME WIDGET PERSONNEL REPORT’ SKIP 1 -
> CENTER ’10-JAN-99’ SKIP 2
SQL> COLUMN DEPTNO HEADING DEPARTMENT
SQL> COLUMN ENAME HEADING EMPLOYEE
SQL> COLUMN SAL FORMAT $99,999 HEADING SALARY
SQL> SELECT DEPTNO, ENAME, SAL
 2 FROM EMP
 3 ORDER BY DEPTNO;

SQL*Plus displays a formfeed followed by the query results:

 ACME WIDGET PERSONNEL REPORT
 10-JAN-99

DEPARTMENT EMPLOYEE SALARY
---------- ---------- ----------
 10 CLARK $2,450
 10 KING $5,000
 10 MILLER $1,300

Storing and Printing Query Results

Formatting Query Results 4-33

 20 SMITH $800
 20 ADAMS $1,100
 20 FORD $3,000
 20 SCOTT $3,000
 20 JONES $2,975
 30 ALLEN $1,600
 30 BLAKE $2,850
 30 MARTIN $1,250
 30 JAMES $950
 30 TURNER $1,500
 30 WARD $1,250

14 rows selected.

Now reset PAGESIZE, NEWPAGE, and LINESIZE to their default values:

SQL> SET PAGESIZE 24
SQL> SET NEWPAGE 1
SQL> SET LINESIZE 80

To list the current values of these variables, use the SHOW command:

SQL> SHOW PAGESIZE
pagesize 24
SQL> SHOW NEWPAGE
newpage 1
SQL> SHOW LINESIZE
linesize 80

Through the SQL*Plus command SPOOL, you can store your query results in a file
or print them on your computer’s default printer.

Storing and Printing Query Results
Send your query results to a file when you want to edit them with a word processor
before printing or include them in a letter, memo, or other document.

To store the results of a query in a file—and still display them on the screen—enter
the SPOOL command in the following form:

SPOOL file_name

If you do not follow the filename with a period and an extension, SPOOL adds a
default file extension to the filename to identify it as an output file. The default
varies with the host operating system; on most hosts it is LST or LIS. See the Oracle

Storing and Printing Query Results

4-34 SQL*Plus User’s Guide and Reference

installation and user’s manual(s) provided for your operating system for more
information.

SQL*Plus continues to spool information to the file until you turn spooling off,
using the following form of SPOOL:

SPOOL OFF

Creating a Flat File
When moving data between different software products, it is sometimes necessary
to use a "flat" file (an operating system file with no escape characters, headings, or
extra characters embedded). For example, if you do not have Net8, you need to
create a flat file for use with SQL*Loader when moving data from Oracle7 to
Oracle8.

To create a flat file with SQL*Plus, you first must enter the following SET
commands:

SET NEWPAGE 0
SET SPACE 0
SET LINESIZE 80
SET PAGESIZE 0
SET ECHO OFF
SET FEEDBACK OFF
SET HEADING OFF
SET MARKUP HTML OFF SPOOL OFF

After entering these commands, you use the SPOOL command as shown in the
previous section to create the flat file.

The SET COLSEP command may be useful to delineate the columns. For more
information, see the SET command in Chapter 8.

Sending Results to a File
To store the results of a query in a file—and still display them on the screen—enter
the SPOOL command in the following form:

SPOOL file_name

SQL*Plus stores all information displayed on the screen after you enter the SPOOL
command in the file you specify.

Storing and Printing Query Results

Formatting Query Results 4-35

Sending Results to a Printer
To print query results, spool them to a file as described in the previous section.
Then, instead of using SPOOL OFF, enter the command in the following form:

SPOOL OUT

SQL*Plus stops spooling and copies the contents of the spooled file to your host
computer’s standard (default) printer. SPOOL OUT does not delete the spool file
after printing.

Example 4–25 Sending Query Results to a Printer

To generate a final report and spool and print the results, create a command file
named EMPRPT containing the following commands.

First, use EDIT to create the command file with your host operating system text
editor. (Do not use INPUT and SAVE, or SQL*Plus will add a slash to the end of the
file and will run the command file twice—once as a result of the semicolon and once
due to the slash.)

SQL> EDIT EMPRPT

Next, enter the following commands into the file, using your text editor:

SPOOL TEMP
CLEAR COLUMNS
CLEAR BREAKS
CLEAR COMPUTES

COLUMN DEPTNO HEADING DEPARTMENT
COLUMN ENAME HEADING EMPLOYEE
COLUMN SAL HEADING SALARY FORMAT $99,999

BREAK ON DEPTNO SKIP 1 ON REPORT
COMPUTE SUM OF SAL ON DEPTNO
COMPUTE SUM OF SAL ON REPORT

SET PAGESIZE 21
SET NEWPAGE 0
SET LINESIZE 30

TTITLE CENTER ’A C M E W I D G E T’ SKIP 2 -
LEFT ’EMPLOYEE REPORT’ RIGHT ’PAGE:’ -
FORMAT 999 SQL.PNO SKIP 2

Storing and Printing Query Results

4-36 SQL*Plus User’s Guide and Reference

BTITLE CENTER ’COMPANY CONFIDENTIAL’

SELECT DEPTNO, ENAME, SAL
FROM EMP
ORDER BY DEPTNO;

SPOOL OUT

If you do not want to see the output on your screen, you can also add SET
TERMOUT OFF to the beginning of the file and SET TERMOUT ON to the end of
the file. Save the file (you automatically return to SQL*Plus). Now, run the
command file EMPRPT:

SQL> @EMPRPT

SQL*Plus displays the output on your screen (unless you set TERMOUT to OFF),
spools it to the file TEMP, and sends the contents of TEMP to your default printer:

 A C M E W I D G E T

EMPLOYEE REPORT PAGE: 1

DEPARTMENT EMPLOYEE SALARY
---------- ---------- --------
 10 CLARK $2,450
 KING $5,000
 MILLER $1,300
********** --------
sum $8,750

 20 SMITH $800
 ADAMS $1,100
 FORD $3,000
 SCOTT $3,000
 JONES $2,975

********** --------
sum $10,875

 COMPANY CONFIDENTIAL

 A C M E W I D G E T

EMPLOYEE REPORT PAGE: 2

Storing and Printing Query Results

Formatting Query Results 4-37

DEPARTMENT EMPLOYEE SALARY
---------- ---------- --------
 30 ALLEN $1,600
 BLAKE $2,850
 MARTIN $1,250
 JAMES $900
 TURNER $1,500
 WARD $1,250
********** --------
sum $9,400
********** --------
sum $29,025

 COMPANY CONFIDENTIAL

Creating Web Reports

4-38 SQL*Plus User’s Guide and Reference

Creating Web Reports
SQL*Plus allows you to generate either a complete standalone web page, or HTML
output which can be embedded in a web page. You can use SQLPLUS -MARKUP
HTML ON or SET MARKUP HTML ON SPOOL ON to produce standalone web
pages. SQL*Plus generates complete HTML pages automatically encapsulated with
<HTML> and <BODY> tags.

The content is written to a HTML table by default, though you can optionally direct
output to the HTML <PRE> tag so that it displays in a web browser exactly as it
appears in SQL*Plus. See the SQLPLUS -MARKUP command in the "Starting
SQL*Plus Using the SQLPLUS Command" section of Chapter 7 and the SET
MARKUP command in the "SET" section of Chapter 8 for more information about
these commands.

SQLPLUS -MARKUP HTML ON is useful when embedding SQL*Plus in
program scripts. On starting, it outputs the HTML and BODY tags before executing
any commands. All subsequent output is in HTML until SQL*Plus terminates. The
-SILENT and -RESTRICT command line options may be effectively used in
conjunction with -MARKUP to suppress the display of SQL*Plus prompt and
banner information and to restrict the use of some commands.

SET MARKUP HTML ON SPOOL ON generates complete HTML pages for each
subsequently spooled file. The HTML tags in a spool file are closed when SPOOL
OFF is executed or SQL*Plus exits.

You can use SET MARKUP HTML ON SPOOL OFF to generate HTML output
suitable for embedding in an existing web page. HTML output generated this way
has no <HTML> or <BODY> tags.

Creating Web Reports Interactively
You use the SET MARKUP command interactively during a SQL*Plus session to
write HTML to a spool file. The output can be viewed in a web browser.

SET MARKUP only specifies that SQL*Plus output will be HTML encoded, it does
not create or begin writing to an output file. You must use SET MARKUP HTML
ON SPOOL ON to enable the spooling of HTML output. You then use the SQL*Plus
SPOOL command to create and name a spool file, and to begin writing HMTL
output to it.

When creating a HTML file, it is important and convenient to specify a .html file
extension which is the standard file extension for HTML files. This allows you to
easily identify the type of your output files, and also allows web browsers to

Creating Web Reports

Formatting Query Results 4-39

identify and correctly display your HTML files. If no extension is specified, the
default SQL*Plus file extension, .lst, is used.

You use SPOOL OFF or EXIT to append final HTML tags to the spool file and then
close it. If you enter another SPOOL filename command, the current spool file is
closed as for SPOOL OFF or EXIT, and a new HTML spool file with the specified
name is created.

You can use the SET MARKUP command to enable or disable HTML output as
required.

Example 4–26 Creating a Standalone Web Report in an Interactive Session

You can create HTML output in an interactive SQL*Plus session using the SET
MARKUP command. You can include an embedded style sheet, or any other valid
text in the HTML <HEAD> tag. Open a SQL*Plus session and enter the following:

SET MARKUP HTML ON SPOOL ON PREFORMAT OFF ENTMAP ON -
HEAD ’<TITLE>Department Report</TITLE> -
<STYLE type="text/css"> -
<!-- BODY {background: yellow} --> -
</STYLE>’ -
BODY 'TEXT="#FF00FF"' -
TABLE 'WIDTH="50%" BORDER="5"'

You use the COLUMN command to control column output. The following
COLUMN commands create new heading names for the SQL query output. The
first command also turns off entity mapping for the DNAME column to allow
HTML hyperlinks to be correctly created in this column of the output data:

COLUMN DNAME HEADING "Department" ENTMAP OFF
COLUMN LOC HEADING "Location"

SET MARKUP HTML ON SPOOL ON enables SQL*Plus to write HTML to a spool
file. The following SPOOL command triggers the writing of the <HTML> and
<BODY> tags to the named file:

SPOOL report.html

After the SPOOL command, anything entered or displayed on standard output is
written to the spool file, report.html.

Enter a SQL query:

SELECT ''||DNAME||''
DNAME, LOC

Creating Web Reports

4-40 SQL*Plus User’s Guide and Reference

FROM DEPT
ORDER BY DEPTNO;

Enter the SPOOL OFF command:

SPOOL OFF

The </BODY> and </HTML> tags are appended to the spool file, report.html,
before it is closed.

The output from report.sql is a file, report.html. This is a standalone web page that
can be loaded into a web browser. Open report.html in your web browser. It should
appear something like the following:

The SQL*Plus command in this example contains several items of usage worth
noting:

■ The hyphen used to continue lines in long SQL*Plus commands.

■ The TABLE option to set table WIDTH and BORDER attributes.

■ The COLUMN command to set ENTMAP OFF for the DNAME column to
enable the correct formation of HTML hyperlinks. This makes sure that any
HTML special characters such as quotes and angle brackets are not replaced by
their equivalent entities, ", &, < and >.

■ The use of quotes and concatenation characters in the SELECT statement to
create hyperlinks by concatenating string and variable elements.

View the report.html source in your web browser, or in a text editor to see that the
table cells for the Department column contain fully formed hyperlinks as shown:

<html><head>
<title>Department Report</title> <STYLE type="text/css"> <!-- BODY
{background: yellow} --> </STYLE>
<META Name="generator" content="SQL*Plus 8.1.7">
</head>

Creating Web Reports

Formatting Query Results 4-41

<body text="#ff00ff">
<p>
<table width="50%" border="5">
<tr><th>Department</th><th>Location</th></tr>
<tr><td>ACCOUNTING</td>
<td>NEW YORK</td></tr>
<tr><td>RESEARCH</td>
<td>DALLAS</td></tr>
<tr><td>SALES</td>
<td>CHICAGO</td></tr>
<tr><td>OPERATIONS</td>
<td>BOSTON</td></tr>
</table>
<p></body></html>

Example 4–27 Creating a Standalone Web Report using the SQLPLUS command

Enter the following command at the operating system prompt:

SQLPLUS -S -M "HTML ON TABLE ’BORDER="2"’" scott/tiger @dept.sql > dept.html

where dept.sql contains:

SELECT DEPTNO, DNAME, LOC
FROM DEPT
ORDER BY DEPTNO;
EXIT

This example starts SQL*Plus with user "scott", sets HTML ON, sets a BORDER
attribute for TABLE, and runs the script dept.sql. The output from dept.sql is a
complete web page which is this case has been redirected to the file dept.html using
the > operating system command. It could be sent to a web browser if SQL*Plus
was called in a web server CGI script. See Creating a Standalone Web Report from a
CGI Script for information about calling SQL*Plus from a CGI script.

Start your web browser and enter the appropriate URL to open dept.html:

Creating Web Reports

4-42 SQL*Plus User’s Guide and Reference

The SQLPLUS command in this example contains three layers of nested quotes.
From the inside out, these are:

■ "70%" is a quoted HTML attribute value for WIDTH.

■ ’WIDTH="70%"’ is the quoted text argument for the TABLE option.

■ "HTML ON TABLE ’BORDER="2"’" is the quoted argument for the -MARKUP
option.

The nesting of quotes may be different in some operating systems or program
scripting languages.

Creating Embedded Web Reports
The SQLPLUS -MARKUP command allows you to start a SQL*Plus session in
Internet enabled mode, rather than using the SET MARKUP command interactively.
This allows you to run a SQL*Plus session embedded inside a Common Gateway
Interface (CGI) script or an operating system command file. A file created in this
way can be displayed directly in a web browser. You can use any script language
which is supported by your web server such as a shell script, a Windows command
file (batch file), Java, JavaScript or a Perl file.

You can use this embedded approach to produce HTML web outputs that use
existing SQL*Plus scripts unchanged. It provides an easy way to provide
dynamically-created, web-based reports.

Example 4–28 Creating a Standalone Web Report from a CGI Script

You can use a CGI script to run SQL*Plus, and so produce a web report from a SQL
script. There are three main elements required:

■ A web page to call the CGI script.

■ A CGI script to gather the input and run SQL*Plus.

■ The SQL script to be run by the SQL*Plus session.

Web Page for CGI Example
In this example, the web page is a form which prompts for your username and
password, a database connection string and the name of the SQL script to run.

Creating Web Reports

Formatting Query Results 4-43

<html>
<head><title>SQL*Plus Report Demonstration</title></head>
<body bgcolor="#ffffff">

<h1>SQL*Plus Report Demonstration</h1>

<!-- Change the URL here. On Windows NT you may need to use
http://whatever/cgi-bin/perl?plus.pl if your web server is not
configured to identify the script as a Perl program -->

<form method=post action="http://whatever/cgi-bin/plus.pl">
<table border=0 summary="">

<tr>
 <td>Username:</td>
 <td><input type="text" name="username" size="10" align="left"></td>
</tr>

<tr>
 <td>Password:</td>
 <td><input type="password" name="password" size="10" align="left"></td>
</tr>
<tr>
 <td>Connect string: </td>
 <td><input type="text" name="db" size="10" align="left"></td>
</tr>
<tr>
 <td>Report to run: </td>
 <td><input type="text" name="script" value="emp.sql" size=40></td>
</tr>
<tr>
 <td><input type="submit" value="Run it"> <input type="reset"
value="Reset Form"></td>
 <td> </td>

Note: You need to carefully consider security on your server
before embedding login information in a script file or using a CGI
script to prompt for login information and pass it into the
SQLPLUS command.

Consider setting initial conditions rather than assuming default
values. For example, explicitly set ENTMAP ON even thought its
default is ON.

Creating Web Reports

4-44 SQL*Plus User’s Guide and Reference

</tr>
</table>
</form>
</body>
</html>

Perl Script for CGI Example
In this example, the CGI script is a Perl script, but it could be a shell script, a Java
class or any other language supported by your web server. Create the following Perl
CGI script and save it as sqlscript.pl in the cgi-bin directory of your web server:

Set up the SQL*Plus environment
$ENV{’ORACLE_SID’} = "P817"; # Your SID goes here
$ENV{’ORACLE_HOME’} = "/oracle/817"; # Your Oracle Home directory goes here
$ENV{’TNS_ADMIN’} = "/var/opt/oracle";
$plusexe = "$ENV{’ORACLE_HOME’}/bin/sqlplus";

Extract parameters and values from data entered through the web browser
$i=<>;
@in = split(/[&;]/,$i);

foreach $i (0 .. $#in)
{
 ($key,$val) = split(/=/,$in[$i],2);

Change encoding to machine character set
 $key =~ s/%([A-Fa-f0-9]{2})/pack("c",hex($1))/ge;
 $val =~ s/%([A-Fa-f0-9]{2})/pack("c",hex($1))/ge;

Store the value
 $in{"$key"} = $val;
}

Construct the connection string from values passed in
$connstr = $in{’username’}."/".$in{’password’};
$connstr = $connstr."@".$in{’db’} if ($in{’db’});

Construct the SQL script to be run
$script = "@".$in{’script’};

Force output to be flushed
$| = 1;

Print mime type
print "Content-Type: text/html\n\n";

Creating Web Reports

Formatting Query Results 4-45

if ($debug)
{
 print "<html><body>\n";
 print "$plusexe:$connstr:$script:\n";
 print "</body></html>\n";
 exit;
}

Call SQL*Plus with the parameters entered from the web browser
system ("$plusexe -r 3 -s -m \"html on\" $connstr $script");

exit;

SQL Script for CGI Example
Create the following SQL*Plus script in a text editor and save it as employee.sql in the
cgi-bin directory of your web server:

select empno, ename from emp;
exit;

Start your web browser and enter the appropriate URL to open sqlplus.html:

Creating Web Reports

4-46 SQL*Plus User’s Guide and Reference

Click Run It to execute the shell script sqlscript.pl, which in turn starts SQL*Plus and
runs the employee.sql script. The query results are displayed directly in your web
browser:

Suppressing the Display of SQL*Plus Commands in Web Reports
It is recommended that you use SILENT mode to start your SQL*Plus session. This
ensures that only the results of your SQL query appear in the web browser.

The SQLPLUS -SILENT option is particularly useful when used in combination
with -MARKUP to generate embedded SQL*Plus reports using CGI scripts or
operating system command files. It suppresses the display of SQL*Plus commands
and the SQL*Plus banner. Your HTML output shows only the data resulting from
your SQL query.

Creating Web Reports

Formatting Query Results 4-47

HTML Entities
Certain characters, <, >, " and & have predefined meaning in HTML. In the
previous example, you may have noticed that the > character was replaced by >
as soon as you entered the SET MARKUP HTML ON command. To enable these
characters to be displayed in your web browser, HTML provides character entities
to use instead.

The web browser displays the > character, but the actual text in the HTML encoded
file is the HTML entity, >. The SET MARKUP option, ENTMAP, controls the
substitution of HTML entities. ENTMAP is set ON by default. It ensures that the
characters <, >, " and & are always replaced by the HTML entities representing
these characters. This prevents web browsers from misinterpreting these characters
when they occur in your SQL*Plus commands, or in data resulting from your query.

Table 4–2 Equivalent HTML Entities

Character HTML Entity Meaning

< < Start HTML tag label

> > End HTML tag label

" " Double quote

& & Ampersand

Creating Web Reports

4-48 SQL*Plus User’s Guide and Reference

Database Administration 5-1

5
Database Administration

This chapter provides a brief overview of the database administration tools
available in SQL*Plus, and discusses the following topics:

■ Overview

■ Introduction to Database Startup and Shutdown

■ Redo Log Files

■ Database Recovery

This chapter is intended for use by database administrators. In order to access the
functionality of the commands mentioned in this chapter, database administrator
privileges are necessary.

For more information on database administration, see the Oracle8i Concepts manual.

Overview

5-2 SQL*Plus User’s Guide and Reference

Overview
Special operations such as starting up or shutting down a database are performed
by a database administrator (DBA). The DBA has certain privileges that are not
assigned to normal users. The commands outlined in this chapter would normally
be used by a DBA.

For more information about security and roles in SQL*Plus, see Appendix E.

Introduction to Database Startup and Shutdown
An Oracle database may not always be available to all users. To open or close a
database, or to start up or shut down an instance, you must have dba privileges or
be connected as SYSOPER or SYSDBA. Other users cannot change the current status
of an Oracle database.

You cannot use STARTUP or SHUTDOWN to start or stop Oracle instances on
Oracle7 servers.

Database Startup
Starting a database involves three steps:

1. Starting an instance

An instance controls the background processes and the allocation of memory
area to access an Oracle database.

2. Mounting the database

Mounting the database associates it with a previously started instance.

3. Opening the database

Opening the database makes it available for normal database operations.

For more information about database startup, see the Oracle8i Concepts manual. For
information about the STARTUP command, see the Command Reference in
Chapter 8.

Example 5–1 Starting an Instance

To start an Oracle instance, without mounting the database, enter

SQL> STARTUP NOMOUNT

Introduction to Database Startup and Shutdown

Database Administration 5-3

Example 5–2 Mounting the Database

To start an instance, mount the database, but leave the database closed, enter

SQL> STARTUP MOUNT

Example 5–3 Opening the Database

To start an instance using the Oracle8i Server parameter file INITSALE.ORA, mount
and open the database named SALES in exclusive mode, and restrict access to
administrative personnel, enter

SQL> STARTUP OPEN sales PFILE=INITSALE.ORA EXCLUSIVE RESTRICT

where SALES is the database name specified in the DB_NAME parameter in the
INITSALE.ORA parameter file.

Database Shutdown
Shutting down a database involves three steps:

1. Closing the database

When a database is closed, all database and recovery data in the SGA are
written to the datafiles and redo log files, and closes all online datafiles.

2. Dismounting the database

Dismounting the database disassociates the database from an instance and
closes the control files of the database.

3. Shutting down the instance

Shutting down an instance reclaims the SGA from memory and terminates the
background Oracle processes that constitute an Oracle instance.

For more information about database shutdown, see the Oracle8i Concepts manual.
For information about the SHUTDOWN command, see the Command Reference in
Chapter 8.

Example 5–4 Shutting Down the Database

To shut down the database normally after it has been opened and mounted, enter

SQL> SHUTDOWN
Database closed.
Database dismounted.
ORACLE instance shut down.

Redo Log Files

5-4 SQL*Plus User’s Guide and Reference

Redo Log Files
Every Oracle database has a set of two or more redo log files. The set of redo log
files for a database is collectively referred to as the database’s redo log.

The redo log is used to record changes made to data. If, for example, there is a
database failure, the redo log is used to recover the database. To protect against a
failure involving the redo log itself, Oracle allows a mirrored redo log so that two or
more copies of the redo log can be maintained on different disks.

ARCHIVELOG Mode
Operating a database in ARCHIVELOG mode enables the archiving of the online
redo log.

The ARCHIVE LOG command permits a complete recovery from disk failure as
well as instance failure, because all changes made to the database are permanently
saved in an archived redo log.

For more information about redo log files and database archiving modes, see the
Oracle8i Concepts manual. For information about using the ARCHIVE LOG
command, see the Command Reference in Chapter 8.

To automatically begin archiving, enter

SQL> ARCHIVE LOG START

To list the details of the current log file being archived, enter

SQL> ARCHIVE LOG LIST

SQL*Plus displays results similar to the following:

Database log mode Archive Mode
Automatic archival Enabled
Archive destination /vobs/oracle/dbs/arch
Oldest online log sequence 221
Next log sequence to archive 222
Current log sequence 222

Database Recovery

Database Administration 5-5

Database Recovery
If a damaged database is in ARCHIVELOG mode, it is a candidate for either
complete media recovery or incomplete media recovery operations. To begin media
recovery operations use the RECOVER command. For more information about
using the RECOVER command, see the Command Reference in Chapter 8.

In order to begin recovery operations, you must have DBA privileges.

To recover the database up to a specified time using a control backup file, enter

SQL> RECOVER DATABASE UNTIL TIME ’1998-11-23:12:47:30’-
> USING BACKUP CONTROLFILE

To recover two offline tablespaces, enter

SQL> RECOVER TABLESPACE ts1, ts2

Make sure that the tablespaces you are interested in recovering have been taken
offline, before proceeding with recovery for those tablespaces.

Database Recovery

5-6 SQL*Plus User’s Guide and Reference

Accessing SQL Databases 6-1

6
Accessing SQL Databases

This chapter explains how to access databases through SQL*Plus, and discusses the
following topics:

■ Connecting to the Default Database

■ Connecting to a Remote Database

■ Copying Data from One Database to Another

■ Copying Data between Tables on One Database

Read this chapter while sitting at your computer and try out the example shown.
Before beginning, make sure you have access to the sample tables described in
Chapter 1.

Connecting to the Default Database

6-2 SQL*Plus User’s Guide and Reference

Connecting to the Default Database
In order to access data in a given database, you must first connect to the database.
When you start SQL*Plus, you normally connect to your default Oracle database
under the username and password you enter while starting. Once you have logged
in, you can connect under a different username with the SQL*Plus CONNECT
command. The username and password must be valid for the database.

For example, to connect the username TODD to the default database using the
password FOX, you could enter

CONNECT TODD/FOX

If you omit the username and password, SQL*Plus prompts you for them. You also
have the option of typing only the username following CONNECT and omitting the
password (SQL*Plus then prompts for the password). Because CONNECT first
disconnects you from your current database, you will be left unconnected to any
database if you use an invalid username and password in your CONNECT
command.

If you log on or connect as a user whose account has expired, SQL*Plus prompts
you to change your password before you can connect.

If an account is locked, a message is displayed and connection as this user is not
permitted until the account is unlocked by your DBA.

You can disconnect the username currently connected to Oracle without leaving
SQL*Plus by entering the SQL*Plus command DISCONNECT at the SQL*Plus
command prompt.

The default database is configured at an operating system level by setting operating
system environment variables, symbols or, possibly, by editing an Oracle specific
configuration file. Refer to your Oracle documentation for your operating system
for more information.

Connecting to a Remote Database

Accessing SQL Databases 6-3

Connecting to a Remote Database
Many large installations run Oracle on more than one computer. Such computers
are often connected in a network, which permits programs on different computers
to exchange data rapidly and efficiently. Networked computers can be physically
near each other, or can be separated by large distances and connected by
telecommunication links.

Databases on other computers or databases on your host computer other than your
default database are called remote databases. You can access remote databases if the
desired database has Net8 and both databases have compatible network drivers.

You can connect to a remote database in one of two ways:

■ from within SQL*Plus, using the CONNECT command

■ as you start SQL*Plus, using the SQLPLUS command

Connecting to a Remote Database from within SQL*Plus
To connect to a remote database using CONNECT, include a Net8 database
specification in the CONNECT command in one of the following forms (the
username and password you enter must be valid for the database to which you
wish to connect):

■ CONNECT SCOTT@connect_identifier

■ CONNECT SCOTT/TIGER@connect_identifier

SQL*Plus prompts you for a password as needed, and connects you to the specified
database.

Like any database connection, if you log on or connect as a user whose account has
expired, SQL*Plus prompts you to change your password before you can connect. If
an account is locked, a message is displayed and connection as this user is not
permitted until the account is unlocked by your DBA.

When you connect to a remote database in this manner, you can use the complete
range of SQL and SQL*Plus commands and PL/SQL blocks on the database.

The exact string you enter for the service name depends upon the Net8 protocol
your computer uses. For more information, see CONNECT in Chapter 8 and the
Net8 manual appropriate for your protocol, or contact your DBA.

Copying Data from One Database to Another

6-4 SQL*Plus User’s Guide and Reference

Connecting to a Remote Database as You Start SQL*Plus
To connect to a remote database when you start SQL*Plus, include the Net8 service
name in your SQLPLUS command in one of the following forms:

■ SQLPLUS SCOTT@connect_identifier

■ SQLPLUS SCOTT/TIGER@connect_identifier

You must use a username and password valid for the remote database and
substitute the appropriate service name for the remote database. SQL*Plus prompts
you for username and password as needed, starts SQL*Plus, and connects you to
the specified database. This is the database used until you CONNECT to another
database, DISCONNECT, or leave SQL*Plus.

Like any database connection, if you log on or connect as a user whose account has
expired, SQL*Plus prompts you to change your password before you can connect. If
an account is locked, a message is displayed and connection as this user is not
permitted until the account is unlocked by your DBA.

Once again, you can manipulate tables in the remote database directly after you
connect in this manner.

Copying Data from One Database to Another
Use the SQL*Plus COPY command to copy data between databases and between
tables on the same database. With the COPY command, you can copy data between
databases in the following ways:

■ copy data from a remote database to your local database

■ copy data from your local (default) database to a remote database (on most
systems)

■ copy data from one remote database to another remote database (on most
systems)

Note: Do not confuse the @ symbol of the connect identifier with
the @ command used to run a command file.

Copying Data from One Database to Another

Accessing SQL Databases 6-5

Understanding COPY Command Syntax
You enter the COPY command in the following form:

SQL> COPY FROM database TO database action -
> destination_table (column_name, column_name, -
> column_name ...) USING query

Here is a sample COPY command:

SQL> COPY FROM SCOTT/TIGER@BOSTONDB -
> TO TODD/FOX@CHICAGODB -
> CREATE NEWDEPT (DNUMBER, DNAME, CITY) -
> USING SELECT * FROM DEPT

To specify a database in the FROM or TO clause, you must have a valid username
and password for the local and remote database(s) and know the appropriate Net8
service name(s). COPY obeys Oracle security, so the username you specify must
have been granted access to tables for you to have access to tables. For information
on what databases are available to you, contact your DBA.

When you copy to your local database from a remote database, you can omit the TO
clause. When you copy to a remote database from your local database, you can omit
the FROM clause. When you copy between remote databases, you must include
both clauses. However, including both clauses benefits the readability of your
scripts.

The COPY command behaves differently based on whether the destination table
already exists and on the action clause you enter (CREATE in the example above).
For more information, see the section "Controlling Treatment of the Destination
Table" later in this chapter.

By default, the copied columns have the same names in the destination table that
they have in the source table. If you want to give new names to the columns in the
destination table, enter the new names in parentheses after the destination table
name. If you enter any column names, you must enter a name for every column you
are copying.

Note: In general, the COPY command was designed to be used for
copying data between Oracle and non-Oracle databases. You
should use SQL commands (CREATE TABLE AS and INSERT) to
copy data between Oracle databases.

Copying Data from One Database to Another

6-6 SQL*Plus User’s Guide and Reference

The USING clause specifies a query that names the source table and specifies the
data that COPY copies to the destination table. You can use any form of the SQL
SELECT command to select the data that the COPY command copies.

Here is an example of a COPY command that copies only two columns from the
source table, and copies only those rows in which the value of DEPTNO is 30:

SQL> COPY FROM SCOTT/TIGER@BOSTONDB -
> REPLACE EMPCOPY2 -
> USING SELECT ENAME, SAL -
> FROM EMPCOPY -
> WHERE DEPTNO = 30

You may find it easier to enter and edit long COPY commands in command files
rather than trying to enter them directly at the command prompt.

Controlling Treatment of the Destination Table
You control the treatment of the destination table by entering one of four control
clauses—REPLACE, CREATE, INSERT, or APPEND.

The REPLACE clause names the table to be created in the destination database and
specifies the following actions:

■ If the destination table already exists, COPY drops the existing table and
replaces it with a table containing the copied data.

■ If the destination table does not already exist, COPY creates it using the copied
data.

You can use the CREATE clause to avoid accidentally writing over an existing table.
CREATE specifies the following actions:

■ If the destination table already exists, COPY reports an error and stops.

Note: To enable the copying of data between Oracle and
non-Oracle databases, NUMBER columns are changed to
DECIMAL columns in the destination table. Hence, if you are
copying between Oracle databases, a NUMBER column with no
precision will be changed to a DECIMAL(38) column. When
copying between Oracle databases, you should use SQL commands
(CREATE TABLE AS and INSERT) or you should ensure that your
columns have a precision specified.

Copying Data from One Database to Another

Accessing SQL Databases 6-7

■ If the destination table does not already exist, COPY creates the table using the
copied data.

Use INSERT to insert data into an existing table. INSERT specifies the following
actions:

■ If the destination table already exists, COPY inserts the copied data in the
destination table.

■ If the destination table does not already exist, COPY reports an error and stops.

Use APPEND when you want to insert data in an existing table, or create a new
table if the destination table does not exist. APPEND specifies the following actions:

■ If the destination table already exists, COPY inserts the copied data in the
destination table.

■ If the table does not already exist, COPY creates the table and then inserts the
copied data in it.

Example 6–1 Copying from a Remote Database to Your Local Database
Using CREATE

To copy EMP from a remote database into a table called EMPCOPY on your own
database, enter the following command:

SQL> COPY FROM SCOTT/TIGER@BOSTONDB -
> CREATE EMPCOPY -
> USING SELECT * FROM EMP

SQL*Plus displays the following messages:

Array fetch/bind size is 20. (arraysize is 20)
Will commit when done. (copycommit is 0)
Maximum long size is 80. (long is 80)

SQL*Plus then creates the table EMPCOPY, copies the rows, and displays the
following additional messages:

Table EMPCOPY created.
 14 rows selected from SCOTT@BOSTONDB.
 14 rows inserted into EMPCOPY.

Note: See your DBA for an appropriate username, password, and
service name for a remote computer that contains a copy of EMP.

Copying Data from One Database to Another

6-8 SQL*Plus User’s Guide and Reference

 14 rows committed into EMPCOPY at DEFAULT HOST connection.

In this COPY command, the FROM clause directs COPY to connect you to the
database with the specification D:BOSTON-MFG as SCOTT, with the password
TIGER.

Notice that you do not need a semicolon at the end of the command; COPY is a
SQL*Plus command, not a SQL command, even though it contains a query. Since
most COPY commands are longer than one line, you must use a hyphen (-),
optionally preceded by a space, at the end of each line except the last.

Interpreting the Messages that COPY Displays
The first three messages displayed by COPY show the values of SET command
variables that affect the COPY operation. The most important one is LONG, which
limits the length of a LONG column’s value. (LONG is a datatype, similar to
CHAR.) If the source table contains a LONG column, COPY truncates values in that
column to the length specified by the system variable LONG.

The variable ARRAYSIZE limits the number of rows that SQL*Plus fetches from the
database at one time. This number of rows makes up a batch. The variable
COPYCOMMIT sets the number of batches after which COPY commits changes to
the database. (If you set COPYCOMMIT to zero, COPY commits changes only after
all batches are copied.) For more information on the variables of the SET command,
including how to change their settings, see the SET command in Chapter 8.

After listing the three system variables and their values, COPY tells you if a table
was dropped, created, or updated during the copy. Then COPY lists the number of
rows selected, inserted, and committed.

Specifying Another User’s Table
You can refer to another user’s table in a COPY command by qualifying the table
name with the username, just as you would in your local database, or in a query
with a database link.

For example, to make a local copy of a table named DEPT, owned by the username
ADAMS on the database associated with the Net8 connect identifier BOSTONDB,
you would enter

SQL> COPY FROM SCOTT/TIGER@BOSTONDB -
> CREATE EMPCOPY2 -
> USING SELECT * FROM ADAMS.DEPT

Copying Data between Tables on One Database

Accessing SQL Databases 6-9

Of course, you could get the same result by instructing COPY to log in to the remote
database as ADAMS. You cannot do that, however, unless you know the password
associated with the username ADAMS.

Copying Data between Tables on One Database
You can copy data from one table to another in a single database (local or remote).
To copy between tables in your local database, specify your own username and
password and the service name for your local database in either a FROM or a TO
clause (omit the other clause):

SQL> COPY FROM SCOTT/TIGER@MYDATABASE -
> INSERT EMPCOPY2 -
> USING SELECT * FROM EMP

To copy between tables on a remote database, include the same username,
password, and service name in the FROM and TO clauses:

SQL> COPY FROM SCOTT/TIGER@BOSTONDB -
> TO SCOTT/TIGER@BOSTONDB -
> INSERT EMPCOPY2 -
> USING SELECT * FROM EMP

Copying Data between Tables on One Database

6-10 SQL*Plus User’s Guide and Reference

Part II
Reference

This section provides an overview of how to start SQL*Plus. It also provides a
Command Reference that contains a description of each SQL*Plus command.

The following chapters and appendices are covered in this section:

■ Starting SQL*Plus and Getting Help

■ Command Reference

Starting SQL*Plus and Getting Help 7-1

7
Starting SQL*Plus and Getting Help

This chapter explains how to access SQL*Plus from the operating system prompt,
and discusses the following topics:

■ Starting SQL*Plus Using the SQLPLUS Command

■ Getting Help

Starting SQL*Plus Using the SQLPLUS Command

7-2 SQL*Plus User’s Guide and Reference

Starting SQL*Plus Using the SQLPLUS Command
You use the SQLPLUS command at the operating system prompt to start SQL*Plus:

SQLPLUS [[Options] [Logon] [Start]]

where:

You have the option of entering logon. If you do not specify logon and do specify
start, SQL*Plus assumes that the first line of the command file contains a valid
logon. If neither start nor logon are specified, SQL*Plus prompts for logon
information.

The following sections contain descriptions of SQLPLUS command terms:

Options

HELP Option

-
Displays the usage and syntax for the SQLPLUS command, and then
returns control to the operating system.

Options has the following syntax:

 - | -?
| [[-M[ARKUP]] markup_option] [-R[ESTRICT] {1|2|3}] [-S[ILENT]]]

and markup_option has the following syntax:

 HTML [ON|OFF] [HEAD text] [BODY text] [TABLE text]
 [ENTMAP {ON|OFF}] [SPOOL {ON|OFF}] [PRE[FORMAT] {ON|OFF}]

Logon has the following syntax:

{username[/password][@connect_identifier | / } [AS {SYSOPER|SYSDBA}]
| /NOLOG

Start has the following syntax:

@file_name[.ext] [arg ...]

Starting SQL*Plus Using the SQLPLUS Command

Starting SQL*Plus and Getting Help 7-3

VERSION Option

-?
Displays the current version and level number for SQL*Plus, and then
returns control to the operating system.

MARKUP Options

-M[ARKUP]
You can use the MARKUP option to generate either a complete stand
alone web page from your query or script, or to generate HTML output
which can be embedded in a web page. MARKUP currently supports
HTML 3.2.

Use SQLPLUS -MARKUP HTML ON or SET MARKUP HTML ON
SPOOL ON to produce standalone web pages. SQL*Plus will generate
complete HTML pages automatically encapsulated with <HTML> and
<BODY> tags. The HTML tags in a spool file are closed when SPOOL
OFF is executed or SQL*Plus exits.

The -SILENT and -RESTRICT command line options may be useful
when used in conjunction with -MARKUP.

You can use SET MARKUP HTML ON SPOOL OFF to generate HTML
output suitable for embedding in an existing web page. Output gener-
ated this way has no <HTML> or <BODY> tags.

In this release, you can use MARKUP HTML ON to produce HTML
output in either the <PRE> tag or in an HTML table. Output to a table
uses standard HTML <TABLE>, <TR> and <TD> tags to automatically
encode the rows and columns resulting from a query. Output to an
HTML table is now the default behavior when the HTML option is set
ON. You can generate output using HTML <PRE> tags by setting PRE-
FORMAT ON. Use the SHOW MARKUP command to view the status
of MARKUP options.

The SQLPLUS -MARKUP command has the same options and func-
tionality as the SET MARKUP command. These options are described
in this section. For information on the SET MARKUP command, see the
SET command in Chapter 8.

Starting SQL*Plus Using the SQLPLUS Command

7-4 SQL*Plus User’s Guide and Reference

HTML [ON|OFF]
HTML is a mandatory MARKUP argument which specifies that the
type of output to be generated is HTML. The optional HTML argu-
ments, ON and OFF, specify whether or not to generate HTML output.
The default is OFF.

MARKUP HTML ON generates HTML output using the specified
MARKUP options, or in the case of SET MARKUP, options set by previ-
ous SET MARKUP HTML commands in the current session.

You can turn HTML output ON and OFF as required during a session.
The default is OFF.

You enable the writing of HTML output with the MARKUP option,
SPOOL ON, and you subsequently initiate writing output to a spool file
with the SQL*Plus command, SPOOL filename. See SPOOL {ON|OFF}
below, and the SPOOL command in Chapter 8 for more information.

HEAD text
The HEAD text option allows you to specify content for the <HEAD>
tag. By default, text is:

<TITLE>SQL*Plus Report</TITLE>

If text includes spaces, it must be enclosed in quotes. SQL*Plus does not
test this free text entry for HTML validity. You must ensure that the text
you enter is valid for the HTML <HEAD> tag. This gives you the flexi-
bility to customize output for your browser or special needs.

BODY text
The BODY text option allows you to specify attributes for the <BODY>
tag. By default, there are no attributes. If text includes spaces, it must be
enclosed in quotes. SQL*Plus does not test this free text entry for HTML

Note: Depending on your operating system, the complete
-MARKUP clause for the SQLPLUS command may need to be
contained in quotes.

Note: SQL*Plus 8.1.7 implements HTML tables as the default
HTML output. More HTML tags may be implemented in future
releases.

Starting SQL*Plus Using the SQLPLUS Command

Starting SQL*Plus and Getting Help 7-5

validity. You must ensure that the text you enter is valid for the HTML
<BODY> tag. This gives you the flexibility to customize output for your
browser or special needs.

TABLE text
The TABLE text option allows you to enter attributes for the <TABLE>
tag. You can use TABLE text to set HTML <TABLE> tag attributes such
as BORDER, CELLPADDING, CELLSPACING and WIDTH. By default,
the <TABLE> WIDTH attribute is set to 90% and the BORDER attribute
is set to 1.

If text includes spaces, it must be enclosed in quotes. SQL*Plus does not
test this free text entry for HTML validity. You must ensure that the text
you enter is valid for the HTML <TABLE> tag. This gives you the flexi-
bility to customize output for your browser or special needs.

ENTMAP {ON|OFF}
ENTMAP ON or OFF specifies whether or not SQL*Plus replaces spe-
cial characters <, >, " and & with the HTML entities <, > "
and & respectively. ENTMAP is set ON by default.

You can turn ENTMAP ON and OFF as required during a session. For
example, with ENTMAP OFF, SQL*Plus screen output is:

 SQL> SELECT ENAME, EMPNO
 2 FROM EMP
 3 WHERE SAL <= 2000;

With ENTMAP ON, SQL*Plus screen output is:

 SQL> SELECT ENAME, EMPNO
 2 FROM EMP
 3 WHERE SAL <= 2000;

If entities are not mapped, web browsers may treat data as invalid
HTML and all subsequent output may display incorrectly. ENTMAP
OFF allows users to write their own HTML tags to customize output.

As entities in the <HEAD> and <BODY> tags are not mapped, you
must ensure that valid entities are used in the MARKUP HEAD and
BODY options.

Starting SQL*Plus Using the SQLPLUS Command

7-6 SQL*Plus User’s Guide and Reference

SPOOL {ON|OFF}
SPOOL ON or OFF specifies whether or not SQL*Plus writes the HTML
opening tags, <HTML> and <BODY>, and the closing tags, </BODY>
and </HTML>, to the start and end of each file created by the
SQL*Plus SPOOL filename command. The default is OFF.

You can turn SPOOL ON and OFF as required during a session.

SQL*Plus writes several HTML tags to the spool file when you issue the
SPOOL filename command. The tags written and their default content
are:

 <HTML>
 <HEAD>
 <TITLE>SQL*Plus Report</TITLE>
 <META name="generator" content="SQL*Plus 8.1.7">
 </HEAD>
 <BODY>

When you issue any of the SQL*Plus commands: EXIT, SPOOL OFF or
SPOOL filename, SQL*Plus appends the following end tags and closes
the file:
 </BODY></HTML>

You can specify <HEAD> tag contents and <BODY> attributes using
the HEAD and BODY options

Note: ENTMAP only has affect when either the HTML option is
set ON, or the SPOOL option is set ON. For more information
about using entities in your output, see the COLUMN command in
Chapter 8.

Note: It is important to distinguish between the SET MARKUP
HTML SPOOL option, and the SQLPLUS SPOOL filename
command.

The SET MARKUP HTML SPOOL ON option enables the writing
of HTML tags to the spool file. The spool file is not created, and the
tags enabled by the SET MARKUP HTML SPOOL ON option are
not written to the spool file until you issue the SQLPLUS SPOOL
filename command.

Starting SQL*Plus Using the SQLPLUS Command

Starting SQL*Plus and Getting Help 7-7

PRE[FORMAT] {ON|OFF}
PREFORMAT ON or OFF specifies whether or not SQL*Plus writes out-
put to the <PRE> tag or to an HTML table. The default is OFF, so out-
put is written to a HTML table by default. You can turn PREFORMAT
ON and OFF as required during a session.

MARKUP Usage Notes
Existing scripts that do not explicitly set PREFORMAT ON will generate output in
HTML tables. If you want output in HTML <PRE> tags, you must set PREFORMAT
ON.

Some SQL*Plus commands have different behavior when output is directed to an
HTML table. Commands originally intended to format paper reports may have
different meaning for reports intended for web tables:

■ PAGESIZE is the number of rows in an HTML table, not the number of lines.
Each row may contain multiple lines. The TTITLE, BTITLE and column
headings are repeated every PAGESIZE rows.

■ LINESIZE may have an effect on data if wrapping is on, or for very long data.
Depending on data size, they may be generated on separate lines, which a
browser may interpret as a space character.

■ TTITLE and BTITLE content is output to three line positions: left, center and
right, and the maximum line width is preset to 90% of the browser window.
These elements may not align with the main output as expected due to the way
they are handled for web output. Entity mapping in TTITLE and BTITLE is the
same as the general ENTMAP setting specified in the MARKUP command.

■ If you use a title in your output, then SQL*Plus starts a new HTML table for
output rows that appear after the title. Your browser may format column
widths of each table differently, depending on the width of data in each column.

■ SET COLSEP and RECSEP only produce output in HTML reports when
PREFORMAT is ON.

Notes: To produce report output using the HTML <PRE> tag, you
must set PREFORMAT ON. For example:

SQLPLUS -M "HTML ON PREFORMAT ON"

SET MARKUP HTML ON PREFORMAT ON

Starting SQL*Plus Using the SQLPLUS Command

7-8 SQL*Plus User’s Guide and Reference

RESTRICT Option

-R[ESTRICT] {1|2|3}
Allows you to disable certain commands that interact with the operat-
ing system. This is similar to disabling the same commands in the Prod-
uct User Profile (PUP) table. However, commands disabled with the
-RESTRICT option are disabled even if there is no connection to a
server, and remain disabled until SQL*Plus terminates.

If no -RESTRICT option is active, than all commands can be used,
unless disabled in the PUP table.

If -RESTRICT 3 is used, then LOGIN.SQL is not read. GLOGIN.SQL is
read but restricted commands used will fail.

Table 7-1 shows the commands disabled in each restriction level.

SILENT Option

-S[ILENT]
Suppresses all SQL*Plus information and prompt messages, including
the command prompt, the echoing of commands, and the banner nor-
mally displayed when you start SQL*Plus. If you omit username or pass-
word, SQL*Plus prompts for them, but the prompts are not visible. Use
SILENT to invoke SQL*Plus within another program so that the use of
SQL*Plus is invisible to the user.

SILENT is a useful mode for creating reports for the web using the
SQLPLUS -MARKUP command inside a CGI script or operating sys-

Table 7–1 Commands Disabled by Restriction Level

Command Level 1 Level 2 Level 3

EDIT disabled disabled disabled

GET disabled

HOST, ! disabled disabled disabled

SAVE disabled disabled

SPOOL disabled disabled

START, @, @@ disabled

STORE disabled disabled

Starting SQL*Plus Using the SQLPLUS Command

Starting SQL*Plus and Getting Help 7-9

tem command file. The SQL*Plus banner and prompts are suppressed
and do not appear in reports created using the SILENT option.

Logon

username[/password]
Represent the username and password with which you wish to start
SQL*Plus and connect to Oracle. If you omit username and password,
SQL*Plus prompts you for them.

If you omit only password, SQL*Plus prompts you for password. When
prompting, SQL*Plus does not display password on your terminal
screen. In silent mode, username and password prompts are not visi-
ble – your username will appear as you type it, but not your password.

@connect_identifier
Consists of a Net8 connect identifier. The exact syntax depends upon
the Net8 communications protocol your Oracle installation uses. For
more information, refer to the Net8 manual appropriate for your proto-
col or contact your DBA.

/
Represents a default logon using operating system authentication. You
cannot enter a database_specification if you use a default logon. In a
default logon, SQL*Plus typically attempts to log you in using the user-
name OPS$name, where name is your operating system username. Note
that the prefix "OPS$" can be set to any other string of text. For exam-
ple, you may wish to change the settings in your INIT.ORA parameters
file to LOGONname or USERIDname. See the Oracle8i Administrator’s
Guide for information about operating system authentication.

AS {SYSOPER|SYSDBA}
The AS clause allows privileged connections by users who have been
granted SYSOPER or SYSDBA system privileges. You can also use
either of these privileged connections with / and /NOLOG.

If you use this option, you need to quote the command arguments on
many operating systems, for example:

SQLPLUS "/ AS SYSDBA"
SQLPLUS "SYSTEM/MANAGER AS SYSOPER"

Starting SQL*Plus Using the SQLPLUS Command

7-10 SQL*Plus User’s Guide and Reference

/NOLOG
Establishes no initial connection to Oracle. Before issuing any SQL com-
mands, you must issue a CONNECT command to establish a valid
logon. Use /NOLOG when you want to have a SQL*Plus command file
prompt for the username, password, or database specification. The first
line of this command file is not assumed to contain a logon.

Start

@file_name[.ext] [arg ...]
Specifies the name of a command file and arguments to run. SQL*Plus
passes the arguments to the command file as if executing the file using
the SQL*Plus START command. If no file suffix (file extension) is speci-
fied, the suffix defined by the SET SUFFIX command is used. The
default suffix is .sql.

See the START command in Chapter 8 for more information.

Setting Up the Site Profile
SQL*Plus supports a Site Profile, a SQL*Plus command file created by the database
administrator. This file is generally named GLOGIN with an extension of SQL.
SQL*Plus executes this command file whenever any user starts SQL*Plus and
SQL*Plus establishes the Oracle connection. The Site Profile allows the DBA to set
up SQL*Plus environment defaults for all users at a particular site; users cannot
directly access the Site Profile. The default name and location of the Site Profile
depend on your system. Site Profiles are described in more detail in the Oracle
installation and user’s manual(s) provided for your operating system.

Setting Up the User Profile
SQL*Plus also supports a User Profile, executed after the Site Profile. SQL*Plus
searches for a file named LOGIN with the extension SQL in your current directory.
If SQL*Plus does not find the file there, SQL*Plus will search a system-dependent
path to find the file. Some operating systems may not support this path search.

Receiving a Return Code
If you fail to log in successfully to SQL*Plus because your username or password is
invalid or some other error, SQL*Plus will return an error status equivalent to an

Starting SQL*Plus Using the SQLPLUS Command

Starting SQL*Plus and Getting Help 7-11

EXIT FAILURE command. See the EXIT command in this chapter for further
information.

Example 7–1 Starting SQL*Plus

To start SQL*Plus with username SCOTT and password TIGER, enter

SQL> SQLPLUS SCOTT/TIGER

To start SQL*Plus, as above, and to make POLICY the default database (where
POLICY is a valid Net8 database connect identifier), enter

SQL> SQLPLUS SCOTT/TIGER@POLICY

To start SQL*Plus with username SCOTT and password TIGER and run a command
file named STARTUP with the extension SQL, enter

SQL> SQLPLUS SCOTT/TIGER @STARTUP

Note the space between TIGER and @STARTUP.

To start SQL*Plus with HTML ON, so that output can be viewed on a web browser,
enter

SQL> SQLPLUS -M "HTML ON" SCOTT/TIGER

To start SQL*Plus with no access to the EDIT and HOST commands during the
session, enter

SQL> SQLPLUS -R 1 SCOTT/TIGER

Example 7–2 Displaying the SQLPLUS syntax

To display the syntax of the SQLPLUS command, enter

SQL> SQLPLUS -H

SQL*Plus displays the following

Usage: SQLPLUS [[<option>] [<logon>] [<start>]]
where <option> ::= - | -? | [[-M <o>] [-R <n>] [-S]]
 <logon> ::= <username>[/<password>][@<connect_identifier>] | / |/NOLOG
 <start> ::= @<filename>[.<ext>] [<parameter> ...]
 - displays the SQL*Plus version banner and usage syntax
 -? displays the SQL*Plus version banner
 -M <o> uses HTML markup options <o>
 -R <n> uses restricted mode <n>
 -S uses silent mode

Getting Help

7-12 SQL*Plus User’s Guide and Reference

Getting Help
To access online help for SQL*Plus commands, you can type HELP followed by the
command name at the SQL command prompt. For example:

SQL> HELP ACCEPT

To display a list of SQL*Plus commands, type HELP followed by either TOPICS or
INDEX. HELP TOPICS displays a single column list of SQL*Plus commands. HELP
INDEX displays a four column list of SQL*Plus commands which usually fits in a
single screen. For example:

SQL> HELP INDEX

If you get a response that help is unavailable, consult your database administrator.
See the HELP command in Chapter 8 for more information.

Command Reference 8-1

8
Command Reference

This chapter contains descriptions of SQL*Plus commands, listed alphabetically.
Use this chapter for reference only. Each description contains the following parts:

A summary table that lists and briefly describes SQL*Plus commands precedes the
individual command descriptions.

You can continue a long SQL*Plus command by typing a hyphen at the end of the
line and pressing [Return]. If you wish, you can type a space before typing the
hyphen. SQL*Plus displays a right angle-bracket (>) as a prompt for each additional
line.

You do not need to end a SQL*Plus command with a semicolon. When you finish
entering the command, you can just press [Return]. If you wish, however, you can
enter a semicolon at the end of a SQL*Plus command.

Purpose Discusses the basic use(s) of the command.

Syntax Shows how to enter the command. Refer to Chapter 1
for an explanation of the syntax notation.

Terms and Clauses Describes the function of each term or clause appearing
in the syntax.

Usage Notes Provides additional information on how the command
works and on uses of the command.

Examples Gives one or more examples of the command.

SQL*Plus Command Summary

8-2 SQL*Plus User’s Guide and Reference

SQL*Plus Command Summary

Command Page Description

@ 8-5 Runs the specified command file.

@@ 8-7 Runs the specified command file which is expected to be in the
same directory as the script that called it.

/ 8-9 Executes the SQL command or PL/SQL block.

ACCEPT 8-10 Reads a line of input and stores it in a given user variable.

APPEND 8-12 Adds specified text to the end of the current line in the buffer.

ARCHIVE LOG 8-13 Starts or stops the automatic archiving of online redo log files,
manually (explicitly) archives specified redo log files, or
displays information about redo log files.

ATTRIBUTE 8-17 Specifies display characteristics for a given attribute of an
Object Type column, and lists the current display
characteristics for a single attribute or all attributes.

BREAK 8-19 Specifies where and how formatting will change in a report, or
lists the current break definition.

BTITLE 8-24 Places and formats a specified title at the bottom of each report
page, or lists the current BTITLE definition.

CHANGE 8-25 Changes text on the current line in the buffer.

CLEAR 8-28 Resets or erases the current clause or setting for the specified
option, such as BREAKS or COLUMNS.

COLUMN 8-30 Specifies display characteristics for a given column, or lists the
current display characteristics for a single column or for all
columns.

COMPUTE 8-41 Calculates and prints summary lines, using various standard
computations, on subsets of selected rows, or lists all
COMPUTE definitions.

CONNECT 8-47 Connects a given user to Oracle.

COPY 8-49 Copies results from a query to a table in a local or remote
database.

DEFINE 8-52 Specifies a user variable and assigns it a CHAR value, or lists
the value and variable type of a single variable or all variables.

DEL 8-54 Deletes one or more lines of the buffer.

SQL*Plus Command Summary

Command Reference 8-3

DESCRIBE 8-56 Lists the column definitions for the specified table, view, or
synonym or the specifications for the specified function or
procedure.

DISCONNECT 8-63 Commits pending changes to the database and logs the current
user off Oracle, but does not exit SQL*Plus.

EDIT 8-64 Invokes a host operating system text editor on the contents of
the specified file or on the contents of the buffer.

EXECUTE 8-66 Executes a single PL/SQL statement.

EXIT 8-67 Terminates SQL*Plus and returns control to the operating
system.

GET 8-69 Loads a host operating system file into the SQL buffer.

HELP 8-70 Accesses the SQL*Plus help system.

HOST 8-71 Executes a host operating system command without leaving
SQL*Plus.

INPUT 8-73 Adds one or more new lines after the current line in the buffer.

LIST 8-75 Lists one or more lines of the SQL buffer.

PASSWORD 8-77 Allows a password to be changed without echoing the
password on an input device.

PAUSE 8-78 Displays the specified text, then waits for the user to press
[Return].

PRINT 8-79 Displays the current value of a bind variable.

PROMPT 8-80 Sends the specified message to the user’s screen.

QUIT 8-67 Terminates SQL*Plus and returns control to the operating
system. QUIT is identical to EXIT.

RECOVER 8-82 Performs media recovery on one or more tablespaces, one or
more datafiles, or the entire database.

REMARK 8-88 Begins a comment in a command file.

REPFOOTER 8-89 Places and formats a specified report footer at the bottom of
each report, or lists the current REPFOOTER definition.

REPHEADER 8-91 Places and formats a specified report header at the top of each
report, or lists the current REPHEADER definition.

RUN 8-95 Lists and executes the SQL command or PL/SQL block
currently stored in the SQL buffer.

Command Page Description

SQL*Plus Command Summary

8-4 SQL*Plus User’s Guide and Reference

SAVE 8-96 Saves the contents of the SQL buffer in a host operating system
file (a command file).

SET 8-98 Sets a system variable to alter the SQL*Plus environment for
your current session.

SHOW 8-123 Shows the value of a SQL*Plus system variable or the current
SQL*Plus environment.

SHUTDOWN 8-128 Shuts down a currently running Oracle instance.

SPOOL 8-130 Stores query results in an operating system file and, optionally,
sends the file to a printer.

START 8-131 Executes the contents of the specified command file.

STARTUP 8-133 Starts an Oracle instance and optionally mounts and opens a
database.

STORE 8-137 Saves attributes of the current SQL*Plus environment in a host
operating system file (a command file).

TIMING 8-138 Records timing data for an elapsed period of time, lists the
current timer’s title and timing data, or lists the number of
active timers.

TTITLE 8-140 Places and formats a specified title at the top of each report
page, or lists the current TTITLE definition.

UNDEFINE 8-144 Deletes one or more user variables that you defined either
explicitly (with the DEFINE command) or implicitly (with an
argument to the START command).

VARIABLE 8-145 Declares a bind variable that can be referenced in PL/SQL.

WHENEVER OSERROR 8-151 Exits SQL*Plus if an operating system command generates an
error.

WHENEVER SQLERROR 8-153 Exits SQL*Plus if a SQL command or PL/SQL block generates
an error.

Command Page Description

@ ("at" sign)

Command Reference 8-5

@ ("at" sign)

Purpose
Runs the specified command file.

Syntax
@ file_name[.ext] [arg...]

Terms and Clauses
Refer to the following list for a description of each term or clause:

file_name[.ext]
Represents the command file you wish to run. If you omit ext, SQL*Plus
assumes the default command-file extension (normally SQL). For infor-
mation on changing the default extension, see the SUFFIX variable of
the SET command in this chapter.

When you enter @ file_name.ext, SQL*Plus searches for a file with the
filename and extension you specify in the current default directory. If
SQL*Plus does not find such a file, SQL*Plus will search a sys-
tem-dependent path to find the file. Some operating systems may not
support the path search. See the Oracle installation and user’s man-
ual(s) provided for your operating system for specific information
related to your operating system environment.

arg...
Represent data items you wish to pass to parameters in the command
file. If you enter one or more arguments, SQL*Plus substitutes the val-
ues into the parameters (&1, &2, and so forth) in the command file. The
first argument replaces each occurrence of &1, the second replaces each
occurrence of &2, and so forth.

The @ command DEFINEs the parameters with the values of the argu-
ments; if you run the command file again in this session, you can enter
new arguments or omit the arguments to use the current values.

For more information on using parameters, refer to the subsection "Passing
Parameters through the START Command" under "Writing Interactive
Commands" in Chapter 3.

@ ("at" sign)

8-6 SQL*Plus User’s Guide and Reference

Usage Notes
You can include in a command file any command you would normally enter
interactively (typically, SQL, SQL*Plus commands, or PL/SQL blocks).

An EXIT or QUIT command used in a command file terminates SQL*Plus.

The @ command functions similarly to START.

If the START command is disabled (see “Disabling SQL*Plus, SQL, and PL/SQL
Commands” in Appendix E), this will also disable the @ command. See START in
this chapter for information on the START command.

SQL*Plus removes the SQLTERMINATOR (a semicolon by default) before the @
command is issued. A workaround for this is to add another SQLTERMINATOR.
See the SQLTERMINATOR variable of the SET command in this chapter for more
information.

Examples
To run a command file named PRINTRPT with the extension SQL, enter

SQL> @PRINTRPT

To run a command file named WKRPT with the extension QRY, enter

SQL> @WKRPT.QRY

@@ (double "at" sign)

Command Reference 8-7

@@ (double "at" sign)

Purpose
Runs a command file. This command is identical to the @ ("at" sign) command
except that it looks for the specified command file in the same path as the command
file from which it was called.

Syntax
@@ file_name[.ext]

Terms and Clauses
Refer to the following for a description of the term or clause:

file_name[.ext]
Represents the nested command file you wish to run. If you omit ext,
SQL*Plus assumes the default command-file extension (normally SQL).
For information on changing the default extension, see the SUFFIX vari-
able of the SET command in this chapter.

When you enter @@file_name.ext from within a command file, SQL*Plus
runs file_name.ext from the same directory as the command file. When
you enter @@file_name.ext interactively, SQL*Plus runs file_name.ext
from the current working directory. If SQL*Plus does not find such a
file, SQL*Plus searches a system-dependent path to find the file. Some
operating systems may not support the path search. See the Oracle
installation and user’s manual(s) provided for your operating system
for specific information related to your operating system environment.

Usage Notes
You can include in a command file any command you would normally enter
interactively (typically, SQL or SQL*Plus commands).

An EXIT or QUIT command used in a command file terminates SQL*Plus.

The @@ command functions similarly to START.

If the START command is disabled, this will also disable the @@ command. For
more information, see the START command later in this chapter.

SQL*Plus removes the SQLTERMINATOR (a semicolon by default) before the @@
command is issued. A workaround for this is to add another SQLTERMINATOR.

@@ (double "at" sign)

8-8 SQL*Plus User’s Guide and Reference

See the SQLTERMINATOR variable of the SET command in this chapter for more
information.

Example
Suppose that you have the following command file named PRINTRPT:

SELECT * FROM EMP
@EMPRPT
@@ WKRPT

When you START PRINTRPT and it reaches the @ command, it looks for the
command file named EMPRPT in the current working directory and runs it. When
PRINTRPT reaches the @@ command, it looks for the command file named WKRPT
in the same path as PRINTRPT and runs it.

/ (slash)

Command Reference 8-9

/ (slash)

Purpose
Executes the SQL command or PL/SQL block currently stored in the SQL buffer.

Syntax
/

Usage Notes
You can enter a slash (/) at the command prompt or at a line number prompt of a
multi-line command.

The slash command functions similarly to RUN, but does not list the command in
the buffer on your screen.

Executing a SQL command or PL/SQL block using the slash command will not
cause the current line number in the SQL buffer to change unless the command in
the buffer contains an error. In that case, SQL*Plus changes the current line number
to the number of the line containing the error.

Example
To see the SQL command(s) you will execute, you can list the contents of the buffer:

SQL> LIST
 1* SELECT ENAME, JOB FROM EMP WHERE ENAME = ’JAMES’

Enter a slash (/) at the command prompt to execute the command in the buffer:

SQL> /

For the above query, SQL*Plus displays the following output:

ENAME JOB
---------- ---------
JAMES CLERK

ACCEPT

8-10 SQL*Plus User’s Guide and Reference

ACCEPT

Purpose
Reads a line of input and stores it in a given user variable.

Syntax
ACC[EPT] variable [NUM[BER]|CHAR|DATE] [FOR[MAT] format]
 [DEF[AULT] default] [PROMPT text|NOPR[OMPT]] [HIDE]

Terms and Clauses
Refer to the following list for a description of each term or clause:

variable
Represents the name of the variable in which you wish to store a value.
If variable does not exist, SQL*Plus creates it.

NUM[BER]
Makes the datatype of variable the datatype NUMBER. If the reply does
not match the datatype, ACCEPT gives an error message and prompts
again.

CHAR
Makes the datatype of variable the datatype CHAR. The maximum
CHAR length limit is 240 bytes. If a multi-byte character set is used, one
CHAR may be more than one byte in size.

DATE
Makes reply a valid DATE format. If the reply is not a valid DATE for-
mat, ACCEPT gives an error message and prompts again. The datatype
is CHAR.

FOR[MAT]
Specifies the input format for the reply. If the reply does not match the
specified format, ACCEPT gives an error message and prompts again
for a reply. The format element must be a text constant such as A10 or
9.999. See the COLUMN command in this chapter for a complete list of
format elements.

Oracle date formats such as "dd/mm/yy" are valid when the datatype
is DATE. DATE without a specified format defaults to the Oracle NLS_
DATE_FORMAT of the current session. See the Oracle8i Administrator’s

ACCEPT

Command Reference 8-11

Guide and the Oracle8i SQL Reference for information on Oracle date for-
mats.

DEF[AULT]
Sets the default value if a reply is not given. The reply must be in the
specified format if defined.

PROMPT text
Displays text on-screen before accepting the value of variable from the
user.

NOPR[OMPT]
Skips a line and waits for input without displaying a prompt.

HIDE
Suppresses the display as you type the reply.

To display or reference variables, use the DEFINE command. See the DEFINE
command in this chapter for more information.

Examples
To display the prompt "Password: ", place the reply in a CHAR variable named
PSWD, and suppress the display, enter

SQL> ACCEPT pswd CHAR PROMPT ’Password: ’ HIDE

To display the prompt "Enter weekly salary: " and place the reply in a NUMBER
variable named SALARY with a default of 000.0, enter

SQL> ACCEPT salary NUMBER FORMAT ’999.99’ DEFAULT ’000.0’ -
> PROMPT ’Enter weekly salary: ’

To display the prompt "Enter date hired: " and place the reply in a DATE variable
named HIRED with the format "dd/mm/yy" and a default of "01/01/99", enter

SQL> ACCEPT hired DATE FORMAT ’dd/mm/yy’ DEFAULT ’01/01/99’-
> PROMPT ’Enter date hired: ’

To display the prompt "Enter employee lastname: " and place the reply in a CHAR
variable named LASTNAME, enter

SQL> ACCEPT lastname CHAR FORMAT ’A20’ -
> PROMPT ’Enter employee lastname: ’

APPEND

8-12 SQL*Plus User’s Guide and Reference

APPEND

Purpose
Adds specified text to the end of the current line in the SQL buffer.

Syntax
A[PPEND] text

Terms and Clauses
Refer to the following for a description of the term or clause:

text
Represents the text you wish to append. If you wish to separate text
from the preceding characters with a space, enter two spaces between
APPEND and text.

To APPEND text that ends with a semicolon, end the command with
two semicolons (SQL*Plus interprets a single semicolon as an optional
command terminator).

Examples
To append a space and the column name DEPT to the second line of the buffer,
make that line the current line by listing the line as follows:

SQL> 2
 2* FROM EMP,

Now enter APPEND:

SQL> APPEND DEPT
SQL> 2
 2* FROM EMP, DEPT

Notice the double space between APPEND and DEPT. The first space separates
APPEND from the characters to be appended; the second space becomes the first
appended character.

To append a semicolon to the line, enter

SQL> APPEND ;;

SQL*Plus appends the first semicolon to the line and interprets the second as the
terminator for the APPEND command.

ARCHIVE LOG

Command Reference 8-13

ARCHIVE LOG

Purpose
Starts or stops automatic archiving of online redo log files, manually (explicitly)
archives specified redo log files, or displays information about redo log files.

Syntax
ARCHIVE LOG {LIST|STOP}|{START|NEXT|ALL|integer} [TO destination]

Terms and Clauses
Refer to the following list for a description of each term or clause:

LIST
Requests a display that shows the range of redo log files to be archived,
the current log file group’s sequence number, and the current archive
destination (specified by either the optional command text or by the ini-
tialization parameter LOG_ARCHIVE_DEST).

If you are using both ARCHIVELOG mode and automatic archiving,
the display might appear like:

SQL> ARCHIVE LOG LIST

Database log mode Archive Mode
Automatic archival Enabled
Archive destination /vobs/oracle/dbs/arch
Oldest online log sequence 221
Next log sequence to archive 222
Current log sequence 222

Since the log sequence number of the current log group and the next
log group to archive are the same, automatic archival has archived all
log groups up to the current one.

If you are using ARCHIVELOG but have disabled automatic archiving,
the last three lines might look like:

Oldest online log sequence 222
Next log sequence to archive 222
Current log sequence 225

If you are using NOARCHIVELOG mode, the "next log sequence to
archive" line is suppressed.

ARCHIVE LOG

8-14 SQL*Plus User’s Guide and Reference

The log sequence increments every time the Log Writer begins to write
to another redo log file group; it does not indicate the number of logs
being used. Every time an online redo log file group is reused, the con-
tents are assigned a new log sequence number.

STOP
Disables automatic archival. If the instance is still in ARCHIVELOG
mode and all redo log file groups fill, database operation is suspended
until a redo log file is archived (for example, until you enter the com-
mand ARCHIVE LOG NEXT or ARCHIVE LOG ALL).

START
Enables automatic archiving. Starts the background process ARCH,
which performs automatic archiving as required. If ARCH is started
and a filename is supplied, the filename becomes the new default
archive destination.

ARCH automatically starts on instance startup if the initialization
parameter LOG_ARCHIVE_START is set to TRUE.

NEXT
Manually archives the next online redo log file group that has been
filled, but not yet archived.

ALL
Manually archives all filled, but not yet archived, online redo log file
groups.

integer
Causes archival of the online redo log file group with log sequence
number n. You can specify any redo log file group that is still online. An
error occurs if the log file cannot be found online or the sequence num-
ber is not valid. This option can be used to rearchive a log file group.

destination
Specifies the destination device or directory in an operating system.
Specification of archive destination devices is installation-specific; see
your platform-specific Oracle documentation for examples of specify-
ing archive destinations. On many operating systems, multiple log files
can be spooled to the same tape.

If not specified in the command line, the archive destination is derived
from the initialization parameter LOG_ARCHIVE_DEST. The com-

ARCHIVE LOG

Command Reference 8-15

mand ARCHIVE LOG START destination causes the specified device or
directory to become the new default archive destination for all future
automatic or manual archives. A destination specified with any other
option is a temporary destination that is in effect only for the current
(manual) archive. It does not change the default archive destination for
subsequent automatic archives.

For information about specifying archive destinations, see your plat-
form-specific Oracle documentation.

Usage Notes
You must be connected to an open Oracle database as SYSOPER, or SYSDBA. For
information about connecting to the database, see the CONNECT command.

If an online redo log file group fills and none are available for reuse, database
operation is suspended. The condition can be resolved by archiving a log file group.

For information about specifying archive destinations, see your platform-specific
Oracle documentation.

Examples
To start up the archive process and begin automatic archiving, using the archive
destination specified in LOG_ARCHIVE_DEST, enter

SQL> ARCHIVELOG START

To stop automatic archiving, enter

SQL> ARCHIVELOG STOP

Note: This command applies only to the current instance. To
specify archiving for a different instance or for all instances in a
Parallel Server, use the SQL command ALTER SYSTEM. For more
information about using SQL commands, see the Oracle8i SQL
Reference.

ARCHIVE LOG

8-16 SQL*Plus User’s Guide and Reference

To archive the log file group with the sequence number 1001 to the destination
specified, enter

SQL> ARCHIVELOG 1001 ’/vobs/oracle/dbs/arch’

’arch’ specifies the prefix of the filename on the destination device; the remainder of
the filename is dependent on the initialization parameter LOG_ARCHIVE_
FORMAT, which specifies the filename format for archived redo log files.

ATTRIBUTE

Command Reference 8-17

ATTRIBUTE

Purpose
Specifies display characteristics for a given attribute of an Object Type column, such
as format for NUMBER data.

Also lists the current display characteristics for a single attribute or all attributes.

Syntax
ATTRIBUTE [type_name.attribute_name [option ...]]

where option represents one of the following clauses:

ALI[AS] alias
CLE[AR]
FOR[MAT] format
LIKE {type_name.attribute_name|alias}
ON|OFF

Terms and Clauses
Enter ATTRIBUTE followed by type_name.attribute_name and no other clauses to list
the current display characteristics for only the specified attribute. Enter ATTRIBUTE
with no clauses to list all current attribute display characteristics.

Refer to the following list for a description of each term or clause:

type_name.attribute_name
Identifies the data item (typically the name of an attribute) within the
set of attributes for a given object of Object Type, type_name.

If you select objects of the same Object Type, an ATTRIBUTE command
for that type_name.attribute_name will apply to all such objects you refer-
ence in that session.

ALI[AS] alias
Assigns a specified alias to a type_name.attribute_name, which can be
used to refer to the type_name.attribute_name in other ATTRIBUTE com-
mands.

ATTRIBUTE

8-18 SQL*Plus User’s Guide and Reference

CLE[AR]
Resets the display characteristics for the attribute_name. The format
specification must be a text constant such as A10 or $9,999—not a vari-
able.

FOR[MAT] format
Specifies the display format of the column. The format specification
must be a text constant such as A10 or $9,999—not a variable.

LIKE {type_name.attribute_name|alias}
Copies the display characteristics of another attribute. LIKE copies only
characteristics not defined by another clause in the current ATTRIBUTE
command.

ON|OFF
Controls the status of display characteristics for a column. OFF disables
the characteristics for an attribute without affecting the characteristics’
definition. ON reinstates the characteristics.

Usage Notes
You can enter any number of ATTRIBUTE commands for one or more attributes. All
attribute characteristics set for each attribute remain in effect for the remainder of
the session, until you turn the attribute OFF, or until you use the CLEAR COLUMN
command. Thus, the ATTRIBUTE commands you enter can control an attribute’s
display characteristics for multiple SQL SELECT commands.

When you enter multiple ATTRIBUTE commands for the same attribute, SQL*Plus
applies their clauses collectively. If several ATTRIBUTE commands apply the same
clause to the same attribute, the last one entered will control the output.

Examples
To make the ENAME attribute of the Object Type EMP_TYPE 20 characters wide,
enter

SQL> ATTRIBUTE EMP_TYPE.ENAME FORMAT A20

To format the SAL attribute of the Object Type EMP_TYPE so that it shows millions
of dollars, rounds to cents, uses commas to separate thousands, and displays $0.00
when a value is zero, enter

SQL> ATTRIBUTE EMP_TYPE.SAL FORMAT $9,999,990.99

BREAK

Command Reference 8-19

BREAK

Purpose
Specifies where and how formatting will change in a report, such as

■ suppressing display of duplicate values for a given column

■ skipping a line each time a given column value changes

■ printing COMPUTEd figures each time a given column value changes or at the
end of the report (see also the COMPUTE command)

Also lists the current BREAK definition.

Syntax
BRE[AK] [ON report_element [action [action]]] ...

where:

Terms and Clauses
Refer to the following list for a description of each term or clause:

ON column [action [action]]
When you include action(s), specifies action(s) for SQL*Plus to take
whenever a break occurs in the specified column (called the break col-
umn). (column cannot have a table or view appended to it. To achieve
this, you can alias the column in the SQL statement.) A break is one of
three events, a change in the value of a column or expression, the out-
put of a row, or the end of a report.

When you omit action(s), BREAK ON column suppresses printing of
duplicate values in column and marks a place in the report where
SQL*Plus will perform the computation you specify in a corresponding
COMPUTE command.

You can specify ON column one or more times. If you specify multiple
ON clauses, as in

report_element Requires the following syntax:

{column|expr|ROW|REPORT}

action Requires the following syntax:

[SKI[P] n|[SKI[P]] PAGE][NODUP[LICATES]|DUP[LICATES]]

BREAK

8-20 SQL*Plus User’s Guide and Reference

SQL> BREAK ON DEPTNO SKIP PAGE ON JOB -
> SKIP 1 ON SAL SKIP 1

the first ON clause represents the outermost break (in this case, ON
DEPTNO) and the last ON clause represents the innermost break (in this
case, ON SAL). SQL*Plus searches each row of output for the specified
break(s), starting with the outermost break and proceeding—in the
order you enter the clauses—to the innermost. In the example,
SQL*Plus searches for a change in the value of DEPTNO, then JOB, then
SAL.

Next, SQL*Plus executes actions beginning with the action specified for
the innermost break and proceeding in reverse order toward the outer-
most break (in this case, from SKIP 1 for ON SAL toward SKIP PAGE
for ON DEPTNO). SQL*Plus executes each action up to and including
the action specified for the first occurring break encountered in the ini-
tial search.

If, for example, in a given row the value of JOB changes—but the val-
ues of DEPTNO and SAL remain the same—SQL*Plus skips two lines
before printing the row (one as a result of SKIP 1 in the ON SAL clause
and one as a result of SKIP 1 in the ON JOB clause).

Whenever you use ON column, you should also use an ORDER BY
clause in the SQL SELECT command. Typically, the columns used in the
BREAK command should appear in the same order in the ORDER BY
clause (although all columns specified in the ORDER BY clause need
not appear in the BREAK command). This prevents breaks from occur-
ring at meaningless points in the report.

If the BREAK command specified earlier in this section is used, the fol-
lowing SELECT command produces meaningful results:

SQL> SELECT DEPTNO, JOB, SAL, ENAME
 2 FROM EMP
 3 ORDER BY DEPTNO, JOB, SAL, ENAME;

All rows with the same DEPTNO print together on one page, and
within that page all rows with the same JOB print in groups. Within
each group of jobs, those jobs with the same SAL print in groups.
Breaks in ENAME cause no action because ENAME does not appear in
the BREAK command.

BREAK

Command Reference 8-21

ON expr [action [action]]
When you include action(s), specifies action(s) for SQL*Plus to take
when the value of the expression changes.

When you omit action(s), BREAK ON expr suppresses printing of dupli-
cate values of expr and marks a place in the report where SQL*Plus will
perform the computation you specify in a corresponding COMPUTE
command.

You can use an expression involving one or more table columns or an
alias assigned to a report column in a SQL SELECT or SQL*Plus COL-
UMN command. If you use an expression in a BREAK command, you
must enter expr exactly as it appears in the SELECT command. If the
expression in the SELECT command is a+b, for example, you cannot
use b+a or (a+b) in a BREAK command to refer to the expression in the
SELECT command.

The information given above for ON column also applies to ON expr.

ON ROW [action [action]]
When you include action(s), specifies action(s) for SQL*Plus to take
when a SQL SELECT command returns a row. The ROW break becomes
the innermost break regardless of where you specify it in the BREAK
command. You should always specify an action when you BREAK on a
row.

ON REPORT [action]
Marks a place in the report where SQL*Plus will perform the computa-
tion you specify in a corresponding COMPUTE command. Use BREAK
ON REPORT in conjunction with COMPUTE to print grand totals or
other "grand" computed values.

The REPORT break becomes the outermost break regardless of where
you specify it in the BREAK command.

Note that SQL*Plus will not skip a page at the end of a report, so you
cannot use BREAK ON REPORT SKIP PAGE.

Refer to the following list for a description of each action:

SKI[P] n
Skips n lines before printing the row where the break occurred.

BREAK

8-22 SQL*Plus User’s Guide and Reference

[SKI[P]] PAGE
Skips the number of lines that are defined to be a page before printing
the row where the break occurred. The number of lines per page can be
set via the PAGESIZE clause of the SET command. Note that PAGE-
SIZE only changes the number of lines that SQL*Plus considers to be a
page. Therefore, SKIP PAGE may not always cause a physical page
break, unless you have also specified NEWPAGE 0. Note also that if
there is a break after the last row of data to be printed in a report,
SQL*Plus will not skip the page.

NODUP[LICATES]
Prints blanks rather than the value of a break column when the value is
a duplicate of the column’s value in the preceding row.

DUP[LICATES]
Prints the value of a break column in every selected row.

Enter BREAK with no clauses to list the current break definition.

Usage Notes
Each new BREAK command you enter replaces the preceding one.

To remove the BREAK command, use CLEAR BREAKS.

Example
To produce a report that prints duplicate job values, prints the average of SAL and
inserts one blank line when the value of JOB changes, and additionally prints the
sum of SAL and inserts another blank line when the value of DEPTNO changes,
you could enter the following commands. (The example selects departments 10 and
30 and the jobs of clerk and salesman only.)

SQL> BREAK ON DEPTNO SKIP 1 ON JOB SKIP 1 DUPLICATES
SQL> COMPUTE SUM OF SAL ON DEPTNO
SQL> COMPUTE AVG OF SAL ON JOB
SQL> SELECT DEPTNO, JOB, ENAME, SAL FROM EMP
 2 WHERE JOB IN (’CLERK’, ’SALESMAN’)
 3 AND DEPTNO IN (10, 30)
 4 ORDER BY DEPTNO, JOB;

BREAK

Command Reference 8-23

The following output results:

 DEPTNO JOB ENAME SAL
---------- --------- ---------- ----------
 10 CLERK MILLER 1300
 ********* ----------
 avg 1300

********** ----------
sum 1300

 30 CLERK JAMES 950
 ********* ----------
 avg 950

 DEPTNO JOB ENAME SAL
---------- --------- ---------- ----------
 30 SALESMAN ALLEN 1600
 SALESMAN WARD 1250
 SALESMAN MARTIN 1250
 SALESMAN TURNER 1500
 ********* ----------
 avg 1400

********** ----------
sum 6550

6 rows selected.

BTITLE

8-24 SQL*Plus User’s Guide and Reference

BTITLE

Purpose
Places and formats a specified title at the bottom of each report page or lists the
current BTITLE definition.

For a description of the old form of BTITLE, see Appendix F.

Syntax
BTI[TLE] [printspec [text|variable] ...] [ON|OFF]

Terms and Clauses
Refer to the TTITLE command for additional information on terms and clauses in
the BTITLE command syntax.

Enter BTITLE with no clauses to list the current BTITLE definition.

Usage Notes
If you do not enter a printspec clause before the first occurrence of text, BTITLE left
justifies the text. SQL*Plus interprets BTITLE in the new form if a valid printspec
clause (LEFT, SKIP, COL, and so on) immediately follows the command name.

Examples
To set a bottom title with CORPORATE PLANNING DEPARTMENT on the left and
a date on the right, enter

SQL> BTITLE LEFT ’CORPORATE PLANNING DEPARTMENT’ -
> RIGHT ’23 Nov 1999’

To set a bottom title with CONFIDENTIAL in column 50, followed by six spaces
and a date, enter

SQL> BTITLE COL 50 ’CONFIDENTIAL’ TAB 6 ’23 Nov 1999’

CHANGE

Command Reference 8-25

CHANGE

Purpose
Changes the first occurrence of text on the current line in the buffer.

Syntax
C[HANGE] sepchar old [sepchar [new [sepchar]]]

Terms and Clauses
Refer to the following list for a description of each term or clause:

sepchar
Represents any non-alphanumeric character such as "/" or "!". Use a sep-
char that does not appear in old or new. You can omit the space between
CHANGE and the first sepchar.

old
Represents the text you wish to change. CHANGE ignores case in
searching for old. For example,

CHANGE /aq/aw

will find the first occurrence of "aq", "AQ", "aQ", or "Aq" and change it
to "aw". SQL*Plus inserts the new text exactly as you specify it.

If old is prefixed with "...", it matches everything up to and including the
first occurrence of old. If it is suffixed with "...", it matches the first
occurrence of old and everything that follows on that line. If it contains
an embedded "...", it matches everything from the preceding part of old
through the following part of old.

new
Represents the text with which you wish to replace old. If you omit new
and, optionally, the second and third sepchars, CHANGE deletes old
from the current line of the buffer.

Usage Notes
CHANGE changes the first occurrence of the existing specified text on the current
line of the buffer to the new specified text. The current line is marked with an
asterisk (*) in the LIST output.

CHANGE

8-26 SQL*Plus User’s Guide and Reference

You can also use CHANGE to modify a line in the buffer that has generated an
Oracle error. SQL*Plus sets the buffer’s current line to the line containing the error
so that you can make modifications.

To reenter an entire line, you can type the line number followed by the new contents
of the line. If you specify a line number larger than the number of lines in the buffer
and follow the number with text, SQL*Plus adds the text in a new line at the end of
the buffer. If you specify zero ("0") for the line number and follow the zero with text,
SQL*Plus inserts the line at the beginning of the buffer (that line becomes line 1).

Examples
Assume the current line of the buffer contains the following text:

4* WHERE JOB IS IN (’CLERK’,’SECRETARY’,’RECEPTIONIST’)

Enter the following command:

SQL> C /RECEPTIONIST/GUARD/

The text in the buffer changes as follows:

4* WHERE JOB IS IN (’CLERK’,’SECRETARY’,’GUARD’)

Or enter the following command:

SQL> C /’CLERK’,.../’CLERK’)/

The original line changes to

4* WHERE JOB IS IN (’CLERK’)

Or enter the following command:

SQL> C /(...)/(’COOK’,’BUTLER’)/

The original line changes to

4* WHERE JOB IS IN (’COOK’,’BUTLER’)

You can replace the contents of an entire line using the line number. This entry

SQL> 2 FROM EMP e1

causes the second line of the buffer to be replaced with

FROM EMP e1

CHANGE

Command Reference 8-27

Note that entering a line number followed by a string will replace the line
regardless of what text follows the line number. For example,

SQL> 2 c/old/new/

will change the second line of the buffer to be

2* c/old/new/

CLEAR

8-28 SQL*Plus User’s Guide and Reference

CLEAR

Purpose
Resets or erases the current value or setting for the specified option.

Syntax
CL[EAR] option ...

where option represents one of the following clauses:

BRE[AKS]
BUFF[ER]
COL[UMNS]
COMP[UTES]
SCR[EEN]
SQL
TIMI[NG]

Terms and Clauses
Refer to the following list for a description of each term or clause:

BRE[AKS]
Removes the break definition set by the BREAK command.

BUFF[ER]
Clears text from the buffer. CLEAR BUFFER has the same effect as
CLEAR SQL, unless you are using multiple buffers (see the SET
BUFFER command in Appendix F).

COL[UMNS]
Resets column display attributes set by the COLUMN command to
default settings for all columns. To reset display attributes for a single
column, use the CLEAR clause of the COLUMN command. CLEAR
COLUMNS also clears the ATTRIBUTEs for that column.

COMP[UTES]
Removes all COMPUTE definitions set by the COMPUTE command.

SCR[EEN]
Clears your screen.

CLEAR

Command Reference 8-29

SQL
Clears the text from SQL buffer. CLEAR SQL has the same effect as
CLEAR BUFFER, unless you are using multiple buffers (see the SET
BUFFER command in Appendix F).

TIMI[NG]
Deletes all timers created by the TIMING command.

Example
To clear breaks, enter

SQL> CLEAR BREAKS

To clear column definitions, enter

SQL> CLEAR COLUMNS

COLUMN

8-30 SQL*Plus User’s Guide and Reference

COLUMN

Purpose
Specifies display attributes for a given column, such as

■ text for the column heading

■ alignment of the column heading

■ format for NUMBER data

■ wrapping of column data

Also lists the current display attributes for a single column or all columns.

Syntax
COL[UMN] [{column|expr} [option ...]]

where option represents one of the following clauses:

ALI[AS] alias
CLE[AR]
ENTMAP {ON|OFF}
FOLD_A[FTER]
FOLD_B[EFORE]
FOR[MAT] format
HEA[DING] text
JUS[TIFY] {L[EFT]|C[ENTER]|C[ENTRE]|R[IGHT]}
LIKE {expr|alias}
NEWL[INE]
NEW_V[ALUE] variable
NOPRI[NT]|PRI[NT]
NUL[L] text
OLD_V[ALUE] variable
ON|OFF
WRA[PPED]|WOR[D_WRAPPED]|TRU[NCATED]

Terms and Clauses
Enter COLUMN followed by column or expr and no other clauses to list the current
display attributes for only the specified column or expression. Enter COLUMN with
no clauses to list all current column display attributes.

COLUMN

Command Reference 8-31

Refer to the following list for a description of each term or clause:

{column|expr}
Identifies the data item (typically, the name of a column) in a SQL
SELECT command to which the column command refers. If you use an
expression in a COLUMN command, you must enter expr exactly as it
appears in the SELECT command. If the expression in the SELECT com-
mand is a+b, for example, you cannot use b+a or (a+b) in a COLUMN
command to refer to the expression in the SELECT command.

If you select columns with the same name from different tables, a COL-
UMN command for that column name will apply to both columns. That
is, a COLUMN command for the column ENAME applies to all col-
umns named ENAME that you reference in this session. COLUMN
ignores table name prefixes in SELECT commands. Also, spaces are
ignored unless the name is placed in double quotes.

To format the columns differently, assign a unique alias to each column
within the SELECT command itself (do not use the ALIAS clause of the
COLUMN command) and enter a COLUMN command for each col-
umn’s alias.

ALI[AS] alias
Assigns a specified alias to a column, which can be used to refer to the
column in BREAK, COMPUTE, and other COLUMN commands.

CLE[AR]
Resets the display attributes for the column to default values.

To reset the attributes for all columns, use the CLEAR COLUMNS com-
mand. CLEAR COLUMNS also clears the ATTRIBUTEs for that col-
umn.

ENTMAP {ON|OFF}
Allows entity mapping to be turned on or off for selected columns in
HTML output. This feature allows you to include, for example, HTML
hyperlinks in a column of data, while still mapping entities in other col-
umns of the same report. By turning entity mapping off for a column
containing HTML hyperlinks, the HTML anchor tag delimiters, <, >, "
and &, are correctly interpreted in the report. Otherwise they would be
replaced with their respective entities, <, >, " and &,
preventing web browsers from correctly interpreting the HTML.

COLUMN

8-32 SQL*Plus User’s Guide and Reference

Entities in the column heading and any COMPUTE labels or output
appearing in the column are mapped or not mapped according to the
value of ENTMAP for the column.

The default setting for COLUMN ENTMAP is the current setting of the
MARKUP HTML ENTMAP option. For more information about the
MARKUP HTML ENTMAP option, see MARKUP Options in Chapter 7
and SET later this Chapter.

FOLD_A[FTER]
Inserts a carriage return after the column heading and after each row in
the column. SQL*Plus does not insert an extra carriage return after the
last column in the SELECT list.

FOLD_B[EFORE]
Inserts a carriage return before the column heading and before each
row of the column. SQL*Plus does not insert an extra carriage return
before the first column in the SELECT list.

FOR[MAT] format
Specifies the display format of the column. The format specification
must be a text constant such as A10 or $9,999—not a variable.

Character Columns The default width of CHAR, NCHAR,
VARCHAR2 (VARCHAR) and NVARCHAR2 (NCHAR VARYING) col-
umns is the width of the column in the database. SQL*Plus formats
these datatypes left-justified. If a value does not fit within the column
width, SQL*Plus wraps or truncates the character string depending on
the setting of SET WRAP.

A LONG, CLOB or NCLOB column’s width defaults to the value of SET
LONGCHUNKSIZE or SET LONG, whichever one is smaller.

To change the width of a datatype to n, use FORMAT An. (A stands for
alphanumeric.) If you specify a width shorter than the column head-
ing, SQL*Plus truncates the heading. If you specify a width for a
LONG, CLOB, or NCLOB column, SQL*Plus uses the LONGCHUNK-
SIZE or the specified width, whichever is smaller, as the column width.

DATE Columns The default width and format of unformatted DATE
columns in SQL*Plus is derived from the NLS parameters in effect. Oth-
erwise, the default width is A9. In Oracle8i, the NLS parameters may be
set in your database parameter file or may be environment variables or
an equivalent platform-specific mechanism. They may also be specified

COLUMN

Command Reference 8-33

for each session with the ALTER SESSION command. (See the docu-
mentation for Oracle8i for a complete description of the NLS parame-
ters).

You can change the format of any DATE column using the SQL func-
tion TO_CHAR in your SQL SELECT statement. You may also wish to
use an explicit COLUMN FORMAT command to adjust the column
width.

When you use SQL functions like TO_CHAR, Oracle automatically
allows for a very wide column.

To change the width of a DATE column to n, use the COLUMN com-
mand with FORMAT An. If you specify a width shorter than the col-
umn heading, the heading is truncated.

NUMBER Columns To change a NUMBER column’s width, use FOR-
MAT followed by an element as specified in Table 8–1.

Table 8–1 Number Formats

Element Example(s) Description

9 9999 Number of "9"s specifies number of significant digits
returned. Blanks are displayed for leading zeroes. A zero (0)
is displayed for a value of zero.

0 0999
9990

Displays a leading zero or a value of zero in this position as
0.

$ $9999 Prefixes value with dollar sign.

B B9999 Displays a zero value as blank, regardless of "0"s in the
format model.

MI 9999MI Displays "-" after a negative value. For a positive value, a
trailing space is displayed.

S S9999 Returns "+" for positive values and "-" for negative values in
this position.

PR 9999PR Displays a negative value in <angle brackets>. For a
positive value, a leading and trailing space is displayed.

D 99D99 Displays the decimal character in this position, separating
the integral and fractional parts of a number.

G 9G999 Displays the group separator in this position.

COLUMN

8-34 SQL*Plus User’s Guide and Reference

The MI and PR format elements can only appear in the last position of a
number format model. The S format element can only appear in the
first or last position.

If a number format model does not contain the MI, S or PR format ele-
ments, negative return values automatically contain a leading negative
sign and positive values automatically contain a leading space.

A number format model can contain only a single decimal character (D)
or period (.), but it can contain multiple group separators (G) or com-
mas (,). A group separator or comma cannot appear to the right of a
decimal character or period in a number format model.

SQL*Plus formats NUMBER data right-justified. A NUMBER column’s
width equals the width of the heading or the width of the FORMAT
plus one space for the sign, whichever is greater. If you do not explic-
itly use FORMAT, then the column’s width will always be at least the
value of SET NUMWIDTH.

SQL*Plus may round your NUMBER data to fit your format or field
width.

C C999 Displays the ISO currency symbol in this position.

L L999 Displays the local currency symbol in this position.

, (comma) 9,999 Displays a comma in this position.

. (period) 99.99 Displays a period (decimal point) in this position,
separating the integral and fractional parts of a number.

V 999V99 Multiplies value by 10n, where n is number of "9"s after "V".

EEEE 9.999EEEE Displays value in scientific notation (format must contain
exactly four "E"s).

RN or rn RN Displays upper- or lowercase Roman numerals. Value can
be an integer between 1 and 3999.

DATE DATE Displays value as a date in MM/DD/YY format; used to
format NUMBER columns that represent Julian dates.

Table 8–1 Number Formats

Element Example(s) Description

COLUMN

Command Reference 8-35

If a value cannot fit within the column width, SQL*Plus indicates over-
flow by displaying a pound sign (#) in place of each digit the width
allows.

If a positive value is extremely large and a numeric overflow occurs
when rounding a number, then the infinity sign (~) replaces the value.
Likewise, if a negative value is extremely small and a numeric over-
flow occurs when rounding a number, then the negative infinity sign
replaces the value (-~).

HEA[DING] text
Defines a column heading. If you do not use a HEADING clause, the
column’s heading defaults to column or expr. If text contains blanks or
punctuation characters, you must enclose it with single or double
quotes. Each occurrence of the HEADSEP character (by default, "|")
begins a new line.

For example,

COLUMN ENAME HEADING ’Employee |Name’

would produce a two-line column heading. See the HEADSEP variable
of the SET command in this chapter for information on changing the
HEADSEP character.

JUS[TIFY] {L[EFT]|C[ENTER]|C[ENTRE]|R[IGHT]}
Aligns the heading. If you do not use a JUSTIFY clause, headings for
NUMBER columns default to RIGHT and headings for other column
types default to LEFT.

LIKE {expr|alias}
Copies the display attributes of another column or expression (whose
attributes you have already defined with another COLUMN com-
mand). LIKE copies only attributes not defined by another clause in the
current COLUMN command.

NEWL[INE]
Starts a new line before displaying the column’s value. NEWLINE has
the same effect as FOLD_BEFORE.

NEW_V[ALUE] variable
Specifies a variable to hold a column value. You can reference the vari-
able in TTITLE commands. Use NEW_VALUE to display column val-
ues or the date in the top title. You must include the column in a

COLUMN

8-36 SQL*Plus User’s Guide and Reference

BREAK command with the SKIP PAGE action. The variable name can-
not contain a pound sign (#).

NEW_VALUE is useful for master/detail reports in which there is a
new master record for each page. For master/detail reporting, you
must also include the column in the ORDER BY clause. See the exam-
ple at the end of this command description.

For information on displaying a column value in the bottom title, see
COLUMN OLD_VALUE. For more information on referencing vari-
ables in titles, see the TTITLE command later in this chapter. For infor-
mation on formatting and valid format models, see the FORMAT
command.

NOPRI[NT]|PRI[NT]
Controls the printing of the column (the column heading and all the
selected values). NOPRINT turns off the screen output and printing of
the column. PRINT turns the printing of the column on.

NUL[L] text
Controls the text SQL*Plus displays for null values in the given col-
umn. The default is a white space. SET NULL controls the text dis-
played for all null values for all columns, unless overridden for a
specific column by the NULL clause of the COLUMN command. When
a NULL value is SELECTed, a variable’s type will always become
CHAR so the SET NULL text can be stored in it.

OLD_V[ALUE] variable
Specifies a variable to hold a column value. You can reference the vari-
able in BTITLE commands. Use OLD_VALUE to display column values
in the bottom title. You must include the column in a BREAK com-
mand with the SKIP PAGE action.

OLD_VALUE is useful for master/detail reports in which there is a new
master record for each page. For master/detail reporting, you must also
include the column in the ORDER BY clause.

For information on displaying a column value in the top title, see COL-
UMN NEW_VALUE. For more information on referencing variables in
titles, see the TTITLE command later in this chapter.

COLUMN

Command Reference 8-37

ON|OFF
Controls the status of display attributes for a column. OFF disables the
attributes for a column without affecting the attributes’ definition. ON
reinstates the attributes.

WRA[PPED]|WOR[D_WRAPPED]|TRU[NCATED]
Specifies how SQL*Plus will treat a datatype or DATE string that is too
wide for a column. WRAPPED wraps the string within the column
bounds, beginning new lines when required. When WORD_WRAP is
enabled, SQL*Plus left justifies each new line, skipping all leading
whitespace (for example, returns, newline characters, tabs and spaces),
including embedded newline characters. Embedded whitespace not on
a line boundary is not skipped. TRUNCATED truncates the string at the
end of the first line of display.

Usage Notes
You can enter any number of COLUMN commands for one or more columns. All
column attributes set for each column remain in effect for the remainder of the
session, until you turn the column OFF, or until you use the CLEAR COLUMN
command. Thus, the COLUMN commands you enter can control a column’s
display attributes for multiple SQL SELECT commands.

When you enter multiple COLUMN commands for the same column, SQL*Plus
applies their clauses collectively. If several COLUMN commands apply the same
clause to the same column, the last one entered will control the output.

Examples
To make the ENAME column 20 characters wide and display EMPLOYEE NAME
on two lines as the column heading, enter

SQL> COLUMN ENAME FORMAT A20 HEADING ’EMPLOYEE |NAME’

To format the SAL column so that it shows millions of dollars, rounds to cents, uses
commas to separate thousands, and displays $0.00 when a value is zero, you would
enter

SQL> COLUMN SAL FORMAT $9,999,990.99

To assign the alias NET to a column containing a long expression, to display the
result in a dollar format, and to display <NULL> for null values, you might enter

SQL> COLUMN SAL+COMM+BONUS-EXPENSES-INS-TAX ALIAS NET
SQL> COLUMN NET FORMAT $9,999,999.99 NULL ’<NULL>’

COLUMN

8-38 SQL*Plus User’s Guide and Reference

Note that the example divides this column specification into two commands. The
first defines the alias NET, and the second uses NET to define the format.

Also note that in the first command you must enter the expression exactly as you
entered it (or will enter it) in the SELECT command. Otherwise, SQL*Plus cannot
match the COLUMN command to the appropriate column.

To wrap long values in a column named REMARKS, you can enter

SQL> COLUMN REMARKS FORMAT A20 WRAP

For example:

CUSTOMER DATE QUANTITY REMARKS
---------- --------- -------- --------------------
123 25-AUG-86 144 This order must be s
 hipped by air freigh
 t to ORD

If you replace WRAP with WORD_WRAP, REMARKS looks like this:

CUSTOMER DATE QUANTITY REMARKS
---------- --------- -------- ---------------------
123 25-AUG-86 144 This order must be
 shipped by air freight
 to ORD

If you specify TRUNCATE, REMARKS looks like this:

CUSTOMER DATE QUANTITY REMARKS
---------- --------- -------- --------------------
123 25-AUG-86 144 This order must be s

In order to print the current date and the name of each job in the top title, enter the
following. (For details on creating a date variable, see "Displaying the Current Date
in Titles" under "Defining Page and Report Titles and Dimensions" in Chapter 4.)

SQL> COLUMN JOB NOPRINT NEW_VALUE JOBVAR
SQL> COLUMN TODAY NOPRINT NEW_VALUE DATEVAR
SQL> BREAK ON JOB SKIP PAGE ON TODAY
SQL> TTITLE CENTER ’Job Report’ RIGHT DATEVAR SKIP 2 -
> LEFT ’Job: ’ JOBVAR SKIP 2
SQL> SELECT TO_CHAR(SYSDATE, ’MM/DD/YY’) TODAY,
 2 ENAME, JOB, MGR, HIREDATE, SAL, DEPTNO
 3 FROM EMP WHERE JOB IN (’CLERK’, ’SALESMAN’)
 4 ORDER BY JOB, ENAME;

COLUMN

Command Reference 8-39

Your two page report would look similar to the following report, with "Job Report"
centered within your current linesize:

 Job Report 10/25/99

Job: CLERK

ENAME MGR HIREDATE SAL DEPTNO
---------- ---------- --------- ---------- ----------
ADAMS 7788 12-JAN-83 1100 20
JAMES 7698 03-DEC-81 950 30
MILLER 7782 23-JAN-82 1300 10
SMITH 7902 17-DEC-80 800 20

 1037.5

 Job Report 10/25/99

Job: SALESMAN

ENAME MGR HIREDATE SAL DEPTNO
---------- ---------- --------- ---------- ----------
ALLEN 7698 20-FEB-81 1600 30
MARTIN 7698 28-SEP-81 1250 30
TURNER 7698 08-SEP-81 1500 30
WARD 7698 22-FEB-81 1250 30

 1400

8 rows selected.

To change the default format of DATE columns to ’YYYY-MM-DD’, you can enter

SQL> ALTER SESSION SET NLS_DATE_FORMAT = ’YYYY-MM-DD’;

The following output results:

Session altered.

To display the change, enter a SELECT statement, such as:

SQL> SELECT HIREDATE
 2 FROM EMP
 3 WHERE EMPNO = 7839;

COLUMN

8-40 SQL*Plus User’s Guide and Reference

The following output results:

 Job Report 10/25/99

Job: SALESMAN

HIREDATE

1981-11-17

See the Oracle8i SQL Reference for information on the ALTER SESSION command.

Note that in a SELECT statement, some SQL calculations or functions, such as TO_
CHAR, may cause a column to be very wide. In such cases, use the FORMAT option
to alter the column width.

COMPUTE

Command Reference 8-41

COMPUTE

Purpose
Calculates and prints summary lines, using various standard computations, on
subsets of selected rows, or lists all COMPUTE definitions. (For details on how to
create summaries, see "Clarifying Your Report with Spacing and Summary Lines" in
Chapter 4.)

Syntax
COMP[UTE] [function [LAB[EL] text] ...
 OF {expr|column|alias} ...
 ON {expr|column|alias|REPORT|ROW} ...]

Terms and Clauses
Refer to the following list for a description of each term or clause:

function ...
Represents one of the functions listed in Table 8–2. If you specify more
than one function, use spaces to separate the functions.

COMPUTE command functions are always executed in the sequence
AVG, COUNT, MINIMUM, MAXIMUM, NUMBER, SUM, STD, VARI-
ANCE, regardless of their order in the COMPUTE command.

Table 8–2 COMPUTE Functions

Function Computes Applies to Datatypes

AVG Average of non-null values NUMBER

COU[NT] Count of non-null values all types

MIN[IMUM] Minimum value NUMBER, CHAR,
NCHAR, VARCHAR2
(VARCHAR),
NVARCHAR2 (NCHAR
VARYING)

MAX[IMUM] Maximum value NUMBER, CHAR,
NCHAR, VARCHAR2
(VARCHAR),
NVARCHAR2 (NCHAR
VARYING)

COMPUTE

8-42 SQL*Plus User’s Guide and Reference

LAB[EL] text
Defines the label to be printed for the computed value. If no LABEL
clause is used, text defaults to the unabbreviated function keyword. If
text contains spaces or punctuation, you must enclose it with single
quotes. The label prints left justified and truncates to the column width
or linesize, whichever is smaller. The maximum length of a label is 500
characters.

The label for the computed value appears in the break column speci-
fied. To suppress the label, use the NOPRINT option of the COLUMN
command on the break column.

If you repeat a function in a COMPUTE command, SQL*Plus issues a
warning and uses the first occurrence of the function.

With ON REPORT and ON ROW computations, the label appears in the
first column listed in the SELECT statement. The label can be sup-
pressed by using a NOPRINT column first in the SELECT statement.
When you compute a function of the first column in the SELECT state-
ment ON REPORT or ON ROW, then the computed value appears in
the first column and the label is not displayed. To see the label, select a
dummy column first in the SELECT list.

OF {expr|column|alias} ...
In the OF clause, you can refer to an expression or function reference in
the SELECT statement by placing the expression or function reference
in double quotes. Column names and aliases do not need quotes.

ON {expr|column|alias|REPORT|ROW} ...
Specifies the event SQL*Plus will use as a break. (column cannot have a
table or view appended to it. To achieve this, you can alias the column
in the SQL statement.) COMPUTE prints the computed value and

NUM[BER] Count of rows all types

SUM Sum of non-null values NUMBER

STD Standard deviation of non-null
values

NUMBER

VAR[IANCE] Variance of non-null values NUMBER

Table 8–2 COMPUTE Functions

Function Computes Applies to Datatypes

COMPUTE

Command Reference 8-43

restarts the computation when the event occurs (that is, when the value
of the expression changes, a new ROW is fetched, or the end of the
report is reached).

If multiple COMPUTE commands reference the same column in the ON
clause, only the last COMPUTE command applies.

To reference a SQL SELECT expression or function reference in an ON
clause, place the expression or function reference in quotes. Column
names and aliases do not need quotes.

Enter COMPUTE without clauses to list all COMPUTE definitions.

Usage Notes
In order for the computations to occur, the following conditions must all be true:

■ One or more of the expressions, columns, or column aliases you reference in the
OF clause must also be in the SELECT command.

■ The expression, column, or column alias you reference in the ON clause must
occur in the SELECT command and in the most recent BREAK command.

■ If you reference either ROW or REPORT in the ON clause, also reference ROW
or REPORT in the most recent BREAK command.

To remove all COMPUTE definitions, use the CLEAR COMPUTES command.

Examples
To subtotal the salary for the "clerk", "analyst", and "salesman" job classifications
with a compute label of "TOTAL", enter

SQL> BREAK ON JOB SKIP 1
SQL> COMPUTE SUM LABEL ’TOTAL’ OF SAL ON JOB
SQL> SELECT JOB, ENAME, SAL
 2 FROM EMP
 3 WHERE JOB IN (’CLERK’, ’ANALYST’, ’SALESMAN’)
 4 ORDER BY JOB, SAL;

The following output results:

JOB ENAME SAL
--------- ---------- ----------
ANALYST SCOTT 3000
 FORD 3000
********* ----------
TOTAL 6000

COMPUTE

8-44 SQL*Plus User’s Guide and Reference

CLERK SMITH 800
 JAMES 950
 ADAMS 1100
 MILLER 1300
********* ----------
TOTAL 4150

SALESMAN WARD 1250
 MARTIN 1250
 TURNER 1500
 ALLEN 1600
********* ----------
TOTAL 5600

To calculate the total of salaries less than 1,000 on a report, enter

SQL> COMPUTE SUM OF SAL ON REPORT
SQL> BREAK ON REPORT
SQL> COLUMN DUMMY HEADING ’’
SQL> SELECT ’ ’ DUMMY, SAL, EMPNO
 2 FROM EMP
 3 WHERE SAL < 1000
 4 ORDER BY SAL;

The following output results:

 SAL EMPNO
--- ---------- -----------
 800 7369
 950 7900

sum 1750

To calculate the average and maximum salary for the accounting and sales
departments, enter

SQL> BREAK ON DNAME SKIP 1
SQL> COMPUTE AVG LABEL ’Dept Average’ -
> MAX LABEL ’Dept Maximum’ -
> OF SAL ON DNAME
SQL> SELECT DNAME, ENAME, SAL
 2 FROM DEPT, EMP
 3 WHERE DEPT.DEPTNO = EMP.DEPTNO
 4 AND DNAME IN (’ACCOUNTING’, ’SALES’)
 5 ORDER BY DNAME;

COMPUTE

Command Reference 8-45

The following output results:

DNAME ENAME SAL
-------------- ---------- ----------
ACCOUNTING CLARK 2450
 KING 5000
 MILLER 1300
************** ----------
Dept Average 2916.66667
Dept Maximum 5000

SALES ALLEN 1600
 BLAKE 2850
 MARTIN 1250
 JAMES 950
 TURNER 1500
 WARD 1250
************** ----------
Dept Average 1566.66667
Dept Maximum 2850

9 rows selected.

To calculate the sum of salaries for departments 10 and 20 without printing the
compute label, enter

SQL> COLUMN DUMMY NOPRINT
SQL> COMPUTE SUM OF SAL ON DUMMY
SQL> BREAK ON DUMMY SKIP 1
SQL> SELECT DEPTNO DUMMY, DEPTNO, ENAME, SAL
 2 FROM EMP
 3 WHERE DEPTNO <= 20
 4 ORDER BY DEPTNO;

SQL*Plus displays the following output:

 DEPTNO ENAME SAL
---------- ---------- ----------
 10 CLARK 2450
 10 KING 5000
 10 MILLER 1300

 8750

 20 SMITH 800

COMPUTE

8-46 SQL*Plus User’s Guide and Reference

 20 ADAMS 1100
 20 FORD 3000
 20 SCOTT 3000
 20 JONES 2975

 10875

8 rows selected.

To calculate the salary total at the end of the report without printing the compute
label, enter

SQL> COLUMN DUMMY NOPRINT
SQL> COMPUTE SUM OF SAL ON DUMMY
SQL> BREAK ON DUMMY
SQL> SELECT NULL DUMMY, DEPTNO, ENAME, SAL
 2 FROM EMP
 3 WHERE DEPTNO <= 20
 4 ORDER BY DEPTNO;

SQL*Plus displays the following output:

 DEPTNO ENAME SAL
---------- ---------- ----------
 10 CLARK 2450
 10 KING 5000
 10 MILLER 1300
 20 SMITH 800
 20 ADAMS 1100
 20 FORD 3000
 20 SCOTT 3000
 20 JONES 2975

 19625

8 rows selected.

CONNECT

Command Reference 8-47

CONNECT

Purpose
Connects a given username to Oracle.

Syntax
CONN[ECT] [[logon] [AS {SYSOPER|SYSDBA}]]

where logon requires the following syntax:

username[/password][@connect_identifier]|/

Terms and Clauses
Refer to the following list for a description of each term or clause:

username[/password]
Represent the username and password with which you wish to connect
to Oracle. If you omit username and password, SQL*Plus prompts you for
them. If you enter a slash (/) or simply enter [Return] to the prompt for
username, SQL*Plus logs you in using a default logon (see "/" below).

If you omit only password, SQL*Plus prompts you for password. When
prompting, SQL*Plus does not display password on your terminal
screen. See the PASSWORD command in this chapter for information
about changing your password.

connect_identifier
Consists of a Net8 connect identifier. The exact syntax depends upon
the Net8 communications protocol your Oracle installation uses. For
more information, refer to the Net8 manual appropriate for your proto-
col or contact your DBA. SQL*Plus does not prompt for a service name,
but uses your default database if you do not include a specification.

/
Represents a default logon using operating system authentication. You
cannot enter a connect_identifier if you use a default logon. In a default
logon, SQL*Plus typically attempts to log you in using the username
OPS$name, where name is your operating system username. See the
Oracle8i Administrator’s Guide for information about operating system
authentication.

CONNECT

8-48 SQL*Plus User’s Guide and Reference

AS {SYSOPER|SYSDBA}
The AS clause allows privileged connections by users who have been
granted SYSOPER or SYSDBA system privileges. You can use either of
these privileged connections with the default logon, /. For information
about system privileges, see the Oracle8i Administrator’s Guide.

Usage Notes
CONNECT commits the current transaction to the database, disconnects the current
username from Oracle, and reconnects with the specified username.

If you log on or connect as a user whose account has expired, SQL*Plus prompts
you to change your password before you can connect.

If an account is locked, a message is displayed and connection into that account (as
that user) is not permitted until the account is unlocked by your DBA.

For more information about user account management, refer to the CREATE and
ALTER USER commands, and the CREATE PROFILE command in the Oracle8i SQL
Reference.

Examples
To connect across Net8 using username SCOTT and password TIGER to the
database known by the Net8 alias as FLEETDB, enter

SQL> CONNECT SCOTT/TIGER@FLEETDB

To connect using username SCOTT, letting SQL*Plus prompt you for the password,
enter

SQL> CONNECT SCOTT

For more information about setting up your password file, refer to the Oracle8i
Administrator’s Guide.

To use a password file to connect to an instance on the current node as a privileged
user named SCOTT with the password TIGER, enter

SQL> CONNECT SCOTT/TIGER AS SYSDBA

To connect to an instance on the current node as a privileged default user, enter

SQL> CONNECT / AS SYSDBA

Note: In the last two examples, your default schema becomes SYS.

COPY

Command Reference 8-49

COPY

Purpose
Copies the data from a query to a table in a local or remote database. COPY
supports the following datatypes:

CHAR
DATE
LONG
NUMBER
VARCHAR2

Syntax
COPY {FROM database | TO database | FROM database TO database}
 {APPEND|CREATE|INSERT|REPLACE} destination_table
 [(column, column, column, ...)] USING query

 where database has the following syntax:

 username[/password]@connect_identifier

Terms and Clauses
Refer to the following list for a description of each term or clause:

FROM database
Specifies the database that contains the data to be copied. If you omit
the FROM clause, the source defaults to the database to which
SQL*Plus is connected (that is, the database that other commands
address). You must include a FROM clause to specify a source database
other than the default.

TO database
Specifies the database containing the destination table. If you omit the
TO clause, the destination defaults to the database to which SQL*Plus is
connected (that is, the database that other commands address). You
must include a TO clause to specify a destination database other than
the default.

database
Specifies username[/password] @connect_identifier of the Oracle source or
destination database you wish to COPY FROM or COPY TO. If you do

COPY

8-50 SQL*Plus User’s Guide and Reference

not specify password in either the FROM clause or the TO clause,
SQL*Plus will prompt you for it. SQL*Plus suppresses the display of
your password response.

You must include the connect_identifier clause which consists of a Net8
connection string, to specify the source or destination database. The
exact syntax depends upon the Net8 communications protocol your
Oracle installation uses. For more information, refer to the Net8 man-
ual appropriate for your protocol or contact your DBA.

APPEND
Inserts the rows from query into destination_table if the table exists. If
destination_table does not exist, COPY creates it.

CREATE
Inserts the rows from query into destination_table after first creating the
table. If destination_table already exists, COPY returns an error.

INSERT
Inserts the rows from query into destination_table. If destination_table does
not exist, COPY returns an error. When using INSERT, the USING query
must select one column for each column in the destination_table.

REPLACE
Replaces destination_table and its contents with the rows from query. If
destination_table does not exist, COPY creates it. Otherwise, COPY drops
the existing table and replaces it with a table containing the copied
data.

destination_table
Represents the table you wish to create or to which you wish to add
data.

(column, column, column, ...)
Specifies the names of the columns in destination_table. You must
enclose a name in double quotes if it contains lowercase letters or
blanks.

If you specify columns, the number of columns must equal the number
of columns selected by the query. If you do not specify any columns,
the copied columns will have the same names in the destination table as
they had in the source if COPY creates destination_table.

COPY

Command Reference 8-51

USING query
Specifies a SQL query (SELECT command) determining which rows
and columns COPY copies.

Usage Notes
To enable the copying of data between Oracle and non-Oracle databases, NUMBER
columns are changed to DECIMAL columns in the destination table. Hence, if you
are copying between Oracle databases, a NUMBER column with no precision will
be changed to a DECIMAL(38) column. When copying between Oracle databases,
you should use SQL commands (CREATE TABLE AS and INSERT) or you should
ensure that your columns have a precision specified.

The SQL*Plus SET variable LONG limits the length of LONG columns that you
copy. If any LONG columns contain data longer than the value of LONG, COPY
truncates the data.

SQL*Plus performs a commit at the end of each successful COPY. If you set the
SQL*Plus SET variable COPYCOMMIT to a positive value n, SQL*Plus performs a
commit after copying every n batches of records. The SQL*Plus SET variable
ARRAYSIZE determines the size of a batch.

Some operating environments require that service names be placed in double
quotes.

Examples
The following command copies the entire EMP table to a table named WESTEMP.
Note that the tables are located in two different databases. If WESTEMP already
exists, SQL*Plus replaces the table and its contents. The columns in WESTEMP have
the same names as the columns in the source table, EMP.

SQL> COPY FROM SCOTT/TIGER@HQ TO JOHN/CHROME@WEST -
> REPLACE WESTEMP -
> USING SELECT * FROM EMP

The following command copies selected records from EMP to the database to which
SQL*Plus is connected. SQL*Plus creates SALESMEN through the copy. SQL*Plus
copies only the columns EMPNO and ENAME, and at the destination names them
EMPNO and SALESMAN.

SQL> COPY FROM SCOTT/TIGER@HQ -
> CREATE SALESMEN (EMPNO,SALESMAN) -
> USING SELECT EMPNO, ENAME FROM EMP -
> WHERE JOB=’SALESMAN’

DEFINE

8-52 SQL*Plus User’s Guide and Reference

DEFINE

Purpose
Specifies a user variable and assigns it a CHAR value, or lists the value and variable
type of a single variable or all variables.

Syntax
DEF[INE] [variable]|[variable = text]

Terms and Clauses
Refer to the following list for a description of each term or clause:

variable
Represents the user variable whose value you wish to assign or list.

text
Represents the CHAR value you wish to assign to variable. Enclose text
in single quotes if it contains punctuation or blanks.

variable = text
Defines (names) a user variable and assigns it a CHAR value.

Enter DEFINE followed by variable to list the value and type of variable. Enter
DEFINE with no clauses to list the values and types of all user variables.

Usage Notes
DEFINEd variables retain their values until one of the following events occurs:

■ you enter a new DEFINE command referencing the variable

■ you enter an UNDEFINE command referencing the variable

■ you enter an ACCEPT command referencing the variable

■ you reference the variable in the NEW_VALUE or OLD_VALUE clause of the
COLUMN command and reference the column in a subsequent SQL SELECT
command

■ you EXIT SQL*Plus

Whenever you run a stored query or command file, SQL*Plus substitutes the value
of variable for each substitution variable referencing variable (in the form &variable or

DEFINE

Command Reference 8-53

&&variable). SQL*Plus will not prompt you for the value of variable in this session
until you UNDEFINE variable.

Note that you can use DEFINE to define the variable, _EDITOR, which establishes
the host system editor invoked by the SQL*Plus EDIT command.

If you continue the value of a DEFINEd variable on multiple lines (using the
SQL*Plus command continuation character), SQL*Plus replaces each continuation
character and carriage return you enter with a space in the resulting variable. For
example, SQL*Plus interprets

SQL> DEFINE TEXT = ’ONE-
> TWO-
> THREE’

as

SQL> DEFINE TEXT = ’ONE TWO THREE’

Examples
To assign the value MANAGER to the variable POS, type:

SQL> DEFINE POS = MANAGER

If you execute a command that contains a reference to &POS, SQL*Plus will
substitute the value MANAGER for &POS and will not prompt you for a POS
value.

To assign the CHAR value 20 to the variable DEPTNO, type:

SQL> DEFINE DEPTNO = 20

Even though you enter the number 20, SQL*Plus assigns a CHAR value to DEPTNO
consisting of two characters, 2 and 0.

To list the definition of DEPTNO, enter

SQL> DEFINE DEPTNO
DEFINE DEPTNO = ”20” (CHAR)

This result shows that the value of DEPTNO is 20.

DEL

8-54 SQL*Plus User’s Guide and Reference

DEL

Purpose
Deletes one or more lines of the buffer.

Syntax
DEL [n|n m|n *|n LAST|*|* n|* LAST|LAST]

Terms and Clauses
Refer to the following list for a description of each term or clause:

Enter DEL with no clauses to delete the current line of the buffer.

Usage Notes
DEL makes the following line of the buffer (if any) the current line. You can enter
DEL several times to delete several consecutive lines.

Examples
Assume the SQL buffer contains the following query:

1 SELECT ENAME, DEPTNO
2 FROM EMP
3 WHERE JOB = ’SALESMAN’

n Deletes line n.

n m Deletes lines n through m.

n * Deletes line n through the current line.

n LAST Deletes line n through the last line.

* Deletes the current line.

* n Deletes the current line through line n.

* LAST Deletes the current line through the last line.

LAST Deletes the last line.

Note: DEL is a SQL*Plus command and DELETE is a SQL
command. For more information about the SQL DELETE
command, see the Oracle8i SQL Reference.

DEL

Command Reference 8-55

4* ORDER BY DEPTNO

To make the line containing the WHERE clause the current line, you could enter

SQL> LIST 3
 3* WHERE JOB = ’SALESMAN’

followed by

SQL> DEL

The SQL buffer now contains the following lines:

1 SELECT ENAME, DEPTNO
2 FROM EMP
3* ORDER BY DEPTNO

To delete the second line of the buffer, enter

SQL> DEL 2

The SQL buffer now contains the following lines:

1 SELECT ENAME, DEPTNO
2* ORDER BY DEPTNO

DESCRIBE

8-56 SQL*Plus User’s Guide and Reference

DESCRIBE

Purpose
Lists the column definitions for the specified table, view, or synonym or the
specifications for the specified function or procedure.

Syntax
DESC[RIBE] {[schema.]object[@connect_identifier]}

Terms and Clauses
Refer to the following list for a description of each term or clause:

schema
Represents the schema where the object resides. If you omit schema,
SQL*Plus assumes you own object.

object
Represents the table, view, type, procedure, function, package or syn-
onym you wish to describe.

@connect_identifier
Consists of the database link name corresponding to the database
where object exists. For more information on which privileges allow
access to another table in a different schema, refer to the Oracle8i SQL
Reference.

Usage Notes
The description for tables, views, types and synonyms contains the following
information:

■ each column’s name

■ whether or not null values are allowed (NULL or NOT NULL) for each column

■ datatype of columns, for example, NUMBER, CHAR, VARCHAR2
(VARCHAR), LONG, DATE, RAW, LONGRAW, or ROWID

■ precision of columns (and scale, if any, for a numeric column)

When you do a DESCRIBE, VARCHAR columns are returned with a type of
VARCHAR2.

DESCRIBE

Command Reference 8-57

The DESCRIBE command allows you to describe objects recursively to the depth
level set in the SET DESCRIBE command. You can also display the line number and
indentation of the attribute or column name when an object contains multiple object
types. For more information, see the SET command later in this chapter.

To control the width of the data displayed, use the SET LINESIZE command. For
more information, see the SET command later in this chapter.

The description for functions and procedures contains the following information:

■ the type of PL/SQL object (function or procedure)

■ the name of the function or procedure

■ the type of value returned (for functions)

■ the argument names, types, whether input or output, and default values, if any

Examples
To describe the table EMP, enter

SQL> DESCRIBE EMP

SQL*Plus lists the following information:

Name Null? Type
------------------------------ -------- ------------
EMPNO NOT NULL NUMBER(4)
ENAME CHAR(10)
JOB JOB(9)
MGR NUMBER(4)
HIREDATE DATE
SAL NUMBER(7,2)
COMM NUMBER(7,2)
DEPTNO NUMBER(2)

To describe a procedure called CUSTOMER_LOOKUP, enter

SQL> DESCRIBE customer_lookup

SQL*Plus lists the following information:

PROCEDURE customer_lookup
Argument Name Type In/Out Default?
---------------------- -------- -------- ---------
CUST_ID NUMBER IN
CUST_NAME VARCHAR2 OUT

DESCRIBE

8-58 SQL*Plus User’s Guide and Reference

To create and describe the package APACK that contains the procedures aproc and
bproc, enter

SQL> CREATE PACKAGE apack AS
 2 PROCEDURE aproc(P1 CHAR, P2 NUMBER);
 3 PROCEDURE bproc(P1 CHAR, P2 NUMBER);
 4 END apack;
 5 /
SQL> DESCRIBE apack

SQL*Plus lists the following information:

PROCEDURE aproc
Argument Name Type In/Out Default?
---------------------- -------- -------- ---------
P1 CHAR IN
P2 NUMBER IN
PROCEDURE bproc
Argument Name Type In/Out Default?
---------------------- -------- -------- ---------
P1 CHAR IN
P2 NUMBER IN

To create and describe the object type ADDRESS that contains the attributes
STREET and CITY, enter

SQL> CREATE TYPE ADDRESS AS OBJECT
 2 (STREET VARCHAR2(20),
 3 CITY VARCHAR2(20)
 4);
 5 /
SQL> DESCRIBE address

SQL*Plus lists the following information:

Name Null? Type
------------------------------ -------- ------------
STREET VARCHAR2(20)
CITY VARCHAR2(20)

To create and describe the object type EMPLOYEE that contains the attributes
ENAME, EMPADDR, JOB and SAL, enter

SQL> CREATE TYPE EMPLOYEE AS OBJECT
 2 (ENAME VARCHAR2(30),
 3 EMPADDR ADDRESS,

DESCRIBE

Command Reference 8-59

 4 JOB VARCHAR2(20),
 5 SAL NUMBER(7,2)
 6);
 7 /
SQL> DESCRIBE employee

SQL*Plus lists the following information:

Name Null? Type
------------------------------ -------- ------------
ENAME VARCHAR2(30)
EMPADDR ADDRESS
JOB VARCHAR2(20)
SAL NUMBER(7,2)

To create and describe the object type addr_type as a table of the object type
ADDRESS, enter

SQL> CREATE TYPE addr_type IS TABLE OF ADDRESS;
 2 /
SQL> DESCRIBE addr_type

SQL*Plus lists the following information:

addr_type TABLE OF ADDRESS
Name Null? Type
------------------------------ -------- ------------
STREET VARCHAR2(20)
CITY VARCHAR2(20)

To create and describe the object type addr_varray as a varray of the object type
ADDRESS, enter

SQL> CREATE TYPE addr_varray AS VARRAY(10) OF ADDRESS;
 2 /
SQL> DESCRIBE addr_varray

SQL*Plus lists the following information:

addr_varray VARRAY(10) OF ADDRESS
Name Null? Type
------------------------------ -------- ------------
STREET VARCHAR2(20)
CITY VARCHAR2(20)

DESCRIBE

8-60 SQL*Plus User’s Guide and Reference

To create and describe the table dept_emp that contains the columns DEPTNO,
PERSON and LOC, enter

SQL> CREATE TABLE dept_emp
 2 (DEPTNO NUMBER,
 3 PERSON EMPLOYEE,
 4 LOC NUMBER
 5);
 6 /
SQL> DESCRIBE dept_emp

SQL*Plus lists the following information:

Name Null? Type
------------------------------ -------- ------------
DEPTNO NUMBER
PERSON EMPLOYEE
LOC NUMBER

To create and describe the object type rational that contains the attributes
NUMERATOR and DENOMINATOR, and the METHOD rational_order, enter

SQL> CREATE OR REPLACE TYPE rational AS OBJECT
 2 (NUMERATOR NUMBER,
 3 DENOMINATOR NUMBER,
 4 MAP MEMBER FUNCTION rational_order -
> RETURN DOUBLE PRECISION,
 5 PRAGMA RESTRICT_REFERENCES
 6 (rational_order, RNDS, WNDS, RNPS, WNPS));
 7 /
SQL> CREATE OR REPLACE TYPE BODY rational AS OBJECT
 2 MAP MEMBER FUNCTION rational_order -
> RETURN DOUBLE PRECISION IS
 3 BEGIN
 4 RETURN NUMERATOR/DENOMINATOR;
 5 END;
 6 END;
 7 /
SQL> DESCRIBE rational

SQL*Plus lists the following information:

Name Null? Type
------------------------------ -------- ------------
NUMERATOR NUMBER
DENOMINATOR NUMBER

DESCRIBE

Command Reference 8-61

METHOD

MAP MEMBER FUNCTION RATIONAL_ORDER RETURNS NUMBER

To describe the object emp_object and then format the output using the SET
DESCRIBE command, first enter

SQL> DESCRIBE emp_object

SQL*Plus lists the following information:

 Name Null Type
 --- -------- ----------------------------
 EMPLOYEE RECUR_PERSON
 DEPT RECUR_DEPARTMENT
 START_DATE DATE
 POSITION VARCHAR2(1)
 SAL RECUR_SALARY

To format the DESCRIBE output use the SET command as follows:

SQL> SET LINESIZE 80
SQL> SET DESCRIBE DEPTH 2
SQL> SET DESCRIBE INDENT ON
SQL> SET DESCRIBE LINE OFF

To display the settings for the object, use the SHOW command as follows:

SQL> SHOW DESCRIBE
describe DEPTH 2 LINENUM OFF INDENT ON
SQL> DESCRIBE emp_object

SQL*Plus lists the following information:

 Name Null Type
 --- -------- ----------------------------
 EMPLOYEE RECUR_PERSON
 NAME VARCHAR2(20)
 ADDR RECUR_ADDRESS
 ADDR1 RECUR_ADDRESS1
 DOB DATE
 GENDER VARCHAR2(10)
 DEPT RECUR_DEPARTMENT
 DEPTNO NUMBER
 DEPT_NAME VARCHAR2(20)
 LOCATION VARCHAR2(20)

DESCRIBE

8-62 SQL*Plus User’s Guide and Reference

 START_DATE DATE
 POSITION VARCHAR2(1)
 SAL RECUR_SALARY
 ANNUAL_SAL NUMBER(10,2)
 EMP_TYPE VARCHAR2(1)
 COMM NUMBER(10,2)
 PENALTY_RATE NUMBER(5,2)

For more information on using the CREATE TYPE command, see your Oracle8i SQL
Reference.

For information about using the SET DESCRIBE and SHOW DESCRIBE commands,
see the SET and SHOW commands later in this chapter.

DISCONNECT

Command Reference 8-63

DISCONNECT

Purpose
Commits pending changes to the database and logs the current username out of
Oracle, but does not exit SQL*Plus.

Syntax
DISC[ONNECT]

Usage Notes
Use DISCONNECT within a command file to prevent user access to the database
when you want to log the user out of Oracle but have the user remain in SQL*Plus.
Use EXIT or QUIT to log out of Oracle and return control to your host computer’s
operating system.

Example
Your command file might begin with a CONNECT command and end with a
DISCONNECT, as shown below.

SQL> GET MYFILE
 1 CONNECT ...
 .
 .
 .
 .
 15* DISCONNECT

EDIT

8-64 SQL*Plus User’s Guide and Reference

EDIT

Purpose
Invokes a host operating system text editor on the contents of the specified file or on
the contents of the buffer.

Syntax
ED[IT] [file_name[.ext]]

Terms and Clauses
Refer to the following for a description of the term or clause:

file_name[.ext]
Represents the file you wish to edit (typically a command file).

Enter EDIT with no filename to edit the contents of the SQL buffer with the host
operating system text editor.

Usage Notes
If you omit the file extension, SQL*Plus assumes the default command-file
extension (normally SQL). For information on changing the default extension, see
the SUFFIX variable of the SET command in this chapter.

If you specify a filename, SQL*Plus searches for the file in the current working
directory. If SQL*Plus cannot find the file in the current working directory, it creates
a file with the specified name.

The user variable, _EDITOR, contains the name of the text editor invoked by EDIT.
You can change the text editor by changing the value of _EDITOR. See DEFINE for
information about changing the value of a user variable. If _EDITOR is undefined,
EDIT attempts to invoke the default host operating system editor.

EDIT alone places the contents of the SQL buffer in a file by default named
AFIEDT.BUF (in your current working directory) and invokes the text editor on the
contents of the file. If the file AFIEDT.BUF already exists, it is overwritten with the
contents of the buffer. You can change the default filename by using the SET
EDITFILE command. For more information about setting a default filename for the
EDIT command, see the EDITFILE variable of the SET command in this chapter.

EDIT

Command Reference 8-65

If you do not specify a filename and the buffer is empty, EDIT returns an error
message.

To leave the editing session and return to SQL*Plus, terminate the editing session in
the way customary for the text editor. When you leave the editor, SQL*Plus loads
the contents of the file into the buffer.

Example
To edit the file REPORT with the extension SQL using your host operating system
text editor, enter

SQL> EDIT REPORT

Note: The default file, AFIEDT.BUF, may have a different name on
some operating systems.

EXECUTE

8-66 SQL*Plus User’s Guide and Reference

EXECUTE

Purpose
Executes a single PL/SQL statement. The EXECUTE command is often useful when
you want to execute a PL/SQL statement that references a stored procedure. For
more information on PL/SQL, see your PL/SQL User’s Guide and Reference.

Syntax
EXEC[UTE] statement

Terms and Clauses
Refer to the following for a description of the term or clause:

statement
Represents a PL/SQL statement.

Usage Notes
If your EXECUTE command cannot fit on one line because of the PL/SQL
statement, use the SQL*Plus continuation character (a hyphen) as shown in the
example below.

The length of the command and the PL/SQL statement cannot exceed the length
defined by SET LINESIZE.

Examples
The following EXECUTE command assigns a value to a bind variable:

SQL> EXECUTE :n := 1

The following EXECUTE command runs a PL/SQL statement that references a
stored procedure:

SQL> EXECUTE -
> :ID := EMP_MANAGEMENT.HIRE(’BLAKE’,’MANAGER’,’KING’,2990,’SALES’)

Note that the value returned by the stored procedure is being placed in a bind
variable, :ID. For information on how to create a bind variable, see the VARIABLE
command in this chapter.

EXIT

Command Reference 8-67

EXIT

Purpose
Terminates SQL*Plus and returns control to the operating system.

Syntax
{EXIT|QUIT} [SUCCESS|FAILURE|WARNING|n|variable|:BindVariable] [COMMIT|ROLLBACK]

Terms and Clauses
Refer to the following list for a description of each term or clause:

{EXIT|QUIT}
Can be used interchangeably (QUIT is a synonym for EXIT).

SUCCESS
Exits normally.

FAILURE
Exits with a return code indicating failure.

WARNING
Exits with a return code indicating warning.

COMMIT
Saves pending changes to the database before exiting.

n
Represents an integer you specify as the return code.

variable
Represents a user-defined or system variable (but not a bind variable),
such as SQL.SQLCODE. EXIT variable exits with the value of variable as
the return code.

:BindVariable
Represents a variable created in SQL*Plus with the VARIABLE com-
mand, and then referenced in PL/SQL, or other subprograms. :Bind-
Variable exits the subprogram and returns you to SQL*Plus.

ROLLBACK
Executes a ROLLBACK statement and abandons pending changes to
the database before exiting.

EXIT with no clauses commits and exits with a value of SUCCESS.

EXIT

8-68 SQL*Plus User’s Guide and Reference

Usage Notes
EXIT allows you to specify an operating system return code. This allows you to run
SQL*Plus command files in batch mode and to detect programmatically the
occurrence of an unexpected event. The manner of detection is operating-system
specific. See the Oracle installation and user’s manual(s) provided for your
operating system for details.

The key words SUCCESS, WARNING, and FAILURE represent operating-system
dependent values. On some systems, WARNING and FAILURE may be
indistinguishable.

The range of operating system return codes is also restricted on some operating
systems. This limits the portability of EXIT n and EXIT variable between platforms.
For example, on UNIX there is only one byte of storage for return codes; therefore,
the range for return codes is limited to zero to 255.

If you make a syntax error in the EXIT options or use a non-numeric variable,
SQL*Plus performs an EXIT FAILURE COMMIT.

For information on exiting conditionally, see the WHENEVER SQLERROR and
WHENEVER OSERROR commands later in this chapter.

Example
The following example commits all uncommitted transactions and returns the error
code of the last executed SQL command or PL/SQL block:

SQL> EXIT SQL.SQLCODE

The location of the return code depends on your system. Consult your DBA for
information concerning how your operating system retrieves data from a program.
See the TTITLE command in this chapter for more information on SQL.SQLCODE.

Note: SUCCESS, FAILURE, and WARNING are not reserved
words.

GET

Command Reference 8-69

GET

Purpose
Loads a host operating system file into the SQL buffer.

Syntax
GET file_name[.ext] [LIS[T]|NOL[IST]]

Terms and Clauses
Refer to the following list for a description of each term or clause:

file_name[.ext]
Represents the file you wish to load (typically a command file).

LIS[T]
Lists the contents of the file.

NOL[IST]
Suppresses the listing.

Usage Notes
If you do not specify a file extension, SQL*Plus assumes the default command-file
extension (normally SQL). For information on changing the default extension, see
the SUFFIX variable of the SET command in this chapter.

If the filename you specify contains the word list or the word file, the name must be
in double quotes. SQL*Plus searches for the file in the current working directory.

The operating system file should contain a single SQL statement or PL/SQL block.
The statement should not be terminated with a semicolon.

If a SQL*Plus command or more than one SQL statement or PL/SQL block is
loaded into the SQL buffer from an operating system file, an error occurs when the
RUN or slash (/) command is used to execute the buffer.

The GET command can be used to load files created with the SAVE command. See
the SAVE command in this chapter for more information.

Example
To load a file called YEARENDRPT with the extension SQL into the buffer, enter

SQL> GET YEARENDRPT

HELP

8-70 SQL*Plus User’s Guide and Reference

HELP

Purpose
Accesses the SQL*Plus help system.

Syntax
HELP [topic]

Terms and Clauses
Refer to the following for a description of the term or clause:

topic
Represents a SQL*Plus help topic, for example, COLUMN.

Enter HELP without topic to get help on the help system.

Usage Notes
You can only enter one topic after HELP. You can abbreviate the topic (for example,
COL for COLUMN). However, if you enter only an abbreviated topic and the
abbreviation is ambiguous, SQL*Plus displays help for all topics that match the
abbreviation. For example, if you enter

SQL> HELP EX

SQL*Plus displays the syntax for the EXECUTE command followed by the syntax
for the EXIT command.

If you get a response indicating that help is not available, consult your database
administrator.

Example
To see a list of SQL*Plus commands for which help is available, enter

SQL> HELP INDEX

Alternatively, to see a single column display of SQL*Plus commands for which help
is available, enter

SQL> HELP TOPICS

HOST

Command Reference 8-71

HOST

Purpose
Executes a host operating system command without leaving SQL*Plus.

Syntax
HO[ST] [command]

Terms and Clauses
Refer to the following for a description of the term or clause:

command
Represents a host operating system command.

Enter HOST without command to display an operating system prompt. You can then
enter multiple operating system commands. For information on returning to
SQL*Plus, refer to the Oracle installation and user’s manual(s) provided for your
operating system.

Usage Notes
With some operating systems, you can use a "$" (VMS), "!" (UNIX), or another
character instead of HOST. See the Oracle installation and user’s manual(s)
provided for your operating system for details.

You may not have access to the HOST command, depending on your operating
system. See the Oracle installation and user’s manual(s) provided for your
operating system or ask your DBA for more information.

SQL*Plus removes the SQLTERMINATOR (a semicolon by default) before the
HOST command is issued. A workaround for this is to add another

Note: Operating system commands entered from a SQL*Plus
session using the HOST command do not effect the current
SQL*Plus session. For example, setting an operating system
environment variable does not effect the current SQL*Plus session,
it only effects SQL*Plus sessions started subsequently.

You can suppress access to the HOST command. For more
information about suppressing the HOST command see
Appendix E, "Security".

HOST

8-72 SQL*Plus User’s Guide and Reference

SQLTERMINATOR. See the SQLTERMINATOR variable of the SET command in
this chapter for more information on the SQLTERMINATOR.

Example
To execute an operating system command, ls *.sql, enter

SQL> HOST ls *.sql

INPUT

Command Reference 8-73

INPUT

Purpose
Adds one or more new lines of text after the current line in the buffer.

Syntax
I[NPUT] [text]

Terms and Clauses
Refer to the following for a description of the term or clause:

text
Represents the text you wish to add. To add a single line, enter the text
of the line after the command INPUT, separating the text from the com-
mand with a space. To begin the line with one or more spaces, enter
two or more spaces between INPUT and the first non-blank character of
text.

To add several lines, enter INPUT with no text. INPUT prompts you for each line.
To leave INPUT, enter a null (empty) line.

Usage Notes
If you enter a line number at the command prompt larger than the number of lines
in the buffer, and follow the number with text, SQL*Plus adds the text in a new line
at the end of the buffer. If you specify zero (0) for the line number and follow the
zero with text, then SQL*Plus inserts the line at the beginning of the buffer (that line
becomes line 1).

Examples
Assume the SQL buffer contains the following command:

1 SELECT ENAME, DEPTNO, SAL, COMM
2 FROM EMP

To add an ORDER BY clause to the query, enter

SQL> LIST 2
 2* FROM EMP
SQL> INPUT ORDER BY ENAME

INPUT

8-74 SQL*Plus User’s Guide and Reference

LIST 2 ensures that line 2 is the current line. INPUT adds a new line containing the
ORDER BY clause after the current line. The SQL buffer now contains the following
lines:

1 SELECT ENAME, DEPTNO, SAL, COMM
2 FROM EMP
3* ORDER BY ENAME

To add a two-line WHERE clause, enter

SQL> LIST 2
 2* FROM EMP
SQL> INPUT
 3 WHERE JOB = ’SALESMAN’
 4 AND COMM 500
 5

INPUT prompts you for new lines until you enter an empty line. The SQL buffer
now contains the following lines:

1 SELECT ENAME, DEPTNO, SAL, COMM
2 FROM EMP
3 WHERE JOB = ’SALESMAN’
4 AND COMM 500
5 ORDER BY ENAME

LIST

Command Reference 8-75

LIST

Purpose
Lists one or more lines of the SQL buffer.

Syntax
L[IST] [n|n m|n *|n LAST|*|* n|* LAST|LAST]

Terms and Clauses
Refer to the following list for a description of each term or clause:

Enter LIST with no clauses to list all lines.

Usage Notes
The last line listed becomes the new current line (marked by an asterisk).

Example
To list the contents of the buffer, enter

SQL> LIST

You will see a listing of all lines in the buffer, similar to the following example:

 1 SELECT ENAME, DEPTNO, JOB
 2 FROM EMP
 3 WHERE JOB = ’CLERK’
 4* ORDER BY DEPTNO

The asterisk indicates that line 4 is the current line.

n Lists line n.

n m Lists lines n through m.

n * Lists line n through the current line.

n LAST Lists line n through the last line.

* Lists the current line.

* n Lists the current line through line n.

* LAST Lists the current line through the last line.

LAST Lists the last line.

LIST

8-76 SQL*Plus User’s Guide and Reference

To list the second line only, enter

SQL> LIST 2

You will then see this:

 2* FROM EMP

To list the current line (now line 2) to the last line, enter

SQL> LIST * LAST

You will then see this:

 2 FROM EMP
 3 WHERE JOB = ’CLERK’
 4* ORDER BY DEPTNO

PASSWORD

Command Reference 8-77

PASSWORD

Purpose
Allows you to change a password without echoing it on an input device.

Syntax
PASSW[ORD] [username]

Terms and Clauses
Refer to the following for a description of the clause or term:

username
Specifies the user. If you do not specify a username, username defaults
to the current user.

Usage Notes
To change the password of another user, you must have been granted the
appropriate privilege.

For more information about changing your password, see the CONNECT command
in this chapter.

Example
Suppose you are logged on as scott/tiger, and want to change the password to
tigertiger

SQL> passw
Changing password for scott
Old password: tiger
New password: tigertiger
Retype new password: tigertiger
Password changed

Suppose you are logged on as a DBA, and want to change the password for user
usera (currently identified by passa) to passusera

SQL> passw usera
Changing password for usera
New password: passusera
Retype new password: passusera
Password changed

PAUSE

8-78 SQL*Plus User’s Guide and Reference

PAUSE

Purpose
Displays an empty line followed by a line containing text, then waits for the user to
press [Return], or displays two empty lines and waits for the user’s response.

Syntax
PAU[SE] [text]

Terms and Clauses
Refer to the following for a description of the clause or term:

text
Represents the text you wish to display.

Enter PAUSE followed by no text to display two empty lines.

Usage Notes
Because PAUSE always waits for the user’s response, it is best to use a message that
tells the user explicitly to press [Return].

PAUSE reads input from the terminal (if a terminal is available) even when you
have designated the source of the command input as a file.

For information on pausing between pages of a report, see the PAUSE variable of
the SET command later in this chapter.

Example
To print "Adjust paper and press RETURN to continue." and to have SQL*Plus wait
for the user to press [Return], you might include the following PAUSE command in
a command file:

SET PAUSE OFF
PAUSE Adjust paper and press RETURN to continue.
SELECT ...

PRINT

Command Reference 8-79

PRINT

Purpose
Displays the current value of bind variables. For more information on bind
variables, see your PL/SQL User’s Guide and Reference.

Syntax
PRI[NT] [variable ...]

Terms and Clauses
Refer to the following for a description of the clause or term:

variable ...
Represents the names of the bind variables whose values you wish to
display.

Enter PRINT with no variables to print all bind variables.

Usage Notes
Bind variables are created using the VARIABLE command. For more information
and examples, see the VARIABLE command in this chapter.

You can control the formatting of the PRINT output just as you would query
output. For more information, see the formatting techniques described in Chapter 4.

To automatically display bind variables referenced in a successful PL/SQL block or
used in an EXECUTE command, use the AUTOPRINT clause of the SET command.
For more information, see the SET command in this chapter.

Example
The following example illustrates a PRINT command:

SQL> VARIABLE n NUMBER
SQL> BEGIN
 2 :n := 1;
 3 END;
SQL> PRINT n
 N

 1

PROMPT

8-80 SQL*Plus User’s Guide and Reference

PROMPT

Purpose
Sends the specified message or a blank line to the user’s screen.

Syntax
PRO[MPT] [text]

Terms and Clauses
Refer to the following for a description of the term or clause:

text
Represents the text of the message you wish to display. If you omit text,
PROMPT displays a blank line on the user’s screen.

Usage Notes
You can use this command in command files to give information to the user.

Example
The following example shows the use of PROMPT in conjunction with ACCEPT in a
command file called ASKFORDEPT. ASKFORDEPT contains the following
SQL*Plus and SQL commands:

PROMPT
PROMPT Please enter a valid department
PROMPT For example: 10, 20, 30, 40
ACCEPT NEWDEPT NUMBER PROMPT ’DEPT:> ’
SELECT DNAME FROM DEPT
WHERE DEPTNO = &NEWDEPT

Assume you run the file using START or @:

SQL> @ASKFORDEPT

SQL*Plus displays the following prompts:

Please enter a valid department
For example: 10, 20, 30, 40
DEPT:>

PROMPT

Command Reference 8-81

You can enter a department number at the prompt DEPT:>. By default, SQL*Plus
lists the line containing &NEWDEPT before and after substitution, and then
displays the department name corresponding to the number entered at the DEPT:>
prompt.

RECOVER

8-82 SQL*Plus User’s Guide and Reference

RECOVER

Purpose
Performs media recovery on one or more tablespaces, one or more datafiles, or the
entire database. For more information on the RECOVER command, see the Oracle8i
Administrator’s Guide, the Oracle8i SQL Reference, and the Oracle8i Backup and
Recovery Guide.

Syntax
RECOVER {general | managed} [parallel]

where the general clause has the following syntax:

 [AUTOMATIC] [FROM location]
 {[STANDBY] DATABASE [[UNTIL {CANCEL | CHANGE integer | TIME date}
 | USING BACKUP CONTROLFILE]...]
 | STANDBY {DATAFILE datafilename [, DATAFILE datafilename...]
 | TABLESPACE tablespace [, TABLESPACE tablespace ...]}
 UNTIL [CONSISTENT] [WITH] CONTROLFILE
 | TABLESPACE tablespace [, tablespace ...]
 | DATAFILE datafilename [, datafilename ...]
 | LOGFILE filename
 | CONTINUE [DEFAULT]
 | CANCEL}

and where the managed clause has the following syntax:

 MANAGED STANDBY DATABASE {TIMEOUT integer | CANCEL [IMMEDIATE]}

and where the parallel clause has the following syntax:

 PARALLEL [integer] | NOPARALLEL

Terms and Clauses
Refer to the following list for a description of each term and clause:

AUTOMATIC
Automatically generates the name of the next archived redo log file
needed to continue the recovery operation. Oracle uses the LOG_
ARCHIVE_DEST (or LOG_ARCHIVE_DEST_1) and LOG_ARCHIVE_
FORMAT parameters (or their defaults) to generate the target redo log
filename. If the file is found, the redo contained in that file is applied. If

RECOVER

Command Reference 8-83

the file is not found, SQL*Plus prompts you for a filename, displaying a
generated filename as a suggestion.

If you specify neither AUTOMATIC nor LOGFILE, SQL*Plus prompts
you for a filename, displaying the generated filename as a suggestion.
You can then accept the generated filename or replace it with a fully
qualified filename. If you know the archived filename differs from what
Oracle would generate, you can save time by using the LOGFILE
clause.

FROM location
Specifies the location from which the archived redo log file group is
read. The value of location must be a fully specified file location follow-
ing the conventions of your operating system. If you omit this parame-
ter, SQL*Plus assumes the archived redo log file group is in the location
specified by the initialization parameter LOG_ARCHIVE_DEST or
LOG_ARCHIVE_DEST_1.

STANDBY
Recovers the standby database using the control file and archived redo
log files copied from the primary database. The standby database must
be mounted but not open.

DATABASE
Recovers the entire database.

UNTIL CANCEL
Specifies an incomplete, cancel-based recovery. Recovery proceeds by
prompting you with the suggested filenames of archived redo log files,
and recovery completes when you specify CANCEL instead of a file-
name.

UNTIL CHANGE integer
Specifies an incomplete, change-based recovery. integer is the number of
the System Change Number (SCN) following the last change you wish
to recover. For example, if you want to restore your database up to the
transaction with an SCN of 9, you would specify UNTIL CHANGE 10.

UNTIL TIME date
Specifies an incomplete, time-based recovery. Use single quotes, and the
following format:

’YYYY-MM-DD:HH24:MI:SS’

RECOVER

8-84 SQL*Plus User’s Guide and Reference

USING BACKUP CONTROLFILE
Specifies that a backup of the control file be used instead of the current
control file.

STANDBY {[DATAFILE datafilename [, DATAFILE datafilename ...]}
Reconstructs a lost or damaged datafile in the standby database using
archived redo log files copied from the primary database and a control
file.

STANDBY {TABLESPACE tablespace [, TABLESPACE tablespace ...]}
Reconstructs a lost or damaged tablespace in the standby database
using archived redo log files copied from the primary database and a
control file.

UNTIL [CONSISTENT] [WITH] CONTROLFILE
Specifies that the recovery of an old standby datafile or tablespace uses
the current standby database control file.

TABLESPACE tablespace
Recovers a particular tablespace. tablespace is the name of a tablespace
in the current database. You may recover up to 16 tablespaces in one
statement.

DATAFILE datafilename
Recovers a particular datafile. You can specify any number of datafiles.

LOGFILE filename
Continues media recovery by applying the specified redo log file.

CONTINUE [DEFAULT]
Continues multi-instance recovery after it has been interrupted to dis-
able a thread.

Continues recovery using the redo log file that Oracle would automati-
cally generate if no other logfile were specified. This option is equiva-
lent to specifying AUTOMATIC, except that Oracle does not prompt for
a filename.

CANCEL
Terminates cancel-based recovery.

RECOVER

Command Reference 8-85

MANAGED STANDBY DATABASE
Specifies sustained standby recovery mode. This mode assumes that the
standby database is an active component of an overall standby data-
base architecture. A primary database actively archives its redo log files
to the standby site. As these archived redo logs arrive at the standby
site, they become available for use by a managed standby recovery
operation. Sustained standby recovery is restricted to media recovery.

For more information on the parameters of this clause, see the Oracle8i
Backup and Recovery Guide.

TIMEOUT integer
Specifies in minutes the wait period of the sustained recovery opera-
tion. The recovery process waits for integer minutes for a requested
archived log redo to be available for writing to the standby database. If
the redo log file does not become available within that time, the recov-
ery process terminates with an error message. You can then issue the
statement again to return to sustained standby recovery mode.

If you do not specify this clause, the database remains in sustained
standby recovery mode until you reissue the statement with the
RECOVER CANCEL clause or until instance shutdown or failure.

CANCEL [IMMEDIATE]
Terminates the sustained recovery operation after applying all the redo
in the current archived redo file or after the next redo log file read,
whichever comes first.

PARALLEL [integer]
Causes Oracle to select a degree of parallelism equal to the number of
CPUs available on all participating instances times the value of the
PARALLEL_THREADS_PER_CPU initialization parameter.

The PARALLEL keyword overrides the RECOVERY_PARALLELISM
initialization parameter. For more information about the PARALLEL
keyword see the Oracle8i Parallel Server Concepts manual.

Use integer to specify the degree of parallelism, which is the number of
parallel threads used in the parallel operation. Each parallel thread may
use one or two parallel execution processes. Normally Oracle calculates
the optimum degree of parallelism, so it is not necessary for you to
specify integer.

RECOVER

8-86 SQL*Plus User’s Guide and Reference

NOPARALLEL
Specifies serial execution. This is the default.

Usage Notes
You must be connected to Oracle as SYSOPER, or SYSDBA.

You cannot use the RECOVER command when connected via the multi-threaded
server.

To perform media recovery on an entire database (all tablespaces), the database
must be mounted EXCLUSIVE and closed.

To perform media recovery on a tablespace, the database must be mounted and
open, and the tablespace must be offline.

To perform media recovery on a datafile, the database can remain open and
mounted with the damaged datafiles offline (unless the file is part of the SYSTEM
tablespace).

Before using the RECOVER command you must have restored copies of the
damaged datafile(s) from a previous backup. Be sure you can access all archived
and online redo log files dating back to when that backup was made.

When another log file is required during recovery, a prompt suggests the names of
files that are needed. The name is derived from the values specified in the
initialization parameters LOG_ARCHIVE_DEST and LOG_ARCHIVE_FORMAT.
You should restore copies of the archived redo log files needed for recovery to the
destination specified in LOG_ARCHIVE_DEST, if necessary. You can override the
initialization parameters by setting the LOGSOURCE variable with the SET
LOGSOURCE command.

During recovery you can accept the suggested log name by pressing return, cancel
recovery by entering CANCEL instead of a log name, or enter AUTO at the prompt
for automatic file selection without further prompting.

If you have enabled autorecovery (that is, SET AUTORECOVERY ON), recovery
proceeds without prompting you with filenames. Status messages are displayed
when each log file is applied.

When normal media recovery is done, a completion status is returned.

RECOVER

Command Reference 8-87

Examples
To recover the entire database, enter

SQL> RECOVER DATABASE

To recover the database until a specified time, enter

SQL> RECOVER DATABASE UNTIL TIME 23-NOV-99:04:32:00

To recover the two tablespaces ts_one and ts_two from the database, enter

SQL> RECOVER TABLESPACE ts_one, ts_two

To recover the datafile data1.db from the database, enter

SQL> RECOVER DATAFILE ’data1.db’

REMARK

8-88 SQL*Plus User’s Guide and Reference

REMARK

Purpose
Begins a comment in a command file. SQL*Plus does not interpret the comment as a
command.

Syntax
REM[ARK]

Usage Notes
The REMARK command must appear at the beginning of a line, and the comment
ends at the end of the line. A line cannot contain both a comment and a command.

For details on entering comments in command files using the SQL comment
delimiters, /* ... */, or the ANSI/ISO comment delimiter, -- ..., refer to "Placing
Comments in Command Files" in Chapter 3.

Example
The following command file contains some typical comments:

REM COMPUTE uses BREAK ON REPORT to break on end of table
BREAK ON REPORT
COMPUTE SUM OF ”DEPARTMENT 10” ”DEPARTMENT 20” -
”DEPARTMENT 30” ”TOTAL BY JOB” ON REPORT
REM Each column displays the sums of salaries by job for
REM one of the departments 10, 20, 30.
SELECT JOB,
 SUM(DECODE(DEPTNO, 10, SAL, 0)) ”DEPARTMENT 10”,
 SUM(DECODE(DEPTNO, 20, SAL, 0)) ”DEPARTMENT 20”,
 SUM(DECODE(DEPTNO, 30, SAL, 0)) ”DEPARTMENT 30”,
 SUM(SAL) ”TOTAL BY JOB”
FROM EMP
GROUP BY JOB

REPFOOTER

Command Reference 8-89

REPFOOTER

Purpose
Places and formats a specified report footer at the bottom of each report, or lists the
current REPFOOTER definition.

Syntax
REPF[OOTER] [PAGE] [printspec [text|variable] ...] [ON|OFF]

Terms and Clauses
Refer to the REPHEADER command for additional information on terms and
clauses in the REPFOOTER command syntax.

Enter REPFOOTER with no clauses to list the current REPFOOTER definition.

Usage Notes
If you do not enter a printspec clause before the text or variables, REPFOOTER left
justifies the text or variables.

You can use any number of constants and variables in a printspec. SQL*Plus displays
the constants and variables in the order you specify them, positioning and
formatting each constant or variable as specified by the printspec clauses that
precede it.

Example
To define "END EMPLOYEE LISTING REPORT" as a report footer on a separate
page and to center it, enter:

SQL> REPFOOTER PAGE CENTER ’END EMPLOYEE LISTING REPORT’
SQL> TTITLE RIGHT ’Page: ’ FORMAT 999 SQL.PNO
SQL> SELECT ENAME, SAL
 2 FROM EMP
 3 WHERE SAL > 2000;
 Page: 1
ENAME SAL
---------- ----------
JONES 2975
BLAKE 2850

Note: If SET EMBEDDED is ON, the report footer is suppressed.

REPFOOTER

8-90 SQL*Plus User’s Guide and Reference

CLARK 2450
SCOTT 3000
KING 5000
FORD 3000
 Page: 2
 END EMPLOYEE LISTING REPORT

6 rows selected.

To suppress the report footer without changing its definition, enter

SQL> REPFOOTER OFF

REPHEADER

Command Reference 8-91

REPHEADER

Purpose
Places and formats a specified report header at the top of each report, or lists the
current REPHEADER definition.

Syntax
REPH[EADER] [PAGE] [printspec [text|variable] ...] [ON|OFF]

where printspec represents one or more of the following clauses used to place and
format the text:

COL n
S[KIP] [n]
TAB n
LE[FT]
CE[NTER]
R[IGHT]
BOLD
FORMAT text

Terms and Clauses
Refer to the following list for a description of each term or clause. These terms and
clauses also apply to the REPFOOTER command.

PAGE
Begins a new page after printing the specified report header or before
printing the specified report footer.

text
Represents the report header or footer text. Enter text in single quotes if
you want to place more than one word on a single line. The default is
NULL.

variable
Represents a user variable or any of the following system-maintained
values. SQL.LNO is the current line number. SQL.PNO is the current
page number. SQL.RELEASE is the current Oracle release number.
SQL.CODE is the current error code, and SQL.USER is the current user-
name.

REPHEADER

8-92 SQL*Plus User’s Guide and Reference

To print one of these values, reference the appropriate variable in the
report header or footer. You can format variable with the FORMAT
clause.

OFF
Turns the report header or footer off (suppresses its display) without
affecting its definition.

COL n
Indents to column n of the current line (backward if column n has been
passed). "Column" in this context means print position, not table col-
umn.

S[KIP] [n]
Skips to the start of a new line n times; if you omit n, one time; if you
enter zero for n, backward to the start of the current line.

TAB n
Skips forward n columns (backward if you enter a negative value for n).
"Column" in this context means print position, not table column.

LE[FT] CE[NTER] R[IGHT]
Left-align, center, and right-align data on the current line respectively.
SQL*Plus aligns following data items as a group, up to the end of the
printspec or the next LEFT, CENTER, RIGHT, or COL command. CEN-
TER and RIGHT use the SET LINESIZE value to calculate the position
of the data item that follows.

BOLD
Prints data in bold print. SQL*Plus represents bold print on your termi-
nal by repeating the data on three consecutive lines. On some operat-
ing systems, SQL*Plus may instruct your printer to print bolded text on
three consecutive lines, instead of bold.

FORMAT text
Specifies a format model that determines the format of following data
items, up to the next FORMAT clause or the end of the command. The
format model must be a text constant such as A10 or $999. See COL-
UMN FORMAT for more information on formatting and valid format
models.

If the datatype of the format model does not match the datatype of a
given data item, the FORMAT clause has no effect on that item.

REPHEADER

Command Reference 8-93

If no appropriate FORMAT model precedes a given data item,
SQL*Plus prints NUMBER values according to the format specified by
SET NUMFORMAT or, if you have not used SET NUMFORMAT, the
default format. SQL*Plus prints DATE values according to the default
format.

Refer to the FORMAT clause of the COLUMN command in this chap-
ter for more information on default formats.

Enter REPHEADER with no clauses to list the current REPHEADER definition.

Usage Notes
If you do not enter a printspec clause before the text or variables, REPHEADER left
justifies the text or variables.

You can use any number of constants and variables in a printspec. SQL*Plus displays
the constants and variables in the order you specify them, positioning and
formatting each constant or variable as specified by the printspec clauses that
precede it.

Example
To define "EMPLOYEE LISTING REPORT" as a report header on a separate page,
and to center it, enter:

SQL> REPHEADER PAGE CENTER ’EMPLOYEE LISTING REPORT’
SQL> TTITLE RIGHT ’Page: ’ FORMAT 999 SQL.PNO
SQL> SELECT ENAME, SAL
 2 FROM EMP
 3 WHERE SAL > 2000;
 Page: 1
 EMPLOYEE LISTING REPORT
 Page: 2
ENAME SAL
---------- ----------
JONES 2975
BLAKE 2850
CLARK 2450
SCOTT 3000
KING 5000
FORD 3000

6 rows selected.

To suppress the report header without changing its definition, enter:

REPHEADER

8-94 SQL*Plus User’s Guide and Reference

SQL> REPHEADER OFF

RUN

Command Reference 8-95

RUN

Purpose
Lists and executes the SQL command or PL/SQL block currently stored in the SQL
buffer.

Syntax
R[UN]

Usage Notes
RUN causes the last line of the SQL buffer to become the current line.

The slash command (/) functions similarly to RUN, but does not list the command
in the SQL buffer on your screen.

Example
Assume the SQL buffer contains the following query:

SELECT DEPTNO FROM DEPT

To RUN the query, enter

SQL> RUN

The following output results:

1* SELECT DEPTNO FROM DEPT

 DEPTNO

 10
 20
 30
 40

SAVE

8-96 SQL*Plus User’s Guide and Reference

SAVE

Purpose
Saves the contents of the SQL buffer in a host operating system file (a command
file).

Syntax
SAV[E] file_name[.ext] [CRE[ATE]|REP[LACE]|APP[END]]

Terms and Clauses
Refer to the following list for a description of each term or clause:

file_name[.ext]
Specifies the command file in which you wish to save the buffer’s con-
tents.

CREATE
Creates a new file with the name specified. This is the default behavior.

REP[LACE]
Replaces the contents of an existing file. If the file does not exist,
REPLACE creates the file.

APP[END]
Adds the contents of the buffer to the end of the file you specify.

Usage Notes
If you do not specify an extension, SQL*Plus assumes the default command-file
extension (normally SQL). For information on changing this default extension, see
the SUFFIX variable of the SET command in this chapter.

If you wish to SAVE a file under a name identical to a SAVE command clause
(CREATE, REPLACE, or APPEND), you must specify a file extension.

When you SAVE the contents of the SQL buffer, SAVE adds a line containing a slash
(/) to the end of the file.

If the filename you specify is the word file, you need to put the name in single
quotes.

SAVE

Command Reference 8-97

Examples
To save the contents of the buffer in a file named DEPTSALRPT with the extension
SQL, enter

SQL> SAVE DEPTSALRPT

To save the contents of the buffer in a file named DEPTSALRPT with the extension
OLD, enter

SQL> SAVE DEPTSALRPT.OLD

SET

8-98 SQL*Plus User’s Guide and Reference

SET

Purpose
Sets a system variable to alter the SQL*Plus environment for your current session,
such as

■ the display width for NUMBER data

■ the display width for LONG data

■ enabling or disabling the printing of column headings

■ the number of lines per page

Syntax
SET system_variable value

where system_variable and value represent one of the following clauses.

APPI[NFO]{ON|OFF|text}
ARRAY[SIZE] {15|n}
AUTO[COMMIT]{ON|OFF|IMM[EDIATE]|n}
AUTOP[RINT] {ON|OFF}
AUTORECOVERY [ON|OFF]
AUTOT[RACE] {ON|OFF|TRACE[ONLY]} [EXP[LAIN]] [STAT[ISTICS]]
BLO[CKTERMINATOR] {.|c}
CMDS[EP] {;|c|ON|OFF}
COLSEP {_|text}
COM[PATIBILITY]{V7|V8|NATIVE}
CON[CAT] {.|c|ON|OFF}
COPYC[OMMIT] {0|n}
COPYTYPECHECK {ON|OFF}
DEF[INE] {&|c|ON|OFF}
DESCRIBE [DEPTH {1|n|ALL}][LINENUM {ON|OFF}][INDENT {ON|OFF}]
ECHO {ON|OFF}
EDITF[ILE] file_name[.ext]
EMB[EDDED] {ON|OFF}
ESC[APE] {\|c|ON|OFF}
FEED[BACK] {6|n|ON|OFF}
FLAGGER {OFF|ENTRY |INTERMED[IATE]|FULL}
FLU[SH] {ON|OFF}
HEA[DING] {ON|OFF}
HEADS[EP] {||c|ON|OFF}
INSTANCE [instance_path|LOCAL]
LIN[ESIZE] {80|n}

SET

Command Reference 8-99

LOBOF[FSET] {n|1}
LOGSOURCE [pathname]
LONG {80|n}
LONGC[HUNKSIZE] {80|n}
MARK[UP] HTML [ON|OFF] [HEAD text] [BODY text] [TABLE text] [ENTMAP {ON|OFF}]
[SPOOL {ON|OFF}] [PRE[FORMAT] {ON|OFF}]
NEWP[AGE] {1|n|NONE}
NULL text
NUMF[ORMAT] format
NUM[WIDTH] {10|n}
PAGES[IZE] {24|n}
PAU[SE] {ON|OFF|text}
RECSEP {WR[APPED]|EA[CH]|OFF}
RECSEPCHAR {_|c}
SERVEROUT[PUT] {ON|OFF} [SIZE n] [FOR[MAT] {WRA[PPED]|WOR[D_
WRAPPED]|TRU[NCATED]}]
SHIFT[INOUT] {VIS[IBLE]|INV[ISIBLE]}
SHOW[MODE] {ON|OFF}
SQLBL[ANKLINES] {ON|OFF}
SQLC[ASE] {MIX[ED]|LO[WER]|UP[PER]}
SQLCO[NTINUE] {> |text}
SQLN[UMBER] {ON|OFF}
SQLPRE[FIX] {#|c}
SQLP[ROMPT] {SQL>|text}
SQLT[ERMINATOR] {;|c|ON|OFF}
SUF[FIX] {SQL|text}
TAB {ON|OFF}
TERM[OUT] {ON|OFF}
TI[ME] {ON|OFF}
TIMI[NG] {ON|OFF}
TRIM[OUT] {ON|OFF}
TRIMS[POOL] {ON|OFF}
UND[ERLINE] {-|c|ON|OFF}
VER[IFY] {ON|OFF}
WRA[P] {ON|OFF}

Terms and Clauses
Refer to the following list for a description of each term, clause, or system variable:

APPI[NFO]{ON|OFF|text}
Sets automatic registering of command files through the DBMS_
APPLICATION_INFO package. This enables the performance and
resource usage of each command file to be monitored by your DBA.
The registered name appears in the MODULE column of the V$SES-

SET

8-100 SQL*Plus User’s Guide and Reference

SION and V$SQLAREA virtual tables. You can also read the registered
name using the DBMS_APPLICATION_INFO.READ_MODULE proce-
dure.

ON registers command files invoked by the @, @@ or START com-
mands. OFF disables registering of command files. Instead, the current
value of text is registered. Text specifies the text to register when no
command file is being run or when APPINFO is OFF. The default for
text is "SQL*Plus". If you enter multiple words for text, you must
enclose them in quotes. The maximum length for text is limited by the
DBMS_APPLICATION_INFO package.

The registered name has the format nn@xfilename where: nn is the depth
level of command file; x is ’<’ when the command file name is trun-
cated, otherwise, it is blank; and filename is the command file name,
possibly truncated to the length allowed by the DBMS_
APPLICATION_INFO package interface.

For more information on the DBMS_APPLICATION_INFO package,
see the Oracle8i Designing and Tuning for Performance manual.

ARRAY[SIZE] {15|n}
Sets the number of rows—called a batch—that SQL*Plus will fetch from
the database at one time. Valid values are 1 to 5000. A large value
increases the efficiency of queries and subqueries that fetch many rows,
but requires more memory. Values over approximately 100 provide lit-
tle added performance. ARRAYSIZE has no effect on the results of
SQL*Plus operations other than increasing efficiency.

AUTO[COMMIT]{ON|OFF|IMM[EDIATE]|n}
Controls when Oracle commits pending changes to the database. ON
commits pending changes to the database after Oracle executes each
successful INSERT, UPDATE, or DELETE command or PL/SQL block.
OFF suppresses automatic committing so that you must commit
changes manually (for example, with the SQL command COMMIT).

Note: To use this feature, you must have access to the DBMS_
APPLICATION_INFO package. Run DBMSUTIL.SQL (this name
may vary depending on your operating system) as SYS to create the
DBMS_APPLICATION_INFO package. DBMSUTIL.SQL is part of
the Oracle8i database server product.

SET

Command Reference 8-101

IMMEDIATE functions in the same manner as the ON option. n com-
mits pending changes to the database after Oracle executes n successful
SQL INSERT, UPDATE, or DELETE commands or PL/SQL blocks. n
cannot be less than zero or greater than 2,000,000,000. The statement
counter is reset to zero after successful completion of n INSERT,
UPDATE or DELETE commands or PL/SQL blocks, after a commit,
after a rollback, and after a SET AUTOCOMMIT command.

AUTOP[RINT] {ON|OFF}
Sets the automatic PRINTing of bind variables. ON or OFF controls
whether SQL*Plus automatically displays bind variables (referenced in
a successful PL/SQL block or used in an EXECUTE command). For
more information about displaying bind variables, see the PRINT com-
mand in this chapter.

AUTORECOVERY [ON|OFF]
ON sets the RECOVER command to automatically apply the default
filenames of archived redo log files needed during recovery. No interac-
tion is needed when AUTORECOVERY is set to ON, provided the nec-
essary files are in the expected locations with the expected names. The
filenames used when AUTORECOVERY is ON are derived from the
values of the initialization parameters LOG_ARCHIVE_DEST and
LOG_ARCHIVE_FORMAT.

OFF, the default option, requires that you enter the filenames manually
or accept the suggested default filename given.

AUTOT[RACE] {ON|OFF|TRACE[ONLY]} [EXP[LAIN]] [STAT[ISTICS]]
Displays a report on the execution of successful SQL DML statements
(SELECT, INSERT, UPDATE or DELETE). The report can include execu-
tion statistics and the query execution path.

OFF does not display a trace report. ON displays a trace report. TRA-
CEONLY displays a trace report, but does not print query data, if any.
EXPLAIN shows the query execution path by performing an EXPLAIN
PLAN. STATISTICS displays SQL statement statistics. Information

Note: For this feature, a PL/SQL block is considered one
transaction, regardless of the actual number of SQL commands
contained within it.

SET

8-102 SQL*Plus User’s Guide and Reference

about EXPLAIN PLAN is documented in the Oracle8i SQL Reference
manual.

Using ON or TRACEONLY with no explicit options defaults to
EXPLAIN STATISTICS.

The TRACEONLY option may be useful to suppress the query data of
large queries. If STATISTICS is specified, SQL*Plus still fetches the
query data from the server, however, the data is not displayed.

The AUTOTRACE report is printed after the statement has successfully
completed.

Information about Execution Plans and the statistics is documented in
the Oracle8i Tuning manual.

When SQL*Plus produces a STATISTICS report, a second connection to
the database is automatically created. This connection is closed when
the STATISTICS option is set to OFF, or you log out of SQL*Plus.

The formatting of your AUTOTRACE report may vary depending on
the version of the server to which you are connected and the configura-
tion of the server.

AUTOTRACE is not available when FIPS flagging is enabled.

See "Tracing Statements" in Chapter 3 for more information on
AUTOTRACE.

BLO[CKTERMINATOR] {.|c}
Sets the non-alphanumeric character used to end PL/SQL blocks to c. It
cannot be an alphanumeric character or a whitespace. To execute the
block, you must issue a RUN or / (slash) command.

CMDS[EP] {;|c|ON|OFF}
Sets the non-alphanumeric character used to separate multiple
SQL*Plus commands entered on one line to c. ON or OFF controls
whether you can enter multiple commands on a line; ON automatically
sets the command separator character to a semicolon (;).

COLSEP {_|text}
Sets the text to be printed between SELECTed columns. If the COLSEP
variable contains blanks or punctuation characters, you must enclose it
with single quotes. The default value for text is a single space.

SET

Command Reference 8-103

In multi-line rows, the column separator does not print between col-
umns that begin on different lines. The column separator does not
appear on blank lines produced by BREAK ... SKIP n and does not over-
write the record separator. See SET RECSEP in this chapter for more
information.

COM[PATIBILITY]{V7|V8|NATIVE}
Specifies the version of Oracle to which you are currently connected.
Set COMPATIBILITY to V7 for Oracle7, or V8 for Oracle8 and Oracle8i.
Set COMPATIBILITY to NATIVE if you wish the database to determine
the setting (for example, if connected to Oracle8 or Oracle8i, compatibil-
ity would default to V8). COMPATIBILITY must be correctly set for the
version of Oracle to which you are connected; otherwise, you will be
unable to run any SQL commands.

CON[CAT] {.|c|ON|OFF}
Sets the character you can use to terminate a substitution variable refer-
ence if you wish to immediately follow the variable with a character
that SQL*Plus would otherwise interpret as a part of the substitution
variable name. SQL*Plus resets the value of CONCAT to a period when
you switch CONCAT on.

COPYC[OMMIT] {0|n}
Controls the number of batches after which the COPY command com-
mits changes to the database. COPY commits rows to the destination
database each time it copies n row batches. Valid values are zero to
5000. You can set the size of a batch with the ARRAYSIZE variable. If
you set COPYCOMMIT to zero, COPY performs a commit only at the
end of a copy operation.

COPYTYPECHECK {ON|OFF}
Sets the suppression of the comparison of datatypes while inserting or
appending to tables with the COPY command. This is to facilitate copy-
ing to DB2, which requires that a CHAR be copied to a DB2 DATE.

DEF[INE] {&|c|ON|OFF}
Sets the character used to prefix substitution variables to c. ON or OFF
controls whether SQL*Plus will scan commands for substitution vari-

Note: You can set COMPATIBILITY to V7 when connected to
Oracle8i. This enables you to run Oracle7 SQL against Oracle8i.

SET

8-104 SQL*Plus User’s Guide and Reference

ables and replace them with their values. ON changes the value of c
back to the default ’&’, not the most recently used character. The set-
ting of DEFINE to OFF overrides the setting of the SCAN variable. For
more information on the SCAN variable, see the SET SCAN command
in Appendix F.

DESCRIBE [DEPTH {1|n|ALL}][LINENUM {ON|OFF}][INDENT {ON|OFF}]
Sets the depth of the level to which you can recursively describe an
object. The valid range of the DEPTH clause is from 1 to 50. If you SET
DESCRIBE DEPTH ALL, then the depth will be set to 50, which is the
maximum level allowed. You can also display the line number and
indentation of the attribute or column name when an object contains
multiple object types. Use the SET LINESIZE command to control the
width of the data displayed.

For more information about describing objects, see DESCRIBE earlier in
this chapter.

ECHO {ON|OFF}
Controls whether the START command lists each command in a com-
mand file as the command is executed. ON lists the commands; OFF
suppresses the listing.

EDITF[ILE] file_name[.ext]
Sets the default filename for the EDIT command. For more information
about the EDIT command, see EDIT in this chapter.

You can include a path and/or file extension. For information on chang-
ing the default extension, see the SUFFIX variable of this command.
The default filename and maximum filename length are operating sys-
tem specific.

EMB[EDDED] {ON|OFF}
Controls where on a page each report begins. OFF forces each report to
start at the top of a new page. ON allows a report to begin anywhere on
a page. Set EMBEDDED to ON when you want a report to begin print-
ing immediately following the end of the previously run report.

ESC[APE] {\|c|ON|OFF}
Defines the character you enter as the escape character. OFF undefines
the escape character. ON enables the escape character. ON changes the
value of c back to the default "\".

SET

Command Reference 8-105

You can use the escape character before the substitution character (set
through SET DEFINE) to indicate that SQL*Plus should treat the substi-
tution character as an ordinary character rather than as a request for
variable substitution.

FEED[BACK] {6|n|ON|OFF}
Displays the number of records returned by a query when a query
selects at least n records. ON or OFF turns this display on or off. Turn-
ing feedback ON sets n to 1. Setting feedback to zero is equivalent to
turning it OFF.

FLAGGER {OFF|ENTRY |INTERMED[IATE]|FULL}
Checks to make sure that SQL statements conform to the ANSI/ISO
SQL92 standard. If any non-standard constructs are found, the Oracle
Server flags them as errors and displays the violating syntax. This is the
equivalent of the SQL language ALTER SESSION SET FLAGGER com-
mand.

You may execute SET FLAGGER even if you are not connected to a
database. FIPS flagging will remain in effect across SQL*Plus sessions
until a SET FLAGGER OFF (or ALTER SESSION SET FLAGGER = OFF)
command is successful or you exit SQL*Plus.

When FIPS flagging is enabled, SQL*Plus displays a warning for the
CONNECT, DISCONNECT, and ALTER SESSION SET FLAGGER com-
mands, even if they are successful.

FLU[SH] {ON|OFF}
Controls when output is sent to the user’s display device. OFF allows
the host operating system to buffer output. ON disables buffering.

Use OFF only when you run a command file non-interactively (that is,
when you do not need to see output and/or prompts until the com-
mand file finishes running). The use of FLUSH OFF may improve per-
formance by reducing the amount of program I/O.

HEA[DING] {ON|OFF}
Controls printing of column headings in reports. ON prints column
headings in reports; OFF suppresses column headings.

The SET HEADING OFF command will not affect the column width
displayed, and only suppresses the printing of the column header itself.

SET

8-106 SQL*Plus User’s Guide and Reference

HEADS[EP] {||c|ON|OFF}
Defines the character you enter as the heading separator character. The
heading separator character cannot be alphanumeric or white space.
You can use the heading separator character in the COLUMN com-
mand and in the old forms of BTITLE and TTITLE to divide a column
heading or title onto more than one line. ON or OFF turns heading sep-
aration on or off. When heading separation is OFF, SQL*Plus prints a
heading separator character like any other character. ON changes the
value of c back to the default "|".

INSTANCE [instance_path|LOCAL]
Changes the default instance for your session to the specified instance
path. Using the SET INSTANCE command does not connect to a data-
base. The default instance is used for commands when no instance is
specified.

Any commands preceding the first use of SET INSTANCE communi-
cate with the default instance.

To reset the instance to the default value for your operating system, you
can either enter SET INSTANCE with no instance_path or SET
INSTANCE LOCAL. See your operating system-specific Oracle docu-
mentation for a description of how to set the initial default instance.

Note, you can only change the instance when you are not currently con-
nected to any instance. That is, you must first make sure that you have
disconnected from the current instance, then set or change the instance,
and reconnect to an instance in order for the new setting to be enabled.

This command may only be issued when Net8 is running. You can use
any valid Net8 connect identifier as the specified instance path. See
your operating system-specific Oracle documentation for a complete
description of how your operating system specifies Net8 connect identi-
fiers. The maximum length of the instance path is 64 characters.

LIN[ESIZE] {80|n}
Sets the total number of characters that SQL*Plus displays on one line
before beginning a new line. It also controls the position of centered
and right-aligned text in TTITLE, BTITLE, REPHEADER and REP-
FOOTER. You can define LINESIZE as a value from 1 to a maximum
that is system dependent. Refer to the Oracle installation and user’s
manual(s) provided for your operating system.

SET

Command Reference 8-107

LOBOF[FSET] {n|1}
Sets the starting position from which CLOB and NCLOB data is
retrieved and displayed.

LOGSOURCE [pathname]
Specifies the location from which archive logs are retrieved during
recovery. The default value is set by the LOG_ARCHIVE_DEST initial-
ization parameter in the Oracle initialization file, init.ora. Using the SET
LOGSOURCE command without a pathname restores the default loca-
tion.

LONG {80|n}
Sets maximum width (in bytes) for displaying LONG, CLOB and
NCLOB values; and for copying LONG values. The maximum value of
n is 2 gigabytes.

LONGC[HUNKSIZE] {80|n}
Sets the size (in bytes) of the increments in which SQL*Plus retrieves a
LONG, CLOB or NCLOB value.

MARK[UP] HTML [ON|OFF] [HEAD text] [BODY text] [TABLE text]
 [ENTMAP {ON|OFF}] [SPOOL {ON|OFF}] [PRE[FORMAT] {ON|OFF}]

Outputs HTML 3.2 marked up text. SET MARKUP has the same
options and behavior as SQLPLUS -MARKUP. For detailed informa-
tion see MARKUP Options in Chapter 7. For examples of usage, see
MARKUP on page 8-117, and Creating Web Reports in Chapter 4.

NEWP[AGE] {1|n|NONE}
Sets the number of blank lines to be printed from the top of each page
to the top title. A value of zero places a formfeed at the beginning of
each page (including the first page) and clears the screen on most termi-
nals. If you set NEWPAGE to NONE, SQL*Plus does not print a blank
line or formfeed between the report pages.

NULL text
Sets the text that represents a null value in the result of a SQL SELECT
command. Use the NULL clause of the COLUMN command to over-
ride the setting of the NULL variable for a given column.

SET

8-108 SQL*Plus User’s Guide and Reference

NUMF[ORMAT] format
Sets the default format for displaying numbers. Enter a number format
for format. For number format descriptions, see the FORMAT clause of
the COLUMN command in this chapter.

NUM[WIDTH] {10|n}
Sets the default width for displaying numbers. For number format
descriptions, see the FORMAT clause of the COLUMN command in
this chapter.

PAGES[IZE] {24|n}
Sets the number of lines in each page. You can set PAGESIZE to zero to
suppress all headings, page breaks, titles, the initial blank line, and
other formatting information.

PAU[SE] {ON|OFF|text}
Allows you to control scrolling of your terminal when running reports.
ON causes SQL*Plus to pause at the beginning of each page of report
output. You must press [Return] after each pause. The text you enter
specifies the text to be displayed each time SQL*Plus pauses. If you
enter multiple words, you must enclose text in single quotes.

You can embed terminal-dependent escape sequences in the PAUSE
command. These sequences allow you to create inverse video messages
or other effects on terminals that support such characteristics.

RECSEP {WR[APPED]|EA[CH]|OFF}
RECSEPCHAR {_|c}

Display or print record separators. A record separator consists of a sin-
gle line of the RECSEPCHAR (record separating character) repeated
LINESIZE times.

RECSEPCHAR defines the record separating character. A single space
is the default.

RECSEP tells SQL*Plus where to make the record separation. For exam-
ple, if you set RECSEP to WRAPPED, SQL*Plus prints a record separa-
tor only after wrapped lines. If you set RECSEP to EACH, SQL*Plus
prints a record separator following every row. If you set RECSEP to
OFF, SQL*Plus does not print a record separator.

SERVEROUT[PUT] {ON|OFF} [SIZE n] [FOR[MAT]

SET

Command Reference 8-109

 {WRA[PPED]|WOR[D_WRAPPED]|TRU[NCATED]}]
Controls whether to display the output (that is, DBMS_OUTPUT.PUT_
LINE) of stored procedures or PL/SQL blocks in SQL*Plus. OFF sup-
presses the output of DBMS_OUTPUT.PUT_LINE; ON displays the
output.

SIZE sets the number of bytes of the output that can be buffered within
the Oracle8i database server. The default for n is 2000. n cannot be less
than 2000 or greater than 1,000,000.

When WRAPPED is enabled SQL*Plus wraps the server output within
the line size specified by SET LINESIZE, beginning new lines when
required.

When WORD_WRAPPED is enabled, each line of server output is
wrapped within the line size specified by SET LINESIZE. Lines are bro-
ken on word boundaries. SQL*Plus left justifies each line, skipping all
leading whitespace.

When TRUNCATED is enabled, each line of server output is truncated
to the line size specified by SET LINESIZE.

For each FORMAT, every server output line begins on a new output
line.

For more information on DBMS_OUTPUT.PUT_LINE, see your Oracle8i
Application Developer’s Guide - Fundamentals.

SHIFT[INOUT] {VIS[IBLE]|INV[ISIBLE]}
Allows correct alignment for terminals that display shift characters. The
SET SHIFTINOUT command is useful for terminals which display shift
characters together with data (for example, IBM 3270 terminals). You
can only use this command with shift sensitive character sets (for exam-
ple, JA16DBCS).

Use VISIBLE for terminals that display shift characters as a visible char-
acter (for example, a space or a colon). INVISIBLE is the opposite and
does not display any shift characters.

SHOW[MODE] {ON|OFF}
Controls whether SQL*Plus lists the old and new settings of a SQL*Plus
system variable when you change the setting with SET. ON lists the set-
tings; OFF suppresses the listing. SHOWMODE ON has the same
behavior as the obsolete SHOWMODE BOTH.

SET

8-110 SQL*Plus User’s Guide and Reference

SQLBL[ANKLINES] {ON|OFF}
Controls whether SQL*Plus allows blank lines within a SQL command.
ON interprets blank lines and new lines as part of a SQL command.
OFF, the default value, does not allow blank lines or new lines in a SQL
command.

Enter the BLOCKTERMINATOR to stop SQL command entry without
running the SQL command. Enter the SQLTERMINATOR character to
stop SQL command entry and run the SQL statement.

SQLC[ASE] {MIX[ED]|LO[WER]|UP[PER]}
Converts the case of SQL commands and PL/SQL blocks just prior to
execution. SQL*Plus converts all text within the command, including
quoted literals and identifiers. If SQLCASE equals UPPER, all text is
converted to uppercase. If SQLCASE equals LOWER all text is con-
verted to lowercase, and if SQLCASE equals MIXED, all text is
unchanged. SQLCASE does not change the SQL buffer itself.

SQLCO[NTINUE] {> |text}
Sets the character sequence SQL*Plus displays as a prompt after you
continue a SQL*Plus command on an additional line using a hyphen
(–).

SQLN[UMBER] {ON|OFF}
Sets the prompt for the second and subsequent lines of a SQL com-
mand or PL/SQL block. ON sets the prompt to be the line number. OFF
sets the prompt to the value of SQLPROMPT.

SQLPRE[FIX] {#|c}
Sets the SQL*Plus prefix character. While you are entering a SQL com-
mand or PL/SQL block, you can enter a SQL*Plus command on a sepa-
rate line, prefixed by the SQL*Plus prefix character. SQL*Plus will
execute the command immediately without affecting the SQL com-
mand or PL/SQL block that you are entering. The prefix character must
be a non-alphanumeric character.

SQLP[ROMPT] {SQL>|text}
Sets the SQL*Plus command prompt.

SQLT[ERMINATOR] {;|c|ON|OFF}
Sets the character used to end and execute SQL commands to c. It can-
not be an alphanumeric character or a whitespace. OFF means that
SQL*Plus recognizes no command terminator; you terminate a SQL

SET

Command Reference 8-111

command by entering an empty line. If SQLBLANKLINES is set ON,
you must use the BLOCKTERMINATOR to terminate a SQL command.
ON resets the terminator to the default semicolon (;).

SUF[FIX] {SQL|text}
Sets the default file extension that SQL*Plus uses in commands that
refer to command files. SUFFIX does not control extensions for spool
files.

TAB {ON|OFF}
Determines how SQL*Plus formats white space in terminal output. OFF
uses spaces to format white space in the output. ON uses the TAB char-
acter. TAB settings are every eight characters. The default value for TAB
is system dependent.

TERM[OUT] {ON|OFF}
Controls the display of output generated by commands executed from a
command file. OFF suppresses the display so that you can spool out-
put from a command file without seeing the output on the screen. ON
displays the output. TERMOUT OFF does not affect output from com-
mands you enter interactively.

TI[ME] {ON|OFF}
Controls the display of the current time. ON displays the current time
before each command prompt. OFF suppresses the time display.

TIMI[NG] {ON|OFF}
Controls the display of timing statistics. ON displays timing statistics
on each SQL command or PL/SQL block run. OFF suppresses timing of
each command. For information about the data SET TIMING ON dis-
plays, see the Oracle installation and user’s manual(s) provided for
your operating system. Refer to the TIMING command for information
on timing multiple commands.

TRIM[OUT] {ON|OFF}
Determines whether SQL*Plus allows trailing blanks at the end of each
displayed line. ON removes blanks at the end of each line, improving
performance especially when you access SQL*Plus from a slow commu-
nications device. OFF allows SQL*Plus to display trailing blanks. TRI-
MOUT ON does not affect spooled output.

SET

8-112 SQL*Plus User’s Guide and Reference

TRIMS[POOL] {ON|OFF}
Determines whether SQL*Plus allows trailing blanks at the end of each
spooled line. ON removes blanks at the end of each line. OFF allows
SQL*Plus to include trailing blanks. TRIMSPOOL ON does not affect
terminal output.

UND[ERLINE] {-|c|ON|OFF}
Sets the character used to underline column headings in SQL*Plus
reports to c. Note, c cannot be an alphanumeric character or a white
space. ON or OFF turns underlining on or off. ON changes the value of
c back to the default "-".

VER[IFY] {ON|OFF}
Controls whether SQL*Plus lists the text of a SQL statement or PL/SQL
command before and after SQL*Plus replaces substitution variables
with values. ON lists the text; OFF suppresses the listing.

WRA[P] {ON|OFF}
Controls whether SQL*Plus truncates the display of a SELECTed row if
it is too long for the current line width. OFF truncates the SELECTed
row; ON allows the SELECTed row to wrap to the next line.

Use the WRAPPED and TRUNCATED clauses of the COLUMN com-
mand to override the setting of WRAP for specific columns.

Usage Notes
SQL*Plus maintains system variables (also called SET command variables) to allow
you to establish a particular environment for a SQL*Plus session. You can change
these system variables with the SET command and list them with the SHOW
command.

SET ROLE and SET TRANSACTION are SQL commands (see the Oracle8i SQL
Reference for more information). When not followed by the keywords
TRANSACTION or ROLE, SET is assumed to be a SQL*Plus command.

Examples
The following examples show sample uses of selected SET command variables.

APPINFO
To display the setting of APPINFO, enter

SQL> SHOW APPINFO

SET

Command Reference 8-113

SQL> appinfo is ON and set to “SQL*Plus”

To change the default text, enter

SQL> SET APPI ’This is SQL*Plus’
SQL> SHOW APPINFO
SQL> appinfo is ON and set to “This is SQL*Plus”

To make sure that registration has taken place, enter
SQL> VARIABLE MOD VARCHAR2(50)
SQL> VARIABLE ACT VARCHAR2(40)
SQL> EXECUTE DBMS_APPLICATION_INFO.READ_MODULE(:MOD, :ACT);
SQL> PRINT MOD
MOD

This is SQL*Plus

AUTORECOVERY
To set the recovery mode to AUTOMATIC, enter

SQL> SET AUTORECOVERY ON
SQL> RECOVER DATABASE

CMDSEP
To specify a TTITLE and format a column on the same line, enter

SQL> SET CMDSEP +
SQL> TTITLE LEFT ’SALARIES’ + COLUMN SAL FORMAT $9,999
SQL> SELECT ENAME, SAL FROM EMP
 2 WHERE JOB = ’CLERK’;

SET

8-114 SQL*Plus User’s Guide and Reference

The following output results:

SALARIES
ENAME SAL
---------- -------
SMITH $800
ADAMS $1,100
JAMES $950
MILLER $1,300

COLSEP
To set the column separator to "|" enter

SQL> SET COLSEP ’|’
SQL> SELECT ENAME, JOB, DEPTNO
 2 FROM EMP
 3 WHERE DEPTNO = 20;

The following output results:

ENAME |JOB | DEPTNO

SMITH |CLERK | 20
JONES |MANAGER | 20
SCOTT |ANALYST | 20
ADAMS |CLERK | 20
FORD |ANALYST | 20

COMPATIBILITY
To run a command file, SALARY.SQL, created with Oracle7, enter

SQL> SET COMPATIBILITY V7
SQL> START SALARY

After running the file, reset compatibility to V8 to run command files created with
Oracle8i:

SQL> SET COMPATIBILITY V8
Alternatively, you can add the command SET COMPATIBILITY V7 to the beginning
of the command file, and reset COMPATIBILITY to V8 at the end of the file.

DESCRIBE
To describe the object emp_object to a depth of two levels, and indent the output
while also displaying line numbers, first describe the object as follows:

SET

Command Reference 8-115

SQL> DESCRIBE emp_object

The following output results:

 Name Null Type
 --- -------- ----------------------------
 EMPLOYEE RECUR_PERSON
 NAME VARCHAR2(20)
 ADDR RECUR_ADDRESS
 ADDR1 RECUR_ADDRESS1
 DOB DATE
 GENDER VARCHAR2(10)
 DEPT RECUR_DEPARTMENT
 DEPTNO NUMBER
 DEPT_NAME VARCHAR2(20)
 LOCATION VARCHAR2(20)
 START_DATE DATE
 POSITION VARCHAR2(1)
 SAL RECUR_SALARY
 ANNUAL_SAL NUMBER(10,2)
 EMP_TYPE VARCHAR2(1)
 COMM NUMBER(10,2)
 PENALTY_RATE NUMBER(5,2)

To format emp_object so that the output displays with indentation and line
numbers, use the SET DESCRIBE command as follows:

SQL> SET DESCRIBE DEPTH 2 LINENUM ON INDENT ON

To display the above settings, enter

SQL> DESCRIBE emp_object

The following output results:

 Name Null Type
 ------------------------------ -------- ----------------------------
 1 EMPLOYEE RECUR_PERSON
 2 1 NAME VARCHAR2(20)
 3 1 ADDR RECUR_ADDRESS
 4 1 ADDR1 RECUR_ADDRESS1
 5 1 DOB DATE
 6 1 GENDER VARCHAR2(10)
 7 DEPT RECUR_DEPARTMENT
 8 7 DEPTNO NUMBER
 9 7 DEPT_NAME VARCHAR2(20)

SET

8-116 SQL*Plus User’s Guide and Reference

 10 7 LOCATION VARCHAR2(20)
 11 START_DATE DATE
 12 POSITION VARCHAR2(1)
 13 SAL RECUR_SALARY
 14 13 ANNUAL_SAL NUMBER(10,2)
 15 13 EMP_TYPE VARCHAR2(1)
 16 13 COMM NUMBER(10,2)
 17 13 PENALTY_RATE NUMBER(5,2)

ESCAPE
If you define the escape character as an exclamation point (!), then

SQL> SET ESCAPE !
SQL> ACCEPT v1 PROMPT ’Enter !&1:’

displays this prompt:

Enter &1:

HEADING
To suppress the display of column headings in a report, enter

SQL> SET HEADING OFF

If you then run a SQL SELECT command,

SQL> SELECT ENAME, SAL FROM EMP
 2 WHERE JOB = ’CLERK’;

the following output results:

ADAMS 1100
JAMES 950
MILLER 1300

INSTANCE
To set the default instance to "PROD1" enter

SQL> SET INSTANCE PROD1
To set the instance back to the default or local, enter

SQL> SET INSTANCE local

You must disconnect from any connected instances to change the instance.

SET

Command Reference 8-117

LOBOFFSET
To set the starting position from which a CLOB column’s data is retrieved to the
22nd position, enter

SQL> SET LOBOFFSET 22

The CLOB data will wrap on your screen; SQL*Plus will not truncate until the 23rd
character.

LOGSOURCE
To set the default location of log files for recovery to the directory
"/usr/oracle81/dbs/arch" enter

SQL> SET LOGSOURCE "/usr/oracle81/dbs/arch"
SQL> RECOVER DATABASE

LONG
To set the maximum number of characters to fetch for displaying and copying
LONG values to 500, enter

SQL> SET LONG 500

The LONG data will wrap on your screen; SQL*Plus will not truncate until the 501st
character.

LONGCHUNKSIZE
To set the size of the increments in which SQL*Plus retrieves LONG values to 100
characters, enter

SQL> SET LONGCHUNKSIZE 100

The LONG data will be retrieved in increments of 100 characters until the entire
value is retrieved or the value of SET LONG is reached, whichever is the smaller.

MARKUP
The following is a log of an interactive session to output HTML marked up text to a
spool file:

Note: The SET MARKUP example command is laid out for
readability using line continuation characters "-" and spacing.
Command options are concatenated in normal entry.

SET

8-118 SQL*Plus User’s Guide and Reference

SQL> SET MARKUP HTML ON SPOOL ON HEAD ’<TITLE>Employee List</title> -
 <STYLE TYPE="TEXT/CSS"><!--BODY {background: yellow} --></STYLE>’
SQL> SET ECHO OFF

SQL> SPOOL EMPLOYEE.HTML

<HTML>
<HEAD>
<TITLE>EMPLOYEE LIST</TITLE><STYLE TYPE="TEXT/CSS"><!--BODY {background: yellow}
--></STYLE>
<META NAME="GENERATOR" CONTENT="SQL*Plus 8.1.7">
</HEAD>
<BODY>
SQL> SELECT DEPTNO, DNAME FROM DEPT;

<P>
<TABLE BORDER="1" WIDTH="90%">
<TR>
<TH>
DEPTNO
</TH>
<TH>
DNAME
</TH>
</TR>
<TR>
<TD ALIGN="RIGHT">
 10
</TD>
<TD>
ACCOUNTING
</TD>
</TR>
<TR>
<TD ALIGN="RIGHT">
 20
</TD>
<TD>
RESEARCH
</TD>
</TR>
<TR>
<TD ALIGN="RIGHT">
 30
</TD>

SET

Command Reference 8-119

<TD>
SALES
</TD>
</TR>
<TR>
<TD ALIGN="RIGHT">
 40
</TD>
<TD>
OPERATIONS
</TD>
</TR>
</TABLE>
<P>

SQL> EXIT

</BODY>
</HTML>
Disconnected from Oracle8i Enterprise Edition Release 8.1.7.0.0 - Production
With the Partitioning option
JServer Release 8.1.7.0.0 - Production

The previous SQL*Plus session spools the HTML output to the spool file
employee.html. This file is a standalone web page as follows:

SET

8-120 SQL*Plus User’s Guide and Reference

SERVEROUTPUT
To enable the display of text within a PL/SQL block using DBMS_OUTPUT.PUT_
LINE, enter

SQL> SET SERVEROUTPUT ON

The following example shows what happens when you execute an anonymous
procedure with SET SERVEROUTPUT ON:

SQL> BEGIN
 2 DBMS_OUTPUT.PUT_LINE(’Task is complete’);
 3 END;
 4 /
Task is complete.

PL/SQL procedure successfully completed.

The following example shows what happens when you create a trigger with SET
SERVEROUTPUT ON:

SQL> CREATE TRIGGER SERVER_TRIG BEFORE INSERT OR UPDATE -
> OR DELETE
 2 ON SERVER_TAB
 3 BEGIN
 4 DBMS_OUTPUT.PUT_LINE(’Task is complete.’);
 5 END;
 6 /
Trigger created.
SQL> INSERT INTO SERVER_TAB VALUES (’TEXT’);
Task is complete.
1 row created.

To set the output to WORD_WRAPPED, enter

SQL> SET SERVEROUTPUT ON FORMAT WORD_WRAPPED
SQL> SET LINESIZE 20
SQL> BEGIN
 2 DBMS_OUTPUT.PUT_LINE(’If there is nothing left to do’);
 3 DBMS_OUTPUT.PUT_LINE(’shall we continue with plan B?’);
 4 end;
 5 /
If there is nothing
left to do
shall we continue
with plan B?

SET

Command Reference 8-121

To set the output to TRUNCATED, enter

SQL> SET SERVEROUTPUT ON FORMAT TRUNCATED
SQL> SET LINESIZE 20
SQL> BEGIN
 2 DBMS_OUTPUT.PUT_LINE(’If there is nothing left to do’);
 3 DBMS_OUTPUT.PUT_LINE(’shall we continue with plan B?’);
 4 END;
 5 /
If there is nothing
shall we continue wi

SHIFTINOUT
To enable the display of shift characters, enter

SQL> SET SHIFTINOUT VISIBLE
SQL> SELECT ENAME, JOB FROM EMP;

The following output results:

ENAME JOB
---------- ----------
:JJOO: :AABBCC:
:AA:abc :DDEE:e

where ":" = shift character

 uppercase = multibyte character

 lowercase = singlebyte character

SQLBLANKLINES
To preserve blank lines in a SQL statement, enter

SQL> SET SQLBLANKLINES ON
SQL> REM Using the SQLTERMINATOR (default is ";")
SQL> REM Could have used the BLOCKTERMINATOR (default is ".")
SQL> SELECT *
 2
 3 FROM

Note: This example illustrates that the columns are aligned
correctly. The data used in this example is an illustration only and
does not represent real data.

SET

8-122 SQL*Plus User’s Guide and Reference

 4
 5 DUAL
 6
 7 ;

The following output results:

D
-
X

SQLCONTINUE
To set the SQL*Plus command continuation prompt to an exclamation point
followed by a space, enter

SQL> SET SQLCONTINUE ’! ’

SQL*Plus will prompt for continuation as follows:

SQL> TTITLE ’YEARLY INCOME’ -
! RIGHT SQL.PNO SKIP 2 -
! CENTER ’PC DIVISION’
SQL>

SUFFIX
To change the default command-file extension from the default, .SQL to .UFI, enter

SQL> SET SUFFIX UFI

If you then enter

SQL> GET EXAMPLE

SQL*Plus will look for a file named EXAMPLE with an extension of UFI instead of
EXAMPLE with an extension of SQL.

SHOW

Command Reference 8-123

SHOW

Purpose
Shows the value of a SQL*Plus system variable or the current SQL*Plus
environment.

Syntax
SHO[W] option

where option represents one of the following terms or clauses:

system_variable
ALL
BTI[TLE]
ERR[ORS] [{FUNCTION|PROCEDURE|PACKAGE|PACKAGE BODY|
 TRIGGER|VIEW|TYPE|TYPE BODY} [schema.]name]
LNO
PARAMETERS [parameter_name]
PNO
REL[EASE]
REPF[OOTER]
REPH[EADER]
SGA
SPOO[L]
SQLCODE
TTI[TLE]
USER

Terms and Clauses
Refer to the following list for a description of each term or clause:

system_variable
Represents any system variable set by the SET command.

ALL
Lists the settings of all SHOW options, except ERRORS, in alphabetical
order.

BTI[TLE]
Shows the current BTITLE definition.

SHOW

8-124 SQL*Plus User’s Guide and Reference

ERR[ORS] [{FUNCTION|PROCEDURE|PACKAGE|PACKAGE BODY
|TRIGGER|VIEW|TYPE|TYPE BODY} [schema.]name]

Shows the compilation errors of a stored procedure (includes stored
functions, procedures, and packages). After you use the CREATE com-
mand to create a stored procedure, a message is displayed if the stored
procedure has any compilation errors. To see the errors, you use SHOW
ERRORS.

When you specify SHOW ERRORS with no arguments, SQL*Plus
shows compilation errors for the most recently created or altered stored
procedure. When you specify the type (function, procedure, package,
package body, trigger, view, type, or type body) and the name of the
PL/SQL stored procedure, SQL*Plus shows errors for that stored proce-
dure. For more information on compilation errors, see your PL/SQL
User’s Guide and Reference.

schema contains the named object. If you omit schema, SHOW ERRORS
assumes the object is located in your current schema.

SHOW ERRORS output displays the line and column number of the
error (LINE/COL) as well as the error itself (ERROR). LINE/COL and
ERROR have default widths of 8 and 65, respectively. You can alter
these widths using the COLUMN command.

LNO
Shows the current line number (the position in the current page of the
display and/or spooled output).

PARAMETERS [parameter_name]
Displays the current values for one or more initialization parameters.
You can use a string after the command to see a subset of parameters
whose names include that string. For example, if you enter:

SQL> SHOW PARAMETERS COUNT

you would see:

NAME TYPE VALUE
------------------------------ ----- -----
db_file_multiblock_read_count integer 12
spin_count integer 0

The SHOW PARAMETERS command, without any string following the
command, displays all initialization parameters.

SHOW

Command Reference 8-125

Note, your output may vary depending on the version and configura-
tion of the Oracle database server to which you are connected. You
need SELECT ON V_$PARAMETER object privileges to use the
PARAMETERS clause, otherwise you will receive a message

ORA-00942: table or view does not exist

PNO
Shows the current page number.

REL[EASE]
Shows the release number of Oracle that SQL*Plus is accessing.

REPF[OOTER]
Shows the current REPFOOTER definition.

REPH[EADER]
Shows the current REPHEADER definition.

SPOO[L]
Shows whether output is being spooled.

SGA
Displays information about the current instance’s System Global Area.
Note, you need SELECT ON V_$SGA object privileges to use the SGA
clause, otherwise you will receive a message

ORA-00942: table or view does not exist

SQLCODE
Shows the value of SQL.SQLCODE (the SQL return code of the most
recent operation).

TTI[TLE]
Shows the current TTITLE definition.

USER
Shows the username you are currently using to access SQL*Plus. If you
connect as "/ AS SYSDBA", then the SQL> SHOW USER command dis-
plays SQL> USER is "SYS".

SHOW

8-126 SQL*Plus User’s Guide and Reference

Examples
To list the current LINESIZE, enter

SQL> SHOW LINESIZE

If the current linesize is 80 characters, SQL*Plus will give the following response:

linesize 80

The following example illustrates how to create a stored procedure and then show
its compilation errors:

SQL> connect system/manager
SQL> create procedure scott.proc1 as
SQL> begin
SQL> :p1 := 1;
SQL> end;
SQL> /
Warning: Procedure created with compilation errors.
SQL> show errors
Errors for PROCEDURE SCOTT.PROC1:
LINE/COL ERROR
--
3/3 PLS-00049: bad bind variable ’P1’
SQL> show errors procedure proc1
No errors.
SQL> show errors procedure scott.proc1
Errors for PROCEDURE SCOTT.PROC1:
LINE/COL ERROR
--
3/3 PLS-00049: bad bind variable ’P1’

To show whether AUTORECOVERY is enabled, enter

SQL> SHOW AUTORECOVERY
autorecovery ON

To display the connect identifier for the default instance, enter

SQL> SHOW INSTANCE
instance "local"

To display the location for archive logs, enter

SQL> SHOW LOGSOURCE
logsource "/usr/oracle81/dbs/arch"

SHOW

Command Reference 8-127

To display information about the SGA, enter

SQL> SHOW SGA
Total System Global Area 7629732 bytes
Fixed Size 60324 bytes
Variable Size 6627328 bytes
Database Buffers 409600 bytes
Redo Buffers 532480 bytes

SHUTDOWN

8-128 SQL*Plus User’s Guide and Reference

SHUTDOWN

Purpose
Shuts down a currently running Oracle instance, optionally closing and
dismounting a database. You cannot use SHUTDOWN to stop Oracle instances on
Oracle7 servers.

Syntax
SHUTDOWN [ABORT|IMMEDIATE|NORMAL]

Terms and Clauses
Refer to the following list for a description of each term or clause:

ABORT
Proceeds with the fastest possible shutdown of the database without
waiting for calls to complete or users to disconnect.

Uncommitted transactions are not rolled back. Client SQL statements
currently being processed are terminated. All users currently con-
nected to the database are implicitly disconnected and the next data-
base startup will require instance recovery.

You must use this option if a background process terminates abnor-
mally.

IMMEDIATE
Does not wait for current calls to complete or users to disconnect from
the database.

Further connects are prohibited. The database is closed and dis-
mounted. The instance is shutdown and no instance recovery is
required on the next database startup.

NORMAL
NORMAL is the default option which waits for users to disconnect
from the database.

Further connects are prohibited. The database is closed and dis-
mounted. The instance is shutdown and no instance recovery is
required on the next database startup.

SHUTDOWN

Command Reference 8-129

Usage Notes
SHUTDOWN with no arguments is equivalent to SHUTDOWN NORMAL.

You must be connected to a database as SYSOPER, or SYSDBA. You cannot connect
via a multi-threaded server. For more information about connecting to a database,
see the CONNECT command earlier in this chapter.

Example
To shutdown the database in normal mode, enter

SQL> SHUTDOWN
Database closed.
Database dismounted.
Oracle instance shut down.

SPOOL

8-130 SQL*Plus User’s Guide and Reference

SPOOL

Purpose
Stores query results in an operating system file and, optionally, sends the file to a
printer.

Syntax
SPO[OL] [file_name[.ext]|OFF|OUT]

Terms and Clauses
Refer to the following list for a description of each term or clause:

file_name[.ext]
Represents the name of the file to which you wish to spool. SPOOL fol-
lowed by file_name begins spooling displayed output to the named file.
If you do not specify an extension, SPOOL uses a default extension
(LST or LIS on most systems).

OFF
Stops spooling.

OUT
Stops spooling and sends the file to your host computer’s standard
(default) printer.

Enter SPOOL with no clauses to list the current spooling status.

Usage Notes
To spool output generated by commands in a command file without displaying the
output on the screen, use SET TERMOUT OFF. SET TERMOUT OFF does not affect
output from commands run interactively.

Examples
To record your displayed output in a file named DIARY using the default file
extension, enter

SQL> SPOOL DIARY

To stop spooling and print the file on your default printer, enter

SQL> SPOOL OUT

START

Command Reference 8-131

START

Purpose
Executes the contents of the specified command file.

Syntax
STA[RT] file_name[.ext] [arg ...]

Terms and Clauses
Refer to the following list for a description of each term or clause:

file_name[.ext]
Represents the command file you wish to execute. The file can contain
any command that you can run interactively.

If you do not specify an extension, SQL*Plus assumes the default com-
mand-file extension (normally SQL). For information on changing this
default extension, see the SUFFIX variable of the SET command in this
chapter.

When you enter START file_name.ext, SQL*Plus searches for a file with
the filename and extension you specify in the current default directory.
If SQL*Plus does not find such a file, SQL*Plus will search a sys-
tem-dependent path to find the file. Some operating systems may not
support the path search. Consult the Oracle installation and user’s
manual(s) provided for your operating system for specific information
related to your operating system environment.

arg ...
Represent data items you wish to pass to parameters in the command
file. If you enter one or more arguments, SQL*Plus substitutes the val-
ues into the parameters (&1, &2, and so forth) in the command file. The
first argument replaces each occurrence of &1, the second replaces each
occurrence of &2, and so forth.

The START command DEFINEs the parameters with the values of the
arguments; if you START the command file again in this session, you
can enter new arguments or omit the arguments to use the old values.

For more information on using parameters, refer to the subsection
"Passing Parameters through the START Command" under "Writing
Interactive Commands" in Chapter 3.

START

8-132 SQL*Plus User’s Guide and Reference

Usage Notes
The @ ("at" sign) and @@ (double "at" sign) commands function similarly to START.
Disabling the START command in the Product User Profile also disables the @ and
@@ commands. See the @ ("at" sign) and @@ (double "at" sign) commands in this
chapter for further information on these commands.

The EXIT or QUIT commands in a command file terminate SQL*Plus.

Example
A file named PROMOTE with the extension SQL, used to promote employees,
might contain the following command:

SELECT * FROM EMP
WHERE MGR=&1 AND JOB=’&2’ AND SAL>&3;

To run this command file, enter

SQL> START PROMOTE 7280 CLERK 950

SQL*Plus then executes the following command:

SELECT * FROM EMP
WHERE MGR=7280 AND JOB=’CLERK’ AND SAL>950;

STARTUP

Command Reference 8-133

STARTUP

Purpose
Starts an Oracle instance with several options, including mounting and opening a
database. You cannot use STARTUP to start Oracle instances on Oracle7 servers.

Syntax
STARTUP [FORCE] [RESTRICT] [PFILE=filename] [EXCLUSIVE] [PARALLEL [RETRY]]
[SHARED [RETRY]] [MOUNT [dbname] | OPEN [open_options] [dbname] | NOMOUNT]

where open_options has the following syntax:

READ {ONLY | WRITE [RECOVER]} | RECOVER

Terms and Clauses
Refer to the following list for a description of each term and clause:

FORCE
Shuts down the current Oracle instance (if it is running) with SHUT-
DOWN mode ABORT, before restarting it. If the current instance is run-
ning and FORCE is not specified, an error results. FORCE is useful
while debugging and under abnormal circumstances. It should not nor-
mally be used.

RESTRICT
Only allows Oracle users with the RESTRICTED SESSION system priv-
ilege to connect to the database. Later, you can use the ALTER SYSTEM
command to disable the restricted session feature.

PFILE=filename
Causes the specified parameter file to be used while starting up the
instance. If PFILE is not specified, then the default STARTUP parame-
ter file is used. The default file used is platform specific. For example,
the default file is $ORACLE_HOME/dbs/init$ORACLE_SID.ora on
UNIX, and %ORACLE_HOME%\database\initORCL.ora on Windows.

EXCLUSIVE
Signifies that the database can only be mounted and opened by the cur-
rent instance (it cannot be opened simultaneously by multiple
instances). Cannot be used with SHARED, PARALLEL, or NOMOUNT.
If no mounting option is specified, EXCLUSIVE is assigned by default.

STARTUP

8-134 SQL*Plus User’s Guide and Reference

PARALLEL
Must be specified if the database is to be mounted by multiple instances
concurrently. Cannot be used with EXCLUSIVE or NOMOUNT. Invalid
if the initialization parameter SINGLE_PROCESS is set to TRUE.

SHARED
Synonym for PARALLEL.

RETRY
Specifies that opening the database should be attempted every five sec-
onds if the instance is busy being recovered by another instance. When
an instance is being recovered by another instance, the down instance
cannot open the database until recovery is complete. If the database
cannot be opened for any other reason, RETRY does not attempt to
open the database again. This option is only available for instances
operating in PARALLEL mode.

MOUNT dbname
Mounts a database but does not open it.

dbname is the name of the database to mount or open. If no database
name is specified, the database name is taken from the initialization
parameter DB_NAME.

OPEN
Mounts and opens the specified database.

NOMOUNT
Causes the database not to be mounted upon instance startup.

Cannot be used with SHARED, EXCLUSIVE, PARALLEL, MOUNT, or
OPEN.

RECOVER
Specifies that media recovery should be performed, if necessary, before
starting the instance. STARTUP RECOVER has the same effect as issu-
ing the RECOVER DATABASE command and starting an instance.
Only complete recovery is possible with the RECOVER option.

Recovery proceeds, if necessary, as if AUTORECOVERY is set to ON,
regardless of whether or not AUTORECOVERY is enabled. If a redo log
file is not found in the expected location, recovery continues as if
AUTORECOVERY is disabled, by prompting you with the suggested
location and name of the subsequent log files that need to be applied.

STARTUP

Command Reference 8-135

Usage Notes
You must be connected to a database as SYSOPER, or SYSDBA. You cannot be
connected via a multi-threaded server.

STARTUP with no arguments is equivalent to STARTUP OPEN.

STARTUP OPEN RECOVER mounts and opens the database even when recovery
fails.

Examples
To start an instance using the standard parameter file, mount the default database in
exclusive mode, and open the database, enter

SQL> STARTUP

or enter

SQL> STARTUP EXCLUSIVE OPEN database

To start an instance using the standard parameter file, mount the default database in
parallel mode, and open the database, enter

SQL> STARTUP PARALLEL
SQL> STARTUP PARALLEL OPEN database

To restart an instance that went down in parallel mode and may not yet have been
recovered by other instances, use the RETRY option:

SQL> STARTUP PARALLEL RETRY

To shutdown the current instance, immediately restart it without mounting or
opening, and allow only database administrators to connect, enter

SQL> STARTUP FORCE RESTRICT NOMOUNT

To start an instance using the parameter file TESTPARM without mounting the
database, enter

SQL> STARTUP PFILE=testparm NOMOUNT

To shutdown a particular database, immediately restart and open it in parallel
mode, allow access only to database administrators, and use the parameter file
MYINIT.ORA. enter

SQL> STARTUP FORCE RESTRICT PFILE=myinit.ora SHARED OPEN database

STARTUP

8-136 SQL*Plus User’s Guide and Reference

To startup an instance and mount but not open a database, enter

SQL> CONNECT / as SYSDBA
Connected to an idle instance.
SQL> STARTUP MOUNT
ORACLE instance started.

Total System Global Area 7629732 bytes
Fixed Size 60324 bytes
Variable Size 6627328 bytes
Database Buffers 409600 bytes
Redo Buffers 532480 bytes

STORE

Command Reference 8-137

STORE

Purpose
Saves attributes of the current SQL*Plus environment in a host operating system file
(a command file).

Syntax
STORE SET file_name[.ext] [CRE[ATE]|REP[LACE]|APP[END]]

Terms and Clauses
Refer to the following list for a description of each term or clause:

SET
Saves the values of the system variables.

Refer to the SAVE command for information on the other terms and clauses in the
STORE command syntax.

Usage Notes
This command creates a command file which can be executed with the START, @or
@@ commands.

If you want to store a file under a name identical to a STORE command clause (that
is, CREATE, REPLACE or APPEND), you must put the name in single quotes or
specify a file extension.

Example
To store the current SQL*Plus system variables in a file named DEFAULTENV with
the default command-file extension, enter

SQL> STORE SET DEFAULTENV

To append the current SQL*Plus system variables to an existing file called
DEFAULTENV with the extension OLD, enter

SQL> STORE SET DEFAULTENV.OLD APPEND

TIMING

8-138 SQL*Plus User’s Guide and Reference

TIMING

Purpose
Records timing data for an elapsed period of time, lists the current timer’s name
and timing data, or lists the number of active timers.

Syntax
TIMI[NG] [START text|SHOW|STOP]

Terms and Clauses
Refer to the following list for a description of each term or clause:

START text
Sets up a timer and makes text the name of the timer. You can have
more than one active timer by STARTing additional timers before
STOPping the first; SQL*Plus nests each new timer within the preced-
ing one. The timer most recently STARTed becomes the current timer.

SHOW
Lists the current timer’s name and timing data.

STOP
Lists the current timer’s name and timing data, then deletes the timer. If
any other timers are active, the next most recently STARTed timer
becomes the current timer.

Enter TIMING with no clauses to list the number of active timers.

Usage Notes
You can use this data to do a performance analysis on any commands or blocks run
during the period.

For information about the data TIMING displays, see the Oracle installation and
user’s manual(s) provided for your operating system. Refer to SET TIMING ON for
information on automatically displaying timing data after each SQL command or
PL/SQL block you run.

To delete all timers, use the CLEAR TIMING command.

TIMING

Command Reference 8-139

Examples
To create a timer named SQL_TIMER, enter

SQL> TIMING START SQL_TIMER

To list the current timer’s title and accumulated time, enter

SQL> TIMING SHOW

To list the current timer’s title and accumulated time and to remove the timer, enter

SQL> TIMING STOP

TTITLE

8-140 SQL*Plus User’s Guide and Reference

TTITLE

Purpose
Places and formats a specified title at the top of each report page or lists the current
TTITLE definition. The old form of TTITLE is used if only a single word or string in
quotes follows the TTITLE command.

For a description of the old form of TTITLE, see TTITLE in Appendix F.

Syntax
TTI[TLE] [printspec [text|variable] ...] [ON|OFF]

where printspec represents one or more of the following clauses used to place and
format the text:

COL n
S[KIP] [n]
TAB n
LE[FT]
CE[NTER]
R[IGHT]
BOLD
FORMAT text

Terms and Clauses
Refer to the following list for a description of each term or clause. These terms and
clauses also apply to the BTITLE command.

text
Represents the title text. Enter text in single quotes if you want to place
more than one word on a single line.

variable
Represents a user variable or any of the following system-maintained
values:

■ SQL.LNO (current line number)

■ SQL.PNO (current page number)

■ SQL.RELEASE (current Oracle release number)

TTITLE

Command Reference 8-141

■ SQL.SQLCODE (current error code)

■ SQL.USER (current username)

To print one of these values, reference the appropriate variable in the
title. You can format variable with the FORMAT clause.

OFF
Turns the title off (suppresses its display) without affecting its defini-
tion.

ON
Turns the title on (restores its display). When you define a top title,
SQL*Plus automatically sets TTITLE to ON.

COL n
Indents to column n of the current line (backward if column n has been
passed). "Column" in this context means print position, not table col-
umn.

S[KIP] [n]
Skips to the start of a new line n times; if you omit n, one time; if you
enter zero for n, backward to the start of the current line.

TAB n
Skips forward n columns (backward if you enter a negative value for n).
"Column" in this context means print position, not table column.

LE[FT]|CE[NTER]|R[IGHT]
Left-align, center, and right-align data on the current line respectively.
SQL*Plus aligns following data items as a group, up to the end of the
printspec or the next LEFT, CENTER, RIGHT, or COL command. CEN-
TER and RIGHT use the SET LINESIZE value to calculate the position
of the data item that follows.

BOLD
Prints data in bold print. SQL*Plus represents bold print on your termi-
nal by repeating the data on three consecutive lines. On some operat-
ing systems, SQL*Plus may instruct your printer to print bolded text on
three consecutive lines, instead of bold.

TTITLE

8-142 SQL*Plus User’s Guide and Reference

FORMAT text
Specifies a format model that determines the format of following data
items, up to the next FORMAT clause or the end of the command. The
format model must be a text constant such as A10 or $999. See the COL-
UMN FORMAT command for more information on formatting and
valid format models.

If the datatype of the format model does not match the datatype of a
given data item, the FORMAT clause has no effect on that item.

If no appropriate FORMAT model precedes a given data item,
SQL*Plus prints NUMBER values according to the format specified by
SET NUMFORMAT or, if you have not used SET NUMFORMAT, the
default format. SQL*Plus prints DATE values according to the default
format.

Refer to the FORMAT clause of the COLUMN command in this chap-
ter for more information on default formats.

Enter TTITLE with no clauses to list the current TTITLE definition.

Usage Notes
If you do not enter a printspec clause before the first occurrence of text, TTITLE left
justifies the text. SQL*Plus interprets TTITLE in the new form if a valid printspec
clause (LEFT, SKIP, COL, and so on) immediately follows the command name.

See COLUMN NEW_VALUE for information on printing column and DATE values
in the top title.

You can use any number of constants and variables in a printspec. SQL*Plus displays
the constants and variables in the order you specify them, positioning and
formatting each constant or variable as specified by the printspec clauses that
precede it.

The length of the title you specify with TTITLE cannot exceed 2400 characters.

The continuation character (a hyphen) will not be recognized inside a single-quoted
title text string. To be recognized, the continuation character must appear outside
the quotes, as follows:

SQL> TTITLE CENTER ’Summary Report for’ -
> ’the Month of May’

TTITLE

Command Reference 8-143

Examples
To define "Monthly Analysis" as the top title and to left-align it, to center the date, to
right-align the page number with a three-digit format, and to display "Data in
Thousands" in the center of the next line, enter

SQL> TTITLE LEFT ’Monthly Analysis’ CENTER ’23 Nov 99’ -
> RIGHT ’Page:’ FORMAT 999 SQL.PNO SKIP CENTER -
> ’Data in Thousands’

The following title results:

Monthly Analysis 23 Nov 99 Page: 1
 Data in Thousands

To suppress the top title display without changing its definition, enter

SQL> TTITLE OFF

UNDEFINE

8-144 SQL*Plus User’s Guide and Reference

UNDEFINE

Purpose
Deletes one or more user variables that you defined either explicitly (with the
DEFINE command) or implicitly (with an argument to the START command).

Syntax
UNDEF[INE] variable ...

Terms and Clauses
Refer to the following for a description of the term or clause:

variable
Represents the name of the user variable you wish to delete. One or
more user variables may be deleted in the same command.

Examples
To undefine a user variable named POS, enter

SQL> UNDEFINE POS

To undefine two user variables named MYVAR1 and MYVAR2, enter

SQL> UNDEFINE MYVAR1 MYVAR2

VARIABLE

Command Reference 8-145

VARIABLE

Purpose
Declares a bind variable that can then be referenced in PL/SQL. For more
information on bind variables, see "Using Bind Variables" in Chapter 3. For more
information about PL/SQL, see your PL/SQL User’s Guide and Reference.

VARIABLE without arguments displays a list of all the variables declared in the
session. VARIABLE followed only by a variable name lists that variable.

Syntax
VAR[IABLE] [variable [NUMBER|CHAR|CHAR (n)|NCHAR|NCHAR (n)
 |VARCHAR2 (n)|NVARCHAR2 (n)|CLOB|NCLOB|REFCURSOR]]

Terms and Clauses
Refer to the following list for a description of each term or clause:

variable
Represents the name of the bind variable you wish to create.

NUMBER
Creates a variable of type NUMBER with a fixed length.

CHAR
Creates a variable of type CHAR (character) with a length of one.

CHAR (n)
Creates a variable of type CHAR with a maximum length of n, up to
2000.

NCHAR
Creates a variable of type NCHAR (national character) with a length of
one.

NCHAR (n)
Creates a variable of type NCHAR with a maximum length of n, up to
2000.

VARCHAR2 (n)
Creates a variable of type VARCHAR2 with a maximum length of n, up
to 4000.

VARIABLE

8-146 SQL*Plus User’s Guide and Reference

NVARCHAR2 (n)
Creates a a variable of type NVARCHAR2 (NCHAR VARYING) with a
maximum length of n, up to 4000.

CLOB
Creates a variable of type CLOB.

NCLOB
Creates a variable of type NCLOB.

REFCURSOR
Creates a variable of type REF CURSOR.

Usage Notes
Bind variables may be used as parameters to stored procedures, or may be directly
referenced in anonymous PL/SQL blocks.

To display the value of a bind variable created with VARIABLE, use the PRINT
command. For more information, see the PRINT command in this chapter.

To automatically display the value of a bind variable created with VARIABLE, use
the SET AUTOPRINT command. For more information, see the SET AUTOPRINT
command in this chapter.

Bind variables cannot be used in the COPY command or SQL statements, except in
PL/SQL blocks. Instead, use substitution variables.

When you execute a VARIABLE ... CLOB or NCLOB command, SQL*Plus associates
a LOB locator with the bind variable. The LOB locator is automatically populated
when you execute a SELECT clob_column INTO :cv statement in a PL/SQL block.
SQL*Plus closes the LOB locator after completing a PRINT statement for that bind
variable, or when you exit SQL*Plus.

SQL*Plus SET commands such as SET LONG and SET LONGCHUNKSIZE and SET
LOBOFFSET may be used to control the size of the buffer while PRINTing CLOB or
NCLOB bind variables.

SQL*Plus REFCURSOR bind variables may be used to reference PL/SQL 2.3 or
higher Cursor Variables, allowing PL/SQL output to be formatted by SQL*Plus. For
more information on PL/SQL Cursor Variables, see your PL/SQL User’s Guide and
Reference.

When you execute a VARIABLE ... REFCURSOR command, SQL*Plus creates a
cursor bind variable. The cursor is automatically opened by an OPEN ... FOR
SELECT statement referencing the bind variable in a PL/SQL block. SQL*Plus

VARIABLE

Command Reference 8-147

closes the cursor after completing a PRINT statement for that bind variable, or on
exit.

SQL*Plus formatting commands such as BREAK, COLUMN, COMPUTE and SET
may be used to format the output from PRINTing a REFCURSOR.

A REFCURSOR bind variable may not be PRINTed more than once without
re-executing the PL/SQL OPEN...FOR statement.

Examples
The following example illustrates creating a bind variable and then setting it to the
value returned by a function:

SQL> VARIABLE id NUMBER
SQL> BEGIN
 2 :id := emp_management.hire
 3 (’BLAKE’,’MANAGER’,’KING’,2990,’SALES’);
 4 END;

The bind variable named id can be displayed with the PRINT command or used in
subsequent PL/SQL subprograms.

The following example illustrates automatically displaying a bind variable:

SQL> SET AUTOPRINT ON
SQL> VARIABLE a REFCURSOR
SQL> BEGIN
 2 OPEN :a FOR SELECT * FROM DEPT ORDER BY DEPTNO;
 3 END;
 4 /

PL/SQL procedure successfully completed.

DEPTNO DNAME LOC
-------- ------------- -------------
 10 ACCOUNTING NEW YORK
 20 RESEARCH DALLAS
 30 SALES CHICAGO
 40 OPERATIONS BOSTON

In the above example, there is no need to issue a PRINT command to display the
variable.

VARIABLE

8-148 SQL*Plus User’s Guide and Reference

The following example creates some variables and then lists them:

SQL> VARIABLE id NUMBER
SQL> VARIABLE txt CHAR (20)
SQL> VARIABLE myvar REFCURSOR
SQL> VARIABLE
variable id
datatype NUMBER

variable txt
datatype CHAR(20)

variable myvar
datatype REFCURSOR

The following example lists a single variable:

SQL> VARIABLE txt
variable txt
datatype CHAR(20)

The following example illustrates producing a report listing individual salaries and
computing the departmental and total salary cost:

SQL> VARIABLE RC REFCURSOR
 2 BEGIN
 3 OPEN :RC FOR SELECT DNAME, ENAME, SAL
 4 FROM EMP, DEPT
 5 WHERE EMP.DEPTNO = DEPT.DEPTNO
 6 ORDER BY EMP.DEPTNO, ENAME;
 7 END;
 8 /

PL/SQL procedure successfully completed.

SQL> SET PAGESIZE 100 FEEDBACK OFF
SQL> TTITLE LEFT ’*** Departmental Salary Bill ***’ SKIP 2
SQL> COLUMN SAL FORMAT $999,990.99 HEADING ’Salary’
SQL> COLUMN DNAME HEADING ’Department’
SQL> COLUMN ENAME HEADING ’Employee’
SQL> COMPUTE SUM LABEL ’Subtotal:’ OF SAL ON DNAME
SQL> COMPUTE SUM LABEL ’Total:’ OF SAL ON REPORT
SQL> BREAK ON DNAME SKIP 1 ON REPORT SKIP 1
SQL> PRINT RC

VARIABLE

Command Reference 8-149

*** Departmental Salary Bill ***

Department Employee Salary
-------------- ------------ ----------
ACCOUNTING CLARK $2,450.00
 KING $5,000.00
 MILLER $1,300.00
************** ----------
Subtotal: $8,750.00

RESEARCH ADAMS $1,100.00
 FORD $3,000.00
 JONES $2,975.00
 SCOTT $3,000.00
 SMITH $800.00
************** ----------
Subtotal: $10,875.00

SALES ALLEN $1,600.00
 BLAKE $2,850.00
 JAMES $950.00
 MARTIN $1,250.00
 TURNER $1,500.00
 WARD $1,250.00
************** ----------
Subtotal: $9,400.00

Total: $29,025.00

The following example illustrates producing a report containing a CLOB column,
and then displaying it with the SET LOBOFFSET command.

Assume you have already created a table named clob_tab which contains a column
named clob_col of type CLOB. The clob_col contains the following data:

Remember to run the Departmental Salary Bill report each month. This report
contains confidential information.

To produce a report listing the data in the col_clob column, enter

SQL> variable t clob
SQL> begin
 2 select clob_col into t: from clob_tab;
 3 end;
 4 /

VARIABLE

8-150 SQL*Plus User’s Guide and Reference

PL/SQL procedure successfully completed

To print 200 characters from the column clob_col, enter
SQL> set LONG 200
SQL> print t

The following output results:

T
--
Remember to run the Departmental Salary Bill report each month. This report
contains confidential information.

To set the printing position to the 21st character, enter

SQL> set LOBOFFSET 21
SQL> print t

the following output results:

T
--
Departmental Salary Bill report each month. This report contains confidential
information.

For more information on creating CLOB columns, see your Oracle8i SQL Reference.

WHENEVER OSERROR

Command Reference 8-151

WHENEVER OSERROR

Purpose
Exits SQL*Plus if an operating system error occurs (such as a file I/O error).

Syntax
WHENEVER OSERROR
 {EXIT [SUCCESS|FAILURE|n|variable|:BindVariable][COMMIT|ROLLBACK]
 |CONTINUE [COMMIT|ROLLBACK|NONE]}

Terms and Clauses
Refer to the following list for a description of each term or clause:

EXIT [SUCCESS|FAILURE|n|variable|:BindVariable]
Directs SQL*Plus to exit as soon as an operating system error is
detected. You can also specify that SQL*Plus return a success or failure
code, the operating system failure code, or a number or variable of your
choice. See EXIT in this chapter for details.

CONTINUE
Turns off the EXIT option.

COMMIT
Directs SQL*Plus to execute a COMMIT before exiting or continuing
and save pending changes to the database.

ROLLBACK
Directs SQL*Plus to execute a ROLLBACK before exiting or continuing
and abandon pending changes to the database.

NONE
Directs SQL*Plus to take no action before continuing.

Usage Notes
If you do not enter the WHENEVER OSERROR command, the default behavior of
SQL*Plus is to continue and take no action when an operating system error occurs.

If you do not enter the WHENEVER SQLERROR command, the default behavior of
SQL*Plus is to continue and take no action when a SQL error occurs.

WHENEVER OSERROR

8-152 SQL*Plus User’s Guide and Reference

Examples
The commands in the following command file cause SQL*Plus to exit and COMMIT
any pending changes if a failure occurs when writing to the output file:

SQL> WHENEVER OSERROR EXIT
SQL> START no_such_file
OS Message: No such file or directory
Disconnected from Oracle8......

WHENEVER SQLERROR

Command Reference 8-153

WHENEVER SQLERROR

Purpose
Exits SQL*Plus if a SQL command or PL/SQL block generates an error.

Syntax
WHENEVER SQLERROR
 {EXIT [SUCCESS|FAILURE|WARNING|n|variable|:BindVariable]
 [COMMIT|ROLLBACK]|CONTINUE [COMMIT|ROLLBACK|NONE]}

Terms and Clauses
Refer to the following list for a description of each term or clause:

EXIT [SUCCESS|FAILURE|WARNING|n|variable|:BindVariable]
Directs SQL*Plus to exit as soon as it detects a SQL command or
PL/SQL block error (but after printing the error message). SQL*Plus
will not exit on a SQL*Plus error. The EXIT clause of WHENEVER
SQLERROR follows the same syntax as the EXIT command. See EXIT in
this chapter for details.

CONTINUE
Turns off the EXIT option.

COMMIT
Directs SQL*Plus to execute a COMMIT before exiting or continuing
and save pending changes to the database.

ROLLBACK
Directs SQL*Plus to execute a ROLLBACK before exiting or continuing
and abandon pending changes to the database.

NONE
Directs SQL*Plus to take no action before continuing.

Usage Notes
The WHENEVER SQLERROR command is triggered by SQL command or PL/SQL
block errors, and not by SQL*Plus command errors.

WHENEVER SQLERROR

8-154 SQL*Plus User’s Guide and Reference

Examples
The commands in the following command file cause SQL*Plus to exit and return the
SQL error code if the SQL UPDATE command fails:

SQL> WHENEVER SQLERROR EXIT SQL.SQLCODE
SQL> UPDATE EMP SET SAL = SAL*1.1

The following SQL command error causes SQL*Plus to exit and return the SQL
error code:

SQL> WHENEVER SQLERROR EXIT SQL.SQLCODE
SQL> SELECT COLUMN_DOES_NOT_EXIST FROM DUAL;
select column_does_not_exiSt from dual
 *
ERROR at line 1:
ORA-00904: invalid column name

Disconnected from Oracle.....

The following SQL command error causes SQL*Plus to exit and return the value of
the variable MY_ERROR_VAR:

SQL> DEFINE MY_ERROR_VAR = 99
SQL> WHENEVER SQLERROR EXIT my_error_var
SQL> UPDATE non_existed_table set col1 = col1 + 1;

UPDATE NON_EXISTED_TABLE set col1 = col1 + 1
 *
ERROR at line 1:
ORA-00942: table or view does not exist

Disconnected from Oracle.....

The following examples show that the WHENEVER SQLERROR command does
not have any effect on SQL*Plus commands, but does on SQL commands and
PL/SQL blocks:

SQL> WHENEVER SQLERROR EXIT SQL.SQLCODE
SQL> COLUMN ENAME HEADIING ”EMPLOYEE NAME”

Unknown COLUMN option ”HEADIING”

SQL> show non_existed_option

Unknown SHOW option ”NON_EXISTED_OPTION”
SQL> get non_existed_file.sql

WHENEVER SQLERROR

Command Reference 8-155

Unable to open ”NON_EXISTED_FILE.SQL”

The following PL/SQL block error causes SQL*Plus to exit and return the SQL error
code:

SQL> WHENEVER SQLERROR EXIT SQL.SQLCODE
SQL> BEGIN
 2 select column_does_not_exiSt from dual;
 3 end;
 4 /

select column_does_not_exiSt from dual;
 *
ERROR at line 2:
ORA-06550: line 2, column 10:
PLS-00201: identifier ’COLUMN_DOES_NOT_EXIST’ must be declared
ORA-06550: line 2, column 3:
PL/SQL: SQL Statement ignored

Disconnected from Oracle.....

WHENEVER SQLERROR

8-156 SQL*Plus User’s Guide and Reference

COPY Command Messages and Codes A-1

A
COPY Command Messages and Codes

This appendix lists error messages generated by the COPY command. For error
messages generated by Oracle, refer to the Oracle8i Error Messages manual.

A-2 SQL*Plus User’s Guide and Reference

CPY0002
Illegal or missing APPEND, CREATE, INSERT, or REPLACE option
Cause: An internal COPY function has invoked COPY with a create option
(flag) value that is out of range.

Action: Please contact your Oracle Worldwide Customer Support Services rep-
resentative.

CPY0003
Internal Error: logical host number out of range
Cause: An internal COPY function has been invoked with a logical host
number value that is out of range.

Action: Please contact your Oracle Worldwide Customer Support Services rep-
resentative.

CPY0004
Source and destination table and column names don’t match
Cause: On an APPEND operation or an INSERT (when the table exists), at least
one column name in the destination table does not match the corresponding
column name in the optional column name list or in the SELECT command.

Action: Re-specify the COPY command, making sure that the column names
and their respective order in the destination table match the column names and
column order in the optional column list or in the SELECT command

CPY0005
Source and destination column attributes don’t match
Cause: On an APPEND operation or an INSERT (when the table exists), at least
one column in the destination table does not have the same datatype as the
corresponding column in the SELECT command.

Action: Re-specify the COPY command, making sure that the datatypes for
items being selected agree with the destination. You can use TO_DATE, TO_
CHAR, and TO_NUMBER to make conversions.

CPY0006
Select list has more columns than destination table
Cause: On an APPEND operation or an INSERT (when the table exists), the
number of columns in the SELECT command is greater than the number of
columns in the destination table.

Action: Re-specify the COPY command, making sure that the number of col-
umns being selected agrees with the number in the destination table.

COPY Command Messages and Codes A-3

CPY0007
Select list has fewer columns than destination table
Cause: On an APPEND operation or INSERT (when the table exists), the
number of columns in the SELECT command is less than the number of
columns in the destination table.

Action: Re-specify the COPY command, making sure that the number of col-
umns being selected agrees with the number in the destination table.

CPY0008
More column list name than columns in the destination table
Cause: On an APPEND operation or an INSERT (when the table exists), the
number of columns in the column name list is greater than the number of
columns in the destination table.

Action: Re-specify the COPY command, making sure that the number of col-
umns in the column list agrees with the number in the destination table.

CPY0009
Fewer column list name than columns in the destination table
Cause: On an APPEND operation or an INSERT (when the table exists), the
number of columns in the column name list is less than the number of columns
in the destination table.

Action: Re-specify the COPY command, making sure that the number of col-
umns in the column list agrees with the number in the destination table.

A-4 SQL*Plus User’s Guide and Reference

Release 8.1.7 Enhancements B-1

B
Release 8.1.7 Enhancements

SQL*Plus Release 8.1.7 provides a number of enhancements over previous releases
of SQL*Plus. This appendix describes the enhancements for SQL*Plus Release 8.1.7
and earlier releases.

SQL*Plus Release 8.1.7 Enhancements

B-2 SQL*Plus User’s Guide and Reference

SQL*Plus Release 8.1.7 Enhancements
SQL*Plus Release 8.1.7 gives you the following additional capabilities:

SQLPLUS -MARKUP and SET MARKUP Changes
In this release, you can use MARKUP HTML ON to produce HTML output in either
the <PRE> tag or in an HTML table. Output to a table uses standard HTML
<TABLE>, <TR> and <TD> tags to automatically encode the rows and columns
resulting from a query. Output to an HTML table is now the default behavior when
the HTML option is set ON. You can generate output using HTML <PRE> tags by
setting PREFORMAT ON. For more information about the SQLPLUS and SET
commands, see Starting SQL*Plus Using the SQLPLUS Command in Chapter 7 and
the SET command in Chapter 8.

TABLE text
TABLE text is a new MARKUP option which allows you to enter attributes for the
HTML <TABLE> tag. You can use this option to set <TABLE> tag attributes such as
BORDER, CELLPADDING, CELLSPACING and WIDTH. For more information
about this option, see TABLE text in Chapter 7.

The new MARKUP syntax for SQLPLUS -MARKUP and SET MARKUP is:

 HTML [ON|OFF] [HEAD text] [BODY text] [TABLE text]
 [ENTMAP {ON|OFF}] [SPOOL {ON|OFF}] [PRE[FORMAT] {ON|OFF}]

For more information about this option, see MARKUP Options in Chapter 7.

COLUMN ENTMAP {ON|OFF}
A new option, ENTMAP {ON|OFF}, has been added to the COLUMN command to
add flexibility for mapping entities. The default for COLUMN ENTMAP is the
current value of the MARKUP HTML ENTMAP option.

ENTMAP {ON|OFF} in the COLUMN command allows you to explicitly turn
entity mapping on or off for selected columns in HTML output. For more
information about this option, see the COLUMN command in Chapter 8.

SQL*Plus Release 8.1.6 Enhancements

Release 8.1.7 Enhancements B-3

SQL*Plus Release 8.1.6 Enhancements
■ SQL*Loader is no longer used to install the SQL*Plus command line help

system. The help system is now installed by running SQL*Plus scripts. See the
Installation Guide for your operating system for instructions on how to install
the help system.

A SQL*Plus script is also provided to enable the removal of the help system.

■ The SQLPLUS command now has a -RESTRICT option. -RESTRICT allows
certain commands that interact with the operating system to be disabled.
Compared to disabling the same commands with the Product User Profile
(PUP) table, commands disabled with -RESTRICT can be disabled when there is
no connection to a server, and remain disabled until SQL*Plus terminates.

■ The SQLPLUS command now has a -MARKUP option. -MARKUP allows the
use of server-side CGI scripts to create HTML reports for access on the web.
You can use the SQLPLUS -MARKUP command to create web reports from
existing SQL scripts. SQLPLUS -MARKUP options have the same effect as the
new SET MARKUP command options.

■ The SET command now has a MARKUP clause. During a SQL*Plus session,
SET MARKUP allows the interactive creation of HTML reports for access on the
web.

■ SHOW MARKUP displays the status of MARKUP options.

SQL*Plus Release 8.1.5 Enhancements

B-4 SQL*Plus User’s Guide and Reference

SQL*Plus Release 8.1.5 Enhancements
■ There is a new command named STARTUP. The STARTUP command starts an

Oracle instance, with the options to mount and open a database.

■ There is a new command named SHUTDOWN. The SHUTDOWN command
shuts down an Oracle instance that is currently running. It also optionally
closes and dismounts a database.

■ There is a new command named RECOVER. The RECOVER command
performs media recovery on tablespaces, datafiles or the entire database.

■ There is a new command named ARCHIVE LOG. The ARCHIVE LOG
command allows redo log files to be archived. It also displays information
about redo log files.

■ The CONNECT command now has an AS clause. The AS clause, allows
privileged connections by users who have been granted SYSOPER or SYSDBA
system privileges.

■ The SET command now has an AUTORECOVERY clause. The
AUTORECOVERY clause specifies whether default archived redo log files are
to be used during recovery.

■ The SET command now has a DESCRIBE clause. The DESCRIBE clause
specifies the depth or level to which objects can be described.

■ The SET command now has an INSTANCE clause. The INSTANCE clause
changes the default instance for your session to the specified instance.

■ The SET command now has a LOGSOURCE clause. The LOGSOURCE clause
specifies the location from which archive logs are retrieved during recovery.

■ The SET command now has a SQLBLANKLINES clause. The
SQLBLANKLINES clause allows and preserves blank lines within any SQL
command.

■ The SHOW command now has a PARAMETERS clause. The PARAMETERS
clause displays the current values for one or more initialization parameters.

■ The SHOW command now has an SGA clause. The SGA clause displays
information about the current instance’s System Global Area.

SQL*Plus Limits C-1

C
SQL*Plus Limits

Table C-1, on the following page, lists the limit, or maximum value, of each of the
SQL*Plus elements shown. The limits shown are valid for most operating systems.

C-2 SQL*Plus User’s Guide and Reference

Table C–1 SQL*Plus Limits

Item Limit

filename length system dependent

username length 30 bytes

user variable name length 30 bytes

user variable value length 240 characters

command-line length 2500 characters

length of a LONG value
entered through SQL*Plus

LINESIZE value

LINESIZE system dependent

LONGCHUNKSIZE value system dependent

output line size system dependent

line size after variable
 substitution

3,000 characters (internal only)

number of characters in a
COMPUTE command label

500 characters

number of lines per SQL
command

500 (assuming 80 characters per line)

maximum PAGESIZE 50,000 lines

total row width 60,000 characters for VMS; otherwise, 32,767 characters

maximum ARRAYSIZE 5000 rows

maximum number of
nested command files

20 for VMS, CMS, Unix; otherwise, 5

maximum page number 99,999

maximum PL/SQL error
message size

2K

maximum ACCEPT
character string length

240 Bytes

maximum number of
DEFINE variables

2048

SQL Command List D-1

D
SQL Command List

Table D-1, on the following page, lists major SQL commands. Refer to the Oracle8i
SQL Reference for full documentation of these commands.

D-2 SQL*Plus User’s Guide and Reference

Table D–1 SQL Command List

Major SQL Commands and Clauses

ALTER LOCK TABLE

ANALYZE NOAUDIT

AUDIT RENAME

COMMENT REVOKE

CREATE SAVEPOINT

DROP SET ROLE

EXPLAIN SET TRANSACTION

GRANT TRUNCATE

INSERT UPDATE

Security E-1

E
Security

This appendix describes the available methods for controlling access to database
tables and SQL*Plus commands. The available methods for security fall into three
broad categories:

■ PRODUCT_USER_PROFILE Table

■ Roles

■ SQLPLUS -RESTRICT

PRODUCT_USER_PROFILE Table

E-2 SQL*Plus User’s Guide and Reference

PRODUCT_USER_PROFILE Table
Various Oracle products use PRODUCT_USER_PROFILE, a table in the SYSTEM
account, to provide product-level security that supplements the user-level security
provided by the SQL GRANT and REVOKE commands and user roles.

Overview
DBAs can use PRODUCT_USER_PROFILE to disable certain SQL and SQL*Plus
commands in the SQL*Plus environment on a per-user basis. SQL*Plus—not
Oracle—enforces this security. DBAs can even restrict access to the GRANT,
REVOKE, and SET ROLE commands to control users’ ability to change their
database privileges.

SQL*Plus reads restrictions from PRODUCT_USER_PROFILE when a user logs in
to SQL*Plus and maintains those restrictions for the duration of the session.
Changes to PRODUCT_USER_PROFILE will only take effect the next time the
affected users log in to SQL*Plus.

The PRODUCT_USER_PROFILE table applies only to the local database. If
accessing objects on a remote database via a database link, the PRODUCT_USER_
PROFILE for the remote database does not apply. The remote database cannot
extract the username and password from the database link in order to determine
that user ’s profile and privileges.

Creating the Table
You can create PRODUCT_USER_PROFILE by running the command file named
PUPBLD with the extension SQL as SYSTEM. The exact format of the file extension
and the location of the file are system dependent. See the Oracle installation and
user’s manual(s) provided for your operating system or your DBA for more
information.

Note: If the table is created incorrectly, all users other than
SYSTEM will see a warning when connecting to Oracle that the
PRODUCT_USER_PROFILE information is not loaded.

PRODUCT_USER_PROFILE Table

Security E-3

Table Structure
The PRODUCT_USER_PROFILE table consists of the following columns:

PRODUCT NOT NULL CHAR (30)
USERID CHAR(30)
ATTRIBUTE CHAR(240)
SCOPE CHAR(240)
NUMERIC_VALUE NUMBER(15,2)
CHAR_VALUE CHAR(240)
DATE_VALUE DATE
LONG_VALUE LONG

Description and Use of Columns
Refer to the following list for the descriptions and use of each column in the
PRODUCT_USER_PROFILE table:

Product Must contain the product name (in this case "SQL*Plus"). You
cannot enter wildcards or NULL in this column. Also notice
that the product name SQL*Plus must be specified in mixed
case, as shown, in order to be recognized.

Userid Must contain the username (in uppercase) of the user for
whom you wish to disable the command. To disable the
command for more than one user, use SQL wild cards (%) or
make multiple entries. Thus, all of the following entries are
valid:

■ SCOTT

■ CLASS1

■ CLASS% (all users whose names start with CLASS)

■ % (all users)

Attribute Must contain the name (in uppercase) of the SQL, SQL*Plus,
or PL/SQL command you wish to disable (for example, GET).
If you are disabling a role, it must contain the character string
"ROLES". You cannot enter a wildcard. See the section
"Administration" later in this chapter for a list of SQL and
SQL*Plus commands you can disable. See the section "Roles"
in this chapter for information on how to disable a role.

PRODUCT_USER_PROFILE Table

E-4 SQL*Plus User’s Guide and Reference

Administration
The DBA username SYSTEM owns and has all privileges on PRODUCT_USER_
PROFILE. (When SYSTEM logs in, SQL*Plus does not read PRODUCT_USER_
PROFILE. Therefore, no restrictions apply to user SYSTEM.) Other Oracle
usernames should have only SELECT access to this table, which allows a view of
restrictions of that username and those restrictions assigned to PUBLIC. The
command file PUPBLD, when run, grants SELECT access on PRODUCT_USER_
PROFILE to PUBLIC.

Disabling SQL*Plus, SQL, and PL/SQL Commands
To disable a SQL or SQL*Plus command for a given user, insert a row containing the
user’s username in the Userid column, the command name in the Attribute column,
and DISABLED in the Char_Value column.

The Scope, Numeric_Value, and Date_Value columns should contain NULL. For
example:

PRODUCT USERID ATTRIBUTE SCOPE NUMBERIC CHAR DATE
 VALUE VALUE VALUE
------- ------ --------- ----- -------- ------ -----
SQL*Plus SCOTT HOST DISABLED

Scope SQL*Plus ignores this column. It is recommended that you
enter NULL in this column. Other products may store specific
file restrictions or other data in this column.

Numeric_Value SQL*Plus ignores this column. It is recommended that you
enter NULL in this column. Other products may store
numeric values in this column.

Char_Value Must contain the character string "DISABLED" to disable a
SQL, SQL*Plus, or PL/SQL command. If you are disabling a
role, it must contain the name of the role you wish to disable.
You cannot use a wildcard. See "Roles" below for information
on how to disable a role.

Date_Value SQL*Plus ignores this column. It is recommended that you
enter NULL in this column. Other products may store DATE
values in this column.

Long_Value SQL*Plus ignores this column. It is recommended that you
enter NULL in this column. Other products may store LONG
values in this column.

PRODUCT_USER_PROFILE Table

Security E-5

SQL*Plus % INSERT DISABLED
SQL*Plus % UPDATE DISABLED
SQL*Plus % DELETE DISABLED

To re enable commands, delete the row containing the restriction.

You can disable the following SQL*Plus commands:

■ COPY

■ EDIT

■ EXECUTE

■ EXIT

■ GET

■ HOST (or your operating system’s alias for HOST, such as $ on VMS, and ! on
UNIX)

■ QUIT

■ PASSWORD

■ RUN

■ SAVE

■ SET (see note below)

■ SPOOL

■ START

You can also disable the following SQL commands:

■ ALTER

■ ANALYZE

■ AUDIT

■ CONNECT

Note: Disabling the SQL*Plus SET command will also disable the
SQL SET ROLE and SET TRANSACTION commands. Disabling
the SQL*Plus START command will also disable the SQL*Plus @
and @@ commands.

PRODUCT_USER_PROFILE Table

E-6 SQL*Plus User’s Guide and Reference

■ CREATE

■ DELETE

■ DROP

■ GRANT

■ INSERT

■ LOCK

■ NOAUDIT

■ RENAME

■ REVOKE

■ SELECT

■ SET ROLE

■ SET TRANSACTION

■ TRUNCATE

■ UPDATE

You can also disable the following PL/SQL commands:

■ BEGIN

■ DECLARE

Disabling SET ROLE
From SQL*Plus, users can submit any SQL command. In certain situations, this can
cause security problems. Unless you take proper precautions, a user could use SET
ROLE to access privileges obtained via an application role. With these privileges,
they might issue SQL statements from SQL*Plus that could wrongly change
database tables.

To prevent application users from accessing application roles in SQL*Plus, you can
use PRODUCT_USER_PROFILE to disable the SET ROLE command. This allows a
SQL*Plus user only those privileges associated with the roles enabled when they

Note: Disabling BEGIN and DECLARE does not prevent the use
of the SQL*Plus EXECUTE command. EXECUTE must be disabled
separately.

Roles

Security E-7

started SQL*Plus. For more information about the creation and usage of user roles,
see your Oracle8i SQL Reference and Oracle8i Administrator’s Guide.

Disabling Roles
To disable a role for a given user, insert a row in PRODUCT_USER_PROFILE
containing the user’s username in the Userid column, "ROLES" in the Attribute
column, and the role name in the Char_Value column.

The Scope, Numeric_Value, and Date_Value columns should contain NULL. For
example:

PRODUCT USERID ATTRIBUTE SCOPE NUMBERIC CHAR DATE
 VALUE VALUE VALUE
------- ------ --------- ----- -------- ------ -----
SQL*Plus SCOTT ROLES ROLE1
SQL*Plus PUBLIC ROLES ROLE2

During login, these table rows are translated into the command

SET ROLE ALL EXCEPT ROLE1, ROLE2

To ensure that the user does not use the SET ROLE command to change their roles
after login, you can disable the SET ROLE command. See "Disabling SET ROLE"
earlier in this appendix.

To re enable roles, delete the row containing the restriction.

Roles
To provide for the security of your database tables in Oracle8i using SQL
commands, you can create and control access to roles.

By creating a role and then controlling who has access to it, you can ensure that only
certain users have access to particular database privileges.

Note: When you enter "PUBLIC" or "%" for the Userid column,
you disable the role for all users. You should only use "%" or
"PUBLIC" for roles which are granted to "PUBLIC". If you try to
disable a role that has not been granted to a user, none of the roles
for that user are disabled.

SQLPLUS -RESTRICT

E-8 SQL*Plus User’s Guide and Reference

Overview
Roles are created and used with the SQL CREATE, GRANT, and SET commands:

■ To create a role, you use the CREATE command. You can create roles with or
without passwords.

■ To grant access to roles, you use the GRANT command. In this way, you can
control who has access to the privileges associated with the role.

■ To access roles, you use the SET ROLE command. If you created the role with a
password, the user must know the password in order to access the role.

For more information about roles, see your Oracle8i SQL Reference, your Oracle8i
Administrator’s Guide, and your Oracle8i Concepts manual.

SQLPLUS -RESTRICT
Like the Product User Profile table, the RESTRICT option allows you to disable
certain commands that interact with the operating system. However, commands
disabled with the -RESTRICT option are disabled even when no connection to a
server exists, and remain disabled until SQL*Plus terminates.

The following table shows which commands are disabled in each restriction level.

For more information about the RESTRICT option, see the SQLPLUS -R[ESTRICT]
{1|2|3} command on page 7-8

Command Level 1 Level 2 Level 3

EDIT disabled disabled disabled

GET disabled

HOST, ! disabled disabled disabled

SAVE disabled disabled

SPOOL disabled disabled

START, @, @@ disabled

STORE disabled disabled

Obsolete SQL*Plus Commands F-1

F
Obsolete SQL*Plus Commands

This appendix covers earlier versions of some SQL*Plus commands. While these
older commands still function within SQL*Plus, they are no longer supported. It is
recommended that you use the alternative SQL*Plus commands listed in the
following table.

SQL*Plus Obsolete Command Alternatives

F-2 SQL*Plus User’s Guide and Reference

SQL*Plus Obsolete Command Alternatives

Obsolete
Command

Alternative
Command

Description of Alternative Command

BTITLE
(old form)

BTITLE
on page 8-24

Places and formats a title at the bottom of each
report page or lists the current BTITLE definition.

COLUMN DEFAULT COLUMN CLEAR
on page 8-31

Resets column display attributes to default values.

DOCUMENT REMARK
on page 8-88

Places a comment which SQL*Plus does not
interpret as a command.

NEWPAGE SET NEWPAGE
on page 8-107

Sets the number of blank lines to be printed from
the top of each page to the top title.

SET BUFFER EDIT
on page 8-64

Enables the editing of the SQL*Plus command
buffer, or the contents of a saved file. Use the
SQL*Plus SAVE, GET, @ and START
commands to create and use external files.

SET CLOSECURSOR none Obsolete

SET DOCUMENT none Obsolete

SET MAXDATA none Obsolete

SET SCAN SET DEFINE
on page 8-103

Sets the character used to prefix substitution
variables.

SET SPACE SET COLSEP
on page 8-102

Sets the text to be printed between SELECTed
columns.

SET TRUNCATE SET WRAP
on page 8-112

Controls whether SQL*Plus truncates a SELECTed
row if it is too long for the current line width.

SHOW LABEL none Obsolete

TTITLE
(old form)

TTITLE
on page 8-140

Places and formats a title at the top of each report
page or lists the current TTITLE definition.

DOCUMENT

Obsolete SQL*Plus Commands F-3

BTITLE (old form)

Purpose
Displays a title at the bottom of each report page.

Syntax
BTI[TLE] text

Usage Notes
The old form of BTITLE offers formatting features more limited than those of the
new form, but provides compatibility with UFI (a predecessor of SQL*Plus). The old
form defines the bottom title as an empty line followed by a line with centered text.
Refer to TTITLE (old form) in this appendix for more details.

COLUMN DEFAULT

Purpose
Resets the display attributes for a given column to default values.

Syntax
COL[UMN] {column|expr} DEF[AULT]

Usage Notes
Has the same effect as COLUMN CLEAR.

DOCUMENT

Purpose
Begins a block of documentation in a command file.

Syntax
DOC[UMENT]

NEWPAGE

F-4 SQL*Plus User’s Guide and Reference

Usage Notes
For information on the current method of inserting comments in a command file,
refer to the section "Placing Comments in Command Files"under "Saving
Commands for Later Use" in Chapter 3 and to the REMARK command in the
"Command Reference" in Chapter 8.

After you type DOCUMENT and enter [Return], SQL*Plus displays the prompt
DOC> in place of SQL> until you end the documentation. The "pound" character (#)
on a line by itself ends the documentation.

If you have set DOCUMENT to OFF, SQL*Plus suppresses the display of the block
of documentation created by the DOCUMENT command. (See "SET DOCUMENT"
later in this appendix.)

NEWPAGE

Purpose
Advances spooled output n lines beyond the beginning of the next page.

Syntax
NEWPAGE [1|n]

Usage Notes
Refer to the NEWPAGE variable of the SET command in Chapter 8 for information
on the current method for advancing spooled output.

SET BUFFER

Purpose
Makes the specified buffer the current buffer.

Syntax
SET BUF[FER] {buffer|SQL}

Usage Notes
Initially, the SQL buffer is the current buffer. SQL*Plus does not require the use of
multiple buffers; the SQL buffer alone should meet your needs.

SET DOCUMENT

Obsolete SQL*Plus Commands F-5

If the buffer name you enter does not already exist, SET BUFFER defines (creates
and names) the buffer. SQL*Plus deletes the buffer and its contents when you exit
SQL*Plus.

Running a query automatically makes the SQL buffer the current buffer. To copy
text from one buffer to another, use the GET and SAVE commands. To clear text
from the current buffer, use CLEAR BUFFER. To clear text from the SQL buffer
while using a different buffer, use CLEAR SQL.

SET CLOSECURSOR

Purpose
Sets the cursor usage behavior.

Syntax
SET CLOSECUR[SOR] {ON|OFF}

Usage Notes
On or OFF sets whether or not the cursor will close and reopen after each SQL
statement. This feature may be useful in some circumstances to release resources in
the database server.

SET DOCUMENT

Purpose
Displays or suppresses blocks of documentation created by the DOCUMENT
command.

Syntax
SET DOC[UMENT] {ON|OFF}

Usage Notes
SET DOCUMENT ON causes blocks of documentation to be echoed to the screen.
Set DOCUMENT OFF suppresses the display of blocks of documentation.

See DOCUMENT in this appendix for information on the DOCUMENT command.

SET MAXDATA

F-6 SQL*Plus User’s Guide and Reference

SET MAXDATA

Purpose
Sets the maximum total row width that SQL*Plus can process.

Syntax
SET MAXD[ATA] n

Usage Notes
In SQL*Plus, the maximum row width is unlimited. Any values you set using SET
MAXDATA are ignored by SQL*Plus.

SET SCAN

Purpose
Controls scanning for the presence of substitution variables and parameters. OFF
suppresses processing of substitution variables and parameters; ON allows normal
processing.

Syntax
SET SCAN {ON|OFF}

Usage Notes
ON functions in the same manner as SET DEFINE ON.

SET SPACE

Purpose
Sets the number of spaces between columns in output. The maximum value of n is
10.

Syntax
SET SPACE {1|n}

TTITLE (old form)

Obsolete SQL*Plus Commands F-7

Usage Notes
The SET SPACE 0 and SET COLSEP " commands have the same effect. This
command is obsoleted by SET COLSEP, but you can still use it for backward
compatibility. You may prefer to use COLSEP because the SHOW command
recognizes COLSEP and does not recognize SPACE.

SET TRUNCATE

Purpose
Controls whether SQL*Plus truncates or wraps a data item that is too long for the
current line width.

Syntax
SET TRU[NCATE] {ON|OFF}

Usage Notes
ON functions in the same manner as SET WRAP OFF, and vice versa. You may
prefer to use WRAP because the SHOW command recognizes WRAP and does not
recognize TRUNCATE.

SHOW LABEL

Purpose
Shows the security level for the current session.

Syntax
SHO[W] LABEL

TTITLE (old form)

Purpose
Displays a title at the top of each report page.

Syntax
TTI[TLE] text

TTITLE (old form)

F-8 SQL*Plus User’s Guide and Reference

Usage Notes
The old form of TTITLE offers formatting features more limited than those of the
new form, but provides compatibility with UFI (a predecessor of SQL*Plus). The old
form defines the top title as a line with the date left-aligned and the page number
right-aligned, followed by a line with centered text and then a blank line.

The text you enter defines the title TTITLE will display.

SQL*Plus centers text based on the size of a line as determined by SET LINESIZE. A
separator character (|) begins a new line; two line separator characters in a row (||)
insert a blank line. You can change the line separator character with SET HEADSEP.

You can control the formatting of page numbers in the old forms of TTITLE and
BTITLE by defining a variable named "_page". The default value of _page is the
formatting string "page &P4". To alter the format, you can DEFINE _page with a
new formatting string as follows:

SQL> SET ESCAPE / SQL> DEFINE _page = ’Page /&P2’

This formatting string will print the word "page" with an initial capital letter and
format the page number to a width of two. You can substitute any text for "page"
and any number for the width. You must set escape so that SQL*Plus does not
interpret the ampersand (&) as a substitution variable. See the ESCAPE variable of
the SET command in Chapter 8 for more information on setting the escape
character.

SQL*Plus interprets TTITLE in the old form if a valid new-form clause does not
immediately follow the command name.

If you want to use CENTER with TTITLE and put more than one word on a line,
you should use the new form of TTITLE. For more information see the TTITLE
command in Chapter 8.

Example
To use the old form of TTITLE to set a top title with a left-aligned date and
right-aligned page number on one line followed by SALES DEPARTMENT on the
next line and PERSONNEL REPORT on a third line, enter

SQL> TTITLE ’SALES DEPARTMENT|PERSONNEL REPORT’

Glossary-1

Glossary

account

An authorized user of an operating system or a product (such as Oracle database
server or Oracle Forms). Depending on the operating system, may be referred to as
ID, User ID, login, and so on. Accounts are often created and controlled by a system
administrator.

alias

In SQL, a temporary name assigned to a table, view, column, or value within a SQL
statement, used to refer to that item later in the same statement or in associated
SQL*Plus commands.

alignment

The way in which data is positioned in a field. It may be positioned to the left, right,
center, flush/left, flush/right, or flush/center of the defined width of a field.

anonymous block

A PL/SQL program unit that has no name and does not require the explicit
presence of the BEGIN and END keywords to enclose the executable statements.

archived redo log

Recovery structure where online redo log files are archived before being reused.

ARCHIVELOG

Redo log mode where the filled online redo log files are archived before they are
reused in the cycle. In ARCHIVELOG mode, the database can be completely
recovered from both instance and disk failure. The database can also be backed up
while it is open and available for use. However, additional administrative

Glossary-2

operations are required to maintain the archived redo log. See also archived redo
log.

argument

A data item following the command file name in a START command. The argument
supplies a value for a parameter in the command file.

array processing

Processing performed on multiple rows of data rather than one row at a time. In
some Oracle utilities such as SQL*Plus, Export/Import, and the precompilers, users
can set the size of the array; increasing the array size often improves performance.

ASCII

A convention for using digital data to represent printable characters. ASCII is an
acronym for American Standard Code for Information Interchange.

autocommit

A feature unique to SQL*Plus that enables SQL*Plus to automatically commit
changes to the database after every successful execution of a SQL command or
PL/SQL block. Setting the AUTOCOMMIT variable of the SET command to ON
enables this feature. Setting the AUTOCOMMIT variable to n enables this feature
after every n successful INSERT, UPDATE or DELETE commands or PL/SQL
blocks.

background process

A non-interactive process that runs in an operating system environment and
performs some service or action. Certain Oracle database server products use
background processes for different tasks, such as performing and coordinating tasks
on behalf of concurrent users of the database, processing and delivering electronic
messages, and managing printing services.

bind reference

A reference to a parameter used to replace a single literal value (for example, a
character string, number, or date) appearing anywhere in a PL/SQL construct or a
SQL SELECT statement. For a bind reference, you must precede the parameter
name with a colon (:).

bind variable

A variable in a SQL statement that must be replaced with a valid value, or the
address of a value, in order for the statement to successfully execute.

Glossary-3

bit

The smallest unit of data. A bit only has two possible values, 0 or 1. Bits can be
combined into groups of eight called bytes; each byte represents a single character
of data. See also byte.

block

In PL/SQL, a group of SQL and PL/SQL commands related to each other through
procedural logic.

body

A report region that contains the bulk of the report (text, graphics, data, and
computations).

break

An event, such as a change in the value of an expression, that occurs while
SQL*Plus processes a query or report. You can direct SQL*Plus to perform various
operations, such as printing subtotals, whenever specified breaks occur.

break column

A column in a report that causes a break when its value changes and for which the
user has defined break operations.

break group

A group containing one or more break columns.

break hierarchy

The order in which SQL*Plus checks for the occurrence of breaks and triggers the
corresponding break operations.

break order

Indicates the order in which to display a break column’s data. Valid options are
Ascending and Descending.

break report

A report that divides rows of a table into "sets", based on a common value in the
break column.

Glossary-4

buffer

An area where the user’s SQL statements or PL/SQL blocks are temporarily stored.
The SQL buffer is the default buffer. You can edit or execute commands from
multiple buffers; however, SQL*Plus does not require the use of multiple buffers.

byte

A group of eight sequential bits that represents a letter, number, or symbol (that is, a
character). Treated as a unit of data by a computer.

CGI script

See Common Gateway Interface.

CHAR datatype

An Oracle datatype provided for ANSI/ISO compatibility. A CHAR column is a
fixed-length column and can contain any printable characters, such as A, 3, &, or
blanks, and can have from 1 to 2000 characters or can be null.

character

A single location on a computer system capable of holding one alphabetic character
or numeric digit. One or more characters are held in a field. One or more fields
make up a record, and one or more records may be held in a file or database table.

character string

A group of sequential letters, numerals, or symbols, usually comprising a word or
name, or portion thereof.

clause

A part of a SQL statement that does not constitute the full statement; for example, a
"WHERE clause".

client

A user, software application, or computer that requests the services, data, or
processing of another application or computer (the "server"). In a two-task
environment, the client is the user process. In a network environment, the client is
the local user process and the server may be local or remote.

CLOB datatype

A standard Oracle datatype. The CLOB datatype is used to store single-byte
character large object data, and can store up to 4 gigabytes of character data.

Glossary-5

column

A vertical space in a database table that represents a particular domain of data. A
column has a column name and a specific datatype. For example, in a table of
employee information, all of the employees’ dates of hire would constitute one
column. A record group column represents a database column.

column expression

An expression in a SELECT statement that defines which database column(s) are
retrieved. It may be a column name or a valid SQL expression referencing a column
name.

column heading

A heading created for each column appearing in a report.

command

An instruction to or request of a program, application, operating system, or other
software, to perform a particular task. Commands may be single words or may
require additional phrases, variously called arguments, options, parameters, and
qualifiers. Unlike statements, commands execute as soon as you enter them.
ACCEPT, CLEAR, and COPY are examples of commands in SQL*Plus.

fcommand file

A file containing a sequence of commands that you can otherwise enter
interactively. The file is saved for convenience and re-execution. Command files are
often called by operating-system specific names. In SQL*Plus, you can execute the
command file with the START, @ or @@ commands.

command line

A line on a computer display on which typed in commands appear. An example of
a command line is the area next to the DOS prompt on a personal computer. See
also prompt.

command prompt

The text, by default SQL>, with which SQL*Plus requests your next command.

comment

A language construct for the inclusion of explanatory text in a program, the
execution of which remains unaffected.

Glossary-6

commit

To make permanent changes to data (inserts, updates, deletes) in the database.
Before changes are committed, both the old and new data exist so that changes can
be stored or the data can be restored to its prior state.

Common Gateway Interface

The Common Gateway Interface (CGI) describes a part of a web server that allows
user interaction, typically via a web browser, with programs running on the server.
CGI scripts enable this user interaction to create dynamic web pages or web page
elements, or to take user input and respond accordingly. A very common use is to
provide an interactive form which a user completes online and then submits. Some
common languages in use for CGI scripts are Perl, JavaScript and Java

computation

Used to perform runtime calculations on data fetched from the database. These
calculations are a superset of the kinds of calculations that can be done directly with
a SELECT statement. See also formula column.

computed column

See computation.

configuration

In Net8, the set of instructions for preparing network communications, as outlined
in the Net8 documentation.

configuration files

Files that are used to identify and characterize the components of a network.
Configuration is largely a process of naming network components and identifying
relationships among those components.

connect

To identify yourself to Oracle by entering your username and password in order to
gain access to the database. In SQL*Plus, the CONNECT command allows you to
log off Oracle and then log back on with a specified username.

connect identifier

The set of parameters, including a protocol, that Net8 uses to connect to a specific
Oracle instance on the network.

Glossary-7

current line

In an editor, such as the SQL*Plus editor, the line in the current buffer that editing
commands will currently affect.

database

A set of operating system files, treated as a unit, in which an Oracle database server
stores a set of data dictionary tables and user tables. A database requires three types
of files: database files, redo log files, and control files.

database administrator (DBA)

(1) A person responsible for the operation and maintenance of an Oracle database
server or a database application. The database administrator monitors its use in
order to customize it to meet the needs of the local community of users. (2) An
Oracle username that has been given DBA privileges and can perform database
administration functions. Usually the two meanings coincide. There may be more
than one DBA per site.

database instance failure

Failure that occurs when a problem arises that prevents an Oracle database instance
(SGA and background processes) from continuing to work. Instance failure may
result from a hardware problem such as power outage, or a software problem, such
as operating system crash. When an instance failure occurs, the data in the buffers
of the SGA is not written to the datafiles.

database link

An object stored in the local database that identifies a remote database, a
communication path to the remote database, and optionally, a username and
password for it. Once defined, a database link can be used to perform queries on
tables in the remote database. Also called DBlink. In SQL*Plus, you can reference a
database link in a DESCRIBE or COPY command.

database object

Something created and stored in a database. Tables, views, synonyms, indexes,
sequences, clusters, and columns are all examples of database objects.

database server

The computer which runs the ORACLE Server kernel and contains the database.

Glossary-8

database specification

An alphanumeric code that identifies a database, used to specify the database in
Net8 operations and to define a database link. In SQL*Plus, you can reference a
database specification in a COPY, CONNECT, or SQLPLUS command.

database string

A string of Net8 parameters used to indicate the network prefix, the host system
you want to connect to, and the system ID of the database on the host system.

Data Control Language (DCL)

The category of SQL statements that control access to the data and to the database.
Examples are the GRANT and REVOKE statements. Occasionally DCL statements
are grouped with DML statements.

Data Definition Language (DDL)

The category of SQL statements that define or delete database objects such as tables
or views. Examples are the CREATE, ALTER, and DROP statements.

data dictionary

A comprehensive set of tables and views automatically created and updated by the
Oracle database server, which contains administrative information about users, data
storage, and privileges. It is installed when Oracle is initially installed and is a
central source of information for the Oracle database server itself and for all users of
Oracle. The tables are automatically maintained by Oracle. It is sometimes referred
to as the catalog.

Data Manipulation Language (DML)

The category of SQL statements that query and update the database data. Common
DML statements are SELECT, INSERT, UPDATE, and DELETE. Occasionally DCL
statements are grouped with DML statements.

data security

The mechanisms that control the access and use of the database at the object level.
For example, data security includes access to a specific schema object and the
specific types of actions allowed for each user on the object (for example, user
SCOTT can issue SELECT and INSERT statements but not DELETE statements
using the EMP table). It also includes the actions, if any, that are audited for each
schema object.

Glossary-9

datatype

(1) A standard form of data. The Oracle datatypes are CHAR, NCHAR,
VARCHAR2, NVARCHAR2, DATE, NUMBER, LONG, CLOB, NCLOB, RAW, and
LONG RAW; however, the Oracle database server recognizes and converts other
standard datatypes. (2) A named set of fixed attributes that can be associated with
an item as a property. Data typing provides a way to define the behavior of data.

DATE datatype

A standard Oracle datatype used to store date and time data. Standard date format
is DD-MMM-YY, as in 23-NOV-98. A DATE column may contain a date and time
between January 1, 4712 BC to December 31, 9999 AD.

DBA

See database administrator (DBA).

DCL

See Data Control Language (DCL).

DDL

See Data Definition Language (DDL).

default

A clause or option value that SQL*Plus uses if you do not specify an alternative.

default database

See local database.

directory

On some operating systems, a named storage space for a group of files. It is actually
one file that lists a set of files on a particular device.

dismounted database

A database that is not mounted by any instance, and thus cannot be opened and is
not currently available for use.

display format

See format.

Glossary-10

display width

The number of characters or spaces allowed to display the values for an output
field.

DML

See Data Manipulation Language (DML).

DUAL table

A standard Oracle database table named DUAL, which contains exactly one row.
The DUAL table is useful for applications that require a small "dummy" table (the
data is irrelevant) to guarantee a known result, such as "true."

editor

A program that creates or modifies files.

end user

The person for whom a system is being developed; for example, an airline
reservations clerk is an end user of an airline reservations system. See also
SQL*Plus.

error message

A message from a computer program (for example, SQL*Plus) informing you of a
potential problem preventing program or command execution.

expression

A formula, such as SALARY + COMMISSION, used to calculate a new value from
existing values. An expression can be made up of column names, functions,
operators, and constants. Formulas are found in commands or SQL statements.

extension

On some operating systems, the second part of the full file specification. Several
standard file extensions are used to indicate the type or purpose of the file, as in file
extensions of SQL, LOG, LIS, EXE, BAT, and DIR. Called file type on some
operating systems.

file

A collection of data treated as a unit, such as a list, document, index, note, set of
procedures, and so on. Generally used to refer to data stored on magnetic tapes or
disks. See also filename, extension, and file type.

Glossary-11

filename

The name component of a file specification. A filename is assigned by either the
user or the system when the file itself is created. See also extension and file type.

file type

On some operating systems, the part of the filename that usually denotes the use or
purpose of the file. See extension.

format

Columns contain information in one of four types; users can specify how they want
a query to format information it retrieves from character, number, date, or long
columns. For example, they can choose to have information of type date appear as
23/11/98, or Monday Twenty-third November 1998, or any other valid date format.

format model

A clause element that controls the appearance of a value in a report column. You
specify predefined format models in the COLUMN, TTITLE, and BTITLE
commands’ FORMAT clauses. You can also use format models for DATE columns in
SQL date conversion functions, such as TO_DATE.

form feed

A control character that, when executed, causes the printer to skip to the top of a
new sheet of paper (top of form). When SQL*Plus displays a form feed on most
terminals, the form feed clears the screen.

formula column

Manually-created column that gets its data from a PL/SQL procedure, function, or
expression, user exit, SQL statement, or any combination of these.

function

A PL/SQL subprogram that executes an operation and returns a value at the
completion of the operation. A function can be either built-in or user-named.
Contrast with procedure.

heading

In SQL*Plus, text that names an output column, appearing above the column. See
also column heading.

host computer

The computer from which you run SQL*Plus.

Glossary-12

HTML

HTML (Hyper Text Markup Language) is the language used to write most of the
documents available on the World Wide Web. It provides display and linking
specifications that are recognized by most web browsers. The HTML
recommendation is sponsered by the World Wide Web Consortium (w3c) and
further details about the w3c and the HTML recommendation can be found at the
w3c web site: http://www.w3c.org.

instance

The background processes and memory area required to access an Oracle database.
A database system requires one instance and one database. An Oracle database
server consists of an SGA and a set of Oracle database server system processes.

instance failure

See database instance failure.

instance recovery

Recovery of an instance in the event of software or hardware failure, so that the
database is again available to users. If the instance terminates abnormally, then the
instance recovery automatically occurs at the next instance startup.

Julian date

An algorithm for expressing a date in integer form, using the SQL function JDATE.
Julian dates allow additional arithmetic functions to be performed on dates.

justification

See alignment.

label

Defines the label to be printed for the computed value in the COMPUTE command.
The maximum length of a COMPUTE label is 500 characters.

LGWR

See Log Writer (LGWR).

local database

The database that SQL*Plus connects to when you start SQL*Plus, ordinarily a
database on your host computer. Also called a default database. See also remote
database.

Glossary-13

log in (or log on)

To perform a sequence of actions at a terminal that establishes a user’s
communication with the operating system and sets up default characteristics for the
user’s terminal session.

log off (or log out)

To terminate interactive communication with the operating system, and end a
terminal session.

Log Writer (LGWR)

A background process used by an Oracle instance. LGWR writes redo log entries to
disk. Redo log data is generated in the redo log buffer of the system global area. As
transactions commit and the log buffer fills, LGWR writes redo log entries into an
online redo log file.

logon string

A user-specified command line, used to run an application that is connected to
either a local or remote database. The logon string either explicitly includes a
connect identifier or implicitly uses a default connect identifier.

LONG datatype

One of the standard Oracle datatypes. A LONG column can contain any printable
characters such as A, 3, &, or a blank, and can have any length from 0 to 2
gigabytes.

MARKUP

Refers to the SET MARKUP clause or the SQLPLUS -MARKUP clause that permits
SQL*Plus output to be generated in HTML format for delivery on the Internet.
SQL*Plus output generated in HTML can be viewed with any web browser
supporting HTML 3.2.

mounted database

A database associated with an Oracle instance. The database may be opened or
closed. A database must be both mounted an opened to be accessed by users. A
database that has been mounted but not opened can be accessed by DBAs for some
maintenance purposes.

Glossary-14

multi-threaded server

Allows many user processes to share a small number of server processes,
minimizing the number of server processes and maximizing the utilization of
available system resources.

NCHAR datatype

A standard Oracle datatype. The NCHAR datatype specifies a fixed-width national
character set character string, and can have a maximum column size up to 2000
bytes.

NCLOB datatype

A standard Oracle datatype. The NCLOB datatype is used to store fixed-width
national character set character (NCHAR) data, and can store up to 4 gigabytes of
character text data.

Net8

Oracle’s remote data access software that enables both client-server and
server-server communications across any network. Net8 supports distributed
processing and distributed database capability. Net8 runs over and interconnects
many communications protocols. Net8 is backward compatible with SQL*Net
version 2.

network

A group of two or more computers linked together through hardware and software
to allow the sharing of data and/or peripherals.

null

A value that means, "a value is not applicable" or "the value is unknown". Nulls are
not equal to any specific value, even to each other. Comparisons with nulls are
always false.

NULL value

The absence of a value.

NUMBER datatype

A standard Oracle datatype. A NUMBER column can contain a number, with or
without a decimal point and a sign, and can have from 1 to 105 decimal digits (only
38 digits are significant).

Glossary-15

NVARCHAR2 datatype

A standard Oracle datatype. The NVARCHAR2 datatype specifies a variable-length
NCHAR string. NVARCHAR2 width specifications refer to the number of
characters if the national character set is fixed-width, and to the number of bytes if
the national character set is varying-width. The maximum column size allowed is
4000 bytes.

object

An object is an instance of an object type. In Oracle8, objects can be persistent (i.e.
stored in the database) or transient (i.e. PL/SQL or Oracle Call Interface™ (OCI)
variables). See also object type.

object-relational model

A database model that combines the key aspects of the relational and object data
models into a single system. Oracle8 is an object-relational database system.

object type

A user-defined type that models a structure and behavior of an object. Equivalent to
the concept of a class in different programming languages. In Oracle8, object types
have public interfaces with attributes and methods. Object types are also known as
abstract data types.

online redo log

(1) Redo log files that have not been archived, but are either available to the instance
for recording database activity or are filled and waiting to be archived or reused. (2)
A set of two or more online redo log files that record all committed changes made to
the database.

open database

A database that has been mounted and opened by an instance and is available for
access by users. If a database is open, users can access the information it contains.
See also mounted database.

operating system

The system software that manages a computer’s resources, performing basic tasks
such as allocating memory and allowing computer components to communicate.

Glossary-16

Oracle Server

The relational database management system (RDBMS) sold by Oracle Corporation.
Components of Oracle Server include the kernel and various utilities for use by
DBAs and database users.

output

Results of a report after it is run. Output can be displayed on a screen, stored in a
file, or printed on paper.

output file

File to which the computer transfers data.

packages

A method of encapsulating and storing related procedures, functions, and other
package constructs together as a unit in the database. While packages provide the
database administrator or application developer organizational benefits, they also
offer increased functionality and database performance.

page

A screen of displayed data or a sheet of printed data in a report.

parallel server

Some hardware architectures (for example, loosely coupled processors) allow
multiple computers to share access to data, software, or peripheral devices. With
systems that have the parallel server option, Oracle can take advantage of such
hardware platforms by running multiple database instances that share a single
physical database. In appropriate applications, the Oracle Parallel Server allows
access to a single database by the users on multiple machines with increased
database performance.

parameter

A substitution variable consisting of an ampersand followed by a numeral (&1, &2,
and so on.). You use parameters in a command file and pass values into them
through the arguments of the START command.

parameter file

A file used by Oracle 8i Server to provide specific values and configuration settings
to be used on database startup. For more information about the function of the
parameter file, see the Oracle8i Administrator’s Guide.

Glossary-17

password

A secondary identification word (or string of alphanumeric characters) associated
with a username. A password is used for data security and known only to its
owner. Passwords are entered in conjunction with an operating system login ID,
Oracle username, or account name in order to connect to an operating system or
software application (such as the Oracle database). Whereas the username or ID is
public, the secret password ensures that only the owner of the username can use
that name, or access that data.

PL/SQL

The 3GL Oracle procedural language extension of SQL. PL/SQL combines the ease
and flexibility of SQL with the procedural functionality of a structured
programming language, such as IF...THEN, WHILE, and LOOP. Even when
PL/SQL is not stored in the database, applications can send blocks of PL/SQL to
the database rather than individual SQL statements, thereby reducing network
traffic.

PL/SQL is interpreted and parsed at runtime, it does not need to be compiled.

procedure

A set of SQL and PL/SQL statements grouped together as an executable unit to
perform a very specific task. Procedures and functions are nearly identical; the only
difference between the two is that functions always return a single value to the
caller, while procedures do not return a value to the caller.

process

(1) A thread of control in an operating system; that is, a mechanism in an operating
system that can execute a series of steps. Some operating systems use the terms job
or task. A process normally has its own private memory area in which it runs.

prompt

(1) A message from a computer program that instructs you to enter data or take
some other action. (2) Word(s) used by the system as a cue to assist a user’s
response. Such messages generally ask the user to respond by typing some
information in the adjacent field. See also command line.

query

A SQL SELECT statement that retrieves data, in any combination, expression, or
order. Queries are read-only operations; they do not change any data, they only
retrieve data. Queries are often considered to be DML statements.

Glossary-18

query results

The data retrieved by a query.

RAW datatype

A standard Oracle datatype, a RAW data column may contain data in any form,
including binary. You can use RAW columns for storing binary (non-character) data.

RDBMS (Relational Database Management System)

An Oracle7 (and earlier) term. Refers to the software used to create and maintain
the system, as well as the actual data stored in the database. See also Relational
Database Management System (RDBMS), Server and Oracle Server.

record

A synonym for row; one row of data in a database table, having values for one or
more columns.

recover

The Oracle process of restoring all or part of a database from specified redo log files.

redo log

A sequential log of all changes made to the data. The redo log is written and used in
the event of a failure that prevents changes from being written to disk. The redo log
consists of two or more redo log files.

redo log file

A file containing records of all changes made to the database. These files are used
for recovery purposes. See also redo log.

Relational Database Management System (RDBMS)

An Oracle7 (and earlier) term. A computer program designed to store and retrieve
shared data. In a relational system, data is stored in tables consisting of one or more
rows, each containing the same set of columns. Oracle is a relational database
management system. Other types of database systems are called hierarchical or
network database systems.

remark

In SQL*Plus, a comment you can insert into a command file with the REMARK
command.

Glossary-19

remote computer

A computer on a network other than the local computer.

remote database

A database other than your default database, which may reside on a remote
computer; in particular, one that you reference in the CONNECT, COPY, and
SQLPLUS commands.

report

(1) The results of a query. (2) Any output, but especially output that has been
formatted for quick reading, in particular, output from SQL*Plus.

reserved word

(1) A word that has a special meaning in a particular software or operating system.
(2) In SQL, a set of words reserved for use in SQL statements; you cannot use a
reserved word as the name of a database object.

roles

Named groups of related privileges that are granted to users or other roles.

rollback

To discard pending changes made to the data in the current transaction using the
SQL ROLLBACK command. You can roll back a portion of a transaction by
identifying a savepoint.

row

(1) Synonym for record; one row of data in a database table, having values for one
or more columns. Also called tuple. (2) One set of field values in the output of a
query. See also column.

schema

A collection of logical structures of data, or schema objects. A schema is owned by a
database user and has the same name as that user.

security level

The combination of a hierarchical classification and a set of non-hierarchical
compartments that represent the sensitivity of information.

Glossary-20

select

To fetch rows from one or more database tables using a query (the SQL statement
SELECT).

SELECT list

The list of items that follow the keyword SELECT in a query. These items may
include column names, SQL functions, constants, pseudo-columns, calculations on
columns, and aliases. The number of columns in the result of the query will match
the number of items in the SELECT list.

SELECT statement

A SQL statement that specifies which rows and columns to fetch from one or more
tables or views. See also SQL statement.

Server

Oracle software that handles the functions required for concurrent, shared data
access to an Oracle database. The server portion receives and processes SQL and
PL/SQL statements originating from client applications. The computer that
manages the server portion must be optimized for its duties.

session

The time after a username connects to an Oracle database and before disconnecting,
and the events that happen in that time.

SET command variable

See system variable.

SGA

See also System Global Area (SGA).

spooling

Sending or saving output to a disk storage area. Often used in order to print or
transfer files. The SQL*Plus SPOOL command controls spooling.

SQL (Structured Query Language)

The internationally accepted standard for relational systems, covering not only
query but also data definition, manipulation, security and some aspects of
referential integrity. See also Data Manipulation Language (DML), Data Definition
Language (DDL), and Data Control Language (DCL).

Glossary-21

SQL buffer

The default buffer containing your most recently entered SQL command or PL/SQL
block. SQL*Plus commands are not stored in the SQL buffer.

SQL command

See SQL statement.

SQL script

A file containing SQL statements that you can run in SQL*Plus to perform database
administration quickly and easily.

SQL statement

A complete command or statement written in the SQL language. Synonymous with
statement (SQL).

SQL*Loader

An Oracle tool used to load data from operating system files into Oracle database
tables.

SQL*Net

Net8’s precursor. An Oracle product that works with the Oracle Server and enables
two or more computers that run the Oracle RDBMS or Oracle tools such as
SQL*Forms to exchange data through a network. SQL*Net supports distributed
processing and distributed database capability. SQL*Net runs over and
interconnects many communications protocols.

SQL*Plus

An interactive SQL-based language for data manipulation, data definition and the
definition of access rights for an Oracle database. Often used as an end-user
reporting tool.

statement (SQL)

A SQL statement, and analogous to a complete sentence, as opposed to a phrase.
Portions of SQL statements or commands are called expressions, predicates, or
clauses. See also SQL statement.

string

Any sequence of words or characters on a line.

Glossary-22

substitution variable

In SQL*Plus, a variable name or numeral preceded by one or two ampersands (&).
Substitution variables are used in a command file to represent values to be provided
when the command file is run.

subtotal

In a report, a total of values in a number column, taken over a group of rows that
have the same value in a break field. See also summary.

summary

Summaries, or summary columns, are used to compute subtotals, grand totals,
running totals, and other summarizations of the data in a report.

summary line

A line in a report containing totals, averages, maximums, or other computed values.
You create summary lines through the BREAK and COMPUTE commands.

syntax

The orderly system by which commands, qualifiers, and parameters are combined
to form valid command strings.

SYS username

See also SYSTEM username.

SYSDBA

Privilege that contains all system privileges with the ADMIN OPTION and the
SYSOPER system privilege. See also SYSOPER.

SYSOPER

Privilege that allows a DBA to perform operations such as STARTUP, SHUTDOWN,
ARCHIVE LOG and RECOVER. See also SYSDBA.

system administrator

A person responsible for operation and maintenance of the operating system of a
computer.

system editor

The text editor provided by the operating system.

Glossary-23

System Global Area (SGA)

A shared storage area that contains information required by user processes and
background processes, such as data and control information for one Oracle instance.

The SGA is allocated when an Oracle instance is started, and is deallocated when
the instance shuts down.

SYSTEM username

One of two standard DBA usernames automatically created with each database (the
other is SYS). The Oracle user SYSTEM is created with the password MANAGER.
The SYSTEM username is the preferred username for DBAs to use when
performing database maintenance.

system variable

A variable that indicates status or environment, which is given a default value by
Oracle or SQL*Plus. Examples are LINESIZE and PAGESIZE. Use the SQL*Plus
commands SHOW and SET to see and alter the value of system variables.

table

The basic unit of storage in a relational database management system. A table
represents entities and relationships, and consists of one or more units of
information (rows), each of which contains the same kinds of values (columns).
Each column is given a column name, a datatype (such as CHAR, NCHAR,
VARCHAR2, NVARCHAR2, DATE, or NUMBER), and a width (the width may be
predetermined by the datatype, as in DATE). Once a table is created, valid rows of
data can be inserted into it. Table information can then be queried, deleted, or
updated. To enforce defined business rules on a table’s data, integrity constraints
and triggers can also be defined for a table.

table alias

A temporary substitute name for a table, defined in a query and only good during
that query. If used, an alias is set in the FROM clause of a SELECT statement and
may appear in the SELECT list. See also alias.

text editor

A program run under your host computer’s operating system that you use to create
and edit host system files and SQL*Plus command files containing SQL commands,
SQL*Plus commands, and/or PL/SQL blocks.

Glossary-24

timer

An internal storage area created by the TIMING command.

title

One or more lines that appears at the top or bottom of each report page. You
establish and format titles through the TTITLE and BTITLE commands.

transaction

A logical unit of work that comprises one or more SQL statements executed by a
single user. According to the ANSI/ISO SQL standard, with which Oracle is
compatible, a transaction begins with the user’s first executable SQL statement. A
transaction ends when it is explicitly committed or rolled back by the user.

truncate

To discard or lose one or more characters from the beginning or end of a value,
whether intentionally or unintentionally.

type

A column contains information in one of four types: character, date, number or
long. The operations users can perform on the contents of a column depend on the
type of information it contains. See also format.

USERID

A command line argument that allows you to specify your Oracle username and
password with an optional Net8 address.

username

The name by which a user is known to the Oracle database server and to other
users. Every username is associated with a private password, and both must be
entered to connect to an Oracle database. See also account.

user variable

A variable defined and set by you explicitly with the DEFINE command or
implicitly with an argument to the START command.

VARCHAR

An Oracle Corporation datatype. Specifically, this datatype functions identically to
the Oracle VARCHAR2 datatype (see definition below). However, Oracle
Corporation recommends that you use VARCHAR2 instead of VARCHAR because
Oracle Corporation may change the functionality of VARCHAR in the future.

Glossary-25

VARCHAR2

An Oracle Corporation datatype. Specifically, it is a variable-length, alpha-numeric
string with a maximum length of 4000 characters. If data entered for a column of
type VARCHAR2 is less than 4000 no spaces will be padded; the data is stored with
a length as entered. If data entered is more than 4000, an error occurs.

variable

A named object that holds a single value. SQL*Plus uses bind substitution, system,
and user variables.

width

The width of a column, parameter, or layout object. Width is measured in
characters; a space is a character.

wrapping

A reporting or output feature in which a portion of text is moved to a new line
when the entire text does not fit on one line.

Glossary-26

Index-1

Index
-- (comment delimiter), 3-12
- (hyphen)

clause, 7-2
continuing a long SQL*Plus command, 2-12, 8-1

. (period), 2-10
/ (slash) command

default logon, 7-9, 8-47
entered at buffer line-number prompt, 2-8, 8-9
entered at command prompt, 2-10, 8-9
executing current PL/SQL block, 2-10
executing current SQL command, 2-10
similar to RUN, 2-10, 8-9, 8-95
usage, 8-9

pound sign, 8-35
$ number format, 4-5
& (ampersand)

substitution variables, 3-22
* (asterisk)

in DEL command, 3-2, 8-54
in LIST command, 3-2, 8-75

/*...*/ (comment delimiters), 3-12
: (colon)

bind variables, 3-31
:BindVariable clause

EXIT command, 8-67
; (semicolon), 2-6
@ ("at" sign)

command, 3-16, 3-20, 8-5
command arguments, 8-5
command file, 3-16, 8-5
in CONNECT command, 6-3, 8-47
in COPY command, 6-5, 8-49
in SQLPLUS command, 3-17, 6-4, 7-2
passing parameters to a command file, 8-5

similar to START, 3-16, 8-6, 8-132
@@ (double "at" sign) command, 3-20, 8-7

command file, 8-7
similar to START, 8-7, 8-132

[Backspace] key, 2-2
[Cancel] key, 2-2, 2-15
[Interrupt] key, 2-2
[Pause] key, 2-2, 2-17
[Resume] key, 2-2
[Return] key, 2-2
_EDITOR, in EDIT command, 3-8, 8-64
~ infinity sign, 8-35
-~ negative infinity sign, 8-35
0, number format, 4-5
9, number format, 4-5

A
ABORT mode, 8-128
ACCEPT command, 3-28, 8-10

and DEFINE command, 8-52
CHAR clause, 8-10
customizing prompts for value, 3-30
DATE clause, 8-10
DEFAULT clause, 8-11
FORMAT clause, 8-10
HIDE clause, 8-11
NOPROMPT clause, 8-11
NUMBER clause, 3-30
PROMPT clause, 3-29, 8-11

access, denying and granting, E-2
account, GL-1, GL-24
alias, GL-1, GL-23
ALIAS clause, 8-31

Index-2

in ATTRIBUTE command, 8-17
alignment, GL-1
ALL clause, 8-123
ALTER command

disabling, E-5
ampersands (&)

in parameters, 3-27, 8-5, 8-131
substitution variables, 3-22

ANALYZE command
disabling, E-5

anonymous block, GL-1
APPEND clause

in COPY command, 6-7, 8-50
in SAVE command, 3-18, 8-96

APPEND command, 3-2, 3-6, 8-12
APPINFO clause, 8-99
ARCH background process, 8-14
ARCHIVE LOG

command, 5-4, 8-13
mode, 5-4

archived redo log, GL-1
ARCHIVELOG, GL-1
argument, GL-2

in START command, 3-27, 8-131
array processing, GL-2
ARRAYSIZE variable, 8-100

relationship to COPY command, 6-8, 8-51
ASCII, GL-2
attribute

display characteristics, 8-17
ATTRIBUTE command, 8-17

ALIAS clause, 8-17
and CLEAR COLUMN command, 8-18
CLEAR clause, 8-18
clearing columns, 8-28, 8-31
controlling display characteristics, 8-18
entering multiple, 8-18
FORMAT clause, 8-18
LIKE clause, 8-18
listing all attributes’ display characteristics, 8-17
listing an attribute’s display characteristics, 8-17
OFF clause, 8-18
ON clause, 8-18
restoring column display attributes, 8-18
suppressing column display attributes, 8-18

AUDIT command
disabling, E-5

autocommit, GL-2
AUTOCOMMIT variable, 2-14, 8-100
AUTOMATIC clause, 8-82
AUTOPRINT variable, 8-101
AUTORECOVERY variable, 8-101
AUTOTRACE variable, 3-36, 8-101
AVG function, 4-16

B
background process, GL-2

startup after abnormal termination, 8-128
batch mode, 3-18, 8-68
BEGIN command, 2-10

disabling, E-6
bind reference, GL-2
bind variables, 3-31, GL-2, GL-25

creating, 8-145
displaying, 8-79
displaying automatically, 8-101, 8-146
in PL/SQL blocks, 8-146
in SQL statements, 8-146
in the COPY command, 8-146
REFCURSOR, 3-33

bit, GL-3
blank line

in PL/SQL blocks, 2-10
in SQL commands, 2-8
preserving in SQL commands, 8-110

blocks, GL-3
blocks, PL/SQL, 1-2

continuing, 2-10
editing in buffer, 3-2
editing with host system editor, 3-7, 8-64
entering and executing, 2-10
listing current in buffer, 3-3
run from SQL buffer, 2-10
saving current, 3-8, 8-96
setting character used to end, 8-102
stored in SQL buffer, 2-10
storing in command files, 3-8
timing statistics, 8-111
within SQL commands, 2-8

Index-3

BLOCKTERMINATOR, 8-102, 8-110, 8-111
body, GL-3
BODY clause, 7-4
BODY option, 7-4
BOLD clause, 8-92, 8-141
break, GL-3
break columns, 4-11, 8-19, GL-3

inserting space when value changes, 4-13
specifying multiple, 4-14
suppressing duplicate values in, 4-12

BREAK command, 4-11, 8-19
and SQL ORDER BY clause, 4-11, 4-12, 4-14,

8-20
clearing BREAKS, 4-15
displaying column values in titles, 4-29
DUPLICATES clause, 8-22
inserting space after every row, 4-13
inserting space when break column

changes, 4-13
listing current break definition, 4-15, 8-22
ON column clause, 4-12, 8-19
ON expr clause, 8-20
ON REPORT clause, 4-19, 8-21
ON ROW clause, 4-13, 8-21
printing "grand" and "sub" summaries, 4-20
printing summary lines at ends of reports, 4-19
removing definition, 8-28
SKIP clause, 4-13, 8-21
SKIP PAGE clause, 4-13, 4-14, 8-22
specifying multiple break columns, 4-14, 8-19
storing current date in variable for titles, 4-30
suppressing duplicate values, 4-12
used in conjunction with COMPUTE, 4-15, 8-19,

8-21, 8-43
used in conjunction with SET COLSEP, 8-103
used to format a REFCURSOR variable, 8-147

break definition
listing current, 4-15, 8-22
removing current, 4-15, 8-28

break group, GL-3
break hierarchy, GL-3
break order, GL-3
break report, GL-3
BREAKS clause, 4-15, 8-28
browser, web, 4-38

BTITLE clause, 8-124
BTITLE command, 4-22, 8-24, GL-24

aligning title elements, 8-141
BOLD clause, 8-141
CENTER clause, 8-141
COL clause, 8-141
FORMAT clause, 8-142
indenting titles, 8-141
LEFT clause, 8-141
OFF clause, 8-141
old form, F-3
printing blank lines before bottom title, 4-25
referencing column value variable, 8-36
RIGHT clause, 8-141
SKIP clause, 8-141
suppressing current definition, 8-141
TAB clause, 8-141
TTITLE command, 8-24

buffer, 2-9, GL-4, GL-21
appending text to a line in, 3-6, 8-12
delete a single line, 3-2
delete the current line, 3-2
delete the last line, 3-2
deleting a range of lines, 3-2, 8-54
deleting a single line, 8-54
deleting all lines, 3-2, 8-28, 8-54
deleting lines from, 3-7, 8-54
deleting the current line, 8-54
deleting the last line, 8-54
executing contents, 2-10, 8-9, 8-95
inserting new line in, 3-5, 8-73
listing a range of lines, 3-3, 8-75
listing a single line, 3-2, 8-75
listing all lines, 3-2, 8-75
listing contents, 3-3, 8-75
listing the current line, 3-2, 8-75
listing the last line, 3-3, 8-75
loading into host system editor, 3-8, 8-64
saving contents, 3-8, 8-96

BUFFER clause, 3-2, 3-10, 8-28
BUFFER variable, F-4
byte, GL-4

Index-4

C
CANCEL clause, 8-84
CENTER clause, 4-25, 8-92, 8-141
CGI scripts, 4-42, GL-6
CHANGE command, 3-2, 3-3, 8-25
CHAR clause, 8-10

VARIABLE command, 8-145
CHAR columns

changing format, 4-6, 8-32
default format, 4-6, 8-32

CHAR datatype, GL-4
character, GL-4
character string, GL-4
clause, GL-4
CLEAR clause, 4-9, 8-31

in ATTRIBUTE command, 8-18
CLEAR command, 8-28

BREAKS clause, 4-15, 8-28
BUFFER clause, 3-2, 3-10, 8-28
COLUMNS clause, 4-9, 8-28
COMPUTES clause, 8-28
SCREEN clause, 3-31, 8-28
SQL clause, 8-29
TIMING clause, 8-29

client, GL-4
CLOB clause

VARIABLE command, 8-146
CLOB columns

changing format, 4-6, 8-32
default format, 8-32
setting maximum width, 8-107
setting retrieval position, 8-107
setting retrieval size, 8-107

CLOB datatype, GL-4
CLOSECURSOR variable, F-2, F-5
CMDSEP variable, 8-102
COL clause, 4-26, 8-92, 8-141
colons (:)

bind variables, 3-31
COLSEP variable, 8-102
column, GL-5

format, GL-24
width, GL-25

COLUMN command, 4-2, 8-30

ALIAS clause, 8-31
and BREAK command, 8-21
and DEFINE command, 8-52
CLEAR clause, 4-9, 8-31
DEFAULT clause, F-3
displaying column values in bottom titles, 4-30,

8-36
displaying column values in top titles, 4-29,

8-35
entering multiple, 8-37
ENTMAP clause, 8-31
FOLD_AFTER clause, 8-31, 8-32
FOLD_BEFORE clause, 8-32
FORMAT clause, 4-5, 4-6, 8-32
formatting columns, 4-6
formatting NUMBER columns, 4-4, 8-33
HEADING clause, 4-2, 8-35
HEADSEP character, 8-35
JUSTIFY clause, 8-35
LIKE clause, 4-8, 8-35
listing column display attributes, 4-8, 4-9, 8-30
NEW_VALUE clause, 4-29, 4-30, 8-35
NEWLINE clause, 8-35
NOPRINT clause, 4-29, 8-36
NULL clause, 8-36
OFF clause, 4-9, 8-37
OLD_VALUE clause, 4-30, 8-36
ON clause, 4-9, 8-37
PRINT clause, 8-36
resetting a column to default display, 4-9, 8-31,

F-2
restoring column display attributes, 4-9, 8-37
storing current date in variable for titles, 4-30,

8-38
suppressing column display attributes, 4-9, 8-37
TRUNCATED clause, 4-7, 8-37
used to format a REFCURSOR variable, 8-147
WORD_WRAPPED clause, 4-7, 4-10, 8-37
WRAPPED clause, 4-7, 8-37

column expression, GL-5
column headings

aligning, 8-35
changing, 4-2, 8-35
changing character used to underline, 4-3, 8-112
changing to two or more words, 4-3, 8-35

Index-5

displaying on more than one line, 4-3, 8-35
suppressing printing in a report, 8-105
when truncated, 8-32
when truncated for CHAR and LONG

columns, 4-7
when truncated for DATE columns, 4-7
when truncated for NUMBER columns, 4-4

column separator, 8-102, F-2
columns

assigning aliases, 8-31
computing summary lines, 4-16, 8-41
copying display attributes, 4-8, 8-18, 8-35
copying values between tables, 6-4, 6-9, 8-49
displaying values in bottom titles, 4-30, 8-36
displaying values in top titles, 4-29, 8-35
formatting CHAR, VARCHAR, LONG, and

DATE, 8-32
formatting in reports, 4-2, 8-30
formatting MLSLABEL, RAW MLSLABEL,

ROWLABEL, 8-32
formatting NUMBER, 4-4, 8-33
listing display attributes for all, 4-9, 8-30
listing display attributes for one, 4-8, 8-30
names in destination table when copying, 6-5,

8-50
printing line after values that overflow, 4-9,

8-108
resetting a column to default display, 4-9, 8-31,

F-2
resetting all columns to default display, 4-9,

8-28
restoring display attributes, 4-9, 8-18, 8-37
setting printing to off or on, 4-29, 8-36
starting new lines, 8-35
storing values in variables, 4-29, 8-35
suppressing display attributes, 4-9, 8-18, 8-37
truncating display for all when value

overflows, 4-7, 8-112
truncating display for one when value

overflows, 4-7, 8-37
wrapping display for all when value

overflows, 4-7, 8-112
wrapping display for one when value

overflows, 4-7, 8-37
wrapping whole words for one, 4-10

COLUMNS clause, 4-9, 8-28
comma, number format, 4-5
command, GL-5
command file extension, 8-96, 8-111, 8-137
command files, 3-8

aborting and exiting with a return code, 3-18,
8-152, 8-154

allowing end-user input, 3-21
creating with a system editor, 3-11
creating with INPUT and SAVE, 3-9
creating with SAVE, 3-8, 8-96
editing with GET and SAVE, 3-18
editing with host system editor, 3-18, 8-64
in @ ("at" sign) command, 3-16, 8-5
in @@ (double "at" sign) command, 8-7
in EDIT command, 3-18, 8-64
in GET command, 3-15, 8-69
in SAVE command, 3-8, 3-10, 8-96
in SQLPLUS command, 3-17, 7-10
in START command, 3-16, 8-131
including comments in, 3-11, 8-88
including more than one PL/SQL block, 3-11
including more than one SQL command, 3-10,

3-11
listing names with HOST command, 3-9
nesting, 3-17
passing parameters to, 3-27, 8-5, 8-131
registering, 8-99
retrieving, 3-15, 8-69
running, 3-16, 8-5, 8-131
running a series in sequence, 3-17
running as you start SQL*Plus, 3-17, 7-10
running in batch mode, 3-18, 8-68
running nested, 8-7
saving contents of buffer in, 3-8, 8-96

command prompt, GL-5
host operating system, 2-3
SQL*Plus, 2-4

commands, 1-2
collecting timing statistics on, 2-15, 8-138
disabling, E-4
host, running from SQL*Plus, 2-16, 8-71
listing current in buffer, 8-75
re-enabling, E-5
spaces, 2-5

Index-6

SQL
continuing on additional lines, 2-7
editing in buffer, 3-2
editing with host system editor, 3-7, 8-64
ending, 2-7
entering and executing, 2-6
entering without executing, 2-8
executing current, 2-10, 8-9, 8-95
following syntax, 2-7
list of major, D-1
listing current in buffer, 3-3
saving current, 3-8, 8-96
setting character used to end and run, 8-110

SQL*Plus
abbreviations, 2-11
command summary, 8-2
continuing on additional lines, 2-12, 8-1
editing at command prompt, 3-2
ending, 2-13, 8-1
entering and executing, 2-11
entering during SQL command entry, 8-110
obsolete command alternatives, F-2

stopping while running, 2-15
storing in command files, 3-8
syntax conventions, 1-3
tabs, 2-5
types of, 2-5
variables that affect running, 2-13
writing interactive, 3-21

comments, GL-5, GL-18
including in command files, 3-11, 8-88, F-2
using -- to create, 3-12
using /*...*/ to create, 3-12
using REMARK to create, 3-12, 8-88, F-2

commit, GL-6
COMMIT clause, 8-67

WHENEVER OSERROR, 8-151
WHENEVER SQLERROR, 8-153

COMMIT command, 2-13
Common Gateway Interface, GL-6
communications, GL-14
COMPATIBILITY clause

in LOGIN.SQL, 3-19
COMPATIBILITY variable, 8-103
computation, GL-6

COMPUTE command, 4-11, 8-41
AVG function, 4-16
computing a summary on different

columns, 4-20
COUNT function, 4-16
LABEL clause, 4-17, 4-19, 8-42
listing all definitions, 4-22, 8-43
MAXIMUM function, 4-16
maximum LABEL length, 8-42
MINIMUM function, 4-16
NUMBER function, 4-16
OF clause, 4-16
ON column clause, 4-16, 8-42
ON expr clause, 8-42
ON REPORT clause, 4-19, 8-42
ON ROW clause, 8-42
printing "grand" and "sub" summaries, 4-20
printing multiple summaries on same

column, 4-21
printing summary lines at ends of reports, 4-19
printing summary lines on a break, 4-16
referencing a SELECT expression in OF, 8-42
referencing a SELECT expression in ON, 8-43
removing definitions, 4-22, 8-28
STD function, 4-16
SUM function, 4-16
used to format a REFCURSOR variable, 8-147
VARIANCE function, 4-16

computed column, GL-6
COMPUTES clause, 8-28
CONCAT variable, 3-26, 8-103
concurrency

instances, multiple, 8-134
configuration, GL-6
configuration files, GL-6
connect, GL-6
CONNECT command, 6-2, 6-3, 8-47

and @ ("at" sign), 6-3, 8-47
changing password, 8-47, 8-48, 8-77
connect identifier, 6-3
INTERNAL, 8-47
service name, 6-3
SYSDBA clause, 7-9, 8-48
SYSOPER clause, 7-9, 8-48
username/password, 6-2, 6-3, 6-4, 8-47

Index-7

CONNECT command (SQL)
disabling, E-5

connect identifier, 6-3, 8-47, GL-6
in CONNECT command, 8-47
in COPY command, 8-49
in DESCRIBE command, 8-56
in SQLPLUS command, 7-9

CONTINUE clause
WHENEVER OSERROR, 8-151
WHENEVER SQLERROR, 8-153

continuing a long SQL*Plus command, 2-12, 8-1
conventions, command syntax, 1-3
COPY command, 6-4, 8-49

and @ ("at" sign), 6-5, 8-49
and ARRAYSIZE variable, 6-8, 8-51
and COPYCOMMIT variable, 6-8, 8-51
and LONG variable, 6-8, 8-51
APPEND clause, 6-7, 8-50
copying data between databases, 6-4
copying data between tables on one

database, 6-9
CREATE clause, 6-6, 8-50
creating a table, 6-6, 8-50
destination table, 6-5, 8-50
determining actions, 6-5
determining source rows and columns, 6-6, 8-51
disabling, E-5
FROM clause, 6-5, 8-49
INSERT clause, 6-7, 8-50
inserting data in a table, 6-7, 8-50
interpreting messages, 6-8
mandatory connect identifier, 8-50
naming the source table with SELECT, 6-6, 8-51
query, 6-6, 8-51
referring to another user’s table, 6-8
REPLACE clause, 6-6, 8-50
replacing data in a table, 6-6, 8-50
sample command, 6-5, 6-6
service name, 6-5, 6-7, 6-9
specifying column names for destination, 6-5,

8-50
specifying the data to copy, 6-6, 8-51
TO clause, 6-5, 8-49
username/password, 6-5, 6-7, 6-9, 8-49
USING clause, 6-6, 8-51

when a commit is performed, 8-51
COPYCOMMIT variable, 8-103

relationship to COPY command, 6-8, 8-51
COPYTYPECHECK variable, 8-103
COUNT function, 4-16
CREATE clause

in COPY command, 6-6, 8-50
CREATE command

disabling, E-6
entering PL/SQL, 2-8

creating flat files, 4-34
creating the PRODUCT_USER_PROFILE table, E-2
current line, GL-7
cursor variables, 8-146

D
Data Control Language, GL-8
Data Definition Language, GL-8
data dictionary, GL-8
Data Manipulation Language, GL-8
data security, GL-8
database, GL-7

connect identifier, 8-47
dismounted, GL-9
failure, GL-7
link, GL-7
local, GL-12
mounting, 8-134
object, GL-7
open, GL-15
opening, 8-134
schema, GL-19
server, GL-7
specification, GL-8
string, GL-8
transaction, GL-24
USERID, GL-24
username, GL-24

database administrator, 1-6, 5-2, GL-7
database changes, saving automatically, 2-13, 8-100
DATABASE clause, 8-83
database files

recovering, 8-82
database name at startup, 8-133

Index-8

databases
and RECOVERY command, 8-82
connecting to default, 6-2, 8-47
connecting to remote, 6-3, 8-47
copying data between, 6-4, 8-49
copying data between tables on a single, 6-9
disconnecting without leaving SQL*Plus, 6-2,

8-63
mounting, 5-3
opening, 5-3
recovering, 5-5, 8-82
shutting down, 5-2, 5-3
starting, 5-2

DATAFILE clause, 8-84
datatype, GL-9

LONG, GL-13
NCHAR, GL-14
NCLOB, GL-14
NUMBER, GL-14
NVARCHAR2, GL-15
RAW, GL-18
VARCHAR, GL-24
VARCHAR2, GL-25

DATE
datatype, GL-9

date
Julian, GL-12

DATE clause, 8-10
DATE columns

changing format, 4-6, 8-33, 8-39
default format, 4-6

date, storing current in variable for titles, 4-30,
8-35, 8-38

DB2, 8-103
DBA, 5-2, GL-7
DBA mode, 8-133
DBA privilege, 8-133
DBMS_APPLICATION_INFO package, 8-99
DCL, GL-8
DDL, GL-8
DECLARE command

disabling, E-6
DECLARE command (PL/SQL), 2-10
default, GL-9

database, GL-9

DEFAULT clause, 8-11
DEFINE command, 3-21, 8-52, GL-24

and host system editor, 3-8, 8-53
CHAR values, 8-52
substitution variables, 3-24, 8-52

DEFINE variable, 3-26, 8-103
DEL command, 3-2, 3-7, 8-54

using an asterisk, 3-2, 8-54
DELETE command

disabling, E-6
DEMOBLD, 1-7
DEMODROP, 1-7
DEPT table, 1-5
DESCRIBE command (SQL*Plus), 2-16, 8-56

connect_identifier, 8-56
PL/SQL properties listed by, 8-57
table properties listed by, 8-56

directory, GL-9
DISABLED keyword, disabling commands, E-4
disabling

PL/SQL commands, E-6
SQL commands, E-4
SQL*Plus commands, E-4

DISCONNECT command, 6-2, 8-63
dismounted database, GL-9
display

format, GL-9
width, GL-10

DML, GL-8
DOCUMENT command

Obsolete commands
DOCUMENT, F-2

obsolete commands
DOCUMENT, F-3

REMARK as newer version of, F-4
DOCUMENT variable, F-2, F-5
DROP command

disabling, E-6
DUAL table, GL-10
DUPLICATES clause, 8-22

E
ECHO variable, 3-16, 8-104
EDIT command, 3-7, 8-64

Index-9

creating command files with, 3-11
defining _EDITOR, 3-8, 8-64
disabling, E-5
modifying command files, 3-18, 8-64
setting default file name, 8-104

EDITFILE variable, 8-104
editor, GL-10
EMBEDDED variable, 8-104
EMP table, 1-5
empty line, displaying, 8-78
end user, GL-10
Enhancement list, Release 8.1, B-3, B-4
enhancement list,release 8.1, B-2
entities, HTML, 4-47
ENTMAP, 7-5
ENTMAP clause, 4-47, 7-5, 8-31
error message, GL-10
error messages, interpreting, 2-18
errors, making line containing current, 3-4
escape characters, definition of, 8-104
ESCAPE variable, 3-26, 8-104
example

embedded CGI report, 4-42
interactive HTML report, 4-39, 4-41

EXCLUSIVE clause, 8-133
EXECUTE command, 8-66

disabling, E-5
executing

a CREATE command, 2-8
execution statistics

including in report, 8-101
EXIT clause

WHENEVER OSERROR, 8-151
WHENEVER SQLERROR, 8-153

EXIT command, 2-4, 8-67
:BindVariable clause, 8-67
COMMIT clause, 8-67
disabling, E-5
FAILURE clause, 8-67
in a command file, 8-132
ROLLBACK clause, 8-67
use with SET MARKUP, 4-39
WARNING clause, 8-67

exit, conditional, 8-151, 8-153
expression, GL-10

extension, 8-96, 8-111, 8-137, GL-10

F
FAILURE clause, 8-67
FEEDBACK variable, 8-105
file, GL-10
file extension, 8-96, 8-111, 8-137
file extensions, 3-20
file names

in @ ("at" sign) command, 8-5
in @@ (double "at" sign) command, 8-7
in EDIT command, 8-64
in GET command, 8-69
in SAVE command, 3-8, 8-96
in SPOOL command, 4-34, 8-130
in SQLPLUS command, 7-10
in START command, 8-131

file type, GL-11
filename, GL-11
files

command files, 3-8
flat, 4-34

FLAGGER variable, 8-105
flat file, 4-34
FLUSH variable, 8-105
FOLD_AFTER clause, 8-32
FOLD_BEFORE clause, 8-32
footers

aligning elements, 8-92
displaying at bottom of page, 8-89
displaying system-maintained values, 8-91
formatting elements, 8-92
indenting, 8-92
listing current definition, 8-89
setting at the end of reports, 4-22
suppressing definition, 8-92

FORCE clause, 8-133
form feed, GL-11
format, GL-11

column, GL-24
mask, GL-11
model, GL-11

FORMAT clause, 8-10, 8-32
in ATTRIBUTE command, 8-18

Index-10

in COLUMN command, 4-5, 4-6
in REPHEADER and REPFOOTER

commands, 8-92
in TTITLE and BTITLE commands, 4-27, 8-142

format models, number, 4-5, 8-34
formfeed, to begin a new page, 4-31, 8-107
formula column, GL-11
FROM clause, 8-83
FROM clause (SQL*Plus), 6-5, 8-49
function, GL-11

G
GET command, 3-15, 8-69

disabling, E-5
LIST clause, 8-69
modifying command files, 3-18
NOLIST clause, 8-69
retrieving command files, 3-15, 8-69

GLOGIN.SQL, 3-19, 3-38, 3-41, 7-10
See also LOGIN.SQL

GRANT command, E-2
disabling, E-6

H
HEAD clause, 7-4
HEAD option, 7-4
headers

aligning elements, 4-24
displaying at top of page, 8-91
displaying system-maintained values, 8-91
setting at the start of reports, 4-22
suppressing, 4-24

heading, GL-11
HEADING clause, 4-2, 8-35
HEADING variable, 8-105
headings

aligning elements, 8-92
column headings, 8-105
formatting elements, 8-92
indenting, 8-92
listing current definition, 8-93
suppressing definition, 8-92

HEADSEP variable, 8-106

use in COLUMN command, 4-3, 8-35
HELP command, 8-70
help, online, 2-5, 7-12, 8-70
HIDE clause, 8-11
HOST command, 2-16, 8-71

disabling, E-5
listing command file names with, 3-9

host computer, GL-11
host operating system

command prompt, 2-3
editor, 3-7, 8-64
file, loading into buffer, 8-69
running commands from SQL*Plus, 2-16, 8-71

HTML, 4-38, 4-42, GL-12
clause, 7-4
entities, 4-47
option, 7-4
spooling to file, 7-6
tag, 4-38

hyphen
continuing a long SQL*Plus command, 2-12, 8-1

I
IMMEDIATE mode, 8-128
infinity sign (~), 8-35
initialization parameters

displaying, 8-124
INIT.ORA file

parameter file, 8-133
input

accepting [Return], 3-31, 8-78
accepting values from the user, 3-28, 8-10

INPUT command, 3-2, 3-5, 8-73
entering several lines, 8-73
using with SAVE to create command files, 3-9

INSERT clause, 6-7, 8-50
INSERT command

disabling, E-6
instance, GL-12

failure, GL-7
recovery, GL-12

INSTANCE variable, 8-106
instances

multiple, sharing a database, 8-134

Index-11

shutting down, 8-128
starting, 8-133

INTERNAL
See CONNECT

J
Julian date, GL-12
justification, GL-12
JUSTIFY clause, 8-35

K
keyboard, significance of keys on, 2-2
keys

[Backspace] key, 2-2
[Cancel] key, 2-2
[Interrupt] key, 2-2
[Pause] key, 2-2
[Resume] key, 2-2
[Return] key, 2-2

L
label, GL-12
LABEL variable

SHOW command, F-2, F-7
labels

in COMPUTE command, 4-17, 8-42
layout object

width, GL-25
LEFT clause, 4-25, 8-92, 8-141
LGWR, GL-13
LIKE clause, 4-8, 8-18, 8-35
limits, SQL*Plus, C-1
line numbers, for SQL commands, 2-6
line wrapping, GL-25
lines

adding at beginning of buffer, 8-73
adding at end of buffer, 8-73
adding new after current, 3-5, 8-73
appending text to, 3-6, 8-12
changing width, 4-32, 8-106
deleting all in buffer, 8-54
deleting from buffer, 3-7, 8-54

determining which is current, 3-3
editing current, 3-3
listing all in buffer, 3-2, 8-75
removing blanks at end, 8-111

LINESIZE variable, 4-24, 4-32, 8-106
LIST clause, 8-13, 8-69
LIST command, 3-2, 8-75

determining current line, 3-3, 8-75
making last line current, 3-4, 8-75
using an asterisk, 3-2, 8-75

LNO clause, 8-124
LOBOFFSET variable, 8-107
local database, GL-12
LOCK TABLE command

disabling, E-6
log in, GL-13
log off, GL-13
log on, GL-13
log out, GL-13
Log Writer, GL-13
LOG_ARCHIVE_DEST parameter, 8-13
LOGFILE clause, 8-84
logging off

conditionally, 8-151, 8-153
Oracle, 6-2, 8-63
SQL*Plus, 2-4, 8-67

logging on
Oracle, 6-2, 6-3, 8-47
SQL*Plus, 2-4

LOGIN.SQL, 3-19, 7-10
including SET commands, 3-19
sample commands to include, 3-19
See also GLOGIN.SQL
storing current date in variable for titles, 4-30

logon string, GL-13
LONG columns

changing format, 4-6, 8-32
default format, 8-32
setting maximum width, 8-107
setting retrieval size, 8-107

LONG datatype, GL-13
LONG variable, 8-107

effect on COPY command, 6-8, 8-51
LONGCHUNKSIZE variable, 4-7, 8-32, 8-107

Index-12

M
-MARKUP, 4-38, 4-42, 7-3

SPOOL clause, 7-4
SQLPLUS command clause, 7-4

MARKUP, 4-38, 7-3, 8-107, GL-13
BODY clause, 7-4
ENTMAP clause, 7-5
example, 8-117
HEAD clause, 7-4
PREFORMAT clause, 7-7
SPOOL clause, 7-4
TABLE clause, 7-5

mask format, GL-11
MAXDATA variable, F-2, F-6
MAXIMUM function, 4-16
media recovery, 8-134
message, sending to screen, 3-28, 8-80
MINIMUM function, 4-16
model format, GL-11
MOUNT clause, 8-134
mounted, GL-13
mounting

shared databases, 8-134
mounting a database, 8-134
multi-threaded server, GL-14

N
NCHAR clause

VARIABLE command, 8-145
NCHAR columns

changing format, 4-6, 8-32
default format, 4-6, 8-32

NCHAR datatype, GL-14
NCLOB clause

VARIABLE command, 8-146
NCLOB columns

changing format, 4-6, 8-32
default format, 8-32
setting maximum width, 8-107
setting retrieval position, 8-107
setting retrieval size, 8-107

NCLOB datatype, GL-14
negative infinity sign (-~), 8-35

Net8, GL-14, GL-21
connect identifier, 8-47
protocol, 6-3

network, GL-14
NEW_VALUE clause, 4-29, 8-35

storing current date in variable for titles, 4-30,
8-35, 8-38

NEWLINE clause, 8-35
NEWPAGE command, F-2, F-4
NEWPAGE variable, 4-31, 8-107
NEXT clause, 8-14
NLS_DATE_FORMAT, 8-10, 8-39
NOAUDIT command

disabling, E-6
NOLIST clause, 8-69
NOLOG, 7-10
/NOLOG option, 7-10
NOMOUNT clause, 8-134
NONE clause

WHENEVER OSERROR, 8-151
WHENEVER SQLERROR, 8-153

NOPARALLEL clause, 8-86
NOPRINT clause, 4-17, 4-29, 8-36
NOPROMPT clause, 8-11
NORMAL mode, 8-128
NULL clause, 8-36
NULL value, GL-14
null values

setting text displayed, 8-36, 8-107
NULL variable, 8-107
NUMBER clause, 3-30, 8-10

VARIABLE command, 8-145
NUMBER columns

changing format, 4-4, 8-33
default format, 4-4, 8-34

NUMBER datatype, GL-14
number formats

$, 4-5
0, 4-5
9, 4-5
comma, 4-5
setting default, 8-108

NUMBER function, 4-16
NUMFORMAT clause

in LOGIN.SQL, 3-19

Index-13

NUMFORMAT variable, 8-108
NUMWIDTH variable, 8-108

effect on NUMBER column format, 4-4, 8-34
NVARCHAR2 columns

changing format, 4-6, 8-32
default format, 4-6, 8-32

NVARCHAR2 datatype, GL-15

O
object, GL-15
object type, GL-15
object-relational model, GL-15
objects

describing, 8-104
obsolete commands

BTITLE, F-3
COLUMN command DEFAULT clause, F-3
NEWPAGE, F-2, F-4
SET command BUFFER variable, F-4
SET command CLOSECURSOR variable, F-2,

F-5
SET command DOCUMENT variable, F-2, F-5
SET command MAXDATA variable, F-2, F-6
SET command SCAN variable, F-2, F-6
SET command SPACE variable, F-2, F-6
SET command TRUNCATE variable, F-2, F-7
SHOW command LABEL variable, F-2, F-7
TTITLE command old form, F-7

OF clause, 4-16
OFF clause, 8-37

in ATTRIBUTE command, 8-18
in COLUMN command, 4-9, 8-37
in REPFOOTER commands, 8-92
in REPHEADER commands, 8-92
in SPOOL command, 4-34, 8-130
in TTITLE and BTITLE commands, 4-28, 8-141

OLD_VALUE clause, 4-30, 8-36
ON clause

in ATTRIBUTE command, 8-18
in COLUMN command, 4-9, 8-37
in TTITLE and BTITLE commands, 4-28

ON column clause
in BREAK command, 4-12, 8-19
in COMPUTE command, 4-16, 8-42

ON expr clause
in BREAK command, 8-20
in COMPUTE command, 8-42

ON REPORT clause
in BREAK command, 4-19, 8-21
in COMPUTE command, 4-19, 8-42

ON ROW clause
in BREAK command, 4-13, 8-21
in COMPUTE command, 8-42

online help, 2-5, 7-12, 8-70
online redo log, GL-15
OPEN clause, 8-134
open database, GL-15
opening a database, 8-134
operating system, GL-15
Oracle

USERID, GL-24
Oracle Server, GL-16
ORDER BY clause

displaying column values in titles, 4-29
displaying values together in output, 4-11

OUT clause, 4-35, 8-130
output, GL-16

formatting white space in, 8-111
pausing during display, 2-17, 8-108
query results, 1-2

output file, GL-16

P
packages, GL-16
page, GL-16
PAGE clause, 8-91
page number, including in titles, 4-14, 4-27
pages

changing length, 4-31, 8-108
default dimensions, 4-31
matching dimensions to screen or paper

size, 4-31
setting dimensions, 4-31

PAGESIZE variable, 2-7, 4-32, 8-108
PAGESIZEclause

in LOGIN.SQL, 3-19
PARALLEL clause, 8-134
parallel server, GL-16

Index-14

parameter, GL-16
width, GL-25

parameter file, GL-16
parameter files (INIT.ORA files)

specifying alternate, 8-133
parameters, 3-27, 8-5, 8-131
PARAMETERS clause, 8-124
password, 1-6, GL-17

changing with the PASSWORD command, 8-77
in CONNECT command, 6-2, 6-3, 8-47
in COPY command, 6-5, 6-7, 6-9
in SQLPLUS command, 2-3, 6-4, 7-9

PASSWORD command, 8-47, 8-77
disabling, E-5

paths, creating
Installation and User’s Guide, 8-51

PAUSE command, 3-31, 8-78
in LOGIN.SQL, 3-19

PAUSE variable, 2-17, 8-108
performance

of SQL statements, 3-36
performance, over dial-up lines, 8-111
Period (.)

terminating PL/SQL blocks, 8-102
period (.)

terminating PL/SQL blocks, 2-10
PLAN_TABLE table, 3-37
PL/SQL, 1-2, 2-10, GL-17

blocks, PL/SQL, 2-10
executing, 8-66
formatting output in SQL*Plus, 8-146
listing definitions, 2-17
mode in SQL*Plus, 2-8
within SQL commands, 2-8

PLUSTRACE role, 3-37
PNO clause, 8-125
pound sign (#), 8-35
PREFORMAT, 7-7
PREFORMAT clause, 7-7
print

spooling, GL-20
PRINT clause, 8-36
PRINT command, 8-79
printing

bind variables automatically, 8-101

REFCURSOR variables, 8-147
SPOOL command, 8-130

procedure, GL-17
process, GL-17
PRODUCT_USER_PROFILE table, E-2
prompt, GL-17
PROMPT clause, 3-29, 8-11
PROMPT command, 3-28, 8-80

customizing prompts for value, 3-30
prompts for value

bypassing with parameters, 3-27
customizing, 3-30
through ACCEPT, 3-28
through substitution variables, 3-23

PUPBLD.SQL, E-2

Q
queries, 1-2

displaying number of records retrieved, 2-7,
8-105

in COPY command, 6-6, 8-51
query, GL-17

results, GL-18, GL-19
query execution path

including in report, 8-101
query results, 1-2

displaying on-screen, 2-6
sending to a printer, 4-35, 8-130
storing in a file, 4-34, 8-130

QUIT command, 8-67
See also EXIT

R
RAW datatype, GL-18
RDBMS, GL-18
record, GL-18, GL-19
record separators, printing, 4-9, 8-108
RECOVER

clause, 8-134
recover, GL-18
RECOVER command, 8-82

AUTOMATIC clause, 8-82
CANCEL clause, 8-84

Index-15

CONTINUE clause, 8-84
DATABASE clause, 8-83
DATAFILE clause, 8-84
FROM clause, 8-83
LOGFILE clause, 8-84
NOPARALLEL clause, 8-86
STANDBY DATABASE clause, 8-83
STANDBY DATAFILE clause, 8-84
STANDBY TABLESPACE clause, 8-84
TABLESPACE clause, 8-84
UNTIL CANCEL clause, 8-83
UNTIL CHANGE clause, 8-83
UNTIL CONTROLFILE clause, 8-84
UNTIL TIME clause, 8-83
USING BACKUP CONTROL FILE clause, 8-84

recovery
RECOVER command, 8-82

RECOVERY command
and database recovery, 5-5

RECSEP variable, 4-9, 8-108
RECSEPCHAR variable, 4-9, 8-108
redo log, GL-15, GL-18

file, GL-18
redo Log Files

ARCHIVE LOG command, 8-13
REFCURSOR bind variables, 3-33

in a stored function, 3-33
REFCURSOR clause

VARIABLE command, 8-146
Relational Database Management System, GL-18
RELEASE clause, 8-125
remark, GL-18
REMARK command, 3-12, 8-88, GL-18
remote computer, GL-19
remote database, GL-19
RENAME command

disabling, E-6
REPFOOTER clause, 8-125
REPFOOTER command, 4-22, 8-89

aligning footer elements, 8-92
BOLD clause, 8-92
CENTER clause, 8-92
COL clause, 8-92
FORMAT clause, 8-92
indenting report footers, 8-92

LEFT clause, 8-92
OFF clause, 8-92
RIGHT clause, 8-92
SKIP clause, 8-92
suppressing current definition, 8-92
TAB clause, 8-92

REPHEADER clause, 8-125
REPHEADER command, 4-22, 8-91

aligning header elements, 4-24
aligning heading elements, 8-92
BOLD clause, 8-92
CENTER clause, 8-92
COL clause, 8-92
FORMAT clause, 8-92
indenting headings, 8-92
LEFT clause, 8-92
OFF clause, 8-92
PAGE clause, 8-91
RIGHT clause, 8-92
SKIP clause, 8-92
suppressing current definition, 8-92
TAB clause, 8-92

REPLACE clause
in COPY command, 6-6, 8-50
in SAVE command, 3-18, 8-96

report
breaks, 8-19
title, F-2

reports, 1-2, GL-19
CGI scripts, 4-42
clarifying with spacing and summary lines, 4-11
columns, 8-31
creating bottom titles, 4-22, 8-24, F-2
creating footers, 8-89
creating headers, 8-91
creating headers and footers, 4-22
creating master/detail, 4-29, 8-36
creating top titles, 4-22, 8-140, F-2
displaying, 8-101
embedded CGI example, 4-42
embedded using SQLPLUS -MARKUP, 4-42
formatting column headings, 4-2, 8-30
formatting columns, 4-4, 4-6, 8-30
interactive HTML example, 4-39, 4-41
interactive using SET MARKUP HTML, 4-38

Index-16

line wrapping, GL-25
on the web, 4-38, 4-42
SILENT mode, 4-46
starting on a new page, 8-104
subtotal, GL-22
summary, GL-22
summary line, GL-22
title, 8-140, GL-24

reserved word, GL-19
RESTRICT, 7-8, 8-133, E-8
RETRY clause, 8-134
return code, specifying, 3-18, 8-68, 8-154
REVOKE command, E-2

disabling, E-6
RIGHT clause, 4-25, 8-92, 8-141
roles, E-7, GL-19

disabling, E-7
re-enabling, E-7

rollback, GL-19
ROLLBACK clause, 8-67

WHENEVER OSERROR, 8-151
WHENEVER SQLERROR, 8-153

row, GL-18, GL-19
rows

performing computations on, 4-15, 8-41
setting number retrieved at one time, 8-100
setting the number after which COPY

commits, 8-103
RUN command, 2-10, 8-95

disabling, E-5
executing current PL/SQL block, 2-10
executing current SQL command or PL/SQL

block, 2-10
making last line current, 3-4
similar to / (slash) command, 2-10, 8-95

S
sample tables, 1-4

access to, 1-7
DEMOBLD, 1-7
DEMODROP, 1-7

SAVE command, 3-8, 8-96
APPEND clause, 3-18, 8-96
CREATE clause, 8-96

disabling, E-5
modifying command files, 3-18
REPLACE clause, 3-18, 8-96
storing commands in command files, 3-8, 8-96
using with INPUT to create command files, 3-10

saving environment attributes, 8-137
SCAN variable, F-2, F-6
schema, GL-19
SCREEN clause, 3-31, 8-28
screen, clearing, 3-31, 8-28
script, GL-21

CGI, 4-42, GL-6
search paths

Installation and User’s Guide, 8-51
Security

RESTRICT, 7-8, E-8
security

changing password, 8-77
embedded web reports, 4-43
PRODUCT_USER_PROFILE table, E-2

security level, GL-19
select, GL-20
SELECT command

and BREAK command, 4-11, 8-20, 8-21
and COLUMN command, 8-31
and COMPUTE command, 4-11
and COPY command, 6-6, 8-51
and DEFINE command, 8-52
and ORDER BY clause, 4-11
disabling, E-6
storing current date in variable for titles, 4-30

SELECT list, GL-20
SELECT statement, GL-20

formatting results, 3-33
semicolon (;)

in PL/SQL blocks, 2-10
in SQL commands, 2-6, 2-8
in SQL*Plus commands, 2-13, 8-1
not needed when inputting a command

file, 3-10
not stored in buffer, 3-3

Server, GL-16
server, GL-20
SERVEROUTPUT variable, 8-109
service Name

Index-17

in COPY command, 6-9
service name

in CONNECT command, 6-3
in COPY command, 6-5, 6-7
in SQLPLUS command, 6-4

session, GL-20
SET AUTOTRACE, 3-36
SET clause, 8-137
SET command, 2-13, 3-20, 4-38, 8-98, GL-23

APPINFO variable, 8-99
ARRAYSIZE variable, 6-8, 8-100
AUTOCOMMIT variable, 2-14, 8-100
AUTOPRINT variable, 8-101, 8-146
AUTORECOVERY variable, 8-101
AUTOTRACE variable, 8-101
BLOCKTERMINATOR variable, 8-102
BUFFER variable, F-4
CLOSECURSOR variable, F-2, F-5
CMDSEP variable, 8-102
COLSEP variable, 4-34, 8-102
COMPATIBILITY clause, 3-19
COMPATIBILITY variable, 8-103
CONCAT variable, 3-26, 8-103
COPYCOMMIT variable, 6-8, 8-103
COPYTYPECHECK variable, 8-103
DEFINE clause, 3-26
DEFINE variable, 8-103
DESCRIBE variable, 8-104
disabling, E-5
DOCUMENT variable, F-2, F-5
ECHO variable, 3-16, 8-104
EDITFILE variable, 8-104
EMBEDDED variable, 8-104
ESCAPE variable, 3-26, 8-104
FEEDBACK variable, 8-105
FLAGGER variable, 8-105
FLUSH variable, 8-105
HEADING variable, 8-105
HEADSEP variable, 4-3, 8-106
INSTANCE variable, 8-106
LINESIZE variable, 4-24, 4-32, 8-106
LOBOFFSET variable, 8-107
LOGSOURCE variable, 8-107
LONG variable, 6-8, 8-107
LONGCHUNKSIZE variable, 8-107

MARKUP clause, 8-107
MAXDATA variable, F-2, F-6
NEWPAGE variable, 4-31, 8-107
NULL variable, 8-107
NUMFORMAT clause, 3-19
NUMFORMAT variable, 8-108
NUMWIDTH variable, 4-4, 8-34, 8-108
PAGESIZE clause, 3-19
PAGESIZE variable, 2-7, 4-32, 8-108
PAUSE clause, 3-19
PAUSE variable, 2-17, 8-108
RECSEP variable, 4-9, 8-108
RECSEPCHAR variable, 4-9, 8-108
SCAN variable, F-2, F-6
SERVEROUTPUT variable, 8-109
SHIFTINOUT clause, 3-19
SHIFTINOUT variable, 8-109
SPACE variable, F-2, F-6
SQLBLANKLINES variable, 8-110
SQLCASE variable, 8-110
SQLCONTINUE variable, 8-110
SQLNUMBER variable, 8-110
SQLPREFIX variable, 8-110
SQLPROMPT variable, 8-110
SQLTERMINATOR variable, 8-110
SUFFIX variable, 8-111
TAB variable, 8-111
TERMOUT variable, 4-30, 8-111
TIME clause, 3-19
TIME variable, 8-111
TIMING variable, 8-111
TRIMOUT variable, 8-111
TRIMSPOOL variable, 8-112
TRUNCATE variable, F-2, F-7
UNDERLINE variable, 4-3, 8-112
used to format a REFCURSOR variable, 8-147
VERIFY clause, 3-23
VERIFY variable, 3-26, 8-112
WRAP variable, 4-7, 8-112

SET command variables
system variables, 2-13

SET MARKUP
BODY clause, 7-4
embedded CGI example, 4-42
ENTMAP clause, 4-47, 7-5

Index-18

HEAD clause, 7-4
HTML, 7-4
interactive HTML example, 4-39, 4-41
PREFORMAT clause, 7-7
See also SPOOL command
SPOOL clause, 7-4
TABLE clause, 7-5

SET ROLE command
disabling, E-6

SET TRANSACTION command
disabling, E-6

SGA, GL-23
SGA clause, 8-125
shared disk systems

mounting shared, 8-134
shared mode

database, 8-134
SHIFTINOUT clause

in LOGIN.SQL, 3-19
SHIFTINOUT variable, 8-109
SHOW clause, 8-138
SHOW command, 2-13, 8-123, GL-23

ALL clause, 8-123
BTITLE clause, 8-124
ERRORS clause, 8-124
LABEL variable, F-2, F-7
listing current page dimensions, 4-33
LNO clause, 8-124
PNO clause, 8-125
RELEASE clause, 8-125
REPFOOTER clause, 8-125
REPHEADER clause, 8-125
SPOOL clause, 8-125
SQLCODE clause, 8-125
TTITLE clause, 8-125
USER clause, 8-125

SHOWMODE variable, 8-109
SHUTDOWN command, 8-128

ABORT, 8-128
IMMEDIATE, 8-128
NORMAL, 8-128

-SILENT option, 4-46, 7-8
site profile

GLOGIN.SQL, 7-10
LOGIN.SQL, 7-10

See also user profile
SKIP clause

in BREAK command, 4-13, 8-21
in REPHEADER and REPFOOTER

commands, 8-92
in TTITLE and BTITLE commands, 4-25, 8-141
used to place blank lines before bottom

title, 4-25
SKIP PAGE clause, 4-13, 4-14, 8-22
slash (/) command, 8-9

using with files loaded with GET
command, 8-69

SPACE variable, F-2, F-6
SPOOL clause, 7-4, 7-6, 8-125
SPOOL command, 4-33, 8-130, GL-20

disabling, E-5
file name, 4-34, 8-130
OFF clause, 4-34, 8-130
OUT clause, 4-35, 8-130
to HTML file, 7-6
turning spooling off, 4-34, 8-130
use with SET MARKUP, 4-39

spooling, GL-20
SQL, GL-20

buffer, GL-21
command, GL-21
query, GL-17
query results, GL-18
reports, GL-19
rollback, GL-19
script, GL-21
select, GL-20
statement, GL-21
transaction, GL-24

SQL buffer, 2-9
SQL clause, 8-29
SQL commands, list of major, D-1
SQL database language, 1-2
SQL DML statements

reporting on, 8-101
SQL*Loader, GL-21
SQL*Net, GL-14, GL-21
SQL*Plus, GL-21

basic concepts, 1-2
command prompt, 2-4

Index-19

command summary, 8-2
database administration, 5-2
exiting, 2-4, 8-67
exiting conditionally, 8-151, 8-153
limits, C-1
LOGIN.SQL, 3-19
obsolete command alternatives, F-2
overview, 1-2
running commands in batch mode, 3-18, 8-68
setting up environment, 3-19
shortcuts to starting, 2-4
starting, 2-3, 7-2
substitution variable, GL-22
variable, GL-25
what you need to run, 1-6
who can use, 1-3

SQLBLANKLINES variable, 8-110
SQLCASE variable, 8-110
SQLCODE clause, 8-125

SHOW command, 8-125
SQLCONTINUE variable, 8-110
SQLNUMBER variable, 8-110
SQLPLUS command, 2-3, 4-42, 7-2

- clause, 7-2
-? clause, 7-3
and @ ("at" sign), 3-17, 6-4, 7-2
and EXIT FAILURE, 7-11
BODY option, 7-4
connect identifier, 7-9
connecting to a remote database, 6-4
display syntax, 7-2
ENTMAP option, 7-5
HEAD option, 7-4
HTML option, 7-4
-MARKUP clause, 7-4
-MARKUP option, 7-3
-MARKUP SPOOL clause, 7-4
/NOLOG clause, 7-10
PREFORMAT option, 7-7
RESTRICT, 7-8, E-8
running command files, 3-17
service name, 6-4, 7-9
-SILENT clause, 7-8
-SILENT option, 4-46, 7-8
SPOOL clause, 7-6

syntax, 7-2
SYSDBA clause, 7-9
TABLE option, 7-5
unsuccessful connection, 7-10
username/password, 2-3, 7-9

SQL.PNO, referencing in report titles, 4-27
SQLPREFIX variable, 8-110
SQLPROMPT variable, 8-110
SQL.SQLCODE

using in EXIT command, 8-67
SQLTERMINATOR, 8-110
SQLTERMINATOR variable, 8-71, 8-110
STANDBY DATAFILE clause, 8-84
STANDBY TABLESPACE clause, 8-84
START clause, 8-14, 8-138
START command, 3-16, 8-131, GL-24

arguments, 3-27, 8-131
command file, 3-16, 8-131
disabling, E-5
passing parameters to a command file, 3-27,

8-131
similar to @ ("at" sign) command, 3-16, 8-6,

8-132
similar to @@ (double "at" sign) command, 8-7,

8-132
starting SQL*Plus, 2-3

shortcuts, 2-4
STARTUP command, 8-133

EXCLUSIVE clause, 8-133
FORCE clause, 8-133
MOUNT clause, 8-134
NOMOUNT clause, 8-134
OPEN clause, 8-134
PARALLEL clause, 8-134
PFILE clause, 8-133
RECOVER clause, 8-134
RESTRICT clause, 8-133
RETRY clause, 8-134
SHARED clause, 8-134
specifying a database, 8-134

statement
SQL, GL-21

statistics, 3-38
STD function, 4-16
STOP clause, 8-14, 8-138

Index-20

STORE command, 3-20, 8-137
SET clause, 8-137

stored functions, 3-33
stored procedures

creating, 2-8
string, GL-21
Structured Query Language, GL-20
substitution variables, 3-22, GL-22, GL-25

appending characters immediately after, 3-24
avoiding unnecessary prompts for value, 3-24
concatenation character, 8-103
DEFINE command, 3-24, 8-52
prefixing, 8-103, F-2
restrictions, 3-26
single and double ampersands, 3-24
system variables used with, 3-26
undefined, 3-23
where and how to use, 3-22

subtotal, GL-22
SUFFIX variable, 8-111

used with @ ("at" sign) command, 8-5
used with EDIT command, 8-64
used with GET command, 8-69
used with SAVE command, 8-96
used with START command, 8-131

SUM function, 4-16
summary, GL-22
summary lines, GL-22

computing and printing, 4-15, 8-41
computing and printing at ends of reports, 4-19
computing same type on different

columns, 4-20
printing "grand" and "sub" summaries

(totals), 4-20
printing multiple on same break column, 4-21

syntax, GL-22
conventions, 1-3
COPY command, 6-5

syntax rules
SQL commands, 2-7
SQL*Plus commands, 2-12

SYSDATE, 4-31
SYSDBA, GL-22
SYSDBA clause, 8-48
SYSOPER, GL-22

SYSOPER clause, 7-9, 8-48
system administrator, GL-22
system editor, GL-22
System Global Area, GL-23
SYSTEM username, GL-23
system variables, 2-13, 8-112, GL-23

changing current settings, 8-98
listing current settings, 2-13, 8-123
listing old and new values, 8-109
storing and restoring, 3-20
used with substitution variables, 3-26

system-maintained values
displaying in headers and footers, 8-91
displaying in titles, 4-27, 8-140
formatting in titles, 4-28

T
TAB clause, 8-92, 8-141
TAB variable, 8-111
TABLE clause, 7-5
TABLE option, 7-5
tables, 1-2, GL-23

access to sample, 1-7
alias, GL-23
controlling destination when copying, 6-6, 8-50
copying values between, 6-4, 6-9, 8-49
DEPT, 1-5
EMP, 1-4
listing column definitions, 2-16, 8-56
referring to another user’s when copying, 6-8
sample, 1-4

TABLESPACE clause, 8-84
tablespaces

recovering, 8-82
tag, HTML, 4-38
TERMOUT variable, 8-111

storing current date in variable for titles, 4-30
using with SPOOL command, 8-130

text, 7-4, 7-5
adding to current line with APPEND, 3-6, 8-12
changing old to new with CHANGE, 3-3, 8-25
clearing from buffer, 3-2, 8-28

text editor, GL-23
text editor, host operating system, 3-7, 8-64

Index-21

TIME clause
in LOGIN.SQL, 3-19

TIME variable, 8-111
timer, GL-24
TIMING clause, 8-29
TIMING command, 2-15, 8-138

deleting all areas created by, 8-29
deleting current area, 8-138
SHOW clause, 8-138
START clause, 8-138
STOP clause, 8-138

TIMING variable, 8-111
titles, GL-24

aligning elements, 4-24, 8-141
displaying at bottom of page, 4-22, 8-24, F-2
displaying at top of page, 4-22, 8-140, F-2
displaying column values, 4-29, 8-35, 8-36
displaying current date, 4-30, 8-35, 8-38
displaying page number, 4-27, 8-143
displaying system-maintained values, 4-27,

8-140
formatting elements, 8-142
formatting system-maintained values in, 4-28
indenting, 4-26, 8-141
listing current definition, 4-28, 8-24, 8-142
restoring definition, 4-28
setting at start or end of report, 4-22
setting lines from top of page to top title, 4-31,

8-107, F-2
setting lines from top title to end of page, 8-108
setting top and bottom, 4-22, 8-24, 8-140, F-2
spacing between last row and bottom title, 4-25
suppressing definition, 4-28, 8-141

TO clause, 6-5, 8-49
tracing statements, 3-36

for performance statistics, 3-38
for query execution path, 3-38
using a database link, 3-40
with parallel query option, 3-41

transaction, GL-24
transaction rollback, GL-19
TRIMOUT variable, 8-111
TRIMSPOOL variable, 8-112
truncate, GL-24
TRUNCATE command

disabling, E-6
TRUNCATE variable, F-2, F-7
TRUNCATED clause, 4-7, 8-37
TTITLE clause, 8-125
TTITLE command, 4-22, 8-140, GL-24

aligning title elements, 4-24, 8-141
BOLD clause, 8-141
CENTER clause, 4-25, 8-141
COL clause, 4-26, 8-141
FORMAT clause, 4-27, 8-142
indenting titles, 4-26, 8-141
LEFT clause, 4-25, 8-141
listing current definition, 4-28, 8-142
OFF clause, 4-28, 8-141
old form, F-7
ON clause, 4-28
referencing column value variable, 4-29, 8-35
restoring current definition, 4-28
RIGHT clause, 4-25, 8-141
SKIP clause, 4-25, 8-141
suppressing current definition, 4-28, 8-141
TAB clause, 8-141

tuning, 3-36
type

column, GL-24

U
UNDEFINE command, 3-22, 8-144

and DEFINE command, 8-52
UNDERLINE variable, 4-3, 8-112
UNTIL CANCEL clause, 8-83
UNTIL CHANGE clause, 8-83
UNTIL CONTROLFILE clause, 8-84
UNTIL TIME clause, 8-83
UPDATE command

disabling, E-6
USER clause, 8-125
user profile, 3-19

LOGIN.SQL, 7-10
See also site profile

user variables, 3-21, GL-24
defining, 3-21, 8-52
deleting, 3-22, 8-144
displaying in headers and footers, 8-91

Index-22

displaying in titles, 8-140
in ACCEPT command, 3-28, 8-10
listing definition of one, 3-21, 8-52
listing definitions of all, 3-21, 8-52

USERID, GL-24
username, 1-6, GL-23, GL-24

connecting under different, 6-2, 8-47
in CONNECT command, 6-2, 6-3, 8-47
in COPY command, 6-5, 6-7, 6-9
in SQLPLUS command, 2-3, 6-4, 7-9

userprofile
GLOGIN.SQL, 7-10

USING BACKUP CONTROL FILE clause, 8-84
USING clause, 6-6, 8-51

V
V$SESSION virtual table, 8-99
V$SQLAREA virtual table, 8-100
VARCHAR columns

changing format, 4-6
default format, 4-6, 8-32

VARCHAR datatype, GL-24
VARCHAR2 clause

VARIABLE command, 8-145
VARCHAR2 columns

changing format, 4-6, 8-32
default format, 4-6

VARCHAR2 datatype, GL-25
VARIABLE command, 8-145

CHAR clause, 8-145
CLOB clause, 8-146
NCHAR clause, 8-145
NCLOB clause, 8-146
NUMBER clause, 8-145
REFCURSOR clause, 8-146
VARCHAR2 clause, 8-145
variable clause, 8-145

variables, GL-22, GL-23, GL-25
bind variables, 3-31
substitution variables, 3-22
system variables, 2-13
user variables, 8-52

VARIANCE function, 4-16
VERIFY clause, 3-23

VERIFY variable, 3-26, 8-112

W
WARNING clause, 8-67
web

outputting reports, 4-38
web browser, 4-38
WHENEVER OSERROR command, 8-151

COMMIT clause, 8-151
CONTINUE clause, 8-151
EXIT clause, 8-151
NONE clause, 8-151
ROLLBACK clause, 8-151

WHENEVER SQLERROR command, 3-18, 8-153
COMMIT clause, 8-153
CONTINUE clause, 8-153
EXIT clause, 8-153
NONE clause, 8-153
ROLLBACK clause, 8-153

width, GL-25
WORD_WRAPPED clause, 4-7, 4-10, 8-37
WRAP variable, 4-7, 8-112
WRAPPED clause, 4-7, 8-37
wrapping, GL-25

	PDF Directory
	Send Us Your Comments
	Preface
	1 Introduction
	Overview of SQL*Plus
	Basic Concepts
	Who Can Use SQL*Plus

	Using this Guide
	Conventions for Command Syntax
	Sample Tables

	What You Need to Run SQL*Plus
	Hardware and Software
	Information Specific to Your Operating System
	Username and Password
	Access to Sample Tables

	2 Learning SQL*Plus Basics
	Getting Started
	Using the Keyboard
	Starting SQL*Plus
	Shortcuts to Starting SQL*Plus

	Leaving SQL*Plus

	Entering and Executing Commands
	Entering Commands
	Getting Help
	Executing Commands
	Running SQL Commands
	Understanding SQL Command Syntax
	The SQL Buffer
	Executing the Current SQL Command or PL/SQL Block from the Command Prompt

	Running PL/SQL Blocks
	Running SQL*Plus Commands
	Understanding SQL*Plus Command Syntax

	Variables that Affect Running Commands
	Saving Changes to the Database Automatically
	Stopping a Command while it is Running
	Collecting Timing Statistics on Commands You Run
	Running Host Operating System Commands

	Getting Help
	Listing a Table Definition
	Listing PL/SQL Definitions
	Controlling the Display
	Interpreting Error Messages

	3 Manipulating Commands
	Editing Commands
	Listing the Buffer Contents
	Editing the Current Line
	Adding a New Line
	Appending Text to a Line
	Deleting Lines
	Editing Commands with a System Editor

	Saving Commands for Later Use
	Storing Commands in Command Files
	Creating a Command File by Saving the Buffer Contents
	Creating a Command File by Using INPUT and SAVE
	Creating Command Files with a System Editor

	Placing Comments in Command Files
	Using the REMARK Command
	Using /*...*/
	Using -�-
	Notes on Placing Comments

	Retrieving Command Files
	Running Command Files
	Running a Command File as You Start SQL*Plus

	Nesting Command Files
	Modifying Command Files
	Exiting from a Command File with a Return Code
	Setting Up Your SQL*Plus Environment
	Modifying Your LOGIN File

	Storing and Restoring SQL*Plus System Variables
	Restoring the System Variables

	Writing Interactive Commands
	Defining User Variables
	Using Substitution Variables
	Where and How to Use Substitution Variables
	Avoiding Unnecessary Prompts for Values
	Restrictions
	System Variables

	Passing Parameters through the START Command
	Communicating with the User
	Prompting for and Accepting User Variable
	Customizing Prompts for Substitution Variable
	Sending a Message and Accepting [Return] as Input
	Clearing the Screen

	Using Bind Variables
	Creating Bind Variables
	Referencing Bind Variables
	Displaying Bind Variables

	Using REFCURSOR Bind Variables
	Tracing Statements
	Controlling the Report
	Execution Plan
	Statistics
	Tracing Parallel and Distributed Queries

	4 Formatting Query Results
	Formatting Columns
	Changing Column Headings
	Formatting NUMBER Columns
	Formatting Datatypes
	Copying Column Display Attributes
	Listing and Resetting Column Display Attributes
	Suppressing and Restoring Column Display Attributes
	Printing a Line of Characters after Wrapped Column Values

	Clarifying Your Report with Spacing and Summary Lines
	Suppressing Duplicate Values in Break Columns
	Inserting Space when a Break Column’s Value Changes
	Inserting Space after Every Row
	Using Multiple Spacing Techniques
	Listing and Removing Break Definitions
	Computing Summary Lines when a Break Column’s Value Changes
	Computing Summary Lines at the End of the Report
	Computing Multiple Summary Values and Lines
	Listing and Removing COMPUTE Definitions

	Defining Page and Report Titles and Dimensions
	Setting the Top and Bottom Titles and Headers and Footers
	Displaying the Page Number and other System-Maintained Values in Titles
	Listing, Suppressing, and Restoring Page Title Definitions
	Displaying Column Values in Titles
	Displaying the Current Date in Titles
	Setting Page Dimensions

	Storing and Printing Query Results
	Creating a Flat File
	Sending Results to a File
	Sending Results to a Printer

	Creating Web Reports
	Creating Web Reports Interactively
	Creating Embedded Web Reports
	Suppressing the Display of SQL*Plus Commands in Web Reports
	HTML Entities

	5 Database Administration
	Overview
	Introduction to Database Startup and Shutdown
	Database Startup
	Database Shutdown

	Redo Log Files
	ARCHIVELOG Mode

	Database Recovery

	6 Accessing SQL Databases
	Connecting to the Default Database
	Connecting to a Remote Database
	Connecting to a Remote Database from within SQL*Plus
	Connecting to a Remote Database as You Start SQL*Plus

	Copying Data from One Database to Another
	Understanding COPY Command Syntax
	Controlling Treatment of the Destination Table
	Interpreting the Messages that COPY Displays
	Specifying Another User’s Table

	Copying Data between Tables on One Database

	7 Starting SQL*Plus and Getting Help
	Starting SQL*Plus Using the SQLPLUS Command
	Options
	HELP Option
	VERSION Option
	MARKUP Options
	RESTRICT Option
	SILENT Option

	Logon
	Start
	Setting Up the Site Profile
	Setting Up the User Profile
	Receiving a Return Code

	Getting Help

	8 Command Reference
	SQL*Plus Command Summary
	@ ("at" sign)
	@@ (double "at" sign)
	/ (slash)
	ACCEPT
	APPEND
	ARCHIVE LOG
	ATTRIBUTE
	BREAK
	BTITLE
	CHANGE
	CLEAR
	COLUMN
	COMPUTE
	CONNECT
	COPY
	DEFINE
	DEL
	DESCRIBE
	DISCONNECT
	EDIT
	EXECUTE
	EXIT
	GET
	HELP
	HOST
	INPUT
	LIST
	PASSWORD
	PAUSE
	PRINT
	PROMPT
	RECOVER
	REMARK
	REPFOOTER
	REPHEADER
	RUN
	SAVE
	SET
	SHOW
	SHUTDOWN
	SPOOL
	START
	STARTUP
	STORE
	TIMING
	TTITLE
	UNDEFINE
	VARIABLE
	WHENEVER OSERROR
	WHENEVER SQLERROR

	A COPY Command Messages and Codes
	B Release 8.1.7 Enhancements
	SQL*Plus Release 8.1.7 Enhancements
	SQL*Plus Release 8.1.6 Enhancements
	SQL*Plus Release 8.1.5 Enhancements

	C SQL*Plus Limits
	D SQL Command List
	E Security
	PRODUCT_USER_PROFILE Table
	Overview
	Creating the Table
	Table Structure
	Description and Use of Columns
	Administration
	Disabling SQL*Plus, SQL, and PL/SQL Commands
	Disabling SET ROLE
	Disabling Roles

	Roles
	Overview

	SQLPLUS -RESTRICT

	F Obsolete SQL*Plus Commands
	SQL*Plus Obsolete Command Alternatives
	BTITLE (old form)
	COLUMN DEFAULT
	DOCUMENT
	NEWPAGE
	SET BUFFER
	SET CLOSECURSOR
	SET DOCUMENT
	SET MAXDATA
	SET SCAN
	SET SPACE
	SET TRUNCATE
	SHOW LABEL
	TTITLE (old form)

	Glossary
	Index

